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Abstract

Background Medulloblastoma is the most common paediatric malignant brain tumour, with

heterogeneous clinico-molecular characteristics and survival outcomes. Current WHO classi-

fication distinguishes 3 molecular subgroups: WNT, SHH (named after characteristic activa-

tion of the WNT/wingless and Sonic Hedgehog signalling pathways) and non-WNT/non-SHH

medulloblastoma. Current risk stratification incorporates molecular and clinico-pathological

disease correlates. Survival is associated with high-risk factors such as metastasis, large

cell/anaplastic histology, MYC/MYCN amplification and subtotal resection; the presence of

one or more of these factors defines high-risk disease. High-risk patients receive more inten-

sive therapies at the cost of severe late effects as survivors. Moreover, 20% of standard-risk

patients (defined by absence of all high-risk features) will die of their disease. Tumour pro-

filing with genome-wide DNA methylation arrays is the current gold standard for molecular

classification of brain tumours. Methylation arrays are also suitable for identifying DNA copy

number (CN) changes, enabling simultaneous genomic and epigenomic characterisation.

Hypothesis It was hypothesised that genome-wide Illumina HumanMethylation arrays

provide a robust alternative to gold-standard SNP arrays for DNA CN detection and allow

for single-platform, integrated genetic and epigenetic assessment , suitable for application to

DNA derived from fresh-frozen and formalin-fixed, paraffin embedded tumour materials

Aims

• Confirm usability of methylation arrays and develop methods to detect genomic

alterations (aneuploidy and focal oncogene amplifications)

• Showcase application of methylation arrays as a cost-effective single-platform, inte-

grated approach for improved prognostication within medulloblastoma patients.

Methods In this project, methods to detect genomic alterations (aneuploidy and focal

oncogene amplifications) using Illumina 450k methylation arrays were developed and vali-

dated. These methods were implemented to assess previously published cytogenetic prog-

nostication schemes in medulloblastoma. Next, the GLMnet algorithm was used to identify

prognostic methylation loci. These markers were assessed in non-WNT/non-SHH high-risk

medulloblastomas and validated in an independent, mixed-risk non-WNT/non-SHH cohort.

The previously published cytogenetic prognostic signature for standard-risk, non-WNT/non-

SHH medulloblastoma, identified in the PNET4 clinical trial, and its potential for prognosti-

cation was assessed in high-risk, non-WNT/non-SHH disease, alone and in conjunction with

methylation markers
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Results Easy to use methods with a low barrier to entry were developed to robustly

identify genomic copy number and oncogene amplification. These methods were applied to

validate two independent, previously published cytogenetic prognostication schemes within

medulloblastoma. Two DNA methylation loci, mapping to MYO7A and TRIM72 genes,

were identified as independently prognostic markers. A novel prognostication scheme, that

combined DNA methylation markers with the PNET4 cytogenetic signature, was devised for

non-WNT/non-SHH medulloblastoma. This scheme outperformed the PNET4 signature in

the high-risk cohort, reclassifying 21% of high-risk patients to a favourable-risk category.

Conclusion These results demonstrate the potential for routine cytogenetic assessment

concurrent with molecular sub-classification using DNA methylation microarrays. Addition-

ally, the integrated genetic and epigenetic stratification from a single platform enabled a more

refined prognostication and the identification of a subset of patients, currently classified as

high risk, who demonstrate improved outcomes and who may be eligible for reduced intensity

treatments that would offer a better quality of life as brain tumour survivors.
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CHAPTER 1

Introduction

1.1. Cancer

Cancer is a group of diseases characterised by abnormal cell growth with a potential

for invasion of nearby tissue and spread to other parts of the body. Cancer can origi-

nate from any cell type, anywhere in the body. Many cancers form solid masses called

tumours but some, like blood cancers do not form tumours. Abnormal growth of body

tissue defines a tumour. Tumours can be classified as benign, pre-malignant and ma-

lignant.

Benign tumours lack the ability to invade nearby tissue or spread and therefore are

classed as not cancerous. When removed, benign tumours do not usually regrow and

are therefore not considered dangerous. However, they can be quite large and, in some

cases, for example benign brain tumours, can be life threatening.

Pre-malignant tumours tend to eventually turn malignant, meaning they can invade

into nearby tissue. Malignant tumours are known as cancers.

Tumour formed where the cancer started is called a primary tumour. Sometimes can-

cer cells can detach and travel through the blood or lymph system into distant parts of

the body, where they form secondary tumours, called metastases. Metastatic staging

is an important prognostic factor in the majority of cancers.

Cancer cells lose their specialisation and the ability of natural programmed cell death,

called apoptosis and cancer can be produced by a disruption in the homoeostasis be-

tween cell proliferation and apoptosis in favour of proliferation. It can be driven by

mutations or chromosomal rearrangement occurring over a period of time. Therefore

cancer is a genetic disease (CRUK, 2018).

Each cell type has its own specialisation and various cancers are grouped by the

type their progenitor. Currently, more than 200 different cancers are described and

they mainly fall into five major types:

• Carcinoma - cancer that originates in the skin or organ lining tissue;

1
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• Sarcoma - originates from the connective or supportive tissue such as muscle,

fat, bone;

• Leukaemia - blood cancers that originate in blood forming tissue such as bone

marrow

• Lymphoma and myeloma - cancers that originate from the immune system

cells

• Brain and spinal cord cancers - also known as central nervous system (CNS)

cancers, originate from brain or spinal cord cells.

Cancer is the leading cause of deaths worldwide and was responsible for 28% of all

registered deaths in the UK in 2015 (CRUK, 2018).

1.1.1. Cancer incidence. Cancer incidence in the developed world is on the rise

despite increasing awareness of the causes and lifestyle choices that can reduce the risk

of developing cancer. There were around 360,000 new cancer cases in the UK in 2015,

which currently is the most recent year with available statistics; this is roughly 980

cases diagnosed every day and with someone diagnosed with cancer every 2 minutes

(CRUK, 2018).

Cancer is mostly a disease of the elderly population (see Fig. 1.1), as nearly two-

thirds of cancers (63%) are diagnosed in people over 65 years of age, with the incidence

peaking at the age of 85 and only 1% of all cancer cases are children (here defined as

aged under 16).

Therefore, despite complex reasons for the increase of cancer incidence in the gen-

eral population, this increase should be considered in the light of an increased overall

longevity in the population due to improvements in the treatment of other diseases.

Social and life-style factors play an important role in cancer incidence and mortality,

which is reflected in increased numbers of cancer incidence in males compared to females

(see Figure 1.2). Apart from gender-specific cancers such as breast, ovarian and uterine,

the incidence and mortality in males are higher almost in every type of cancer due to

higher rates of smoking and alcohol intake and a greater reluctance to seek medical

attention in males (Peate, 2011).

1.1.2. Childhood cancer. Childhood cancer is generally defined as a cancer in

children aged 0-14, however in some cases, the definition includes children under 16

and, less often, adolescents between 15-19 years old (Bahadur, 2000).
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Figure 1.1. All cancers, average number of new cases per year and age-
specific incidence rates per 100,000 Population, UK, 2013-2015 (CRUK, 2018)

Figure 1.2. The 20 most common cancers (by gender), UK, 2015 (CRUK, 2018)

Childhood cancers typically arise from cells derived from embryonic tissue, while adult

cancers are mostly epithelial in origin.

There were around 1,800 cases of childhood cancer diagnosed in the UK each year

between 2012-2014 (CRUK, 2018), which amounts to around 5 children diagnosed
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every day and accounts for about 1% of all cancer cases; there were about 140 more

boys diagnosed with cancer then girls.

More than two-thirds of all childhood cancer cases diagnosed in the UK are leukaemia,

brain, other CNS and intracranial tumours and lymphomas (see Figure1.3).

Lifestyle choices and environmental risk factors will have less impact on the in-

cidence of childhood cancer than in adult cases, since children had less time to be

exposed for these factors to become significant. However, risk factors for leukaemia

may include parental smoking, parental exposure to paint or high-level residential ex-

posure to magnetic fields (CRUK, 2018).

The major risk factors for brain tumours, as well as other CNS and intracranial

tumours, are thought to relate to genetic syndromes and congenital disorders. For

lymphomas, risk factors include problems with the immune system and certain infec-

tions such as Epstein-Barr virus (EBV), the bacterium Helicobacter pylori and malaria

(Shannon-Lowe et al., 2017). About 90% of the world population is infected with the

Epstein-Barr virus that causes little harm in most cases. However EBV can cause

cancers such as lymphomas, carcinomas and childhood cancers. Almost all stomach

cancer cases occur in people who have had a long-term infection with Helicobacter py-

lori. The malaria parasite is thought to play a role in the development of one of the

most frequent cancers among African children called Burkitt‘s lymphoma (Robbiani et

al., 2015). However evidence for the childhood cancer risk factors are unclear (CRUK,

2018).

Cancer survival rates for children are improving and are more then double the

survival rates of 40 years ago, amounting to around three-quarters (76%) of children

diagnosed with cancer surviving their disease for ten years or more (2001-2005) (CRUK,

2018).

However, the therapy responsible for this improved survival often produces adverse

long-term health-related outcomes, referred to as late effects, which manifest months

to years after completion of cancer treatment (Howlader et al., 2016).

This problem is characteristic of childhood cancers: late effects (see 1.3.13) are

commonly experienced by adults who have survived childhood cancer; the prevalence
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Figure 1.3. Childhood Cancers by Cancer Type (in concordance with In-
ternational Classification of Childhood Cancer (ICCC)), Average Number of
New Cases per Year, Ages 0-14, Great Britain, 2006-2008, (CRUK, 2018)

of late effects increases with the time elapsed from cancer diagnosis (Rebholz et al.,

2011; Nathan et al., 2008).

1.1.3. Genetic model of cancer. A series of mutations are normally required in

order for a normal cell to transform to a cancerous cell.

In 1976, Peter Nowell presented a perspective on cancer as an evolutionary process,

driven by a multistage process of somatic cell mutations with sequential, sub-clonal

selection. He drew a parallel to Darwinian natural selection with cancer equivalent to

an asexually reproducing, unicellular, quasi-species (Nowell, 1976; Greaves and Maley,

2012).

In 1990, Fearon and Vogelstein presented a model of clonal evolution of colorectal

carcinoma, thus formalising the model for the clonal evolution of cancer. Under this

model, a mutation in a single cell provides growth advantage over surrounding cells.

This cell proliferates, increasing the likelihood of further mutations which will provide

further survival advantage (Fearon and Vogelstein, 1990).

1.1.4. Cancer development. Cancer is a complex multistage process during

which a normal cell progenitor must acquire various capabilities to avoid the natu-

ral defense mechanisms that have evolved to keep the organism protected from cancer.
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There are at least six processes, the so-called hallmarks of cancer, that a cell must

acquire in order to become malignant (Hanahan and Weinberg, 2000, 2011).

Figure 1.4. The hallmark capabilities of cancer, necessary for tumour
growth. Figure courtesy (Hanahan and Weinberg, 2011; Meirson et al., 2020)

Despite these hallmarks being common to most cancers, the mechanism of their

acquisition will differ within specific cancers, as well as across all cancers.

Each specific process is discussed below.

1.1.4.1. Sustaining Proliferative Signalling. One of the most fundamental distinc-

tive traits of cancer cells is their ability to sustain constant proliferation. Normal tissue

maintains homoeostasis of cell number and thus normal tissue function and architec-

ture by careful control of the production and release of growth signals that control the

cycle of cellular growth and division.

Normal cells require external mitogenic growth signals (GS) before they can enter an

active proliferative state. These signals are transmitted to the cell by transmembrane
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receptors that bind different classes of signalling molecules. There are no known types of

normal cells that can proliferate in the absence of these stimulatory signals. However,

many oncogenes are capable of mimicking normal growth signaling, allowing cancer

cells to acquire GS autonomy. This liberation from dependence on externally derived

signals disrupts the homeostatic mechanism that maintains normal tissue (Hanahan

and Weinberg, 2000, 2011).

1.1.4.2. Evading Growth Suppressors. Another important trait of normal tissue is

that to addition to GS autonomy, tissue homeostasis is maintained by multiple anti-

proliferative signals. These growth-inhibitory signals, as well as growth signals, are

received by trans-membrane cell surface receptors. Anti-growth signals can block cell

proliferation by two different mechanisms. A cell may be forced out of an active

proliferative state into a quiescent state until another extra-cellular signal returns it to

the active state; alternatively, the cell may be induced to enter a post-mitotic state,

usually associated with differentiation-associated traits.

Many tumour-suppressor genes are known to control anti-proliferative signaling and

loss or mutation of these genes is common in cancers (Hanahan and Weinberg, 2000,

2011).

1.1.4.3. Resisting Cell Death. The ability of a tumour cell population to grow un-

controllably is determined not only by an increased cell proliferation rate, but also by

ability of cancer cells to avoid programmed cell death - apoptosis.

An apoptotic program is present in virtually all cell types throughout the body.

Cancer cells acquire resistance to apoptosis in a variety of ways. The most common

mechanism is loss or mutation of the tumour suppressor gene TP53, which acts as

proapoptotic regulator, resulting in functional inactivation of p53 protein. This mech-

anism is observed in more then 50% of all human cancers (Hanahan and Weinberg,

2000, 2011).

1.1.4.4. Enabling replicative immortality. These three important acquired capabil-

ities of cancer cells (growth signal autonomy, insensitivity to anti-proliferative signals

and resisting of apoptosis) lead to disconnecting of a cell’s growth program from exter-

nal signals in its environment, promoting autonomy. However, research over the last

30 years shows that this acquired disruption of cell to cell signaling on its own is not

sufficient to ensure expansive tumour growth (Hanahan and Weinberg, 2000).
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All types of mammalian cells have cell-autonomous programs that limit their replicative

potential and which is independent of the cell-to-cell signaling pathway. In normal cells,

there is only a limited number of cell divisions possible before a cell enters senescence

- a non-proliferative but viable state. This counting mechanism for cell generations is

the telomeres at the end of chromosomes. In normal cells, telomeres get progressively

shortened with every replication until they are massively eroded and lose their protec-

tive function and trigger senescence. Telomerase, an enzyme that controls erosion of

telomeres by adding species-specific telomere repeat sequence to the 3’ end of telom-

eres, is actively expressed in cancer cells and its expression correlates with senescence

and apoptosis resistance (Hanahan and Weinberg, 2011).

1.1.4.5. Inducing angiogenesis. During embryogenesis, development of vasculature

involves formation of new blood vessels from epithelial cells (vasculogenesis) as well

as sprouting of new vessels from existing ones (angiogenesis). In adults, normal vas-

culature becomes mainly dormant and is only turned on temporarily in particular

physiological processes like wound healing. Just as normal tissue, tumours require nu-

trients and oxygen, as well as the ability to free themselves of metabolic waste. This is

addressed by angiogenesis, and in contrast to a normal tissue a so-called ”angiogenic

switch” is almost always on, causing usually dormant vasculature to continue sprout-

ing new blood vessels in order to sustain growing neoplasms (Hanahan and Weinberg,

2011). Tumours appear to activate the angiogenic switch by altering the balance be-

tween angiogenic inducers and inhibitors (Hanahan and Folkman, 1996).

1.1.4.6. Activating invasion and metastasis. Most human cancers are known to

spread by separating cells from primary tumour that invade nearby tissue and also

move out to remote sites of the body by entering the bloodstream or lymphatic vessels

from where cancer cells escape to surrounding parenchyma and form small masses of

cancer cells (micro-metastases) which, in turn, grow into new tumours in a process

called colonisation. These distant colonies of tumour cells, metastases, are responsi-

ble for 90% of cancer deaths (Sporn, 1996). Cancer cells typically develop changes in

their shape as well as in their attachment to adherent cells and to extra-cellular matrix

(ECM). Commonly, expression of genes encoding cell-to-cell and cell-to-ECM adhesion

molecules is significantly altered (Hanahan and Weinberg, 2011).
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1.1.4.7. Genome Instability and Mutation. Acquisition of the multiple hallmarks

depends on a succession of alterations in the genomes of neoplastic cells. Certain

mutant genotypes lead to selective advantage on sub-clones of cells, enabling their out-

growth and eventual dominance in a local tissue environment (Hanahan and Weinberg,

2011). The ability of genome maintenance systems to detect and repair defects in the

DNA ensures that rates of spontaneous mutation are very low in each cell generation.

In the course of acquiring the set of mutant genes needed to trigger tumorigenesis,

cancer cells often increase the rates of mutation (Negrini et al., 2010; Salk et al., 2010)

This is achieved by increased sensitivity to mutagenic agents, or a breakdown in one

or several components of the genomic maintenance machinery. The accumulation of

mutations can be accelerated by compromising the surveillance systems that normally

monitor genomic integrity and force cells with damaged DNA into either senescence or

apoptosis ((Kastan, 2008; Sigal and Rotter, 2000) The defects in genome maintenance

and repair are selectively advantageous and therefore important for tumour progres-

sion, as they accelerate the rate at which evolving pre-malignant cells can accumulate

favourable genotypes. This makes genome instability an enabling characteristic that is

associated with the acquisition of hallmark capabilities (Hanahan and Weinberg, 2011).

1.1.4.8. Tumour-Promoting Inflammation. It has long been recognised that some

tumours are highly infiltrated by cells of both the innate and adaptive immune systems

and therefore, mimic inflammatory conditions arising in non-neoplastic tissue (Dvo-

rak et al., 1986). Inflammation can contribute to multiple hallmark capabilities by

supplying bioactive molecules, such as growth factors, survival factors that limit cell

death, pro-angiogenic factors, extracellular matrix-modifying enzymes that facilitate

angiogenesis, invasion, and metastasis, and others, to the tumour microenvironment

(DeNardo et al., 2010; Grivennikov et al., 2010; Qian and Pollard, 2010).

In some cases,inflammation is present at the earliest stages of neoplastic progression

and facilitates the development of neoplasias into full-blown cancers (Qian and Pollard,

2010; De Visser et al., 2006). Additionally, inflammatory cells are capable of releasing

chemicals, such as reactive oxygen species, that are actively mutagenic for nearby

cancer cells, accelerating their genetic evolution toward states of increased malignancy

(Grivennikov et al., 2010). Therefore, inflammation can be considered an enabling
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characteristic as it contributes to the acquisition of core hallmark capabilities (Hanahan

and Weinberg, 2011).

1.1.4.9. Reprogramming Energy Metabolism. The uncontrolled cell proliferation in

neoplastic disease, alongside deregulated cell proliferation control, includes changes of

energy metabolism in order to sustain cell growth and division. Under aerobic condi-

tions, normal cells process glucose, first to pyruvate via glycolysis in the cytosol and

then to carbon dioxide in the mitochondria; under anaerobic conditions, glycolysis pre-

vails and relatively little pyruvate is available to the oxygen-consuming mitochondria.

Cancer cells can reprogram their glucose metabolism and their energy production even

in the presence of oxygen by limiting their energy metabolism largely to glycolysis,

leading to a state that has been termed ”aerobic glycolysis” (Hanahan and Weinberg,

2011). Increased uptake and utilisation of glucose have been documented in many hu-

man tumour types and has been shown to be associated with activated oncogenes such

as RAS, MYC and mutant tumour suppressors such as TP53 (DeBerardinis et al.,

2008), which are also confer the hallmark capabilities of cell proliferation, avoidance of

cytostatic controls, and reduction of apoptosis (Hanahan and Weinberg, 2011).

1.1.4.10. Evading Immune Destruction. Cancer cells adapt in order to evade de-

tection and destruction by the host’s immune system (Hanahan and Weinberg, 2000,

2011). They do it by hijacking normal mechanisms of immune checkpoint control and

modulation of the innate immune response via stimulator of interferon genes (STING).

STING is a key mediator of innate immunity, and the STING pathway has been shown

to be involved in the induction of an anti-tumour immune response (Barber, 2015).

Immune checkpoints refer to the built-in control mechanisms of the immune sys-

tem that maintain self-tolerance and help to avoid damage to own tissue during a

physiological immune response. It is now evident that tumours engineer microenvi-

ronments to evade immune surveillance and attack, particularly by modulating certain

immune-checkpoint pathways (Sharma and Allison, 2015)).

1.1.5. Genetic origin of cancer. As discussed in section 1.1, cancer is a genetic

disease and more then one mutation is necessary for tumorigenesis. The majority of

these mutations occur under the influence of environmental factors such as chemical

mutagens, ionising irradiation and many others.
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Also there is a number of familiar cancer syndromes, where predisposition to various

cancers is inherited. Examples of such syndromes will be discussed later in this text

(see section 1.3.4.1) and are presented in table 1.3.

There are two types of genes that are essential for cancer development - oncogenes

and tumour suppressor genes, or anti-oncogenes.

1.1.6. Oncogenes. One of the driving forces of cancer is oncogenes - genes that

have the potential to cause cancer when mutated or expressed at abnormally high lev-

els. Oncogenes are capable of causing cells otherwise destined for apoptosis to survive

and proliferate, or promote development of other cancer hallmarks described in section

1.1.4.

The theory of oncogenes was first anticipated by the German biologist Theodor Boveri

in his 1914 book Zur Frage der Entstehung Maligner Tumoren (’The Origin of Ma-

lignant Tumours’, (Boveri, 1914)); and later rediscovered in 1969 by National Cancer

Institute scientists George Todaro and Robert Heubner (Mukherjee, 2010).

Most oncogenes are derived from proto-oncogenes, normal genes that are involved in the

regulation of cell proliferation, differentiation and apoptosis, through dominant gain-

of-function mutations or by upregulated expression. Multiple oncogenes have been

identified across human cancers and many cancer drugs target the proteins encoded by

oncogenes (Croce, 1995; Yokota, 2000).

The main categories of well-studied oncogenes are shown in Table 1.1.

1.1.6.1. Activation of proto-oncogenes. A proto-oncogene can become an oncogene

by a relatively minor modification of its original function. There are three main ways

in which a proto-oncogene can become activated.

First: a mutation within a proto-oncogene, or within a regulatory region (e.g. its

promoter region), can alter protein structure, causing either an increase in protein

activity or a loss of regulation.

Second: amplification of a gene, that may increase its transcription, resulting in an

increased amount of protein in the cell.

Third: a chromosomal translocation - chromosome abnormality caused by rearrange-

ment of parts between nonhomologous chromosomes. There are two different types

of chromosomal translocations that can occur: translocation events which relocate a
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Category Example Normal gene function Cancer Association

Growth factors c-Sis induces cell proliferation
glioblastomas, fibrosarcomas,
osteosarcomas,
breast carcinomas, and melanomas

Transcription
factors

MYC
regulate transcription of
genes that induce cell
proliferation

malignant T-cell lymphomas
and acute myleoid
leukemias, breast cancer,
pancreatic cancer,
retinoblastoma, and small
cell lung cancer

Receptor
tyrosine
kinases

epidermal growth
factor receptor
(EGFR), plateletderived
growth
factor receptor
(PDGFR), and
vascular endothelial
growth factor
receptor (VEGFR),
HER2/neu

transduce signals for
cell growth and
differentiation

breast cancer, gastrointestinal
stromal tumours,
non-small-cell lung cancer
and pancreatic cancer

Cytoplasmic
tyrosine
kinases

Src-family, Syk-
ZAP-70 family,
and BTK family
of tyrosine kinases,
the Abl gene in
CML - Philadelphia
chromosome

mediate the responses
to, and the activation
receptors of cell proliferation,
migration,
differentiation,
and survival

colorectal and breast cancers,
melanomas, ovarian
cancers, gastric cancers,
head and neck cancers,
pancreatic cancer, lung
cancer, brain cancers, and
blood cancers

Cytoplasmic
Serine/
threonine
kinases and
their regulatory
subunits

Raf kinase, and
cyclin-dependent
kinases (through
overexpression)

involved in organism
development, cell cycle
regulation, cell proliferation,
differentiation,
cells survival, and apoptosis

malignant melanoma, papillary
thyroid cancer, colorectal
cancer, and ovarian
cancer

Regulatory
GTPases

Ras protein
involved in signalling a
major pathway leading
to cell proliferation

adenocarcinomas of the
pancreas and colon, thyroid
tumours, and myeloid
leukemia

Table 1.1. Classification of the oncogenes, their normal function and associ-
ation with the cancers in which they become activated. Table based on data
from (Chial et al., 2008; Gschwind et al., 2004; Hilgenfeld, 1995).

proto-oncogene to a new chromosomal site that leads to higher expression; transloca-

tion events that lead to a fusion between a proto-oncogene and a second gene, creating

a fusion protein with increased oncogenic activity (Chial et al., 2008; Lodish et al.,

2013).

1.1.7. Tumour suppressor genes. Tumor-suppressor genes (TSG) or antionco-

genes, are generally proteins that promote inhibition of cell proliferation and apoptosis.

Loss or mutation of one or more of these genes contributes to the development of many

cancers. Five broad classes of proteins are generally recognized as being encoded by

tumor-suppressor genes (Lodish et al., 2013):

• Intracellular proteins, that regulate or inhibit progression through a specific

stage of the cell cycle, such as the p16 cyclin-kinase inhibitor.
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• Receptors for secreted hormones such as tumour-derived growth factor β, that

function to inhibit cell proliferation

• Checkpoint-control proteins that arrest the cell cycle if DNA is damaged or

chromosomes are abnormal

• Proteins that promote apoptosis, such as TP53

• Enzymes that participate in DNA repair

1.1.7.1. Inactivation of tumour suppressor genes. Generally tumor suppressor genes

inactivation follows the ”two-hit hypothesis”. The two-hit hypothesis of TSG inactiva-

tion was first proposed by A.G. Knudson in 1971. After studying cases of retinoblas-

toma, Knudson observed that the age of onset of retinoblastoma followed second order

kinetics which implies that two separate genetic effects were necessary.

According to this theory both alleles coding for a particular protein must be affected

before tumours occurred. This is because if only one allele for the gene is damaged,

the second one can still produce the correct protein, unlike in oncogene activation.

Thus, mutations in tumor suppressors’ alleles are usually recessive, whereas muta-

tions in oncogene alleles typically involve gain-of-function and are typically dominant

(Knudson, 1971).

However, there are important exceptions to the ”two-hit” rule for tumor suppres-

sors, such as those that exhibit haplo-insufficiency, including PTCH1 in medulloblas-

toma and NF1 in neurofibroma. Further example of this is the p27Kip1 cell-cycle

inhibitor, in which mutation of a single allele causes increased carcinogen susceptibility

(Kemp et al., 1998).

Another notable exception is specific mutations in the TP53 gene. These mutations

are ”dominant negative”, and a mutated p53 protein can counteract the function of

normal protein from the non-mutated allele (Baker et al., 1990).

1.1.8. Copy number variations and cancer. DNA copy number variation

(CNV) is a type of structural variation of DNA in which sections of the genome are

repeated, and the number of repeats in the genome varies between individuals in the

human population due to a duplication or deletion event that affects a considerable

number of base pairs (Sharp et al., 2005; McCarroll and Altshuler, 2007). CNVs are an
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important component of genetic variation of the population, affecting a greater propor-

tion of the genome than single nucleotide polymorphisms (SNPs) (Shlien and Malkin,

2009).

Somatic copy number variations that can lead to abnormal cell functioning and

eventually, to cancer, termed copy number aberrations or alterations (CNAs), are gains

and losses of large segments of the genome that occur during the lifetime of an individ-

ual and affect a larger proportion of the genome in cancer cells than do any other type

of somatic genetic alteration (Beroukhim et al., 2010; Kim et al., 2013). They range in

size from a few kilobases to whole chromosomes, and may play a critical role in inac-

tivation of tumour-suppressor genes or activation of oncogenes (Stratton et al., 2009;

Xue et al., 2012) and, therefore, are major contributors to oncogenesis, particularly for

solid tumors (Zack et al., 2013). An understanding of the biological effects of somatic

CNAs on the cellular phenotype has led to substantial advances in cancer diagnostics

and therapeutics (Tsao et al., 2005; Lowe et al., 1994; Cheang et al., 2009). An illus-

trative example of CNA with a phenotypic effect in cancer is the mitochondrial tumor

suppressor gene (Mtus1): a small deletion in Mtus1 is associated with a increased risk

of familial and high-risk breast cancer (Frank et al., 2007).

Recently, more advanced technologies have been introduced to measure CNAs. Cy-

togenetic techniques such as comparative genomic hybridization were superseded by

more advanced array-comparative genomic hybridization (aCGH), SNP genotyping

arrays and high-throughput sequencing platforms. In line with the technological de-

velopments, numerous computational methods have been developed to identify CNAs

in single samples using these newer platforms (Chiang et al., 2009; Hupé et al., 2004;

Olshen et al., 2004).

1.1.9. Epigenetics and cancer. Epigenetics, which literally means upon genet-

ics, is the study of various mechanisms that regulate both gene expression and genome

stability without modifying the DNA sequence itself (Baylin and Jones, 2011). The

most widely studied epigenetic changes are DNA methylation of cytosines within CpG

dinucleotides, histone modification including acetylation, methylation, phosphoryla-

tion, and ubiquitination (Esteller, 2007; Bernstein et al., 2007). Other mechanisms

associated with gene regulation and chromatin structure, are non-coding RNAs and

micro RNA (miRNA) gene silencing (Chen et al., 2007).
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The normal function of these epigenetic processes is to provide a framework for de-

velopment and differentiation, including tissue-specific gene expression, inactivation of

the X-chromosome, and genomic imprinting (Ferguson-Smith, 2011; Lau et al., 2004).

Epigenetics is also involved with ageing and response to environmental factors (Be-

nayoun et al., 2015; Cortessis et al., 2012). Changes in epigenetic mechanisms are

associated with a wide variety of malignant and non-malignant diseases (Jones and

Baylin, 2007a) and, acting together with genetic mechanisms, provide cancers with the

necessary hallmarks described in section 1.1.4 (Hanahan and Weinberg, 2000, 2011).

The main epigenetic modification mechanisms are shown on Figure 1.5.

Figure 1.5. Epigenetic mechanisms. (A) Histones can undergo, among other
chemical modifications, methylation (Me), acetylation (Ac) and phosphoryla-
tion (Ph). These modifications are involved in chromatin remodeling and
transcriptional regulation. (B) DNA molecules are methylated by the addi-
tion of a methyl group to carbon 5 on cytosine bases, a reaction catalysed
by DNA methyltransferase enzymes, which maintains repressed gene activ-
ity. (C) mRNA is translated into a protein. This process can be repressed by
binding of microRNAs (miRNA), a class of non-coding RNA (ncRNA). Figure
adapted from (Relton and Davey Smith, 2010).

1.1.9.1. DNA methylation in cancer. In mammals, all cells descended from a zygote

share the same DNA sequence. The cells are differentiated during embryogenesis by

means of epigenetic changes, such as methylation of CpG islands and chromatin re-

modelling. DNA methylation is a process of addition of a methyl CH3 group to carbon

position 5 on cytosine bases within DNA, that is positioned adjacent to a guanine base

(typically named a CpG dinucleotide) within DNA, which regulates gene expression ac-

tivity without changing the sequence. Hypermethylated gene promoters are associated

with gene silencing, whereas hypomethylation of these regions is associated with active
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expression of genes (Seisenberger et al., 2012). Once tissue differentiation is complete,

methylation patterns of silencing or activation of particular genes are inherited during

cell division (Seisenberger et al., 2012).

DNA methylation affects transcription of the genes in two ways: directly, by physi-

cally impeding transcriptional proteins from binding to DNA and indirectly, by recruit-

ing proteins known as methyl-CpG-binding domain proteins (MBDs). MBD proteins

then involve additional chromatin remodelling proteins, such as histone deacetylases,

that can modify histones and form compact, inactive heterochromatin and therefore

prevent transcription (see 1.1.9.2).

DNA methylation differs between normal cells and tumour cells. Cancer is typically

characterised by genome-wide DNA hypomethylation and promoter hypermethylation

(Howard et al., 2008; Esteller, 2007). The hypomethylation observed in cancer often

occurs at satellite DNA, the main component of functional centromeres, and at other

repeating sequences that do not function as transcriptional units. The CpG methyla-

tion profile associated with normal cells is often inverted in cells that become cancerous

(Esteller, 2007). In normal cells, CpG islands located before gene promoters are gener-

ally unmethylated, and tend to be transcriptionally active, while other individual CpG

dinucleotides throughout the genome tend to be methylated. However, in cancer cells,

CpG islands upstream from tumour suppressor gene promoters are often hypermethy-

lated, while CpG methylation of oncogene promoter regions and repeat sequences is

often decreased (Banister, 2012). Hypermethylation of tumour suppressor gene pro-

moter regions can result in silencing of those genes. This type of epigenetic aberration

allows cells to grow and reproduce uncontrollably, leading to tumorigenesis (Esteller,

2007).

1.1.9.2. Histone Modifications and chromatin remodelling in cancer cells . Another

important epigenetic factor in cancer, histone modification patterns are also highly

disrupted in cancer. Histones are alkaline proteins found in eukaryotic cell nuclei, that

package DNA to form a DNA/protein complex called chromatin. The basic unit of

chromatin, the nucleosome, is composed of DNA wrapped around four pairs of histones,

called core histones (H2A, H2B, H3 and H4), forming the nucleosomes (Esteller, 2007).

The functions of histones are regulated by post-translational modification of their

amino-terminal tail, which includes methylation, acetylation, phosphorylation and
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ubiquitination, thus regulating gene expression by modifying chromatin into inactive

heterochromatin regions, where DNA is compact and less accessible for transcription,

or euchromatin, active regions accessible for transcription (Sharma et al., 2009).

Addition and removal of histone modifications (marks) is carried out by a number

of different histone modifying enzymes. The enzymes involved in addition of the these

reversible marks, so-called ”writers”, and removal (”erasers”) include histone lysine

methyltransferases (HMTs, ”writers”), demethylases (HDM, ”erasers”), acetyltrans-

ferases (HAT, ”writers”), deacetylases (HDACs, ”erasers”).

Acetylation of histone tails is typically associated with transcriptional activation

of genes, wheres histone methylation can either activate or repress transcription, de-

pending on location and number of methyl groups (Chervona and Costa, 2012). For

example, histone 3 lysine 27 di- and trimethylation (H3K27me2 and H3K27me3) and

histone 3 lysine 9 di- and trimethylation (H3K9me2 and H3K9me3) are associated

with inactive chromatin and repression of gene expression, while histone 3 lysine 4 di-

and trimethylation (H3K4me2 and H3K4me3) and histone 3 lysine 9 monomethylation

(H3K9me1) are associated with open chromatin and active gene expression (Schneider

and Grosschedl, 2007)

Hypermethylation of CpG islands in the promoter regions of tumour-suppressor

genes in cancer cells is associated with a particular combination of histone marks:

Deacetylation of histones H3 and H4, and methylation changes at various amino acid

residues of H3 (Jones and Baylin, 2007b), including loss of tri-methylation at lysine 4,

and gain of methylation at lysine 9 and trimethylation at lysine 27 (Mart́ın-Subero and

Esteller, 2017). The presence of the hypoacetylated and hypermethylated histones H3

and H4 silences certain genes with tumor-suppressor-like properties, such as p21WAF1,

despite the absence of hypermethylation of the CpG island (Richon et al., 2000). On

the other hand, silencing of SIRT1, a histone deacetylase, leads to increased H3 and

H4 acetylation of cancer genes that become reactivated despite full retention of DNA

hypermethylation (Pruitt et al., 2006). These are examples of complex interplay be-

tween DNA methylation and histone modifications, which determines gene activation

or repression.

Knowledge of the methylation status of certain genes can be very important for tar-

geted cancer therapy. For example, epigenetic silencing of the MGMT (O6-methylguanine
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- DNA methyltransferase) DNA-repair gene by promoter methylation compromises

DNA repair and has been associated with longer survival in patients with glioblas-

toma who receive alkylating agents, such as temozolomide. Patients who did not have

methylated MGMT promoter, did not benefit from the treatment (Hegi et al., 2005).

1.1.9.3. MicroRNA and Long Non-Coding RNAs dysregulation. MicroRNAs (miRNA)

are small noncoding RNAs made of short stretches of 22 nucleotides that regulate

post-transcriptional gene expression by binding to complementary sequences in the 3’

untranslated region (UTR) of messenger RNA (mRNA). Target genes of miRNAs are

involved in diverse cellular functions, including cell differentiation, proliferation and

apoptosis (Esquela-Kerscher and Slack, 2006; Bruce et al., 2015).

The expression of miRNA is similar to that of protein-coding genes as they are

regulated by both genetic and epigenetic mechanisms (Biswas and Rao, 2017) and

have been found to be dysregulated in cancer development (Lu et al., 2005; Calin

and Croce, 2006). Recent research has mapped the presence of miRNA genes in the

common breakpoint regions of oncogenes and tumour suppressor genes, in addition

to fragile regions of the genome which are preferential sites for deletion, translocation

or amplification in cancer, suggesting their involvement in driving the behaviour of

tumour growth (Biswas and Rao, 2017). Moreover, there is evidence that miRNAs

play a role in epigenetic regulation, by modulating the activity of epigenetic modifying

enzymes associated with carcinogenesis (Guil and Esteller, 2009). miRNA serves as a

part of the complex regulatory network which takes part in silencing gene expression

by methylation and modifying the structure of chromatin (Baer et al., 2013).

Long Non-Coding RNAs (LncRNAs) are considered as non-protein coding tran-

scripts that are transcribed in an anti-sense manner. They regulate integrity of the

nuclear structure, regulation of gene expression, and post-transcriptional processing.

LncRNAs are involved in epigenetic gene silencing and in tumour development by

promoting expression of genes involved in metastasis (Huarte, 2015).

1.1.10. Relationship between genetic and epigenetic factors in cancer de-

velopment. Experimental evidence support both the epigenetic and genetic origin of

cancer (Feinberg et al., 2006; Fearon, 1997) and shows that genetic and epigenetic mech-

anisms closely interact in carcinogenesis (Brena and Costello, 2007). This interaction
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between genetic and epigenetic changes can be clearly observed in the case of tumor-

suppressor gene inactivation, which can be caused by genetic (mutation, deletion) or

epigenetic (DNA hypermethylation) means (Mart́ın-Subero and Esteller, 2017). For ex-

ample, the VHL gene is mutated in 60 % of the renal carcinomas and hypermethylated

in 20 % of the remaining cases (Jones and Baylin, 2002).

The close interaction between genetic and epigenetic changes is also supported

by the discovery of epigenetic changes that affect the stability of the genome, e.g. hy-

pomethylation of DNA repeats leads to chromosomal changes by inducing chromosomal

instability. Also, genes targeted by DNA hypermethylation are involved in DNA repair

pathways like BRCA1, MGMT, and WRN (Esteller, 2007). In these cases, silenc-

ing of the DNA-repair gene blocks the repair of mutations, thus triggering neoplastic

transformation of the cell.

In summary:

(1) genetic and epigenetic changes represent alternative mechanisms targeting the

same genes in cancer

(2) genetic changes of epigenetic genes can lead to epigenetic modifications (and

vice versa), and

(3) epigenetic changes of DNA repair genes can lead to genetic alterations.

(Mart́ın-Subero and Esteller, 2017).
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1.2. Paediatric tumours of the central nervous system

Tumours of the Central Nervous System (CNS), including brain and intracranial

tumours, are the second most common group of cancers in children, responsible for

more than a quarter (26%) of all childhood cancers(CRUK, 2018).

The largest subgroup of CNS cancers is astrocytoma; this accounts for over two-

fifths (43%) of all brain, other CNS and intracranial tumours in children (CRUK, 2018).

These tumours have no distinct pattern regarding sex or age of children and are low

grade. Grading is a measure of the degree of abnormality of the tumour compared to

the normal tissue from which the tumour is thought to have originated. Some cancers

are graded using specific grading system, but in general tumours are graded 1 (I) to

4(IV), with lower grade cancers cells appearing close to normal, with slow growth and

spreading rates, whereas high grade tumours are aggressive and rapidly progressing

(Louis et al., 2016; NCI, 2018).

The second most frequent subgroup is the intra-cranial and intra-spinal embryonal

tumours, which account for around a fifth to a quarter (20-25%) of all childhood brain,

other CNS and intracranial tumours. Most of this subgroup are embryonal tumours of

CNS, with nearly three-quarters (73%) being medulloblastoma. These tumours most

commonly present in young children (CRUK, 2018).

The third largest group, accounting for about 10% of childhood brain, other CNS

and intracranial tumours, comprises ependymoma and choroid plexus tumours; inci-

dence is highest in one-year-olds in this subgroup (CRUK, 2018).

Most of these CNS tumours occur sporadically, with fewer than 5% of all brain,

other CNS and intracranial tumours occuring in children with familial genetic predis-

position (Frühwald and Rutkowski, 2011).

1.2.1. Embryonal tumours of the Central Nervous System. Embryonal tu-

mours (ET) of the CNS are tumours formed from undifferentiated embryonal cells

that remained in the brain after birth (NCI, 2018). About 20-25% of childhood

brain tumours are embryonal tumours. Embryonal tumours occur most frequently

in younger children (aged 0-10 years), and incidence decreases with age, with more

than half being diagnosed in children less than 10 years old. These tumours were for-

merly known as Primitive Neuro-Ectodermal Tumours (PNETs) and categorised by

their common round cell morphology (Ellison, 2002). As understanding of distinctive
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molecular and clinico-pathological characteristics progressed, these tumours were clas-

sified into five distinct types: medulloblastoma, atypical teratoid/rhabdoid tumours

(AT/RT), ependymoblastoma, medulloepithelioma and supratentorial PNETs (Klei-

hues et al., 2002). This classification was further refined in 2007 to include three

distinct types of embryonal tumours: medulloblastoma, AT/RT and primitive neuroec-

todermal tumours (CNS-PNETs); five histological variants of medulloblastoma were

described, which have been associated with disease outcome (Louis et al., 2007). The

Figure 1.6. Summary of the major changes in the WHO 2016 classification
for the diagnosis of central nervous system (CNS) embryonal tumours. In the
2007 WHO classification tumours were histologically defined. In the current
edition, an integrated diagnosis combines histology with genetically defined
tumours. For embryonal tumours, this has meant four new genetic subgroups
of medulloblastoma. The CNS-PNET entity is no longer recognised, instead
embryonal tumour with multilayered rosettes form their own embryonal en-
tries, whereas any remaining tumours are currently classified based on his-
tology alone and fall under ‘other embryonal tumours’. This group of genet-
ically undefined tumours contains medulloepithelioma, CNS neuroblastoma,
CNS ganglioneuroblastoma and CNS embryonal tumour, NOS. *Provisional
subentity; NOS, not otherwise specified. Figure taken from (Pickles et al.,
2018)

WHO 2007 classification relied only on histological features, which has been refined

in the 2016 classification to additionally integrate genetic information (Fig.1.6). This

classification divides ETs into medulloblastoma, embryonal tumours with rhabdoid fea-

tures (AT/RT), embryonal tumours with multilayered rosettes (ETMR) and other ET

that include medulloepithelioma, CNS neuroblastoma and CNS ganglioneuroblastoma.

Medulloblastoma was further subclassified into four genetically defined subgroups and

four histologically defined variants (Louis et al., 2016; Pickles et al., 2018).

Embryonal tumours of CNS are WHO grade IV and are associated with high mor-

tality and long-term morbidity for survivors (Pfister et al., 2010; Louis et al., 2016).
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1.3. Medulloblastoma

Medulloblastoma is the most common highly malignant, undifferentiated childhood

brain tumour that accounts for 15-20% of all paediatric brain tumours, with incidence

of approximately 90 cases per year in the UK, and responsible for nearly 10% of all

childhood cancer deaths (Pizer and Clifford, 2009).

Medulloblastoma mainly occurs within the first decade of life with a peak incidence

between 4 and 7 years of age. However, there are well described cases of adolescent and

adult medulloblastoma. There is very clear gender imbalance with an approximately

1.7:1 male to female ratio (Pizer and Clifford, 2009).

Medulloblastoma was first identified and described by Bailey and Cushing in 1925

as a novel undifferentiated tumour derived from embryonic cells (Bailey and Cushing,

1925). Subsequently, medulloblastoma has been well described and both diagnosis

and treatment strategies have been developing and improving. Recent advances in

treatment have extended 5-year survival rates from 3% in 50s to 70% during 2001-2005

(Massimino et al., 2016; Newton, 2001) and currently reaching 85% (Ramaswamy et al.,

2016a).

Usually, medulloblastomas arise in the posterior fossa, commonly from the cerebel-

lar vermis in the roof of the 4th ventricle, presenting as a mid-line tumour, although

in a minority of cases, particularly in older children, medulloblastoma can arise in a

cerebellar hemisphere (Taylor et al., 2012).

1.3.1. Histology. The current histological classification of medulloblastoma, ac-

cording to 2016 WHO classification (Louis et al., 2016), defines four main long-established

variants: classic medulloblastoma (72-80%), desmoplastic/nodular and MBEN (Medul-

loblastoma with Extensive Nodularity) medulloblastomas (together amounting to 15%)

and large cell /anaplastic medulloblastomas (19%) (Pizer and Clifford, 2009; Louis

et al., 2016; McManamy et al., 2007).

1.3.1.1. Classic medulloblastoma. The most common subtype of medulloblastoma,

comprising approximately 80% of all medulloblastomas, is described as having a classic

phenotype, composed of sheets of generally small round cells with densely packed

undifferentiated cytoplasm and frequent mitoses.

1.3.1.2. Desmoplastic/nodular medulloblastoma and medulloblastomas with exten-

sive nodularity. Desmoplastic medulloblastomas incorporate the desmoplastic/nodular
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MB variant and the MB with extensive nodularity (MBEN). These tumours have nodu-

lar architecture with rich reticulin fibres around the pale nodules, giving a desmoplastic

appearance. Desmoplasia is most notably seen in very young children, where it occurs

in up to 50% of tumours in infants of under 3 years of age, and has been associated

with an improved outcome (Pizer and Clifford, 2009). Also desmoplasia appears to

have high rates in adult cases, and just 5% of cases among children 3-15 years of age

(McManamy et al., 2007),however any improved prognosis associated with desmopla-

sia in older patients is unclear (Pizer and Clifford, 2009). The histological subgroup

MBEN is a variant closely related to DN, with a reduced inter-nodular component.

Round cells of MBEN have uniform nuclei, a high level of neuronal differentiation and

low proliferative index, and are gathered into nodules. This variant comprises 1-2% of

all medulloblastomas, is mostly present in infants under 3 years of age and, similarly

to the infant DN, is associated with favourable prognosis (Pietsch and Haberler, 2016).

1.3.1.3. Large cell/anaplastic medulloblastoma. Medulloblastoma with severe anapla-

sia, characterised by cytologic pleomorphism and a high mitotic count, is seen in about

15% of cases and is associated with a poorer prognosis as compared the classic pheno-

type (Pizer and Clifford, 2009; Ellison, 2002).

The rarer large-cell medulloblastoma characterised by large cells, with large pleo-

morphic nuclei and prominent nucleoli accounts for fewer than 5% of cases and has

clearly been associated with a poor prognosis (Pizer and Clifford, 2009). This subtype

has a higher apoptotic and mitotic rate than other medulloblastoma subtypes and, as

a consequence, necrotic regions are often present. As both large cell and anaplastic

medulloblastomas share a similarly poor prognosis, in most studies of medulloblastoma,

they are usually grouped into a single large cell/anaplasia (LCA) category (Gilbertson

and Ellison, 2008).

1.3.2. Diagnosis and clinical presentation of medulloblastoma. As medul-

loblastomas mostly arise in the posterior fossa, usually from the cerebellar vermis in the

roof of the 4th ventricle (see Fig.1.8 and 1.9), most patients present with the symptoms

of intracranial pressure caused by blockage of the cerebrospinal fluid (CSF) pathways

at the forth ventricle (Pizer and Clifford, 2009).

This effect is increased by the volume of the tumour mass and the peritumoral

edema. The primary symptoms are headache, nausea, and vomiting in the morning
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Figure 1.7. Histopathological subtypes of medulloblastoma. A: Classic
medulloblastoma with (B) strong NeuN expression in preexisting granule cells
and weaker expression in tumor cells (NeuN- neuron specific nuclear protein);
C: desmoplastic/nodular medulloblastoma with (D) reticulin fibers in intern-
odular areas (reticulin stain); E: classic medulloblastoma without pale nodular
areas but with (F) desmoplastic reaction due to leptomeningeal invasion (reti-
culin stain); G: classic medulloblastoma with pale nodules but (H) without
desmoplasia (reticulin stain); I, J: large/cell anaplastic medulloblastoma with
(I) severely anaplastic nuclei with nuclear moulding/wrapping and frequent
mitotic and apoptotic figures; J: large round cells with prominent nucleoli.
Figure taken from Pietsch and Haberler, 2016.

before intake of food. The nausea often improves during the course of the day, and the

headache may become less severe after vomiting (Frühwald and Rutkowski, 2011).
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Figure 1.8. Anatomy of the inside of the brain, showing the cerebrum, cere-
bellum, brain stem, spinal cord, optic nerve, hypothalamus, and other parts
of the brain. Figure taken from (NCI, 2018)

In infants under one years old, the symptoms are often unspecific, such as lethargy

or irritability, which often engender a delay in diagnosis, although a raised intracranial

pressure often causes increase in the head size (Pizer and Clifford, 2009). In older

children, behavioural changes and poorer academic performance is common, as are

ataxia and cranial nerve palsies (Pizer and Clifford, 2009).

Magnetic resonance imaging (MRI) is preferable to computed tomography (CT)

for evaluation of the anatomy due to higher resolution. For medulloblastoma, spinal

MRI is indicated to detect metastases and should ideally be performed before surgery,

otherwise together with the early postoperative follow-up imaging within 48 to 72 h

(Frühwald and Rutkowski, 2011; Packer et al., 1999).

1.3.3. Medulloblastoma staging. Tumour staging and metastatic status are

important factors in prognostication and are crucial for selecting appropriate treatment.

Staging of the tumour is usually determined by cranial and spinal MRI scans, ideally

prior to the surgery, followed by cytological and immunohistochemical examination of

CSF a minimum of 10-14 days after surgery (Frühwald and Rutkowski, 2011).
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Figure 1.9. Medulloblastoma (indicated with red arrow). T1-weighted
Sagittal MRI scan. Image kindly provided by Prof. Simon Bailey

Chang’s classification (Chang et al., 1969) for the staging of medulloblastoma has

been used with adaptations since 1969 and is shown in the table 1.2.

T Stage Description M Stage Description

T1 Tumour <3 cm in diameter M0
No evidence of subarachnoid
or hematogenous
metastasis

T2 Tumour >3 cm in diameter M1 Tumour cells found in cerebrospinal fluid

T3a
Tumour >3 cm in diameter
with extension

M2
Intracranial tumour beyond
primary site

T3b
Tumour >3 cm in diameter
with unequivocal extension
into the brainstem

M3
Gross nodular seeding in
spinal subarachnoid space

T4

Tumour >3 cm in diameter
with extension up past
the aqueduct of Sylvius
and/or down past the foramen
magnum (ie. Beyond
the posterior fossa)

M4
Metastasis outside the
cerebrospinal axis (especially to bone marrow,
bone)

Table 1.2. Chang’s medulloblastoma staging based on data from Pediatric
Radiation Oncology, Fifth Edition (Marcus and Haas-Kogan, 2009);

1.3.4. Genetics and molecular classification of medulloblastoma.

1.3.4.1. Familial syndromes . The vast majority of medulloblastoma (about 95%)

cases are sporadic (non-inherited). However, a small proportion of medulloblastoma

cases co-occur with hereditary syndromes which have an increased risk of cancer. The

syndromes known to be associated with medulloblastoma are shown in Table 1.3:

Basal Cell Nevus Syndrome, also known as Gorlin Syndrome,(Gorlin and Goltz,

1960), is an autosomal dominant condition characterised by the occurrence of basal

cell carcinomas, together with skeletal abnormalities, odontogenic keratocysts and in-

creased risk of medulloblastoma (occurring in about 5% of children with the syndrome).
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Familial Cancer
Syndrome

Gene Locus Cancer
Association

Li-Fraumeni
Syndrome

P53 17p13.1 medulloblastoma,
other brain

tumors, sarcomas,
leukemia, breast

cancer
Gorlin Syndrome:
Nevoid basal cell

carcinoma
syndrome
(NBCCS)

PTCH, protein:
patched

9q22.3 medulloblastoma,
basal cell skin

carcinoma

Fanconi Anaemia BRCA2 FANCD2
PALB2 FANCC

FANCA

13q12.3 (type D1),
16p12.1 (type D2)

medulloblastoma,
Wilms’ tumour,
neuroblastoma

Rubinstein-Taybi
Syndrome

CREBBP EP300 16p13.3 medulloblastoma,
other CNS

tumours, neural
crest tumour

Turcot Syndrome PMS2 MLH1 APC
MSH2 MSH6

5q21-22 medulloblastoma,
multiple colorectal

adenoma
Table 1.3. Familial cancer syndromes caused by loss of function of a TSG
based on data from (Gajjar et al., 2006).

It is associated with germline mutation of the tumor supressor gene PTCH1, which en-

codes a protein involved in SHH pathway (Cambruzzi, 2018).

Turcot Syndrome is characterised by malignant tumors of the central nervous sys-

tem (mostly astrocytomas and medulloblastoma) associated with familial polyposis of

the colon. There are different sub-types characterised by various mutations (Paraf

et al., 1997). The most important one, germline mutation of the TSG APC is involved

in WNT pathway activation. APC protein binds β-catenin, acting as antagonist of

the WNT signalling pathway (Rubinfeld et al., 1993). About 79% of children with the

syndrome develop medulloblastoma.

Li-Fraumeni syndrome is a rare inherited autosomal dominant disorder that in-

creases the risk of developing several types of cancer, particularly in children and young

adults, including medulloblastoma (in about 2% of patients) and is characterised by

mutations in the TP53 gene. The most frequent types of cancer associated with Li-

Fraumeni syndrome are breast cancer, osteosarcoma, and soft tissue sarcomas. TP53

is a transcription factor that activates in response to DNA damage and regulates cell

cycle and apoptosis and inactivation of this gene leads to immortalisation of cancer cell

(Malkin, 2011).
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The mutations identified during the studies of familial syndromes cases associated

with WNT and SHH pathways provided an insight into the way these pathways drive

tumourigenesis in medulloblastoma by aberrant activation of the WNT and SHH sig-

nalling pathways.

1.3.5. Embryonic signaling pathways and their role in cerebellar devel-

opment.

Figure 1.10. Scheme of active WNT pathway taken from Neumann et al. (2017)

1.3.5.1. WNT pathway: role in cerebellar development and medulloblastoma . The

Wnt signalling pathway (Fig.1.10) is involved in numerous fundamental processes essen-

tial for embryonic development and normal adult homeostasis (Neumann et al., 2017).

The WNT/wingless gene, one of the main regulators of Drosophila melanogaster seg-

ment polarity was discovered in a mutagenesis screen for visual phenotypes, affecting

various developmental patterning processes in Drosophila. The first member of the

Wnt family in mammals was initially discovered as the proto-oncogene Int-1 in mice
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and later found to be the homologue of the wingless gene of Drosophila melanogaster,

which had already been described (Nusse and Varmus, 1992).

The pathway is generally divided into three sub-pathways:

(1) canonical,

(2) non-canonical planar cell polarity (PCP) pathway, and,

(3) non-canonical Wnt/calcium pathway.

All three pathways are activated by binding a Wnt-protein ligand to a Frizzled

family receptor, which passes the biological signal to the Dishevelled protein inside

the cell. The canonical Wnt pathway leads to regulation of gene transcription, and is

thought to be negatively regulated in part by the SPATS1 gene (Zhang et al., 2010).The

non-canonical planar cell polarity pathway regulates the cytoskeleton that is responsible

for the shape of the cell and non-canonical Wnt/calcium pathway regulates calcium

inside the cell (Nusse and Nusse, 2005).

The most widely studied functions of WNT signalling is in the establishment of

the midbrain-hindbrain boundary that gives rise to the cerebellum (McMahon and

Bradley, 1990).

1.3.5.2. SHH pathway: role in cerebellar development and medulloblastoma . The

hedgehog pathway is a signalling pathway that plays an important role in embryonic

development, regulating cell differentiation, proliferation and polarity (De Luca et al.,

2016). It was initially discovered in 1980 by Nusslein-Volhard and Weischaus dur-

ing their large-scale mutation screening of Drosophila fruit fly (Nüsslein-volhard and

Wieschaus, 1980). The vertebrate homologues of the Drosophila hedgehog gene are

Sonic Hedgehog (SHH ), Desert (DHH ) and Indian (IHH ). The most studied, SHH, is

found to be expressed from early embryogenesis and has been established as one of the

key molecules responsible for the regulation of central nervous system (CNS) pattern-

ing (Machold and Fishell, 2002). During CNS organogenesis, SHH protein plays key

roles as a morphogen, mitogen, and guidance molecule (Fuccillo et al., 2006; Yam and

Charron, 2013).

The SHH pathway is activated in two major ways:

(1) canonical signaling: by ligand-dependent interaction or through receptor-induced

signaling
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(2) (2) non-canonical signalling, when SHH signalling pathway is controlled by

Suppressor of Fused (SUFU) in the absence of SHH ligand.

In the canonical activation of SHH pathway, activation occurs by ligand-dependent

interaction when SHH binds to PTCH1 at the cell membrane. In response to this

binding, PTCH1 no longer inhibits SMO, which accumulates at the primary cilium

(PC) and initiates the downstream signalling pathway cascade. SMO regulates GLI1

processing and activation at the PC. When GLI1 is activated, it translocates to the

nucleus, where it activates SHH target genes, see Figure 1.11 (Carlotti et al., 2008;

Neumann et al., 2017).

In the absence of ligand, SUFU negatively regulates the pathway by directly bind-

ing to the GLI1 transcription factor, inhibiting its translocation to the nucleus, and

preventing pathway activation (Kogerman et al., 1999).

Non-canonical SHH signalling usually occurs through GLI1-independent mecha-

nisms of the following types: Type I is downstream of SMO, which modulates Ca2+

ions and the actin cytoskeleton; type II is independent of SMO and increases cell prolif-

eration and survival (Robbins et al., 2012). The non-canonical SHH signalling pathway

can regulate chemotaxis and cell migration through actin rearrangement. Mutations

in PTCH1 and SUFU, which are negative regulators of SHH signalling, are linked to

tumorigenesis, with important evidence being a link between Gorlin’s syndrome (see

section 1.3 )and basal cell carcinoma (Archer et al., 2012), which is dependent upon

aberrant SHH pathway activation. Non-canonical Shh signalling has been linked to the

induction of chromosomal instability (Szczepny et al., 2017).

During embryonal developmental stages, SHH signalling is involved in the forma-

tion of several CNS regions, including the cerebellum, where it regulates cerebellar

progenitor proliferation and maturation and is critical during initial phases of ter-

ritorial determination (De Luca et al., 2016). Also, SHH signalling affects Bergmann

glial differentiation and promotes cerebellar foliation during development (Sudarov and

Joyner, 2007).

Given its prominent role during development, alterations of its physiological func-

tions are implicated in many human cerebellar pathologies, such as ataxias (Lim et al.,

2006), Joubert syndrome, and medulloblastoma (Vaillant and Monard, 2009).
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Medulloblastomas with activated SHH signalling pathway represent between one

quarter and one third of all medulloblastoma cases (Crawford et al., 2007; Northcott

et al., 2012a) with the majority being infant (i.e. under 3 years old) and adult cases,

often demonstrating a desmoplastic phenotype (Northcott et al., 2011; Remke and

Hielscher, 2011b). Medulloblastomas with activated SHH pathway mostly harbour

mutations or aberrations in SHH pathway components such as PTCH1, SUFU, SMO

and GLI, or TP53 mutations (Sengupta et al., 2017).

Figure 1.11. Scheme of active SHH pathway taken from (Neumann 2017)

1.3.6. Subgroups of medulloblastoma: Current consensus. The 2016 WHO

CNS tumour classification (Louis et al., 2016) defines main molecular subgroups of

medulloblastoma as follows:

• WNT-activated medulloblastoma – medulloblastoma characterised by activa-

tion of the Wnt/Wingless embryonic signalling pathway;
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• SHH-activated medulloblastoma (with subtypes TP53 -mutant and TP53 -wild

type) – medulloblastoma with activation of the Sonic Hedgehog embryonic

signalling pathway;

• Non-WNT/non-SHH, group 3 medulloblastoma

• Non-WNT/non-SHH, group 4 medulloblastoma

Consensus review of several transcriptional profiling studies of medulloblastoma

cohorts from various research groups suggested the existence of at least four molecular

subgroups named WNT, SHH, Group 3 and Group 4, distinct in their demographics,

transcriptomes, somatic genetic events, and clinical outcomes (Taylor et al., 2012).

These are summarised in Figure1.12. Additionally, it was accepted that there was

preliminary evidence for the existence of subtypes within the subgroups, particularly

for Group 3. These subtypes of subgroups were not well characterised at the time and

the consensus was to name them using Greek letters (α, β, γ, etc.) until additional

characterisation was available using larger cohorts.

Figure 1.12. Comparison of the various subgroups of medulloblastoma in-
cluding affiliations with previously published papers on medulloblastoma
molecular subgrouping (Taylor et al., 2012)

WNT subgroup
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The WNT medulloblastoma subgroup is named for the Wingless (WNT) signalling

pathway activated in this subgroup of tumours. These tumours are the least common

of the medulloblastoma subgroups, accounting for 11% of cases, with a gender ratio of

about 1:1. The peak age of diagnosis for WNT tumours is between 6-10 years of age

(Northcott et al., 2011). WNT patients have a very favourable prognosis. Over 95%

of patients survive for more than 5 years (Ellison et al., 2011) which could be related

to increased sensitivity to radiotherapy (Salaroli et al., 2015); a 2016 study suggested

that WNT-activated medulloblastomas have a disrupted blood-brain barrier, which

facilitates greater access to the tumour for chemotherapy. (Phoenix et al., 2016). The

majority of WNT medulloblastoma have classic histology, with very rare documented

cases of large cell/anaplasia. WNT subgroup tumours are rarely metastatic. Germline

mutations of the WNT pathway inhibitor APC are seen in Turcot syndrome, whose

symptoms include a predisposition to medulloblastoma. Fewer than 5% of medulloblas-

toma patients are carriers of this mutation (Huang et al., 2009), however studying

Turcot syndrome patients affected by medulloblastoma established the importance of

WNT pathway activation in medulloblastoma. Somatic missense mutations in exon 3

of CTNNB1 (which encodes β-Catenin) are present in more than 90% of WNT medul-

loblastomas (Northcott et al., 2012a). These mutations result in nuclear accumulation

of β-catenin and subsequent dysregulation of WNT target genes. WNT pathway tu-

mours are typically characterised by deletion of one copy of chromosome 6 (monosomy

6) in the majority of patients (79%) (Shih et al., 2014). Other than monosomy 6, the

genome of WNT medulloblastoma has relatively few chromosomal gains and/or losses

across the genome (Gilbertson and Ellison, 2008).

Copy number variation (CNV) and/or single nucleotide variants (SNV) include (in

addition to monosomy 6) mutations in the DEAD-box RNA helicase gene, SMARCB4

(26%), TP53 mutation (16%), tetraploidy (14%), and KMT2D (also known as MLL2

or MLL4 ) mutations (2%) (Northcott et al., 2012a; Jones et al., 2012).

Sonic hedgehog subgroup

The Sonic hedgehog (SHH) subgroup is also named for the signalling pathway that

is disrupted in these tumours. The SHH subgroup of medulloblastoma comprises 25%

of all cases (Northcott et al., 2012a). SHH tumours have a bimodal age distribution

and they affect mostly the infants and adult patients with medulloblastoma, but less
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frequently children of 3-16 years old (Northcott et al., 2011; Taylor et al., 2012; Gibson

et al., 2010). The gender ratio is about 1:1, although there is a slight male predominance

among infants (Gajjar and Robinson, 2014). Overall survival for the group is 70% (Cho

et al., 2011). Histology is typically of the nodular/desmoplastic type with MBEN

being exclusively classified into this group. Remaining tumours are either of classic or

LC/A histology. SHH medulloblastomas can be identified using tumour IHC expression

for GAB1, SFRP1, and GLI1 proteins (Ellison et al., 2011). Metastatic disease at

diagnosis occurs in the SHH subgroup mostly in infants (17%) and children (22%)

but is uncommon in adults (Kool et al., 2012). About 3–5% of patients with Gorlin

Syndrome with a germline PTCH1 mutation exclusively develop nodular/desmoplastic

medulloblastoma.

Group 3

Group 3 medulloblastoma accounts for 25-28% of cases and it is almost exclusively

found in infants and younger children, with extremely rare cases recorded in adults

(Remke and Hielscher, 2011a) with a male predominance of about 2:1. These tumours

present with high incidence of metastatic disease at diagnosis (Ramaswamy and Taylor,

2017), and frequently have a LC/A histology (Northcott et al., 2012a). This subgroup

has the worst outcome with less than 50% five years survival.

Somatic nucleotide variants are rare in this group, and Group 3 medulloblastomas

are considered copy-number driven with highly unstable genomes (Northcott et al.,

2012a). Focal high-level amplification of MYC (12-16%) and OTX2 (7%) proto- onco-

genes and frequent gains of 1q, 7, and 17q (i17q) are observed along with 10q, 11, 16q,

and 17p deletions (Northcott et al., 2012a). Chromothripsis (in the absence of TP53

mutations) is frequently seen, likely as result of an attempt at ineffective DNA repair

(Schroeder and Gururangan, 2014). Tetraploidy is seen in 54% of group 3 tumours and

probably occurs as an early event in tumorigenesis (Jones and Jallepalli, 2012).

Group 4

This type of medulloblastoma is the most common (about 35% of all cases), with

significantly more males affected (∼ 3:1 ratio) (Northcott et al., 2012a). This type of

medulloblastoma is predominant in the 3-16 year old age group, and rarely observed

in children under 3. About 30% of Group 4 medulloblastomas are metastatic on pre-

sentation. The majority of Group 4 cases are of classic histology, although cases of
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large-cell/anaplastic tumours have been observed, with an intermediate prognosis (∼

75% overall 5 years survival) (Northcott et al., 2012a). This group is also considered

to be a copy number-driven tumour, with rare SNVs. The most common chromosomal

aberrations are i17q (isochromosome, simultaneous loss of p arm and gain of q arm, in

almost 80% of tumours), and, less commonly, 1q, 7, 17q, 18q gain and 8, 10q, 11, 16p,

17p loss. Chromosome X loss occurs in 80% of affected females. Similarly to Group 3,

tetraploidy occurs in 40% of cases.

WNT SHH Group 3 Group 4
Histology Classic, Rarely

LCA
Desmoplastic,
Classic, LCA

Classic, LCA Classic, LCA

Metastatic
rate at

diagnosis

Very low Low High High

Prognosis Excellent Intermediate Poor Intermediate
Focal copy

number
aberrations

MYCN (12%)
GLI2 (8%)

MYC (17%)
PVT1 (12%)
OTX2 (8%)

SNCAIP
(10%) MYCN
(6%) CDK6

(5%)
Broad copy

number
aberrations

6 Loss 3q Gain
9q, 10q, 14q

Loss

1q, 7, 17q, 18q
Gain

8, 10q, 11,
16p, 17p Loss

7, 17q, 18q
Gain

8, 11p, X Loss

SNVs CTNNB1
(91%) DDX3X

(50%)
SMARCA4

(26%) MLL2
(13%) TP53

(13%)

TERT (60%)
PTCH1 (46%)
SUFU (24%)
MLL2 (16%)
SMO (14%)
TP53 (13%)

SMARCA4
(11%) MLL2

(4%)

KDM6A
(13%) MLL3

(5%)

Expression WNT
signaling

SHH signaling MYC /Retinal
Signature

Neuronal
Signature

Pattern of
relapse

Local and
metastatic

Predominantly
local

Metastatic Metastatic

Table 1.4. Clinical and genomic characteristics of medulloblastoma
subgroups, adapted from (Ramaswamy and Taylor, 2017)

1.3.7. Heterogeneity within medulloblastoma subgroups. Current interna-

tional consensus (Taylor et al., 2012) recognises four molecular subgroups of medul-

loblastoma: WNT, SHH, G3 and G4 - in this consensus, further heterogeneity within

these subgroups was recognised. WNT and SHH subgroups are defined by activation

of the WNT and SHH signalling pathways, often in association with specific muta-

tions and copy number aberrations. In contrast, Group3 and Group4 medulloblas-

tomas have fewer mutations and multiple DNA copy number aberrations (Jones and
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Jallepalli, 2012; Northcott et al., 2012a), and an overlap between these two groups

is a limitation of current molecular subtyping of MB with either DNA methylation

profiling or gene expression analysis alone. This is manifested in the 2016 WHO clas-

sification of CNS tumors, which defines Group 3 and Group 4 subgroups as a single

entity, ”non-WNT/non-SHH MB” (Louis et al., 2016).

Further studies have demonstrated that there is a wide variation in patient outcomes

within each subgroup (Ramaswamy et al., 2016a; Zhukova et al., 2013) and also there is

a need for new subgrouping and risk stratification schemes to accomodate the fact that

patients from the same molecular subgroup can fall into different risk groups, based on

modulation by additional clinical or molecular features.

In 2017, three independent studies were published, which investigated clinical and

molecular heterogeneity of medulloblastoma subgroups using larger cohorts of patients.

A study, conducted by Schwalbe and colleagues (Schwalbe et al., 2017b), identi-

fied seven robust and reproducible primary molecular subgroups of childhood medul-

loblastoma. WNT-activated medulloblastoma remained unchanged, whereas each re-

maining consensus subgroup was split in two. SHH medulloblastoma was split into

age-dependent subgroups corresponding to infant and childhood patients, Group3 and

Group4 were each split into high-risk and low-risk subgroups. These seven subgroups

reveal biological overlap between Group3 and Group4, where the high/low-risk group

is defined by a common biological signature. It was shown that these novel subgroups

can be further subdivided according to secondary clinico-pathological and molecular

features. These seven groups along with the secondary features and known disease risk-

factors were used to build survival models, that stratified patients into four clinical risk

groups for 5-year progression-free survival: favourable risk (91% 5-year PFS ), standard

risk (81% 5-year PFS ), high-risk (42% 5-year PFS) and very high-risk (28% 5-year

PFS). This new stratification scheme outperformed existing disease risk-stratification

schemes (Schwalbe et al., 2017b).

Another study by Cavalli and colleagues used Similarity Network Fusion (SNF) to

analyse genome-wide gene expression and DNA methylation data of 763 medulloblas-

tomas and identified 12 medulloblastoma subtypes: two within the WNT subgroup,

four in SHH subgroup and three in each Group3 and Group4 (Cavalli et al., 2017).

In contrast to the study by Schwalbe et al., this study reported a clear distinction
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between Group3 and Group4 tumours, and showed that the set of overlapping Group

3 and Group 4 tumours identified by DNA methylation profiling was different than

that identified using gene expression analysis, suggesting that this overlap was due to

testing modality, rather than biology.

The third study, by Northcott and colleagues, analysed 740 Group3/4 medulloblas-

tomas using methylation arrays and identified subtypes using t-Distributed Stochastic

Neighbor Embedding (t-SNE), a dimension reduction technique, coupled with the DB-

SCAN (density-based clustering of applications with noise) algorithm to identify clus-

ters. They reported eight subtypes (I-VIII), some comprising pure Group3/4 tumours,

others with mixed subgroups. (Northcott et al., 2017).

In order to resolve the inconsistencies in nature of the subtypes and their numbers

between these studies, another study was conducted with the aim to characterise the

number and nature of Group 3 and Group 4 medulloblastoma subtypes in an unbiased

way. The same analytical techniques and approaches of the component studies were

applied to a combined dataset from the cohorts from all three publications and an

additional 153 tumours. This analysis most strongly supported a definition of eight

robust subtypes of Group 3/Group 4 (subtypes I-VIII) with additional evidence that

there are two variants of subtype VII, VII-A and VII-B (Sharma et al., 2019).

Subtype-specific survival was assessed using all available PFS (n=550) and OS

(n=837) data. However, as progression free survival data was unavailable for the Cavalli

et al. (2017) dataset, the eight Group 3 and Group4 subtypes were risk stratified into

three distinct groups based on the overall survival.

The first, a very high-risk group (5-year OS 50%, 95% CI 43-58) encompasses

subtypes II (5-year OS 50%, 95% CI 40-62), III (43%, 95% CI 32-59), and V (5-year

OS 59%, 95% CI 46-75).

The second group consists solely of subtype VIII (5-year OS 81%, 95% CI 75- 87)

and is associated with a feature unique to this subtype, late relapse/death (35% of

death within this subtype occured ≥5 years after diagnosis).

The third group is standard risk group (5-year OS 82%, 95% CI 78-87), comprises

of subtypes I (5-year OS 77%, 95% CI 62-97), IV (80%, 95% CI 70-91), VI (81%, 95%

CI 72-91), and VII (85%, 95% CI 79-91).
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Equivalent consensus studies that define subtypes of subgroups for SHH and WNT

disease have not yet been reported.

Figure 1.13. Summary of molecular subtypes of Group 3/4 medulloblas-
toma. The major demographic, clinico-pathological, and molecular features of
the concordant subtypes are summarised. CLAS = classic, DN = desmoplas-
tic nodular, LCA = large-cell anaplastic, M+ = metastatic. Overall survival
shows subtype-specific survival in years. Copy number gains are shown in red,
losses in green. Figure taken from Sharma et al. (2019).

Summary of molecular subtypes of Group 3 and 4 medulloblastomas is presented

on Figure 1.13.

This novel subtyping is an important step to understanding the nature of medul-

loblastoma and personalised treatment, however, it is still too early for clinical appli-

cation, since it is problematic to recruit sufficient patients for clinical trials to assess

the prognostic meaning of the subtypes, due to the large number of the subtypes and

the rarity of the disease.

1.3.8. Origins of medulloblastoma. Medulloblastomas are thought to arise

from cerebellar stem cells that have been prevented from dividing and differentiating

into their normal cell types (Colditz, 2014). This accounts for the varying histologi-

cal variants seen on biopsy. Establishment of a series of genetically engineered mouse

(GEM) models of medulloblastoma have provided important insights into the cellular

origins of these tumours (Table 1.5)
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Medulloblastoma
type

GEM model Cells of origin References

WNT Ctnnb1lox(ex3),
Trp53flx/flx

Dorsal brainstem
neuronal

progenitors

(Kawauchi et al.,
2012)

SHH Ptch loss or
ND2-SmoM2

External granular
layer, rhombic lip
granular neuropro-

genitors

(Yang et al., 2008;
Gibson et al.,

2010)22

Group 3 MycT58A,
Trp53+/-

Ventricular zone
neuronal

progenitors, or
external granular
layer and rhombic

lip granular
neuroprogenitors

(Pei et al., 2012;
Swartling et al.,

2010)

Group 4 Glt1-MYCN Uknown, possibly
cerebellum

progenitors or
stem cells, or

upper rhombic lip

(Swartling et al.,
2012; Singh et al.,
2004; Lin et al.,

2016)

Table 1.5. Cells of origin of medulloblastomas (MBs) and a summary of the
related genetically engineered mouse (GEM) model. Adapted from Huang
et al. (2016)

Granule neuron progenitors in the external germinal layer on the surface of the

developing cerebellum have long been proposed as putative cells of origin for MB,

and it is now clear that SHH-driven MB arises from this group (Schüller et al., 2008;

Yang et al., 2008). The WNT group is now thought to originate from progenitors in the

dorsal brainstem (Gibson et al., 2010). Group 3, which is the most aggressive subgroup

of MB and is characterised by a higher incidence of MYC amplification and/or MYC

overexpression, appears to derive from cerebellar stem cells (Kawauchi et al., 2012;

Pei et al., 2012). The cellular origin of Group 4, the most prevalent MB subgroup,

remains unknown, however a recent study reports that upper rhombic lip (uRL) and

its derivative precursors are putative cell-of-origin for this group (Lin et al., 2016).

1.3.9. Prognostic factors and current risk stratification in clinical set-

tings. There are a number of factors that have been shown to be important for deter-

mining patient prognosis in medulloblastoma. Current risk stratification schemes are

based on consideration of the age of the patient (in particular, infant patients under

3 years of age at diagnosis), metastatic spread and residual disease following surgical

removal of the tumour. Current risk markers are summarised in Table 1.6
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Risk factor marker Reference
Favourable risk

DN/MBEN histology in patients <3
years of age

(McManamy et al., 2007; Rutkowski
et al., 2010)

WNT pathway activation (β-catenin
nuclear accumulation)

(Ellison et al., 2005; Clifford et al.,
2006)

Adverse risk
Age <3 years of age (Zeltzer et al., 1999; Rutkowski et al.,

2010)
Metastatic disease (Bailey et al., 1995; Zeltzer et al., 1999)

Post-surgical residual disease ≥1.5 cm2 (Zeltzer et al., 1999; Tamayo et al.,
2011)

Large cell / anaplastic medulloblastoma (Eberhart et al., 2003; McManamy
et al., 2003)

MYC family gene amplification (Lamont et al., 2004; Eberhart et al.,
2003)

Table 1.6. Currently accepted prognostic factors in medulloblastoma, vali-
dated in clinical trials PNET3, SJMB96, HIT-SKK’92, CNS9204 and HIT ’91.
Markers of favourable and adverse risk are listed, with supporting references
included. Table adapted from Pizer and Clifford (2009);

The higher risk prognosis in infants can partially be attributed to a consequence

of the avoidance of radiotherapy in these cases, because of the unacceptable neuro-

cognitive consequences associated with cranial radiotherapy applied to a small, de-

veloping brain (Crawford et al., 2007; Robinson et al., 2018). Due to these serious

sequelae, therapies in infant cases are usually designed to avoid or delay the use of

cranio-spinal radiotherapy. A recent clinical trial (NCT00602667, ClinicalTrials.gov)

identified a low-risk subtype of SHH-activated medulloblastoma that had improved 5

year progression-free survival (90.9%) in the absence of radiotherapy, intraventicular

therapy or high-dose chemotherapy and was characterised by SMO mutations enrich-

ment (Robinson et al., 2018).

1.3.9.1. High-risk factors and standard risk disease. For treatment purposes, pa-

tients with medulloblastoma are divided into two prognostic groups: children over 3

years of age with non-metastatic disease (Chang stage M0) and minimal residual dis-

ease (<1.5cm2) post-operatively comprise the standard-risk group. Other patients with

risk-factors such as a sub-total resection MYC amplification or metastatic disease and

younger patients below 3 years of age comprise the high-risk group (Table 1.7) (Parkes

et al., 2015). Therefore, by definition, standard-risk medulloblastoma group comprises

patients with an absence of risk-factors.
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Standard Risk High Risk
All of the following: Any one of the following:
>3 years of age <3 years of age

<1.5 cm2 residual tumour after
resection

Subtotal resection (>1.5 cm2 residual)

CSF negative for tumour cells on L.P. CSF positive for tumour cells
MRI spine negative for leptomeningeal

spread
MRI shows leptomeningeal spread

Classic or desmoplatic subtypes on
pathology

Large cell or anaplastic subtype

Complete staging possible Incomplete staging
Absence of MYC(N) gene amplification MYC(N) gene amplification

Table 1.7. Clinical risk stratification of medulloblastoma adapted from
Parkes et al. (2015)

Several clinical trials from SIOP, COG and St. Jude’s have shown that outcomes for

average / standard risk medulloblastoma exceed 80% five-year survival (Gajjar et al.,

2006; Lannering et al., 2012; Packer et al., 2006). In standard-risk medulloblastoma,

relapse is the major cause of death, occurring in around 20% of patients and the

prognosis at relapse is poor, with generally less than 10% survival (Hill et al., 2015).

Therefore, standard risk medulloblastoma is a heterogeneous disease in itself.

1.3.10. Risk Stratification within subgroups . The current clinical risk strat-

ification divides patients over aged over three into standard-risk and high-risk. Here,

high-risk is defined by positivity for subtotal-resection and/or metastatic disease in

North America and Australia (Ellison et al., 2011). In Europe, in addition to the above,

patients with large-cell and/or anaplastic pathology and/or MYC or MYCN gene am-

plification are excluded from standard risk trials (e.g. the PNET5 study), based on

clinical, histopathological and biological studies from previous trials (e.g. PNET3)

(Ellison et al., 2011). However, several studies over the past few years have identified

molecular markers, which, together with previously used criteria, may provide addi-

tional information for improved risk stratification (Clifford et al., 2015; Pietsch et al.,

2014; Schwalbe et al., 2013; Shih et al., 2014; Tamayo et al., 2011). Several studies

were reviewed and a consensus was reached regarding a new proposed risk classification

scheme (Table 1.8, Ramaswamy et al. (2016b). A recent study subsequently identified

novel risk subgroups of medulloblastoma, describing for the first time that non-WNT

patients could be assigned to a favourable risk group (i.e. >90% survival) that could

be potential candidates for treatment de-escalation(Goschzik et al., 2018).
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Favourable Risk Standard Risk High Risk Very High Risk
(>90% survival

rate)
(75-90% survival

rate)
(50-75% survival

rate)
(<50% survival

rate)
WNT

Non-metastatic
Group 4, with chr
11 loss or chr 17

gain

The rest of the
patients in the

absence of
mentioned risk

markers

Metastatic SHH or
Group 4

MYCN -amplified
SHH

Group 3 with
metastases or

SHH with TP53
mutation

Table 1.8. Proposed risk stratification in childhood non-infant medulloblas-
toma (Ramaswamy et al., 2016b);

1.3.11. Epigenetic drivers in medulloblastoma . Epigenetic factors play im-

portant role in development of many cancers, including medulloblastoma, which ex-

hibits high rates of alteration in epigenetic regulators across all four subgroups (Jones

et al., 2016; Dubuc et al., 2013) (see Table 1.9). Over 30% of all medulloblastoma

samples carry various mutations, deletions and amplifications and each subgroup dis-

playing both common and distinct epigenetic properties (Jones and Jallepalli, 2012;

Dubuc et al., 2013; Batora et al., 2014). The later suggests that epigenetic changes

can be important drivers of medulloblastoma. Research suggests that the main, al-

though not the only function of epigenetic factors, is transcriptional regulation and each

medulloblastoma subtype may require different sets of histone modifiers and chromatin

remodellers that regulate gene expression (Yi and Wu, 2018).

Genes Epigenetic function of gene products Recurrent abnormalities in MB
Brg1/SMARCA4 Chromatin remodeler Mutation/WNT and Group 3

BMI1
EZH2
MLL2/KMT2D
MLL3/KMT2C
G9A/EHMT2
CREBBP

PCAF/KAT2B

Writer
Subunit of PRC1 H2AK119 E3 ubiquitin ligase
Subunit of PRC2 H3K27 methytransferase
H3K4 methytransferase
H3K4 methytransferase
H3K9 methytransferase
H3K27 acetyltransferase
Histone acetyltransferase

Overexpression/across subgroups
High expression/Groups 3 and 4
Mutation/across subgroups
Mutation/across subgroups
Not known
Mutation/SHH
Not known

UTX/KDM6A
JMJD3/KDM6B
LSD1/KDM1A
HDAC1/2
SIRT1

Eraser
H3K27me3 demethylase
H3K27me3 demethylase
H3K9me1/2 demethylase
Histone deacetylase
NAD-dependent histone deacetylase

Mutation or deletion/Group 4
Not known
Not known
Not known
High expression/multiple subgroups

BRD2/3/4
Reader
Recognition of acetyl-lysine on histones

Not known

Table 1.9. Summary of genes encoding epigenetic regulators in medulloblas-
toma. Adapted from (Yi and Wu, 2018)

1.3.11.1. DNA methylation in medulloblastoma. Aberrant changes in DNA methy-

lation is a common feature of tumorigenesis (Jones and Baylin, 2007b). Genome-wide

studies of DNA methylation patterns in medulloblastoma have suggested that DNA
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methylation plays a major role in its pathogenesis by repressing genes to avoid cell

differentiation and cell death (Dubuc et al., 2013).

In 2013, four medulloblastoma subgroups were identified using DNA methylation

microarrays; these subgroups were highly related to the previously described transcrip-

tome subgroups. This suggested that each subtype of medulloblastoma has specific

methylation patterns which can be used for robust subclassification (Schwalbe et al.,

2013).

Bisulfite sequencing analysis combined with matched RNA-seq and ChIP-seq data

provided a comprehensive view of DNA methylation and gene expression profiles in

medulloblastoma and established a high incidence of regions of hypomethylation tens

of kbp downstream of gene promoters, which correlated with gene overexpression (Hov-

estadt et al., 2014).

The above two studies both used bisulfite conversion to uncover cytosine methyla-

tion, during which unmethylated cytosines in CpG islands are converted to uracil and

methylated cytosines are not converted. This technique allows methylation pattern to

be read. Bisulfite conversion, followed by polymerase chain reaction (PCR) and bisul-

fite sequencing of specific regions, identified several tumour suppressor genes silenced

in medulloblastoma by promoter hypermethylation. These included CDKN2A, HIC1

and RASSF1 (Lindsey et al., 2004; Shahi et al., 2010, 2011; Diede et al., 2010). Other

techniques, such as array-based profiling of reference-independent methylation status

(aPRIMES) identified PTCH1, the negative regulator of SHH signaling, transcriptional

repressor ZIC2, SFRP family of the WNT signaling pathway inhibitors (Pfister et al.,

2007).

1.3.11.2. Histone modifications in medulloblastoma. Extensive molecular analysis

identified mutations and copy number aberrations (Northcott et al., 2009) in multiple

epigenetic regulators that play role in changes chromatin state and gene expression

in medulloblastoma (see Fig1.14) such as histone lysine methyl and acetyl transferases

(”writers”), demethylases (”erasers”) and polycomb group of transcriptional repressors

(PRC1 and PRC2, ”readers”) (Roussel and Stripay, 2018).

Genome-wide sequencing of medulloblastoma identified disregulated chromatin reg-

ulation pathways involving H3K4 and H3K27 methylation (Fig. 1.15).
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Figure 1.14. Epigenetic regulators. DNA is wrapped around the nucleo-
some that comprises two copies of each histone H2A, H2B, H3, and H4. Ac
acetylation, P phosphorylation, Ub ubiquitination, Me methylation, K lysine,
S serine, R arginine (Roussel and Stripay, 2018).

Genes that encode H3K4 methyltransferases KMT2D (also known as MLL2 or

MLL4 ) and KMT2C (also known as MLL3 ) are mutated in 8% and 3% of medul-

loblastoma subgroup-independently. Both, KMT2D/C complexes are required in or-

der to maintain level of H3K4me1 which marks enhancers in cell-type-specific manner.

These complexes may activate gene expression by changing enhancers activity during

development and cancer (Rao and Dou, 2015; Sze and Shilatifard, 2016).

Alterations in histone demethylases consistent with aberrant histone methylation

at H3K27 and H3K4 are common in Group3 and Group4 medulloblastoma (Roussel

and Stripay, 2018).

Transcriptional effectors of lysine demethylase (KDM) regulation, including genes

involved in cell cycle control and differentiation. Various mutations were identified

across six KDM family members. Inactivating mutations in KDM6A/UTX is of a

particular interest as it is the most common recurrent mutation in Group 4 medul-

loblastoma and (Robinson et al., 2012; Northcott et al., 2009) and generally mutations

and homozygous deletions of this gene occur in 4% of medulloblastoma.

Gene KDM6A/UTX is located on the X-chromosome and Group 4 medulloblas-

toma patients are predominantly males and most of female patients have one of the X
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chromosome lost (Dubuc et al., 2013). KDM6A/UTX activates genes by demethy-

lating repressive H3K27 mark and interacts closely with and is considered a subunit of

KMT2D/C complexes (Cho et al., 2007).

Together, KMT2D/C and KDM6A/UTX may be responsible for activation of

genes by methylating H3K4 and H3K27me3, and therefore, their mutations are mutu-

ally exclusive in medulloblastoma.

In addition to mutations of KDM6A/UTX in Group 4 medulloblastoma, EZH2,

EED and SUZ12 subunits of H3K27 methyltransferase polycomb repressor complex

PRC2, are highly expressed in medulloblastoma, often due to amplification of the

genes encoding these subunits (Bautista et al., 2017; Dubuc et al., 2013).

Figure 1.15. Schematic representation of bivalent chromatin domains, H3K4
and H3K27. Medulloblastoma retains a progenitor-like epigenetic profile by
altering the balance between H3K27 and H3K4 methylation states. Aberrant
“writing” or “erasing” of methyl groups of H3K27me3 by EZH2 upregula-
tion or KDM6A/UTX mutation, respectively, and inactivating mutations in
MLL2/KMT2D, CHD7, and ZMYM3 that disrupt H3K4me3 transcription,
maintains the stem cell state (Roussel and Stripay, 2018).

EZH2, catalytic partner of PRC2, is responsible for transferring methyl groups

onto lysine 27 of histone 3 (H3K27me3) and contributes to chromatin compaction and
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transcriptional repression (Cao et al., 2002). EZH2 is critical for normal development

as its deletion is lethal during embryonic stage (O’Carroll et al., 2001) and is over-

expressed in many cancers, and in most cases plays a role of an oncogene or a tumour

suppressor (Bachmann et al., 2006; Vo et al., 2017).

Mutations in KDM6A/UTX leading to a complete protein loss are mutually ex-

clusive with EZH2 overexpression. This suggests a critical role of H3K27me3 in medul-

loblastoma tumorigenesis and potencial clinical vulnerability (Dubuc et al., 2013).

1.3.11.3. Chromatin remodelling in medulloblastoma. ATP-dependent chromatin

remodelling complexes represent another epigenetic mechanism for tumorigenesis in

medulloblastoma, which regulate chromatin structure using energy from ATP hydrol-

ysis. The prototypical complex, SWI/SNF family of proteins, also known as BAF in

humans, contains 10-12 associated subunits and can function as transcription activator

and repressor and plays important role during development (Hargreaves and Crabtree,

2011; Wu, 2012). Recurrent mutations in BAF family identified in medulloblastoma

include SMARCA4 and are typically restricted to WNT and Group 3 tumours. In

addition to chromatin remodelling function, BAF complexes interact with other chro-

matin regulators, e.g. under specific conditions they functionally antagonise polycomb

repressive complexes PRC1 and PRC2 (Kadoch et al., 2017; Stanton et al., 2017).

In addition to BAF complexes, mutations in another chromatin remodeler CHD7

were identified in Group 3 and Group 4 medulloblastoma (Robinson et al., 2012) and

inactivating mutations in a histone binding protein ZMYM3, that contributes to regu-

lation of gene transcription at the H3K4me3 mark are found to be exclusive to Group 4

medulloblastomas (Leung et al., 2004). The latter often occur with sub-median EZH2

expression and KDM6A/UTX mutations, which indicates the importance of the role

of H3K27/H3K4 changes in medulloblasoma (Robinson et al., 2017).

Medulloblastoma has been reported in people with CHARGE syndrome, a condition

that affects the nervous system and which is caused by germline mutations of the CDH7

gene (Martin, 2015; Gajjar et al., 2014). Mutations in BAF subunits cause Coffin-Siris

syndrome, whilst mutations in MLL2 and UTX cause Kabuki syndrome (Santen et al.,

2012; Tsurusaki et al., 2012; Miyake et al., 2013). It is unclear if patients with these

syndromes are predisposed to medulloblastoma (Yi and Wu, 2018).
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Large-scale chromatin remodellers, e.g. NuRD complexes, contribute to enhancer

dynamics as co-repressors or co-activators. Changes in enhancer landscape may con-

tribute to aberrant activation of oncogenes and inactivation of tumour-suppressor

genes. A recent study suggests that PRDM6, a putative target of enhancer hijacking

and presumed histone methyl transferase, may be a driver of Group 4 medulloblastoma

(Northcott et al., 2017).

1.3.11.4. MicroRNAs and Long Non-Coding RNAs in medulloblastoma. MiRNAs

are generated from long transcripts initially processed in the nucleus as pre-miRNAs,

which are then transported to cytoplasm where they are cleaved into mature miRNAs.

Then miRNAs are incorporated into the RNA-induced silencing complex (RISC) in

order to bind to their specific mRNAs (MacFarlane and R. Murphy, 2010).

The first miRNA reported as aberrantly expressed in medulloblastoma was miR-

124. Its suppressed expression leads to overexpression of CDK6 which is thought to

be linked to poor prognosis in medulloblastoma (Pierson et al., 2008).

Another miRNA, miR-17 92, was found overexpressed in medulloblastoma. This

miRNA is a target of MYCN, which is direct target of SHH signaling and is often

overexpessed by amplification in SHH medulloblastomas (Northcott et al., 2009).

Suppression of miR-17 92 was shown to inhibit SHH medulloblastoma develop-

ment wheres enforced expression accelerates tumour formation, which is consistent

with oncogenic activity (Murphy et al., 2013).

Recently, a LncRNA, Linc-NeD125, was identified as over-expressed in Group 4

medulloblastoma. This LncRNA isolates the RISC complex, containing three miRNAs:

miR-19a, miR-19b and miR-106a, which are encoded by the miR-17 92 cluster. This

leads to de-repression of its targets: CDK6, MYCN, KDM6A/UTX and SNCAIP, ma-

jor drivers of Group 4 medulloblastoma (Laneve et al., 2017). A better understanding

of functions of miRNAs and LcnRNAs in medulloblastoma may be useful for identifying

novel pharmocological targets (Roussel and Stripay, 2018).

1.3.12. Treatment of medulloblastoma. Surgery is the primary treatment modal-

ity for medulloblastoma, as a tool for alleviation of the intra-cranial pressure, diagnosis

and as a risk-stratification factor. Surgical resection is usually followed by radiotherapy

where appropriate (e.g. in patients over 3 years of age), and chemotherapy. Radiation
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avoiding strategies are often attempted in children under 3 years of age as infants pa-

tients are associated with particular risk of significant neurocognitive effects associated

with radiation therapy (Von Bueren et al., 2011; Ashley et al., 2012).

Currently, the recommendation is to perform the maximal safe resection possible,

prior to starting adjuvant treatments, such as chemotherapy and irradiation. This

strategy may change in the near future, with improved understanding of the specific

subgroups biology and with the advance in new treatments available.

In cases when gross total resection is possible, patients usually have longer relapse-

free intervals than patients who have residual tumour at the end of surgery (Martin

et al., 2014; Adamski et al., 2014). However, recent studies suggested that benefits

of gross total resection vs subtotal resection are dependent on the subgroup, showing

that no significant survival benefit existed for greater extent of resection for patients

with WNT, SHH, or group 3 tumours. For patients with group 4 tumours, gross

total resection conferred a benefit to progression-free survival compared with sub-total

resection especially for those with metastatic disease, however no noticeable difference

to overall survival (Thompson et al., 2016).

The choice and intensity of adjuvant therapy depends on the presence of risk factors

at diagnosis such as age, metastatic stage, residual disease and histopathology. Ad-

juvant therapy of medulloblastoma typically includes craniospinal radiotherapy (CSI)

and chemotherapy. Average-risk patients receive CSI 23.4 Gy in 30 fractions, followed

by tumour bed boost to 54-56 Gy over 6 weeks, with or without vincristine, which

is a mitotic inhibitor. Then children over 3 years old with non-metastatic disease re-

ceive 8 cycles of therapy that includes vincristine, cisplatin (a DNA cross-linker) and

two alkylating agents - lomustine and cyclophosphamide for approximately a year. For

high-risk disease, CSI is given at higher dose of 36-39.6 Gy in 30 fractions followed by a

posterior fossa boost 54-56 Gy over 6 weeks and subsequent chemotherapy. Sometimes,

stem cell transplants are used prior to the therapy (Packer and Vezina, 2008; Packer

et al., 2012). Adult patients are treated in the similar way, however post-adjuvant

therapy does not seem to improve survival and agents like vincristine and cisplatin

cause significant toxicity (Sengupta et al., 2017).

1.3.13. Treatment sequelae . The improved survival observed for medulloblas-

toma patients over decades has come at the cost of considerable difficulties later in life,
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known as late effects, as well as immediate side effects, that are a direct consequence

of the treatment. The most significant consequences described below.

Endocrine system: Several endocrinological sequelae have been described in medul-

loblastoma survivors and are mainly, but not exclusively, consequences of direct radia-

tion damage to the pituitary gland and hypothalamus (Fossati et al., 2009). Hypothy-

roidism has been reported in a percentage of patients varying from 8% to 60%(Chin

et al., 1997; Paulino, 2002; Heikens et al., 1998). Adrenocorticotropic hormone (ACTH)

deficiency is rare but life threatening, it has been reported in 24% of pediatric medul-

loblastoma (Rose et al., 2005). Gonadotropin secretion abnormalities and early puberty

have been observed in up to 50% medulloblastoma survivors (Ogilvy-Stuart et al., 1994;

Heikens et al., 1998). Growth hormone (GH) deficiency is observed in 40–80% of the

cases and is the most common endocrine abnormality in these patients (Adan et al.,

2001).

Neurocognitive development : Neuropsychological toxicity has of course a strong im-

pact on the whole life of these patients, resulting in a reduced probability of completing

education, finding a job and marrying (Kiltie et al., 1997). These patients have deficits

in IQ, memory, attention, language, mathematic ability and sleep-wake rhythm; they

also have a lower likelihood of being able to drive a car (Yock et al., 2016).

Growth and bone development : Adult medulloblastoma survivors often suffer from

reduced hight. This phenomenon can be attributed mainly to the following three

factors: GH deficiency, early puberty and impaired spinal growth due to direct RT

toxicity on the growing vertebral bodies. Osteopenia (reduced bone mineral density) is

common in medulloblastoma survivors. Quality of life, pain and physical activity are

worse in osteopenic patients (Odame et al., 2006).

Ototoxisity : Sensorineural hearing loss (SNHL) is a well-documented side effect

of cisplatin, a key drug in medulloblastoma chemotherapy, and full dose RT to the

cochleae. It develops 6-12 months after RT and is irreversible (Miettinen et al., 1997).

Medulloblastoma survivors are at increased risk of developing new malignancies.

Many of these second cancers arise in the previously irradiated area and may be radi-

ation induced (Fossati et al., 2009).

Approximately 25% of patients undergoing resection of medulloblastoma experience

cerebellar mutism, also known as posterior fossa syndrome. This is an immediate
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complication of the surgery and usually manifests within 24 hours after resection of a

posterior fossa tumour. Patients are unable to produce words, are extremely irritable,

and develop hypotonia and ataxia. The duration of the syndrome varies from weeks

to months, however the language difficulties may be lifelong (Robertson et al., 2006;

Martin et al., 2014).

1.3.14. Survival and quality of life dilemma: potential of improving pa-

tients outcome. The advances in treatment and care over the last 50 years yielded

improvement in 5 year survival rates of medulloblastoma patients from 3% to 70%

(Newton, 2001; Crawford et al., 2007). This is very significant improvement, however

there are still two major areas that need improvement:

(1) improve effectiveness of treatment for those remaining 30% who still experience

relapse;

(2) improve quality of life of those who survive, who are impacted for the rest of

their lives by debilitating late effects described in 1.3.13

The following approaches are currently being investigated:

Reducing intensity of the treatment low-risk patients. That is, reducing treatment

for those patients that are expected to do well in order to minimise the treatment seque-

lae. These include clinical trials that focus on optimising combinations of chemotherapy

and radiotherapy, and constant refinement of surgical techniques in order to minimise

the damage to healthy brain tissue (Crawford et al., 2007; Pizer and Clifford, 2009).

Several prospective and retrospective studies, based on data from clinical trials such

as SIOP-PNET3, PNET4 and SJMB96 have shown that non-metastatic patients with

WNT-activated medulloblastoma who are under the age of 16 have an excellent survival

independent of the treatment protocol used and are considered low-risk (Ramaswamy

et al., 2016b; Cho et al., 2011; Clifford et al., 2015; Schwalbe et al., 2013; Remke and

Hielscher, 2011b). Ongoing clinical trials (ClinicalTrials.gov identifiers NCT01878617

(SJMB12), NCT02066220 (SIOP-PNET5), NCT02212574 and NCT02724579) are cur-

rently evaluating de-escalation of therapy e.g. less chemotherapy and/or less radiation

for this group of patients. There is evidence that patients treated with less radiation

preserve more of their intellectual capabilities (Moxon-Emre et al., 2016).
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Recently proposed stratification schemes outlined in sections 1.3.10 and 1.3.7 de-

fined a subset of low-risk patients from non-WNT subgroups, who are potentially eli-

gible for treatment de-escalation, such as Group4 patients with whole chromosome 11

loss, chromosome 17 gain or Group3/Group4 with chromosome 13 loss and non MYC-

amplified as well as a subset of SHH-activated group (Goschzik et al., 2018; Cavalli

et al., 2017; Shih et al., 2014; Ramaswamy et al., 2016b).

Targeting specific signalling pathways, such as WNT and SHH. Pharmacological

treatments which specifically target these pathways may provide control of WNT/SHH

activated medulloblastoma with significantly reduced side effects associated with cur-

rent treatments. There is a lack of specific therapies targeting the WNT pathway in

medulloblastoma, however inhibition of tankyrase (Huang et al., 2009), cyclo-oxygenase

(Castellone et al., 2005), and Porcupine (Liu et al., 2013) to decrease beta-catenin

signaling are under investigation in other tumour models. As WNT-activated medul-

loblastoma is almost universally driven by stabilizing mutations in CTNNB1, a ra-

tional approach to would be targeting its interaction with another transcription fac-

tor, CREB binding protein (CREBBP), to inhibit transcription of their target genes.

CREBBP:CTNNB1 interaction antagonist PRI-724 is being investigated in phase I clin-

ical trials in pancreatic and liver cancers (ClinicalTrials.gov identifier NCT02413853)

(Archer et al., 2017). However, inhibiting the WNT pathway in order to treat medul-

loblastoma is potentially problematic. Recent work has suggested that patients with

WNT-activated tumours exhibit a disrupted blood-brain barrier which allows improved

delivery of chemotherapy agents directly to the tumour cells (Phoenix et al., 2016). In-

hibiting the WNT signalling pathway could improve the integrity of blood-brain barrier

and increase resistance of the tumours to the chemotherapy (Archer et al., 2017).

In the SHH pathway, the patched protein (PTCH1) normally inhibits smoothened

protein (SMO) and all the others elements of the SHH pathway are located downstream

of SMO. When SMO is over-expressed, it targets downstream pro-proliferative tran-

scription factors GLI 1-3 (Lin and Matsui, 2012). Small molecule inhibitors such as

cyclopamine derivatives may be used to control SMO. Several of these molecules, such

as Vismodegib, have shown activity against MB in a variety of clinical trials (Archer

et al., 2017). However, mutations downstream of SMO are not affected by SMO in-

hibitors. Vismodegib is a synthetic SMO inhibitor based on cyclopamine. A recent
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phase II clinical trial reported that patients who responded to the treatment with vis-

modegib had tumours with PTCH1 mutations (Ransohoff et al., 2015; Robinson et al.,

2015). However, patients with SUFU and GLI1 mutations were not affected by the

drug because SMO inhibitors is effective only on tumours with genetic mutations up-

stream of SMO in the pathway (Archer et.al., 2017). Also, vismodegib was found to

cause premature irreversible growth plate fusion in children, therefore it is only suitable

for use in adults (Robinson et al., 2017). SHH tumours are frequently prone to specific

mutations that prevent binding to SMO or which amplify downstream effectors such

as GLI2 (Dijkgraaf et al., 2011). Other agents, that target downstream effectors (Kim

et al., 2010; Beauchamp et al., 2011), such as arsenic trioxide, have been identified but

have yet to be tested in clinical trials.

Improving current risk stratification scheme. Approximately 70% of newly diag-

nosed medulloblastomas will be stratified as ”standard-risk”. Under current treatment

regimens about 80% will survive. However, the rest will relapse, with the vast majority

of patients who relapse subsequently dying of their disease (Martin et al., 2014). There-

fore, these patients will benefit from a more refined risk stratification. The novel risk

stratification schemes discussed in 1.3.10 and 1.3.7 could be used to identify subsets

within current standard risk, of low-risk patients eligible to treatment de-escalation

or high-risk patients that could be subjected to novel treatment regimens in order

to improve their outcome and quality of life balance; however, these schemes require

validation in clinically-controlled trials cohorts.

1.3.15. Hypothesis and aims. This project investigates feasibility of integrated

genetic and epigenetic prognostication using only methylation arrays in application to

historic FFPE archived cohorts.

Aims

• Confirm usability of methylation arrays and develop methods to detect ge-

nomic alterations (aneuploidy and focal oncogene amplifications)

• Showcase application of methylation arrays as a cost-effective single-platform,

integrated approach for improved prognostication within medulloblastoma pa-

tients

.



CHAPTER 2

Materials and methods

2.1. Cohorts

The cohorts of primary medulloblastoma samples used for research described in

chapters 3, 4 and 5 are part of Newcastle Medulloblastoma Archive (NMB) and belong

to the Paediatric Brain Tumour Research Group, Newcastle University. Tumour in-

vestigations were done with approval from Newcastle North Tyneside Research Ethics

Committee (study reference 07/Q0905/71); all tumour material was collected in accor-

dance with this approval.

Two representative cohorts from Newcastle Medulloblastoma Archive run on Il-

lumina HumanMethylation450 arrays were used as the test cohort in chapter 3. A

cohort of 135 medulloblastoma samples, for which Affymetrix SNP6.0 genotyping ar-

ray calls were available, was a mixture of fresh-frozen (FF, n=133) and formalin-fixed

paraffin-embedded (FFPE, n=2) samples of all molecular subgroups as detailed in Ta-

ble A.1. Matching SNP6.0 array profiles were provided by Dr S. Nakjang of Newcastle

University Bioinformatics Support Unit.

The test cohort of 203 mixed FF (n=188) and FFPE (n=15) samples representative

of all molecular subgroups as outlined in Table A.2 was used for the evaluation of the

pipeline-specific suitability and performance in chapter 3.

A non-WNT medulloblastoma cohort of 338 patients from Newcastle Medulloblas-

toma Archive (96 (28.4%) SHH, 99 (29.3%) Group 3 and 143 (42.3%) Group 4, as

detailed in A.3) was used as a validation cohort in chapter 4. The cohort comprised

only of infant and children cases of median age 2.83 years in SHH subgroup, 4.32 in

Group 3 and 7.95 years in Group 4. Male to female ratio was 1.4:1 in SHH, 2.8:1 in

Group 3 and 2.1:1 in Group 4. Median follow-up was 6.3, 5.8 and 4.6 years for SHH,

Group 3 and Group 4 molecular subgroups respectively, calculated using the ”reverse”

Kaplan-Meier method as outlined in section 2.9.3 to match the original study by Shih

et al. (2014) that was validated using this cohort in chapter 4.

The following two cohorts were used in both chapter 4 and 5.

53
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The Newcastle Medulloblastoma Standard Risk non-WNT/non-SHH cohort (SR

NMB) consisted of 75 samples which were negative for known high-risk features (see

below) and were chosen according to the following criteria:

• age group 3-16 years old (children)

• Metastatic stage M0 (no metastasis), and M0/M1 (patients with metastatic

stage estimated to be either M0 or M1, since imaging, which can distinguish

between M0 and M1 disease, was unavailable at the time)

• Non LCA pathology

• Non MYC(N) amplified

• Gross total resection

This cohort comprised of 16 (21%) Group 3 and 59 (79%) samples as presented

in Table A.4, 55 (73%) were male and 20 (27%) female samples with male to female

ratio 2.75:1 with median age at diagnosis 7.46 years. Follow up time was calculated

by simply finding a median of all the survival time to match the original study by

Goschzik et al. (2018) that was validated using this cohort in chapter 4. Histological

variants were mostly classic MB (n=68, 91%) with few desmoplastic/nodular samples

(n=7, 9%) and all tumours gross-totally resected.

The Newcastle Medulloblastoma High Risk non-WNT/non-SHH cohort (HR NMB)

consisted of 100 samples which were positive for at least one known high-risk feature,

such as metastatic disease, large cell/anaplasia histopathology, sub-total resection or

MYC(N) amplification. Subgroup composition was 33 (33%) Group 3 and 67 (67%)

Group 4 samples as outlined in Table A.5, and 71 (71%) were male and 29 (29%) were

female samples with male to female ratio 2.44:1. Histopathological composition was 24

(24%) LCA in addition to 75 (75%) samples with classic and one with DN pathology.

An external, independent mixed-risk cohort (n=244) from the study by Cavalli et al.

(2017) was used as validation cohort in chapter 5. Subgroup composition was 64 (26%)

Group 3 and 180 (74%) Group 4 samples as outlined in Table A.6. Male to female

ratio was 2:1 with 165 (68%) males and 79 (32%) females, median age at diagnosis 8

years old, 94 (39%) samples were from patients with metastatic disease. More detailed

outline and comparison with SR NMB and HR NMB cohorts is presented in the Table

5.1.
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2.2. Microarrays

A DNA microarray (also known as DNA chip or biochip) is a collection of micro-

scopic DNA spots attached to a solid surface that are used to measure the genome-wide

transcriptome, methylome or for genome-wide assessment of genotypes. Two microar-

rays platforms were employed during this study: Affymetrix SNP 6.0 genotyping array

(McCarroll et al., 2008) and Illumina Infinum HumanMethylation450k BeadChip ar-

ray (Bibikova et al., 2011). Both platforms were used for development of array-based

methods for detecting Copy-Number Variations in medulloblastoma (see chapter 3) and

HumanMethylation450k arrays were used for validation of previously published cytoge-

netic prognostication in chapter 4 and for the identification of methylomic biomarkers

in standard-risk disease in chapter 5. Affymetrix SNP 6.0 arrays are considered the

gold standard for copy number variation interrogations due to a large number of probes

(over 945,000 for CNA and around 1.8 million in total) that are relatively evenly dis-

tributed across genome in comparison with methylation arrays (see Table 2.1), which

have their probes concentrated around gene promoters (Haraksingh 2011) :

Platform Affymetrix SNP6.0 Illumina 450k Methylation array
Number of probes 945,806 485,577
Median intermarker distance (kb) 2.3 0.35
Mean intermarker distance (kb) 3.0 5.8

Table 2.1. Genomic probe distribution. Number of probes, mean and
median intermarker distance interrogating copy number alterations from
Affymetrix SNP 6.0 and Infinium HumanMethylation450 BeadChip. Table
adapted from Feber et al. (2014);

Overview of SNP array technology is shown on the Figure 2.1

2.2.1. Affymetrix SNP6.0 arrays. The Affymetrix Genome-Wide Human SNP

Array 6.0 features 1.8 million genetic markers, more than 906,600 of which are for the

assessment of single nucleotide polymorphisms (SNPs) and more than 946,000 probes

for the detection of copy number variation, 202,000 of which located in known CNV

regions and 744,000 which are spread evenly across the entire genome.

Each SNP is interrogated by six or eight perfect match probes - three or four repli-

cates of the same probe for each of the two alleles (McCarrol et al., 2008). Therefore,

intensity data for each SNP consists of two sets of repeated measurements. The copy

number probes are designed to interrogate regions of the genome that do not harbour
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SNPs, but which may be aberrant with regard to copy number. Each such copy number

site is interrogated by only one probe.

Figure 2.1. Overview of SNP array technology. At the top is the fragment
of DNA harbouring an A/C SNP to be interrogated by the probes shown.
(a) In the Affymetrix assay, there are 25-mer probes for both alleles, and the
location of the SNP locus varies from probe to probe. The DNA binds to both
probes regardless of the allele it carries, but it does so more efficiently when
it is complementary to all 25 bases (bright yellow) rather than mismatching
the SNP site (dimmer yellow). This impeded binding manifests itself in a
dimmer signal. (b) Attached to each Illumina bead is a 50-mer sequence
complementary to the sequence adjacent to the SNP site. The single-base
extension (T or G) that is complementary to the allele carried by the DNA
(A or C, respectively) then binds and results in the appropriately-coloured
signal (red or green, respectively). For both platforms, the computational
algorithms convert the raw signals into inferences regarding the presence or
absence of each of the two alleles (LaFramboise 2009).

2.2.2. Methylation arrays. The Illumina 450k array is a high density BeadChip,

that can assay over 450,000 CpG sites and analyse twelve samples in parallel. It covers

99% of RefSeq genes with multiple probes per gene, 96% of CpG islands from the

UCSC database and CpG island shores (Bibikova et al., 2011).

The array technology uses beads with long, target-specific probes designed to target

individual CpG sites, assembled on a slide. Each array contains two types of methy-

lation assay design: The Infinium I method previously used in HumanMethylation27

arrays, and the newly developed Infinium II; DNA methylation is measured by quan-

titative “genotyping” of bisulfite converted genomic DNA.
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Infinium I design consists of two query (Figure 2.2A) probes per CpG locus: “methy-

lated” and “unmethylated”. The 3’ terminus of a probe is designed to match either

protected cytosine or thymine base that results after bisulfite conversion (methylated

and unmethylated design respectively). In this assay, each probe has a span of 50

bases and it was assumed that the methylation for adjacent CpG sites would be highly

correlated and would change in the same way as the CpG being assessed. As there are

separate probes for methylated and unmethylated signals, both signals are measured

with the same colour.

The Infinium II assay requires one probe per locus for CpG sites, located in regions

of low CpG density (Figure 2.2B). The 3’ terminus of the probe complements the

base directly upstream of the query site and single base extension adds a G or A

base complementary to either “methylated” C or “ unmethylated” T. Therefore, the

methylation status of the query site is assessed independently of the methylation status

of adjacent CpG sites. As only one probe is used for both methylated and unmethylated

signal, methylated signal intensity is measured in the green colour and unmethylated

in the red colour channels.

The methylation level is measured using two methods: β-value method and M-

value method. The Beta-value is the ratio of the methylated probe intensity and the

overall intensity (sum of methylated and unmethylated probe intensities): β=intensity

of the Methylated allele (M)/(intensity of the Unmethylated allele (U)+intensity of

the Methylated allele (M)+100), which represents percentage provides a continuous

measure of levels of DNA methylation in samples, ranging from 0 (or 0%) indicat-

ing that all copies of the CpG site in the sample were completely unmethylated (no

methylated molecules were measured) to 1 (or 100%) in completely methylated sites

(Du et al., 2010) (Du et al., 2010). The second method is the log2 ratio of the intensi-

ties of methylated probe versus unmethylated probe; using this approach, parametric

statistical methods can be applied to methylation array data (Irizarry et al., 2008):

M = log2

β

1− β
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Figure 2.2. Infinium Methylation Assay scheme.
A. Infinium I assay. Two bead types correspond to each CpG locus: one
bead type — to methylated (C), another bead type — to unmethylated (T)
state of the CpG site. Probe design assumes same methylation status for
adjacent CpG sites. Both bead types for the same CpG locus will incorporate
the same type of labelled nucleotide, determined by the base preceding the
interrogated “C” in the CpG locus, and therefore will be detected in the same
colour channel.
B. Infinium II assay. One bead type corresponds to each CpG locus. Probe can
contain up to 3 underlying CpG sites, with degenerate R base corresponding to
C in the CpG position. Methylation state is detected by single-base extension.
Each locus will be detected in two colours. In the current version of the
Infinium II methylation assay design, labelled “A” is always incorporated at
unmethylated query site (“T”), and “G” is incorporated at methylated query
site (“C”). Figure adapted from Bibikova et al. (2011)
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2.3. Methylation microarrays data pre-processing and quality control

The standard file format generated during Illumina BeadChip processing is IDAT

(stands for ”Intensity DATa file”). IDAT files generated during the scanning of methy-

lation or genotyping arrays are binary files (one for each the green and red channels).

Each file contains four fields: the bead-type ID on the array, the mean and standard

deviation of intensities of each bead-type and the number of beads of each type. Ad-

ditionally the files also contain metadata information such as the type of BeadChip,

specific software version used and the date the array was scanned.

2.3.1. Initial quality control: identification of unusual samples and tech-

nical artefacts. The 450K arrays contain several internal control probes that are used

to assess quality of different sample preparation steps during initial quality assessment

of the arrays QC reports preparation. Types of these probes and their purpose are

summarised in Table 2.2

Control probe Purpose

Bisulfite conversion
Test efficiency of bisulfite conversion by query of C/T

polymorphism

Hybridisation
Test the overall performance of Infinium assay using syn-

thetic targets (not DNA) at three concentrations

Specificity controls

Test for non-specific detection of methylation signal over

unmethylated background. This controls are designed

against non-polymorphic T sites (G/T mismatch)

Extension

Test efficiency of extension of A, T, C and G nucleotides

from a hairpin probe (sample independent). The perfect

match hairpin controls should result in high-signal and

mismatch in low signal.

Staining
Test efficiency and sensitivity of staining step (indepen-

dent of hybridisation/extension steps)

Target removal Test efficiency of stripping step after extension

Non-polymorphic

Query a non polymorphic base A,T, C and G to test

overall performance of the assay from amplification to

detection



2.3. METHYLATION MICROARRAYS DATA PRE-PROCESSING AND QUALITY CONTROL 60

Control probe Purpose

Negative

Randomly permutated bisulfite-converted sequences

containing no CpGs. They should not hybridise to DNA.

The mean intensity of these probes determines the sys-

tem background

Table 2.2. Illumina HumanMethylation450k control probes

Illumina HumanMethylation450k arrays also contain 65 control probes, that assay

highly-polymorphic single nucleotide polymorphisms (SNPs) rather than DNA methy-

lation and are included on the array to allow sample quality control to check for relat-

edness between individuals and enable the detection of potential sample mislabelling or

unintended duplicates. The signal from these probes is expected to cluster into three

distinct groups and could be used to provide an indication of the degree of technical

variance between samples, as unintentional duplicate samples from the same individual

would cluster together.

In order to identify any technical artefacts on the arrays and unusual samples, initial

quality control procedure involves plotting distributions of the samples e.g. β-value

densities, box-plots or density bean plots. Also it is useful to plot distribution of Type

I and Type II probes separately to observe differences in chemistry and enrichment for

different element.

Next steps after initial quality control in pre-processing raw microarray data for

the analysis are filtering and normalisation, which are described below.

2.3.1.1. Filtering. Each assessed locus has an associated detection p-value: the

probability that the target signal was distinguishable from background noise. One

approach to overcome this issue is drop individual beta values if their detection p-

value exceeds a threshold, typically 0.01 or 0.05.

The filtering steps related to technical issues are: dropping probes with known SNPs

residing in their probe sequence, and also dropping probes that have the potential to

anneal to multiple genomic locations.

Filtering steps related to analytical choices include: dropping probes on X and Y

chromosomes, those with lowest variation, and with extreme methylation levels (e.g.

median = 0% or 100%).
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2.3.1.2. Normalisation and batch correction. Normalisation and batch correction

techniques aim to identify and remove any remaining non-biological variation by mod-

ifying and standardising the measurements.

Causes of technical variation and batch effect (systematic differences across groups

of samples, such as samples processed on different days) include differences in sample

handling and preparation (e.g. extraction methods), DNA processing (e.g. amplifica-

tion, labelling, hybridisation), scanning of arrays/chips (e.g. background noise),location

of sample on chips and technical biases, such as dye and probe bias.

Details of pre-processing, filtering and normalisation process used in this work are

given in the section 2.3.2.

In addition to initial standard data pre-processing and normalisation, normalisa-

tion of cancer samples against a set of normal controls was performed during copy

number analysis (see sections 2.6 and 2.7 for details), in order to neutralise the effects

of potential residual artefacts as described in (Sturm et al., 2012) and (Hovestadt and

Zapatka, 2015). This step is required for correcting for probe and sample bias e.g.

caused by GC-content, type I/II probe differences or technical variability (Hovestadt

and Zapatka, 2015). Therefore, no specific correction for ”genomic wave” artefact (a

probe effect that correlates with surrounding genomic GC content), e.g. loess correc-

tion, which estimates and removes the wave effects (Feber et al., 2014), was performed

prior to CNA analysis.

2.3.2. Minfi . Minfi (Aryee et al., 2014) is a suite of computational tools that

incorporate statistical techniques for analysis of DNA methylation, which includes

methods for preprocessing, quality assesment and detection of differentially methylated

regions.

Minfi analysis starts from reading .idat files that contain green and red channel

intensities. This data is organised into an object of RGChannelSet class. This ini-

tial object contains the raw green and red intensities as well as the intensities of the

internal control probes, phenotype data and a manifest object that contains probe de-

sign information of the array. Once these data are preprocessed, it can be stored in

one of the four additional classes: MethylSet, GenomicMethylSet, RatioSet, Genomi-

cRatioSet. The prefix Genomic in the class name indicates association with genomic

location, that is, the class includes genomic annotation.
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Objects of class MethylSet contain the methylated and unmethylated signal. This

class can be constructed using raw preprocessing function preprocessRaw, which

uses the array design to combine different probes and colour channels to construct the

methylated and unmethylated signal and does not perform any normalisation.

Objects of class RatioSet store the data as methylation ratios (beta values) or log

ratios of beta values (M-values), as well as an optional copy number matrix CN =

log2(Methylatedsignal + Unmethylatedsignal).

A ratioSet can be created from a MethylSet with function ratioConvert,which con-

verts methylated and unmethylated signals to beta-values or M-values. GenomicMethylSets

and GenomicRatioSets can be created from by mapping them to the genome with the

function MapToGenome. A MethylSet can be either converted to RatioSet first and

then mapped to genome or mapped first and then converted to RatioSet (see Figure

2.3). These conversions are irreversible.

Objects of class MethylSet can also be constructed and normalised at the same

time by using the preprocessIllumina function. This method implements the func-

tionality of the preprocessing tool available in GenomeStudio - Illumina’s standard

preprocessing software. It performs background subtraction and control normalisa-

tion. These functionalities are optional and turning off these options is equivalent to

raw preprocessing discussed above.

Other normalisation methods implemented in minfi are: Subset-Quantile Within

Array Normalisation (SWAN), Functional normalisation (FunNorm), Quantile and

normal-exponential out-of-band (Noob) normalisation.

The function preprocessQuantile performs stratified quantile normalisation pre-

processing, where the normalisation procedure is separately applied to methylated and

unmethylated intensities. The distribution of both type I and II signals are forced

to be the same, first quantile normalising the type II probes across samples and then

interpolating a reference distribution to which the type I probes are normalised (Fortin

and Hansen, 2014).

The function preprocessSWAN performs Subset-Quantile Within Array Normal-

isation (SWAN) (Maksimovic et al., 2012), a within array normalisation correction for

the technical differences between Type I and Type II probe designs. The algorithm

applies within-array quantile normalisation separately for different types of probes
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divided by CpG content. The input is either a non-normalised MethySet or RGChan-

nelSet, in which case the function will first call preprocessRaw and apply the SWAN

normalisation. The output in both cases is a normalised MethySet.

Functional normalisation, performed by the function preprocessFunnorm(), is a

between-array normalisation method for the Illumina Infinium HumanMethylation450

platform. It removes unwanted variation by regressing out variability explained by the

control probes present on the array (Fortin and Hansen, 2014).

Figure 2.3. Minfi preprocessing flow chart

Minfi provides quality control and filtering functionality to perform the correspond-

ing steps described in section 2.3, by providing simple quality control plot functions,

a control probes plot, functions to filter probes, including probes with proximal SNPs,

sex chromosome probes and cross-reactive probes.

2.4. Sample quality control: Derivative Log Ratio Spread

Sample quality control is absolutely critical during copy number analysis. If not

addressed early, poor quality DNA in a sample can lead to poorly defined copy number
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segments, which may result in false-positive and non-replicable findings. Therefore,

samples which have poor signal-to-noise properties may pose difficulties for accurate

CN aberration detection and would need to be excluded from analysis.

One of the procedures to identify poor quality log ratio data (e.g. excessive noise)

is the derivative log ratio spread (DLRS). DLRS is a measurement of point-to-point

noisiness in log ratio data and is calculated as the absolute value of the log2 ratio

variance from each probe to the next adjacent probe, averaged over the entire genome.

The distribution of the DLRS can vary dramatically, depending on factors such as

DNA source, e.g. tissue type or DNA archiving method (FFPE samples are noisier

than fresh frozen, for example) and from one array platform to another, e.g. Illumina

HumanMethylation arrays are typically noisier than Affymetrix SNP6.0 arrays. In

order to determine which samples to exclude, a standard approach is the calculation of

the outlier threshold, where the inter-quartile range (IQR) of the DLRS distribution

is calculated and the outlier threshold defined as 1.5 IQRs from the third quartile

(GoldenHelix, 2014).

2.5. Circular binary segmentation

Circular binary segmentation (CBS) algorithm is a method that translates noisy

intensity measurements into contiguous regions of equal copy number. This method is

based on a model that gains and losses of DNA copy number are discrete. DNA copy

number aberrations occur in contiguous regions of a chromosome that often makes up

an entire chromosome arm or whole chromosome. The approach uses thresholds based

on variability of data on the array.

The data from array-based copy number experiments are the intensity measure-

ments of DNA across the genome, called a test sample, and these are often compared

against reference sample intensities. It is assumed that reference samples have a nor-

mal, diploid genome. Probes with normalised test intensities significantly greater that

the reference intensities are indicative of copy number gains in the test sample in the

same positions and lower intensities in the test samples are indicative of losses. There-

fore, methods for analysing copy numbers are aimed at identifying locations of copy

number gains and losses. The data used in the method are log-ratio values ordered by

the location of the probe on the chromosome. The locus where a change of copy number
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occurs is called a change-point. There may be multiple change-points on the chromo-

some. The circular binary segmentation algorithm is based on a binary change-point

detection method which works in a sequential way: first the check-point is detected

from the whole series of data, e.g. across a chromosome, and then the input is split

around this change-point and the operation is repeated on the two resulting parts of

data. This procedure is based on a test to detect a single change and a potential prob-

lem with this method is that it cannot detect a smaller changed segment hidden in a

larger segment (Venkatraman and Olshen, 2007). In the CBS algorithm, a modifica-

tion of the binary segmentation method is used to address this problem, where each

segment is spliced to form a circle. Once each chromosome is partitioned, the copy

number of the segments is estimated using additional information, such as the ploidy

of the chromosome and the location of copy number aberration is reported (Olshen

et al., 2004).

The first application of CBS algorithm to a brain tumour methylation array data

was described in Sturm et al., 2012. This custom approach used the sum of the methy-

lated and unmethylated signal at each probe. The log-ratio of the test samples inten-

sities to the median value of a set of control samples intensities were calculated and

sample noisiness was determined as the median absolute deviation of adjacent probes.

Probes were combined by joining 20 adjacent probes, creating genomic windows that

were iteratively merged until windows of greater than 100kb and smaller than 5Mb were

created. Any genomic windows of more then 5Mb were excluded from analysis. For

each remaining genomic window, the median probe value was calculated and shifted

to minimise the median absolute deviation from all windows to zero for every sample.

After this normalisation, the genome was then segmented using the CBS algorithm.

2.6. Copy Number analysis

Copy number aberrations (CNAs) are genomic alterations caused by structural

genomic rearrangements such as duplications, deletions, translocations and insertions

that result in abnormal number of one or more genes. Copy number analysis refers

to the analysis of data produced by a test for DNA copy number variation in patient

samples. Copy number variation can be detected with various types of tests such

as fluorescent in situ hybridization, comparative genomic hybridization (Kallioniemi

et al., 1992) and with high-resolution array-based tests based on array comparative
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genomic hybridization (or aCGH), SNP array (McCarroll et al., 2008; Pinkel et al.,

1998) and methylation array technologies (Bibikova et al., 2011). The methods used

to assess copy number developed in this thesis were primarily focused on Illumina

Human Methylation 450k arrays, which were used for both method development and

discovery. Affymetrix SNP6.0 arrays (McCarroll et al., 2008) were used to provide

”gold-standard” method for comparison.

A custom approach to CNA detection that used the sum of both methylated and

unmethylated signals, initially described in Sturm et al. (2012), was the first of a kind

approach that became a fundamental part of the methods used in this project, as well

as multiple other methods developed by various research groups.

In this approach, probes were combined by joining 20 adjacent probes, and resulting

genomic windows smaller than 100kb were merged in an iterative way with adjacent

windows of smaller size. Windows of more than 5Mb were excluded from analysis,

consistent with the approach employed by Sturm et al. This process partitioned the

genome into 8,654 windows. For each window, the median probe value was calculated

and shifted to minimise the median absolute deviation from all windows to zero for

every sample. Segmentation was performed by applying the circular binary algorithm

(Olshen et al., 2004, section 2.5). The median value of windows contained in each

segment was calculated, and classified as homozygous or hemizygous deletion, neutral,

gain or high-level amplification by using empirically-derived thresholds.

2.7. Conumee

Conumee is a package for copy number analysis using Illumina 450k and EPIC DNA

methylation arrays. The conumee package is easily integrated with other Bioconduc-

tor packages, such as minfi (see 2.3.2), which is recommended for preprocessing and

loading of data. Segmentation is performed by an implementation of circular segmen-

tation algorithm (see 2.5) in the DNAcopy package. The conumee package also creates

publication-grade copy number plots of the whole genome, selected chromosomes or

pre-defined regions of interest and a set of text-based output files for downstream

processing and visualisation in other tools, such as IGV browser.

The conumee processes flow chart is shown on Figure 2.4. Before CNV analysis can

be performed, data is loaded as an Mset object and an annotation object is created.
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Figure 2.4. conumee flow chart

This object contains information such as minimum number of probes per bin, the mini-

mum bin size, defined regions to be excluded from analysis and regions to be examined

in detail, such as known oncogenes or tumour suppressor genes, where focal amplifica-

tion or deletion may be expected. This object is only generated once, irrespective of

the number of samples required for analysis. In the next step, for each array/tumour

sample, ”methylated” and ”unmethylated” signal intensities are combined.

The main CNV analysis step consists of four parts.

• Firstly, a single query sample is normalised to a set of control samples by

multiple linear regression and the log2-ratio of probe intensities of the query

sample versus combination of control samples are calculated.

• Secondly, probes are combined within genomic bins predefined in the annota-

tion object. Intensity values are shifted to minimise median absolute deviation

from all bins to zero in order to determine the copy number neutral state.

• Thirdly, the detailed regions predefined in annotation object are analysed.

This step is optional, but required if the regions should be output in plots and

text files.
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• Finally, the genome is segmented into regions of the same copy-number state

functions from Bioconductor DNAcopy package.

The output of the package consists of plots of the complete genomes, one or multiple

chromosomes or individual detailed regions, as predefined in the annotation object as

well as four types of text output files, containing information about probes, bins, details

specified in annotation files, and segments.

2.8. High-throughput sequencing: RNA-seq

RNA-seq is an approach to transcriptome profiling based on next-generation se-

quencing (NGS) which provides measurements of levels of transcripts and their isoforms

(Wang et al., 2009b). RNA-seq allows to look at alternative gene spliced transcripts,

post-transcriptional modifications, gene fusion, mutations/SNPs as well as changes in

gene expression over time and differences in gene expression in different groups or treat-

ments (Maher et al., 2009). RNA-Seq can characterise different populations of RNA,

including total RNA, mRNA transcripts, small RNA, such as miRNA, tRNA and ribo-

somal profiling (Ingolia et al., 2012). RNA-Seq is also used to determine exon/intron

boundaries and verify or amend previously annotated 5’ and 3’ gene boundaries (Lee

et al., 2014).

2.9. Survival analysis in medulloblastoma

Survival analysis is a set of statistical approaches used to analyse data that measures

the time to an event of interest. Survival analysis is used to analyse data collected

prospectively in time such as cohort study or data collected retrospectively and can

answer questions such as the proportion of the population surviving past a certain time

without experiencing an event, at what rate the event occurs and what characteristics

can influence the probability of survival.

In cancer, there are different types of events such as disease progression, relapse or

death of the patient.

Time is defined as the time from the beginning of the observation, e.g. diagnosis

or commencing of the treatment to (i) an event, or (ii) end of the study, or (iii) loss of

contact or withdrawal from the study.

Survival analysis focuses on the duration of the time until the occurrence of an

event of interest. In cases where the end of a study occurred, the patient was healthy
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when last seen, or if a patient is lost to follow up during the study before the event

happened, their event time is not observed. These incomplete observations can’t be

ignored but have to be handled differently. Handling of these situations in survival

analysis is called censoring.

In cancer studies, two outcomes are typically measured: Overall survival (OS)

and Event-free or Progression-free survival (EFS or PFS) which for medulloblastoma

is defined as the time to death or relapse respectively. In medulloblastoma studies,

PFS is favoured over OS due to long-term survival after relapse being rare and the

time between relapse and death being variable, due to the factors unrelated to the

disease severity, since treatments following disease relapse may focus on palliation or

life-extension. Consequentlty, PFS is a more accurate measure.

Two probabilities are used to describe survival data: survival probability and hazard

probability.

Survival probability, or the survival function S(t), is the probability that a patient

survives from the start time (e.g. diagnosis or beginning of the treatment) to a specific

time point t in the future.

The hazard probability, or hazard function h(t), is the probability that a patient

under observation at a particular time point t has an event at this time.

Most cancer survival analyses utilise the following methods:

• Kaplan-Meier plots for survival curves visualisation

• Log-Rank test for comparison of survival curves for two or more groups

• Cox Proportional Hazard models to describe the effect of various factors on

survival

Kaplan-Meier plots and log-rank test are examples of univariable analysis, which

describe the survival taking into account only one factor and ignoring the impact of any

others. This type of analysis, described in 2.9.1, is particularly useful when a variable

is categorical, e.g. one medulloblastoma subgroup vs another, but is not applicable to

quantitative variables, such as age or gene expression.

An alternative method is multivariable analysis. A multivariable analysis method,

capable of assessing the effect of several risk factors on survival time, both categorical

and quantitative, simultaneously, used in this research is Cox Proportional Hazard
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regression analysis and is described in 2.9.2. Cox proportional hazards models are also

appropriate to analyse single variables in univariable analysis.

2.9.1. Univariable analysis: Kaplan-Meier plots and log-rank tests . The

Kaplan-Meier method is a non-parametric esimtate of survival probability from ob-

served survival times (Kaplan and Meier, 1958). It is used to measure the proportion

of patients for whom an event did or didn’t occur for a certain period of time, for exam-

ple from diagnosis or beginning of treatment. With medulloblastoma, it is important

to subdivide the patient cohort according to specific clinico-pathological or molecu-

lar features, and study of the survival within molecular subgroups has enabled the

investigation of de-escalation of treatment intensity of patients with good prognosis.

An example of a Kaplan-Meier plot is shown on 2.5. The survival probability is a

step function which changes value (drops down) only when the event (relapse) occurs.

Censored individuals are shown on the plot as vertical lines or pluses. The table below

the graph is life-table or at-risk table and shows the population size for each risk group

in 6 month intervals.

Figure 2.5. Kaplan-Meier plot of hypothetical cancer cohort assessing dif-
ference in survival between two groups of patients
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The log-rank test (Bland and Altman, 2004; Mantel, 1966) is a non-parametric

test that compares survival times of two or more groups and is applicable to censored

data. It tests the null-hypothesis that survival for the groups in question is the same

and determines if the observed number of events in groups is significantly different

from the expected numbers. The log-rank statistic has an approximately chi-squared

distribution with one degree of freedom and a chi-squared test of the null hypothesis

can be used to calculate a p-value.

2.9.2. Multivariable analysis: Cox proportional hazards models . The Cox

Proportional Hazards model (Cox, 1972) is the most commonly used multivariable

approach for analysing survival data in clinical research. It is a regression model

that is used in statistical cancer research in order to investigate association between

patient survival (expressed by hazard function) and predictor variables. This method

is suitable for both quantitative and categorical variables as well as for the univariable

or multivariable assessment of several risk factors on survival time (Bradburn et al.,

2003).

The Cox model is expressed by the hazard function h(t) which can be interpreted

as a risk, of an event, such as death or relapse, happening at a particular point of time

t. The purpose of the model is to evaluate the effect of several factors on survival at

the same time.

When interpreting a Cox model, the following factors for each covariate are re-

ported: hazard ratio, confidence interval and p-value. Hazard ratio (HR) also known

as exponential coefficient shows the effect of a covariate. HR=1 means the covariate

has no effect on survival, a covariate with HR<1 indicates a reduction in the hazard

and is often called a good prognostic factor in cancer studies, HR>1 indicates an in-

crease in hazard (a bad prognostic factor). The confidence interval is calculated in

order to determine whether or not this interval includes 1, indicating a non-significant

covariate. An example output from a Cox model analysis is shown in the Table 2.3

2.9.3. Median follow-up time . The duration of the follow-up is a measure of

the quality of a clinical trial and is measured as the median follow-up time. It represents

how long, on average, patients have been followed. Simply finding a median of all the

survival times, whether censored or not, has a disadvantage: a trial with many early

deaths but long observation period would appear not to have a long median follow-up
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Covariate Hazard Ratio (HR) 95% CI p-value
Age 1.01 0.99-1.03 0.23
Sex 0.58 0.41-0.79 0.00098
Histology 1.59 1.27-1.98 <0.0001

Table 2.3. An example Cox model from a hypothetical dataset that includes
age, sex and histology as covariates. The p-value for age is over the 5 percent
significance cut-off and the confidence interval for HR includes 1, indicating it
does not contribute significantly to the model; conversely, sex and histology are
significant factors (p<0.05 for both). Being a certain gender may be associated
with good prognosis and a particular histological variant is associated with
poor survival.

time. A way to overcome this disadvantage is the so called ”reverse” Kaplan-Meier

method, which looks at median survival as the ”potential” median survival. In this

method the censoring indicators are reversed, that is, a ”censored” observation becomes

the ”event” and vice versa. Then a Kaplan-Meier ”survival” estimate is computed using

this reversed censoring indicators and the median survival is found, which will be the

median follow-up time.

2.10. Confusion matrices

One way to determine if a classification algorithm or method produces satisfactory

results is by building a confusion matrix.

A confusion (error) matrix is a specific table layout that visualises the performance

of an algorithm or method. The rows of the matrix represent the instances in the

predicted class and columns represent the actual, true class or vice versa (Stehman,

1997; Powers, 2011), example of such a table can be seen in Table 2.4. A table of

confusion is a 2x2 contingency table, that contains the number of incorrectly predicted

instances: false negatives (FN) and false positives (FP), and the number of correctly

predicted instances: true positives (TP) and true negatives (TN).

Based on these four descriptors, several further metrics can be calculated: sensitiv-

ity (true positive rate (TPR) or recall), specificity (true negative rate, TNR), positive

predictive value (PPV, also known as precision), negative predictive value (NPV) and

accuracy. Sensitivity and specificity show the ratio of positive and negative cases cor-

rectly identified by the methods. Positive and negative predictive values are conditional

probabilities that a positive and negative cases are predicted as positive and negative,

respectively. Accuracy is the proportion of correct predictions (Vihinen, 2012).



2.12. CROSS-VALIDATION 73

Actual class
Positive Negative Metric

Positive
True positive

TP
False positive

FP
Positive predictive value (PPV)

TP/(TP+FP)

Negative
False negative

FN
True negative

TN
Negative predictive value (NPV)

TN/(FN+TN)
Predicted

class
Metric

Sensitivity
TP/(TP+FN)

Specificity
TN/(FP+TN)

Accuracy
(TP+TN)/(TP+FP+FN+TN)

Table 2.4. Table of confusion displaying outcome of predictions (in blue)
and statistical metrics calculated based on it. Table adapted from Vihinen
(2012)

2.11. Over-fitting

Survival prediction from methylation microarray experiment data and other high-

dimensional methylomic or genomic data are associated with the problem of having

a much larger number of potential prognostic covariates than patient samples in the

study, potentially leading to over-fitting (Bovelstad et al. 2007). This is common

problem in cancer research, especially in cancers with relatively low incidence, such as

medulloblastoma, where cohort sizes are typically small. Over-fitting can be defined as

”the production of an analysis which corresponds too closely or exactly to a particular

set of data, and may therefore fail to fit additional data or predict future observations

reliably” (Bovelstad et al., 2007; Gareth James, Trevor Hastie, Robert Tibshirani,

2014).

2.12. Cross-validation

In the absence of independent validation cohorts, one approach to avoid over-fitting

is to use a process called cross-validation. Cross-validation is a set of methods for

measuring performance of a predictive model on a new dataset. In this project k-fold

cross-validation (k-fold-CV) was used to reduce the possible effects of over-fitting. The

k-fold-CV method evaluates performance of the model on different subsets of training

data and then calculates the average prediction error rate. This approach randomly

divides the set of observations into k sub-sets, or folds, of approximately equal size.

The first fold is treated as a validation set, and the model is fit on the remaining k-1

folds. This procedure is repeated k times using a different group of observations as a

validation set each time (Gareth James, Trevor Hastie, Robert Tibshirani, 2014).
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2.13. Selection of testable, potentially prognostic methylation probes

In order to identify potentially testable methylation probes and to avoid unneces-

sary statistical testing, unsuitable probes with low variability were filtered out. The

20,000 most variably methylated CpG probes (measured by standard deviation) were

selected as candidates for investigation of their prognostic potential.

2.14. Bimodality

An idealised methylation markers would be mainly either hypermethylated or hy-

pomethylated, and follow the bimodal distribution with modes at 0 and 1 that corre-

late with survival (Fan and Chi, 2016). In order to select the most bimodal probes, a

measure called bimodality index (Wang et al., 2009a) can be calculated for the most

variably methylated probes and probes were ranked in order of bimodality.

2.15. GLMnet

It is not difficult to find predictors that perform excellently on the fitted data,

but fail in external validation data not used in model training as result of over-fitting

(Gareth James, Trevor Hastie, Robert Tibshirani, 2014). The standard linear model

performs poorly in this situation. The effective way to handle this problem with high-

dimensional data applied to survival analysis is through using cross-validation-based

methods that utilise Cox proportional hazards models. Parameter estimates were ob-

tained by a dimension reduction or parameter shrinkage estimation technique. This

is known as penalised regression. That is, a linear regression model that is penalised

for having too many variables by adding a constraint in the equation (Gareth James,

Trevor Hastie, Robert Tibshirani, 2014). The rationale for imposing this penalty is to

reduce (i.e. shrink) the coefficient values towards zero in order to remove coefficients

that are less important by setting their contribution to zero or close to zero. The most

commonly used penalised regression methods are ridge regression, lasso regression and

elastic net regression.

2.15.0.1. Ridge regression. Ridge regression shrinks the regression coefficients, so

that variables with minor contribution to the outcome have their coefficients close to

zero. A penalty term called L2-norm, which is the sum of the squared coefficients, is

used for shrinkage. Ridge regression performs better when the outcome is a multiple
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predictor function with coefficients of similar size (Gareth James, Trevor Hastie, Robert

Tibshirani, 2014).

2.15.0.2. LASSO. LASSO ( Least Absolute Shrinkage and Selection Operator) re-

gression uses a penalty term called L1-norm, which is the sum of the absolute coeffi-

cients, to force the coefficients with minor contribution to the model to be exactly zero.

LASSO regression may perform better when the predictor function has a mixture of

large and small coefficients.

2.15.0.3. Elastic Net. Elastic Net regression penalises regression model using both

the L1-norm and L2-norm. As a result it effectively shrinks some coefficients (like in

ridge regression) and sets some coefficients to zero (as in LASSO).

2.16. Concordance index

Concordance index, also known as C-statistic, or C-index, is a measure of the

goodness of fit for binary outcomes in a logistic regression and is used to measure how

well a biomarker predicts the time to an event (Brentnall and Cuzick, 2018) .

In survival analysis, the C-index gives the probability that a randomly selected

patient who experienced an event (e.g. a relapse or death) had a higher risk score

than a patient who had not experienced the event. The C-index is equal to the area

under the Receiver Operating Characteristic (ROC) curve and ranges from 0.5 to 1

(Figure 2.6). The value of 0.5 (red line on the Figure 2.6) means that the model is no

better in predicting an outcome than a random chance; values over 0.7 indicate a good

model, values over 0.8 indicate a strong model and a value of 1 (blue line on the Figure

2.6) means that the model perfectly predicts which group members will experience an

event and which will not. C-index is paired with confidence interval and in general,

any results are not significant if the confidence interval includes 0.5 even if it includes

the C-index (Hosmer and Lemeshow, 2005).
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Figure 2.6. The concordance statistic is equal to the area under the ROC
curve (shown in black for a hypothetical cancer survival cohort). Red line
represents a model with C-index=0.5, blue line represents a model with C-
index close to 1
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2.17. Statistical Analysis

Statistical analyses were performed using the R statistical programming language

(version 3.4.4) in RStudio integrated development environment (version 1.0.143). Sta-

tistical significance was assessed using t tests, Fisher’s exact test, and the Chi-squared

test. Survival associations were tested using log-rank tests (section 2.13.2) and Cox

proportional hazards test (section 2.14). Pearson’s product-moment correlation coef-

ficient (r) was calculated to assess the direction and strength of the linear association

between CpG site methylation and the level of gene expression. Concordance between

gold standard CN calls from SNP arrays and methylation CN estimates was measured

using Cohen’s kappa statistic, a measure that assesses agreement between measures

while allowing for agreements by chance (a kappa of 0-0.20 is considered as slight,

0.21-0.40 as fair, 0.41-0.60 as moderate, 0.61-0.80 as substantial, and 0.81-1 as almost

perfect agreement by Landis and Koch (1977). Fleiss considers kappa > 0.75 as excel-

lent, 0.40-0.75 as fair to good, and < 0.40 as poor (Fleiss, 1981).‘P’ values were used

to assess significance, with the cut-off of 0.05. Further details of specific analyses are

discussed in subsequent chapters where appropriate.



CHAPTER 3

Development and implementation of the workflow and

methods for copy number analysis using Illumina Human

Methylation arrays

3.1. Introduction

Genomic changes, such as copy number alterations (CNAs) as well as epigenomic

ones, e.g. DNA methylation patterns have been described and associated with the de-

velopment and progression of many human cancers, including medulloblastoma (North-

cott et al., 2009; Thompson and Fuller, 2006; Nord et al., 2012).

The first platforms for assessing genomic copy number changes were described in

the 1990s and refinements over the following years increased genomic resolution (Pinkel

et al., 1998; Jiang et al., 2012). At the same time, various methods were developing

for the assessment of epigenetic alterations, specifically for locus-specific DNA methy-

lation. Initially, these platforms were based on immunoprecipitation (MeDIP), or en-

zymatic digestion followed by hybridisation to a bacterial chromosome (Irizarry et al.,

2008; Weber et al., 2005). Subsequently, microarrays using the same technology as

SNP detection arrays were designed for bisulfite converted DNA in order to establish

methylation status (Bibikova et al., 2009). Subsequently, the most common platforms

for assessment of genome-wide methylation status have been the third and fourth gener-

ation Illumina Infinum Human Methylation arrays: HumanMethylation450k BeadChip

array (Sandoval et al., 2011), covering 485,000 CpG sites, now discontinued, and re-

placed with the MethylationEPIC BeadChip array (Moran et al., 2016) which now

assays 850,000 CpG loci.

DNA methylation profiling is now successfully used in classification and subgroup-

ing of all brain tumour entities (see section 1.3.11, (Capper et al., 2018)) and is now

routinely applied in clinical diagnostics, where the standard way to archive tissue ma-

terial is formalin-fixed paraffin-embedded tissue (FFPE). FFPE is an excellent way

to prepare tissue for histopathological assessment and to store samples for decades at

78
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room temperature. However, formalin fixation causes fragmentation and cross-linking

of the DNA (Gilbert et al., 2007) and, therefore, DNA extracted from FFPE samples

is often of poor quality and degraded to various degrees which makes analysis of such

DNA challenging.

Integration of genomic and epigenomic data has become commonplace, in order to

gain a better understanding of the complex mechanisms underlying the development

and progression of cancer. However, the use of separate platforms to assess both

copy number and DNA methylation status presents a number of issues: This not only

increases the cost of analysis, which is the most obvious problem, it also increases

the amount of specimen used, which in the case of the brain tumours, is a limiting

factor, due to the often scant amounts of material available for analysis (Feber et al.,

2014; Gerlinger et al., 2012). Therefore, there is a need for methods that would allow

an integrated genomic and epigenomic data analysis of the same DNA sample, saving

precious sample materials and reducing costs.

Previous research showed that Illumina Human Methylation arrays are a suitable

platform for integrated genomic and epigenomic analysis of FFPE solid tumour sam-

ples (Feber et al., 2014; Sturm et al., 2012; Kling et al., 2017). Genotyping SNP

arrays, alongside whole-genome sequencing, are the currently accepted gold standard

for assessment of aneuploidy. The Infinium methylation arrays measure methylation

status by quantifying methylation-dependent SNPs induced by treatment of DNA with

sodium bisulfite (see 2.2), and their high genomic coverage enables the repurposing of

these arrays to assess CNA as well as DNA methylation profiles (Feber et al., 2014).

One of the main purposes of this project was to find a way to leverage genomic

information from a large, historic medulloblastoma archive of the Newcastle University

Brain Tumour Group, which consists of over 500 unique samples that have already

been processed using Illumina Infinium HumanMethylation450k arrays. This cohort

consists of both fresh frozen and FFPE samples, collected from the CCLG and other

sources, mainly from Europe.

This required methods for genomic CN changes detection specifically applicable to

Illumina Infinium HumanMethylation450k methylation arrays and the subset which

were profiled from FFPE tissue.
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This chapter focuses on developing a CNA analysis workflow that includes newly-

developed methods as well as the incorporation of previously reported methods, tailored

specifically for CNA analysis using FFPE samples processed on the Illumina Methyla-

tion microarray platform. This workflow is modular and extendable by design in order

to be easily tailored and updated for use with emerging advances in DNA methyla-

tion analysis. Robust QC methods are described, and the workflow is applied to the

Newcastle Medulloblastoma archive.
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3.2. Aims

The aims of the work reported in this chapter are:

• Design and implement a bioinformatics workflow and develop and validate

methods for assessing disease-specific copy number changes using Human Methy-

lation arrays that enable integrated genomic and epigenomic data analysis

from the same sample on a single platform.

• Develop and implement Quality Control methods that would enable robust

copy number analysis using Human Methylation arrays for clinical material

archived as FFPE tissue.

• Extend and adapt existing methods for copy number analysis using methyla-

tion arrays to enable them to identify focal, locus-specific copy number alter-

ations.

• Develop a method for automatic assessment of large-scale DNA copy number

changes, such as chromosomal arm level gain/loss.

• Develop methods for automatic reporting of both large-scale and narrow, focal

abnormalities identified in both human and machine-readable copy number

profiles.

3.3. Materials and methods

3.3.1. Cohorts. A test cohort of 135 medulloblastoma samples run on both Illu-

mina HumanMethylation450 arrays and gold-standard genotyping Affymetrix SNP 6.0

arrays was used for the copy-number analysis. Methylation array-derived large-scale,

chromosomal arm level CN calls were compared against gold-standard calls. Calls

made from SNP6.0 genotyping arrays were available after QC and processing; this was

performed, prior to this project, and was kindly provided by Dr S. Nakjang of the

Bioinformatics Support Unit, Newcastle University. The Bioconductor package DNA-

copy was used to assess DNA copy number. Cut-offs for calling genomic gain/loss were

set based on the median of the log2 ratio for each array +2σ or -2.5σ (where σ is the

standard deviation of the log2 ratio for each array), as described in (Curtis et al.,2012).

The two most commonly focally amplified oncogenes in medulloblastoma, MYC

and MYCN, were used to test the methods developed during this project for detection

of focal locus-specific high-level amplifications. A cohort of 203 samples that passed
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pipeline-specific quality control was used for the evaluation of the pipeline’s suitability

and performance for detection of focal amplification. The reference ”true” MYC and

MYCN copy number statuses were previously established by a consensus call using

both fluorescence in situ hybridisation (FISH) molecular cytogenetic technique and

multiplex ligation-dependent probe amplification (MLPA) and was performed by Dr J.

Lindsey and Dr R. Hill.

3.3.2. Overview of copy number analysis workflow . The bioinformatics

workflow described in Figure 3.1 was designed for automated CNA analysis of DNA

derivatives from FFPE and fresh-frozen tissue samples that were processed using

methylation arrays, and included the following functions:

• Preparation of input data for downstream analyses, which included pre-processing

of raw intensities data input in .IDAT format (see 2.3), general and pipeline

specific quality control.

• Performing CNA analyses of medulloblastoma samples using bioinformatics

methods developed for this project as well as methods developed using existing

bioinformatics tools.

• Extraction of relevant output of CNA analysis methods and assembly of CNA

profiles.

3.3.3. Input data preparation. The first stage of the workflow consists of two

main steps: initial universal preprocessing and quality control and pipe-line specific

quality control.

STEP 1: The first step of initial input data preparation stage was developed as a

set of methods implemented as R-scripts that perform microarray data pre-processing

and quality control steps described in section 2.3, for mainstream CNA analysis. It is

designed and implemented as an R wrapper-method for standard bioinformatics meth-

ods and tools implemented in Bioconductor package minfi and includes the following

steps:

• reading red and green channels .IDAT files and creating RGset object to store

the information loaded from these files;

• running the standard minfi initial QC report;
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Figure 3.1. Summary of copy number analysis workflow. The overall work-
flow consists of three stages: (1) Input data preparation, (2) Copy number
alteration analysis,and (3) Copy number alteration profile assembly. The first
stage is divided into two steps: initial pre-processing and quality control (see
section 2.3 and additional sample quality control (see section 2.4). This addi-
tional quality control step was designed during this project in order to separate
DNA samples processed using methylation arrays of varying degree of copy-
number quality; some samples which were unsuitable for locus-specific CNA
analysis, could still be analysed to identify large-scale chromosomal CNA. The
second stage can be divided into two pipelines, large-scale and locus-specific
CNA analysis. Each of these pipelines can be run independently. The third
stage involves processing the output of the previous stage and CN profile as-
sembly.
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• preprocessing the raw data and performing standard initial normalisation us-

ing a choice of standard minfi methods: Illumina, SWAN, Quantile, Funnorm

and Noob (see section 2.3.2 for details).

• removal of probes with potentially-confounding SNPs within their sequence,

sex-chromosomes and cross-reactive probes.

By default, this step includes the removal of sex chromosomes. However, in some

cases, it is desired to retain the sex chromosomes for copy number analysis. In this

instance, an additional, method-specific normalisation step, which is performed during

CN analysis stage and described in the next section, is required. For the analysis,

a set of control samples is required. These control samples should be obtained from

normal diploid tissue; if sex chromosome CNA is required, the control cohort needs to

be filtered to contain samples from a single sex, to avoid confounding by mixed ratios

of the X chromosomes in male and female samples.

The output of this step will be either a GenomicMethylSet or GenomicRatioSet

object (see 2.3.2), depending on the normalisation method chosen.

Step 2 is designed as an additional, pipeline-specific sample quality control step

that separates pre-processed sample data into DNA quality-dependent subsets of data.

The method for pipeline-specific sample quality control method was developed as an

R implementation of calculation of the outlier threshold using DLRS (see Section 2.4).

This step is necessary when working with FFPE samples, whose DNA derivatives are

often degraded and therefore unsuitable for identification of focal, locus-specific am-

plifications, but from which larger-scale whole chromosome arm level alterations can

be detected. Quality of the DNA samples, e.g. level of degradation, is reflected in

the noisiness of the resulting log ratio data, which is measured by DLRS. Tumour cell

content, such as normal cell contamination or clonal heterogeneity does not correlate

with DLRS, DNA extracted from FF and FFPE samples from the same tumour, how-

ever will have different DLRS values, higher for FFPE. During this step, the DLRS of

each sample is calculated and compared to a predefined set of thresholds in order to

determine suitability for a particular type of the CNA analysis (see 3.3.4 below). The

samples are separated into subsets based on their suitability for a particular method

of CNA analysis and marked accordingly.
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3.3.4. Pipeline specific sample quality control . This method was developed

as an R implementation of the method for calculation the outlier threshold using DLRS

(see section 2.4) in order to identify samples suitable for focal, locus-specific CNA

analysis and samples that are unsuitable for focal analysis but which are still amenable

to large-scale, arm-level CNA.

The method calculates the DLRS of log ratio values of each sample. Samples are

graded using the following empirically-determined cut-offs, based on recommendations

from GoldenHelix (2014):

• Less than 0.2 - excellent quality DNA, likely derived from fresh-frozen or blood

sample;

• 0.2-0.3 - good quality DNA, suitable for processing through both pipelines;

• 0.3 - 0.5 - fair quality DNA, unsuitable for locus-specific CNA analysis, but

still acceptable for processing with chromosomal arm-level pipeline;

• Over 0.5 - significantly degraded DNA. Unsuitable for analysis using the meth-

ods developed in the project;

3.3.5. CN analysis methods. The second stage of the workflow performs the

CNA analysis. The following CNA analysis methods were developed for this project:

• automated detection of large-scale, chromosomal arm-level copy number changes;

• automated detection of very narrow, focal locus-specific copy number changes

from a set of multiple DNA samples simultaneously.

The initial implementation of the methods for automated calling of both focal and

large-scale chromosomal alterations was based on an implementation of the circular

binary segmentation (CBS) algorithm for CNA analysis using methylation arrays de-

scribed in 2.5. The original method was published by Sturm et al. (2012) as a custom

approach for copy number calling in glioblastoma (referred to as ”original” further in

the text) and later re-developed and implemented as a Bioconductor package called

conumee by the members of the same research group. The calling of CNAs using

conumee was implemented (referred to as ”conumee”-based further in the text) as an

option within the CN calling pipeline described in this chapter, which demonstrated

the extensibility of the workflow.

The techniques developed during this project are described below.
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3.3.5.1. Methods for automatic assessment of CNA on chromosomal arm-level .

One of the initial requirements of the project was to develop a method for automated

detection of one of the most common chromosomal defects found in medulloblastoma

patients: isochromosome 17q (where the p-arm is lost and q-arm is gained for chro-

mosome 17, present in 40% of cases), as well as the whole chromosome status of other

commonly aberrant chromosomes, e.g. chromosome 7 gain, chromosome 8 and 11 loss.

The method was developed using chromosome 17 as a test chromosome, and then the

method was further extended for use in automatic processing of all human chromo-

somes, including acrocentric chromosomes. Acrocentric chromosomes are autosomes

that have a very short p-arm; in the human genome, these are chromosomes 13, 14,

15, 21 and 22 . The 450k methylation arrays contain no probes mapping to p-arms of

the acrocentric chromosomes and therefore these regions remain unassessed.

In order to assess copy number status of a chromosome arm, the median probe log

ratio (LRR) for each arm of the chromosome were calculated and then chromosomal

arms were assessed individually as neutral, lost or gained using cut-off values that

were initially estimated and then optimised by comparing methylation-derived CN

calls against gold-standard Affymetrix SNP6.0 arrays calls that were available from

the same samples from the same cohort.

Optimal cut-offs for calling chromosomal gain and loss from conumee-derived LRR

values from methylation arrays were determined by maximising agreement with con-

firmed gain or loss from gold standard Affymetrix SNP6.0 arrays. These optimised

LRR cut-offs are: loss (this included both hemizygous and homozygous deletions)

called when median LRR is below -0.22, normal, unchanged copy number - between

-0.22 and 0.12, between 0.12 and 0.6 – gain, more then 0.6 – high-level amplification

(the last cut-off was only used to determine focal high-level amplifications, see section

3.3.5.2 and 3.2).

3.3.5.2. Methods for assessing focal amplification . The methods described in this

section were developed to fulfil one of the aims of this project - the detection of focal,

locus-specific CN changes.

The original method by Sturm et al. (2012) was modified to allow ”zooming in”

to the area ±100kbp of a locus of interest and was wrapped as a standalone R-script.

However, this method relies heavily on visual curation of the output plots to identify
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Figure 3.2. Copy number changes assessment: loss (both hemizygous and
homozygous deletions) called when median LRR is below -0.22, normal, un-
changed copy number - between -0.22 and 0.12, between 0.12 and 0.6 – gain,
more then 0.6 – high-level amplification, used to determine focal high-level
amplifications in section 3.3.5.2)

amplification and was therefore not amenable to automation and, consequently, is not

a good choice for using with a large number of samples, since it is labour intensive and

relies on subjective user opinion.

In order to automate the process for detection of focal CN changes, a new method,

based on the Bioconductor package conumee was developed. One of the outputs from

the Conumee copy number changes detection method is a text file containing the mean

LRR values for every single 50kb genomic bin. By examining the genomic coordinates

of the gene of interest, it is possible to extract mean log-ratio values for only the

bins adjacent to and spanning the gene and compare them to the values of adjacent

regions, highlighting regions with 5 bins amplified both upstream and downstream of

the locus of interest as ”attention required” as this might indicate large-scale CNA,

thereby detecting focal changes in DNA copy number in a semi-supervised manner.

The cut-off used for the high-level amplification detection was 0.6 (see section 3.3.5.1

and Fig 3.2).

3.3.6. CNA profiles assembly methods. In the third stage (module) of the

workflow, the output files from the CNA analysis stage are processed, copy number
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Figure 3.3. Conumee graphic output: Whole genome view (top) of a medul-
loblastoma sample and zoomed to chromosome 2 view of the same medulloblas-
toma sample. The MYCN gene is amplified but amplification is not picked
up by the standard method (horizontal blue line, indicating genomic segmen-
tation is still close to zero but MYCN is positioned well above the horizontal
line since it is amplified).

information for each processed sample is extracted and copy number profiles are assem-

bled. Four types of profiles are generated as output of this stage, which are groupped

as follows:

• Large-scale CN profiles (Profiles type I and II)

• Locus-specific CN profiles (type III)

• Full combined CN profiles (type IV)

The full combined profile is a combination of both large-scale and locus-specific

profiles for the same dataset.

3.3.6.1. Large-scale CN profiles . CN profiles can be generated as arm-level (profile

I) and whole chromosome calls (profile II).
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P-arm/Q-arm Q-arm Loss Q-arm Gain Q-arm Neutral
P-arm Loss Whole chromosome loss Isochromosome-q* P-arm loss
P-arm Gain Isochromosome-p** Whole chromosome gain P-arm gain
P-arm Neutral Q-arm loss Q-arm gain Balanced
Cut-offs***:
Focal
amplification:
>0.6

Loss: <-0.22 Gain: >0.12
Neutral:
[-0.22:0.12]

Table 3.1. Rules for whole chromosome status assessment from statuses of
individual chromosomal arm. *-this is currently restricted to chromosome 17
only as isochromosome-q re-arrangement is only confirmed for this chromo-
some in medulloblastoma; **- provisional rule, no isochromosome-p rearrange-
ments have been reported in medulloblastoma; ***-loss, gain and neutral state
cut-offs are applicable to both arm and whole chromosome

• Profiles type I: Whole genome arm-level status profile. This profile type con-

tains the following information: list of sample IDs, p- and q-arm status of

either all chromosomes or only autosomes for each sample. P-arm and q-arm

statuses are either arm-level loss, gain, neutral (normal) or QC fail if the DLRS

status of a sample exceeds 0.5.

• Profiles type II: Individual chromosome status profile. Whole chromosome

status is inferred from chromosomal arm statuses and determined according

to the rules presented in table 3.1. This profile is either an optional direct

output from the large-scale CNA pipeline or can be generated later using

whole genome arm-level status profile as an input.

3.3.6.2. Locus-specific CN profiles . Locus-specific CN profiles (Profiles type III) are

generated by the focal, locus-specific pipeline. This profile type contains the individual

genes of interest for each sample in the sample list. The potential outputs for an

individual gene/locus are 0 when there are no CN changes detected, 1 - CN change

detected, ”attention required” - this flags up the situation when the algorithm is unable

to verify the changes and manual curation of the sample using a graphic output is

required to confirm potential CN change and ”QC fail”. The latter indicates that the

sample did not pass DLRS sample quality control step and its DLRS status exceeds 0.3,

thereby making any focal estimation of CN unreliable. This profile assembly method

takes the output of stage II of the workflow as its input and the profiles are generated

as a direct output of the locus-specific pipeline.

3.3.6.3. Profile type IV: full combined CN profiles . This profile assembly method is

not pipeline-specific and combines outputs from large-scale and locus-specific pipelines.
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Profiles generated using this method contain joint information from profiles of type I

and III for the same set of samples: list of sample IDs, p-arm status and q-arm status

of either all chromosomes or only autosomes, and CN statuses of individual gene loci

for each sample in the sample list.

3.3.7. CNA analysis pipelines developed in this project . The copy number

analysis workflow employed a set of methods that were developed specifically for the

project, as well as existing bioinformatics tools and methods. These methods were

organised into the following CNA analysis pipelines:

• Large-scale (chromosomal arm-level) CNA pipeline

• Focal, locus-specific CNA pipeline

These pipelines bind together different bioinformatics tools and allow the analysis

to be performed in appropriate order with no or minimal external involvement. In

this project, all bioinformatics pipelines required a set of raw intensity files. Pipeline-

specific analysis results can be organised into pipeline-specific profiles as well as into

combined cross-pipeline profiles that consist of a combination of results from both

pipelines.The pipelines follow the same general workflow scheme.

3.3.7.1. Pipeline for automated calling of large scale chromosomal alterations. One

of the goals of this project was to develop a robust method for automated detection of

large-scale chromosomal structural defects frequently seen in medulloblastoma, such as

chromosomal arm gains and losses and the automatic inference of whole chromosome

status that can be classified as balanced (normal, unchanged chromosomal CN status),

whole chromosome loss, gain and isochromosomes (when one of the arms lost and the

other gained).

This pipeline is presented on Figure 3.4, A.

• Data pre-processing. The pipeline loads raw intensity data using standard

minfi loading functions and performs two-tier quality control: the general

quality control offered by external minfi package quality control options (sec-

tion 2.3.2), as well as pipeline-specific sample quality control using DLRS (sec-

tion 2.4), developed for this project. Initial implementation of general quality

control allowed Illumina and SWAN normalisation, however, along with the

later version of minfi becoming available, Quantile, Funnorm and Noob nor-

malisation options have been added. The output of this stage of the pipeline
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Figure 3.4. Copy number analysis pipelines: Large scale (chromosomal arm-
level) pipeline (A) and focal locus-specific CNA (B)

can be passed directly onto the next stage for CNA analysis or stored as an

RData class file for future use.

• CNA analysis. This stage of the pipeline uses the output from the data pre-

processing stage or previously pre-processed data. The CN status of chromo-

somal arms can be established by either methods described in section 3.3.5.1

(in-house developed method based on description found in Sturm et al. (2012)

and based on external package conumee). The output of this stage is a data

frame of mean log-ratio values of chromosomal arms which are either passed
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directly to the next stage for profile assembly or, alternatively, can be stored

as a .csv file for future use, as well as for creation of plots of whole genome

and individual chromosomes of interest and, in the case of the conumee-based

method, additional information contained in text format, as described in sec-

tion 2.7

• Profile assembly. This stage uses the data frame output from the CNA anal-

ysis stage as an input and defines chromosomal arms statuses using cut-offs

introduced in section 3.3.5.1 and assembles profiles of type I (arm-level) and

II (whole chromosome-level). Methods for this stage are specifically developed

for this project.

3.3.7.2. Pipeline for automated calling of focal, locus-specific alterations. Another

goal of this project was to develop a method capable of detecting focal amplifications of

commonly amplified oncogenes in medulloblastoma, such as MYC and MYCN. These

focal changes are difficult to detect using methylation arrays, especially from FFPE

archived samples due to the combination of factors such as the changes being relatively

narrow (i.e. less than 10 Mb) and are often missed during segmentation process (see

Figure 3.3 for a representative example), as well as the inherent noisiness of FFPE

samples processed on methylation arrays.

This pipeline consists of two sub-routines each based on the methods described in

section 3.3.5.1 (Figure 3.4 B).

• Data pre-processing. This stage of the pipeline is identical to data pre-processing

stage of the arm-level pipeline.

• CNA analysis. This stage uses the output from the previous stage to estab-

lish the CN status of focal, locus-specific changes and employs the methods

described in 3.3.5.2. The original method is not automated and produces

a graphical output suitable for manual curation. The alternative, conumee-

based method uses Conumee’s text output to determine CN status of genes of

interest in a semi-automated way, and only requires manual curation when a

gene’s status is flagged as ”attention required”. The output from this method

is passed directly to the profile assembly stage.



3.4. RESULTS 93

• Profile assembly. In this stage the type III profile (narrow locus-specific am-

plifications) is assembled and the gene statuses marked ”attention required”

can be manually curated if needed.

3.3.8. Performance and suitability evaluation metrics. The metrics used to

evaluate suitability and performance of the methods developed for this project relied

on statistical classification methods such as confusion matrices (also known as error

matrix), tables of confusion (sometimes also called confusion matrices) and four values

calculated based on the above: sensitivity, specificity, positive and negative predictive

values (see 2.10).

To assess the performance of the workflow in term of calling both large-scale and

locus-specific CNA, calls were compared to gold-standard calls derived from Affymetrix

SNP6 arrays and these statistical metrics were calculated as shown in Table 2.4.

3.4. Results

This section describes suitability and performance of the workflow and associated

methods for CNA analysis of DNA samples processed on Illumina Methylation arrays

archived as FFPE tissue and the summary of the results generated from each developed

pipeline.

3.4.1. Pipeline specific sample quality control. The representative examples

of medulloblastoma samples shown in Figure 3.5 were graded according to the cut-offs

described in section 3.3.4:

• Less than 0.2: excellent quality DNA, likely derived from fresh-frozen or blood

sample (Figure 3.5, A) and 0.2-0.3 - good quality DNA (Figure 3.5, B). These

samples are suitable for processing through both large-scale and locus-specific

pipelines;

• 0.3 - 0.5 - fair quality DNA, unsuitable for locus-specific CNA analysis but still

acceptable for processing with chromosomal arm-level pipeline (Figure 3.5, C);

• Over 0.5 - significantly degraded DNA. Unsuitable for analysis using the meth-

ods developed in the project (Figure 3.5, D).

For the focal changes pipeline the use of external and in-house methods is similar

to the large-scale pipeline.
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Figure 3.5. Pipeline specific quality control: A - excellent quality DNA,
DLRS status 0.18 (Fresh Frozen sample); B - very good quality DNA, DLRS
status 0.22 (FFPE), suitable for both arm-level and locus-specific pipelines;
C- fair quality DNA, DLRS status 0.36. Unsuitable for locus-specific pipeline,
but still acceptable for large-scale arm level pipeline; D - largely degraded
DNA, unsuitable for analysis using pipelines developed in this project. The
blue lines show genomic segmentation

3.4.2. Evaluation of suitability and performance of methodology for au-

tomated calling of large scale chromosomal alterations. The most common

chromosomal defect in medulloblastoma, isochromosome-17q (where the p-arm is lost

and q-arm is gained, present in 40% of cases), was used to compare methylation array

CN calls to SNP6.0 calls.

Agreement between methylation arrays derived CN calls and gold-standard CN

calls derived from SNP6.0 arrays for chromosomal arm-level events was measured using

Cohen’s kappa statistic (see Section 2.17), which measures concordance of data values

in the main diagonal of a cross-tabulation of chromosomal calls from 450k and SNP6.0

arrays, and then adjusts these values for the agreement expected to happen by chance.

Results of a grid search for cut-off values between ± 0.1-0.25 (- for arm loss, + for arm

gain)were represented as a heatmap with kappa values varying on the scale from dark

blue (poor) to dark red (excellent) in Figure 3.6.

Concordance between the gold standard and methylation CN estimates was good

The cut-offs shown in Table 3.2; maximised kappa (kappa=0.892) with the confusion

matrix shown in Table 3.3, and therefore these settings were considered optimal.

The results represented in the confusion matrix (Table 3.3) mean that, out of 83

aneuplodiy calls made from methylation arrays, a total of 77 calls were concordant with
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Figure 3.6. Results of grid search for cut-offs between ± 0.1-0.25 (- for arm
loss, + for arm gain) represented as a heatmap with kappa values varying on
the scale from dark blue (poor) to dark red (excellent). The box over the red
area shows the area of optimal cut-offs.

Status Arm Loss Arm gain Neutral
Median Log Ratio Less than -0.14 More than 0.18 [-0.14-0.18]

Table 3.2. Optimal cutoffs for median LRR for calling arm gain / loss from
450k array data

SNP6.0 array
balanced i17q p-loss q-gain WCG Total

balanced 15 - - 3 3 21
HumanMethylation450k array i17q - 40 - - - 40

p-loss - - 4 - - 4
q-gain - - - 17 - 17
WCG - - - - 1 1
Total 15 40 4 20 4 83

Table 3.3. Confusion matrix showing performance of CNA analysis work-
flow for Illumina Methylation arrays in comparison with gold standard SNP 6.0
arrays using optimal cut-offs defined in Table3.2). WCG - whole chromosome

SNP6-derived calls (the number of concordant calls stratified by CNA type are shown

in bright yellow). Using the confusion matrix above (Table 3.3), its corresponding

performance metrics, calculated as described in Table 2.4 are presented in Table 3.4.

Representative examples of the comparison of copy number estimation between

Illumina Human Methylation 450k and SNP6.0 (images of SNP6.0 samples are cour-

tesy of Dr S. Nakjang, Bioinformatics Support Unit, Newcastle University) arrays are
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TP FP TN FN PPV NPV Sensitivity Specificity
Balanced 15 6 62 0 71.42% 100% 100% 91.17%
i17q 40 0 43 0 100% 100% 100% 100%
p-loss 4 0 79 0 100% 100% 100% 100%
q-gain 17 0 63 3 100% 95.45% 85% 100%
WCG 1 0 79 3 100% 96.34% 25% 100%

Table 3.4. Performance of the project’s pipeline for automated calling of
large scale chromosomal abnormalities. TN = True Positive, FN = False
Negative, TP = True Positive, FP = False Positive, PPV = Positive Predictive
Value, NPV = Negative Predictive Value

demonstrated in Figures 3.7 to 3.11 for assessing chromosome 17 CN status using the

adaptation of the original method described by Sturm et al. (2012). The vertical axes

on all the figures represent log-ratios of sample and the horizontal axes show genomic

position.

Balanced chromosome 17 – both mean and median LRR are close to zero (Figure

3.7). This is a flat diploid chromosome without any copy number alterations.

Representative plots showing tumours with i17q, 17p loss, 17q gain, WCG (whole

chromosome gain) are shown in figures 3.8-3.11, respectively.

Figure 3.7. Balanced chromosome 17; Illumina Human Methylation 450k
(top left), Affymetrix SNP6.0 (top right), whole genome view (bottom, Illu-
mina Human Methylation 450k).In the whole-genome view, individual num-
bers of chromosomes are also indicated on horizontal axes with blue lines
showing genomic segmentation. On the individual chromosome view, red lines
represent median log-ratios, green - mean.
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Figure 3.8. Isochromosome 17q; Illumina Human Methylation 450k (top
left), Affymetrix SNP6.0 (top right), whole genome view (bottom, Illumina
Human Methylation 450k).In the whole-genome view, individual numbers of
chromosomes are also indicated on horizontal axes with blue lines showing ge-
nomic segmentation. On the individual chromosome view, red lines represent
median log-ratios, green - mean.

Figure 3.9. Chromosome 17 p-arm loss; Illumina Human Methylation 450k
(top left), Affymetrix SNP6.0 (top right), whole genome view (bottom, Illu-
mina Human Methylation 450k).In the whole-genome view, individual num-
bers of chromosomes are also indicated on horizontal axes with blue lines
showing genomic segmentation. On the individual chromosome view, red lines
represent median log-ratios, green - mean

Figure 3.12 shows chromosome 17 calls made from the same samples as shown on

figures 3.7-3.11 using the conumee method.
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Figure 3.10. Chromosome 17 q-arm gain; Illumina Human Methylation 450k
(top left), Affymetrix SNP6.0 (top right), whole genome view (bottom, Illu-
mina Human Methylation 450k). In the genome-wide view, individual num-
bers of chromosomes are also indicated on horizontal axes with blue lines
showing genomic segmentation. On the individual chromosome view, red lines
represent median log-ratios, green - mean

Figure 3.11. Whole chromosome 17 gain; Illumina Human Methylation 450k
(top left), Affymetrix SNP6.0 (top right), whole genome view (bottom, Illu-
mina Human Methylation 450k).In the genome-wide view, individual numbers
of chromosomes are also indicated on horizontal axes with blue lines showing
genomic segmentation. On the individual chromosome view, red lines repre-
sent median log-ratios, green - mean
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Figure 3.12. Calls made from Illumina Human Methylation 450k using
method based on the Bioconductor package conumee. From top to bottom
plots: balanced chromosome 17, isochromosome 17q, 17p loss, and 17q gain.

3.5. Evaluation of semi-automated calling of focal, locus-specific

alterations

The confusion tables, describing the performance of automatic locus-specific CNA

analysis pipeline for calling focal high-level MYC or MYCN oncogenes amplifications

are presented in Table 3.5.

The corresponding performance metrics, calculated as described in Table 2.4 are

presented in the Table 3.6
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Reference
MYC amplification Positive Negative
Predicted positive 5 2
Predicted negative 2 194Human Methylation 450k array,

automated locus-specific pipeline
MYCN amplification Positive Negative
Predicted positive 14 2
Predicted negative 5 182

Table 3.5. Confusion table describing performance of the CNA locus-specific
pipeline. TN = True positive, FN = False negative, TP = True positive, FP
= False positive.

TP FP TN FN PPV NPV Sensitivity Specificity
MYC 5 2 194 2 71.42% 98.97% 71.43% 98.98%
MYCN 14 2 182 5 87.5% 97.32% 73.68% 98.91%

Table 3.6. Performance of the pipeline for semi-automated calling of locus
specific focal amplifications. TN = True Positive, FN = False Negative, TP
= True Positive, FP = False Positive, PPV = Positive Predictive Value, NPV
= Negative Predictive Value

The positive predictive rate of 71.42% for MYC and 87.5% for MYCN means that

out of 100 samples predicted to be MYC or MYCN amplified about 29 and 12 were

not respectively MYC or MYCN amplified. The negative predictive rate of 98.97%

for MYC and 97.32% for MYCN means that out of 100 predicted MYC or MYCN

negative samples about 1 sample was actually positive for MYC and about 2 per 100

were actually positive for MYCN amplifications, respectively.

The sensitivity of 71.43% and 73.68% for MYC or MYCN amplification respec-

tively means that out of 100 MYC or MYCN amplified samples 29 and 27 cases of

amplification respectively were not detected.

The specificity of 98.98% for MYC and 98.91% for MYCN means that out of 100

of samples called not amplified for MYC or MYCN respectively, only one of each was

actually amplified.

Representative examples of the comparison between Illumina Human Methylation

450k calls made using the locus-specific pipeline are shown on Figure 3.13.
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Figure 3.13. Focal high-level amplification of MYCN oncogene. Sturm et al.
(2012) based method: zoomed-in plot of chromosome 2 at MYCN locus (A)
and whole-genome view (D); conumee-based method: zoomed-in plot of chro-
mosome 2 at MYCN locus (B) and whole-genome view (C).
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3.6. Discussion

The Newcastle Medulloblastoma archive currently contains over 500 unique patient

DNA samples processed using Illumina HumanMethylation450k arrays and much of

the DNA was archived as FFPE tissue. Most of the samples that comprise this archive

are collected from various sources over a large number of years and for many of them,

not enough tissue is available to perform any additional analysis.

This chapter investigated the utility of the methylation arrays as a single platform

tool for integrated genomic and epigenomic analysis of DNA samples. A bioinformatics

workflow that uses methods, both developed specifically for this project as well as

existing methods, tailored for working with FFPE samples processed on methylation

arrays, was designed and implemented.

The ability to generate genomic copy number data from DNA extracted from FFPE

tissue using methylation arrays offers potential to perform confirmatory or investigatory

work on historic archival cohorts for which FF tissue is not generally available and

scarce availability of archived material does not allow perform additional analysis using

multiple platform and methods.

3.6.1. Development of the bioinformatics workflow and methods: ra-

tionale and implementation. With the recent advances of cancer research at a

molecular level, CNAs have been studied as important components in the initiation,

development, and progression of cancer. Many researchers have focused on the de-

tection of chromosomal regions having amplifications and deletions using arrays and

sequencing data. At the outset of this project state of the art methods for CNA were

such methods as GISTIC2 (Beroukhim et al., 2007; Mermel et al., 2011) and its rival

WIFA (Hur and Lee, 2011).

GISTIC2 (Genomic Identification of Significant Targets in Cancer) is a statistical

approach for identifying regions of aberration that are more likely to drive cancer

pathogenesis. The method identifies those regions of the genome that are aberrant

more often than would be expected by chance, with greater weight given to high-

amplitude events (high-level copy-number gains or homozygous deletions) that are less

likely to represent random aberrations. This method includes identification of focal as

well as larger and arm-level CN aberrations (Mermel et al., 2011).
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WIFA (wavelet-based identification of focal genomic aberrations) uses the wavelet

analysis, and is a multi-resolution approach, that integrates multiple cancer samples

so that it enables the detection of the consistent aberrations across multiple samples

(Hur and Lee, 2011).

However, these methods were developed and tested using SNP arrays, including ap-

plication to medulloblastoma (Northcott et al., 2012b) and were not readily applicable

to methylation arrays.

Methylation array specific approaches were limited to those described in Feber et al.

(2014) and Morris and Beck (2014), which was based on method described Feber et al.

(2014), and Sturm et al. (2012).

The Chip Analysis Methylation Pipeline (ChAMP) package is a pipeline that in-

tegrated currently available 450k analysis methods and also offers its own novel func-

tionality. ChAMP takes the raw IDAT files as input, using the data import, quality

control and normalisation options offered by minfi. CNAs were identified using circular

binary segmentation in the Bioconductor package DNAcopy (Morris and Beck, 2014;

Feber et al., 2014). This is not optimised for FFPE samples.

The method described by Sturm et al. (2012) was specifically focused on the as-

sessment of CN from DNA derived from FFPE tissues, but their publication did not

provide source code for its implementation. This custom algorithm was developed for

glioblastoma research and reverse-engineered for application to medulloblastoma by Dr

E. Schwalbe of joint Northumbria/Newcastle University Brain Tumour research group

ahead of this project (unpublished).

Therefore, this method was selected and implemented during this project, as no

usable implementation was available until it was repackaged by Hovestadt and Zapatka

(2015) into the Bioconductor package ”conumee”.

This original method was capable of detecting both large arm-level chromosomal

changes and narrow high-level amplifications but it exclusively relied on visual as-

sessment of graphic output for every sample, which was impractical when analysing

large cohorts. No publications were available at the time to confirm the utility of Il-

lumina HumanMethylation450k microarrays for use in medulloblastoma. Therefore,

in order to be able to use the Newcastle Medulloblastoma archive for this project, it

was necessary to develop methods that would be able to reliably call copy number
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changes from methylation arrays but that would not require a researcher to visually

assess potentially hundreds of plots. This was achieved by developing methods that

are specifically designed for methylation arrays, optimised for FFPE archived DNA

and combine functionality of gold standard methods, such as detection of narrow focal

high-level amplification and arm-level CNAs.

The methods described in this project were developed as a first attempt for the

automated detection of genomic CNA using methylation arrays for medulloblastoma

research. This allowed rapid analysis of large cohorts. The methods included the

integration of sample pre-processing, quality control, profile assembly and genomic

copy number estimation methods embedded in a single modular, 3-stage workflow.

Each module was developed to function in a stand-alone manner

The modules can be executed successively, forming a pipeline. The first stage

conducts data pre-processing and quality control. Then pre-processed and quality

controlled data can be saved or passed directly to the second stage, where copy numbers

are calculated. The results again are either saved for later use or passed on to the third

stage where they are collated to create copy-number profiles containing final CNA

calls. This stage is semi-automated, as some results (e.g. from the locus-specific

pipeline) need to be manually curated before they can be integrated into a profile. The

workflow currently contains two main pipelines for large-scale (chromosomal arm level)

and focal locus-specific (narrow high-level amplifications) copy number calling (Figure

3.4). Each pipeline has two alternative implementations: the first that relies on the

original algorithm available at the beginning of the study and second that employs

Bioconductor package conumee that emerged during this project, and is based, as well

as the first one, on the original algorithm by Sturm et al. (2012), see also section 2.6.

Both implementations of the large-scale pipeline allow fully automatic CN profiling

and are able to identify both broad gains and losses, such as arm-level and whole

chromosome aberrations. The conumee based implementation of the locus-specific

pipeline for focal CN changes is semi-automatic (requires visual assessment of the

graphic output in a small number of cases highlighted as ”attention required” by the

script). The implementation based on the original algorithm relies on visual assessment.

3.6.1.1. Bioinformatics pipeline for large-scale copy number detection confidently

identifies arm-level CNAs. Both implementations of the large-scale CNA analysis method
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were able to provide fully automated aneuploidy detection and both showed good re-

sults. Out of 83 samples, there were 6 incorrect calls using the original method’s imple-

mentation; using the conumee implementation, 4 incorrect calls were made. Therefore,

the performance of the method based on conumee was only marginally better than

of the original method and both methods are suitable for automatic calling of whole

chromosome statuses.

There are limitation of the large-scale pipeline regardless of the algorithm used such

as the inability to distinguish homozygous and hemizygous deletions.

3.6.1.2. The focal, locus-specific method is able to detect high-level amplifications.

As this project required detection of focal high-level amplifications in a large number

of samples, development of another method was needed that would be sensitive enough

to pick up most amplifications while keeping the false discovery rate relatively low and

would not require a researcher to visually assessing large numbers of plots.

The algorithms described in sections 2.6 and 2.7 were used again as the core of

this CNA analysis module. Both algorithms allow detection of various copy number

changes of different sizes as some parameters, such as number of probes in a genomic

window in the original method described by Sturm et al. (2012) and the minimum

number of probes per bin and minimum number of bins per segment in Bioconductor

package conumee are adjustable to suit a particular task. However, settings of both

algorithms were optimised to work with FFPE samples, which rendered them to be too

insensitive to detect narrow CNA such as some frequently amplified medulloblastoma

oncogenes like MYC, MYCN or GLI2 This allows the algorithm to identify smaller CN

changes when the DNA is of relatively good quality, e.g. from frozen tumour tissue.

However, in the case of noisy FFPE samples, where the DNA is partially degraded,

reducing the minimum amount of bins per segment or amount of probes per bin will

increase the amount of false positive calls, e.g. noise might be called as amplification.

A simple solution to detect the narrow high-level amplifications was to examine the

regions of genes of interest and the regions directly up- and down-stream, which was

implemented in this chapter.

The limitations of this method include a semi-automatic analysis as it still involves

some degree of visual curating of the regions highlighted as ”attention required” and
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inability to detect a single copy gain (e.g. SNCAIP gene commonly gained in medul-

loblastoma) or loss due to the lack of sensitivity.

3.6.2. Illumina Human Methylation array is a robust and accurate plat-

form for DNA copy number estimation. This chapter successfully employed

methylome profiling technology for genome profiling task, identifying both large-scale

and focal copy number changes and therefore confirmed findings of Feber et al. (2014)

that Infinium arrays detect copy number alterations and show that high-density methy-

lation arrays provide a robust and economic platform for detecting copy number and

methylation changes in a single experiment.

The sensitivity and specificity of the large-scale methods compared to SNP-array

derived calls was good: 85%-100% for most types of chromosomal aberrations, apart

from only 25% sensitivity when assessing whole chromosome gain for the implemen-

tation of the original algorithm. However, the total number of this type of CNA in

the discovery cohort was 4, which is too small for reliable statistical inference and

therefore, does not reflect actual sensitivity of the method. The locus-specific pipeline

showed specificity nearing 99%, however sensitivity was significantly less than in the

large-scale pipeline - just over 70%.

There is no specific provision in the pipelines to account for germline CNV showing

as false somatic events. However, the possibility of any focal CNA giving false positive

result is minimised by normalisation against a panel of normal cerebella and specific

alterations such as MYC, MYCN, GLI1/2 high level amplifications in MB, for which

this pipelines were designed, are not normal germline CNVs. The arm level events that

are detected using these methods are large-scale chromosomal changes that would have

an obvious phenotype, e.g. Down or Turner syndromes, and therefore do not pose any

issue for false-positive discoveries.

The possibility to estimate most DNA copy number aberration status from methy-

lomic data generated by methylation arrays from FFPE preserved tissue offers potential

for further investigations using archival cohorts, such as the Newcastle Medulloblas-

toma archive, for which fresh frozen tissue is not always readily available.

3.6.3. Future work. The bioinformatics methods and the workflow developed

and described in this chapter have the potential to be further developed into series of

stand-alone applications or software package.
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As the microarray technology advances, newer methods for effective analysis of

the growing amount of data that is continuously generated are always in demand.

Examples of such methods, that were developed recently are CopyNumber450kCancer,

that provides a novel functionality of baseline correction in segmentation data obtained

from CN calling tools such as ChAMP described above (Marzouka et al., 2016), and

RUBIC (Recurrent Unidirectional Break Identification by Clustering), an approach

that detects recurrent copy number breaks, rather than recurrently amplified or deleted

regions (van Dyk et al., 2016).

Some frequent types of copy number changes, that play a significant role in medul-

loblastoma, such as ploidy and copy neutral loss-of-heterozygosity (Jones et al., 2012)

are impossible to detect using methylation arrays due the design of this platform.

This could be addressed by designing additional pipeline that would use whole-genome

methylation sequencing (e.g. enzymatic methyl-seq (EM-seq) or bisulphite sequencing)

for both genomic and epigenomic analysis.

The workflow is modular and each part of it is potentially scalable. New methods

can be added to each module in the same way as the conumee-based method was

integrated, or deprecated methods can be replaced with current best practice.

EPIC methylation arrays have a greater amount of probes and provide a more

dense genome coverage in comparison to 450k arrays. Therefore, they should be more

sensitive to the narrow non-high-level CN changes like single copy gain or loss. Inte-

gration of the EPIC array analysis will be straight forward. The current version of

the Bioconductor package minfi has been updated to work with EPIC arrays and the

following functions have been added to allow working with all types of Illumina methy-

lation arrays - Table 3.7. The function read.metharray (reads idat files into R) has

replaced the deprecated function read.450, and has been already used in this project.

The new functions combineArrays (allows to combine data from different platforms)

and convertArray (casts an array platform into another) would be useful for mixed

platform experiments.

The addition of a method that would be able to detect chromothripsis would also

be beneficial, however the limited resolution of these arrays may preclude its detection

using this platform.
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Function Description Platforms
read.metharray Read idat files into R 27k, 450k, EPIC
convertArray Cast an array platform into another 27k, 450k, EPIC
combineArrays Combine data from different platforms 27k, 450k, EPIC
Table 3.7. Updated minfi functions supporting multiple versions of Illumina
HumanMethylation arrays (Fortin et al., 2017).

3.6.4. Summary. In this chapter a methylome profiling technology was employed

for the identification of DNA copy number status from both FFPE and fresh-frozen

tissue, thus confirming that Illumina Human Methylation arrays are a suitable platform

for integrated genomic and epigenomic analysis of FFPE solid tumour samples and can

be successfully used as an alternative to genotyping SNP arrays or sequencing for copy

number analysis, alongside their intended use for methylomic analysis.

The bioinformatics workflow described in this chapter successfully addressed a need

for a multilevel, modular approach that can evolve to accommodate changes in array

technology and best practice bioinformatics techniques and provides a platform for

prognostication and biomarker identification in the disease, discussd in chapters 4 and

5.



CHAPTER 4

Application of the developed methodology to validation of

existing prognostication schemes and determination of the

utility of PNET4 stratification scheme for prognostication of

patients with unavailable clinical risk factors

4.1. Introduction

The fundamental goal of most statistical analyses is to identify factors important

to the outcome, i.e. to determine whether the outcome is affected by measurable

covariates (Ensor, 2014). For cancer research, covariates can be specific molecular

biomarkers, present alongside classical clinical markers such as histopathology or ex-

tent of resection; biomarker identification can enable targeted therapy and personalised

cancer treatment. Biomarkers, or biological markers, are characteristics that are objec-

tively measured and evaluated as indicators of normal biological processes, pathogenic

processes or pharmacological responses to a therapeutic agent (Hunter et al., 2012).

Because biomarkers play an important role as prognostic and predictive factors of

clinical outcome, it is important to define and understand the common statistical im-

plications of biomarker validation. Biomarker validation is the process of assessing the

biomarker and its characteristics, and determining the range of conditions under which

the biomarker will give reproducible and accurate data (Wagner, 2002; Lee et al., 2006).

Cancer biomarkers are used to characterise tumours and to explain the heterogene-

ity between different types of tumours. The heterogeneity is reflected by the wide range

of sub-classifications (diagnostic markers) and risk-stratifications (prognostic markers)

in many cancer types, as well as by the number of biomarkers able to predict the

response of patients to personalised therapies (predictive markers) (Patel et al., 2014).

It is now recognised that medulloblastoma is a group of heterogeneous tumours

with variable demographics, transcriptomes, genetics, and clinical outcomes (Northcott

et al., 2012a; Kool et al., 2012; Shih et al., 2014).

109



4.1. INTRODUCTION 110

The WNT and SHH subgroups are characterised by activating aberrations that

affect critical regulators of the corresponding signalling pathways. Groups 3 and 4 are

characterised by recurrent chromosomal alteration and a low incidence of mutations.

These subgroups are more related to each other then to WNT and SHH activated tu-

mours and are listed as non-WNT/non-SHH MB in the revised WHO 2016 classification

(Louis et al., 2016).

Discovery and validation of clinically meaningful medulloblastoma features in pre-

vious clinical trial cohorts has enabled improvements in the clinical management of the

disease. This includes systemic therapeutic approaches that take into account molecu-

lar subgroups. There are now ongoing biomarker driven clinical trials that investigate

the possibility of reducing intensity of treatment for patients with WNT-activated MB,

who consistently show favourable survival rates and evaluate prospects of using SHH

pathway inhibitors for treatment SHH-activated disease at diagnosis or refractory or

recurrent SHH-activated tumours.

The non-WNT/non-SHH tumours represent a complex challenge, since these tu-

mours account for over two thirds of all MBs, are largely molecularly and clinically

heterogeneous, and there is currently a lack of specific targeted treatment strategies

for this category of patients.

Current risk stratification is based primarily on clinical variables, with high-risk

patients identified as having leptomeningeal metastases at presentation and/or an in-

complete resection (Gajjar et al., 2006; Northcott et al., 2012a; Lannering et al., 2012).

Even though in general these features are considered high-risk, in some groups of

patients, the presence of these markers does not always result in poor outcomes and in

others, absence of high-risk markers does not guarantee favourable outcomes. Often,

these risk indicators are not available at the time of the diagnosis for various reasons,

which may contribute to decisions on the treatment regimen, and, subsequently, on the

overall outcome. Numerous research groups have attempted to identify biomarkers to

either support or supplant clinical risk stratification (Goschzik et al., 2018; Northcott

et al., 2012a; Remke and Hielscher, 2011a).

In this chapter, two copy-number based, biomarker risk stratification schemes, de-

scribed in Shih et al. (2014) (referred to as the Shih scheme further in the text) and

Goschzik et al. (2018) (referred to as the PNET4 scheme in the text from here) were
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validated using the copy number analysis workflow for methylation arrays described

in chapter 3. Additionally, the impact of missing/unavailable clinical risk-factor data

in newly diagnosed patients on treatment regimen and outcomes and the potential of

the PNET4 scheme to overcome this issue is evaluated. Finally, the PNET4 scheme,

which was derived from a clinical trial of standard-risk medulloblastomas, was tested

on high-risk non-SHH/non-WNT medulloblastoma.

4.1.1. Shih risk stratification scheme . The Shih scheme is based on subgroup-

specific biomarkers (GLI2, MYC amplifications, chromosome 11 loss, chromosome 14

loss, 17p and 17q statuses) that identify very low-risk and very high-risk patients within

SHH, Group 3 and Group 4 medulloblastoma subgroups. This scheme was originally

developed from CNAs identified using genotyping arrays (Affymetrix SNP6.0) and pub-

lished in Shih et al. (2014). A risk model based on these subgroup-specific biomarkers

is presented on Figure 4.1.

Figure 4.1. Shih prognostication scheme: subgroup-specific risk model
stratifies medulloblastoma by molecular subgroup, clinical and cytogenetic
biomarkers(Shih et al., 2014).

4.1.2. PNET4 risk stratification scheme. The PNET4 scheme (derived from

HIT-SIOP-PNET4 clinical trial by Goschzik et al. (2018)) involves the presence of the

PNET4 signature - at least two of chromosome 7 gain, chromosome 8 loss and chromo-

some 11 loss, and which is associated with favourable risk (near 100 percent survival)
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within non-WNT/non-SHH standard risk medulloblastomas, further stratifying pa-

tients of this risk group into favourable-risk and high-risk subgroups. A risk model

defined by these non-WNT/non-SHH specific cytogenetic biomarkers within standard

risk disease is presented in Figure 4.2.

Figure 4.2. PNET4 prognostication scheme: non-WNT/non-SHH-specific
risk model stratifies SR medulloblastoma by cytogenetic biomarkers chromo-
some 7 gain, chromosomes 8, 11 loss, into two risk groups: favourable - 2 or
3 biomarkers present, and high - 0 or no biomarkers present (Goschzik et al.,
2018).
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4.2. Aims

This part of the study aimed to investigate:

• Whether prognostication schemes described in Shih et al. (2014) and Goschzik

et al. (2018) can be validated using methodology, developed and described in

Chapter 3, and DNA methylation array approach to CNA analysis

• Application of PNET4 scheme described in Goschzik et al. (2018) to high-risk

medulloblastoma

• Whether PNET4 scheme has a potential for rapid risk assessment of medul-

loblastoma patients when clinical risk factors are unavailable at the time of

diagnosis and treatment regimen decision
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4.3. Materials and methods

4.3.1. Shih scheme biomarkers validation. In order to validate the suitability

of the CNA analysis methods developed during this project, the results of a recent

cytogenetic prognostication paper (Shih et al., 2014) were validated on an independent

disease cohort using the above-mentioned methodology.

4.3.1.1. Discovery cohort. The prognostic biomarkers were previously discovered

and described in Shih et al. (2014) using a discovery set of 673 medulloblastoma sam-

ples with clinical follow up and risk stratified by the scheme represented on Figure

4.1. As WNT-pathway activated medulloblastoma subgroup has consistently shown

a favourable risk in previous studies (Shih et al., 2014), this work focused only on

validation of biomarkers associated with SHH, Group 3 and Group 4.

A summary of the clinical data for this cohort available from Shih et al. (2014) is

presented in Table 4.1. Subgroup information was not available for 162 samples, which,

along with 58 WNT subgroup samples, were excluded from analysis.

4.3.1.2. Validation cohort. A total of 338 patients (96 SHH, 99 Group 3 and 143

Group 4, initially, though some samples had to be removed later due to inconclusive

metastatic status) were analysed using Illumina 450k methylation arrays and genomic

copy number changes and focal amplifications were detected using the techniques de-

tailed in Chapter 3. The clinical data of this cohort (referred to as Newcastle Medul-

loblastoma, or NMB cohort further in text), was demographically comparable to Shih

et al’s discovery cohort, excepting the absence of adult (aged over 16) patients in the

NMB cohort, and is shown in Table 4.1.

Only summary demographic information for the cohort from Shih et al. (2014) was

available, therefore no statistical testing for differences between cohorts was performed.

4.3.1.3. Copy-number profiling. Copy-number profiling of the NMB cohort was per-

formed using the copy-number analysis workflow described in section 3.3.2 and outlined

on Figure 3.1.

Large-scale, i.e. arm-level/whole chromosome copy-number profiling for the follow-

ing copy-number abberations: chromosome 14q loss, isochromosome 17q, whole chro-

mosome 11 loss, whole chromosome 17 gain, was assessed on the NMB cohort using

the large-Scale (arm-level) CNA pipeline as described in section 3.3.7. Whole genome
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arm-level status profile was assembled for the validation cohort and from this, individ-

ual chromosomal copy number status for chromosomes 11, 14 and 17 was inferred, as

described in section 3.3.6.1.

Locus-specific copy-number profiling for GLI2 and MYC oncogene amplifications

was performed using the focal, locus-Specific pipeline described in section 3.3.7. Two

single gene profiles for GLI2 and MYC genes were assembled.

Finally, a full combined profile containing statuses for chromosomes 11, 14, 17 and

genes GLI2 and MYC was assembled, as described in section 3.3.7.
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4.3.2. PNET4 scheme biomarkers validation and application to high-risk

disease cohort. The original, standard-risk disease stratification scheme developed

by Goschzik et al. (2018) using the CNA analysis methods on standard risk cohort,

was validated on a standard-risk cohort, and subsequently applied to the high-risk

medulloblastoma cohort.

4.3.2.1. Discovery cohort. The prognostic biomarkers were previously discovered

for Group 3 and Group 4 standard risk disease and described in Goschzik et al. (2018)

using a discovery set of 91 medulloblastoma samples from HIT-SIOP PNET4 clinical

trial. In this cohort, patients with certain potential high-risk factors, such as MYCN

amplification and subtotally resected tumour were retained as there was no evidence

that these factors affected survival in this particular cohort. Clinical data for the

original discovery cohort of 91 standard risk medulloblastoma samples is represented

in the second column of Table 4.2.

4.3.2.2. Validation cohort . A total of 75 standard risk medulloblastoma samples

(of which 16 are Group 3 and 59 are Group 4 samples) were analysed using Illumina

450k methylation arrays and aneuploidy was assessed using the CNA profiling methods

developed described in chapter 3. This cohort was demographically matched to the

original discovery cohort, excepting the absence of adult patients (aged over 16), and

patients with MYCN amplifications and sub-totally resected tumours, and is repre-

sented in the third column of the Table 4.2.

4.3.2.3. High risk cohort . A 100 member non-SHH/non-WNT high-risk cohort was

used to test the suitability of the PNET4 prognostication scheme for assessing high-

risk disease patients. The entry criteria for this cohort was presence of at least one

known high risk factor, namely metastatic disease, large-cell/anaplasia, MYC /MYCN

amplification and subtotal resection. The clinical data for this cohort is represented in

the fourth column of the Table 4.2.
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4.3.2.4. Procedures. In the discovery cohort, due to the material being mostly of

low quality and quantity, authors were unable to use conventional approaches (such as

DNA Methylation arrays) for subgroup assessment and a mass spectrometry minimal

methylation classifier (MS-MIMIC) assay (Schwalbe et al., 2017a) was developed and

implemented for molecular subgroup assessment. Amplifications of MYC and MYCN

oncogenes were assessed by interphase FISH and genomic copy number changes were

identified using a molecular inversion probe array (Goschzik et al., 2018).

The validation and high risk disease cohort samples were analysed on the Illumina

450k DNA methylation microarray and chromosomal and focal copy number changes

were estimated using the CNA analysis workflow developed for this project and de-

scribed in section 3.3.2 and outlined on the Figure 3.1.

Progression-free survival was defined as the time from diagnosis to the first event

- progression or death, or date of the last follow-up. If the patient’s follow-up time

exceeded 10 years, they were right-censored at 10 years as relapses after 10 years are

almost never observed in medulloblastoma and it is assumed that the patients are cured

of their disease.

4.3.2.5. Copy-number profiling. In both validation and high risk cohorts, large-scale

copy-number profiling for the following copy-number aberrations: isochromosome 17q,

whole chromosome 8 and 11 loss, whole chromosome 7 gain, was performed using

the large-scale (arm-level) CNA pipeline as described in section 3.3.7. Whole genome

arm-level status profile was assembled for the validation cohort and then individual

chromosome status profile was assembled and included chromosomes 7, 8, 11 and 17

(section 3.3.6.1.

Locus-specific copy-number profiling for oncogenes MYC and MYCN amplifica-

tions was performed using the focal, locus-Specific pipeline described in section 3.3.7.

Two single gene profiles ( section 3.3.6.1) for the MYC and MYCN oncogenes were

assembled.

Finally, a full combined profile containing the CNA status for chromosomes 7, 8,

11, 17 and genes MYC and MYCN was assembled as described in section 3.3.7.

4.3.3. Assessment of missing information patterns within Newcastle Medul-

loblastoma (NMB) cohort. In order to evaluate the extent of the missing data prob-

lem in clinical and research settings, a total of 267 samples comprising SHH, Group
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3 and Group 4 medulloblastomas were assessed for completeness of relevant clinical

information such as subgroup, pathology, extent of resection, MYC/MYCN amplifi-

cation, metastatic status and TP53 mutant/wild-type status. This dataset included

so called ’confident’ standard risk samples, i.e. negative for all above mentioned risk

factors and samples assessed as standard risk on available features, i.e. where some

risk factor information was missing.

4.3.4. Statistical analyses. Statistical analyses were performed using the R sta-

tistical language, version R version 3.5.2, and R-Studio program, version 1.1.456. Pa-

tient survival was assessed using Kaplan-Meier method and survival associations were

tested using log-rank tests (section 2.9.1). Significance of association was assessed using

Fisher’s exact test. ‘P’ values were used to assess significance and p<0.05 were consid-

ered significant. Cox models were used to test the prognostic values of clinical markers

(resection status (subtotal vs gross-totally resected disease), metastasis (metastatic vs

non-metastatic disease), pathology (LCA vs non-LCA), MYC(N) amplification (ampli-

fied vs non-amplified), recurrent whole chromosomal or arm-level aberrations (presence

vs absence)).
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4.4. Results

The bioinformatics methods developed in chapter 3 were used to validate two previ-

ously published prognostication schemes - Shih scheme (Shih et al., 2014) and PNET4

(Goschzik et al., 2018). Thus the utility of the methods and methylation arrays for

CNA analysis was investigated. Subsequently, performance of the PNET4 scheme was

assessed within high-risk disease.

4.4.1. Assessment of missing information pattern within NMB cohort.

The patterns of missing information within the initial Standard-Risk cohort are repre-

sented in Figure 4.3. Two plots are shown, for the missing values of each variable, and

the combinations of missing/non missing values. The bar plot on the left hand side

represents the amount of missing values in each clinico-pathological variable: TP53

mutation, subgroup, resection, MYC/MYCN oncogenes amplification, pathology and

metastasis information. The aggregation plot on the right hand side shows all com-

binations of missing and non-missing values in the observations and proportions of

combination of the missing values of variables per sample.

For example, 123/267 (46%) of samples that do not have any high-risk features, also

have no missing information; 40/267 (15%) of samples are missing all the important

information for risk stratification, such as pathology, resection, metastatic status and

the rest have some of the information unavailable (Figure 4.3).

4.4.2. Shih biomarkers validation.

4.4.2.1. Cohort characteristics . Demographic characteristics (only available as a

table from Shih et al. (2014)) of the discovery cohort, CNA data derived from Affymetrix

SNP6.0 array (Shih et al., 2014), were compared against demographic characteristics of

the independent validation (NMB) cohort, which is part of Newcastle Medulloblastoma

Archive, assessed for CNA using Illumina HumanMethylation450k array, in order to

be able to account for any discrepancies in survival characteristics of relevant subsets

of these cohorts (see Table 4.1). The Shih cohort consists of mostly North American

and Canadian samples, while NMB cohort contains predominantly European samples,

therefore, an overlap is highly unlikely. No differences in metastatic status (p=0.24 for

SHH, p=0.57 for Group 3 and p=0.2 for Group 4) and gender compositions (p=0.69
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Figure 4.3. Missing data patterns within the initial Standard Risk cohort.
1) Histograms show missing information in terms of the proportion of spe-
cific clinico-pathological defects: SHH group with TP53 mutation (labelled as
SHH.P53), subgroup, resection, MYC(N) oncogene amplification (labelled as
MYC(N)fin), pathology and metastasis information, labelled Metastat; 2) On
the right hand plot, blue blocks represent complete information, red – missing.
The numbers on right hand side represent fraction of samples with particular
pattern of complete/missing data.

for SHH, p=0.1 for Group 3 and p=0.8 for Group 4) of the cohorts were found, how-

ever age group compositions of all the molecular subgroups within the cohorts differed

significantly (p<0.001 for SHH, p<0.001 for Group 3 and p=0.002 for Group 4).

4.4.2.2. Stratification of patients with SHH tumours and their survival characteris-

tics. =A total of 96 patients with SHH-activated tumours from Newcastle Medulloblas-

toma cohort processed on methylation arrays were stratified into 3 subsets according

to the Shih scheme decision tree (Figure 4.4 (A), Shih et al. (2014)) and Kaplan-Meier

analysis undertaken (see Figure 4.4 (C)).

The patient subsets carrying high-risk markers such as GLI2 amplification and

chromosome 14q loss were identified, totalling 3 patients (two GLI2 -amplified and one

metastatic with chromosome 14q loss). All the patients in this group died within 5

years of their diagnosis.
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The second group was formed of 58 patients carrying standard-risk markers, such as

metastatic tumours without chromosome 14q loss and non GLI2 -amplified, and non-

metastatic tumours with 14q loss. For this group, 5 year OS was 57% (Figure 4.4 (C)).

5 year OS in the original study was approximately 45% for corresponding standard-risk

subset (Figure 4.4 (B); the exact rate was not available from the original paper (Shih

et al., 2014)).

The third group comprised 35 patients that did not carry any high or standard

risk features, i.e. not GLI2 -amplified, non-metastatic tumours without 14q loss, with

68% 5 year OS rate (Figure 4.4 (C)). This subset corresponded to low-risk subgroup

with the highest survival rate approximately 80% in the original study (Figure 4.4 (B),

exact rate was not available in the original paper (Shih et al., 2014)).

The application of Shih stratification scheme to the NMB cohort resulted in three

distinct subgroups with individual survival differences that resembled the results in

the original paper, however the differences in the survival rates were not significant (p-

value=0.06), as opposed to the original study, where p-value=0.001 (4.4 (B)-(C), Shih

et al. (2014)). The likely explanation of these discrepancies is differences in demografic

and clinical features of the Shih and NMB cohorts (see 4.1, 4.4 (A)-(D)).

4.4.2.3. Identification of high-risk patients with Group 3 medulloblastoma was con-

firmed by metastatic status, iso17q and MYC amplification. Application of the Shih

group 3 stratification scheme (decision tree on Figure 4.5 (A)) identified two subgroups

with significant survival differences (p=0.004, Figure 4.5 (C)). (decision tree on Fig-

ure 4.5 (A)) and Kaplan-Meier analysis undertaken , resulting in two subgroups with

distinct survival differences (Figure 4.5 (C)).

The subset of 58 patients that was distinguished by presence of MYC -amplification,

or isochromosome 17q, or displaying the signs of metastatic disease had significantly

worse 5 year OS of 42% when compared with the subset of the patients that did not

have any of these features and whose survival was 80%, p=0.004 (Figure 4.5 (C)).

The results were consistent with the results of the original study, where survival

rates were about 40% for high-risk subset and 84% for the standard-risk, p<0.001

(Figure 4.5 (B), exact rates were not available in the original paper (Shih et al., 2014))).

4.4.2.4. Low-risk group of patients with metastatic Group 4 medulloblastoma was

identified. The patient subsets carrying chromosome 11 loss and chromosome 17 gain
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Figure 4.4. (A)-(B) Original clinical prognostication scheme developed by
Shih et al. using genotyping SNP arrays of patients with SHH medulloblas-
toma. (A) Risk stratification of SHH medulloblastomas by molecular and
clinical prognostic markers. Decision tree, with events plot depicting status of
molecular and clinical markers across risk groups below. (B) Overall survival
curves for SHH risk groups. (Shih et al., 2014) (C)-(D) Validation of Shih et
al. stratification scheme using methylation arrays: (C) overall survival curves
for SHH risk groups and events plot of molecular and clinical markers across
SHH group (D) for Newcastle medulloblastoma (NMB) cohort

were identified. The cohort then was further stratified according to the Shih scheme

(decision tree 4.6 (A)) and Kaplan-Meier analysis undertaken (see Figure 4.5), resulting

in three subgroups with distinct survival differences. The result was consistentt with

the results of the original study, with the patients carrying ch11 loss or ch17 gain

showing significantly better 5 year OS survival of 98% (n=18) than metastatic subset
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Figure 4.5. (A)-(B) Original clinical prognostication scheme developed by
Shih et al. using genotyping SNP arrays of patients with Group 3 medulloblas-
toma. (A) Risk stratification of Group 3 medulloblastomas by molecular and
clinical prognostic markers. Decision tree, with events plot depicting status of
molecular and clinical markers across risk groups below. (B) Overall survival
curves for Group 3 risk groups. (Shih et al., 2014);
(C)-(D) Validation of Shih et al. stratification scheme using methylation ar-
rays: (C) overall survival curves for Group 3 risk groups and events plot of
molecular and clinical markers across Group 3 group (D) for Newcastle medul-
loblastoma (NMB) cohort

without either ch11 loss or ch17 gain (77%, n=48), and better then non-metastatic

subset without chromosomal copy number changes (50%, n=73), and thus, assigned to

lower risk subset (Figure 4.6 (C), p<0.001). In the original study 5 year OS rates were

approximately 98% for low-risk, 70% for standard-risk and 22% for high-risk patient
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subsets with p=0.0012 (Figure 4.6 (B), exact rates were not available in the original

paper (Shih et al., 2014)).
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Figure 4.6. (A)-(B) Original clinical prognostication scheme developed by
Shih et al. using genotyping SNP arrays of patients with Group 4 medulloblas-
toma. (A) Risk stratification of Group 4 medulloblastomas by molecular and
clinical prognostic markers. Decision tree, with events plot depicting status of
molecular and clinical markers across risk groups below. (B) Overall survival
curves for Group 4 risk groups. (Shih et al., 2014);
(C)-(D) Validation of Shih et al. stratification scheme using methylation ar-
rays: (C) overall survival curves for Group 4 risk groups and events plot of
molecular and clinical markers across Group 4 group (D) for Newcastle medul-
loblastoma (NMB) cohort
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4.4.3. Validation of biomarkers discovered in PNET4 cohort in Newcas-

tle Medulloblastoma cohort.

4.4.3.1. Cohort characteristics. Demographic characteristics of the non-WNT/non-

SHH in HIT-SIOP PNET4 (n=91, all standard risk by the design of the trial) cohort,

(Goschzik et al., 2018), were compared against demographic characteristics of non-

WNT/non-SHH Standard Risk (SR) (n=75) NMB cohort and non-WNT/non-SHH

High Risk (HR) NMB cohort (n=100) in order to be able to explain differences in

survival characteristics of the relevant cohorts (see Table 4.2).

The tumour samples with PNET identifiers were from the PNET4 clinical trial while

the NMB cohort comprised non-trials samples obtained from the Children’ Cancer and

Leukaemia Group (CCLG) in the UK, plus additional samples obtained from European

collaborators.

When comparing non-WNT/non-SHH in HIT-SIOP PNET4 and non-WNT/non-

SHH SR NMB cohort no significant differences were identified in sex composition

(p=0.4), histology (p=0.8), molecular subgroup composition (p=0.43), MYC -amplification

(p=1) and metastatic status (p=1). The following characteristics were different: re-

section (p=0.002 due to no subtotally resected samples in SR NMB cohort), MYCN -

amplification (p=0.002 due to no MYCN -amplified samples in SR NMB cohort) and

chromosome 17 status (p=0.003).

When comparing non-WNT/non-SHH in HIT-SIOP PNET4 and non-WNT/non-

SHH HR NMB cohort no significant differences were identified in sex composition

(p=0.6), MYCN -amplification (p=1) and metastatic status (p=1). The following

characteristics were different: resection (p<0.001), histology (p<0.001), molecular sub-

group composition (p=0.01), MYC -amplification (p=0.003) and chromosome 17 status

(p=0.007).

4.4.3.2. Validation of previously reported high-risk clinico-pathological markers .

The relationship between previously reported prognostic factors associated with high-

risk disease, such as subtotal resection, LCA pathology, MYC(N) amplification, metas-

tasis and presence of isochromosome 17q, and survival was investigated in high-risk

NMB cohort consisting of 100 cases positive for one or more prognostic factor being

tested. Log-rank tests and univariable Cox proportional hazard models of the prog-

nostic risk factors identified significant relationship between survival and M+ disease
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stage (Hazard Ratio (HR) 2.37, 95% CI 1.17-4.7, p=0.01; Figure 4.7 B ). No significant

relationships were identified between subtotal resection (HR 0.73, 95% CI 0.38-1.39,

p=0.3), LCA pathology (HR 1.5, 95% CI 0.79-2.9, p=0.2), MYC(N) amplification (HR

1.4, 95% CI 0.51-4.01, p=0.5 for MYC, HR 0.68, 95%CI 0.25-1.9, p=0.5 for MYCN )

and isochromosome 17q (HR 1.2, 95% CI 0.67-2.18, p=0.05) and worse event-free sur-

vival (Figure 4.7 A, C-F).

The prognostic potential of existing high-risk markers, defined in disease-wide co-

horts, was tested in a high-risk disease cohort, defined by positivity for one or more

validated high-risk markers, such as metastatic status, subtotal resection, LCA pathol-

ogy . While the presence of metastatic disease was prognostic and conferred additional

risk, other high-risk markers did not further stratify high-risk disease and were not

significantly associated with progression-free survival. Thompson et al. (2016) noted

that the prognostic importance of subtotal resection is unclear. Similarly, (Goschzik

et al., 2018) have reported that MYCN-amplified Group3/4 medullobastoma did not

demonstrate worse survival in the PNET4 clinical trial (Goschzik et al., 2018). The

survival of MYC-amplified tumours was not significantly different, however this could

be due in part to the overall worse survival of this cohort and the small number of

MYC amplified tumours observed (n=8). Finally, LCA disease was not associated

with a worse survival; LCA disease has been validated as a poor-risk marker in multi-

ple trials cohorts. Its non-significance in this cohort may be due its co-occurrence with

other high-risk disease features. This demonstrates the need for novel biomarkers for

high-risk disease, for improved patient stratification.

4.4.3.3. Validation of PNET4 prognostication scheme: standard-risk disease . The

subset of 75 standard-risk non-WNT/non-SHH medulloblastomas (Table 4.2), carrying

whole chromosome 8 and 11 loss and chromosome 7 gain was identified. The patients

were then stratified into two subsets. The first subset comprised 16 patients (21%) with

at least two of identified copy number aberrations and second subset of 59 patients who

presented with one or no PNET4 scheme biomarkers. Five year event-free survival for

the first group was 93.75% (95% CI 82.6-100) and for the second group 50.64% (95%

CI 38.7-66.34), showing significant association between favourable event-free outcome

and presence of at least two of whole chromosomal aberrations defined in the PNET4

prognostication scheme, and poorer survival for those with one or no biomarkers present
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Figure 4.7. Continues on next page

(HR=0.1056 (95% CI 0.014-0.78); p = 0.007 Figure 4.9). This was consistent with the

results of the original study, where 58 samples out 161 (38%) of non-WNT/non-SHH

medulloblastomas were classified as favourable risk with 5-year event-free survival was

98.3% (95% CI 94.9-100) and 103 (64%) as high-risk with survival rate 64% (95% CI

52.9-73.2) (Figure 4.8, (Goschzik et al., 2018)).

4.4.3.4. Application of PNET4 prognostication scheme to high-risk disease . The

PNET4 prognostication scheme was applied to the high-risk medulloblastomas using

the methods described in the previous chapter and the favourable-risk subset carrying

whole chromosome 8 and 11 loss and chromosome 7 gain was identified. Within the

high-risk cohort, Table 4.2, 11 (11%) patients were classified as favourable risk, which



4.4. RESULTS 131

Figure 4.7. Event-free survival in the high-risk cohort by clinical and
disease-associated molecular features. Patients grouped as: (A) patients
with gross total resection vs subtotal resection, (B) non-metastatic (M0) vs
metastatic disease (M+) at presentation, (C) large-cell or anaplasia (LCA)
vs any other histopathology, (D)-presenting with i17q or not, (E) patients
with MYC -amplified vs non-amplified tumours, and (F) MYCN -amplified vs
non-amplified tumours. HR=hazard ratio.

showed lower incidence of biomarkers signature compared to the standard risk cohort

(21%, section 4.4.3.3) and 89 (89%) as high-risk. The presence of at least two whole

chromosomal aberrations as defined in the PNET4 prognostication scheme showed

significant association with favourable event-free outcome, despite 6 (54%) of them

being metastatic: 5 year event free survival was 87.5% (95% CI 67.3-100) vs 47% (95%

CI 37.7-59.7) in the high-risk group (HR 0.135, 95% CI 0.018-0.98; p=0.02).

The PNET4-scheme derived biomarkers signature-bearing (chromosome 7 gain, and

chromosomes 8 and 11 loss) favourable-risk group was observed within methylation

subgroups described in recent publications, was found to be significantly associated

with subtype VI of Group 3 and Group 4 (Sharma et al., 2019) with p <0.01, Table

4.3) and Group 4 low risk subtype medulloblastomas (Schwalbe et al., 2017b) with

p<0.01 (Grp4-LR , Table 4.4). The high-risk group was significantly associated with

the subtype VIII (Sharma et al., 2019), with p<0.01 (Table 4.3) and high-risk Group

4 medulloblastomas (Schwalbe et al., 2017b) with p<0.01 (Grp4-HR, Table 4.4).

4.4.4. Comparison of performance of PNET4 risk stratification scheme:

standard-risk and high-risk cohorts. Application of biomarker-driven PNET4 strat-

ification scheme for standard-risk medulloblastoma to high-risk cohort revealed that the
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Figure 4.8. Original event-free survival curves for non-WNT/non-SHH in
combined (HIT-SIOP PNET4 and SR NMB, Table 4.2) standard-risk cohorts
by the scheme shown in Figure 4.2. Figure taken from Goschzik et al. (2018).

Subtype High-risk Favourable-risk
I 2 0
II 10 1
III 15 1
IV 2 2
V 11 0
VI 5 4
VII 15 1
VIII 22 0

MBNOS* 7** 2***
p<0.01

Table 4.3. Cross-tabulation of PNET4 scheme-defined risk groups and
Group 3/4 disease subtypes described by Northcott et al. (2017) in HR NMB
cohort.*MBNOS-Medulloblastoma not otherwise specified. **- one of the sam-
ples was classified as MBNOS/low confidence subtype V, ***- one of the sam-
ples was classified as MBNOS/low confidence subtype VI.
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Figure 4.9. PNET4 prognostication scheme validation: standard-risk dis-
ease. Risk stratification of non-WNT/non-SHH medulloblastomas by the
scheme shown in Figure 4.2 applied to standard-risk validation cohort (see
4.3.2.2).

Subtype High-risk Favourable-risk
Group 3-HR 26 1
Group 3-LR 5 3
Group 4-HR 31 0
Group 4-LR 27 7

p<0.01
Table 4.4. Cross-tabulation of PNET4 scheme-defined risk groups and
Group 3/4 disease subtypes described by Schwalbe et al. (2017b) in HR NMB
cohort. HR - high-risk, LR - low-risk.

scheme originally developed for non-infant standard-risk medulloblastoma performed

surprisingly well within the high-risk cohort.
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Figure 4.10. PNET4 prognostication scheme application to high-risk cohort
of non-WNT/non-SHH medulloblastoma.

The high-risk cohort comprised of samples that were positive for at least one known

high-risk marker, but was otherwise demographically matched to the standard-risk

cohort. The proportion of the signature-bearing samples within the high-risk cohort

was only 11% which was almost twice less than within the standard-risk cohort (21.3%,

see Figures 4.8 and 4.9).

5 years event-free survival in favourable-risk subset of high-risk cohort was less that

in standard-risk (87.5% (95% CI 67.3-100) vs 93.75% (95% CI 82.6-100) correspond-

ingly Figures 4.8 and 4.9 and Table 4.5).
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PNET4 prognostication scheme: 5 years survival comparison
Standard Risk disease

(SR NMB cohort)
High Risk disease
(HR NMB cohort)

Favourable-risk group
93.75%

(95% CI 82.6-100)
87.5%

(95% CI 67.3-100)

High-risk group
50.64%

(95% CI 38.7-66.34)
47%

(95% CI 37.7-59.7)
Hazard Ratio

(Favourable-risk vs High-risk)
0.105

(95% CI 0.014-0.78; p=0.007)
0.135

95% CI 0.018-0.98; p=0.02)

Table 4.5. PNET4 prognostication scheme comparison table for 5 years sur-
vival in non-WNT/non-SHH medulloblastoma: standard risk vs high risk dis-
ease
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4.5. Discussion

An evaluation of suitability and performance of the methodology for CNA anal-

ysis described in Chapter 3, demonstrated that this methodology is able to detect

both large-scale CN aberrations and focal amplifications. This chapter described the

application of the methodology to:

• validation of a prognostication scheme published by Shih et al. (2014) and

developed using gold-standard high-density genotyping arrays, thus demon-

strating the suitability of the developed methods, as well as confirming utility

of methylation arrays, for copy number analysis;

• validation of the previously described PNET4 standard-risk disease stratifica-

tion scheme and assessment of its utility for stratification of high-risk disease

patients and patients whose risk status is unknown.

4.5.1. Copy number analysis of cohorts processed using methylation ar-

rays validates previously reported survival markers and classification schemes.

The stratification of medulloblastoma accordingly to the Shih scheme using methylation

arrays in a total of 338 patients from Newcastle non-WNT medulloblastoma cohorts

(96 SHH, 95 Group 3 and 139 Group 4) identified survival trends concordant with the

ones observed in the original study for all three subgroups.

Group 3 tumours were stratified into high-risk and standard-risk variants, whereas

in Group 4 was devided into three subsets: high-risk, standard-risk and low-risk, all

with distinct differences in survival (p = 0.004 for Group 3 and p <0.001 for Group 4).

The SHH subgroup was stratified into three subsets, first with a dismal 5-year sur-

vival rate of 0% corresponding to high-risk, second with 58% corresponding to standard-

risk and the last group with the best 5-year OS survival of 68 % corresponding to the

low-risk risk group in the original study. However, the survival rates differences were

not statistically significant (p=0.06).

The subgroup-specific differences in survival identified subsets of each of the 3

subgroup (high-risk, standard-risk and low-risk in SHH, were significant in Group 4

but not significant in SHH with p value of 0.06.

A possible explanation for the discrepancy in p-value, is that the cohort that was

available for this study (NMB cohort) was smaller and differed demographically, e.g.
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tumour from adult patients were not available (see 4.4.2.1), and contained significantly

fewer high-risk tumours (3%) in comparison with the Shih cohort (8%).

Despite the above-mentioned issues, the DNA copy numbers were successfully iden-

tified by the methods developed in the chapter 3 using methylation arrays, as the copy

number status of most samples was previously evaluated using other techniques and a

priori known. Therefore, the suitability of both methylation arrays and the bioinfor-

matic methods for CNA analysis was confirmed.

4.5.2. Application of CN analysis workflow and methods to standard-risk

Group 3 and Group 4 medulloblastoma cohort validates previously reported

risk biomarkers and prognostication scheme. Application of PNET4 prognosti-

cation scheme to a subset of NMB cohort processed on Illumina Human Methylation

450k arrays and comprised from Group 3 and Group 4 medulloblastomas using the

methodology described in Chapter 3 showed survival rates consistent with the previ-

ously reported from non-WNT/non-SHH in HIT-SIOP PNET4 standard-risk cohort

(Figures 4.8 and 4.9). This validation showed that the CNA methodology described

in the previous chapter performed well thus enabling the next step, application of the

PNET4 scheme to high-risk Group 3 and Group 4 combined medulloblastoma cohort

to be made.

4.5.3. Application of the PNET4 prognostication scheme to high-risk

medulloblastoma cohort shows its prognostic relevance to risk-stratification

for disease with known risk factors. Application of PNET4 prognostication scheme

to the high-risk subset of Group 3 and Group 4 medulloblastomas identifies favourable-

risk and high-risk subsets of patients with very distinct and significant survival differ-

ences (87.5% vs 47%, p=0.02)

Analysis of the prognostic relevance of disease-associated clinical and molecular

high-risk features and event-free survival and found significant association between

metastatic disease at presentation and survival (Figure 4.7, B), the rest of the features

were not associated with survival in the HR NMB Group 3 and Group 4 cohort (Figure

4.7 A, C-F).

Further analysis of tumour heterogeneity within separate subsets of the HR NMB

Group 3 and 4 cohort, such as favourable-risk, high-risk, Group 3 only and Group 4
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only subsets was not possible due to small number of samples and possible additional

biomarkers remain to be investigated.

4.5.4. Clinical relevance of PNET4 prognostication scheme within high-

risk medulloblastoma. Missing clinical information about some of the samples is

an important limiting factor of brain tumour research and medulloblastoma studies in

particular, as well as being a major obstacle for successful stratification of patients in

clinical settings. The later is especially devastating in the developing countries where

cutting edge diagnostic techniques are simply not available and everyone diagnosed with

medulloblastoma will be treated the same, regardless of potential risk factors (Bouffet,

2019). Some of these unavailable features may be high-risk factors, and while in this

particular cohort most of the samples with missing information are recently diagnosed

and the treatment regiment decision is very time sensitive. Oftentimes, even if there

is a chance that the missing information can be recovered at a later stage, however

treatment regiments cannot be amended once commenced. And, in some cases, this

will not be possible at all due to a lack of diagnostic facilities, moreover, due to various

other factors e.g. insufficient tumour tissue available or inconclusive results.

As the application of the PNET4 risk stratification scheme to the HR cohort showed

great prognostication potential, this scheme could benefit those newly diagnosed pa-

tients for whom clinical risk information is unavailable. This could be of particular

importance in the developing countries, where relatively inexpensive and widespread

techniques such as FISH could be used to detect whole chromosome CN status and

thus deliver molecularly-directed treatment stratification..

4.5.5. Future work. The investigation of the functionality of PNET4 prognosti-

cation scheme within HR medulloblastoma cohort performed in this study has some

limitations. Only a small number of HR disease medulloblastoma samples were iden-

tified as bearing PNET4 scheme biomarkers. Out of 100 samples analysed only 11

were positive for whole chromosome 7 gain and chromosomes 8 and 11 loss, 6 (54%) of

which were metastatic disease and 1 (9%) patient had an event (relapse and subsequent

death). The evaluation of influence of known clinical risk factors on survival in this

group and identification additional prognostic factors was not possible due to small

sample size.
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It is still possible that survival rates within HR cohorts would still be smaller due

to the chances that some of the known clinical high risk features may still affect the

survival in the negative manner. In order to confirm or disprove this hypothesis, further

analysis that would involve larger cohorts, is needed. In particular, further investiga-

tions would benefit from performing evaluation of event-free survival in the favourable-

risk group of HR disease within Group 3 and Group 4 medulloblastoma together, as

well as within Group 3 and Group 4 separately to identify potential subgroup-specific

risk factors.

If the performance of the PNET4 scheme in HR disease is successfully validated

in larger cohorts, PNET4 biomarkers positive samples still only represent 10% of the

high-risk patients, and the remaining 90% of HR disease population could be further

stratified.

4.5.6. Summary. The aims set in the introduction to this chapter were fulfilled.

The previously published Shih stratification scheme (Shih et al., 2014) was verified us-

ing methylation arrays as opposed to genotyping SNP arrays used in the original study

and thus, it was demonstrated that both methylation arrays and CNA methodology de-

veloped during this research project and described in the previous chapter are effective

tools for copy number analysis. This chapter also identified that PNET4 prognosti-

cation scheme has potential for stratification of patients with unknown or unassessed

classic high-risk features. This may be useful in the developing countries where it is

still challenging to accurately assess the patients for all the high-risk features. While

identified favourable-risk and high-risk subsets of the HR Group 3 and Group 4 cohorts

had striking differences in the survival, there is also potential to improve the stratifica-

tion of the favourable-risk patients by identifying additional prognostic features using

larger cohorts.



CHAPTER 5

Standard risk medulloblastoma: methylomic analysis

5.1. Introduction

Non-WNT/non-SHH medulloblastomas, consisting of Group 3 and Group 4 medul-

loblastomas, represent about 65% of all medulloblastoma cases with vastly hetero-

geneous molecular and clinical characteristics and survival outcomes. The later are

partially associated with known high-risk disease factors such as metastatic status,

large cell/anaplastic hystology, MYC amplification and subtotal resection status (Pizer

and Clifford, 2009). However, a significant number of so called standard risk non-

WNT/non-SHH medulloblastomas patients, who do not exhibit any of the high-risk

features still relapse (Taylor et al., 2012; Goschzik et al., 2018).

In the light of urgent necessity for improved disease to improve patient survival,

the development of novel treatments and stratification of current treatments, three in-

dependent studies were recently conducted in order to gain better understanding the

heterogeneity of these subtypes of medulloblastoma (Schwalbe et al., 2017b; North-

cott et al., 2017; Cavalli et al., 2017), using different analytical approaches, cohort

composition and parameter choice, which resulted in each of them reporting different

number of identified subtypes. A consensus study was conducted by Sharma et al.

(2019), which reported 8 subtypes of non-WNT/non-SHH medulloblastomas, thus sig-

nificantly improving understanding of the nature of the disease. While these findings

provide a comprehensive insight into origins and heterogeneity of the non-WNT/non-

SHH medulloblastoma, the practical aspects of pre-treatment prognostication in every

day clinical settings remain challenging.

This chapter concentrates on risk stratification of non-WNT/non-SHH medulloblas-

toma and addresses its potential application in routine practice.
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5.2. Aims

• Identify significantly differentially methylated loci that correlate with survival

in standard risk Group 3 and Group 4 medulloblastoma

• To determine whether methylation markers identified within standard risk

disease are prognostic within high risk disease in Group 3 and Group 4 medul-

loblastoma

• Evaluate integration of identified prognostic methylation markers into an im-

proved risk stratification scheme for non-WNT/non-SHH medulloblastoma

• Validate any findings within independent non-WNT/non-SHH medulloblas-

toma cohort
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5.3. Materials and methods

5.3.1. NMB Standard Risk non-WNT/non-SHH cohort. The standard risk

medulloblastoma (negative for conventional high-risk features such as metastatic dis-

ease, large-cell/anaplasia, MYC /MYCN amplification and subtotal resection) cohort

described in the previous chapter (section 4.3.2.2) (n=75) was used as a discovery

cohort to identify prognostic methylomic markers shown in the third column of the

Tables 4.2 and 5.1.

Matching RNA-seq data for this cohort used for gene expression analysis (see 5.4.11)

was provided Dr D. Williamson, RNA prepared by Ms Amanda Smith and sequencing

was outsourced to Eurofins Scientific.

5.3.2. NMB High Risk non-WNT/non-SHH cohort and available clinico-

pathological correlates. A high risk cohort (n=100) with entry criteria being the

presence of at least one known high risk clinico-pathological correlate (such as metastatic

disease, large-cell/anaplasia, MYC /MYCN amplification and subtotal resection) was

used as a test cohort. The cohort was previously used and available clinico-pathological

covariates were validated in the chapter 4 and described in section 4.3.2.3. Clinical data

for this cohort is represented in the fourth column of Table 4.2 and 5.1.

5.3.3. Age-matched, independent non-WNT/non-SHH cohort with lim-

ited clinical risk information. An aged-matched cohort of 244 non-WNT/non-SHH

samples with only histopathology and metastatic status available previously published

in Cavalli et al. (2017) (refered as Cavalli cohort further in the text) was used to verify

the prognostic potential of the identified methylomic biomarkers in uncertain condi-

tions, that is, when some clinico-pathological risk markers are unavailable and therefore

even the samples that are standard-risk on available features can still, in fact, poten-

tially be high-risk. Clinical and demographic data for this cohort is represented in the

first column of the Table 5.1.

5.3.3.1. Validation of known clinico-pathological covariates. The available clinico-

pathological biomarkers, such as presence of isochromosome 17q, LCA pathology and

metastatic status were assessed using log-rank test and univariable Cox models in order

to validate their prognostic value in the Cavalli cohort.
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5.3.4. Identification of potentially prognostic methylation markers. In

order to identify potentially prognostic methylation probes, all available probes un-

derwent a two-step filtering process. Firstly, potential prognostic methylated probes

were filtered, to ensure that only potentially useful markers were tested, using SD as

described in section 2.13. Secondly, for the remaining 2000 probes Bimodality Index

was calculated and the 402 most bimodal probes were selected as described in section

2.14.

5.3.5. GLM-net to identify significantly differentially methylated CpG

sites within standard risk non-WNT/non-SHH medulloblastoma. The GLM-

net algorithm (section 2.15) was used to identify prognostic methylation markers on a

base Cox model consisting of Group 3 and Group 4 standard risk disease, using the

same cohort of non-WNT/non-SHH standard risk medulloblastoma samples as in the

previous chapter. This algorithm uses elastic-net regularisation to fit a Cox model.

Cross-validation was performed using k-fold CV method with number of fold k and

parameters of alpha 1 (lasso), 0 (ridge) and 0.5 (elastic-net).

The model was fitted using following parameters of the alpha: 1 (lasso), 0 (ridge)

and 0.5 (elastic-net) and cross-validated in each case using 5 fold cross-validation for

the Cox model. The value of lambda that gives minimum mean cross-validated error

was calculated, the active coefficients corresponding to potential prognostic covariates

were identified. subsequently, univariable and multivariable Cox models were built in

order to identify significant covariates among the active coefficients of the model. The

suitability of the identified markers was assessed using C-index (section 2.16).

5.3.6. Additional prognostic covariates and definition of improved stan-

dard risk non-WNT/non-SHH medulloblastoma stratification scheme. In

order to investigate the potential utility of identified prognostic probes, univariable

and multivariable Cox proportional hazard models (section 2.9.2) were constructed

and C-indices (section 2.16) with 95% confidence intervals were calculated.

Univariate Cox proportional hazard models were build for using each identified

prognostic covariate and a multivariate model was constructed using both identified

prognostic probes.

The PNET4 signature (section 4.1.2) was introduced as an additional prognostic

covariate in order to identify whether a combination of the PNET4 risk stratification
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scheme and novel methylation markers offer improved prognostication for the standard-

risk non-WNT/non-SHH medulloblastoma patients.

A multivariate Cox proportional hazard model was constructed using the identified

prognostic loci and PNET4 signature, C-indices calculated and Kaplan-Meier curves

(section 2.5) were plotted.

5.3.7. Investigation of the prognostic potential of the novel risk stratifi-

cation methylation markers in high risk non-WNT/non-SHH medulloblas-

toma. Methylation markers identified using standard risk non-WNT/non-SHH medul-

loblastoma cohort were tested in high risk non-WNT/non-SHH cohort previously used

to test the PNET4 prognostication scheme in Chapter 4.

Univariate Cox proportional hazard models were constructed for each methylation

marker. Cox proportional hazard model was build incorporating both methylation

markers and followed by model that involved both methylation markers combined with

PNET4 signature (section 4.1.2).

5.3.8. Additional prognostic covariates in high risk non-WNT/non-SHH

medulloblastoma. The high risk non-WNT/non-SHH cohort differed from its stan-

dard risk counterpart by containing samples with one or more clinical high risk features

described in the previous chapter (see 4.1.2). The behaviour of previously-reported clin-

ical risk markers was investigated in the NMB high-risk non-WNT/non-SHH cohort

and reported in section 4.4.3.2. The metastatic status is one of the high-risk disease

feature that was consistently found prognostic previously (Shih et al., 2014). There-

fore, negative metastatic status (non-metastatic disease, denominated M- or M0) was

chosen to be tested as an additional prognostic covariate. Additional four Cox propor-

tional hazard models that combined each model described in the previous section with

M0 metastatic status as a covariate were constructed and corresponding Kaplan-Meier

curves plotted.

5.3.9. Validation of the identified methylation markers in an indepen-

dent cohort with only some clinical risk factors available. Identified methy-

lation markers were subsequently tested in the independent external cohort with the

clinical risk information limited to LCA pathology, metastatic status and chromosome

17 status.
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5.4. Results

Prognostic differentially methylated loci correlating with improved survival in stan-

dard risk non-WNT/non-SHH medulloblastoma were identified and investigated along-

side of existing low-risk biomarkers in standard risk cohort. Subsequently, potential

prognostic significance of these methylation markers was investigated in a high-risk

non-WNT/non-SHH cohort and finally, the identified markers were tested in an inde-

pendent external mixed-risk non-WNT/non-SHH medulloblastoma cohort.

5.4.1. Validation of the previously reported clinico-pathological corre-

lates and cytogenetic markers in the high-risk non-WNT/non-SHH medul-

loblastoma cohort. Prognostic significance of previously reported risk markers such

as metastatic and resection status, large cell/anaplastic pathology, MYC/MYCN am-

plification and isochromosome 17q, was investigated in the high-risk non-WNT/non-

SHH medulloblastoma cohort and reported in the previous chapter.

5.4.2. Validation of the previously reported clinico-pathological corre-

lates and cytogenetic markers in the age-matched external cohort with un-

certain risk status . The behaviour of the available previously reported prognostic

markers in the 244 member age-matched mixed-risk non-WNT/non-SHH medulloblas-

toma cohort was investigated. Large cell/anaplastic histology and isochromosome 17q

were found significantly associated with adverse survival (p <0.001 and p = 0.02 cor-

respondently, Figure 5.1 C and D), metastatic status however was not significantly

associated with the survival (p=0.2, Figure 5.1, B). PNET4 scheme previously de-

scribed in the previous was able to distinguish high and favourable-risk cases in this

cohort (p = 0.007, Figure 5.1 A.

5.4.3. Identification of significant methylation markers in the standard-

risk non-WNT/non-SHH medulloblastoma cohort. The GLM-net with Cox re-

gression algorithm was used to identify significant methylation markers in standard

risk non-WNT/non-SHH medulloblastoma.

When using the lasso penalty, all the 402 coefficients of the model were found to

be zero and when using ridge penalty all the coefficients appeared to be ”active” i.e.

non-zero. When using elastic-net penalty with parameter of alpha set to 0.5, 11 out 402
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Figure 5.1. Kaplan-Meier plots of PNET4 signature (A), metastatic status
(B), Large Cell/Anaplastic pathology (C) and presence of isochromosome 17q
(D) in Cavalli dataset (Cavalli et al., 2017); .

coefficients were found to be ”active”, meaning the model proposed by the algorithm

consisted from eleven potentially prognostic probes.

The initial Cox model was build using all eleven probes, however only three of

those probes (”cg26107890” mapping to the gene SLC12A8, ”cg08879470” mapping

to the gene MYO7A and ”cg00982958” mapping to the gene TRIM72 ) proved to be

significant with the p-values of 0.004, 0.0025 and 0.004 respectively.

5.4.4. Assessment of prognostic potential of identified methylation probes

and selection of the cut-off value for classification of methylated and un-

methylated loci. In order to assess the suitability of the identified probes for further
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Gene Probe
Univariate Multivariate

Hazard Ratio p-value
C-index

(concordance)
Hazard Ratio p-value

C-index
(concordance)

SLC12A8 cg26107890
0.1899,

95% CI=[0.036-0.985]
0.0479

0.573

(se = 0.057,

95% CI=[0.4612-0.6847])

0.03254 0.00153

0.737

(se = 0.05

95% CI=[0.639-0.835]

MYO7A cg08879470
0.2256,

95% CI=[0.07704-0.6608]
0.00661

0.621

(se = 0.057,

95% CI=[0.50928-0.732])

0.1724 0.00928

0.737

(se = 0.05

95% CI=[0.639-0.835])

TRIM72 cg00982958
0.1911,

95% CI=[0.06941,0.5264]
0.00137

0.655

(se= 0.057,

95% CI=[0.54328- 0.76672])

0.16474 0.00222

0.737

(se = 0.05,

95% CI=[0.639-0.835])

Table 5.2. Assessment of prognostic methylation markers as continuous vari-
ables in univariate and multivariate analysis of standard risk non-WNT/non-
SHH medulloblastoma cohort. Hazard ratios with 95% confidence interval,p-
values and concordance indices with standard error and 95% confidence inter-
val are shown for each methylation covariate.

analysis, univariate and multivariate Cox models were build and examined using con-

cordance index (Table 5.2). All three potentially prognostic probes were significant

(p-value<0.05) in both univariate and multivariate analyses. However, for the probe

corresponding to the SLC12A8 gene, even though its concordance index exceeded 0.5

(C-Index=0.573), the 95% confidence interval included 0.5, indicating marginal signif-

icance, and therefore, this probe was removed from further analyses.

It is possible that in a routine clinical setting, prognostication involving methylated

loci will be dichotomised for ease of use, rather than measured as a continous variable.

Intensity values derived from Illumina Human Methylation 450k arrays allow to

distinguish between methylated (β ∈ [0.8 : 1]), hemi-methylated (β ∈ (0.2 : 0.8)) and

unmethylated (β ∈ [0 : 0.2]) status of loci (Bibikova et al., 2011). However, since

samples with hemi-methylated prognostic loci showed survival similar to the ones with

methylated loci in MYO7A (66.7% vs 66.1% respectively) and similar to unmethylated

in TRIM72 (25% vs 38%), for the simplicity of the model, it was decided that loci with

β ∈ [0 : 0.5] were unmethylated and loci with β ∈ [0.5 : 1] were considered methylated.

Univariate Cox proportional hazard models were constructed at the cut-off β = 0.5

and the probes showed similar behaviour to the univariate model with the continuous

methylation data: the SLC12A8 gene appeared not to be significant and MYO7A and

TRIM72 proved to be significant with the p-values of 0.01 and 0.001 correspondingly

(Table 5.3).

All p-values were adjusted for multiple testing.
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Gene Probe
Continuous Cutoff

Hazard Ratio p-value
C-index

(concordance)
Hazard Ratio p-value

C-index
(concordance)

SLC12A8 cg26107890
0.1899,

95% CI=[0.036-0.985]
0.047

0.573
(se = 0.057,

95% CI=[0.4612-0.6847])

2.7,
95 % CI=[0.82-9.15]

0.08
0.567

(se = 0.038
95% CI=[0.49-0.64])

MYO7A cg08879470
0.2256,

95% CI=[0.07704-0.6608]
0.006

0.621
(se = 0.057,

95% CI=[0.50928-0.732])

2.87,
95% CI=[1.2-6.8]

0.01
0.596,

(se = 0.044
95% CI=[0.51-0.682])

TRIM72 cg00982958
0.1911,

95% CI=[0.06941,0.5264]
0.001

0.655
(se= 0.057,

95% CI=[0.54328- 0.76672])

4.6,
95% CI=[2,1-9.9] 0.001

0.687
(se= 0.043,

95\% CI=[0.6- 0.77])

Table 5.3. Assessment of prognostic methylation markers as binary vari-
ables at 0.5 cut-off in univariate analysis of standard risk non-WNT/non-SHH
medulloblastoma cohort. For comparison, univariate Cox proportional hazard
models are shown for the methylation scores as a continuos variable. Hazard
ratios with 95% confidence interval, p-values are shown for each methylation
covariate .

5.4.5. Methylation pattern of the selected probes. The distributions of β-

values for the identified probes MYO7A and TRIM72 were assessed by plotting com-

bined histogram and density plots for both loci across non-WNT/non-SHH disease

(Figure 5.2) and boxplots showing distribution of β-values for Group 3 and Group 4 sub-

groups of non-WNT/non-SHH medulloblastoma separately (Figure 5.3). Both probes

show clear bi-modal distribution pattern with a majority of samples being methylated

in standard risk non-WNT/non-SHH disease.

Distribution by subgroups indicates that Group 3 shows mixed methylation profile,

while Group 4 shows predominantly methylated profile for both loci.

5.4.6. Prognostic methylation biomarkers identified lower-risk patients

within standard risk non-WNT/non-SHH medulloblastoma . The methyla-

tion status of the identified probes in the discovery cohort, consisting of 75 standard

risk non-WNT/non-SHH medulloblastomas, was assigned using the β-value cut-off (see

5.4.4) to either the methylated (β >= 0.5) or unmethylated (β < 0.5) subset.

For both identified loci, methylated status was associated with favourable event-free

survival. Cox proportional hazard models are shown in table 5.3 and the Kaplan-Meier

plots build for these models are presented in Figure 5.4.

For the subset with a methylated status for the MYO7A gene, five year event-free

survival was 65% (95% CI 54-79) vs 42 % (95% CI 22-82) in the unmethylated group,

p=0.01.

The subset with a methylated TRIM72 locus had a 75.8% (95% CI 64-89) 5-year

event-free survival rate, as opposed to 26.5% (95% CI 12-57) in the unmethylated

subset, p<0.001.
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Figure 5.2. Methylation pattern of the identified prognostic methylation
markers are shown for MYO7A and TRIM72 genes.

Figure 5.3. Distribution of β-scores of the identified prognostic methylation
markers are shown as box-plots for MYO7A and TRIM72 genes across non-
WNT/non-SHH samples. Median score is shown as thick black horizontal
line. Red line indicates selected β-values cut-off of 0.5. Subgroup 3 stands for
Group 3, and subgroup 4 stands for Group 4 medulloblastoma subtypes.

Multivariate Cox proportional hazards model that takes into account methylation

status of both loci simultaneously (Table 5.3), shows that for a subset of 47/75 samples,

where the identified prognostic probes are both methylated, there was a favourable
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outcome with 5-year survival rate of 76% (95% CI 65-91), and absence of one or the

other, or both methylation markers conferred a poor prognosis (22%, 95% CI 7-70

and 33%, 95% CI 14-85 respectively) with p<0.001, which is also demonstrated on the

Kaplan-Meier plot (Figure 5.5).

MYO7A TRIM72

Figure 5.4. Kaplan-Meier plots of prognostic methylation markers in stan-
dard risk non-WNT/non-SHH medulloblastoma are shown for MYO7A and
TRIM72 genes; Red-methylated, blue - unmethylated.

Figure 5.5. The number of prognostic methylation markers in relationship to
survival in the standard risk non-WNT/non-SHH cohort. Kaplan-Meier plots
are shown for each occurrence of prognostic methylation markers frequency:
0- red, 1 (either MYO7A or TRIM72 )-blue, 2 (both simultaneously) - green.
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5.4.7. Integration of previously reported survival markers with identi-

fied methylomic correlates . An extended Cox proportional hazard model, which

incorporates both identifies prognostic loci and PNET4 prognostic signature (4.1.2)

introduced as an additional covariate, and Kaplan-Meier curves (Figure 5.6) plotted

for this model, show 100% (95% CI 100-100) 5-year survival rate for the subset of 6/75

patients positive for all three prognostic markers, and 73.45% (95% CI 60.57-89.06)

for the subset of 42/75 patients positive for at list two out of three tested biomarkers,

followed by 26% (95% CI 10.3-65.6) and 28.57% (95% CI 8.86-92.18) 5-year survival

rates for the 18/75 patients positive for only one of the markers and the 8/75 subset

with neither of the markers correspondingly.

Figure 5.6. The number of prognostic methylation markers combined with
PNET4 in relationship to survival in the standard risk non-WNT/non-SHH co-
hort. Kaplan-Meier plots are shown for each occurrence of prognostic methy-
lation markers frequency: 0- red, 1 - magenta, 2 - blue, 3 - green.

5.4.8. Investigation of prognostic potential of identified methylomic mark-

ers in high-risk non-WNT/non-SHH medulloblastoma and integration of

the additional prognostic covariates . The behaviour of methylomic markers, that

were prognostic in the standard risk, non-WNT/non-SHH cohort, was investigated in
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Gene Probe
Univariate Multivariate

Hazard Ratio p-value C-index (concordance) Hazard Ratio p-value C-index (concordance)

MYO7A cg08879470
1.55

95% CI=[0.84-2.8]
0.2

0.57
(se = 0.038,

95% CI=[0.49-0.64])

0.67
95% CI=[0.34-1.2]

0.23
0.59

(se = 0.044
95% CI=[0.503-0.67])

TRIM72 cg00982958
1.28,

95% CI=[0.7-2.3]
0.4

0.55
(se= 0.039,

95% CI=[0.47- 0.62])

0.9
95% CI=[0.47-1.72]

0.7
0.59

(se = 0.044
95% CI=[0.503-0.67])

Table 5.4. Assessment of prognostic methylation markers as binary vari-
ables at 0.5 cut-off in univariate and multivariate analysis of high risk non-
WNT/non-SHH medulloblastoma cohort. Hazard ratios with 95% confidence
interval,p-values are shown for each methylation covariate.

the high risk non-WNT/non-SHH cohort of 100 patients (see section 4.3.2.3). As be-

fore, the methylation status of both markers, was dichotomised in the same way as in

the standard risk cohort, using a β-value cut-off of 0.5.

Log-rank tests did not identify any significant relationship between either of the

loci and survival in the high risk cohort (p=0.2 for the MYO7A locus, and p=0.4 for

the TRIM72 ). Neither there was any significant relationship observed between survival

and methylation status of both loci, when taken into account simultaneously. These

relationships are shown in Figure 5.7 and 5.8. 100% survival was observed for samples

positive for all markers when combined with PNET4 scheme, however, either of them

on their own or combination of any 2 did not sure any significant difference in the

survival (Figure 5.8B). Cox proportional hazard models are presented in the Table 5.4

Five year event-free survival in the subset of 69/100 samples with a methylated

MYO7A locus was 52.9% (95% CI 42-67) as opposed to the 49.2% (34-71) in the

subset of 31/100 samples with unmethylated status of this gene, with hazard ratio of

1.55 (95% CI 0.84-2.8), p=0.2.

Five year event-free survival in the subset of 65/100 samples with a methylated

TRIM72 locus was 51.47% (95% CI 39.84-66.5) vs 50.79% (36.51-70.66) in the subset

of 35/100 samples with unmethylated status of this gene, with hazard ratio of 1.28

(95% CI 0.7-2.3), p=0.4.

5.4.8.1. Metastatic stage as a prognostic covariate . As neither of the identified loci

was found significantly prognostic in the high-risk non-WNT/non-SHH medulloblas-

toma but both markers were significant in the standard-risk cohort, it was likely that

one of the high-risk features was playing role. As metastatic status was found prog-

nostic in this cohort and in the previous studies (Chapter 4, Shih et al. (2014)) it

was assumed to be the most likely candidate. Log-rank tests identified a significant

relationship in non-metastatic cases between survival and methylation of the MYO7A
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Figure 5.7. Kaplan-Meier plots of identified methylation markers are shown
for MYO7A and TRIM72 genes in high-risk non-WNT/non-SHH cohort; red-
methylated, blue - unmethylated.

Figure 5.8. The number of prognostic methylation markers (A), and methy-
lation markers combined with PNET4 scheme signature (B), in relationship
to survival in the high risk non-WNT/non-SHH cohort. Kaplan-Meier plots
are shown for each occurrence of prognostic methylation markers frequency:
(A) 0 - red, 1 - blue, 2 - green. (B): 0 - red, 1 - magenta, 2 - blue, 3 - green.

locus (p-value=0.008, Figure 5.9 A), methylation of the TRIM72 locus (p-value=0.03,

Figure 5.9 B) and methylation of both loci MYO7A and TRIM72 simultaneously (p-

value=0.02, Figure 5.9 C). Moreover, survival was significantly associated with the

methtylation of both loci in combination with the previously described PNET4 cyto-

genetic prognostication signature (see section 4.2) (p-value=0.04, Figure 5.9 D).
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Figure 5.9. Kaplan-Meier plots of identified methylation markers are shown
for MYO7A (A); and TRIM72 (B) genes and M0 status as a covariate in
high-risk non-WNT/non-SHH cohort. The number of prognostic methylation
markers with metastatic status (M0) as additional covariate (C), and methy-
lation markers combined with PNET4 scheme signature and metastatic status
(M0) as additional covariate (D), in relationship to survival in the high risk
non-WNT/non-SHH cohort. Kaplan-Meier plots are shown for each occur-
rence of prognostic methylation markers frequency:(A) 0 - red, 1 - blue, 2 -
green. (B): 0 - red, 1 - blue, 2 - green. (C) 0 - red, 1 - magenta, 2 - blue, 3 -
green. (D) 0 - red, 1 - magenta, 2 - blue, 3 - green, 4 - dark green.

5.4.9. Validation of the identified methylomic biomarkers in the external

cohort with limited risk status information . The behaviour of the identified

methylomic markers was investigated in the mixed-risk external age-matched cohort
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(n=244) with limited risk-status information. Available high-risk markers in this cohort

were assessed in section 5.4.2

Log-rank tests identified a significant relationship between overall survival and

methylation of the MYO7A locus (p-value=0.002, Figure 5.10), methylation of both

MYO7A and TRIM72 loci simultaneously (p-value=0.01, Figure 5.11 A), and between

both loci in combination with the PNET4 prognostication signature (p-value<0.001,

Figure 5.11 B). However, the relationship between survival and the methylation status

of TRIM72 was not significant (p-value=0.3, Figure 5.10).

Figure 5.10. Kaplan-Meier plots of identified methylation markers are
shown for MYO7A and TRIM72 genes in mixed-risk external cohort (Cavalli
et al., 2017); red-methylated, blue - unmethylated.

When metastatic stage was added as additional covariate, for the MYO7A locus,

there was a significant difference between 5 year survival rates of patients with two

low risk markers (i.e. non-metastatic and methylated) (80.1% 95% CI 72.3-88.), one

marker (65%, CI 55.6-76) and with no low risk markers (54.6% 95% CI 36.4-82.1),

p-value=0.004 (Figure 5.12 A); no significant difference for TRIM72 with 75.98%,

69.3% and 57.9% for occurrences of 2, 1 and 0 low risk markers correspondingly, p-

value=0.1 (Figure 5.12 B). When the methylation status of both loci were considered

simultaneously alongside metastatic stage, there was no significant difference in 5 year

survival between patients with 2 or 3 (77.9% and 77.3%) low risk markers, but the

difference was significant for patients with 0 (62.5% 95% 36.5-100) or 1 (48%) marker,

and patients with 2 or 3 markers, with p-value=0.005 (Figure 5.12 C), and when

the PNET4 signature was added as an additional covariate: there was no significant
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Figure 5.11. The number of prognostic methylation markers (A), and
methylation markers combined with PNET4 scheme signature (B), in relation-
ship to survival in mixed-risk external cohort (Cavalli et al., 2017). Kaplan-
Meier plots are shown for each occurrence of prognostic methylation markers
frequency: (A) 0 - red, 1 - blue, 2 - green. (B): 0 - red, 1 - magenta, 2 - blue,
3 - green.

difference in 5 year survival between patients with 2,3 or 4 low risk markers (70%, 81%

and 82% respectively), but the difference was significant for patients with 0 (66.7% 95%

37.9-100) or 1 (42.5%, 95% CI 28.7-62.3) marker, and with 2,3 or 4 with p-value=0.0004

(Figure 5.12 D). This means that addition of metastatic status as a covariate did not

significantly change the overall trend in survival of the patients in this cohort.

5.4.10. Formulation of extended testable survival model for risk stratifi-

cation of patients with non-WNT/non-SHH medulloblastoma and its appli-

cation to cohorts of variable risk status . A combined prognostication scheme for

risk assessment in medulloblastoma was formulated by extending the existing PNET4

signature prognostication scheme (Goschzik et al., 2018). This scheme, which was

initially developed for standard risk non-WNT/non-SHH medulloblastoma, was found

to be prognostic in high risk disease earlier in this research project (Chapter 4.1.2).

This scheme is presented on Figure 5.13 with the grey/dotted area indicating a pro-

posed extension for all non-WNT/non-SHH tumours - this alternative pathway places

metastatic patients as well as patients with 0-1 methylated loci and negative for the

PNET4 signature into a high-risk group; non-metastatic patients with either both loci
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Figure 5.12. Kaplan-Meier plots of identified methylation markers are
shown for MYO7A (A); and TRIM72 (B) genes and M0 status as a covariate
in the external non-WNT/non-SHH cohort (Cavalli et al., 2017). The number
of prognostic methylation markers with metastatic status (M0) as additional
covariate (C), and methylation markers combined with PNET4 scheme signa-
ture and metastatic status (M0) as additional covariate (D), in relationship
to survival in the uncertain risk non-WNT/non-SHH cohort. Kaplan-Meier
plots are shown for each occurrence of prognostic methylation markers fre-
quency:(A) 0 - red, 1 - blue, 2 - green. (B): 0 - red, 1 - blue, 2 - green. (C) 0
- red, 1 - magenta, 2 - blue, 3 - green. (D) 0 - red, 1 - magenta, 2 - blue, 3 -
green, 4 - dark green.

methylated loci or PNET4 signature positivity into standard-risk, and non-metastatic

cases positive for PNET4 signature and both loci methylated into a low-risk group.

The derivation of this scheme is reported below.
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Survival models described in sections 5.4.6 and 5.4.7 shown that simultaneous

methylation of both probes confer favourable prognosis (76% 5-year survival) and ab-

sence of methylation of one or the other, or both probes result in dismal outcome

(22% 5-year survival) and that the methylation status of the probes was additionally

prognostic when considered alongside the PNET4 signature.

Further investigation showed that the survival of the non-metastatic cases where

both probes were methylated simultaneously indicated favourable prognosis and was

comparable to the survival in the standard-risk cohort (72%, Figure 5.9 C vs 76%

Figure 5.5) or either absence of methylation of one or the other, or both probes, or

evidence of metastasis, resulted in dismal outcome (38-46% vs 22-33%). In the similar

way, non metastatic cases with both probes methylated in combination with PNET4

signature showed survival identical to the standard-risk cohort (100% Figures 5.9 D

and 5.6).

It was noted, that in stratification models in standard risk (Figure 5.5 and 5.6),

non-metastatic high risk (Figure 5.9) and external (Figure 5.12) cohorts, survival in-

creased with the increase of the total number of independently significant low risk

markers (Table 5.7). Cases positive for PNET4 signature consistently showed better

survival across all cohorts. Therefore, the high risk group is associated with 0-2 positive

prognostic markers (despite some discrepancy shown on Figures 5.9C and D, and 5.12

C and D, which can be attributed to low numbers of the patients with 0 prognostic

markers), standard risk with 2-3 positive prognostic markers and low risk with 3-4

positive prognostic markers.

The results of application of the scheme to these cohorts are shown as Kaplan-Meier

plots on Figure 5.14 for NMB cohorts and Figure 5.15 for Cavalli cohort. Figure 5.14

offers a comparison of application of the scheme to the high risk (A) and standard risk

(B) NMB non-WNT/non-SHH cohorts. The top panels of both figures show flowcharts

for patient risk assignment and the bottom panels show the corresponding Kaplan-

Meier plots. Both cohorts show similar behaviour and significant survival differences

between low risk group (100% for both high risk and standard risk cohorts, labelled

as LRisk on the plots), standard risk (79.5 (95% CI 61.1-100) for high risk NMB

cohort and 72.5 (95% CI 59.8-87.8) for standard-risk NMB cohort correspondingly,

labelled SRisk on the plots) and high risk group (43.2% (95% CI 33.06-56.38) and 23.6%
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Figure 5.13. Decision tree for classification of non-WNT/non-SHH survival
cohorts. Classification tree derived considering 4 potentially prognostic covari-
ates: metastatic disease (M stage), PNET4 signature prognostication scheme,
and methylation markers (MYO7A and TRIM72 ).

(95% CI 9.8-56.78) for high risk and standard risk NMB cohorts correspondingly) with

p-value=0.01 for high risk NMB cohort and p-value=0.0003 for standard risk NMB

cohort. As standard risk NMB cohort is non-metastatic by definition, both pathways

of the scheme (with and without M-stage) produce the same result.

Figure 5.15 illustrates the application of the scheme to the Cavalli data-set of uncer-

tain risk status. Figure 5.15 (A) shows the results of application of the scheme includ-

ing consideration of metastatic status (M-stage): a flowchart for patient assignment

is shown on the top panel and the corresponding Kaplan-Meier plot on the bottom.

There was no significant survival difference in overall 5 years survival between low risk

group (82.2%, 95% CI 68.7-98.27, labelled LRisk on the plot), standard risk (78.24%,

95% CI 68.3-89.63, labelled SRisk on the plot) and high risk group (64.9% with 95%

CI 56.6-74.54, labelled HRisk) with p-value=0.1.

Figure 5.15 (B) shows results of application of the scheme’s pathway to the Cavalli

dataset when metastatic status is disregarded. There is a significant survival difference

in overall 5 year survival between the low-risk group (86.7%, 95% CI 77.03-97.59,

labelled LRisk on the plot), standard-risk (72.9%, 95% CI 64.12-82.3, labelled SRisk

on the plot) and high-risk group (57.97% with 95% CI 46.98-71.54, labelled HRisk)

with p-value=0.007.
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Figure 5.14. DNA methylation markers add prognostic value to PNET4
signature prognostication scheme in the high risk non-WNT/non-SHH co-
hort. (A) Top panel shows flowchart for risk assignment of the patients in
the high risk non-WNT/non-SHH cohort. Bottom panel shows refinement
of PNET4 signature prognostication scheme by addition of the methylomic
markers applied to the high risk non-WNT/non-SHH cohort as Kaplan-Meier
plots of event free survival; (B) Top panel shows flowchart for risk assignment
of the patients in the standard risk non-WNT/non-SHH cohort. Bottom panel
shows refinement of PNET4 signature prognostication scheme by addition of
the methylomic markers applied to the standard risk non-WNT/non-SHH co-
hort as Kaplan-Meier plots of event free survival; Low risk is represented by
green colour, standard risk by yellow and high risk by red colour.

Tables 5.5 and 5.6 show relationship between non-WNT/non-SHH medulloblastoma

subtypes described by Northcott et al. (2017) and Schwalbe et al. (2017b) (both refined

by Sharma et al. (2019)) and risk groups defined by the combined methylomic/PNET4

scheme. All cases defined as low-risk in HR NMB cohort and most in Cavalli dataset

were assosiated with lower-risk subtypes by defined by both studies, however cases

defined as high-risk and standard risk showed mixed association in both cohorts, indi-

cating a need for further stratification in non-WNT/non-SHH medulloblastoma with

clinicopathological high-risk features.
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Cohort HR-NMB Cavalli
Subtype HR SR LR HR SR LR

I 2 0 0 2 0 0
II 8 0 0 10 1 0
III 13 0 0 10 0 0
IV 4 0 1 3 3 0
V 7 3 0 8 2 0
VI 4 2 4 6 5 7
VII 12 2 0 26 14 19
VIII 13 5 0 17 26 2

MBNOS 3 1 0 7 8 1
p 0.002 <0.001

Table 5.5. Cross-tabulation of combined methylomic/PNET4 scheme-
defined risk groups and Group 3/4 disease subtypes described by North-
cott et al. (2017) in High-Risk (HR) NMB and Cavalli cohorts.*MBNOS-
Medulloblastoma not otherwise specified. HR-High-risk, SR-Standard-risk,
LR - Low-risk.

Cohort HR-NMB Cavalli
Subtype HR SR LR HR SR LR

Group3-HR1 8 0 0 10 1 0
Group3-HR2 3 0 0 3 1 0
Group3-LR1 10 0 0 5 3 1
Group3-LR2 8 0 1 8 0 0
Group4-HR 13 5 0 18 26 3

Group4-LR1-1 6 0 0 16 10 6
Group4-LR1-2 5 2 0 7 1 10
Group4-LR2-1 4 2 4 5 6 7
Group4-LR2-2 7 3 0 8 3 0

MBNOS* 2 1 0 9 8 3
p 0.01 0.001

Table 5.6. Cross-tabulation of combined methylomic/PNET4 scheme-
defined risk groups and Group 3/4 disease subtypes described by described by
Schwalbe et al. (2017b) in HR NMB cohort.*MBNOS-Medulloblastoma not
otherwise specified. HR-High-risk, SR-Standard-risk, LR - Low-risk.

SR NMB
cohort

HR NMB
cohort

Cavalli
cohort

Cavalli
cohort

(M-stage disregared)

LR
100%

95% CI (100-100)
100%

95% CI (100-100)
82.2%

95% CI (68.7-98.27)
86.7%,

95% CI (77.03-97.5)

SR
72.5%

95% CI (59.8-87.8)
79.5%

95% CI (61.1-100)
78.24%

95% CI (68.3-89.63)
72.9%,

95% CI (64.12-82.3)

HR
23.6%

95% CI (9.8-56.78)
43.2%

95% CI (33.06-56.38)
64.9%

95% CI (56.6-74.54)
57.97%

95% CI (46.98-71.5)
p 0.0003 0.01 0.1 0.007

Table 5.7. Combined methylomic/PNET4 prognostication scheme compar-
ison table for 5 years survival in non-WNT/non-SHH medulloblastoma: stan-
dard risk NMB cohort vs high risk NMB cohort vs mixed-risk cohort and
mixed-risk with M-stage disregarded cohort (Cavalli dataset)
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Figure 5.15. DNA methylation markers add prognostic value to PNET4
signature prognostication scheme in the mixed risk external cohort. (A) Top
panel shows flowchart for risk assignment of the patients in the Cavalli dataset
(Cavalli et al., 2017). Bottom panel shows refinement of PNET4 signature
prognostication scheme by addition of the methylomic markers applied to the
Cavalli dataset as Kaplan-Meier plots of overall survival; (B) Top panel shows
flowchart for risk assignment of the patients in the Cavalli dataset (Cavalli
et al., 2017) omitting metastatic status. Bottom panel shows refinement of
PNET4 signature prognostication scheme by addition of the methylomic mark-
ers applied to the Cavalli dataset omitting metastatic status as Kaplan-Meier
plots of overall survival; Low risk is represented by green colour, standard risk
by yellow and high risk by red colour.

5.4.11. Relationship between methylation of identified loci and their

gene expression . In the previous sections it was established that methylation status

of the identified probes has effect on survival. In order to explore possible causes of

how this effect could be manifested, and see if change in gene expression might be

affected variable, scatter plots of the gene expression against beta-values for both loci

were plotted. The Pearson’s correlation coefficients in the standard risk NMB cohort

was -0.0041 with p-value=0.983 for MYO7A (Figure 5.16 (A) top panel), 0.1804, p-

value=0.3402, for TRIM72 (Figure 5.16 (A) bottom panel); in high-risk NMB cohort:

0.1087, p-value=0.46621 for MYO7A (Figure 5.16 (B) top panel, 0.007, p-value=0.9624
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for TRIM72 (Figure 5.16 (B) bottom panel); and mixed (standard and high risk NMB

cohorts together): for MYO7A 0.0637 with p-value=0.5796 (Figure 5.16 (C) top panel),

0.0801, p-value=0.4855 for TRIM72 (Figure 5.16 (C) bottom panel). The scatter plots

(Figure 5.16) of the relationship between methylation and gene expression levels of the

MYO7A and TRIM72 showed no correlation between methylation level of the probes

and gene expression.
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5.5. Summary and discussion

In chapter 4, it was demonstrated that the PNET4 signature scheme, which shows

excellent prognostic results in the standard risk non-WNT/non-SHH medulloblastoma,

has prognostic potential in high-risk, non-WNT/non-SHH disease. This chapter inves-

tigated the prognostic utility of methylomic biomarkers in cohorts with varied risk

status, as determined by currently understood clinical and molecular markers, and

the potential for their integration as additional prognostic markers with previously

reported survival markers (Chapter 4.1.2, Goschzik et al. (2018)).

5.5.1. Mixed-risk survival cohort with some unavailable risk-factors to

mimic the real world clinical settings. An age-matched independent cohort of

244 non-WNT/non-SHH medulloblastoma samples previously published in (Cavalli

et al., 2017), was chosen as an external validation cohort, due its distinct features: this

cohort contains both Group 3 and Group 4 samples and has some important risk factor

statuses available, namely histology and metastatic status. However statuses of other

risk factors were unknown. Therefore, this cohort was a mixture of high-risk samples

and samples of standard risk on available features, i.e. the unknown risk factors could

potentially be indicators of either standard or high-risk disease.

It is important to note that, contrary to what is understood in this disease, metastatic

stage was not significantly associated with survival in this cohort. Metastatic status

is a prominent and well-validated high-risk biomarker reported by Shih et al. (2014)

in both Group 3 and Group 4 stratification schemes. In chapter 4, it was shown that

metastatic status of samples in Group 3 and Group 4, when considered separately (sec-

tion 4.4.2.1), or combined (section 4.4.3.2), was significantly associated with survival,

confirming its prognostic value in non-WNT/non-SHH medulloblastoma.

5.5.2. The methylomic signature, consisting of both prognostic mark-

ers, identified favourable risk group in standard risk non-WNT/non-SHH

medulloblastoma and is prognostic in conjunction with the PNET4 signa-

ture scheme. The methylation status of each of the identified prognostic markers

was significantly associated with survival in both univariate and multivariate Cox pro-

portional hazards models, however, the C-indices of each model indicated that the

multivariate model had better predictive value than in the univariate models for both
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MYO7A and TRIM72 (Table 5.2). Kaplan-Meier plots revealed that despite showing

significant survival differences separately, (Figure 5.4), both methylation probes have

to be methylated simultaneously to confer a favourable outcome and unmethylated

status of one or the other is associated with a poor prognosis (Figure 5.5). This obser-

vation could be explained by the fact that both loci are simultaneously methylated in

the majority (62% or 47/75) of the cases while in only 17/75 (22%) cases were samples

discordant for methylation at these two loci.

Addition of the identified methylation markers to the PNET4 cytogenetic prognos-

tication scheme show additional predictive value in the standard-risk cohort, however,

determining methylation status of specific loci is not currently a routinely applied clin-

ical assay and moreover, the PNET4 scheme is capable of identifying a favourable

risk subset of patients carrying the signature, with the survival rate between 93-100%

(Chapter 4, Schwalbe et al. (2017b)) and identification of which is much more simpler

and widespread enough to be used in clinical settings.

5.5.3. Prognostic potential of the methylomic markers in non-metastatic

high-risk and uncertain risk non-WNT/non-SHH medulloblastoma. Neither

of the methylation markers, considered together, or in isolation, were prognostic in the

high risk non-WNT/non-SHH cohort. A potential reason for this could be one of the

following possibilities: the presence of one or more of the high risk clinical markers

could be the reason for the difference in behaviour of the methylation markers, since

this is what defines the difference between the standard-risk and high-risk cohort by

definition; alternatively, over-fitting occurred when these loci were identified in the

standard risk cohort - the cohort size was relatively small (n=75), despite the fact that

thet GLM-net algorithm uses cross-validation to minimise a possibility of over-fitting.

Further analysis demonstrated that these methylation markers behaved in a sim-

ilar manner in both standard-risk and non-metastatic high-risk cohorts. Therefore,

it is likely that discrepancies in the behaviour of the methylation markers in these

two survival cohorts could be attributed to the additional clinical risk factors, such

as metastatic cases present in the high risk cohort rather than because of over-fitting.

This finding demonstrates the possibility for use of these methylation markers for risk

stratification of high-risk disease, and thus, to stratify patients for whom knowledge of
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currently understood clinical risk factors is incomplete. Subsequently, a risk stratifi-

cation scheme was formulated which employed newly developed methylation signature

(both MYO7A and TRIM72 loci methylated), PNET4 signature and M0 metastatic

stage as low-risk markers (Section 5.4.10).

An external cohort of 244 uncertain-risk non-WNT/non-SHH medulloblastomas

with only two clinical high risk factors available, M-stage and LCA pathology, was used

to validate the behaviour of both identified methylomic markers, the combined methy-

lomic signature and the formulated scheme 5.13 with mixed results. While methylation

status of MYO7A locus was significantly associated with survival, methylation status

of TRIM72 showed no association with the survival. When both loci were combined

and considered alongside the PNET4 signature, there was a significant association.

Unsurpisingly, addition of metastatic status as a covariate did not improve risk strati-

fication, as it was not found prognostic in this particular cohort. The newly formulated

prognostic scheme 5.13 showed different behaviour to the high-risk NMB cohort (Fig-

ure 5.14 B): in this mixed cohort, the schema that did not take into account metastatic

status performed better than the one that did 5.15. One possible explanation of this

phenomena may be attributed to the unusual behaviour of metastatic stage in this co-

hort, which, as previously noted, was not prognostic. Also different in this cohort was

that only overall survival information was available, rather than the event-free survival

data considered in the other cohorts. It is important to note that in non-WNT/non-

SHH medulloblastoma, relapse usually confers poor survival and records of time of

relapse are important due to the tendency of this group to relapse later after diagnosis,

sometimes around 5-years after diagnosis (Ramaswamy et al., 2013) with the points of

event-free and overall survival being on the opposing sides of this common time cut-off.

This means that there is a possibility that overall survival is not directly comparable

with progression free survival outcomes.

5.5.4. Gene function of identified survival methylation biomarkers.

5.5.4.1. MYO7A is associated with cancerous growth and metastasis. The MYO7A

(Myosin VIIA) gene, which spans 120 kb and has 49 exons, is located on chromosome

11q13.5 and is a member of the unconventional myosins gene family. Myosins have

similar structure and help transport molecules within cells. MYO7A is expressed in

the inner ear and in the retina. Myosins interact with actin, a protein important for cell
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movement and shape (Williams et al., 2011). Mutations in MYO7A cause syndromic

(USH1B) (Weil et al., 1997) and non-syndromic (DFNB2 and DFNA11) (Tamagawa

et al., 2002) deafness in humans. Mutations in MYO7A are also responsible for recessive

deafness in shaker-1 mice (Gibson et al., 1995; Mburu et al., 1997). In addition, a lack

of myosin VIIA in the retina is associated with retinitis pigmentosa, a condition in

which light-sensing cells of the retina gradually deteriorate, resulting in progressive

vision loss.

Structurally, the tail of MYO7A contains two FERM domains (F for 4.1 protein,

E for ezrin, R for radixin and M for moesin). Some FERM-containing proteins play

important roles in tumor development. Some of these inhibit tumor motility, such as

FRMD5 (Wang et al., 2012), while others promote tumor progression such as ERM pro-

teins (Gautreau et al., 2002). MYO7A variant S1666C (rs2276288) is associated with

increased risk of malignant melanoma in a case-control study, suggesting thatMYO7A

might play important roles in melanoma development (Fernández-Aceñero et al., 2019)

and it was demonstrated that MYO7A interacts with integrin β5 and selectively pro-

motes integrin β5-mediated cell adhesion and migration (Liu et al., 2018). A recent

study also showed that silencing MYO7A by means of RNAi inhibited melanoma cell

growth through upregulation of cell cycle regulator p21 (also known as CDKN1A),

suppressed melanoma cell migration and invasion through downregulation of RhoGDI2

(also known as ARHGDIB) and MMP9 MYO7A depletion suppressed melanoma cell

metastases to the lungs, kidneys and bones in mice. In contrast, overexpression of

MYO7A promoted melanoma xenograft growth and lung metastasis (Liu et al., 2018).

5.5.4.2. TRIM72. The TRIM72 (mitsugumin 53 (MG53)) gene is a six exon gene

located on chromosome 16p11.2 and is a member of the tripartite motif family and

it is considered to be involved in the cell membrane repair system, maintenance of

myocardial cells and linked to several signalling pathways (Lemckert et al., 2016). Re-

cent reports have also suggested TRIM can induce insulin resistance and metabolic

syndrome due to its E3 ligase activity and may be involved in oncogenesis through its

ubiquitin ligase function. Chen et al. (2018) showed that TRIM72 levels were signifi-

cantly lower in colon cancer tissue than in normal tissue and that disease progression

is associated with reduction of TRIM72 expression. Fernández-Aceñero et al. (2019)

and colleagues also reported an association between lower blood levels of TRIM72
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and recurrence and overall dismal prognosis in stage II colon carcinoma, attributing

this finding to the ubiquitin ligase activity of TRIM72 and its relation with several

signalling pathways involved in tumorigenesis.

5.5.4.3. Potential function of methylation of identified loci. Methylation status of

the identified prognostic loci did not correlate with the expression of the corresponding

genes. Both identified loci are located within the gene body. While gene promoter

region methylation is more typically associated with transcriptional regulation, the

function of gene body methylation is not well understood. Evidence suggests that

it could regulate splicing and suppress the activity of intragenic transcriptional units

(Maunakea et al., 2010; Lev Maor et al., 2015).

5.5.5. Future work. The aims set in the introduction to this chapter have been

fulfilled, but many aspects of the findings require further investigation. In particular,

the methylation loci were identified using a relatively small standard-risk cohort, and

validation was performed in cohorts that included samples with high risk features,

which by definition was different from the discovery cohort. Moreover, metastatic stage

behaved unusually in the Cavalli cohort. However, this was the only external cohort

available at the time of the analysis. Therefore, it is important to further validate

the findings first using an independent standard-risk non-WNT/non-SHH cohort and

then in another independent mixed risk cohort with known status of each clinical risk

factor for each sample and event-free survival time available in addition to the overall

survival.

As the scheme, consisting of identified methylation markers, does not outperform

the PNET4 signature prognostication scheme in standard risk non-WNT/non-SHH

medulloblastoma, but shows promising results in the high risk cohort, it would be

interesting to ask the same questions and recapitulate the analysis using the high-risk

cohort as a discovery cohort. Additionally, it would be interesting to use the PNET4

signature prognostication scheme as a base model in order to identify additionally

prognostic methylation biomarkers.

There is suitable high-risk medulloblastoma clinical trial (NCT04696029, however

it is currently in the recruiting stage with estimated completion date March 2029.
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5.5.6. Summary. This chapter has identified biomarkers (MYO7A and TRIM72

methylation) that correlate with survival in standard risk non-WNT/non-SHH medul-

loblastoma, and went on to investigate the prognostic potential of the identified markers

in high-risk and mixed-risk disease on their own as well as in combination with previ-

ously reported PNET4 signature prognostication scheme and other high-risk features.

In this chapter, it was demonstrated that the identified methylomic biomarkers have

prognostic potential in high risk and mixed risk disease and have additional prognostic

value in combination with PNET4 signature prognostication scheme. However, the

need for further validation in larger independent disease cohorts was also identified.



CHAPTER 6

Chapter 6: Discussion and conclusion

6.1. Introduction

Medulloblastoma is the most common paediatric brain tumour, accounting for

about 20% of all childhood brain malignancies and responsible for approximately 650

new cases a year in the Europen Union (Pizer and Clifford, 2009). Current risk strati-

fication is based on clinico-pathological and molecular disease correlates. For instance,

children younger than 16 years of age at diagnosis with WNT-activated medulloblas-

tomas consistently show favourable outcomes (5 year event free survival > 95%), (Lan-

nering et al., 2012; Edelstein et al., 2011), whereas other disease features, including

MYC or MYCN amplification, large cell/anaplastic histology, metastatic disease, or

subtotal resection, indicate high risk disease (5 year event free survival < 60%) (Palmer

et al., 2010).

However, even though in general these features are considered high-risk, in some

molecularly-defined groups of patients, the presence of these markers does not indicate a

poor outcome and in others, absence of high-risk markers does not guarantee favourable

outcomes. In fact, about 20% of standard risk patients, that is, in the absence of

currently understood risk factors, still relapse and die, and most survivors are left

with long-term disabilities as a consequence of their disease and treatment (Edelstein

et al., 2011; Palmer et al., 2010), see also Section 1.3.13. It is thought that improved

prognostication could enable therapy intensification in high-risk patients and therapy

de-escalation to improve quality of survivorship in lower-risk patients. This means

that among the groups of patients who are generally considered as high-risk, it may

be possible to identify subsets of patients that are not actually high-risk and who may

be eligible for therapy de-escalation and to determine additional, currently unknown,

biomarkers within standard-risk disease that will lead to improved survival of these

patients by intensifying their treatment where necessary.

Specific biomarkers found alongside classical clinical markers such as histopathol-

ogy or extent of resection represent additional and important prognostic factors, since

172



6.1. INTRODUCTION 173

biomarker identification and validation can lead to targeted therapy and more person-

alised cancer treatment.

There are now ongoing biomarker driven clinical trials (SIOP PNET 5 MB and

SJMB12, also known as NCT02066220 and NCT01878617 trials respectively), which

investigate the possibility of improving quality of life for favourable-risk patients by

reducing intensity of therapies and improving survival rates by using risk-adapted ther-

apies in the remaining patients. Another important example of the use of biomarkers

in medulloblastoma management is that the prognosis of SHH-activated medulloblas-

toma is related to patient age; additionally, children with TP53 mutation have poor

outcomes (Northcott et al., 2011; Taylor et al., 2012; Zhukova et al., 2013). Ongoing

clinical trials, such as NCT03434262, NCT01601184, NCT00939484 and NCT01239316,

are aimed at evaluating SHH pathway inhibitors at diagnosis or for treating recurrent

SHH-activated tumours or tumours refractory to conventional treatments.

Integration of genomic and epigenomic data is an increasingly widespread way of

getting a better understanding of the complex mechanisms that underlie the develop-

ment and progression of cancer. Methylation arrays allow the simultaneous measure-

ment of both genomic and epigenomic information, reducing costs, processing times

and amount of patient DNA material used in the analysis.

This project investigated the potential of using Illumina Human Methylation arrays

to routinely retrieve genomic information, in particular to estimate genomic copy num-

ber of patient DNA samples, including historical, poor quality DNA samples archived

as FFPE material. In chapter 3, a bioinformatics workflow was described that en-

abled integrated genomic and epigenomic data analysis from the same patient sample

using a single platform that incorporated methods for assessing disease-specific copy

number changes, both large-scale and focal, as well as methods for quality control that

would enable robust copy number analysis using Human Methylation arrays for clinical

material archived as FFPE tissue.

In chapter 4, the novel methods of copy number estimation developed in chapter 3

were applied to assess the prognostic value of a previously-published prognostication

scheme defined by a combination of clinico-pathological and cytogenetic biomarkers

(Shih et al., 2014) and developed using genotyping arrays (Affymetrix SNP6.0). In

addition, a chromosomal signature for risk assignment derived from patients enrolled
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in the PNET4 clincial trial of standard-risk medulloblastoma Goschzik et al. (2018)

was validated and additionally assessed in a cohort of high-risk patients.

Finally, in chapter 5, the utility of DNA methylation biomarkers was investigated

for prognostication within standard-risk non-WNT/non-SHH medulloblastoma. Using

the GLMnet algorithm (Simon et al., 2011), two potentially prognostic methylomic

biomarkers were identified and tested in a high-risk and external, mixed-risk cohort, in

combination with each other and in combination with the PNET4 signature prognosti-

cation scheme validated in chapter 4 (Goschzik et al., 2018). A prognostication scheme

was derived from the resulting Cox models that combined PNET4 signature scheme

with identified methylomic markers and metastatic stage to stratify the patients into

low, standard and high risk groups.
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6.2. CN analysis workflow has potential for integrated array analysis

Chapter 3 demonstrated that Illumina 450k methylation microarrays are well suited

to the estimation of genomic copy number changes in medulloblastoma.

A bioinformatics workflow was developed, containing two pipelines, focused on

large-scale (arm-level) CNA and a focal, locus-specific pipeline. Each of the pipelines

was extensible and could flexibly incorporate alternative methods for CNA analysis.

In addition to the CNA analysis methods, the workflow includes methods for data

pre-processing, sample quality control and copy number profile assembly.

6.2.0.1. Advantages and limitations. The workflow is modular, consisting of three

main modules (stages) each of which can be executed separately. Each of the stages

operates in a standalone manner and can therefore be extended with new bioinformatics

tools and methods or adapted for use with new array platforms as technologies evolve.

The second stage consisted of two pipelines, designed for the identification of large-

scale (arm-level) and focal locus-specific CNA pipelines, in addition to purposely de-

veloped in this project methods, was successfully extended with an alternative pipeline

that uses the new bioinformatics tool conumee (see section 2.7). The pipeline is able to

use the output of stage one and its output can be passed directly onto the third stage

of the workflow.

Both the original and conumee based implementations of methods used in the

large-scale pipeline allowed automatic detection of arm-level genomic copy number

aberrations for both gains and losses.

In case of the focal, locus-specific pipeline, the original pipeline based on Method

I operates only in manual mode - each sample has to be curated by inspection of

the graphical output. However, the additional pipeline based on conumee is able to

identify focal high-level amplifications in a semi-automatic manner, flagging up putative

amplifications for manual curation. The major limitation of the focal detection of locus-

specific changes pipeline is that it is unable to detect focal deletions due to issues with

sensitivity.

In summary, the workflow provides an automated CNA analysis within modular

stages that allows non-bioinformaticians with limited programming experience to assess

aneuploidy and focal changes. The analysis was validated by assessing concordance

between SNP6.0 and 450k-derived copy number calls, providing a proof of concept
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that methylation arrays can be applied to CN analysis with high accuracy, which

has potential to speed up classification and biomarker identification whilst reducing

diagnostic costs, since methylation arrays are currently the gold standard for molecular

subgroup assignment.

In addition, the methodology described in chapter 3 is not confined to analysis

of medulloblastoma copy number aberrations. For example, it was successfully used

for estimation of the copy number status of the PAX5 gene in Acute Lymphoblastic

Leukaemia samples. The results, including plots output produced using the methods

developed for this project, were published in Gabriel et al. (2015) , also attached in B.

6.3. Whole chromosomal aberration signature has utility for rapid disease

risk stratification in clinical settings

The pre-treatment risk assessment of medulloblastoma patients is becoming fun-

damental to the assignment of treatment strategies. In chapter 4, the CN analysis

workflow developed for DNA methylation microarrays was applied to assess two previ-

ously reported prognostication schemes based on clinico-pathological and cytogenetic

markers.

The first part of chapter 4 addressed the validation of the prognostication scheme

by Shih et al. (2014) originally developed using gold-standard genotyping arrays. The

bioinformatics workflow developed in the chapter 3 was applied to three medulloblas-

toma cohorts consisting of single subgroup cohorts: SHH, Group 3 and Group 4, defined

as per the consensus molecular subgrouping paper (Taylor et al., 2012). Samples were

stratified according to the Shih et al. scheme. Results from the stratification of Group

3 and Group 4 were consistent with Shih et al’s findings, however for the SHH sub-

group, results did not show statistically significant differences in survival. Inconsistency

in the results is likely due to a combination of factors, including the discrepancies in

demographic differences between the pubished and validation cohorts, such as paucity

of tumour samples with high-risk features and unavailability of samples from adult

patients in the validation cohort.

In the second part of the chapter, a prognostication scheme, defined by PNET4

signature (at least two of chromosome 7 gain, hromosome 8 loss, and chromosome

11 loss (Goschzik et al., 2018)), was first validated in non-trial, standard-risk non-

WNT/non-SHH disease. Then it was applied to the high-risk non-WNT/non-SHH
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where it was able to identify a low-risk subset with survival rates significantly exceeding

the rest of the cohort (87.5% vs 47% 5-years survival).

In summary, both schemes were successfully validated, and therefore, it was shown

that DNA methylation microarrays and the methods developed in the chapter 3 are

well suited for genomic CNA detection. Moreover, it was demonstrated that the process

of CNA detection can be automated, which gives the methodology an advantage over

commonly used methods such as FISH and MLPA, which do not provide genome-wide

outputs and, moreover, are labour intensive.

6.4. Methylomic signature has prognostic potential in

non-WNT/non-SHH medulloblastoma with limited availability of

known clinical risk markers

In chapter 5, the Illumina HumanMethylation450k microarray was used to iden-

tify prognostic methylomic markers in standard-risk non-WNT/non-SHH medulloblas-

toma. A standard-risk medulloblastoma cohort (SR-NMB, n=75), the same cohort

used in chapter 4 to validate the PNET4 cytogenetic prognostic signature) was tested.

A two-step filtering process was applied to identify methylated loci with a large change

in methylation and a bimodal distribution - after filtering, 402 potentially prognostic

probes were identified as described in sections 2.13 and 2.14. The GLMnet algorithm

(section 2.15) was applied to these loci, which identified three cross-validated poten-

tially prognostic loci, of which two, MYO7A and TRIM72 significantly correlated with

survival in both univariable and multivariable Cox proportional hazard models. Fur-

ther investigation revealed that despite showing significant survival differences when

used in survival models separately, a favourable prognosis was associated with methy-

lation of both probes, whereas an absence of methylation of one probe or the other

conferred a dismal outcome.

Subsequently, the identified methylation markers were added to the PNET4-derived

cytogenetic prognostic signature, described in chapter 4, as a covariate and their addi-

tion showed additional prognostic value.

The identified methylation markers were then applied to the high-risk non-WNT/non-

SHH cohort (HR-NMB, n=100, as used in chapter 4) and to an external, independent,

mixed-risk cohort (Cavalli et al., 2017).
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The methylation markers were significantly associated with survival in the non-

metastatic high-risk non-WNT/non-SHH and mixed-risk non-WNT/non-SHH medul-

loblastoma cohorts, but not for metastatic disease. These findings would require vali-

dation in larger independent cohorts, but nevertheless, this research demonstrates that

methylation arrays are suitable for integrated genomic and epigenomic analysis.

6.5. Risk stratification in non-WNT/non-SHH disease

It is now widely accepted now that medulloblastoma is a highly heterogeneous dis-

ease with a wide range of survival outcomes. The 2012 international consensus on

MB subgroups reported four distinct subgroups of the disease: WNT, SHH, Group

3 and Group 4 (Taylor et al., 2012; Ramaswamy et al., 2016b). Since publication of

this consensus, the clinical and biological relevance of the medulloblastoma subgroups

has been extensively studied. These advances recently led to recognition of medul-

loblastoma subgroups in WHO classification of CNS as four molecular variants of the

disease: WNT, SHH-TP53 -wild-type, SHH-TP53 -mutant, and non-WNT/non-SHH.

The non-WNT/non-SHH subgroup represents Group 3 and Group 4 of the consensus

molecular variants (Louis et al., 2016; Ramaswamy et al., 2016b).

WNT and SHH subgroups are well defined having distinct activating pathways.

WNT subgroup patients under 16 typically exhibit very good survival (over 90%), with

less clear prognosis for the adults (Goschzik et al., 2018; Clifford et al., 2006; Ellison

et al., 2011). SHH patients show more heterogeneous outcome associated with genetic

features e.g. TP53 mutations, histopathology and and age at diagnosis (Schwalbe et al.,

2017b; Goschzik et al., 2018; Zhukova et al., 2013). Group 3 and Group 4 represent the

majority of all medulloblastoma cases - about 65% with heterogeneous clinicopatho-

logical features and widely differing survival outcomes which partially are associated

with known clinical high-risk factors (Pizer and Clifford, 2009). Many patients of this

subgroups relapse in the absence of these risk factors, which shows further molecular

heterogeneity within these tumours (Goschzik et al., 2018; Taylor et al., 2012).

Recently, multiple independent research groups have reported further intra-subgroup

biological and clinical heterogeneity of non-WNT/non-SHH subgroup with inconsistent

definition and numbers of subtypes due to differences in analytical methods and pa-

tients cohorts. An international meta-analysis of Group 3 and Group 4 conducted by

Sharma et al. (2019), that aimed to reconcile the discrepancies, most strongly supported
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a definition of Group 3/Group 4 comprising eight subtypes (I-VIII, with evidence of

subtype VII comprising additional subtypes VII-A and VII-B).

Interestingly, subtypes I, V and VII showed mixed Group 3 and Group 4 compo-

sition and therefore highlighted the interrelationship between the two, indicating that

it might be beneficial taking into account their shared biology when developing novel

prognostication schemes. Research conducted by Schwalbe et al. (2017b) showed that

combining standard-risk subsets of the two subgroups led to a novel risk-stratification

scheme that outperformed previous risk stratification models (Goschzik et al., 2018;

Menyhárt et al., 2019). This scheme is defined by easily identifiable in clinical settings

whole chromosome aberration signature: at least two of chromosome 7 gain, chromo-

some 8 loss and chromosome 11 loss. The signature identified favourable risk subset

of patients with 100% 5 year PFS survival in the discovery cohort and 94.7% (95%

CI 57.5-82.7) in the validation cohort. Research conducted in the chapter 4 not only

confirmed these findings, but also showed that this cytogenetic signature was able to

identify a favourable risk subset of patients in high-risk non-WNT/non-SHH medul-

loblastoma with 87.5% (95% CI 67.3-100) 5-years PFS survival; the survival of the

remainder of the cohort was 47% (95% CI 37.7-59.7).

The work described in chapter 5 identified two methylomic markers that, com-

bined together, were prognostic in standard-risk and non-metastatic high-risk non-

WNT/non-SHH disease, that identified a standard-risk subset with 76.8% (95% CI

65.2-90.53) and 84% (95% CI 68.8-100) survival in standard-risk and high-risk co-

horts respectively. However, neither of the methylomic markers were prognostic in the

metastatic high-risk cohort.

Further investigation in chapter 5 showed that methylomic markers were prognostic

when considered in conjuction with the PNET4 cytogenetic prognostic signature, with

5-year survival being 100% in the subset defined by combination of methylomic signa-

ture (both methylomic markers) and PNET4 signature as covariates in both standard-

risk and non-metastatic high-risk NMB cohorts.

A novel risk stratification scheme based on the findings in chapters 4 and 5 was

developed and described in chapter 5. This scheme was applicable to both standard-

and high-risk disease, and, therefore, was suitable for mixed cohorts or for cohorts

with incomplete clinical and molecular data. In this scheme, patients were assigned to
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three risk groups: low-risk, standard-risk and high-risk. Patients with non-metastatic

disease, and positive for both PNET4 and methylomic signatures were assigned to

a low-risk subset (100%,95% CI (100-10), non-metastatic patients positive for only

methylomic or PNET4 signature were assigned to a standard-risk subset (79.5%, 95%

CI (61.1-100)) and patients who were negative for both signatures or metastatic were

assigned as high-risk (43.2%, 95% CI (33.06-56.3)).

The proposed combined risk stratification scheme performed well in standard-risk

and high-risk cohorts, outperforming both PNET4 scheme and the methylomic signa-

ture in the high-risk cohort. In fact, this scheme reclassified 21% of high-risk patients

to a favourable-risk category, showing that for high-risk disease, addition of methy-

lomic markers might play an important role. However, when validated in an external,

independent, mixed-risk cohort (Cavalli et al., 2017), the scheme performed less well -

it outperformed the methylomic signature in isolation, but demonstrated similar per-

formance to the PNET4 scheme. This could be attributed to the unusual behaviour of

metastatic disease in the non-WNT/non-SHH Cavalli cohort, where metastatic status

was not associated with survival. This is unusual, since previous research showed that

metastatic status is prognostic in non-WNT/non-SHH disease as a whole and in Group

3 and Group 4 separately (Shih et al., 2014).

6.6. Future work

The methodology described in chapter 3 offers a rapid, robust and cost-effective

way to perform integrated genomic and epigenomic analysis on the same sample. It

was developed for use with Illumina HumanMethylation 450K microarrays (contain-

ing 450,000 probes). These arrays have now been discontinued and supplanted with Il-

lumina Human Infinium MethylationEPIC microarrays, which contain 850,000 probes.

Therefore, additional pipelines that are applicable to current EPIC arrays would con-

temporise the workflow. Due to the modular structure of the workflow, the addition

of EPIC array processing methods is straightforward. In fact, some amendments have

been made since the initial analysis in the pre-processing stage as some Minfi package

functions for 450K array processing have been deprecated and therefore had to be re-

placed with newer functions that are compatible with both 450K and EPIC arrays, in

order to enable some additional analysis carried out at a later stage of this research

project.
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The modular workflow may serve as a prototype for a modular bioinformatics soft-

ware suite, consisting of methods designed to process, analyse and display information

extracted from methylation arrays, united by an application programming interface

(API), that would define interactions between the modules and their constituent com-

ponents. The software could potentially also have a graphic user interface for users who

are unfamiliar with scripting. This would allow fully integrated ”one-stop-shop”-style

genomic and methylomic analysis based on methylation arrays.

Potential components of the software, apart from the above-mentioned separate

CNA analysis pipelines for current EPIC arrays and previously-run 450K arrays, could

include methylomic analysis pipelines and additional pipelines for non-human genome

methylation analysis pipelines that would enable integrated analysis of non-human

models of cancer. Recently, Illumina have introduced their new Infinium Mouse Methy-

lation (Illumina, 2020), with over 285k markers across the methylome for high-resolution

epigenetic analyses of diverse murine strains. It may be useful to add a murine methy-

lation analysis pipeline, as well as both human and non-human methylation analysis

modules that would utilise methylation sequencing platforms such as enzymatic methyl-

sequencing (EM-seq). In particular, TrueSeq Methyl Capture EPIC kit (Illumina, 2021)

would be a practical addition, as this is the indented replacement for the arrays used

in the thesis. However, as TrueSeq Methyl Capture EPIC kit is unsuitable for FFPE

samples by design (Illumina, 2021), bisulphite sequencing, suitable for FFPE archived

material, could be introduced into the suite of methods offered by the software suite

to further enhance its functionality. The later would enable detection of copy neutral

loss-of-heterozygosity.

The role of the methylomic markers identified in chapter 5 in tumorigenesis in gen-

eral and in medulloblastoma in particular is unknown. Further analysis showed that

the methylation status of the identified prognostic loci did not correlate with the ex-

pression of the corresponding genes; both identified loci are located within the gene

body. While gene promoter region methylation is more typically associated with tran-

scriptional regulation, the function of gene body methylation is not well understood, it

is suggested that it could regulate splicing and suppress the activity of intragenic tran-

scriptional units (Lev Maor et al., 2015; Maunakea et al., 2010). It would be interesting

to investigate this possibility.
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While low-risk subsets in both HR-NMB and Cavalli cohorts defined by the scheme

are associated with the lower-risk subtypes identified by both Northcott et al. (2017)

and Schwalbe et al. (2017b) classifications, high-risk and standard-risk subsets contain

a mixture of higher-risk and lower-risk subtypes. This implies that the scheme can

be further refined, and that composition by subtypes should be considered. High-risk

and standard-risk subsets are both enriched with high risk subtype VIII samples. This

subtype mostly corresponds to Group4-HR as defined by Schwalbe et al. Subtype

VIII shows a cytogenetically relatively balanced genome with the only common events

being iso17q and loss of chromosome X. This could indicate that potential prognostic

biomarkers may be present amongst differentially methylated loci.

An interesting observation was made that in the PNET4 signature positive subset

of the high-risk NMB cohort (chapter 4), 5 out of 11 samples (45%) were metastatic.

Also, the survival of the subset of high-risk NMB cohort positive for both PNET4 and

methylomic signatures, that contained both metastatic and non-metastatic samples,

reached 100% (Figure 5.8) despite the fact that methylomic signature was not prog-

nostic on its own in this cohort. This might indicate that the PNET4 signature on

its own is prognostic in metastatic non-WNT/non-SHH medulloblastoma, and there-

fore, metastatic samples that are PNET4 signature positive should be re-assigned to

standard-risk rather than high-risk group in the novel prognostication scheme and the

scheme would have to be updated to reflect that. However, the number of samples

in this cohort is too small to make a definitive conclusion at this time and therefore,

validation in a bigger cohort is needed.

It would be beneficial to perform methylomic analysis similar to the one conducted

in the chapter 5 using a high-risk or mixed-risk cohort instead of a standard-risk co-

hort. This might lead to a discovery of prognostic methylomic markers that would be

prognostic in high-risk medulloblastoma and particularly in metastatic disease. An-

other option could be perform a search for additional methylomic biomarkers using a

base survival model that included M-stage and PNET4 signature as known prognostic

covariates.

6.6.1. Conclusion. The research performed during this project demonstrates the

potential for routine cytogenetic assessment concurrent with molecular sub-classification

using DNA methylation microarrays. Additionally, the integrated genetic and epige-

netic stratification from a single platform enabled a more refined prognostication and
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the identification of a subset of patients, currently classified as high risk, who demon-

strate improved outcomes and who may be eligible for reduced intensity treatments

that would offer a better quality of life as brain tumour survivors.
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SampleID p17 q17 Subgroup Sex Age M-Stage Pathology

NMB109 Loss gain Grp4 M 8 M1 CLA

NMB110 Loss gain Grp4 F 10 M1 CLA

NMB111 Neutral neutral Grp4 M 11 M0 CLA

NMB126 Loss gain Grp4 F 8.4 CLA

NMB142 Neutral gain Grp4 M 12.06 M2 CLA

NMB144 Loss neutral Grp4 M 5.14 M3 CLA

NMB145 Neutral neutral Grp3 F 7.01 M0/1 LCA

NMB145p Neutral neutral NA

NMB146 Loss gain Grp4 F 5.6 M0 CLA

NMB148 Neutral neutral Grp3 M 1.54 M0/1 CLA

NMB149 Loss gain Grp4 M 6.33 LCA

NMB151 Loss gain Grp4 M 9.82 M3 CLA

NMB166 Loss gain Grp4 F 9.72 M0 CLA

NMB167 Gain gain Grp4 F 6.51 M0 CLA

NMB17 Neutral neutral Grp3 M 4.7 M0/1 CLA

NMB171 Neutral neutral Grp3 M 7.71 M0/1 CLA

NMB172 Gain gain Grp4 M 10.81 CLA

NMB173 Neutral gain Grp4 M 9.17 M0 CLA

NMB178 Loss gain Grp4 M 4.95 M3 CLA

NMB179 Neutral neutral Grp4 M 2.43 M0 CLA

NMB180 Gain gain Grp4 M 10.66 M0 DN

NMB183 Loss gain Grp4 F 11.6 M3 CLA

NMB185 Gain gain Grp4 M 9.65 M0 CLA

NMB186 Neutral gain Grp4 M 3.73 M1 CLA

NMB187 Loss neutral Grp4 M 3.7 M0 CLA

NMB188 Neutral neutral Grp3 F 8.56 CLA

NMB189 Neutral neutral Grp4 M 11.36 M0/1 CLA

NMB190 Loss neutral Grp4 M 11.71 M0 CLA

NMB227 Gain gain Grp4 M 4.58 M0 CLA

NMB227 Gain gain Grp4 M 4.58 M0 CLA
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SampleID p17 q17 Subgroup Sex Age M-Stage Pathology

NMB250 Neutral gain Grp4 M 4.8 M0 CLA

NMB255 Loss gain Grp4 M 10.26 M0/1 CLA

NMB257 Loss gain Grp4 M 10.14 M3 CLA

NMB259 Loss gain Grp4 M 13.32 M2 CLA

NMB262 Neutral neutral Grp4 F 13.47 M0 NOS

NMB266 Loss gain Grp4 M 7.89 M0 CLA

NMB267 Neutral gain Grp4 M 5.94 M0 LCA

NMB269 Neutral gain Grp3 M 7.61 M3 CLA

NMB273 Loss gain Grp3 M 5.72 M3 CLA

NMB277 Neutral gain Grp3 F 15.32 M3 NOS

NMB283 Neutral gain Grp4 M 7.62 M0 LCA

NMB316 Neutral neutral Grp4 M 9.61 M2 CLA

NMB318 Neutral neutral Grp3 M 5.91 M3 LCA

NMB346 Loss gain Grp4 M 7.75 M0 CLA

NMB357 Neutral gain Grp4 M 3.5 M1 CLA

NMB358 Loss gain Grp4 M 13.85 M0 CLA

NMB361 Loss gain Grp3 F 2.06 M3 LCA

NMB362 Loss gain Grp4 M 7.03 M0 DN

NMB365 Loss gain Grp4 M 4.71 M0 CLA

NMB366 Loss gain Grp4 M 6.28 DN

NMB368 Loss gain Grp4 M 12 M1 NOS

NMB369 Neutral gain Grp4 M 9.24 M0 NOS

NMB373 Neutral neutral Grp4 M 5.25 M2 CLA

NMB374 Neutral neutral Grp3 F 0.64 M0 CLA

NMB378 Neutral neutral Grp3 M 2.49 M0 CLA

NMB381 Gain gain Grp3 M 4.65 M3 NOS

NMB383 Loss gain Grp4 M 15.65 M0/1 NOS

NMB384 Neutral neutral Grp3 M 4.57 M0 NOS

NMB385 Gain gain Grp4 M 9.82 M0 CLA

NMB387 Neutral gain Grp4 M 6.76 M0 NOS
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SampleID p17 q17 Subgroup Sex Age M-Stage Pathology

NMB388 Neutral gain Grp3 M 11.92 M0 CLA

NMB393 Loss gain Grp4 M 11.51 M0 CLA

NMB398 Neutral neutral Grp4 M 5.49 M1 NOS

NMB400 Neutral neutral NA

NMB401 Loss gain Grp4 M 5.8 M3 CLA

NMB403 Loss gain Grp4 M 6 M3 NOS

NMB405 Neutral gain Grp3 M 15.97 M1 LCA

NMB407 Neutral gain Grp4 F 6.34 M0 CLA

NMB410 Loss gain Grp4 M 15.82 M0 CLA

NMB412 Loss gain NA

NMB415 Neutral neutral Grp4 F 7.93 M0 DN

NMB416 Gain gain Grp4 F 4.64 M0 CLA

NMB418 Neutral gain Grp4 M 6.44 M3 CLA

NMB419 Loss gain Grp4 F 6.01 M0 CLA

NMB420 Neutral neutral Grp3 M 1.43 M3 CLA

NMB422 Neutral neutral Grp3 M 3.74 M0 CLA

NMB43 Loss gain Grp4 M 9.96 M2 CLA

NMB433 Neutral neutral Grp3 M 1.89 M0 CLA

NMB438 Neutral gain Grp4 M 5.01 M0 CLA

NMB440 Neutral neutral Grp3 M 5.67 M3 LCA

NMB457 Gain gain Grp4 F 4.71 M0 CLA

NMB459 Neutral neutral NA

NMB463 Neutral gain Grp4 M 7.08 M0 LCA

NMB51 Gain gain Grp4 M 6.76 M0 CLA

NMB52 Loss gain Grp4 F 8.58 M0 CLA

NMB529 Loss gain Grp4 F 8.11 M0 LCA

NMB535 Loss gain Grp3 M 1.97 M3 LCA

NMB536 Loss neutral Grp3 M 8.46 M0 CLA

NMB550 Loss gain Grp4 M 5.83 M0 CLA

NMB610 Neutral neutral Grp3 M 8.88 M0 CLA
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SampleID p17 q17 Subgroup Sex Age M-Stage Pathology

NMB648 Neutral gain WNT F 6.08 M0 CLA

NMB69 Loss gain Grp4 M 7.75 M0/1 CLA

NMB70 Neutral neutral Grp3 F 3.29 M0/1 CLA

NMB725 Loss gain Grp4 M 5.75 M3 CLA

NMB733 Gain gain Grp4 F 6.67 M2 CLA

NMB734 Neutral neutral Grp4 M 4.24 M3 CLA

NMB735 Loss gain Grp4 M 15.92 M0 CLA

NMB736 Neutral gain Grp4 M 6.94 M2 CLA

NMB737 Loss gain Grp4 M 7.59 M3 CLA

NMB739 Loss gain Grp4 M 11.42 M2 CLA

NMB741 Loss gain Grp3 M 2.94 M0 LCA

NMB755 Neutral neutral Grp3 M 6.38 M2 CLA

NMB760 Loss gain Grp3 M 2.96 M3 CLA

NMB762 Loss gain Grp3 M 0.82 M3 CLA

NMB766 Neutral neutral Grp3 F 3.57 M3 NOS

NMB768 Neutral neutral Grp3 F 9.31 M1 CLA

NMB769 Neutral gain Grp3 M 4.01 M3 LCA

NMB77 Loss gain Grp4 F 8.54 M3 CLA

NMB771 Loss gain Grp4 M 15.43 M0 CLA

NMB774 Neutral gain Grp3 M 5.89 M0 CLA

NMB782 Neutral gain Grp4 M 5.44 M0 CLA

NMB785 Loss gain Grp4 M 8.44 M0 CLA

NMB786 Neutral neutral Grp3 M 10.06 M3 CLA

NMB787 Loss gain Grp4 F 13.54 M0 CLA

NMB795 Loss gain Grp3 M 5.43 M0 LCA

NMB799 Neutral neutral Grp3 F 2.46 CLA

NMB801 Loss gain Grp4 M 10.46 LCA

NMB804 Neutral gain Grp3 M 2.8 M1 CLA

NMB807 Loss gain Grp3 M 4.42 M0 CLA

NMB812 Loss neutral Grp3 M 4.12 M0 CLA
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SampleID p17 q17 Subgroup Sex Age M-Stage Pathology

NMB82 Loss gain Grp4 M 5.35 M0 CLA

NMB832 Neutral gain Grp4 M 7.39 CLA

NMB859 Neutral neutral Grp4 M 10.64 M1 CLA

NMB867 Neutral gain Grp4 M 6.56 M1 CLA

NMB868 Neutral neutral Grp3 F 2.74 M0 CLA

NMB872 Neutral neutral Grp3 M 9.08 NOS

NMB889 Neutral gain Grp4 F 8.82 M0 CLA

NMB890 Neutral gain Grp4 M 7.83 CLA

NMB892 Neutral neutral Grp3 M 4.94 LCA

NMB897 Loss gain Grp4 M 14.77 M0 CLA

NMB898-2 Neutral gain Grp4 M 8.7 CLA

NMB907-2 Neutral neutral Grp4 F 7.25 CLA

NMB908-2 Neutral gain Grp4 F 10.91 CLA

NMB910-2 Neutral gain Grp4 M 3.61 CLA

Table A.1. Clinical demographic of the arm-level pipeline test cohort used
for chapter 3. Cohort consisted of 134 primary medulloblastoma tumours
from Newcastle Medulloblastoma Archive. Molecular subgroup, gender, age,
metastatic stage and pathology are shown. Histological subtype is coded as fol-
lows: CLAS- classic; LCA- large cell/anaplastic; DN- desmoplastic/nodular;
MBEN- MB with extensive nodularity; NOS-not otherwise specified.
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Sample ID Subgroup Sex Age Stage Pathology

NMB109 Grp4 M 8 M1 CLA

NMB110 Grp4 F 10 M1 CLA

NMB111 Grp4 M 11 M0 CLA

NMB113 SHH M 3 M0 CLA

NMB115 WNT M 14.81 M1 CLA

NMB125 Grp4 F 5.99 M1 CLA

NMB126 Grp4 F 8.4 CLA

NMB127 Grp3 M 13.55 M1 LCA

NMB129 NA

NMB130 Grp4 M 7.46 M0 CLA

NMB131 WNT M 10.38 M0 CLA

NMB132 Grp4 M 9.34 M0 CLA

NMB138 SHH M 3.3 M0 CLA

NMB139 WNT M 12.68 M0 CLA

NMB141 SHH F 11.71 M0 CLA

NMB145 Grp3 F 7.01 M0/1 LCA

NMB146 Grp4 F 5.6 M0 CLA

NMB149 Grp4 M 6.33 LCA

NMB153 Grp3 M 3.34 CLA

NMB160 NA

NMB162 NA

NMB165 NA

NMB166 Grp4 F 9.72 M0 CLA

NMB167 Grp4 F 6.51 M0 CLA

NMB171 Grp3 M 7.71 M0/1 CLA

NMB172 Grp4 M 10.81 CLA

NMB173 Grp4 M 9.17 M0 CLA

NMB176 Grp3 F 4.31 M0 CLA

NMB180 Grp4 M 10.66 M0 DN

NMB181 SHH M 8.41 M0 LCA
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Sample ID Subgroup Sex Age Stage Pathology

NMB182 MBNOS M 9.64 M0 CLA

NMB184 Grp3 M 8.57 M0 NOS

NMB185 Grp4 M 9.65 M0 CLA

NMB186 Grp4 M 3.73 M1 CLA

NMB191 WNT M 14.39 M0 CLA

NMB203 Grp4 M 6.24 M0 CLA

NMB212 NA

NMB227 Grp4 M 4.58 M0 CLA

NMB250 Grp4 M 4.8 M0 CLA

NMB258 WNT M 11.98 M0 CLA

NMB260 Grp4 F 11.44 M0 CLA

NMB261 SHH M 5.25 M0 NOS

NMB262 Grp4 F 13.47 M0 NOS

NMB264 WNT F 5.14 M1 CLA

NMB266 Grp4 M 7.89 M0 CLA

NMB267 Grp4 M 5.94 M0 LCA

NMB278 SHH M 7.83 M0 DN

NMB282 NA

NMB283 Grp4 M 7.62 M0 LCA

NMB284 Grp4 F 11.14 M0 DN

NMB285 Grp4 F 8.73 M0 NOS

NMB320 Grp4 M 3.82 CLA

NMB330 Grp3 M 4.72 M0/1 CLA

NMB332 NA

NMB335 Grp3 M 4.27 M0/1 LCA

NMB346 Grp4 M 7.75 M0 CLA

NMB347 SHH M 9.85 M0 CLA

NMB357 Grp4 M 3.5 M1 CLA

NMB358 Grp4 M 13.85 M0 CLA

NMB359 WNT F 10.98 M0 CLA
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Sample ID Subgroup Sex Age Stage Pathology

NMB362 Grp4 M 7.03 M0 DN

NMB364 SHH F 3.71 M0 DN

NMB365 Grp4 M 4.71 M0 CLA

NMB366 Grp4 M 6.28 DN

NMB367 WNT M 9.97 M0 CLA

NMB368 Grp4 M 12 M1 NOS

NMB370 SHH F 6.46 M0 CLA

NMB377 Grp4 F 8.96 M0 CLA

NMB380 WNT M 7.86 M1 NOS

NMB382 WNT M 11.71 M0 NOS

NMB383 Grp4 M 15.65 M0/1 NOS

NMB384 Grp3 M 4.57 M0 NOS

NMB386 WNT M 4.72 M0 CLA

NMB387 Grp4 M 6.76 M0 NOS

NMB388 Grp3 M 11.92 M0 CLA

NMB392 NA

NMB393 Grp4 M 11.51 M0 CLA

NMB394 Grp4 M 5.71 M0 NOS

NMB398 Grp4 M 5.49 M1 NOS

NMB405 Grp3 M 15.97 M1 LCA

NMB406 SHH M 7.73 M1 DN

NMB407 Grp4 F 6.34 M0 CLA

NMB409 WNT F 8.96 M0 LCA

NMB410 Grp4 M 15.82 M0 CLA

NMB416 Grp4 F 4.64 M0 CLA

NMB417 WNT M 8.69 M0 CLA

NMB419 Grp4 F 6.01 M0 CLA

NMB422 Grp3 M 3.74 M0 CLA

NMB436 WNT M 4.97 M0 CLA

NMB438 Grp4 M 5.01 M0 CLA
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Sample ID Subgroup Sex Age Stage Pathology

NMB439 SHH F 3.53 M0 LCA

NMB441 Grp3 F 3.17 M0 NOS

NMB445 Grp4 M 7.95 M0 DN

NMB446 NA

NMB45 NA

NMB452 NA

NMB457 Grp4 F 4.71 M0 CLA

NMB46 NA

NMB460 SHH M 3.91 M0 DN

NMB462 SHH M 7.63 M0 DN

NMB503 NA

NMB504 NA

NMB51 Grp4 M 6.76 M0 CLA

NMB517 NA

NMB519 Grp3 M 4.22 M1 LCA

NMB52 Grp4 F 8.58 M0 CLA

NMB529 Grp4 F 8.11 M0 LCA

NMB532 Grp4 M 7.69 M0 CLA

NMB533 Grp3 F 6.79 M0 LCA

NMB536 Grp3 M 8.46 M0 CLA

NMB542 Grp4 M 6.69 M0 CLA

NMB544 NA

NMB548 SHH M 14.69 M0 LCA

NMB549 SHH F 5.68 M0 LCA

NMB550 Grp4 M 5.83 M0 CLA

NMB585 NA

NMB59 NA

NMB60 Grp3 M 5.01 M1 CLA

NMB610 Grp3 M 8.88 M0 CLA

NMB620 Grp4 F 8.85 M0 CLA
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Sample ID Subgroup Sex Age Stage Pathology

NMB626 Grp3 F 3.97 M0 CLA

NMB63 SHH M 11.45 M0 CLA

NMB632 Grp4 M 4.83 M0/1 CLA

NMB637 Grp3 M 3.25 M0 CLA

NMB638 NA

NMB640 NA

NMB642 NA

NMB645 SHH M 12.44 M0 NOS

NMB649 SHH F 1.94 M0 MBEN

NMB659 NA

NMB68 Grp4 F 6.86 M0 CLA

NMB69 Grp4 M 7.75 M0/1 CLA

NMB70 Grp3 F 3.29 M0/1 CLA

NMB706 SHH M 10.79 M0 DN

NMB707 WNT M 15.3 M0 DN

NMB708 WNT F 14.28 M0 NOS

NMB709 Grp3 F 8.48 M0/1 NOS

NMB710 Grp4 F 9.31 M2 DN

NMB713 NA

NMB715 Grp4 F 4.59 M0 NOS

NMB718 Grp4 M 6.91 M0 CLA

NMB723 Grp4 F 3.65 M0 DN

NMB726 SHH M 3.08 M0 DN

NMB729 Grp3 M 6.91 M0 CLA

NMB730 SHH M 11.06 M0 CLA

NMB732 WNT M 6.1 M0 CLA

NMB735 Grp4 M 15.92 M0 CLA

NMB740 WNT F 8.52 M0 CLA

NMB743 SHH M 14.31 M0 LCA

NMB746 NA
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Sample ID Subgroup Sex Age Stage Pathology

NMB754 Grp3 M 3.78 M0 CLA

NMB756 SHH F 3.27 M0 DN

NMB757 WNT F 7.63 M0 CLA

NMB758 Grp3 M 5.21 M1 LCA

NMB761 Grp4 M 11.72 M0 CLA

NMB763 SHH F 8.29 M0 LCA

NMB764 Grp3 M 8.9 M0 CLA

NMB765 WNT F 10.15 LCA

NMB767 Grp4 M 6.95 LCA

NMB768 Grp3 F 9.31 M1 CLA

NMB771 Grp4 M 15.43 M0 CLA

NMB774 Grp3 M 5.89 M0 CLA

NMB782 Grp4 M 5.44 M0 CLA

NMB784 Grp3 M 12.87 M0 CLA

NMB785 Grp4 M 8.44 M0 CLA

NMB787 Grp4 F 13.54 M0 CLA

NMB788 SHH M 10.51 M0 LCA

NMB791 SHH M 11.37 M0 CLA

NMB795 Grp3 M 5.43 M0 LCA

NMB80 Grp4 F 8.02 M0 NOS

NMB800 Grp4 M 10.22 CLA

NMB807 Grp3 M 4.42 M0 CLA

NMB810 SHH F 8.42 M0 LCA

NMB812 Grp3 M 4.12 M0 CLA

NMB816 Grp3 F 4.08 M0 CLA

NMB818 NA

NMB82 Grp4 M 5.35 M0 CLA

NMB820 NA

NMB824 NA

NMB825 Grp4 F 10.24 M0 CLA
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Sample ID Subgroup Sex Age Stage Pathology

NMB828 NA

NMB831 WNT F 7.74 M0 CLA

NMB832 Grp4 M 7.39 CLA

NMB857 NA

NMB858 WNT F 6.43 M0 CLA

NMB859 Grp4 M 10.64 M1 CLA

NMB866 SHH M 8.02 M0 CLA

NMB867 Grp4 M 6.56 M1 CLA

NMB869 SHH M 13.22 M0 CLA

NMB870 WNT F 11.14 M0 CLA

NMB874 SHH M 13.17 M0 NOS

NMB889 Grp4 F 8.82 M0 CLA

NMB890 Grp4 M 7.83 CLA

NMB891 Grp3 F 7.39 CLA

NMB894 Grp4 F 6.82 LCA

NMB897 Grp4 M 14.77 M0 CLA

NMB899 Grp3 M 4.5 NOS

NMB906 NA

NMB915 NA

NMB916 NA

NMB93 WNT M 10.78 M0 CLA

NMB94 WNT F 9.41 M0 CLA

Table A.2. Clinical demographic of the test cohort used for chapter 3.
Cohort consisted of 203 primary medulloblastoma tumours from Newcastle
Medulloblastoma Archive. Molecular subgroup, gender, age, metastatic stage
and pathology are shown. Histological subtype is coded as follows: CLAS-
classic; LCA- large cell/anaplastic; DN- desmoplastic/nodular; MBEN- MB
with extensive nodularity; NOS-not otherwise specified.
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NMB NO Subgroup CLA DN MBEN LCA Sex Age

NMB119 4 1 0 0 0 M 14.37

NMB130 4 1 0 0 0 M 7.46

NMB132 4 1 0 0 0 M 9.34

NMB162 4 1 0 0 0 M 5.14

NMB17 3 1 0 0 0 M 4.7

NMB171 3 1 0 0 0 M 7.71

NMB180 4 0 1 0 0 M 10.66

NMB185 4 1 0 0 0 M 9.65

NMB187 4 1 0 0 0 M 3.7

NMB203 4 1 0 0 0 M 6.24

NMB24 4 1 0 0 0 M 6.69

NMB250 4 1 0 0 0 M 4.8

NMB251 4 1 0 0 0 F 3.36

NMB255 4 1 0 0 0 M 10.26

NMB284 4 0 1 0 0 F 11.14

NMB30 3 1 0 0 0 M 5.42

NMB330 3 1 0 0 0 M 4.72

NMB346 4 1 0 0 0 M 7.75

NMB358 4 1 0 0 0 M 13.85

NMB362 4 0 1 0 0 M 7.03

NMB365 4 1 0 0 0 M 4.71

NMB377 4 1 0 0 0 F 8.96

NMB385 4 1 0 0 0 M 9.82

NMB388 3 1 0 0 0 M 11.92

NMB393 4 1 0 0 0 M 11.51

NMB407 4 1 0 0 0 F 6.34

NMB410 4 1 0 0 0 M 15.82

NMB415 4 0 1 0 0 F 7.93

NMB416 4 1 0 0 0 F 4.64

NMB419 4 1 0 0 0 F 6.01



A. COHORTS 219

NMB NO Subgroup CLA DN MBEN LCA Sex Age

NMB422 3 1 0 0 0 M 3.74

NMB438 4 1 0 0 0 M 5.01

NMB445 4 0 1 0 0 M 7.95

NMB45 4 1 0 0 0 M 12.63

NMB457 4 1 0 0 0 F 4.71

NMB46 4 1 0 0 0 M 5.14

NMB49 4 1 0 0 0 M 5.88

NMB509 4 1 0 0 0 F 9.77

NMB51 4 1 0 0 0 M 6.76

NMB52 4 1 0 0 0 F 8.58

NMB532 4 1 0 0 0 M 7.69

NMB542 4 1 0 0 0 M 6.69

NMB582 4 1 0 0 0 F 7.07

NMB585 4 1 0 0 0 F 13.88

NMB591 3 1 0 0 0 M 7.01

NMB595 4 1 0 0 0 F 11.08

NMB601 4 1 0 0 0 M 5.45

NMB606 4 1 0 0 0 M 13.81

NMB610 3 1 0 0 0 M 8.88

NMB614 4 1 0 0 0 F 9.8

NMB618 3 1 0 0 0 M 3.89

NMB624 4 1 0 0 0 M 9.69

NMB626 3 1 0 0 0 F 3.97

NMB632 4 1 0 0 0 M 4.83

NMB637 3 1 0 0 0 M 3.25

NMB68 4 1 0 0 0 F 6.86

NMB710 4 0 1 0 0 M 8.55

NMB718 4 1 0 0 0 M 6.91

NMB723 4 0 1 0 0 F 3.65

NMB729 4 1 0 0 0 M 6.91
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NMB NO Subgroup CLA DN MBEN LCA Sex Age

NMB735 4 1 0 0 0 M 15.92

NMB748 3 1 0 0 0 M 9.31

NMB754 3 1 0 0 0 M 3.78

NMB764 4 1 0 0 0 M 8.9

NMB782 4 1 0 0 0 M 5.44

NMB784 3 1 0 0 0 M 12.87

NMB785 4 1 0 0 0 M 8.44

NMB787 4 1 0 0 0 F 13.54

NMB800 4 1 0 0 0 M 10.22

NMB812 3 1 0 0 0 M 4.12

NMB825 4 1 0 0 0 F 10.24

NMB832 4 1 0 0 0 M 7.39

NMB890 4 1 0 0 0 M 7.83

NMB891 3 1 0 0 0 F 7.39

NMB897 4 1 0 0 0 M 14.77

Table A.4. Clinical demographics of standard-risk NMB cohort used for
chapters 4 and 5. Cohort consisted of 75 primary high-risk non-WNT/non-
SHH medulloblastoma tumours from Newcastle Medulloblastoma Archive.
Molecular subgroup, gender, age, metastatic stage and pathology are shown.
0 - negative status, 1 - positive status
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Sample ID MYC Resection Metastat LCA Pathology Sex Age Subgroup

NMB118 0 0 0 1 1 F 11.85 4

NMB121 0 0 1 0 0 F 12.57 4

NMB125 0 0 1 0 0 F 5.99 4

NMB127 0 0 1 1 1 M 13.55 3

NMB129 0 0 1 1 1 M 5.14 3

NMB136 0 1 1 0 0 M 10.5 4

NMB140 0 1 0 0 0 M 9.37 4

NMB142 0 1 1 0 0 M 12.06 4

NMB144 0 1 1 0 0 M 5.14 4

NMB145 0 0 0 1 1 F 7.01 3

NMB165 0 1 0 0 0 M 12.71 4

NMB166 1 0 0 0 0 F 9.72 4

NMB167 0 1 0 0 0 F 6.51 4

NMB178 0 0 1 0 0 M 4.95 4

NMB183 0 1 1 0 0 F 11.6 4

NMB186 0 1 1 0 0 M 3.73 4

NMB190 0 1 0 0 0 M 11.71 4

NMB227 0 1 0 0 0 M 4.58 4

NMB257 0 0 1 0 0 M 10.14 4

NMB265 0 0 1 1 1 M 16.43 4

NMB266 0 1 0 0 0 M 7.89 4

NMB316 0 0 1 0 0 M 9.61 4

NMB318 0 0 1 1 1 M 5.91 3

NMB335 0 0 0 1 1 M 4.27 3

NMB344 0 1 1 0 0 M 5.06 3

NMB357 0 0 1 0 0 M 3.5 4

NMB360 0 0 1 0 0 M 11.1 4

NMB365 0 0 0 0 0 M 4.71 4

NMB373 0 0 1 0 0 M 5.25 4

NMB376 0 0 1 0 0 M 3.85 4
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Sample ID MYC Resection Metastat LCA Pathology Sex Age Subgroup

NMB391 0 0 1 0 0 M 10.53 4

NMB401 0 1 1 0 0 M 5.8 4

NMB405 0 0 1 1 1 M 15.97 4

NMB407 0 0 0 0 0 F 6.34 4

NMB411 1 0 1 0 0 M 16.06 3

NMB418 0 1 1 0 0 M 6.44 4

NMB421 0 1 1 0 0 F 12.01 4

NMB43 0 0 1 0 0 M 9.96 4

NMB440 0 0 1 1 1 M 5.67 3

NMB459 0 0 1 0 0 M 4.42 3

NMB463 0 0 0 1 1 M 7.08 4

NMB519 0 0 1 1 1 M 4.22 3

NMB521 0 0 0 1 1 M 6.05 3

NMB529 0 1 0 1 1 F 8.11 4

NMB533 0 0 0 1 1 F 6.79 3

NMB536 0 1 0 0 0 M 8.46 3

NMB546 0 1 1 1 1 M 11.65 4

NMB561 0 1 1 1 1 M 11.47 4

NMB568 0 0 1 0 0 F 5.03 3

NMB583 0 0 1 0 0 M 8.75 4

NMB592 0 0 0 1 1 F 10.46 4

NMB593 0 0 1 0 0 F 16.21 4

NMB595 0 0 0 0 0 F 11.08 4

NMB60 0 0 1 0 0 M 5.01 3

NMB600 0 0 1 0 0 M 5.82 3

NMB615 0 0 1 0 0 M 3.77 3

NMB624 0 0 0 0 0 M 9.69 4

NMB629 0 0 1 0 0 F 12.16 3

NMB630 0 0 1 0 0 M 7.24 3

NMB633 0 0 1 0 0 F 4.54 3
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Sample ID MYC Resection Metastat LCA Pathology Sex Age Subgroup

NMB638 1 0 0 1 1 M 6.78 3

NMB646 0 1 0 0 0 M 13.23 4

NMB718 0 0 0 0 0 M 6.91 4

NMB725 0 0 1 0 0 M 5.75 4

NMB727 0 0 1 0 0 M 6.62 4

NMB733 0 0 1 0 0 F 6.67 4

NMB734 0 0 1 0 0 M 4.24 4

NMB736 0 0 1 0 0 M 6.94 4

NMB737 0 1 1 0 0 M 7.59 4

NMB739 0 0 1 0 0 M 11.42 4

NMB749 0 0 1 0 0 F 7.97 4

NMB755 0 0 1 0 0 M 6.38 3

NMB758 1 0 1 1 1 M 5.21 3

NMB761 0 1 0 0 0 M 11.72 4

NMB767 0 0 0 1 1 M 6.95 4

NMB768 0 1 1 0 0 F 9.31 3

NMB769 1 0 1 1 1 M 4.01 3

NMB77 0 0 1 0 0 F 8.54 4

NMB770 0 0 1 0 0 M 7.98 4

NMB771 0 1 0 0 0 M 15.43 4

NMB772 0 1 1 0 0 M 7.93 4

NMB773 0 1 1 0 0 M 15.3 4

NMB774 0 1 0 0 0 M 5.89 3

NMB78 0 1 1 0 0 M 5.48 4

NMB783 0 0 1 0 0 F 3.47 3

NMB793 0 1 1 0 0 F 8.85 4

NMB795 1 0 0 1 1 M 5.43 3

NMB797 0 0 1 0 0 M 8.29 3

NMB801 0 0 1 1 1 M 10.46 4

NMB805 0 0 1 0 0 M 4.83 4
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Sample ID MYC Resection Metastat LCA Pathology Sex Age Subgroup

NMB816 0 1 0 0 0 F 4.08 3

NMB82 1 0 0 0 0 M 5.35 4

NMB859 0 0 1 0 0 M 10.64 4

NMB867 0 0 1 0 0 M 6.56 4

NMB889 0 1 0 0 0 F 8.82 4

NMB89 0 0 1 0 0 F 4.51 3

NMB894 0 0 0 1 1 F 6.82 4

NMB915 0 0 1 0 0 F 10.4 4

NMB916 1 0 0 0 0 F 9.14 3

NMB92 0 0 1 0 0 M 4.23 3

Table A.5. Clinical demographics of high-risk NMB cohort used for chap-
ters 4 and 5. Cohort consisted of 100 primary high-risk non-WNT/non-SHH
medulloblastoma tumours from Newcastle Medulloblastoma Archive. Molec-
ular subgroup, gender, age, metastatic stage and pathology are shown. 0 -
negative status, 1 - positive status
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AccessionID Age Gender Histology Metastasis Subgroup

GSM2260746 3.65 M Classic 1 Group3

GSM2260747 5.46 F Classic 0 Group4

GSM2260748 6.55 F Classic 0 Group4

GSM2260752 11.05 M LCA 0 Group3

GSM2260753 3.19 M Classic 0 Group4

GSM2260764 4.82 F Classic 1 Group4

GSM2260766 7 M Classic 0 Group3

GSM2260768 5 M Classic 1 Group3

GSM2260769 11 M Classic 0 Group4

GSM2260770 5.83 M Classic 1 Group4

GSM2260771 3.29 M Desmoplastic 0 Group4

GSM2260773 4.48 M Classic 0 Group3

GSM2260782 13 F Classic 1 Group4

GSM2260783 12 M Classic 1 Group4

GSM2260784 6 M Classic 1 Group3

GSM2260785 13 M Classic 0 Group4

GSM2260788 9 F Classic 1 Group3

GSM2260789 11 M Classic 0 Group4

GSM2260790 7 F Classic 0 Group4

GSM2260799 4.82 M Classic 1 Group3

GSM2260812 8 F Classic 0 Group3

GSM2260814 4 M Classic 1 Group4

GSM2260815 10 M LCA 1 Group4

GSM2260819 4 F Classic 1 Group3

GSM2260820 5 M LCA 1 Group3

GSM2260832 4.92 M Classic 0 Group3

GSM2260833 6.61 F Classic 0 Group4

GSM2260834 12.19 M Classic 0 Group4

GSM2260837 5.62 F Classic 0 Group4

GSM2260838 5.8 M Classic 1 Group4
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AccessionID Age Gender Histology Metastasis Subgroup

GSM2260839 10.59 F Classic 0 Group4

GSM2260842 4 M Classic 1 Group3

GSM2260844 8 M Classic 1 Group4

GSM2260845 4 F Classic 0 Group4

GSM2260847 5 F LCA 1 Group4

GSM2260849 4 F LCA 0 Group3

GSM2260850 8 M Classic 0 Group3

GSM2260852 8 M Classic 0 Group3

GSM2260853 12 F Classic 1 Group3

GSM2260859 14 M Classic 1 Group4

GSM2260860 13 M Classic 0 Group4

GSM2260861 10 M Classic 0 Group4

GSM2260863 4 M Classic 1 Group4

GSM2260866 8 M Classic 1 Group4

GSM2260867 5 F Classic 0 Group4

GSM2260869 9 M Classic 1 Group4

GSM2260870 8 M Classic 1 Group4

GSM2260871 10 F Classic 1 Group4

GSM2260872 5 M Classic 1 Group4

GSM2260873 4 M Classic 1 Group4

GSM2260874 11 M Classic 0 Group3

GSM2260875 10 M Classic 0 Group3

GSM2260876 7 M Classic 1 Group4

GSM2260877 6 F Classic 0 Group4

GSM2260878 6 M Classic 0 Group4

GSM2260879 3 F Classic 0 Group4

GSM2260883 3 M Classic 1 Group3

GSM2260884 10 M Classic 0 Group4

GSM2260885 6 F Classic 0 Group3

GSM2260886 14 F Classic 1 Group4
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AccessionID Age Gender Histology Metastasis Subgroup

GSM2260888 9 M Classic 1 Group4

GSM2260890 6 M Classic 0 Group4

GSM2260891 4 M Classic 1 Group4

GSM2260892 5 M Classic 0 Group4

GSM2260893 10 M Classic 0 Group4

GSM2260895 11 M Classic 0 Group4

GSM2260897 4 M Classic 1 Group4

GSM2260899 4 M Classic 1 Group4

GSM2260900 8 M Classic 0 Group4

GSM2260901 4 F Classic 1 Group4

GSM2260902 8 F Classic 1 Group4

GSM2260903 12 M Classic 0 Group4

GSM2260904 7 F Classic 1 Group4

GSM2260906 4 M Classic 0 Group4

GSM2260907 14 M Classic 0 Group3

GSM2260908 4 M Classic 0 Group3

GSM2260910 8 M Classic 0 Group4

GSM2260927 7.4 M Classic 0 Group3

GSM2260928 12.5 M Classic 0 Group4

GSM2260929 11.7 F Classic 1 Group3

GSM2260930 13.4 M Classic 0 Group4

GSM2260931 6.8 F Classic 0 Group4

GSM2260934 9.19 M Classic 0 Group4

GSM2260935 3.53 M LCA 1 Group4

GSM2260962 9.09 M LCA 0 Group4

GSM2260966 13 F Classic 0 Group4

GSM2260968 9 F Classic 1 Group4

GSM2260970 8 F Classic 1 Group3

GSM2260974 4 M Classic 0 Group4

GSM2260976 5 M Classic 1 Group4
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AccessionID Age Gender Histology Metastasis Subgroup

GSM2260977 9 M LCA 0 Group4

GSM2260979 7 M Classic 1 Group4

GSM2260980 11 M Classic 1 Group4

GSM2260984 10 F Classic 1 Group4

GSM2260985 4 M Classic 1 Group4

GSM2260986 3 F Classic 0 Group4

GSM2260988 10 M Classic 0 Group4

GSM2260990 5 M Classic 1 Group4

GSM2260991 8 F Classic 0 Group4

GSM2260993 10 F Classic 0 Group4

GSM2260994 8 M Classic 0 Group4

GSM2260996 6 F Classic 1 Group4

GSM2260997 5 F Classic 0 Group4

GSM2260999 15 F Classic 1 Group4

GSM2261000 8 F Desmoplastic 0 Group3

GSM2261001 8 M Classic 0 Group3

GSM2261002 9 M LCA 0 Group4

GSM2261003 4 F LCA 0 Group4

GSM2261004 7.72 M Classic 0 Group3

GSM2261006 7 M LCA 0 Group4

GSM2261011 5 M MBEN 1 Group4

GSM2261013 9 F Desmoplastic 0 Group4

GSM2261015 11 M Classic 0 Group4

GSM2261016 8 M LCA 0 Group4

GSM2261017 13 F Classic 0 Group4

GSM2261018 9 M Classic 1 Group4

GSM2261020 4 M LCA 1 Group4

GSM2261021 10 F Classic 0 Group4

GSM2261025 5.91 M Classic 0 Group3

GSM2261026 5.16 F Desmoplastic 1 Group4
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AccessionID Age Gender Histology Metastasis Subgroup

GSM2261027 5.16 F Classic 0 Group3

GSM2261032 12 M Classic 0 Group4

GSM2261034 13 F Classic 0 Group4

GSM2261036 7 M Classic 0 Group4

GSM2261038 8 F LCA 0 Group4

GSM2261040 10 M Classic 0 Group4

GSM2261050 4 M LCA 1 Group3

GSM2261053 14.36 M Classic 0 Group4

GSM2261054 12.57 M Classic 1 Group4

GSM2261055 5.99 F Classic 1 Group4

GSM2261057 8.48 F Desmoplastic 0 Group3

GSM2261059 4.92 F Classic 1 Group4

GSM2261071 11 M Classic 0 Group4

GSM2261076 5 M LCA 1 Group3

GSM2261077 10 M Classic 1 Group4

GSM2261078 8 M Classic 0 Group4

GSM2261080 7 M Classic 0 Group4

GSM2261081 6 M Classic 1 Group3

GSM2261086 12 M LCA 1 Group4

GSM2261087 9.3 F Desmoplastic 1 Group4

GSM2261088 10.1 F Classic 1 Group3

GSM2261089 13.54 M Classic 1 Group3

GSM2261090 5.13 M Classic 1 Group3

GSM2261094 7.1 M Classic 0 Group4

GSM2261099 9 M Classic 1 Group4

GSM2261104 7 F LCA 1 Group4

GSM2261105 4 M Classic 0 Group4

GSM2261106 6 M Classic 0 Group4

GSM2261107 9 M Classic 0 Group3

GSM2261108 8 M Classic 0 Group4
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AccessionID Age Gender Histology Metastasis Subgroup

GSM2261110 3 M Classic 1 Group4

GSM2261111 6 M Classic 0 Group4

GSM2261113 8 M Desmoplastic 0 Group4

GSM2261115 4 F Classic 1 Group4

GSM2261116 12 F Classic 0 Group4

GSM2261117 8 M Classic 0 Group4

GSM2261123 9 M MBEN 0 Group4

GSM2261124 7.4 M Classic 0 Group4

GSM2261125 7.3 M MBEN 0 Group4

GSM2261126 5.7 M Classic 1 Group3

GSM2261127 6.9 F Classic 0 Group4

GSM2261128 12.8 M Classic 1 Group4

GSM2261129 7.8 F Desmoplastic 0 Group4

GSM2261130 8.7 F Classic 0 Group4

GSM2261132 7.74 M LCA 0 Group4

GSM2261133 6.96 F LCA 0 Group3

GSM2261134 9 F Classic 0 Group3

GSM2261135 8.44 M Classic 1 Group4

GSM2261138 3 M Desmoplastic 1 Group4

GSM2261140 9 M Classic 0 Group4

GSM2261142 7 M LCA 0 Group3

GSM2261143 11 F Classic 0 Group4

GSM2261146 4 F Classic 0 Group4

GSM2261147 5 F LCA 0 Group4

GSM2261153 6 F Classic 1 Group3

GSM2261157 5 M Classic 0 Group4

GSM2261158 8 M Classic 1 Group4

GSM2261160 4 F Classic 0 Group4

GSM2261161 10 M Classic 0 Group4

GSM2261175 3.92 M Classic 0 Group3
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GSM2261179 16 M Classic 0 Group4

GSM2261182 12 M Classic 1 Group4

GSM2261183 10 M Classic 0 Group4

GSM2261185 8 F Classic 0 Group4

GSM2261186 5 M LCA 0 Group4

GSM2261192 8 M Classic 0 Group4

GSM2261195 8 M Classic 0 Group4

GSM2261197 8 M Desmoplastic 1 Group4

GSM2261198 9 M Classic 1 Group4

GSM2261207 9 F Classic 1 Group4

GSM2261209 5 F Classic 0 Group3

GSM2261210 7 M Classic 0 Group3

GSM2261211 12 F Classic 0 Group4

GSM2261212 10 F Classic 0 Group3

GSM2261214 15 M Classic 1 Group4

GSM2261215 13 M Classic 0 Group3

GSM2261220 9.5 F Classic 0 Group4

GSM2261224 4.18 M Classic 1 Group4

GSM2261225 11.43 M Classic 0 Group4

GSM2261226 10.74 M LCA 0 Group3

GSM2261227 12.99 M Classic 1 Group4

GSM2261228 5.79 M Classic 0 Group4

GSM2261230 3.03 M Classic 0 Group3

GSM2261233 3.08 M Classic 1 Group3

GSM2261238 8.79 M LCA 0 Group4

GSM2261240 7.26 M Classic 0 Group4

GSM2261242 7.71 F Desmoplastic 0 Group3

GSM2261243 14.75 F Classic 0 Group4

GSM2261245 4.3 F Classic 0 Group4

GSM2261258 5 M Classic 0 Group4
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GSM2261288 13.5 M Desmoplastic 0 Group4

GSM2261292 7.8 M LCA 0 Group4

GSM2261303 5.1 M Classic 1 Group3

GSM2261304 4.4 M LCA 0 Group3

GSM2261306 5.3 M LCA 0 Group3

GSM2261313 7.4 M Classic 1 Group4

GSM2261327 11.6 M LCA 0 Group3

GSM2261347 6.9 F Classic 0 Group3

GSM2261351 5.5 M LCA 1 Group3

GSM2261362 9 M Desmoplastic 1 Group4

GSM2261367 4 F Classic 1 Group4

GSM2261369 16 M LCA 0 Group4

GSM2261370 11 F Classic 1 Group4

GSM2261371 8 F Classic 0 Group4

GSM2261373 11 M Classic 1 Group4

GSM2261374 5 M Classic 0 Group4

GSM2261377 6 M Classic 0 Group4

GSM2261379 11 M Classic 1 Group4

GSM2261380 8 M MBEN 0 Group4

GSM2261385 11 M MBEN 0 Group4

GSM2261390 16 M Classic 0 Group4

GSM2261394 4 M Classic 0 Group4

GSM2261402 4 M LCA 0 Group3

GSM2261405 10 F Desmoplastic 1 Group4

GSM2261448 4.25 M LCA 0 Group3

GSM2261450 11 F Classic 0 Group4

GSM2261452 10 M Desmoplastic 0 Group4

GSM2261453 3 M Classic 1 Group3

GSM2261455 4 M LCA 0 Group3

GSM2261457 6 F LCA 0 Group3
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GSM2261458 10 M Desmoplastic 1 Group4

GSM2261459 13 M Classic 0 Group4

GSM2261460 6 M Classic 1 Group4

GSM2261497 6.07 M Classic 0 Group4

Table A.6. Clinical demographics of the Cavalli dataset used for chapter
4. Cohort consisted of 244 primary medulloblastoma tumours from Cavalli
et al. (2017) study. Molecular subgroup, gender, age, metastatic stage and
pathology are shown. Histological subtype is coded as follows: LCA- large
cell/anaplastic; Desmoplastic- desmoplastic/nodular; MBEN- MB with ex-
tensive nodularity
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Epigenetic landscape correlates with genetic
subtype but does not predict outcome in
childhood acute lymphoblastic leukemia
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Although children with acute lymphoblastic leukemia (ALL) generally have a good outcome, some patients do
relapse and survival following relapse is poor. Altered DNA methylation is highly prevalent in ALL and raises the
possibility that DNA methylation-based biomarkers could predict patient outcome. In this study, genome-wide
methylation analysis, using the Illumina Infinium HumanMethylation450 BeadChip platform, was carried out on 52
diagnostic patient samples from 4 genetic subtypes [ETV6-RUNX1, high hyperdiploidy (HeH), TCF3-PBX1 and dic(9;20)
(p11–13;q11)] in a 1:1 case-control design with patients who went on to relapse (as cases) and patients achieving long-
term remission (as controls). Pyrosequencing assays for selected loci were used to confirm the array-generated data.
Non-negative matrix factorization consensus clustering readily clustered samples according to genetic subgroups and
gene enrichment pathway analysis suggested that this is in part driven by epigenetic disruption of subtype specific
signaling pathways. Multiple bioinformatics approaches (including bump hunting and individual locus analysis) were
used to identify CpG sites or regions associated with outcome. However, no associations with relapse were identified.
Our data revealed that ETV6-RUNX1 and dic(9;20) subtypes were mostly associated with hypermethylation; conversely,
TCF3-PBX1 and HeH were associated with hypomethylation. We observed significant enrichment of the neuroactive
ligand-receptor interaction pathway in TCF3-PBX1 as well as an enrichment of genes involved in immunity and infection
pathways in ETV6-RUNX1 subtype. Taken together, our results suggest that altered DNA methylation may have
differential impacts in distinct ALL genetic subtypes.

Introduction

Acute lymphoblastic leukemia (ALL) is the most common
form of childhood cancer, representing more than 80% of
diagnosed childhood leukemia cases in the UK each year,
with a gradually increasing incidence.1 It has long been estab-
lished that chromosomal abnormalities are major drivers of
ALL. Current treatment involves risk stratification guided by
age and white blood cell count (WBC), karyotype, and treat-
ment response.2,3 Although risk stratification and multi-agent
chemotherapy have achieved around 90% survival, about
10% of patients relapse.2 Increasing evidence supports the

inclusion of additional genomic signatures generated by tran-
scriptome, as well as copy number changes and mutations in
risk stratification.4-6 Current efforts are focused on identify-
ing biomarkers for predicting relapse or reducing late compli-
cations of intensified therapy.

DNA methylation is a key epigenetic modification, which
occurs primarily at CpG dinucleotide sequences.7 CpG sites are
underrepresented throughout the genome, with the exception of
short stretches of DNA known as CpG islands, which are often
associated with gene promoter regions.8 The development of can-
cer, including ALL, is associated with dramatic shifts in genomic
DNA methylation, involving both genome wide hypomethylation
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and localized hypermethylation of promoter-associated CpG
islands.9 Hypermethylation of promoter-associated CpG islands
leads to gene inactivation and many important tumor suppressor
genes are known to be inactivated by this mechanism.10 Further-
more, the comparative ease of detection and tumor specificity of
CpG island hypermethylation has led to considerable interest in
their potential as novel prognostic biomarkers.11 Such methylation
based markers may help direct current therapies, such as methyla-
tion of the DNA repair gene, MGMT, which predicts response to
therapy in glioblastoma patients,12 or improve patient stratifica-
tion, as we have demonstrated in chronic lymphocytic leukemia.13

While our understanding of methylation in cancer is improv-
ing, little is known about the role of methylation changes in the
development and progression of childhood ALL. However, a
number of studies have provided preliminary evidence that
altered patterns of DNA methylation may be associated with out-
come in ALL.14-19 Recent advances in whole genome screening
technologies have facilitated the screening of CpG sites at a geno-
mic level, generating a more thorough view of the methylation
landscape15,20-23 and raised the possibility of using such technol-
ogies to identify methylation based biomarkers that could be
used to further improve risk stratification in ALL patients.

In the present study we applied Illumina Infinium Human-
Methylation450 genome-wide methylation arrays that cover
> 485,000 methylation sites, including 99% of Refseq genes as
well as 96% of CpG islands24 to a cohort of 52 diagnostic ALL
samples in a 1:1 case-control design (26 cases who subsequently
relapsed and 26 controls in continuous remission) to identify
novel CpG sites that may be associated with relapse in 4 major
cytogenetic subgroups in BCP-ALL.

Results

Genome-wide patterns of DNA methylation are strongly
associated with cytogenetic subgroups

Genome-wide methylation data derived from the Infinium
HumanMethylation450 BeadChip arrays was compared across
the 52 diagnostic ALL samples and compared with control nor-
mal cells (B lymphocytes (CD19) and monocytes (CD14)
derived from healthy volunteers). The majority of samples
(n D 40) were derived from the 2 most common cytogenetic sub-
types (ETV6-RUNX1, n D 20 ; HeH, n D 20), which despite
having a good outcome still account for »40% of relapse cases
due to their prevalence (Moorman et al. 2010). Additional sam-
ples from less common cytogenetic subtypes [TCF3-PBX1,
n D 6; dic(9;20)(p11–13;q11), n D 6] were also included to
determine if any relapse-associated methylation changes were
independent of genetic subgroup and also to allow clearer defini-
tion of subgroup specificity of DNA methylation in childhood
ALL. Non-negative matrix factorization (NMF) was used to
reduce the dimensionality of the data from 10,000 probes to a
few metagenes. For each factorization rank from 3 to 7, we
assessed stability of factorization by cophenetic coefficient
(Fig. S1) and silhouette scores of consensus subgroup assign-
ments after 100 iterations (Fig. 1A). NMF separated the samples

into 4 groups which corresponded very closely to the subgroups
(Fig. 1), with only a single HeH sample and a single dic(9;20)
sample failing to cluster with their genetic counterparts (we have
excluded the possibility of cryptic TCF-PBX1 translocation via
interphase FISH). The identified subgroups are characterized by
a positive silhouette score (Fig. 1B), indicative of samples being
placed into the correct cluster, and show clear separation by prin-
cipal component analysis (PCA) of the methylation data
(Fig. 1C). This association with cytogenetic subtype is consistent
with previous reports.15,20-23 The differentially methylated CpG
sites that demonstrated subtype specificity are listed for each sub-
type in supplementary Table 1. Furthermore, there were clear
differences in the genomic locations and directionality of methyl-
ation changes between the subtypes; for example, the ETV6-
RUNX1 and dic(9;20) subtypes exhibited relatively more hyper-
methylation than hypomethylation, while changes in the HeH
and TCF3-PBX1 subtypes were predominantly hypomethylated
(Fig. S2). We have performed a gene enrichment pathway analy-
sis of these subtype specific differentially methylated cytosines
(DMCs) after correcting for probe distribution and multiple test-
ing in KEGG database. Interestingly, this analysis identified 10
pathways that were significantly over-represented in the ETV6-
RUNX1 DMCs (after correction for multiple testing) and 8/10
of these pathways were related to immune function. While no
pathways were identified as over-represented in the HeH and dic
(9;20) subtypes, a highly significant association (P D 5.7 £
10¡17, after correction) was found with neuroactive ligand-recep-
tor interaction in the TCF3-PBX1 subtype (online supplementary
Table 2). The association between subtype specific DMCs and
specific pathways further implicates the differential methylation
in different biological behavior of the cytogenetic subtypes.

All samples in the cohort had also previously been analyzed
using Multiplex Ligation-dependent Probe Amplification
(MLPA)25 to identify copy number alterations in genes with a
known role in ALL development (Fig. 2A). It is possible that the
complexity of data derived from the HumanMethylation450
BeadChip arrays was masking changes at such key leukemia asso-
ciated genes or that DNA methylation changes may be acting as
a second hit at sites of heterozygous deletions. Therefore, methyl-
ation at all CpG sites associated with the 8 loci (CRLF2, IL3RA,
and CSF2RA, considered as PAR1 locus) covered by the MLPA
analysis were extracted from the array data. As illustrated for
PAX5 in Figure 2B, methylation levels were similar across the
sample set. Raw methylation data could also be used to assess
potential changes in copy number.26 This analysis confirmed the
MLPA data showing PAX5 deletions in 5 of the patients
(Fig. S3). However, methylation of PAX5 did not vary in the
samples with confirmed deletions (Fig. 2B), suggesting that
altered methylation was not functioning as a second hit, at least
for PAX5.

Genome-wide patterns of DNA methylation are not
significantly different in patients that subsequently relapsed

The development of relapse is a crucial determinant of out-
come, as survival rates following relapse are much lower. Identifi-
cation of patients at the time of diagnosis who will subsequently
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relapse and, indeed, those unlikely to relapse, is extremely valu-
able to optimize their treatment. Consequently, genome-wide
methylation data was analyzed, using a number of different
methods, to attempt to discover methylation-based signatures in
diagnostic samples that were predictive of subsequent relapse.
As described above, unsupervised NMF consensus clustering sep-
arated the samples by underlying genetic subgroups (Fig. 1).
However, within each subgroup, there was no evidence of cluster-
ing of samples based on eventual outcome. In case the strong
association with cytogenetics was masking a relapse signature,
this analysis was repeated following the removal of data from the
probes that were differentially methylated between subgroups;
however, this analysis also showed no evidence of clustering
according to outcome and no individual CpG site exhibited a sta-
tistically significant correlation with outcome (data not shown).
Furthermore, analysis of individual CpG sites [differential CpG

sites were classed as having a difference in mean b value > 0.2
and an adjusted P-value < 0.01 (Nordlund-Backlin et al. 2013)]
did not identify any individual CpG sites that was significantly
associated with relapse. Genetic subtype specific analysis, for the
ETV6-RUNX1 and HeH subgroups, also yielded no individual
probes significantly associated with subsequent relapse.

Altered DNA methylation often occurs coordinately across
genomic regions, such as CpG islands. To determine whether
any such regions were differentially methylated between sam-
ples from patients who subsequently relapsed and those who
did not, a bump-hunting algorithm27 within the Bumphunter
package was utilized, with 1000 permutations. Probes were
clustered into a region based on distance: all differentially
methylated probes that were located within 300 bp of another
differentially methylated probe were placed into the same clus-
ter group, so that window widths were flexible and defined by

Figure 1. Methylation patterns identify cytogenetic groups in BCP-ALL. (A) Consensus clustering of DNA methylation patterns in 52 BCP-ALL samples.
NMF using standard methods was carried out over 100 runs for 3–6 metagenes, with the cophenetic coefficient supporting 4 groups (metagenes). Col-
ored squares above each column indicate the cytogenetic subgroup for each samples, showing the single ETV6-RUNX1 samples and single dic(9;20) sam-
ple that clustered with the TCF3-PBX1 group (group 1). (B) Silhouette plot by sample type and cytogenetic groups. Silhouette plots of consensus NMF
subgroups demonstrate close relationships between cytogenetic subgroup and methylation subgroup assignment. For each subgroup, the number of
members, the percentage of cluster members and average silhouette (si) width are shown. Samples marked with an asterisk indicate outlier cytogenetic
cases that do not cluster with patients of the same cytogenetic subtype. (C) Principal component analysis based on 10000 most variable DMCs, labeled
by methylation subtype. The first 3 principal component scores are shown for each sample. For each group, covariance spheroids, colored by the pre-
dominating cytogenetic subgroup, are plotted along the 95% confidence intervals.
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proximity and number of differentially methylated probes,
rather than by fixed size. P-values were also adjusted to control
the false discovery rate (FDR) using the Benjamini–Hochberg
method. However, neither approach identified regions in
which the levels of methylation were significantly different
between samples from the 2 different outcome categories at
5% FDR and 10% family-wise error rate (FWER), when all
samples were analyzed simultaneously (Table 1). This was also
largely true when the HeH and ETV6-RUNX1 groups were
analyzed separately, although a weak association was found at
the EXT1 loci specifically in the HeH subgroup (Table 1).
Genetic subtype specific analysis was again restricted to ETV6-
RUNX1 and HeH subgroups. Single gene analysis utilizing
pyrosequencing validated the array-generated data at the EXT1
locus; however, expansion of the analysis to additional

diagnostic samples did not support an association between
EXT1 methylation and subsequent relapse (Fig. S4).

A recent study by Nordlund et al.20 reported genome-wide
methylation patterns for multiple childhood ALL cytogenetic
subgroups, including the 4 included in this study. Similar to the
results reported above, they also identified large-scale differences
in DNA methylation between different cytogenetic subgroups.
To assess the reproducibility of the genetic subgroup-specific
methylation profiles identified by Nordlund et al., we deter-
mined whether the CpG marker sets identified as specific for
individual cytogenetic subgroups in that study would also iden-
tify individual cytogenetic subgroups in our data set. As shown in
Figure 3, all 4 cytogenetic subgroups were identified using their
markers sets [with 54.0% (1141 / 2114), 37.7% (1136 / 3014),
28.3% (314 / 1110), 14.9% (353 / 2370) subtype specific CpG

A

B

Figure 2. (A) Demographic and clinical features of 52 diagnostic bone marrow samples. Abbreviations: WBC, white blood cell; NCI risk, national cancer
institute risk; SR, standard risk; HR, hazard ratio; HeH, High hyperdiploidy. Some of the gene aberrations listed are linked to the primary genetic aberra-
tions (i.e., CDKN2A/B and PAX5 in dic(9;20), rather than true focal aberrations). Similarly, gene abberations resulting from whole chromsome gain (HeH) or
loss have not been shown. (B) Deletion of PAX5 was observed in 5 patients via MLPA shown in pink blocks above. We clustered the data by looking at
methylation probes 5 kb upstream and downstream of PAX5. The result shows that deletion status of PAX5 does not seem to correlate with methylation
values and seems independent of copy number.
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markers concordant with our analysis for ETV6-RUNX1, HeH,
TCF3-PBX1, and dic(9;20) respectively, using the same criteria
for defining subtype specific methylated loci].20

Nordlund et al. also identified a set of 90 DMCs associated
with relapse, specifically in ETV6-RUNX1 positive cases. To vali-
date this marker set for the identification of subsequent relapse,
we applied these 90 relapse predicting DMCs to our datasets.
However, as shown in Figure 3E, unsupervised clustering using
the same 90 CpG sites, did not appear to differentiate between
relapse and non-relapse samples (specifically in ETV6-RUNX1
positive cases). To determine whether single CpG sites from
within this group of 90 sites were associated with relapse, each
locus was assessed individually in our ETV6-RUNX1 positive
sample set. However, only one of the 90 loci exhibited a statisti-
cally significant association with subsequent relapse in our sample
set (cg17033047 within the KCNA3 locus, P D 0.01, uncor-
rected P-value, higher methylation levels in relapse samples).
Expanding the analysis for this site to an additional 57 ETV6-

RUNX1 positive cases (of which 3 relapsed) failed to confirm the
differential methylation seen in the 20 samples used for the array
analysis (Fig. S4D). As the size of the ETV6-RUNX1 positive
sample set was small (n D 20) with only 10 relapsed ETV6-
RUNX1 cases, the possibility cannot be ruled out that weak corre-
lations may be detectable in larger sample sets. However, it
should also be noted that our data set had more relapsed ETV6-
RUNX1 cases than Nordlund et al.20 Taken together, these
results suggest that DNA methylation at these loci is unlikely to
be of significant clinical utility for the prediction of relapse in
ETV6-RUNX1 positive childhood ALL.

Discussion

Alterations in DNA methylation are highly prevalent in child-
hood ALL, suggesting that they may have a major impact on the
biology and clinical behavior of the disease, as well as raising the

Table 1. Differentially methylated regions identified by Bump Hunter analysis

All samples

Chr Start End No. of CpG sites P-value FWER1 Width (bps) Nearest Gene Distance to TSS2

chr10 134765033 134765099 3 0.00029 0.354 67 TTC40 ¡8944
chr8 119124051 119124311 4 0.00049 0.443 261 EXT1 0
chr21 38468606 38468606 1 0.00042 0.750 1 TTC3 10516
chr2 77235218 77235218 1 0.00066 0.883 1 LRRTM4 514284
chr10 675888 675937 3 0.00242 0.887 50 DIP2C 59671
chr17 68164468 68164468 1 0.00093 0.934 1 KCNJ2-AS1 1075
chr9 124022933 124022933 1 0.00101 0.942 1 GSN 59172
chr3 168308798 168308798 1 0.00118 0.962 1 EGFEM1P 59276
chr6 32774788 32774788 1 0.00121 0.963 1 HLA-DOB 10037
chr1 248020692 248021091 4 0.00483 0.971 400 TRIM58 191
chr10 134765033 134765099 3 0.00029 0.354 67 TTC40 ¡8944
ETV6-RUNX1
Chr Start End No. of CpG sites P-value FWER Width (bps) Nearest Gene Distance to TSS
chr5 158086454 158086454 1 1.64E-05 0.063 1 EBF1 437160
chr15 69744390 69744684 4 7.88E-05 0.236 295 RPLP1 ¡475
chr8 1651128 1651128 1 7.30E-05 0.242 1 DLGAP2 201596
chr4 134069593 134070441 10 0.00015 0.404 849 PCDH10 ¡29
chr5 178986620 178986906 5 0.00037 0.670 287 RUFY1 0
chr11 100760935 100760935 1 0.00031 0.693 1 ARHGAP42 202528
chr6 160023581 160024144 6 0.0009 0.898 564 SOD2 90209
chr21 46077454 46077731 6 0.0011 0.924 278 TSPEAR 53764
chr14 76015669 76015669 1 0.00079 0.946 1 BATF 26885
chr10 124639132 124639260 7 0.00135 0.952 129 FAM24B 0
HeH
Chr Start End No. of CpG sites P-value FWER Width (bps) Nearest Gene Distance to TSS
chr8 119124051 119124462 5 1.58E-06 0.006 412 EXT1 0
chr10 675888 675937 3 0.00019 0.380 50 DIP2C 59671
chr16 66458043 66458043 1 0.00021 0.560 1 BEAN1 ¡3157
chr4 99850801 99851281 9 0.00047 0.625 481 EIF4E 505
chr22 25201958 25202163 6 0.00053 0.664 206 SGSM1 0
chr17 76875678 76876239 4 0.00055 0.669 562 TIMP2 42244
chr10 113944114 113944114 1 0.00031 0.695 1 GPAM ¡577
chr5 150284600 150284796 2 0.00065 0.786 197 ZNF300 ¡55
chr1 248020377 248021091 8 0.00083 0.802 715 TRIM58 0
chr8 19459672 19460243 4 0.00089 0.807 572 CSGALNACT1 0
chr8 119124051 119124462 5 1.58E-06 0.006 412 EXT1 0

1P-Value corrected for family-wise error rate, with B D 1000 permutations.
2Transcriptional start site.
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Figure 3. Principal component analysis of subtype-specific DMCs identified by Nordlund et al. recapitulates genetic subgroup separation and validates
them as biomarkers for these subgroups. For each plot, 2 covariance spheroids have been plotted along the 95% confidence intervals for (A) dic(9;20)
and others; (B) TCF3-PBX1 and others; (C) ETV6-RUNX1 and others; (D) HeH and others. Individual samples are colored by their cytogenetic status; TCF3-
PBX1 cases are shown red, ETV6-RUNX1 in orange, dic(9;20) in blue and HeH in purple. (E) Previously reported relapse-associated DMCs in ETV6-RUNX1
positive cases are not recapitulated in our data set. The color bar at the top of the heatmap indicates sample type; continuous remission and subse-
quently relapsing patients are shown gray and black respectively. The heatmap shows the methylation status for 90 relapse-associated probes identified
by Nordlund et al.20 Samples (columns) and probes (rows) were clustered using complete linkage and Euclidean distance. Fully methylated probes are
shown dark red, unmethylated probes shown dark blue and hemi-methylated probes are shown in white.
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possibility that differences in DNA methylation patterns at diag-
nosis may be useful biomarkers for prediction of clinical out-
come. In this study, genome-wide methylation analysis was
carried out on 52 diagnostic ALL samples from 4 cytogenetic
subgroups, in which 50% of patients subsequently relapsed and
50% remained in long-term remission. NMF consensus cluster-
ing identified multiple sub-groups within the methylation data;
however, these were related to the underlying genetic differences
and did not differentiate between samples with different relapse
status. Different bioinformatics approaches were undertaken in
an attempt to identify a single or a small number of methylation
variable sites that could identify at diagnosis those patients most
likely to relapse. However, none of these approaches identified
any loci whose methylation status was significantly associated
with subsequent relapse. Some limited evidence for an association
with relapse was found at sites within the EXT1 and KCNA3 loci
in the array data; however, neither were confirmed by pyrose-
quencing analysis of additional samples. The results presented
here, in combination with previously published data,20 suggest
that genome-wide methylation profiles, identified using the
Infinium HumanMethylation450 BeadChip array platform, may
be unlikely to yield clinically useful biomarkers for prediction of
relapse in childhood ALL over and above the prognostic informa-
tion already provided by cytogenetic subgroups.

However, there was a clear correlation between genome-
wide patterns of DNA methylation and the different cyto-
genetic subgroups, consistent with previous studies.15,20-23 In
addition, we were able to use the marker sets recently identi-
fied by Nordlund et al.,20 whose analysis utilized the same
array platform, on our data set and validate their cytogenetic
specific markers. Thus, while DNA methylation profiles did
not appear to augment the prognostic information provided
by standard cytogenetics, the consistency of the methylation
changes in relation to cytogenetic subgroups suggests that
these altered patterns of DNA methylation may be an impor-
tant determinant of their different clinical behavior. Further-
more, the results suggest that genomic DNA methylation
could be used as a surrogate for cytogenetic analysis in cases
where genomic DNA, but no intact cells, was available.

While methylation profiles associated with cytogenetic sub-
groups could be validated, the marker set suggested to predict
outcome in ETV6-RUNX1 positive cases did not validate in
our data set. A potential cause would be that the patients were
treated on different protocols, although the treatment proto-
cols used were highly similar.28,29 In addition, the patient
populations were derived from different geographical loca-
tions, so differences in genetic background may have also
played a role. However, the results do indicate that the identi-
fied methylation profile is not readily portable to other patient
populations.

Although the cytogenetic subtypes showed a clear correlation
with methylation profiles, the data presented here and previously
published20,23 showed that this clustering was not absolute. For
example, in the data set presented here, one dic(9;20) and one
HeH case clustered with the TCF3-PBX1 samples. In such cases,
it is not clear whether the risk of relapse in the patients would

reflect their cytogenetic subgroup or be equivalent to the sub-
group defined by the methylation profile. However, the compara-
tive rarity of these cases (only 2/52 samples in this study) meant
that a much larger study would be required to have sufficient
power to address the potential prognostic significance of such
“outlier” samples.

While analysis of DNA methylation profiles has identified
subtype specific methylation changes, it is important to note that
many of the alterations identified in this and other studies are
shared across cytogenetic subgroups. This implies that a large set
of epigenetic changes are either a prerequisite for, or an inevitable
consequence of, the development of ALL. In general, the consis-
tency of alterations seen in ALL and indeed other tumors has led
to the hypothesis that cancer, in many instances, may be initiated
specifically from a set of cells that have already undergone exten-
sive epigenetic changes.30 Thus, analysis of the targets for altered
DNA methylation that are conserved across all ALL subtypes
may be able to identify key drivers of the disease that could be
targets for the development of novel therapeutic approaches.

The cytogenetic subtype specificity of many of the methyla-
tion changes suggests that these differential methylation patterns
may be important in the different biological/clinical behavior of
the different cytogenetic groups. Here we used gene enrichment
pathway analysis to investigate whether subtype specific DMCs
might be preferentially targeting specific biological pathways.
Our observation of gene enrichment pathways in ETV6-RUNX1
involving immunity and infection pathways (8/10 pathways with
a significant association are related to immune function) is a
potentially exciting avenue for future analysis, as it may relate to
previous reports that have suggested abnormal immune response
as a major factor shaping the trajectory of leukemogenesis.31,32

In the TCF3-PBX1 subtype, we identified a remarkable enrich-
ment for genes in the neuroactive ligand-receptor interaction
pathway. Interestingly, a large fraction of these methylation
changes map to gene promoter regions, suggesting that they are
likely to be associated with functional changes in gene expression.
Previous reports have shown that neuroactive ligand-receptor
interaction pathways are associated with acute leukemias as well
as several other diseases33,34 Further investigation of the potential
role of this pathway in TCF3-PBX1 driven leukemia would be
warranted. Integrating the methylation data with gene expression
data would help clarify whether the subtype specific patterns of
methylation correlate with clear differences in subtype specific
gene expression and thus potentially with downstream gene
function.

This study focused specifically on DNA methylation. To
more clearly understand the epigenome of pediatric ALL it may
be necessary to undertake integrative studies assessing other epi-
genetic mechanisms, such as nucleosome remodeling and histone
modifications, as well as associations with microRNA and gene
expression in the same sample sets. In addition, while the Infin-
ium HumanMethylation450 BeadChip array platform used in
this and other studies20 has coverage of much of the genome,
including 99% of RefSeq genes, it only contains probes for about
2% of the total number of CpG sites in the human genome.
Some studies have used whole-genome bisulfite sequencing in an
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attempt to address this limitation. However, at this time, it is
challenging to apply this approach to more than just a small
number of samples due to cost and increased DNA require-
ment.35-37. Thus, further technical developments in genome-
wide bisulfite sequencing and integration with other epigenetic
mechanisms will be required to allow the identification of a com-
plete picture of the epigenetic changes in childhood ALL and
how this relates to changes in gene expression profiles. Such inte-
grative studies may reveal biologically relevant epigenetic
changes.

Materials and Methods

Patients and sorted cells
Bone marrow samples from 52 pediatric patients with ETV6-

RUNX1 (n D 20), high hyperdiploidy (51–65 chromosomes)
(HeH) (n D 20), TCF3-PBX1 (n D 6) and dic(9;20)(p11–13;
q11) (n D 6) who consented to be enrolled on the ethically-
approved UK ALL treatment trial, ALL97/99. All samples used
had a high blast count (average 93%). An additional 123 diag-
nostic bone marrow samples from MRC ALL97/99 (HeH,
n D 66 and ETV6-RUNX1, n D 57) were used in confirmatory
pyrosequencing analysis.

MLPA
Genomic DNA from patient bone marrow aspirates was

extracted using standard procedures. Genomic DNA from
healthy donors was obtained for use as control samples. DNA
was analyzed using the SALSA MLPA Kit P335 (MRC Holland,
Amsterdam, The Netherlands), as described previously.25 This
kit includes probes for IKZF1 (8 probes), CDKN2A/B (3 probes),
PAX5 (6 probes), EBF1 (4 probes), ETV6 (6 probes), BTG1
(4 probes), RB1 (5 probes), and the PAR1 region: CRLF2,
CSF2RA, and IL3RA (one probe each). Data were analyzed using
GeneMarker V1.85 analysis software (SoftGenetics). All loci
were found to be deleted in at least one patient and the majority
of patients (40/52) had deletion of one or more of the genes
assessed.

Bisulfite conversion and 450K array hybridization
Bisulfite conversion was performed using the Zymo EZ-96

DNA methylation kit and the bisulfite converted DNA was
hybridized to the HumanMethylation450 Analysis BeadChip
(Illumina) and processed following the 450K methylation array
procedure, according to manufacturer’s instructions. Hybridiza-
tion fluorescent signals were read by the Illumina BeadStation
GX scanner. This procedure was performed at Wellcome Trust
Clinical Research Facility, Edinburgh, UK.

Bioinformatics analyses
The arrays report DNA methylation status (b value) at

> 485,000 CpG loci. The b value can range from 0 to 1,
representing fully unmethylated and methylated values. Array
processing, normalization and quality control checks, as well
as derivation of the b values from the raw intensity values

(.idat files), were implemented using the R package ‘minfi’.38

We employed conservative quality control measures to filter out
poorly performing and potentially confounding loci. Briefly, a
filtering process removed unannotated probes (i.e., not mapped
to the genome), probes located on chromosomes X/Y, probes
that aligned to more than one place in the genome, allowing for
1 mismatch, and probes that had a SNP with a minor allele fre-
quency of 5% or greater within 50 bp of the interrogated site.
Probes that failed in >5% of samples were also removed.39-42

The remaining probe b values (429,750) were converted to M-
scores,43 and the top 10,000 most variable probes by standard
deviation were selected for subgroup identification. The 10,000
most variable probes were used for the clustering as this is
equivalent to the inflection point in the curve (when mapping
variability versus probe number), such that probes that were
excluded were largely non-variable and would have added little
to the clustering. A non-negative matrix factorization (NMF),44

based consensus clustering approach was performed using the R
package NMF.45 An optimal factor number (i.e., subgroup
number) was selected by maximizing cluster number while
maintaining cophenetic correlation coefficient. Cluster stability
measures (silhouette scores) were used to assess the quality of
the identified subgroups. Pathway enrichment analysis was per-
formed using ‘GOseq’ bioconductor package using the KEGG
database. P-values were calculated by using both resampling and
the Wallenius approximation based methods available in
GOseq.46 P-values were also adjusted to control the false discov-
ery rate (FDR) using the Benjamini–Hochberg method. The list
of genes associated with probes was derived from the annotation
provided by Illumina. The DNA methylation dataset is available
at the Gene Expression Omnibus (GEO) with accession number
GSE69229.

Quantitative DNA methylation analysis using
pyrosequencing

Genomic DNA (200 ng) was modified with sodium bisulfite
using the MethylampTM One-Step DNA Modification Kit (Epi-
gentek, Brooklyn, NY, USA) as per the manufacturer’s instruc-
tions. All samples were re-suspended in 15 ml of TE, and 1 ml of
this was used for subsequent PCR reactions. DNA samples were
amplified in 25 ml volumes containing 1X manufacturer’s buffer,
1 unit of FastStart Taq polymerase (Roche, Welwyn Garden
City, UK), 1–4 mM MgCl2, 10 mM dNTPs, and 75 ng of each
primer. PCR was performed for 40 cycles with an annealing tem-
perature of 53–63�C, depending on the primer set being used.
For each set of primers (listed in Supplementary Table 3) one of
the forward or reverse primers included a 50 biotin label to allow
for subsequent analysis by pyrosequencing. Following PCR
amplification, sequencing was performed using a PSQ 96MA
pyrosequencer (Qiagen, Hilden, Germany), as per man-
ufacturer’s protocol. For all loci, assays were performed in dupli-
cate and values averaged between the duplicates. Only samples
that were passed by the pyrosequencer were included and to fur-
ther ensure a high degree of accuracy only runs in which single
peak heights were in excess of 200 were included. For CpG island
loci, between 3 and 6 consecutive CpG sites were measured and
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the methylation value for each locus was taken as the mean of all
CpG sites measured at that locus. For non CpG island associated
CpG sites, pyrosequencing assays were designed to include that
single specific CpG site. Primer design was performed using the
manufacturer’s provided PyroMark software and all pyrose-
quencing runs included in vitro methylated DNA (Millipore,
Watford, UK) and normal peripheral blood derived DNA as
control.
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Summary
Background International consensus recognises four medulloblastoma molecular subgroups: WNT (MBWNT), SHH 
(MBSHH), group 3 (MBGrp3), and group 4 (MBGrp4), each defined by their characteristic genome-wide transcriptomic and 
DNA methylomic profiles. These subgroups have distinct clinicopathological and molecular features, and underpin 
current disease subclassification and initial subgroup-directed therapies that are underway in clinical trials. However, 
substantial biological heterogeneity and differences in survival are apparent within each subgroup, which remain to 
be resolved. We aimed to investigate whether additional molecular subgroups exist within childhood medulloblastoma 
and whether these could be used to improve disease subclassification and prognosis predictions.

Methods In this retrospective cohort study, we assessed 428 primary medulloblastoma samples collected from UK 
Children’s Cancer and Leukaemia Group (CCLG) treatment centres (UK), collaborating European institutions, and 
the UKCCSG-SIOP-PNET3 European clinical trial. An independent validation cohort (n=276) of archival tumour 
samples was also analysed. We analysed samples from patients with childhood medulloblastoma who were aged 
0–16 years at diagnosis, and had central review of pathology and comprehensive clinical data. We did comprehensive 
molecular profiling, including DNA methylation microarray analysis, and did unsupervised class discovery of test and 
validation cohorts to identify consensus primary molecular subgroups and characterise their clinical and biological 
significance. We modelled survival of patients aged 3–16 years in patients (n=215) who had craniospinal irradiation 
and had been treated with a curative intent.

Findings Seven robust and reproducible primary molecular subgroups of childhood medulloblastoma were identified. 
MBWNT remained unchanged and each remaining consensus subgroup was split in two. MBSHH was split into age-
dependent subgroups corresponding to infant (<4·3 years; MBSHH-Infant; n=65) and childhood patients (≥4·3 years; 
MBSHH-Child; n=38). MBGrp3 and MBGrp4 were each split into high-risk (MBGrp3-HR [n=65] and MBGrp4-HR [n=85]) and low-risk 
(MBGrp3-LR [n=50] and MBGrp4-LR [n=73]) subgroups. These biological subgroups were validated in the independent cohort. 
We identified features of the seven subgroups that were predictive of outcome. Cross-validated subgroup-dependent 
survival models, incorporating these novel subgroups along with secondary clinicopathological and molecular features 
and established disease risk-factors, outperformed existing disease risk-stratification schemes. These subgroup-
dependent models stratified patients into four clinical risk groups for 5-year progression-free survival: favourable risk 
(54 [25%] of 215 patients; 91% survival [95% CI 82–100]); standard risk (50 [23%] patients; 81% survival [70–94]); high-
risk (82 [38%] patients; 42% survival [31–56]); and very high-risk (29 [13%] patients; 28% survival [14–56]).

Interpretation The discovery of seven novel, clinically significant subgroups improves disease risk-stratification and 
could inform treatment decisions. These data provide a new foundation for future research and clinical investigations.
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Introduction
The discovery of molecular disease subgroups represents 
the most fundamental advance in our understanding of 
medulloblastoma, the most common malignant brain 
tumour of childhood. Current international consensus 
recognises four subgroups of medulloblastoma: WNT 
(MBWNT), SHH (MBSHH), group 3 (MBGrp3) and group 4 

(MBGrp4).1 Each subgroup is defined empirically by 
genome-wide transcriptomic2–6 and DNA methylation 
patterns7,8 and characterised by distinct clinicopathological 
and molecular features.9–12 MBWNT and MBSHH are 
synonymous with WNT and SHH activating mutations.12 
By contrast, MBGrp3 and MBGrp4 have few mutations, but 
have multiple DNA copy number alterations.9–12
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Subgrouping is integral to the 2016 WHO 
medulloblastoma classification,13 and is used to direct 
treatment strategies aimed at improving cure rates (5-year 
survival across all four subgroups is 65–70%), and 
reducing long-term intellectual and neuroendocrine 
impairments associated with existing multimodality 
therapies. Patients with childhood MBWNT consistently 
show a favourable prognosis (>90% survival14,15) and 
reduced intensity risk-adapted therapies are being studied 
in these patients in international clinical trials,16 whereas 
SHH pathway inhibitors show promise in MBSHH disease 
in early-phase trials,17 although treatment of infants 
(younger than 3 years at diagnosis) and young children 
with these inhibitors should be approached with caution, 
because of the risk of premature fusion of growth-plates.18

Substantial biological heterogeneity is evident within 
each non-MBWNT subgroup; for instance, TP53 mutations 
are associated with a poor outcome in MBSHH.13,19 High-
risk clinical factors (metastatic disease [M+]; large-cell, 
anaplastic [LCA] pathology; incomplete surgical resection 
[R+]; and MYC/MYCN amplification), which are 
currently used to stratify risk in medulloblastoma in 
children aged 3 years or older, were derived from cohort-
wide investigations before discovery of the consensus 
subgroups, and thus did not consider their effect.15,16,20,21

Studies that defined the four-subgroup consensus used 
modestly sized cohorts (typically fewer than 
200 patients).2–6 In this Article, we describe comprehensive 
molecular profiling of clinically annotated discovery and 
validation cohorts totalling more than 700 tumours. 

We report the discovery and characterisation of seven 
stable and reproducible primary subgroups of childhood 
medulloblastoma (in patients younger than 16 years at 
diagnosis), which subdivide each of the classic consensus 
non-MBWNT subgroups (MBSHH, MBGrp3, and MBGrp4) into 
two clinically significant groups with distinct 
clinicomolecular features and survival outcomes. 

Methods
Study design and participants
In this retrospective cohort study, we assessed 428 centrally 
reviewed, clinically annotated primary medulloblastomas 
from patients aged 0–16 years at diagnosis, collected from 
UK Children’s Cancer and Leukaemia Group (CCLG) 
treatment centres (UK; 366 [86%]), collaborating European 
institutions in Budapest (Hungary; 20 [5%]) and Warsaw 
(Poland; 15 [4%]), and samples from the European 
UKCCSG-SIOP-PNET3 clinical trial (27 [6%]). As is typical 
for medulloblastoma, we regarded patients younger than 
3 years at diagnosis as infants. 108 (26%) of 408 patient 
samples used were collected in 2010–14, 192 (47%) in 
2000–10, 85 (21%) in 1990–2000, and the remaining 
23 (6%) were collected before 1990 (18 were from the 
1980s, four from the 1970s, and one was from 1968). Year 
of diagnosis was unavailable for 20 samples.

Tumour samples were provided by the UK CCLG as 
part of CCLG-approved biological study BS-2007–04; 
informed, written consent was obtained from parents of 
all patients because all assessed patients were younger 
than 16 years. Tumour investigations were done with 

Research in context

Evidence before this study
The international consensus definition of medulloblastoma, 
published in 2012, recognises four primary molecular 
subgroups with distinct clinicopathological features: WNT 
(MBWNT), SHH (MBSHH), group 3 (MBGrp3), and group 4 (MBGrp4). 
Several studies established characteristic genome-wide 
transcriptomic and DNA methylomic profiles, using 
unsupervised class discovery techniques, which defined the 
consensus subgroups. These subgroups, described in the 
2016 WHO classification of brain tumours, underpin current 
disease subclassification, research studies, and clinical trials. 
Profiling and class discovery studies published to date in 
medulloblastoma are based on cohorts typically with sample 
sizes less than 200 patients and, even within the consensus 
subgroups, significant heterogeneity of clinical and 
molecular features remains and many relationships to 
disease outcome are unresolved. Evidence from the 
component studies and reviews undertaken in the 
international consensus definition and the 2016 WHO 
classification, alongside our own reviews of the current 
literature, formed the foundation for the present study; 
no systematic reviews were carried out.

Added value of this study
We defined and characterised seven robust, reproducible, clinically 
significant, primary molecular subgroups within childhood 
medulloblastoma (in children aged up to 16 years at diagnosis), 
each with distinct clinicomolecular features. We propose a 
cross-validated, subgroup-dependent survival model that 
incorporates these novel subgroups, alongside established disease 
features and risk-factors and outperforms the disease 
risk-stratification schemes in current clinical use. Redistribution of 
disease risk using this scheme identifies substantial proportions of 
favourable-risk non-infant patients (>90% 5-year survival in 11% 
of patients) outside the MBWNT subgroup (equivalent to 
approximately 70 patients per year in the European Union [EU]) 
who would be suitable for consideration of reduced intensity of 
therapy, and very-high-risk non-infant patients (<40% survival, 
13% of patients, about 80 EU patients per year) for whom new 
treatment strategies should be prioritised.

Implications of all the available evidence
These data provide a step-change in our understanding and 
characterisation of molecular subgroups within medulloblastoma, 
with potential application to future disease subclassification, 
risk-stratification, and subgroup-dependent translational research.
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approval from Newcastle North Tyneside Research Ethics 
Committee (study reference 07/Q0905/71); all tumour 
material was collected in accordance with this approval. 
We used 276 medulloblastomas (GSE54880) from a 
published tumour archive,8 comprising patients aged 
from 0–18 years at diagnosis, as an independent validation 
cohort. 18 post-mortem cerebellar samples were collected 
from the Newcastle Brain Tissue Resource and used as 
controls in some analyses; all samples were collected with 
written, informed consent.

Procedures
We tested medulloblastoma samples with the Illumina 
HumanMethylation450K DNA methylation array (Illumina, 
San Diego, CA, USA). The Gene Expression Omnibus 
accession number for 450K DNA methylation array profiles 
we used for the determination of human medulloblastoma 
molecular subgroup status is GSE93646.

To identify methylation-dependent subgroups, we did 
unsupervised class discovery by NMF-metagene and 
k-means clustering, testing all combinations of 
3–10 metagenes and clusters for reproducibility using 
bootstrapped resampling methods (250 iterations) as 
described previously.7 This analysis identified metagenes 
(a single score that reflects the methylation status of 
several CpG loci) representing the main biological effects 
present in the genome-wide dataset. We assessed cluster 
stability using the cophenetic index, a shorthand measure 
of the robustness of sample clustering as determined by 
consensus non-negative matrix factorisation (appendix 
p 3). We visualised clusters with t-SNE.22 We assigned 
samples classified with less than 80% confidence (by 
resampling procedures) as non-classifiable (NC; 
appendix pp 2–3).

We projected metagenes derived from our discovery 
cohort onto the validation cohort. Additionally, we 
combined the discovery and validation cohorts to do 
equivalent consensus clustering.

We assessed established medulloblastoma clinical, 
pathological, and molecular features as described 
previously.7 Briefly, we defined histopathological variants 
according to the WHO 2016 guidelines.13 We assigned 
metastatic status (M+) based on Chang’s criteria 
(appendix p 3). Tumours were designated as R+ if their 
residuum after surgical excision exceeded 1·5 cm². 
Pathology was centrally reviewed by three experienced 
neuropathologists for 380 (89%) of 428 samples, and 
clinical data were collated from contributing centres and 
reviewed centrally (appendix p 3). We assessed MYC and 
MYCN status by fluorescence in situ hybridisation or 
copy-number estimates from methylation array. 
We assessed TP53, CTNNB1, and TERT mutation status 
by Sanger sequencing. We identified subgroup-specific 
differentially methylated CpG loci or methylated regions 
(DMRs) using limma or DMRcate23,24 (appendix p 3). 
RNA-seq expression data were generated for discovery 
cohort samples for which mRNA of sufficient quantity 

and quality was available. We identified subgroup-
specific differentially expressed genes using DESeq2,25 
and these genes were included in ontology enrichment 
analyses (appendix p 4). We identified GFI1 mutations 
from RNA-seq data (appendix p 4).

MBSHH mutation data were obtained from a previous 
study.26 Although 450K methylation data for MBSHH 
subgroup assignment were not available for this sample 
cohort, the tightly defined age cutoff that we defined 
between the molecularly determined MBSHH-Infant and 
MBSHH-Child subgroups enabled us to infer subgroups for 
this sequencing cohort (appendix p 4).26 We tested 
recurrent MBSHH mutations (TP53, SUFU, PTCH1, SMO, 
and TERT) and gene amplifications (MYCN and GLI2) 
identified by whole genome sequencing, for association 
with the age-defined MBSHH-Child or MBSHH-Infant subgroups 
using Fisher’s exact test (appendix p 4).

Statistical analysis
We did survival analyses (overall survival and progression-
free survival) on samples from patients aged 3–16 years 
within our discovery cohort, who received maximal 
surgical resection and craniospinal irradiation with 
curative intent. Overall survival was defined as the time 
from date of surgery to death or date of last follow-up and 
progression-free survival as the time from date of surgery 
to first event (progression or relapse) or date of last 
follow-up. Patients with follow-up time that exceeded 
10 years were right-censored at 10 years.

The tightly defined age cutoff between the molecularly 
determined MBSHH-Infant and MBSHH-Child subgroups enabled 
us to assess an expanded survival cohort of MBSHH-Child 
disease (n=55), including additional samples with 
insufficient DNA for methylation array analysis, classified 
as MBSHH-Child on the basis of their age (appendix p 4). In this 
group, we assessed the prognostic potential of currently 
used clinical and molecular risk markers (M+ disease, R+ 
disease, LCA pathology, sex, MYCN amplification, TERT 
mutation, and TP53 mutation [appendix pp 4–5]). Patients 
in the MBSHH-Infant subgroup were typically younger than 
3 years at diagnosis and were, therefore, treated on infant 
protocols. Treatment in this group of patients is 
heterogeneous, and is focused on omitting or delaying 
radiotherapy to reduce treatment-associated morbidities 
as far as possible. As a consequence, we report only overall 
survival in this group.

We created univariate and cross-validated multivariate 
Cox models based on subgroups, established risk factors, 
and cytogenetic changes. Prognostic markers in the 
multivariate analysis were identified by performing 
100 rounds of 10-fold cross-validation, evaluating the 
performance of markers by measuring area under the 
curve (AUC) at 5 years for progression-free survival in the 
left out fold, and calculating the overall mean AUC over all 
rounds (appendix p 5). We added variables conferring an 
increase in AUC, as measured by time-dependent receiver 
operating characteristic curves at 5 years, to the model. 

See Online for appendix
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Because MBGrp3 and MBGrp4 shared a metagene (V1), which 
defined a low-risk outcome and implied shared biology, 
we considered MBGrp3/4 as a single entity, and MBGrp3 and 
MBGrp4 separately for creation of survival models. Ixdition 
to currently understood clinical and molecular risk 
markers in these groups (M+ disease, R+ disease, LCA 
pathology, gender, MYC/MYCN amplification, and i17q 
[isochromosome 17q]), we additionally tested for recurrent 
cytogenetic changes, MBGrp3 membership, and 
membership of the high-risk methylomic group composed 
of members from both MBGrp3 and MBGrp4, defined by 
metagene V1 (appendix pp 5–6). We categorised identified 
independent prognostic markers into risk-stratification 
schemes (favourable-risk, >90% survival; standard-risk, 
>75–90% survival; high-risk, 40–75% survival; very high-
risk, <40% survival) and survival-dependent ROC analysis 
of progression-free survival at 5 years, to assess 
performance27 by comparison with previously reported 
classification schemes (appendix pp 5–6).16,28

We constructed Kaplan-Meier curves and compared 
patient groups with log-rank tests. For Kaplan-Meier 
comparison of two groups, we calculated hazard ratios 
(HRs) for the 0–5 year survival interval and 95% CIs 
from the Wald statistic. We tested the proportionality 
assumption for Cox modelling using scaled Schoenfeld 
residuals. Missing data were assumed to be missing 
completely at random and affected samples were 
removed from multivariate analyses. We implemented 
array processing, normalisation, quality-control checks, 
and copy-number estimation, relative to a panel of 
18 normal cerebella with the R packages minfi29 and 
conumee (appendix p 2).

The significance threshold was set at p<0·05 for all 
statistical tests in this study, unless otherwise stated. 
Significance of association was assessed using Fisher’s 
exact and chi-squared tests with Yates’ continuity 
correction. We identified subgroup-specific age-differences 
between the non-MBWNT or non-MBSHH medulloblastoma 
subgroups using ANOVA (appendix p 4). Statistical or 
bioinformatics analyses were done using R (version 3.2.3).

Role of the funding source
The funders of the study had no role in study design, 
data collection, data analysis, data interpretation, or 
writing of the report. The corresponding author had full 
access to all of the data and had the final responsibility to 
submit for publication.

Results
Clinicopathological and molecular diagnostic 
characteristics of 428 patients younger than 16 years who 
had primary childhood medulloblastoma (discovery 
cohort) are shown in table 1. Consensus analysis 
identified two equally robust cluster solutions (cophenetic 
index 0·998 [ four metagenes] and 0·997 [six metagenes]; 
appendix p 10). The first cluster solution (four metagenes, 
four clusters) recapitulated the established four-subgroup 

consensus,1 whereas the second (six metagenes, seven 
clusters) revealed further clusters within the established 
subgroups (figure 1A, appendix pp 10–11).

Discovery cohort 
(n=428)

Validation cohort 
(n=276)

MBSHH-Child survival 
cohort (n=55)

MBGrp3/4 survival 
cohort (n=175)

Sex

Male 278 (65%) 174 (63%) 32 (58%) 124 (71%)

Female 150 (35%) 102 (37%) 23 (42%) 51 (29%)

Male:female 
ratio

1·9:1 1·7:1 1·4:1 2·4:1

Age at diagnosis (years)

Median (range) 6·34 (0·24–15·97) 7·50 (0·0–18·0) 10·86 (3·5–15·54) 7·33 (3·4–15·97)

<3 101 (24%) 30 (11%) 0 0

≥3 327 (76%) 244 (89%) 55 (100%) 175 (100%)

Pathology variant

Classic 276 (70%) NA 23 (44%) 131 (83%)

DN/MBEN 58 (15%) NA 15 (29%) 7 (5%)

LCA 60 (15%) NA 14 (27%) 19 (12%)

MB-NOS 34 NA 3 18

Metastatic stage

M– 285 (73%) NA 47 (85%) 124 (73%)

M+ 104 (27%) NA 8 (15%) 47 (27%)

Resection

Sub-total 
resection (R+)

98 (26%) NA 9 (16%) 51 (29%)

Gross total 
resection (R–)

285 (74%) NA 46 (84%) 123 (71%)

Treatment

RTX alone 28 (8%) NA 16 (33%) 16 (9%)

RTX and CTX 314 (92%) NA 32 (67%) 157 (91%)

Follow-up time 
(years)

4·91 (0·2–25·7) NA 6·52 (0·5–16·8) 4·58 (0·4–25·7)

CTNNB1 mutation

Mutant 24 (7%) NA NA 0

Wild-type 297 (93%) NA NA 144 (100%)

Chromosome 6

Loss 30 (8%) 28 (10%) NA 0

Normal 361 (92%) 248 (90%) NA 158 (100%)

Chromosome 17

i17q 111 (28%) 87 (32%) NA 72 (46%)

No i17q 280 (72%) 189 (68%) NA 86 (54%)

MYC amplification

Positive 22 (5%) 12 (4%) NA 8 (5%)

Negative 404 (95%) 264 (96%) NA 165 (95%)

MYCN amplification

Positive 29 (7%) 17 (6%) NA 11 (6%)

Negative 397 (93%) 259 (94%) NA 162 (94%)

TP53 mutation

Positive 18 (7%) NA 13 (27%) 1 (1%)

Negative 238 (93%) NA 35 (73%) 89 (99%)

TERT mutation

Positive 16 (4%) NA 18 (35%) 1 (1%)

Negative 357 (96%) NA 34 (65%) 150 (99%)

(Table 1 continues on next page)
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MBWNT tumours formed a single subgroup (n=33) 
characterised by CTNNB1 mutations, loss of 
chromosome 6, and an expected favourable prognosis 
(5-year overall survival: 93% [95% CI 82–100]; figure 1B). 
Our newly detected metagenes split each remaining 
consensus subgroup (MBSHH, MBGrp3, and MBGrp4) in two. 
MBSHH was split into age-dependent subgroups 
corresponding to infant (<4·3 years; MBSHH-Infant; n=65) 
and childhood patients (≥4·3 years; MBSHH-Child; n=38) by 
the respective absence or presence of metagene V4. Both 
have intermediate prognoses (5-year overall survival 
MBSHH-Child: 58% [95% CI 41–82]; MBSHH-Infant: 62% [50–77]; 
figure 1B). MBGrp3 and MBGrp4 are each split into high-risk 
(MBGrp3-HR [n=65] and MBGrp4-HR [n=85]) and low-risk 
(MBGrp3-LR [n=50] and MBGrp4-LR [n=73]) subgroups by 
common metagene V1 (figure 1A). 5-year overall survival 
was 37% [95% CI 25–53] in the MBGrp3-HR subgroup, 
69% [55–87] in the MBGrp3-LR subgroup, 69% [58–83] in the 
MBGrp4-HR subgroup, and 80% [70–92] in the MBGrp4-LR 

subgroup (figure 1B). The subdivision of MBGrp3 and 
MBGrp4 distinguishes patients with a superior stratification 
(5-year overall survival AUC 0·649 [MBGrp3/4 combined 
with low-risk or high-risk subdivision]) compared with 
the current consensus MBGrp3 and MBGrp4 subgroups 
(AUC 0·610). Moreover, in the patients aged 3–16 years at 
diagnosis and receiving craniospinal irradiation, the 
high-risk or low-risk subdivision of MBGrp3/4 stratifies this 
group into standard (MBGrp3-LR 81% [95% CI 60–100%]; 
MBGrp4-LR 81% [71–93%]) and high-risk (MBGrp3-HR 35% 
[23–55%]; MBGrp4-HR 47% [34–66%]) 5-year progression-
free survival outcomes, by contrast with the current 

consensus MBGrp3/4 designations, which show 
intermediate outcomes (figure 1C, 1D).

Clinicopathological and biological features were non-
randomly distributed in all seven subgroups (figure 1A, 
appendix pp 12–15). Patients in the MBSHH-Infant subgroup 
had significantly enriched desmoplastic or nodular 
pathology compared with all other subgroups (p<0·0001), 
and TP53 mutation (p<0·0001) and MYCN amplifications 
(p<0·0001) were significantly more frequent in MBSHH-Child 
than in all other subgroups. Patients in the MBGrp3-HR 
subgroup significantly more frequently had LCA 
pathology (p<0·0001) and MYC amplification (p<0·0001), 
than all other subgroups. Although patients in the 
MBGrp3-HR and MBGrp4-HR subgroups had similar 10-year 
overall survival (22% [95% CI 10–46] vs 36% [22–59]; 
figure 1B), patients in the MBGrp4-HR subgroup died later of 
their disease (ten [36%] of 28 deaths in the MBGrp4-HR 
subgroup occurred more than 5 years after diagnosis) 
than did those in the MBGrp3-HR subgroup (33 [92%] of 
36 deaths occurred within 5 years of diagnosis; 
appendix p 26).

Validation by projection of six metagenes onto an 
independent cohort8 of 276 patients (table 1) confirmed 
their existence (appendix pp 10–11). Moreover, reapplying 
consensus clustering to the combined cohort of 
704 patients confirmed a seven subgroup model as 
optimal, giving 100% concordance to the classifications 
derived separately from our discovery cohort (appendix 
pp 10–11).

Age distributions differed between the two MBSHH 

subgroups; age distributions are log-normally distributed 
and intersect at 4·3 years (figure 2A). The two peak 
incidences of age at diagnosis in infants and in older 
children for MBSHH disease,26 when observed as a whole, 
are resolved by their classification into distinct MBSHH-Infant 
and MBSHH-Child subgroups (appendix pp 12–13). Each 
MBSHH subgroup possesses characteristic molecular or 
clinicopathological features (appendix pp 12–13). LCA 
pathology (p=0·00050), MYCN amplification (p<0·0001), 
and mutations of TP53 (p<0·0001) and TERT (p=0·0015) 
were all significantly enriched in the MBSHH-Child subgroup 

compared with the MBSHH-Infant subgroup; whereas gender, 
M+ disease status, and R+ disease status were not 
significantly different between groups (figure 2B; 
appendix pp 12–13). TERT promoter mutation and 
MYCN amplification or LCA pathology were mutually 
exclusive (figure 2B; appendix pp 12–13). Mutational data 
from an independent MBSHH cohort26 showed that SUFU 
mutation was significantly associated with MBSHH-Infant, 
whereas PTCH1 mutations were observed in both MBSHH 
subgroups (figure 2C). GLI2 amplification, MYCN 
amplification, and TP53 mutations (both somatic and 
germline) were significantly associated with the MBSHH-Child 
subgroup (figure 2C).

Compared with normal cerebella and patients in the 
MBSHH-Infant subgroup, patients in the MBSHH-Child subgroup 
had subgroup-specific DNA methylation changes 

Discovery cohort 
(n=428)

Validation cohort 
(n=276)

MBSHH-Child survival 
cohort (n=55)

MBGrp3/4 survival 
cohort (n=175)

(Continued from previous page)

450K 4 subgroup assignment

MBWNT 33 (8%) 33 (12%) NA 0

MBSHH 109 (26%) 60 (22%) 24 (100%) 1 (1%)

MBGrp3 130 (31%) 72 (26%) NA 63 (36%)

MBGrp4 153 (36%) 111 (40%) NA 109 (63%)

Non-classifiable 3 NA NA 2

450K 7 subgroup assignment

MBWNT 33 (8%) 33 (12%) NA NA

MBSHH-Child 38 (9%) 32 (12%) 24 (100%) NA

MBSHH-Infant 65 (16%) 28 (10%) NA NA

MBGrp3-HighRisk 65 (16%) 51 (18%) NA 44 (25%)

MBGrp3-LowRisk 50 (12%) 20 (7%) NA 13 (7%)

MBGrp4-HighRisk 85 (21%) 54 (20%) NA 63 (36%)

MBGrp4-LowRisk 73 (18%) 58 (21%) NA 55 (31%)

Non-classifiable 19 0 NA NA

Data are n (%) or median (range), unless otherwise specified. MB=medulloblastoma. SHH=sonic hedgehog. 
Grp3=group 3. Grp4=group 4. Grp3/4=combined groups 3 and 4. NA=data not available. DN=desmoplastic or nodular. 
MBEN=medulloblastoma with extensive nodularity. LCA=large-cell anaplastic. MB-NOS=medulloblastoma not 
otherwise specified. M–=non-metastatic disease. M+=metastatic disease. RTX=radiotherapy. CTX=chemotherapy. 
WNT=wnt/wingless.

Table 1: Demographics and clinicopathological characteristics of all cohorts
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(predominantly hypermethylation), at both individual 
CpG loci and at the gene level (figure 2B; appendix 
pp 12–13), frequently involving developmental genes 
(79 [14%] of 584 genes with gene ontology term embryonic 
morphogenesis had aberrant hypermethylation). DNA 
methylation changes were validated in an independent 
cohort8 (appendix pp 12–13). When discovery cohort 
MBSHH RNA-seq expression data were available 

(190 [44%] of 428 samples), significant differential 
expression was observed between the subgroups 
(1593 genes, fold change >1·5; adjusted p<0·01; 
appendix pp 12–13). Although there were few recurrent 
cytogenetic changes, many tumours in patients in the 
MBSHH-Child subgroup (18 [51%] of 35 tumours) had loss of 
chromosome 9q, often associated with gain of 9p 
(appendix pp 12–13).

Seven group

Four group

Male
Infant (<3 years old)
M+
DN/MBEN
LCA
R+

CTNNB1 mutation
Monosomy 6
TP53 mutation
MYC amplification
MYCN amplification
TERT mutation
GFI1 mutation 

M
et

ag
en

es

MBGrp3 vs MBGrp4; HR 1·99 (95% CI 1·22–3·25), p=0·015

MBSHH-Child vs MBSHH-Infant; HR 1·02 (95% CI 0·49–2·14), p=0·78
MBGrp3-HR vs MBGrp3-LR; HR 2·85 (95% CI 1·44–5·66), p=0·00036
MBGrp4-HR vs MBGrp4-LR; HR 1·50 (95% CI 0·71–3·18), p=0·028

 0·087
<0·0001
 0·0049
<0·0001
<0·0001
 0·16

<0·0001
<0·0001
<0·0001
<0·0001
<0·0001
<0·0001
 0·00073

29 (0)
63 (0)
44 (0)
61 (0)
34 (0)
78 (0)
58 (0)

22 (7)
53 (6)
27 (10)
34 (11)
17 (9)
54 (16)
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Figure 1: Novel clinically significant subgroups within the established medulloblastoma subgroups
(A) Non-negative matrix factorisation consensus clustering of methylome data from 428 primary medulloblastomas. Each column represents one patient. Missing data are shown in grey. Residuals 
from χ² tests indicate where subgroup-enrichment has occurred (darker shades of grey indicate stronger relationships), p values are from χ² tests of enrichment; scale bar for residuals (–2 to 2) is 
shown. Methylation-derived metagene levels (V1–V6), which define subgroup membership, are also shown (red indicates high metagene levels, blue indicates low levels). (B) Overall survival of 
patients in the seven identified subgroups. All discovery cohort patients with available overall survival information are shown (n=367). (C) Progression-free survival of patients in the consensus 
four subgroups of medulloblastoma in discovery cohort patients receiving craniospinal irradiation and aged 3–16 years at diagnosis (n=250). (D) Progression-free survival of patients in the 
seven identified subgroups of medulloblastoma in patients receiving craniospinal irradiation and aged 3–16 years at diagnosis (n=239). Discrepancy in the numbers of patients in (C) and (D) is due to 
consensus clustering; certain samples could not be confidently classified for the seven subgroup model or the four subgroup model, and were omitted from the figures. DN/MBEN=desmoplastic or 
nodular medulloblastoma with extensive nodularity. HR=hazard ratio. LCA=large-cell anaplastic. M+=metastatic disease. R+=residual disease.
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The age distributions of patients in the four MBGrp3 and 
MBGrp4 subgroups differed significantly (p<0·0001). 
Patients in the MBGrp3-LR and MBGrp3-HR subgroups were 

younger at diagnosis than those in the MBGrp4-LR and 
MBGrp4-HR subgroups (appendix pp 14–15). Infants in the 
MBGrp3-HR subgroup frequently had amplified MYC (seven 

p value

M
B SH

H
-In

fa
nt

M
B SH

H
-C

hi
ld

MBSHH-InfantMBSHH-Child

Normal
cerebella

Probe ID

cg17160382

cg08118159
cg15828364

cg10095226
cg06232130
cg11856078
cg05774915
cg06088918
cg15042866
cg15263666
cg05260466
cg05409218
cg26314330
cg03776662
cg11843238
cg22638593
cg02033258
cg23817096
cg16194233

cg08484671

Methylation
level

0

1

M
et

hy
la

tio
n 

st
at

us
 (m

os
t d

iff
er

en
tia

l p
ro

be
s)

4·3 years

De
ns

ity

Male
Infant (<3 years at diagnosis)
M+
DN/MBEN
LCA
R+
TP53 mutation
MYCN amplification
TERT mutation

 0·57
<0·0001
 0·28
 0·014
 0·00075
 0·43
<0·0001
<0·0001
 0·0015

Molecular
characteristics

Clinical
characteristics

Age (years)
0 5 10 15

0

0·1

0·2

0·3

0·4

M
ut

at
io

n

TP53 mutation
TP53 germline
GLI2 Amp
MYCN Amp
SUFU
SHH Amp
PTCH1
SMO
TERT

p value

<0·0001
<0·0001
 0·00055
 0·0013
 0·016
 0·073
 0·12
 0·31
 0·59

Residual
420–2–4

MBSHH-Child

MBSHH-Infant

A

MBSHH-InfantMBSHH-Child

C

B

MBSHH-InfantMBSHH-Child

Figure 2: MBSHH disease comprises two age-dependent molecular subgroups
(A) Log-normal age distributions of MBSHH-Infant (red) and MBSHH-Child disease (dark red). Patient ages at diagnosis are shown as ticks along the x-axis and are coloured by subgroup. (B) Clinicopathological and 
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Figure 3: Characterisation of MBGrp3 and MBGrp4 subgroups
(A) Clinicopathological and molecular disease features. Residuals from χ² tests indicate where subgroup-enrichment has occurred (darker shades of grey indicate stronger relationships); scale bar for 
residuals (–6 to 6) is shown. p values from χ² tests are shown. (B) Heat map shows the top 20 differentially methylated probes for these subgroups. Methylation data of 18 normal cerebella are shown 
alongside and magnitude of MBGrp3 and MBGrp4 metagenes is shown below. (C) Identification of MBGrp3 and MBGrp4 medulloblastoma cytogenetic determinants. Markers with p<0·05 and present in at least 
10% of one subgroup are ordered by their subgroup association and then by chromosomal order. Residuals from χ² tests indicate where subgroup enrichment has occurred (darker shades of grey 
indicate stronger relationships), across all subgroups and within MBGrp3 and MBGrp4 individually. p values from χ² tests are shown. i17q=isochromosome 17q. LCA=large-cell anaplastic. M+=metastatic 
disease. R+=residual disease.
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[64%] of 11 infants). MBGrp3-HR tumours were strongly 
associated with LCA pathology (20 [35%] of 57) and GFI1 
mutations (nine [29%] of 31; figure 3A, appendix 
pp 14–15). i17q is the sole significantly enriched feature of 
MBGrp4-HR (60 [76%] of 79 [figures 3A, 3C]. Clinicopatho
logical and molecular disease features of the MBGrp3 and 
MBGrp4 subgroups are shown in figure 3A.

Several hundred differentially methylated CpG probes 
or regions defined the four subgroups. MBGrp3-HR was 
characterised by the greatest number of significantly 
differentially methylated CpGs compared with other 
subgroups, commonly hypomethylated CpG loci 
(figure 3B; appendix pp 14–15). Notably, the low-risk 
subgroups were defined primarily by hypermethylation 
with respect to normal cerebellum, whereas the high-risk 

subgroups were defined by hypomethylation (figure 3B; 
appendix pp 14–15). Cytogenetic changes distinguished 
each subgroup as unique from the others (figure 3C). 
These distinguishing cytogenetic features were validated 
in an independent cohort (appendix pp 14–15).

We did survival analyses in an MBSHH-Child cohort that 
included 31 additional SHH cases unsuitable for 450k array 
analysis and classified as MBSHH-Child on the basis of age 
(appendix pp 4–5). In this cohort, one out of three assessable 
TP53 mutations were germline (appendix pp 16–17). TP53 
mutation was significantly associated with MYCN 
amplification (p=0·022) and LCA pathology (p=0·0033), 
MYCN amplification was associated with LCA pathology 
(p<0·0001), and LCA pathology and MYCN amplification 
were never observed with TERT mutations (p=0·00079 for 
LCA and p=0·0090 for MYCN amplification). There was no 
significant association between metastatic (M+) disease 
and TP53 mutation (p=1), MYCN amplification (p=0.15), or 
LCA pathology (p=0·67), or an association between sub-
totally resected (R+) disease and TP53 mutation (p=1), 
MYCN amplification (p=1) or LCA pathology (p=0·41). 
Univariate survival analysis of clinicobiological features 
(including risk features established in disease-wide 
studies16) in this cohort showed significantly shorter 
progression-free survival associated with MYCN 
amplification TP53 mutation, LCA pathology, M+ disease, 
and R+ disease, but no associations with TERT mutation 
status or sex (table 2; appendix pp 18–19). Multivariate Cox 
modelling, showed that MYCN amplification, TP53 
mutation, and M+ disease are independent risk factors for 
progression-free survival (table 2). Only the 42 samples 
with complete clinical information for the considered 
variables were included. The disease-wide risk-stratification 
scheme currently in use for the HIT-SIOP-PNET5-MB 
clinical trial,16 which deems MYCN amplification, LCA 
pathology, M+ disease, and R+ disease as high-risk factors, 
outperformed the MBSHH-Child subgroup stratification in AUC 
analysis (appendix pp 16–17). We used this 
HIT-SIOP-PNET5-MB stratification scheme as the basis of 
a combined risk-stratification model for MBSHH-Child 

(appendix pp 16–17), classifying patients with any one of 
these risk factors as very high risk. 50 patients had sufficient 
clinical data for classification using the scheme. This model 
discriminates favourable (24 [48%] of 50 patients, 5-year 
progression-free survival: 96% [95% CI 88–100]) and very 
high-risk (26 (52%), 5-year progression-free survival: 
29% [14–58]) groups of patients within the MBSHH-Child 
subgroup (p<0·0001; appendix pp 16–17).

Combining all craniospinally irradiated patients in the 
MBGrp3/4 subgroup aged 3–16 years who had outcome data 
(n=175), allocation to the MBGrp3-HR and MBGrp4-HR subgroups 
was a significant high-risk factor for shorter progression-
free survival in univariate analysis (table 3). Additionally, 
in multivariate analysis, MYC amplification was 
identified as an independently prognostic high-risk 
factor, and chromosome 13 loss was associated with an 
improved outcome (table 3).

n Univariate (n=55) Cross-validated 
multivariate (n=42)

HR (95% CI) p value HR (95% CI) p value

MYCN amplification vs no amplification 52 4·47 (1·65–12·1) 0·0032 2·83 (0·87–9·22) 0·084

M+ vs M– disease 55 5·69 (2·01–16·0) 0·0011 4·59 (1·28–16·4) 0·019

TP53 mutation vs no mutation 48 3·47 (1·29–9·30) 0·014 3·44 (1·15–10·2) 0·027

LCA pathology vs non-LCA pathology 52 2·88 (1·15–7·24) 0·025 ·· ··

TERT wild-type vs TERT mutation 52 2·21 (0·78–6·25) 0·13 ·· ··

R+ vs R– disease 55 3·45 (1·30–9·19) 0·013 ·· ··

Male vs female 55 1·13 (0·45–2·82) 0·79 ·· ··

p values are from Cox proportional hazards analyses. The prognostic significance of covariates selected in 
cross-validated multivariate models are also shown. HR=hazard ratio. M+=metastatic disease. M–=non-metastatic 
disease. LCA=large-cell anaplastic. R+=residual disease (subtotal surgical resection). R–=no residual disease (gross total 
resection).

Table 2: Identification of prognostic survival markers in MBSHH-Child cohort

n Univariate (n=175) Cross-validated 
multivariate (n=133)

HR (95% CI) p value HR (95% CI) p value

High-risk methylation group vs 
low-risk methylation group

175 3·73 (1·94–7·18) <0·0001 3·21 (1·59–6·51) 0·0012

MYC amplification vs no amplification 173 2·94 (1·06–8·13) 0·038 18·4 (5·01–67·7) <0·0001

Loss of chromosome 13 vs no loss 158 0·10 (0·01–0·74) 0·024 0·06 (0·01–0·49) 0·0090

MBGrp3 vs MBGrp4 175 2·04 (1·23–3·40) 0·006 ·· ··

M+ vs M– disease 171 1·77 (1·03–3·05) 0·039 ·· ··

i17q vs no i17q 158 1·71 (0·99–2·95) 0·056 ·· ··

Male vs female 175 1·56 (0·86–2·84) 0·144 ·· ··

MYCN amplification vs no 
amplification

173 0·72 (0·23–2·29) 0·576 ·· ··

LCA pathology vs non-LCA pathology 157 1·08 (0·49–2·39) 0·848 ·· ··

R+ vs R– disease 171 1·22 (0·72–2·09) 0·464 ·· ··

Identification of prognostic survival markers in combined childhood non-MBSHH and non-MBWNT survival cohort 
(aged 3·0–16·0 years, receiving craniospinal irradiation, with survival information). p values from Cox proportional 
hazards analyses are shown. The characteristics of covariates selected in cross-validated multivariate models are also 
shown. The high-risk methylomic group comprised samples from both MBGrp3 and MBGrp4, defined by the shared MBGrp3/4 
metagene V1. HR=hazard ratio. MB=medulloblastoma. Grp3=group 3. Grp4=group 4. M+=metastatic disease. 
M–=non-metastatic disease. i17q=isochromosome 17q. LCA=large-cell anaplastic. R+=residual disease (subtotal 
surgical resection). R–=no residual disease (gross total resection).

Table 3: Identification of prognostic survival markers in MBGrp3 and MBGrp4 cohorts
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A stratification model was developed that divided 
MBGrp3/4 into different risk groups for 5-year progression-
free survival: favourable risk (chromosome 13 loss and 
no MYC amplification; 16 [10%] of 153 patients; 92% 
[95% CI 79–100]); standard risk (MBGrp4-LR or MBGrp3-LR with 
no MYC amplification; 50 [33%] patients; 81% [70–94]); 
high risk (MBGrp4-HR or MBGrp3-HR with no MYC amplification; 

82 [54%] patients; 42% [31–56]); and very high risk (MBGrp3 
with MYC amplification; five [3%] patients; 0%; figure 4A; 
appendix pp 20–21). 156 patients had information for 
chromosome 13 loss and MYC amplification, of which 
three were classed as unassignable because they were 
MBGrp4 with MYC amplification (appendix pp 20–21). This 
stratification scheme outperformed current risk-
stratification models (figure 4B).

For comparison, we developed equivalent separate 
survival stratification schemes for MBGrp3 and MBGrp4 
(appendix pp 22–23). Risk factors identified were broadly 
consistent with the factors identified in the combined 
scheme, although the combined scheme was a better 
predictor of progression-free survival than when MBGrp3 
and MBGrp4 were considered separately (figure 4B). Taking 
MBGrp4 patients in isolation, in univariate analysis, a 
designation of MBGrp4-HR, chromosome 7q status, M+ 
disease, and male sex were associated with poor 
progression-free survival, whereas MYCN amplification, 
R+ disease, and LCA pathology were not (appendix 

pp 22–23). Chromosome 7q gain and M+ disease were 
retained as independent prognostic factors in multi
variate analysis (appendix pp 22–23). A 5-year 
progression-free survival model incorporating chromo
some 7q gain and M+ disease defined standard-risk 
(35 [32%] of 110 patients; 87% [95% CI 76–100]) and high-
risk groups (75 [68]; 49% [37–66]), and outperformed 
other published models by AUC analysis (appendix 
pp 22–23).

Taking patients with MBGrp3 in isolation, MYC 
amplification was the only risk factor significantly 
associated with progression-free survival in multivariate 
analysis, and outcomes were poor for these very high-risk 
patients (appendix pp 22–23). Patients in the MBGrp3 with 
non-MYC amplified tumours were at high risk, with 
progression-free survival similar to that for the MBGrp4-HR 
subgroup (51 [91%] of 56 patients; 46% [95% CI 33–64] 
for MBGrp3 with non-MYC amplified tumours vs 41% 
[28–60] for MBGrp4-HR). MBGrp3-HR shows a worse outcome 
than MBGrp3-LR (p=0·040; appendix p 22). LCA pathology 
(11 [21%] of 53 patients), M+ disease (17 [29%] of 
58 patients), and R+ disease (13 [22%] of 59 patients),1 
were frequent in patients in MBGrp3 but none were 
associated with prognosis, and no stratification scheme 
based on MBGrp3 alone markedly improved outcome 
prediction compared with standard stratification 
schemes (appendix pp 22–23).
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Figure 4: Novel risk stratification scheme for MBGrp3 and MBGrp4 medulloblastoma
(A) Progression-free survival plots for identified risk subgroups (n=156) defined in table 3 and the appendix (p 20). (B) Time-dependent ROC curves at 5 years are 
shown for this novel risk stratification alongside a published cytogenetic stratification scheme28 (MBGrp4 with chromosome 11 loss or chromosome 17 gain, low risk; 
MBGrp4 with M– disease, standard risk; MBGrp4 with M+ disease, high risk; MBGrp3 with MYC amplification, i17q, or M+ disease, high risk; MBGrp3 without MYC amplification, 
i17q, or M+ disease, standard risk), and the PNET5 risk stratification (patients positive for one or more of LCA pathology, M+ disease, R+ disease, MYC(N) amplification 
are high risk; patients absent for all high-risk features, standard risk), as well as the stratification derived from considering MBGrp3 and MBGrp4 as separate entities 
(appendix p 22). AUC=area under curve. LCA=large-cell anaplastic. M+=metastatic disease. M–=non-metastatic disease. ROC=receiver operating characteristic.
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The clinicopathological and molecular features of the 
new seven clinically significant subgroups are 
summarised in figure 5. The combination of subgroup-
specific survival models creates an overarching 
risk stratification for all childhood medulloblastoma 
(figure 6A). Patients are stratified into four clinical risk 
groups for 5-year progression-free survival: favourable 
risk (comprising MBWNT, MBSHH-Child with no high-risk 
features, and non-MYC amplified MBGrp3/Grp4 with 
chromosome 13 loss; 54 [25%] of 215 patients; 91% 
[95% CI 82–100]); standard risk (comprising non-MYC 
amplified MBGrp3-LR/Grp4-LR subgroups; 50 [23%] patients; 
81% [70–94]); high-risk (comprising non-MYC amplified 
MBGrp3-HR/Grp4-HR subgroups; 82 [38%] patients; 42% [31–56]); 
and very high-risk (comprising MBSHH-Child with high-risk 
features and MYC-amplified MBGrp3; 29 [13%] patients; 
28% [14–56]; figure 6B). 215 patients aged 3–16 years at 
diagnosis had data available for these factors. The AUC 
from our proposed stratification of childhood 
medulloblastoma outperforms current and proposed 
cytogenetic risk stratifications (figure 6C).28 We note that 

M+ disease status is a strong risk factor for poor 
progression-free survival in MBGrp4. Incorporation of M+ 
disease status into MBGrp4-LR and non-MYC amplified 
MBGrp3-LR survival modelling does not affect model 
performance, but potentially allows redistribution of 
standard-risk patients to create larger favourable 
(90 [41%] of 218 patients) and high-risk groups (99 [45%] 
of 218 patients; figure 6A, C; appendix pp 24–25), which 
could be considered as an alternative stratification 
scheme. The proposed refinement to the stratification 
enables additional cases classified as MBGrp3-LR and 
MBGrp4-LR that do not have copy number information 
(other than MYC amplification status) and are non-
metastatic to be classified as favourable.

Discussion
The discovery and validation of seven robust and 
reproducible primary molecular subgroups of childhood 
medulloblastoma in this retrospective cohort study 
represents, to our knowledge, the first clinically 
significant elaboration of the four-subgroup consensus 

Figure 5: Summary of the seven primary childhood medulloblastoma subgroups
Demographic, clinicopathological, and molecular features are summarised. *Comparisons of cytogenetic, gene expression, and DNA methylation changes are made with respect to their counterpart 
subgroup, except for MBWNT cases, which were compared with normal cerebella if data were available. For probe-level comparisons, Kyoto Encyclopedia of Genes and Genomes pathway enrichment of 
demethylated loci was investigated, after correcting for multiple probes mapping to the same gene (data summarised in appendix pp 27–31). CB=normal cerebella. CLAS=classic histological subtype. 
DN=desmoplastic nodular. LCA=large-cell anaplastic.
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established in 2012.1 While our work supports the 
stability of the four established groups, it also reveals 
significant substructures within each group with 
distinct clinicopathological and molecular features. 
Importantly, these primary subgroups emerge from 
unsupervised analysis, and are supported by 
distinguishing DNA methylation, gene expression, and 
copy-number profiles, consistent in discovery and 
validation cohorts. Notably, these subgroups were not 
identifiable in a previously published dataset, which 

included fewer samples and, specifically, fewer infant 
patients.8 Our seven subgroups reveal a biological 
overlap between MBGrp3 and MBGrp4. They share a 
biological signature, defined by a common metagene, 
indicating a clinicobiological overlap, which might 
suggest a common origin.

These primary subgroups may be further subdivided 
by the presence or absence of secondary molecular 
characteristics, many of which, in turn, have subgroup-
specific clinical and prognostic significance (eg, MYC 

Figure 6: Summary of survival modelling of novel medulloblastoma subgroups
(A) Summary of a novel risk-stratification scheme for childhood medulloblastoma in a cohort of patients aged 3–16 years receiving craniospinal irradiation (n=215). 
The potential to further stratify MBGrp4-LR patients into favourable and high-risk groups by their metastatic stage is shown (dashed arrows). (B) Kaplan-Meier plot of 
childhood medulloblastoma risk stratification. (C) Performance of novel stratification scheme in comparison with time-dependent ROC curves of existing schemes 
of progression-free survival at 5 years. MBGrp3/4: MBGrp3 and MBGrp4 considered as a single entity; MBGrp3/4 plus M+: MBGrp3 and MBGrp4 considered as a single entity with 
MBGrp4-LR and non-MYC amplified MBGrp3-LR further stratified by M+ disease status; MBGrp3 and MBGrp4: MBGrp3 and MBGrp4 stratified separately; cytogenetic: cytogenetically 
defined scheme;28 PNET5: scheme employed by HIT-SIOP-PNET5-MB clinical trial. LCA=large-cell anaplastic. M+=metastatic disease. M–=non-metastatic disease. 
R+=residual disease.
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amplification in MBGrp3 or TP53 mutation, MYCN 
amplification, LCA pathology, M+ disease, and R+ 
disease in MBSHH-Child). Some of these secondary features 
have been described and assigned clinical significance in 
previous studies; in this Article, their association with 
specific novel subgroups (eg, chromosome 11 loss and 
chromosome 17 gain in MBGrp4-LR

28) has revealed the 
underlying biological basis of these subgroup-specific 
biomarkers. Moreover, re-evaluation of currently used 
high-risk factors derived from cohort-wide studies that 
did not consider subgroup shows that their importance 
is either low (eg, LCA pathology, M+ disease, or 
R+ disease in MBGrp3; MYCN in MBGrp4) or high (MYCN 
amplification, LCA pathology, TP53 mutation, and 
M+ disease in MBSHH-Child; MYC in MBGrp3; M+ in MBGrp4) 
when considered in the context of our new subgroups. 
Finally, the biological definition of MBSHH-Infant (<4·3 years) 
is at odds with current clinical definitions of infant 
disease (<3 years) and this should prompt consideration 
in the future as to whether infant treatment protocols are 
appropriate for MBSHH-Infant patients older than 3 years.16 
Survival modelling in children younger than 3 years is 
qualitatively different from analysis in those over 3 years 
of age, because of the heterogeneity of treatment of 
infant disease. As such, we regarded further risk 
modelling in this patient group to be outside the scope of 
this study, to be addressed in future investigations. 
To our knowledge, no previous study has directly 
assessed survival of the molecularly-defined MBSHH-Infant 
subgroup. The overall survival at 5 years that we observed 
in MBSHH-Infant disease (62%, 95% CI 50–77) is lower than 
previously reported in an international meta-analysis of 
the MBSHH subgroup in age-defined infants (<4 years at 
diagnosis; 77%),30 but these patients were not molecularly 
defined and, as such, are not directly comparable.

Our survival analysis focused on the 3–16-year-old 
clinical group who received current conventional 
therapies: surgical resection followed by adjuvant 
radiotherapy with or without chemotherapy at diagnosis 
with curative intent. Combined risk-modelling across all 
patients in the non-MBWNT or non-MBSHH subgroups 
identified MYC amplification, high-risk methylation 
subgroup membership, and loss of chromosome 13 as 
independent risk factors. Survival models incorporating 
these factors outperformed the clinical risk-stratification 
used in current clinical trials (HIT-SIOP-PNET5-MB16) 
and subgroup-dependent cytogenetic stratification 
schemes.28

We have defined a risk-stratification of childhood 
medulloblastoma that allows patients to be assigned into 
four overarching risk groups. Favourable-risk patients, 
including both MBWNT and novel non-MBWNT groups, 
should be urgently considered for therapy-reducing 
strategies. Very high-risk patients, typically refractory to 
conventional therapies (eg, amplified MYCN, mutated 
TP53, LCA pathology, and M+ disease in MBSHH and 

amplified MYC in MBGrp3) should be prioritised for 
alternative upfront treatment strategies. The priority for 
high-risk patients, comprising the novel MBGrp4-HR and 
patients with non-amplified MYC in the MBGrp3-HR 
subgroup, and a standard-risk group, comprising all 
other patients, should be optimisation of current 
therapies and the application of novel, biologically 
targeted agents.

We note the limitations of developing survival models 
in retrospective patient cohorts, who received 
heterogeneous treatments. Notwithstanding that 
models were developed using patients aged 3–16 years, 
who all received maximal surgical resection and 
craniospinal irradiation with curative intent, caution 
should be applied to their clinical implementation. We 
also note the statistical limitations of stratifications 
identifying small numbers of patients (eg, very high-
risk, 13% of patients). Moreover, some of the identified 
biomarkers (notably loss of chromosome 13) have not 
previously been reported as prognostic. We therefore 
emphasise that validation in additional cohorts, and 
ideally in prospective, uniformly treated patients in 
clinical trials, is essential. A small number of samples 
(<5 samples) from this study were used to assist with 
the creation of the four-subgroup classification 
consensus.5 Similarly, our own publication that 
described four methylation-dependent subgroups of 
medulloblastoma7 contained 87 samples that overlapped 
with this study, although the previously published study 
contained fewer samples (discovery cohort size of 100 
and validation cohort size of 130 patients) and DNA 
methylation profiling was at much lower resolution 
(1505 vs >400 000 CpG loci).

The existence of novel primary medulloblastoma 
subgroups, coupled with the characterisation of 
secondary prognostic features within each group, 
represents a significant advance in our understanding of 
medulloblastoma biology and its application in clinical 
management and future trials design. We provide clear 
evidence of the shared biology between MBGrp3 and MBGrp4, 
which affects clinical behaviour and has significant 
implications for understanding disease biology, 
developmental origins, and experimental modelling. 
These investigations constitute a blueprint for a 
new consensus in medulloblastoma molecular sub-
classification with important implications for future 
molecular diagnostics and clinical management.
Contributors
ECS, DW, SB, and SCC designed the study and wrote the manuscript. 
JCL, SC, AJS, and RMH did laboratory experimentation and analysis. 
ECS, DW, TS, and SN did bioinformatics analysis. SN, DH, GR, and AI 
prepared figures. TSJ, AJ, and SBW provided central pathology review. 
BP, AM, AJ, SBW, TSJ, and SB gathered samples and patient data and 
provided clinical interpretation. All authors contributed to and approved 
the final manuscript.

Declaration of interests
We declare no competing interests.



Articles

www.thelancet.com/oncology   Vol 18   July 2017	 971

Acknowledgments
This study was funded by Cancer Research UK (C8464/A13457), The 
Tom Grahame Trust, Star for Harris, Action Medical Research, SPARKS, 
The JGW Patterson Foundation, and The INSTINCT network (co-funded 
by The Brain Tumour Charity, Great Ormond Street Children’s Charity, 
and Children with Cancer UK). TSJ is supported by the National 
Institute for Health Research and a Great Ormond Street Hospital UCL 
Biomedical Research Centre award.

References
1	 Taylor MD, Northcott PA, Korshunov A, et al. Molecular subgroups 

of medulloblastoma: the current consensus. Acta Neuropathol 2012; 
123: 465–72.

2	 Northcott PA, Korshunov A, Witt H, et al. Medulloblastoma 
comprises four distinct molecular variants. J Clin Oncol 2011; 
29: 1408–14.

3	 Fattet S, Haberler C, Legoix P, et al. Beta-catenin status in paediatric 
medulloblastomas: correlation of immunohistochemical expression 
with mutational status, genetic profiles, and clinical characteristics. 
J Pathol 2009; 218: 86–94.

4	 Cho Y-J, Tsherniak A, Tamayo P, et al. Integrative genomic analysis 
of medulloblastoma identifies a molecular subgroup that drives 
poor clinical outcome. J Clin Oncol 2011; 29: 1424–30.

5	 Kool M, Koster J, Bunt J, et al. Integrated genomics identifies 
five medulloblastoma subtypes with distinct genetic profiles, 
pathway signatures and clinicopathological features. 
PLoS One 2008; 3: e3088.

6	 Thompson MC, Fuller C, Hogg TL, et al. Genomics identifies 
medulloblastoma subgroups that are enriched for specific genetic 
alterations. J Clin Oncol 2006; 24: 1924–31.

7	 Schwalbe EC, Williamson D, Lindsey JC, et al. DNA methylation 
profiling of medulloblastoma allows robust subclassification and 
improved outcome prediction using formalin-fixed biopsies. 
Acta Neuropathol 2013; 125: 359–71.

8	 Hovestadt V, Remke M, Kool M, et al. Robust molecular 
subgrouping and copy-number profiling of medulloblastoma from 
small amounts of archival tumour material using high-density DNA 
methylation arrays. Acta Neuropathol 2013; 125: 913–16.

9	 Pugh TJ, Weeraratne SD, Archer TC, et al. Medulloblastoma exome 
sequencing uncovers subtype-specific somatic mutations. Nature 
2012; 488: 106–10.

10	 Jones DTW, Jäger N, Kool M, et al. Dissecting the genomic 
complexity underlying medulloblastoma. Nature 2012; 488: 100–05.

11	 Robinson G, Parker M, Kranenburg TA, et al. Novel mutations 
target distinct subgroups of medulloblastoma. Nature 2012; 
488: 43–48.

12	 Northcott PA, Jones DTW, Kool M, et al. Medulloblastomics: 
the end of the beginning. Nat Rev Cancer 2012; 12: 818–34.

13	 Louis DN, Perry A, Reifenberger G, et al. The 2016 World Health 
Organization Classification of Tumours of the Central Nervous 
System: a summary. Acta Neuropathol 2016; 131: 803–20.

14	 Ellison DW, Onilude OE, Lindsey JC, et al. beta-Catenin status 
predicts a favourable outcome in childhood medulloblastoma: the 
United Kingdom Children’s Cancer Study Group Brain Tumour 
Committee. J Clin Oncol 2005; 23: 7951–57.

15	 Ellison DW, Kocak M, Dalton J, et al. Definition of disease-risk 
stratification groups in childhood medulloblastoma using 
combined clinical, pathologic, and molecular variables. J Clin Oncol 
2011; 29: 1400–07.

16	 Pizer BL, Clifford SC. The potential impact of tumour biology on 
improved clinical practice for medulloblastoma: progress towards 
biologically driven clinical trials. Br J Neurosurg 2009; 23: 364–75.

17	 Robinson GW, Orr BA, Wu G, et al. Vismodegib exerts targeted 
efficacy against recurrent sonic hedgehog-subgroup 
medulloblastoma: results from phase II pediatric brain tumor 
consortium studies PBTC-025B and PBTC-032. J Clin Oncol 2015; 
33: 2646–54.

18	 Kimura H, Ng JMY, Curran T. Transient inhibition of the Hedgehog 
pathway in young mice causes permanent defects in bone structure. 
Cancer Cell 2008; 13: 249–60.

19	 Zhukova N, Ramaswamy V, Remke M, et al. Subgroup-specific 
prognostic implications of TP53 mutation in medulloblastoma. 
J Clin Oncol 2013; 31: 2927–35.

20	 Ramaswamy V, Remke M, Bouffet E, et al. Risk stratification of 
childhood medulloblastoma in the molecular era: the current 
consensus. Acta Neuropathol 2016; 131: 821–31.

21	 von Bueren AO, Kortmann R-D, von Hoff K, et al. Treatment of 
children and adolescents with metastatic medulloblastoma and 
prognostic relevance of clinical and biologic parameters. 
J Clin Oncol 2016; 34: 4151–60.

22	 Maaten LVD, Hinton G. Visualizing data using t-SNE. 
J Mach Learn Res 2008; 9: 2579–605.

23	 Ritchie ME, Phipson B, Wu D, et al. limma powers differential 
expression analyses for RNA-sequencing and microarray studies. 
Nucleic Acids Res 2015; 43: e47.

24	 Peters TJ, Buckley MJ, Statham AL, et al. De novo identification of 
differentially methylated regions in the human genome. 
Epigenetics Chromatin 2015; 8: 6.

25	 Love MI, Huber W, Anders S. Moderated estimation of fold change 
and dispersion for RNA-seq data with DESeq2. Genome Biol 2014; 
15: 550.

26	 Kool M, Jones DTW, Jäger N, et al. Genome sequencing of SHH 
medulloblastoma predicts genotype-related response to smoothened 
inhibition. Cancer Cell 2014; 25: 393–405.

27	 Heagerty PJ, Saha-Chaudhuri P, Saha-Chaudhuri MP. 
Package ‘survivalROC’. Jan 13, 2013. https://cran.r-project.org/web/
packages/survivalROC/survivalROC.pdf (accessed March 13, 2017).

28	 Shih DJH, Northcott PA, Remke M, et al. Cytogenetic 
prognostication within medulloblastoma subgroups. J Clin Oncol 
2014; 32: 886–96.

29	 Aryee MJ, Jaffe AE, Corrada-Bravo H, et al. Minfi: a flexible and 
comprehensive Bioconductor package for the analysis of Infinium 
DNA methylation microarrays. Bioinformatics 2014; 30: 1363–69.

30	 Kool M, Korshunov A, Remke M, et al. Molecular subgroups of 
medulloblastoma: an international meta-analysis of transcriptome, 
genetic aberrations, and clinical data of WNT, SHH, group 3, and 
group 4 medulloblastomas. Acta Neuropathol 2012; 123: 473–84.



References

Adamski, J., Ramaswamy, V., Huang, A., Bouffet, E., 2014. Advances in managing medul-

loblastoma and intracranial primitive neuro-ectodermal tumors. F1000Prime Reports 6,

56.

Adan, L., Trivin, C., Sainte-Rose, C., Zucker, J.M., Hartmann, O., Brauner, R., 2001. GH

deficiency caused by cranial irradiation during childhood: Factors and markers in young

adults. Journal of Clinical Endocrinology and Metabolism 86, 5245–5251.

Archer, T.C., Mahoney, E.L., Pomeroy, S.L., 2017. Medulloblastoma: Molecular

Classification-Based Personal Therapeutics. Neurotherapeutics 14, 265–273.

Archer, T.C., Weeraratne, S.D., Pomeroy, S.L., 2012. Hedgehog-GLI pathway in medulloblas-

toma. Journal of Clinical Oncology 30, 2154–2156.

Ashley, D.M., Merchant, T.E., Strother, D., Zhou, T., Duffner, P., Burger, P.C., Miller,

D.C., Lyon, N., Bonner, M.J., Msall, M., Buxton, A., Geyer, R., Kun, L.E., Coleman,

L., Pollack, I.F., 2012. Induction chemotherapy and conformal radiation therapy for very

young children with nonmetastatic medulloblastoma: Children’s Oncology Group study

P9934. Journal of clinical oncology : official journal of the American Society of Clinical

Oncology 30, 3181–6.

Bachmann, I.M., Halvorsen, O.J., Collett, K., Stefansson, I.M., Straume, O., Haukaas, S.A.,

Salvesen, H.B., Otte, A.P., Akslen, L.A., 2006. EZH2 expression is associated with high

proliferation rate and aggressive tumor subgroups in cutaneous melanoma and cancers of

the endometrium, prostate, and breast. Journal of Clinical Oncology 24, 268–273.

Baer, C., Claus, R., Plass, C., 2013. Genome-wide epigenetic regulation of miRNAs in cancer.

Cancer Research 73, 473–477.

Bahadur, G., 2000. Age definitions, childhood cancers in relationship to reproductive issues.

Human Reproduction vol.15 no.1 pp.227–230, 2000 15, 227–230.

Bailey, C.C., Gnekow, A., Wellek, S., Jones, M., Round, C., Brown, J., Phillips, A., Neid-

hardt, M.K., 1995. Prospective randomised trial of chemotherapy given before radiotherapy

in childhood medulloblastoma. International society of paediatric oncology (SIOP) and the

(German) society of paediatric oncology (GPO): SIOP II. Medical and Pediatric Oncology

259



References 260

25, 166–178.

Bailey, P., Cushing, H., 1925. Medulloblastoma cerebelli: A common type of midcerebellar

glioma of childhood. Archives of Neurology And Psychiatry 14, 192–224.

Baker, S.J., Markowitz, S., Fearon, E.R., Willson, J.K., Vogelstein, B., 1990. Suppression of

human colorectal carcinoma cell growth by wild-type p53. Science (New York, N.Y.) 249,

912–915.

Banister, C.E., 2012. Review of Epigenetics: A Reference Manual: A book edited by Jeffrey

M. Craig and Nicholas C. Wong. Epigenetics 7, 963–964.

Barber, G.N., 2015. STING: infection, inflammation and cancer. Nature Reviews Immunology

2015 15:12 15, 760–770.

Batora, N.V., Sturm, D., Jones, D.T., Kool, M., Pfister, S.M., Northcott, P.A., 2014. Tran-

sitioning from genotypes to epigenotypes: Why the time has come for medulloblastoma

epigenomics.

Bautista, F., Fioravantti, V., de Rojas, T., Carceller, F., Madero, L., Lassaletta, A., Moreno,

L., 2017. Medulloblastoma in children and adolescents: a systematic review of contempo-

rary phase I and II clinical trials and biology update. Cancer Medicine 6, 2606–2624.

Baylin, S.B., Jones, P.A., 2011. A decade of exploring the cancer epigenome — biological

and translational implications .

Beauchamp, E.M., Ringer, L., Bulut, G., Sajwan, K.P., Hall, M.D., Lee, Y.C., Peaceman, D.,

Ozdemirli, M., Rodriguez, O., Macdonald, T.J., Albanese, C., Toretsky, J.A., Uren, A.,

2011. Arsenic trioxide inhibits human cancer cell growth and tumor development in mice

by blocking Hedgehog/GLI pathway. The Journal of clinical investigation 121, 148–60.

Benayoun, B.A., Pollina, E.A., Brunet, A., 2015. Epigenetic regulation of ageing: Linking

environmental inputs to genomic stability. arXiv:15334406.

Bernstein, B.E., Meissner, A., Lander, E.S., 2007. The Mammalian Epigenome.

arXiv:NIHMS150003.

Beroukhim, R., Getz, G., Nghiemphu, L., Barretina, J., Hsueh, T., Linhart, D., Vivanco, I.,

Lee, J.C., Huang, J.H., Alexander, S., Du, J., Kau, T., Thomas, R.K., Shah, K., Soto,

H., Perner, S., Prensner, J., Debiasi, R.M., Demichelis, F., Hatton, C., Rubin, M.A.,

Garraway, L.A., Nelson, S.F., Liau, L., Mischel, P.S., Cloughesy, T.F., Meyerson, M.,

Golub, T.A., Lander, E.S., Mellinghoff, I.K., Sellers, W.R., 2007. Assessing the significance

of chromosomal aberrations in cancer: Methodology and application to glioma. Proceedings

of the National Academy of Sciences of the United States of America 104, 20007.

http://arxiv.org/abs/15334406
http://arxiv.org/abs/NIHMS150003


References 261

Beroukhim, R., Mermel, C.H., Porter, D., Wei, G., Raychaudhuri, S., Donovan, J., Barretina,

J., Boehm, J.S., Dobson, J., Urashima, M., McHenry, K.T., Pinchback, R.M., Ligon, A.H.,

Cho, Y.J., Haery, L., Greulich, H., Reich, M., Winckler, W., Lawrence, M.S., Weir, B.A.,

Tanaka, K.E., Chiang, D.Y., Bass, A.J., Loo, A., Hoffman, C., Prensner, J., Liefeld, T.,

Gao, Q., Yecies, D., Signoretti, S., Maher, E., Kaye, F.J., Sasaki, H., Tepper, J.E., Fletcher,

J.A., Tabernero, J., Baselga, J., Tsao, M.S., Demichelis, F., Rubin, M.A., Janne, P.A.,

Daly, M.J., Nucera, C., Levine, R.L., Ebert, B.L., Gabrie, S., Rustgi, A.K., Antonescu,

C.R., Ladanyi, M., Letai, A., Garraway, L.A., Loda, M., Beer, D.G., True, L.D., Okamoto,

A., Pomeroy, S.L., Singer, S., Golub, T.R., Lander, E.S., Getz, G., Sellers, W.R., Meyerson,

M., 2010. The landscape of somatic copy-number alteration across human cancers. Nature

463, 899–905. arXiv:15334406.

Bibikova, M., Barnes, B., Tsan, C., Ho, V., Klotzle, B., Le, J.M., Delano, D., Zhang, L.,

Schroth, G.P., Gunderson, K.L., Fan, J.B., Shen, R., 2011. High density DNA methylation

array with single CpG site resolution. Genomics 98, 288–295.

Bibikova, M., Le, J., Barnes, B., Saedinia-Melnyk, S., Zhou, L., Shen, R., Gunderson, K.L.,

2009. Genome-wide DNA methylation profiling using Infinium® assay. Epigenomics .

Biswas, S., Rao, C.M., 2017. Epigenetics in cancer: Fundamentals and Beyond. Pharmacology

and Therapeutics 173, 118–134.

Bland, J.M., Altman, D.G., 2004. The logrank test. BMJ 328, 1073.

Bouffet, E., 2019. Management of high-risk medulloblastoma. Neurochirurgie .

Bovelstad, H., Bøvelstad, H.M., Nyg̊ard, S., Størvold, H.L., Aldrin, M., Borgan, Frigessi, A.,

Lingjærde, O.C., 2007. Predicting survival from microarray data - A comparative study.

Bioinformatics .

Boveri, T., 1914. Zur Frage der Entstehung maligner Tumoren. Die Naturwissenschaften 2,

801–802.

Bradburn, M.J., Clark, T.G., Love, S.B., Altman, D.G., 2003. Survival Analysis Part II:

Multivariate data analysis – an introduction to concepts and methods. British Journal of

Cancer 89, 431–436.

Brena, R.M., Costello, J.F., 2007. Genome-epigenome interactions in cancer. Human molec-

ular genetics 16 Spec No, R96–105.

Brentnall, A.R., Cuzick, J., 2018. Use of the concordance index for predictors of censored

survival data. Statistical Methods in Medical Research 27, 2359–2373.

http://arxiv.org/abs/15334406


References 262

Bruce, J.P., Hui, A.B.Y., Shi, W., Perez-Ordonez, B., Weinreb, I., Xu, W., Haibe-Kains,

B., Waggott, D.M., Boutros, P.C., O’Sullivan, B., Waldron, J., Huang, S.H., Chen, E.X.,

Gilbert, R., Liu, F.F., 2015. Identification of a microRNA signature associated with risk

of distant metastasis in nasopharyngeal carcinoma. Oncotarget 6, 4537.

Calin, G.A., Croce, C.M., 2006. MicroRNA signatures in human cancers. Nat Rev Cancer

6, 857–866.

Cambruzzi, E., 2018. Medulloblastoma , WNT-activated / SHH-activated : clinical impact

of molecular analysis and histogenetic evaluation , 809–815.

Cao, R., Wang, L., Wang, H., Xia, L., Erdjument-Bromage, H., Tempest, P., Jones, R.S.,

Zhang, Y., 2002. Role of Histone H3 Lysine 27 Methylation in Polycomb-Group Silenceing.

Science 298, 1039–1043.

Capper, D., Jones, D.T., Sill, M., Hovestadt, V., Schrimpf, D., Sturm, D., Koelsche, C., Sahm,

F., Chavez, L., Reuss, D.E., Kratz, A., Wefers, A.K., Huang, K., Pajtler, K.W., Schweizer,

L., Stichel, D., Olar, A., Engel, N.W., Lindenberg, K., Harter, P.N., Braczynski, A.K.,

Plate, K.H., Dohmen, H., Garvalov, B.K., Coras, R., Hölsken, A., Hewer, E., Bewerunge-

Hudler, M., Schick, M., Fischer, R., Beschorner, R., Schittenhelm, J., Staszewski, O.,

Wani, K., Varlet, P., Pages, M., Temming, P., Lohmann, D., Selt, F., Witt, H., Milde,

T., Witt, O., Aronica, E., Giangaspero, F., Rushing, E., Scheurlen, W., Geisenberger, C.,

Rodriguez, F.J., Becker, A., Preusser, M., Haberler, C., Bjerkvig, R., Cryan, J., Farrell,

M., Deckert, M., Hench, J., Frank, S., Serrano, J., Kannan, K., Tsirigos, A., Brück, W.,

Hofer, S., Brehmer, S., Seiz-Rosenhagen, M., Hänggi, D., Hans, V., Rozsnoki, S., Hansford,

J.R., Kohlhof, P., Kristensen, B.W., Lechner, M., Lopes, B., Mawrin, C., Ketter, R.,

Kulozik, A., Khatib, Z., Heppner, F., Koch, A., Jouvet, A., Keohane, C., Mühleisen, H.,

Mueller, W., Pohl, U., Prinz, M., Benner, A., Zapatka, M., Gottardo, N.G., Driever, P.H.,

Kramm, C.M., Müller, H.L., Rutkowski, S., Von Hoff, K., Frühwald, M.C., Gnekow, A.,
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