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Evasion Generative Adversarial Network for Low
Data Regimes

Rizwan Hamid Randhawa, Nauman Aslam, Mohammad Alauthman, Husnain Rafiq

Abstract—A myriad of recent literary works has leveraged
generative adversarial networks (GANs) to generate unseen
evasion samples. The purpose is to annex the generated data
with the original train set for adversarial training to improve the
detection performance of machine learning (ML) classifiers. The
quality of generated adversarial samples relies on the adequacy of
training data samples. However, in low data regimes like medical
diagnostic imaging and cybersecurity, the anomaly samples are
scarce in number. This paper proposes a novel GAN design called
Evasion Generative Adversarial Network (EVAGAN) that is more
suitable for low data regime problems that use oversampling for
detection improvement of ML classifiers. EVAGAN not only can
generate evasion samples, but its discriminator can act as an
evasion-aware classifier. We have considered Auxiliary Classifier
GAN (ACGAN) as a benchmark to evaluate the performance of
EVAGAN on cybersecurity (ISCX-2014, CIC-2017 and CIC2018)
botnet and computer vision (MNIST) datasets. We demonstrate
that EVAGAN outperforms ACGAN for unbalanced datasets with
respect to detection performance, training stability and time
complexity. EVAGAN’s generator quickly learns to generate the
low sample class and hardens its discriminator simultaneously. In
contrast to ML classifiers that require security hardening after
being adversarially trained by GAN-generated data, EVAGAN
renders it needless. The experimental analysis proves that EVA-
GAN is an efficient evasion hardened model for low data regimes
for the selected cybersecurity and computer vision datasets. Code
will be available at HTTPS://www.github.com/rhr407/EVAGAN.

Impact Statement—Artificial Intelligence (AI) applications can
help improve the quality of human life. The use of AI is not
only limited to medical anomaly detection and drug discovery
but can be leveraged in computer networks to keep people safe
from malicious activities on the Internet. However, the AI-based
models can be biased towards the majority class of data on which
they are trained due to data imbalance. Anomaly data samples
are always scarce as compared to normal data samples. So this
is an open research problem to solve. Our work is an effort to
improve the AI-based methods in detection performance, stability
and time complexity. Using the proposed technique, we can train
our AI model using fewer anomaly samples, improving the cost-
efficiency compared to state-of-the-art in anomaly detection.
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I. INTRODUCTION

Low data regimes are found in many real-life applications
in which researchers face data scarcity problems [1]. The
data scarcity pertains to the situation where one class is
abundant in data samples (especially normal behaviour) while
the anomaly samples are rare and challenging to gather [2].
The data scarcity can also be described as a data imbalance
problem potentially resulting in decision bias in machine
learning (ML) classifiers. The network traffic datasets are one
of the prime examples of data imbalance problems. Since the
ML intrusion detection systems are data-hungry probabilistic
models, having more data can improve their performance [3].
The real attacks can be emulated with dedicated machines in a
lab environment using open-source operating systems like Kali
Linux [4], [5]. However, there can be two main disadvantages
of emulating real attacks: First, real data gathering can be
expensive, involving multiple hardware resources like multiple
computers and network switches [6]. Second, the emulated
attacks may not accurately represent a real attack scenario. A
cost-effective way of gathering the attacks’ data is synthetic
generation using AI generative models [7].

Synthetic data generation is also termed data oversampling.
Using generative adversarial networks (GANs) as synthetic
oversamplers has been a voguish research endeavour for low
data regimes [3], [8]. Various researchers have demonstrated
that GANs are more effective as compared to other synthetic
oversamplers like SMOTE [2], [7], [9], [10]. It is found in
numerous studies that due to the adversarial factor, GANs
can better estimate the target probability distribution [2], [9],
[11]. In a simple/vanilla GAN, two different neural networks
generator (G) and discriminator (D) work antagonistically
to learn from each other’s experience to converge to Nash
equilibrium [12]. As an oversampler, after being trained to a
certain number of epochs, G is used to generate additional
data. Depending on how well a GAN learned the input data
probability distribution, the close resembling data is annexed
to the original train set. This process is called data augmen-
tation (DA), which many researchers have demonstrated to
be effective in improving the detection performance of ML
classifiers [13]–[17].

Since AI-based systems are prone to adversarial evasion
attacks, it is imperative to harden the ML classifiers against
adversarial evasions. Black box attackers can use GANs to
generate evasion samples [15], [16], [18]. Therefore, employ-
ing GANs can be an effective technique to proactively design
an adversarial aware classifier resulting from DA. Although
DA is effective in helping the ML classifiers recognise the
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Table I
MAIN NOTATIONS

Notation Definition
G Generator
D Discriminator
z Normal distribution from noise space
z Noise samples

pdata Probability distribution of real samples
pz Probability distribution of noise samples
X Real data distribution
E Expected value
cm Minority class labels
cM Majority class labels
yxi Actual label of sample xi in dataset X

perturbed data samples, D of a GAN can be extended to act
as a multiclass classifier so that it can be used as an anomaly
detector [16], [19], [20]. In this way, we do not need to use DA
as the D is trained simultaneously with G. Auxiliary Classifier
GAN (ACGAN) is an example of such a GAN in which the D
not only differentiates between fake and real samples but also
can be used as a multiclass classifier [2], [21]. The advantage
of extending the D in ACGAN is to improve training stability,
and quality of generated samples [21]. In this work, with the
help of experimentation, we have demonstrated that ACGAN
does not perform well in highly unbalanced datasets. So we
propose a novel GAN based on ACGAN called EVAGAN
that outperforms ACGAN in terms of detection performance,
stability in training and time complexity.

We summarise the main contributions of this paper in the
following aspects:

1) We propose a novel GAN model to design an evasion-
aware discriminator as a sophisticated botnet detector.

2) We demonstrate by experiments that the existing use of
ACGAN to design a sophisticated classifier can fail in
highly unbalanced datasets.

3) We determine that EVAGAN outperforms ACGAN in
terms of performance detection, stability and time com-
plexity for cybersecurity (CC) botnet and computer
vision (CV) datasets.

Table I shows the main notations used in this paper. The
rest of this paper has been organized as follows. Section II
provides a comprehensive background of vanilla GANs, data
oversampling, adversarial evasion and ACGAN, section III
presents the details of the proposed model, section IV gives a
description of implementation details, section V demonstrates
the results, section VI provides an analysis of the results and
section VIII concludes the paper.

II. BACKGROUND

A. Generative Adversarial Networks (GANs)

A GAN combines two different neural networks, each
having a unique structure. The one responsible for generating
synthetic samples is called generator (G), and the other that
evaluates the generated samples is called discriminator (D).
Figure 1 shows the block diagram of a classical/vanilla GAN.
There are two consecutive steps in which a GAN is trained. In
the first step, the D is trained on real data labelled as REAL,
and the data generated by an untrained G is labelled as FAKE.

N
O
I
S
E

REAL

FAKE
REAL

FAKE

D_Loss(REAL)

D_Loss(FAKE)

G_Loss (REAL)

G D

REAL

Figure 1. Block Diagram of a classical GAN

In the next step, now that the D has trained already, it is tested
on the fake data from G, but this time intentionally labelled as
REAL. The loss of the D on this falsely labelled data is fed
back to the G which adjusts its weights in one complete batch
training. There can be several batch iterations, after which one
complete traversal of the dataset is complete, also known as
an epoch. In the classical GAN, the generator model can be
represented as G: z→ X where z is the normal distribution
from noise space and X is the real data distribution.

The discriminator D: X → [0,1] model is a classifier
that outputs an estimate of probability between 0 and 1 to
mark whether the data coming from G is real or fake. The
objective function of the combined model can be represented
by Equation 1.

min
G

max
D

V (D,G) = Ex∼pdata(x)[logD(x)]+

Ez∼pz(z)[log(1−D(G(z)))]
(1)

Here, E represents the expected value of the loss, and x and
z denote the real and noise samples, respectively. At the same
time, pdata and pz are the probability distributions of real and
noise data, respectively. The objective of a min-max game is
to minimise the generator’s loss in creating data resembling
real data. Since the generator can not control the loss of D
on real data, still, it can maximise the loss of D on generated
data G(z). The objective function of G is given by Equation
2.

JG(G) = Ez∼pz(z)[log(D(G(z)))] (2)

As demonstrated in the Figure 1, the losses of D on
real D Loss(REAL) and generated data D Loss(FAKE)
respectively, are fed to D using back-propagation. In the next
step, in forward propagation, given label as REAL to the input
generated samples (coming from G), the evaluation is done
by D and G Loss(REAL), is fed back to G to update its
weights. We call this step the combined model training. The
combined model takes noise as input and the output of the D
as the feedback to update the weights of the G. This process
keeps iterating till the number of epochs reaches a set value.
The generator and discriminator do not learn further upon
achieving the Nash equilibrium.
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B. Data Oversampling & GANs

In low data regimes, oversampling or undersampling can
help balance the datasets. However, undersampling might
result in the loss of diversity. For oversampling, methods
like SMOTE use nearest neighbours, and linear interpolation,
which can be unsuitable for high-dimensional and complex
probability distributions [9], [22]. Recent research works
proposed algorithms for data oversampling. Authors in [23]
compared 85 different oversampling techniques and suggested
the three best-performing variants as SMOTE IPF, ProWSyn
and polynom fit SMOTE. In [7], authors have compared the
performance of these three SMOTE variants with GANs.
Through empirical results, they found that GANs outperform
the three mentioned oversamplers in most of the adversarial
training of ML classifiers.

C. ACGAN

ACGAN extends a classical GAN exploiting class labels
in the training process [21]. Similar to a classical GAN,
ACGAN includes two neural networks: a Generator (G) and
a Discriminator (D). In addition to random noise samples
z, the input of G includes class labels c. Therefore, the
synthesized sample from G in ACGAN is Xfake = G(c, z),
instead of Xfake = G(z). In other terms, ACGAN can generate
the specified class data for which we feed labels to its G.
Simultaneously, the D of ACGAN works as a dual classifier
for differentiating between the real/fake data and different
classes of the input samples, whether coming from the real
source or the G.

The objective function of ACGAN consists of two parts:
The first is the log-likelihood LS of the correct source data,
and the second is the log-likelihood LC of the real class labels.
D is trained to maximise LC +LS and G learns to maximise
LC −LS . In other words, the objective of D is to improve the
two likelihoods, while the goal of G is to assist D in improving
the performance on class label discrimination. G will also try
to suppress the log-likelihood of D on fake samples. The D
outputs both a probability distribution over sources and the
class labels respectively [P (S|X ), P (C|X )] = D(X ) where S
are the sources (real/fake) and C are the class labels. Equations
3 and 4 denote the Ls and Lc respectively.

LS = E[logP (S = real|Xreal)] +

E[logP (S = fake|Xfake)]
(3)

LC = E[logP (C = c|Xreal)] +

E[logP (C = c|Xfake)]
(4)

A careful observation of Figure 2 suggests that there seems
to be no tremendous difference between ACGAN and EVA-
GAN; however, the significance of simple modifications in
the generator input, discriminator output and loss functions is
discussed in more detail in section III.

D. Adversarial Evasion & GANs

The decision bias in ML classifiers can lead to the misclas-
sification of malicious samples as normal. The attackers can
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Figure 2. Comparison of EVAGAN model with vanilla GAN and ACGAN

exploit this intrinsic nature of ML classifiers to incarnate eva-
sion samples, particularly in low data regimes. The adversarial
evasion j* is a perturbed version of an input sample j such that
the j* = j + η, where η is a carefully crafted perturbation. When
making an adversarial attack, η could be sought and selected
so that the classifier can not discriminate the j* from j [24],
[25]. The researchers usually employ adversarial training to
make the classifiers proactively aware of the evasion samples.
However, this is not needed if we use the D of a GAN as a
classifier to differentiate not only between the fake and real
samples but also between normal and anomaly samples. The
fake samples generated by the G are also learnt at the same
time, so it is better to consider the power of D as an evasion-
aware classifier. We do not need to use extra ML classifiers,
which is a common practice in various literary works, to design
such a classifier [19], [20].

To this end, we propose EVAGAN that provides such type
of D and compare its performance with the D of ACGAN
and other ML classifiers, xgboost (XGB), decision tree (DT),
naive bayes (NB), random forests (RF), logistic regression
(LR) and k-nearest neighbours (KNN). Following rigorous
experimentation, we explore that EVAGAN’s D not only out-
performs the ML classifiers in black box testing but also gives
100% accuracy in normal and evasion samples estimation. The
details of the experimental results will be discussed in section
VI.

III. EVAGAN

In this section, we discuss the motivation behind the design
of EVAGAN, the structural explanation of its generator and
discriminator, along with the objective and loss functions.

A. Motivation

Considering the generator (G) of ACGAN, Xfake = G(c, z)
where c is the class label, G has to generate the samples of
all classes. Hence the number of the samples generated by
G may include C = {c1, c2, c3, ..., cn} which may not be
a requirement in low data regimes. Since we only need to
generate a low sample class with labels cm instead of all the
classes, so the generator does not need to be aware of the
classification performance of D on majority class samples. In
this way, the training time of G is reduced as the diversity seen
by the G is less complex to generate a single class sample. Due
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to this reason, we can not only improve the performance of
the G but also can harden the D simultaneously with fewer
cm samples. The ratio of the different class labels can vary
the performance of G as this is a stochastic process. However,
in most cases, the normal class samples will be more than
the anomaly samples. Note that EVAGAN design is dedicated
to binary class problems where the samples of a minority
class are scanty. For using EVAGAN for multiclass cases,
each anomaly class should be considered separately from
the normal class to make it a binary classification problem.
However, the concept can be extended to multiclass, which
we leave to future work.

B. Architecture
The design of EVAGAN is inspired by ACGAN as we want

to develop a classifier model that hardens itself on the GAN-
generated evasion samples. The main structure of EVAGAN
consists of two neural networks; the generator G and the
discriminator D. In contrast to ACGAN, EVAGAN’s model
is limited to labels from a single class embedded with noise
as the input to the generator (G). The details of the G have
been explained in subsection III-C. Figure 3 shows the detailed
architecture of EVAGAN. There are three types of colour-
graded arrows shown in the figure. The red coloured arrows
demonstrate the first training step in which only D is trained.
The green arrows depict the second training step for the G.
The orange arrows show the involvement of common inputs
(minority class labels and noise) and outputs (real/fake and
minority class estimations) for both training steps mentioned
previously. These two steps of a typical GAN training were
expressed earlier in subsection II-A. The discriminator D of
EVAGAN has three different outputs for the estimation of
majority, minority and fake/real classes. Sigmoid functions
have been used for the three outputs, each with binary cross-
entropy (BCE) loss. The details of D are further expressed in
subsection III-D. The loss functions have also been mentioned
in respective subsections of the G and D.

Figure 3 shows a red outlined box on the right side to
illustrate the three different probability estimations as outputs
from D. These three estimations are used to compute the loss
of D in the first step of EVAGAN training. A green outlined
box, including the real/fake estimation and minority class
estimation, computes the G Loss to be fed back to the G in
the backpropagation of the combined model training (second
step of EVAGAN training). Note that the output of the D is
distributed using three different sigmoid units to separate the
probabilities of each class, i.e. the majority, sources (real/fake)
and minority. The majority and minority class estimations
could be combined using a single sigmoid function. However,
keeping them separate has three advantages. The first is to
avoid the loss of the majority class being fed back to the G.
Second, it simplifies the model with no extra training cost.
Third, we can conveniently separate the predictions for the
test set samples, which will be discussed in section V.

C. Generator
The generator (G) of EVAGAN only takes noise n and the

single class labels c = 1. The labels are embedded in the input

layer of the G. The objective function of the G has two parts,
as shown in Equations 5 and 6.

IG(G) = Ez∼pz(z)[log(D(G(z)))] (5)

JG(G) = Ecm∼ym [logP (C = cm|Xmfake
)] (6)

Equation 5 is the objective function of G similar to Equation
2. The goal is to minimise the log-likelihood of the fake
samples being classified as fake by D. In Equation 6, JG(G)
is the objective function of G for improving the log-likelihood
of minority class samples coming from the G into the D. Here,
ym denotes the minority class label in the real dataset, and P
is the output probability from D. Since the G only needs to
generate cm samples so it should only receive the loss of D
on the estimation of minority class and the sources, i.e. the
samples being real or fake. The objective function of G is to
maximise the D loss on the fake source. At the same time, it
will assist in minimising the D loss on cm samples. Equation
7 shows the objective function of G.

LG(G) = JG(G)− IG(G) (7)

The cross-entropy (CE) loss of two different probability
distributions p(x) and q(x) can be denoted using Equation
8, where x denotes the samples belonging to the X dataset.

CE(p, q) = −
∑
xϵX

p(x) log q(x) (8)

Let yxi
be the actual label of sample xi in dataset X ,

P (S = fake|Xmfake
) be the predicted probability distribution

of generated samples being fake and P (C = cm|Xmfake
) be

the predicted probability distribution from D for minority class
labels cm, then the loss function of G for N samples will be
given by the Equation 9.

G Loss = − 1

N

N∑
i=1

[yfakexi
(logP (S = fake|Xmfake

))+

ycmxi
(1− logP (C = cm|Xmfake

))]

(9)

In Equation 9, yfakexi
and ycmxi

are the actual labels for fake
and minority classes respectively. According to Equation 9, the
goal of G is to minimize the G Loss, so it tends to reduce
the correct estimation of D on fake samples by suppressing
the term logP (S = fake|Xmfake

). For the second objective,
it will try to increase the value of logP (C = cm|Xmfake

) so
that the second term in the equation can also be suppressed
in value.

D. Discriminator

For the D model of EVAGAN, we have separated the
majority, and minority class estimations using two different
sigmoid (σ) functions as demonstrated in Figure 3. The benefit
of separating the majority and minority class estimations is
that we can feedback only minority class estimation to the G.
The other advantage of this structure is that we can separately
calculate the estimation of both classes on test datasets to
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compare it with the ACGAN model later done in section V.
The objective function of D has three parts as given by the
Equations 10, 11 and 12. For the minority class terminologies,
we use ’m’, and for the majority class, we use ’M ’ in the
following equations.

LM = EcM∼yMreal
[logP (C = cM |XMreal

)] (10)

LSm
= Eymreal

[logP (S = real|Xmreal
)] +

Eymfake
[logP (S = fake|Xmfake

)]
(11)

Lm = Ecm∼ymreal
[logP (C = cm|Xmreal

)] +

Ecm∼ymfake
[logP (C = cm|Xmfake

)]
(12)

The first goal of the D is to correctly estimate the majority
class distribution from the real samples only as G does not
generate the majority class samples. Equation 10 denotes the
log-likelihood for the real majority class samples. Equation
11 represents the source log-likelihood for the real and fake
minority class samples. Equation 12 summarises the real and
fake log-likelihoods from the D for minority class samples.
Hence, the objective function of the D can be represented as
the sum of the three log-likelihoods to be maximised by the
D as given by Equation 13

LD(D) = LM + LSm
+ Lm (13)

The loss function of D can be derived using Equation 5 and
6, given by Equation 14.

D Loss = − 1

N

N∑
i=1

[ycMxi
(logP (S = cM |XMreal

))+

yrealxi
(logP (S = real|Xmreal

))+

(1− yrealxi
)(1− logP (S = real|Xmreal

))+

y
cmreal
xi (logP (C = cm|Xmreal

))+

(1− y
cmreal
xi )(1− logP (C = cm|Xmreal

))]

(14)

In Equation 14, the loss of D has been derived from three
different binary cross-entropy losses for majority class, sources
and minority class estimations. Note that we have ignored the
loss on cM for being fake because no majority class samples
are being generated by the G.

IV. IMPLEMENTATION DETAILS

A. Experimental Setup

The experiments were performed on a GPU workstation,
AMD Ryzen threadripper 1950x with a 16-core processor and
GeForce GTC 1070 Ti (8GB) graphics card, running ubuntu
20.04. Keras, TensorFlow, Sklearn and Numpy libraries were
used in the Jupyter notebook and visual studio code (VSCode).
The source code of EVAGAN has been provided on GitHub
under MIT license1.

B. Data Preparation

For experimentation, we have used CC botnet and CV
MNIST datasets. The quantitative analysis of EVAGAN was
performed on CC datasets. We have followed the work done by
the authors in [7] for dataset selection of botnet. We have used
three datasets, ISCX-2014, CIC-2017 and CIC-2018, from the
Canadian Institute of Cybersecurity (CIC). The features were
extracted using a utility called CICFlowMeter-v4 provided by
the CIC. We have inherited the same feature set as mentioned
in [7]. The reader may refer to this article for more details
on the feature set used for the three datasets. The number
of samples of benign vs botnet is mentioned in Table II. The
qualitative analysis was performed using visual inspection. For
this purpose, we used the MNIST handwriting digits dataset.

C. CC Datasets

Following is the detail of CC datasets and the botnet
samples used in this work. This subsection also includes the
preprocessing methodology for the selected datasets.

1https: //github.com/rhr407/EVAGAN
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1) ISCX-2014 Dataset: The ISCX-2014 dataset [26] is a
combination of three publicly available datasets ISOT [27],
ISCX 2012 IDS [28] and CTU-13 [29]. As per the ISCX
website’s details, it complies with generality, realism, and
representativeness. The generality represents the richness of
diversity of botnet behaviour. Realism can be defined as the
closeness with the actual traffic captured, and representative-
ness is the ability to reflect the real environment, which a
botnet detector would need in deployment. Only the Virut
botnet was selected for this work because it had fewer samples
than other botnets except for Zeus, which had insufficiently
low samples. The labels of SMTP or NSIS were not available
on the website2. Hence, we used a subset with all the normal
traffic flows and Virut samples. In this way, we could use
this dataset as a good example of an unbalanced set. The
distribution of the normal and Virut samples has been shown
in Table II.

2) CIC-IDS2017 Dataset: The botnet chosen for the CIC-
IDS2017 was Ares. For this bot, the traffic was collected on
Friday, July 7, 2017, from 10: 02 AM to 11: 02 AM in the CIC
facility. The dataset is available on the CIC website3. Similar
to ISCX-2014, a subset of this dataset using all the normal
flows with the selected botnets was created. The ratio of the
number of samples has been mentioned in Table II.

3) CIC-IDS2018 Dataset: To create another subset of an
unbalanced dataset for analysis, we used CIC-IDS2018. This
dataset included samples for Ares and Zeus botnets. We
created a subset of all the normal and 2560 botnet traffic flows
to generate another unbalanced dataset.

Table II
DISTRIBUTION OF NORMAL AND BOTNET SAMPLES IN CYBERSECURITY

BOTNET DATASETS

Dataset Normal Real bots Total Samples
ISCX-2014 246929 Virut: 1748 248677

CIC-IDS2017 70374 Ares: 1956 72330
CIC-IDS2018 390961 Ares/Zeus: 2560 393521

4) Feature Selection: The quality of a botnet dataset deter-
mines the performance of the botnet detectors in general and
the number of distinct features in particular. A reduced feature
set may not perform a stronger classification as compared to
an enhanced set of non-redundant features [7]. In [26], the
authors summarised the most important network flow features
that could be helpful in botnet detection. We have used almost
all of these features, which were mentioned in [30] as well.
The CICFlowMeter-v4 utility was used to extract 80 flow and
time-based features4 from their .pcap files. This utility can
be advantageous for extracting the mentioned features for any
input .pcap file.

5) Preprocessing: The ISCX-2014 dataset has not been
labelled to be used in ML-based experiments. We used the
information provided on the CIC website for IPs associated
with the particular botnets to label the dataset. After labelling,
we performed preprocessing; All the high and low skewed

2https: //www.unb.ca/cic/datasets/botnet.html
3https: //www.unb.ca/cic/datasets/ids-2017.html
4https: //www.unb.ca/cic/datasets/ids-2018.html

values were removed to suppress outliers. The columns with
NaN, Inf and zero standard deviation were removed. Finally,
the dataset was scaled to the [0,1] range to use rectified linear
unit (ReLU) activation function in the GAN model for data
generation. The CIC-IDS2017 and CIC-IDS2018 were already
labelled, so we only did preprocess for these two datasets after
extracting the unbalanced subsets. Our experiments used 70%
of the cybersecurity subsets as training sets, and the rest of
the 30% was used for testing the models and ML classifiers.

D. CV Dataset

1) MNIST Dataset: The MNIST dataset is a simplified
collection of handwritten digits ranging from 0 to 9 for training
and testing various ML algorithms [31]. The purpose of using
this dataset was to evaluate the performance of EVAGAN
against ACGAN in terms of the visual quality of the images
generated in balanced and unbalanced scenarios.

E. Model Comparison of EVAGAN with ACGAN

For comparison, we constructed four different vari-
ants of GANs, respectively ACGAN CC, EVAGAN CC,
ACGAN CV, and EVAGAN CV. ACGAN CC and EVA-
GAN CC were trained and tested on CC datasets, and AC-
GAN CV and EVAGAN CV used CV datasets. The imple-
mentation details of each version in terms of hyperparameters
can be found in Table III.

1) ACGAN CC & EVAGAN CC: The structure of AC-
GAN CC and EVAGAN CC was made up of densely con-
nected feed-forward neural network (FFNN) for both G and
D. The activation functions in hidden layers for both GANs
were rectified linear units (ReLU). The hidden layers were
regularized using batch normalization, and the optimizer type
was Adam with binary cross-entropy (BCE). The difference
between ACGAN CC and EVAGAN CC is in the output
layers of D. The D of ACGAN CC outputs two neurons, one
for the source probability and the other for the class probability
for two classes (normal and botnet). The activation function
is sigmoid for both outputs. The output layer structure of
EVAGAN CC has three neurons, one for the normal class, the
second for the source probability, and the third for the botnet
class (minority class). Each of the three outputs leverages the
sigmoid as the activation function.

2) ACGAN CV & EVAGAN CV: The CV-based GAN ar-
chitecture is different as it deals with image data compared to
tabular data in CC. We need to use the convolutional neural
network (CNN) instead of FFNN with other layers specific
for image generation or detection. The output layer of D is
similar to CC-based GAN implementations, except the Adam
optimizer’s loss function has BCE for source estimations and
sparse categorical cross-entropy (SCCE) for class labels. Here,
BCE could have been used; however, minimal changes to
the code were made to maintain the integrity of the original
ACGAN. However, in ACGAN CC, we have used BCE as
we converted the CNN-based code to FFNN ourselves. In
this way, we could keep ACGAN CC and EVAGAN CC as
similar as possible for a fair comparison.
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Table III
CC AND CV GAN MODELS

Parameter ACGAN CC EVAGAN CC ACGAN CV EVAGAN CV
Network Type FFNN CNN

Number of Layers G: 5, D: 5 G: 2, D: 3
Activations G: ReLU, D: LeakyReLU (output: sigmoid) G: ReLU (output: tanh), D: ReLU (output: sigmoid, softmax)

Batch Size (b) 256
Neurons in input layer G: latent dimension, class label vector size, D: feature size

Neurons in layer 1 G : 32, D : 128 G : 128, D : 32 G : 128, D : 32
Neurons in layer 2 G : 64, D : 64 G : 64, D : 64
Neurons in layer 3 G : 128, D : 32 D : 128

Neurons in output layer G : feature size, D : 2 G : feature size, D : 3 G : feature size, D : 2 G : feature size, D : 3
Layer Regularization G,D: BatchNorm

Optimizer Adam (beta 1=0.0002, beta 2=0.5)
Loss Function BCE BCE, SCCE
Learning Rate 5e-4

Epochs 150

V. RESULTS

This section shows the results of the GAN implementations
around two types of datasets: CC and CV GANs.

A. CC GANs

The results for quantitative analysis of the
D’s performance on generated samples validity
(GEN VALIDITY), fake/generated botnet samples evasion
(FAKE BOT EVA), real normal/majority class estimation
(REAL NORMAL EST) and real botnet/minority class
evasion (REAL BOT EVA) have been demonstrated in
Figure 4. The ML classifier results have also been shown in
this figure for the three CC datasets for comparison. Equations
from 15-18 represent the mathematical expressions for these
performance indicators. We have used Keras model.predict
function to compute the values where the model is D as
our prime objective is to devise an intelligent evasion aware
classifier. Following is a brief detail of each evaluation
parameter.

1) GEN VALIDITY: In Equation 15, Ĝ(z, cm)[0] denotes
the predicted value for the source being fake or real. The Keras
model.predict function outputs an array, so the average of the
first elements in the array will be the source validity of the
generated samples after every epoch. The more this value is
close to ’1’, the more it will be regarded as real.

GEN V ALIDITY =

∑
[Ĝ(z, cm)[0]]

N
(15)

2) FAKE BOT EVA: In Equation 16, Ĝ(z, c m)[1] repre-
sents the probability estimation of generated minority/botnet
class samples. Since the label for minority/botnet class is ’0’
so ideally, we expect the model to output a value close to ’0’.
We represent this estimation as the evasion of the generated
samples. So the more this value is close to ’0’, the less evasion
will be. Note that this is the second value in the sum of the
model.predict function output.

FAKE BOT EV A =

∑
[Ĝ(z, cm)[1]]

N
(16)

3) REAL NORMAL EST: In Equation 17, X̂normaltest [2]
represents the probability estimation of majority/normal class
samples. Since the majority/normal class label is ’1’, ideally,
we expect the model to output a value close to ’1’. Note that
this is the third value in the sum of the model.predict function
output for the normal samples from the test set.

REAL NORMAL EST =

∑
[X̂normaltest [2]]

N
(17)

4) REAL BOT EVA: In Equation 18, X̂botnettest [1] repre-
sents the probability estimation of the real minority/botnet
class samples. Our expectation from the model is to output
the value close to ’0’, similar to FAKE BOT EVA. This is
the second value in the sum of the model.predict function
output for the botnet samples from the test set.

REAL BOT EV A =

∑
[X̂botnettest [1]]

N
(18)

5) Losses: The losses of D for real and fake minority
classes and majority/normal class and the loss of G have been
demonstrated in Figure 5 for both ACGAN and EVAGAN.

B. CV GANs

For ACGAN CV and EVAGAN CV, we use MNIST hand-
written digits dataset. Only two classes of digits, ’0’ and ’1’,
were used in ACGAN CV, as due to SCCE, its model does not
accept fewer than two classes. For ECAGAN CV, we use only
the ’0’ digit as the minority class. Since the MNIST data is
already balanced, we need to undersample the values of the ’0’
digit class to demonstrate the difference in performance. Four
different undersampling levels have been devised in section
VI. The evaluation parameters were equivalent to those used
in CC GANs. For instance, GEN Validity is the same as
GEN VALIDITY; GEN Eva is similar to FAKE BOT EVA
with the minority class from MNIST, i.e. ’0’ in our case.
Similarly, ONE Est is equivalent to REAL NORMAL EST,
and ZERO Eva is comparable to REAL BOT EVA in CC
GANs. Figure 6 demonstrates the quantitative results for the
four undersampling scenarios. Note that out of four, the first
scenario exhibits 0% undersampling. There are three scenarios
with undersampling, 50%, 90% and 99%. For qualitative
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Figure 4. CC Estimations: The estimations on test data and data generated
by the relative GANs along with the results of six different ML-classifiers
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Figure 5. CC GANs Losses: The training losses for ACGAN and EVAGAN
on three different CC datasets

analysis, the output from Gs of both ACGAN CV and EVA-
GAN CV have been demonstrated in Figures 8 and 9. These
results are also based on the undersampling cases.

VI. PERFORMANCE COMPARISON OF EVAGAN WITH
ACGAN

A. Detection Performance

In Figure 4, for the ACGAN CC, the values for the
REAL NORMAL EST and REAL BOT EVA remain close
to each other. This implies that the D of ACGAN CC is not
able to discriminate between the majority and minority classes
well due to the imbalance problem in all the three CC datasets.
The D of ACGAN CC remains confused for the two classes
in ISCX-2014 and CIC-2017 datasets. For the majority class,
ACGAN CC performs equally well as EVAGAN CC for CIC-
2018 (shown in the second row of Figure 4). However, due to

the small number, it regards the minority class samples as the
majority class instances. The second row in Figure 4 shows
the results of EVAGAN CC for the estimations on the test set.
It can be observed that as compared to ACGAN CC, the D
of EVAGAN CC perfectly differentiates between the majority
and minority classes and, after each epoch, tends to improve
its detection performance for all the three CC datasets.

We have used FAKE BOT EVA as an indicator of evasion
awareness of the D in the case of EVAGAN CC only because
ACGAN CC generates two classes of data, so the G of
ACGAN CC would generate a random number of samples
from both classes leading to non-deterministic values of
FAKE BOT EVA. However, we compare the performance of
this metric with ML classifiers. The last row of Figure 4 shows
the results of the six different ML classifiers for the values
of the majority, minority and generated class samples. It can
be inferred that EVAGAN CC tends to outperform the ML
classifiers for all three values after a certain number of epochs.
The ML classifiers for black-box testing perform worst in
the case of FAKE BOT EVA as compared to EVAGAN CC
for all the three CC datasets. This implies that the D of
EVAGAN CC is not only adept at discriminating between real
minority samples but can also easily detect the fake minority
samples that ML classifiers are not good at discerning. Another
significant advantage of this D is that we do not need to
employ ML classifiers in CC for learning adversarial evasion.
Researchers use GANs to generate adversarial samples to be
augmented with the training set for retraining ML classifiers to
make them adversarially aware. In the case of EVAGAN CC,
we save that time as the D classifier/detector model is trained
alongside the GAN training.

It can be further illustrated from Figure 4 that the value of
GEN VALIDITY in the case of ACGAN CC seems to remain
close to 0.5 for all the three CC datasets. It means that the D
is confused in deciding whether the generated samples from
G are real or fake. However, in the case of EVAGAN CC, for
all the three datasets, G’s performance is improving with each
epoch. This implies that D is being fooled and still learning,
while in the case of ACGAN CC, the D has already been
saturated because G is not generating new samples that can
fool D.

1) CV GANs: Figure 6 demonstrated the results of different
undersampling scenarios to mimic the low data regimes for the
MNIST dataset. Note that the detection performance of the
D for both ACGAN CV and EVAGAN CV for the majority
and minority classes remains ideal from the very start. The
reason is that, unlike CC datasets, the CV dataset has many
strong features due to which D is easily able to differenti-
ate between the ’0’ digit and ’1’ digit samples. However,
the effect of undersampling can be seen for the minority
class or digit ’0’ data. In contrast, the D of EVAGAN CV
seems to be smart enough to give steady values for all the
undersampling cases, especially for minority class evasion (as
depicted in red colour lines). Due to the sufficient number
of samples, the majority class should be detected easily by
both GANs. However, in the case of 99% undersampling,
ACGAN CV exhibits a poor performance even detecting this
class. For GEN Validity (represented by the blue lines), Figure
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Figure 6. CV GANs estimations: The estimations on the test set for ACGAN and EVAGN for MNIST dataset in different undersampling scenarios. The
range of the estimation value on the y-axis is from 0 to 1
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Figure 7. CV GANs losses: The training losses on train set for ACGAN and EVAGN for MNIST dataset in different undersampling scenarios. The upper
limit to the loss has been fixed to 4 for the sake of consistency to highlight the difference.

6 shows that in undersampling cases, the performance of G of
ACGAN CV deteriorates in the worst manner and does not
show any useful pattern of learning. This implies that in low
data regimes, G is not performing any better as compared
to EVAGAN CV. However, EVAGAN CV also shows the
deterioration in G’s performance, but that is not as phenomenal
as that of ACGAN CV.

B. Stability
The Figure 5 shows the D and G losses for CC GANs. It

can be inferred from this diagram that the values for all the
losses seem to be converging. This shows that the GANs are
saturating towards Nash equilibrium. However, in the case of
EVAGAN CC, the losses tend to be more steady with each
epoch and achieve the lowest point sooner than ACGAN CC.
Similarly, for CV GANs, the EVAGAN CV losses in all the
undersampling cases tend to be more stable as compared to
ACGAN CV as demonstrated in Figure 7.

C. Qualitative Performance
It is non-trivial to demonstrate the performance of a GAN

in the case of CC datasets [32]. Since we can not visual-

ize the generated network traffic, we need to validate the
EVAGAN with the help of CV datasets. The rationale for
using CV datasets is that if EVAGAN outperforms ACGAN in
unbalanced scenarios, it would be equally acceptable for CC
datasets. Since our purpose is not to generate quality traffic
for CC, we need to design an evasion-aware anomaly detector.
So, evaluating EVAGAN CC for quality traffic generation is
not within the scope of this work.

The previously mentioned undersampling scenarios for CV
GANs have been demonstrated in Figures 8 and 9. There
are two 15 × 10 matrices of pictures in each figure. The
number of images in each matrix equals the total number
of epochs, i.e. 150. In each figure, the upper row belongs
to the ACGAN CV output of the G and the lower row
corresponds to the output from G of EVAGAN CV. Note that
for ACGAN CV, there are two classes being output from G
and for EVAGAN CV, only one ’0’ digit class is generated.
For the undersampling scenario, which contains 50% fewer ’0’
class samples, the deterioration for ACGAN CV starts getting
evident, but EVAGAN CV can generate ’0’ digits. For the
case of 90% undersampling, the ACGAN CV quality further
deteriorates; however, EVAGAN CV is still generating the ’0’
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Figure 9. Qualitative analysis of G for CV GANs with 90% and 99% undersampling of ’0’ digit class

class samples, although slightly faded. As expected, in the
99% undersampling case, the ACGAN CV is still struggling
to generate the minority class digit ’0’, but an interesting
case has happened for EVAGAN CV. Since the number of
samples is minuscule so the feedback taken from the D by G,
on some accidentally generated ’1’ digit, gave a small value
of G Loss. Due to this reason, the G started generating the
majority class ’1’ digit after epoch 47. This situation is called
a mode collapse, an inherent problem in GANs. However, we
can infer that EVAGAN CV may not perform well in a highly
unbalanced scenario. This is an interesting research direction
to investigate further using other CV datasets. On the other
hand, ACGAN CV is also stuck in mode collapse after epoch
140, where in place of class ’0’, the ’1’ class samples start

appearing. However, in the case of EVAGAN CV, despite
mode collapse, the generated samples from class ’1’ are of
higher quality which means that its G is more powerful as
compared to that of ACGAN in highly unbalanced scenarios.

D. Time Complexity

The time complexity bar chart has been demonstrated in
Figure 10 where the y-axis represents the values of the
training time in minutes. The MNIST dataset case with no
undersampling was used to compare the results. The time
complexity may vary on different platforms (for instance,
Google Colab); however, the plot in Figure 10 shows the
results on the workstation that we have used (as mentioned
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Figure 10. Time complexity

in section IV). It can be observed that EVAGAN always takes
less time than its counterpart for all four datasets. The reason
lies in the notion that the G of EVAGAN in the cases of all
the datasets needs to follow lesser diversity as compared to
ACGAN. Although the batch size of 256 (given in Table III)
is the same for both GANs, the amount of time taken by
EVAGAN is always less. Due to the stochastic nature of the
input noise z for the G, we can not estimate the exact time in
minutes for every training cycle; however, the average time of
EVAGAN always remains less as compared to ACGAN.

A question might arise why we did not make ACGAN
generate only the minority class samples. The answer to
this question is that we would have to make changes in the
structure of both G and D along with the loss functions. The
SCCE loss does not allow us to use less than two classes, so
we need to use BCE loss with other structural modifications.
EVAGAN is the name of this transformation.

VII. COMPARISON OF EVAGAN WITH PEER TECHNIQUES

The EVAGAN model is an enhanced version of ACGAN,
dedicated to low data regimes for learning adversarial evasion
examples generated during GAN training. So the most suit-
able existing model for the comparison can be ACGAN, the
details of which have been explained in section VI previously.
However, this section mentions peer techniques similar to
EVAGAN that indirectly address the adversarial evasion prob-
lem. We have summarized the comparison in the following
subsections and then in the form of a Table IV.

A. Data Augmentation

There are several techniques both in CV and CS that pro-
pose the data augmentation for enhancing the ML classifiers’
performance [3], [15], [33]–[38] . However, EVAGAN itself
acts as a powerful adversarial evasion-aware model in which
the discriminator (D) acts as a classifier. So there is no need to
generate evasion samples from a GAN model, augment with
the training set and then train a separate ML classifier. This
property of EVAGAN makes it superior to all the techniques
based on data augmentation in terms of time complexity.

B. Computer Vision vs Cybersecurity Low Data Regimes

There are plenty of works that address the problem of low
data regimes [39]–[45]. However, their datasets and model
architectures differ from those used in this work. We have

mentioned a few in Table IV. Since the ML studies are biased
towards data, experimenting with other datasets can be a
potential future work.

C. Architecture Comparison

Authors in [19] proposed a model in which the discriminator
is acting as a multiclass classifier; however, their work is not
destined towards adversarial evasion generation in low data
regimes as they are considering the normal class samples
to train the generator of their GAN. Our work differs in
a way that we do not feed our generator (G) with normal
class samples, which makes the G’s job easier. This saves
the training time and improves the estimation accuracy of
malicious samples, even being scanty.

D. Accuracy and Time Complexity

EVAGAN produces ideal results of estimation for both
majority and minority classes, as high as 100% for all the
datasets used, as mentioned in section V. The comparison
has been provided with ACGAN; however, the accuracy in
comparison with other similar models is at par as well. The
accuracy values determined from the literature for some other
models addressing similar problems have been given in Table
IV. The time complexity as compared to the ACGAN model
has been discussed in section V however; it would be non-
trivial to compare with other peer models in respect of training
time as the model architecture and hyperparameters vary
enormously. The experiments for EVAGAN and ACGAN were
performed on the same machine as mentioned in section IV,
so we claim the time complexity comparison with ACGAN
only.

VIII. CONCLUSION

Adversarial evasion attacks on AI-based systems are a
portending threat that needs to be dealt with using intuitive
methods. Adversarial learning is one of the modern techniques
to make ML classifiers proactively adept at detecting adver-
sarial evasion samples. This paper proposes a novel GAN
model called EVAGAN that generates adversarial evasions in
low data regimes. EVAGAN is an enhancement of a well-
known model called ACGAN. EVAGAN aims to design an
adversarial-aware classifier for anomaly detection. We have
used two datasets; one from the cybersecurity domain for
botnets and the other from the computer vision called MNIST.
EVAGAN’s discriminator is superior to ACGAN in terms of
detection performance, stability, and time complexity. At the
same time, the qualitative analysis shows that EVAGAN out-
performs ACGAN in unbalanced scenarios. EVAGAN model
has been designed for binary classification problems.

Further investigation for multiclass design is a potential
research direction. Experiments with other datasets would be
highly desirable to further evaluate EVAGAN for the said
parameters. For the qualitative analysis, handwritten digits
other than ’0’ and ’1’ could be used to validate EVAGAN’s su-
periority over ACGAN. A comparison with few-shot learning
could be an interesting research direction.
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Table IV
DISTRIBUTION OF NORMAL AND BOTNET SAMPLES IN CYBERSECURITY BOTNET DATASETS

Paper
Addressing

Evasion
Problem

Adversarial
Training/

Augmentation

Low
Data Regime Architecture Datasets Used Maximum

Accuracy

ID-GAN [19] ✗ ✗ ✓ multiclass ACGAN NSL-KDD 83.10%
G-IDS [3] ✗ ✓ ✓ vanilla GAN NSL-KDD -

AE-CGAN [33] ✗ ✓ ✓
Auto Encoder

with Conditional
GAN

CIC-2017 100%

[34] ✓ ✓ ✗ ANN, CNN, RNN UNSW-NB15, NSL-KDD 97%
Attack-GAN [35] ✓ ✓ ✗ Sequence GAN CTU-13 -

GADoT [36] ✓ ✓ ✗ WGAN-GP Custom-SYN, Scapy-SYN,
CICIDS2017, UNB201X -

DIGFuPAS [37] ✓ ✓ ✓ WGAN CICIDS2017 -
min-max Training [46] ✓ ✓ ✓ DNN NSL-KDD 93.4%

attackGAN [47] ✓ ✗ ✓ WGAN NSL-KDD -

CVAE-AN [38] ✓ ✓ ✓
Conditional VAE

and GAN CICIDS2017 98%

CEGAN [48] ✗ ✓ ✓ CNN
MNIST, EMNIST,

F-MNIST CIFAR-10,
CINIC-10

96.48%

EVAGAN ✓ ✗ ✓ binary class ACGAN ISCX-2014, CIC-2017,
CIC-2018, MNIST 100%
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