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Abstract

Stopgain substitutions are the third-largest class of monogenic human disease mutations and often examined first in
patient exomes. Existing computational stopgain pathogenicity predictors, however, exhibit poor performance at the
high sensitivity required for clinical use. Here, we introduce a new classifier, termed X-CAP, which uses a novel training
methodology and unique feature set to improve the AUROC by 18% and decrease the false-positive rate 4-fold on
large variant databases. In patient exomes, X-CAP prioritizes causal stopgains better than existing methods do, further
illustrating its clinical utility. X-CAP is available at https://github.com/bejerano-lab/X-CAP.
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Background
Genome sequencing has revolutionized our ability to
diagnose Mendelian diseases [1]. However, individuals
contain hundreds of variants of uncertain significance
(VUS) within their genomes, and interpreting these vari-
ants presents a difficult challenge. Despite the continuous
accumulation of known pathogenic and benign variants in
databases such as ClinVar [2] and the Human Gene Muta-
tion Database (HGMD) [3], they are far from complete.
For example, ClinVar has high-confidence pathogenic-
ity labels for fewer than 100 thousand of all possible
82 million missense variants [4], and the HGMD col-
lection grows by thousands of pathogenic variants every
year [3, 5]. This necessitates the development of com-
putational tools that can distinguish pathogenic variants
from benign ones. In silico pathogenicity predictors often
utilize sequence conservationmeasures and protein anno-
tations to accomplish this goal. The scores output by these
tools are also integrated as valuable features into more
holistic models, such as Exomiser [6] and AMELIE [7],
that consider patient phenotypes.
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Historically, pathogenicity predictors, such as M-CAP
[8], have focused on missense variants due to the large
number of missense VUS within patient exomes [9].
Recently, tools have been developed for noncoding muta-
tions; for example, S-CAP [10] predicts the pathogenicity
of splicing mutations. However, other classes of coding
mutations, including stopgain mutations, remain under-
studied. Stopgain substitutions, also called nonsense
mutations, prematurely terminate protein translation by
converting codons that are normally translated into amino
acids into one of three stop codons (TAG, TAA, and
TGA). Owing to their large effect on proteins, these muta-
tions have unsurprisingly been implicated in many mono-
genic disorders, including cystic fibrosis and Duchenne
muscular dystrophy, and more complex diseases, such
as cancer and neurological disorders [11]. Indeed, sin-
gle base-pair stopgain substitutions represent the third-
largest class of disease-causing variants within HGMD
(Fig. 1a) and are often the very first class of variants
looked at during patient exome interpretation [12]. How-
ever, individuals also contain benign stopgains. Analysis of
exomes from the 1000 Genomes Project [13] reveals that
the average individual contains more than a dozen rare
(allele frequency < 1%) stopgain substitutions (Fig. 1b).
These mutations do not cause monogenic disease for a
variety of reasons. Some affect loss-of-function tolerant
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Fig. 1 Stopgains are a sizable variant class. a The number of variants of each mutation type as a proportion of all DM (disease-causing) variants in
HGMD 2020.1. Single base-pair stopgains are the third-largest class, trailing only missense variants and frameshift indels. b The prevalence of
stopgains from Phase 3 of the 1000 Genomes Project (N = 2504) as a function of their allele frequencies within the same dataset. The average
individual in the dataset harbors 12.5 stopgains with an allele frequency of less than 1%

genes [14]; others preserve protein function due to lim-
ited truncation of important domains, stop codon read-
through, avoidance of nonsense-mediated decay (NMD),
or the use of alternative translation start sites [15]. Since
any patient sequenced will have many stopgains and
because stopgain pathogenicity is influenced by the com-
plex interaction of many biological factors, computational
tools are needed to identify causal mutations.
Whole-genome predictors, such as CADD [16], DANN

[17], and Eigen [18], provide pathogenicity scores for
all single-nucleotide variants (SNVs), including stopgain
mutations, throughout the genome. However, these tools
have been engineered for and benchmarked on missense
and noncoding variants, not stopgains. Two predictors,
MutPred-LoF [19] and ALoFT [20], explicitly focus on
stopgain variants. MutPred-LoF and ALoFT input feature
representations consisting of evolutionary conservation
statistics, protein annotations, and gene essentiality data
into an ensemble of two-layer neural networks and ran-
dom forests, respectively. However, both fail to account
for variant zygosity in their prediction pipelines, and
their feature sets do not capture several intricacies of
stopgain-specific biology. Moreover, neither is calibrated
to performwell in the high-sensitivity region [8]—the per-
formance regime in which a model attains a sensitivity of
95% or more, which is required in a clinical setting (see
below).
In this paper, we introduce X-CAP, a conceptual sequel

to M-CAP (missense) [8] and S-CAP (splicing) [10], that
addresses the aforementioned shortcomings of existing
stopgain pathogenicity predictors. We evaluate X-CAP at
the high sensitivity required in clinical settings and show
that X-CAP considerably outperforms existing methods.

The X-CAP source code and predictions for all human
stopgain substitutions can be found at https://github.com/
bejerano-lab/X-CAP [21].

Methods
We developed a machine learning framework to predict
the pathogenicity of stopgain substitutions. This involved
(a) curating two labeled datasets of benign and pathogenic
stopgain variants, (b) designing a set of informative fea-
tures that discriminate between the two classes, and (c)
learning a model that performs well at high sensitivity.
We show that X-CAP boasts superior performance when
evaluated on the aforementioned datasets, as well as on
patient exomes.

Dataset curation
To assemble the first dataset (named Doriginal), we incor-
porated pathogenic variants from the 2019.1 Professional
version of the Human Gene Mutation Database (HGMD),
which curates inherited pathogenic variants from the
peer-reviewed literature [3], and putatively benign vari-
ants from the 2.1.1 exomes version of the Genome Aggre-
gation Database (gnomAD), which curates sequencing
data from individuals not known to be affected by a
Mendelian disease [14].
We isolated single base-pair stopgain substitutions

using ANNOVAR [22] and included, in both the
pathogenic and benign sets, only those variants with an
allele frequency less than 1%. Rare variants were isolated
because most pathogenic monogenic mutations affect
less than 1% of the population [23], and, therefore, the
American College of Medical Genetics and Genomics
recommends thatmore common variants be deemed non-
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causative [24]. This recommendation is well-supported
by our data, as only 4 out of 25,098 (0.016%) pathogenic
stopgains in HGMD have an allele frequency greater than
this threshold. Moreover, removing common benign vari-
ants is beneficial because models trained on datasets that
retain them tend to poorly distinguish rare benign vari-
ants from pathogenic variants [25]. After this filtration
step, 25,094 pathogenic and 160,247 benign stopgains
remained. We randomly split those variants into training
and test sets, ensuring that variants used by MutPred-
LoF [19] or ALoFT [20] (either within their training or
test sets, as their exact splits could not be obtained) were
routed to our training set. (CADD [16], DANN [17], and
Eigen [18] do not train on known pathogenic or known
rare benign variants, so there is no overlap between their
training datasets and ours.) Additional file 1: Fig. S1a
summarizes our pipeline.
When generating the dataset, we considered a vari-

ant v to be a 5-tuple of (chrom, pos, ref, alt,
zygosity). In particular, variants at the same locus
could have conflicting pathogenicity labels if their zygosi-
ties differed. We consider this to be a strength of our
design, as it allowed the model to learn a decision bound-
ary between variants that are pathogenic as homozygotes
but benign as heterozygotes.
To evaluate the robustness of our model, we also assem-

bled Dvalidation, which contains novel benign stopgains
from gnomAD genomes 3.0 and pathogenic variants from
HGMD Professional 2020.1 and ClinVar [2]. The same
pipeline described above was used to filter rare stopgains,
and those variants contained in Doriginal or seen by other
tools were discarded (Additional file 1: Fig. S1b). After
filtration, 10,295 pathogenic variants and 53,622 benign
variants remained.
Two additional datasets containing patient variants

were also constructed. First, we collected rare, putatively
benign stopgains from patient exomes in a control cohort
(N = 480) of an Inflammatory Bowel Disease study
(dbGaP StudyAccession: phs001076.v1.p1, consent group:
GRU) [26]. Second, we sourced causal pathogenic stop-
gains from patients in the Deciphering Developmental
Disorders project [27] who harbored one stopgain and no
other rare mutations in the causal gene. For both patient
datasets, variants contained in Doriginal or Dvalidation and
variants seen by other classifiers were discarded.

X-CAP features
Predicting a stopgain’s pathogenicity reduces to two ques-
tions. First, does the stopgain significantly alter the result-
ing protein? Second, if it does, can one or two copies
of the abnormal protein be tolerated? Existing classifiers
tend to focus on one of these two questions, but not both:
MutPred-LoF focuses on the former, whereas ALoFT
focuses on the latter. To address both questions simulta-

neously, we included the variant’s zygosity, measures of
gene and exon essentiality, and stopgain-specific features.
For any feature that could vary across transcripts, we took
an average over the transcripts that the variant overlaps.
Table 1 summarizes all features used by X-CAP, Fig. 2
shows the separation power of select features, and more
implementation details are included within Additional
file 1: Supplementary Methods.

Zygosity
In patients, sequencing reveals the zygosity of each
variant. This information is crucial in determining
pathogenicity, as one normal copy of the gene could
be sufficient to prevent monogenic disease. Indeed, in
our dataset, 8736 pathogenic stopgains from HGMD had
benign heterozygous counterparts in gnomAD, reveal-
ing that zygosity strongly influences pathogenicity. While
gnomAD includes the zygosity of its variants, HGMD
and ClinVar do not. Thus, for pathogenic variants with
unknown zygosity, we employed the following heuristic.
If the pathogenic variant was present within gnomAD in
a heterozygous state, we predicted it to be homozygous;
otherwise, we predicted it was heterozygous. Note that
this prediction is internal to our model, which ultimately
outputs pathogenicity scores for variants either with or
without known zygosity (see Discussion).

Gene/exon essentiality
We included various features that serve to capture the
essentiality [28] of the affected gene and exon. First,
we derived a stopgain-specific version of gnomAD’s oe
(observed/expected) ratio [14] in order to quantify a gene’s
intolerance to stopgain mutations. We also supplied RVIS
[29] values (Fig. 2a) and noted if a given gene was impli-
cated in a recessive or dominant Mendelian disease (or
both), as cataloged in the Online Mendelian Inheritance
in Man (OMIM) Gene Map [30]. Additionally, we clas-
sified transcripts and exons as monoclass pathogenic if
at least one pathogenic variant, but no benign variants,
was present along the transcript or exon within the train-
ing set. We did not classify transcripts or exons by the
lack of pathogenic variants because hundreds of novel
monogenic disease genes are discovered every year [5, 31].
Lastly, to allow for alternative splicing, we checked if the
stopgain was skipped by any isoform of the gene [32].

Stopgain-specific features
These features can be divided into five categories: vari-
ant location, nonsense-mediated decay, stop codon read-
through, alternative translation reinitiation, and cross-
species sequence conservation.
First, we included the location of a stopgain within

its transcript in order to estimate the extent of dam-
age caused by premature truncation. Pathogenic variants
truncated slightly more of the sequence than benign
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Table 1 X-CAP features. Italicized features are novel and have not been used in previous stopgain pathogenicity predictors. Specifically,
no features related to zygosity, stop codon read-through, or alternative translation reinitiation are present in earlier classifiers

Feature type Feature name Description

Zygosity zygosity Binary variable distinguishing homozygous (and hemizygous)
variants from heterozygous variants, inputed when known or
predicted as a function of benign stopgain alleles at the same
position in training set when unknown

Gene/exon essentiality oe Number of benign stopgains in training set along gene divided
by gnomAD’s expected number of loss-of-function variants

RVIS Measure of gene intolerance to functional variation

OMIM gene map Two non-exclusive, binary features indicating whether a reces-
sive or dominant disease listed in the OMIM Gene Map is
caused by mutations in this gene

monoclass pathogenic Transcript or exon contains no benign variants and at least one
pathogenic variant within training set

can be spliced out Variant is skipped in at least one isoform of the gene

Variant location distance from CDS start/end Number of coding nucleotides from CDS start and end

relative CDS location Distance from CDS start divided by CDS length

distance from exon start/end Number of coding nucleotides from exon start and end

relative exon location Distance from exon start divided by exon length

exon length Number of nucleotides in overlapped exon

exon number Index of the exon that the variant overlaps

# transcript exons Number of exons in overlapped transcript

chromosome Ternary variable indicating if the variable is located on an
autosomal, X, or Y chromosome

NMD distance from last exon-exon junction Number of coding nucleotides upstream from last exon-exon
junction (negative if downstream of junction)

% transcripts with NMD Percentage of overlapped transcripts in which the variant is
>50 bp upstream of the last exon-exon junction

Stop codon read-through stop codon One-hot encoding of the new stop codon introduced by the
stopgain

Alternative translation reinitiation distance to next start codon Number of base pairs between the variant and the next poten-
tial downstream start codon within the mRNA

Cross-species conservation phyloP Base-pair conservation across vertebrates of upstream, down-
stream, and overlapped exon regions

phastCons Regional conservation across vertebrates of upstream, down-
stream, and overlapped exon regions

variants (51% v. 48% on average, P < 10−58 by one-
sided Welch’s t-test). Notably, pathogenic variants were
depleted near the end of the sequence (Fig. 2b). Variants
near the end may not significantly disrupt protein func-
tion or may avoid the effects of nonsense-mediated decay
(NMD; see below). We also created features for the num-
ber of exons in the mutated transcript and the index of
the exon affected by the stopgain. Interestingly, benign
stopgains were located on transcripts with fewer exons
than those pathogenic stopgains were on (15.5 v. 25.1 on
average, P < 10−306 by one-sided Welch’s t-test; Fig. 2c).
NMD is a pathway by which mRNAs containing pre-

mature stop codons are degraded before translation [33].

NMD is predicted to be triggered when the premature
stop codon is more than 50 base pairs upstream of the last
exon-exon junction [34]. We included the distance to the
last exon-exon junction and the percentage of transcripts
in which NMD is predicted to occur as features.
Stop codon read-through occurs when the ribosome

continues translating past the stop codon, and drugs that
promote read-through are commonly used to treat dis-
eases caused by stopgains [35]. Experimental evidence in
mammalian cells indicates that the three stop codons have
different read-through rates with TGA > TAG > TAA
with respect to the likelihood of read-through [36]. In
concordance with these molecular results, we found that
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Fig. 2 X-CAP features show predictive power. Comparison of feature values for benign and pathogenic stopgains in the training set ofDoriginal . a
The Residual Variation Intoleration Score (RVIS) decile of genes, weighted by the number of variants they contain. Genes without RVIS values were
excluded. Pathogenic variants are more prevalent in low RVIS genes, namely those generally intolerant to variation. b Kernel Density Estimation
(KDE) plot of the relative variant location, defined as the distance in the coding domain sequence (CDS) from the translation start site divided by the
total CDS length. On average, benign stopgains are located later in transcripts than pathogenic stopgains. c KDE plot of the number of exons in the
mutated gene. The maximum number of exons is clipped to 100 for clarity. Genes containing benign stopgains tend to have fewer exons than
genes containing pathogenic stopgains. d Odds ratios (pathogenic/benign) comparing variants that introduce a given stop codon to those that do
not. The TGA stop codon, molecularly shown to be the most amenable to read-through of the three [36], is depleted in pathogenic variants. e Odds
ratios comparing 5’ proximal stopgains (those within the first 100 bp of the sequence) that have a potential alternative downstream start codon a
given distance away against those that do not. Pathogenic variants tend to be located further from the next downstream start codon than benign
variants. f KDE plot of the mean phyloP of the downstream region, the portion of the CDS truncated by the stopgain. Regions downstream of
pathogenic variants are more conserved than regions downstream of benign variants. In b, c, and f, Scott’s Rule [52] was used to calculate the
bandwidth of the Gaussian kernel. In d and e, error bars denote 95% confidence intervals for the odds ratio
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the TGA stop codon was depleted in pathogenic variants,
whereas the TAG and TAA stop codons were enriched
(largest Q < 10−4 after a Bonferroni correction to the
Pearson’s chi-squared test; Fig. 2d).
Alternative translation reinitiation allows for the cir-

cumvention of 5’ proximal stopgains [37] if there are
potential start codons downstream. The efficacy of this
circumvention depends not only on the distance between
the translation start site and the variant but also on the
distance between the variant and the next start codon
[38], so both distances were included as features. The
benign set was found to be enriched for stopgains that
were close to downstream start codons, and, as expected,
the strength of that enrichment was inversely correlated
with the distance to the downstream start codon (Fig. 2e).
Lastly, we included phyloP [39] and phastCons [40]

scores from multiz100way alignments of vertebrates [41]
to measure the evolutionary conservation of the trun-
cated region. On average, the regions downstream of
pathogenic variants weremore conserved than the regions
downstream of benign variants (Fig. 2f ).

X-CAP’s learning algorithm
X-CAP uses a gradient boosting tree (GBT) classifier to
discriminate pathogenic stopgains from benign ones. In
a GBT model, a collection of decision trees is iteratively
assembled. Each decision tree predicts the residual unac-
counted for by the previous trees, and the final classifier
is a weighted linear combination of each of the previ-
ously derived decision trees [42]. Fivefold cross-validation
was used to select features and tune hyperparameters
(see Additional file 1: SupplementaryMethods). To under-
stand the importance of X-CAP’s features, we computed
Shapley values using the shap package [43].

Model comparison
We compared our method to ALoFT [20], MutPred-
LoF [19], CADD [16], DANN [17], and Eigen [18]
on the aforementioned datasets. ALoFT was run after
lifting over variants to the hg19 assembly using the
LiftoverVcf command from the Picard tool suite [44].
MutPred-LoF was run using the output of ANNOVAR’s
coding_change.pl script as input. Because of the
long running time of the model (MutPred-LoF is 84
times slower than X-CAP on 1000 variants; Additional
file 1: Table S1), we randomly subsampled 1000 vari-
ants when evaluating it onDoriginal andDvalidation. CADD,
DANN, and Eigen scores were taken from dbNSFP v4.1a
[45]. Variants without provided scores in dbNSFP were
assigned a default score of 0, which is the label of the
benign class.
We assessed each model’s area under the receiver oper-

ating characteristic (AUROC) curve and area under the

precision recall curve (AUPRC) onDoriginal andDvalidation.
As described further within the “Results” section, we also
highlight each model’s AUROC in the clinically relevant
high-sensitivity region (true positive rate≥ 95%). AUROC
and AUPRCmetrics were computed using the scikit-learn
package [46].

Results
X-CAP outperforms competitors at clinically relevant
thresholds
We compared X-CAP to existing methods on the test set
of Doriginal (Additional file 1: Fig. S1a). Performance was
first measured by examining the area under the receiver
operating characteristic (AUROC) curve. X-CAP appre-
ciably improved the AUROC from 0.80 to 0.94 (Fig. 3a).
Because of class imbalance in our test set, we also mea-
sured the area under the precision recall curve (AUPRC).
X-CAP performs best on that metric as well, increasing
the AUPRC from 0.57 to 0.68 (Additional file 1: Fig. S2).
On both metrics, ALoFT was the second best classifier,
and the whole-genome predictors performed worse than
any of the stopgain-specific classifiers.
AUROC and AUPRCmeasure a model’s aggregated per-

formance across all possible decision rules. In this setting,
a decision rule maps a variant’s pathogenicity score to a
label ∈ {benign, pathogenic}. However, a model should
primarily be evaluated using the decision rule that will
be employed in practice. As argued in M-CAP [8] and
S-CAP [10], a clinically useful decision rule must limit
false negatives because there is little utility in reducing the
size of the candidate list of VUS if the pathogenic variant
is incorrectly discarded. Accordingly, we propose a deci-
sion rule that achieves 95% sensitivity (recall, true posi-
tive rate). The requisite threshold for X-CAP to achieve
this is 0.0601. This differs from the suggestions given by
MutPred-LoF and ALoFT. MutPred-LoF recommends a
decision rule with a 5% false-positive rate. ALoFT’s deci-
sion rule assigns the label of the class (one of benign,
pathogenic dominant, or pathogenic recessive) with the
highest probability. Neither provides any guarantees as to
the true positive rate.
Accordingly, we examined the performance of all clas-

sifiers in the high-sensitivity region (hsr), the portion
of each classifier’s ROC curve in which the classifier’s
true-positive rate is greater than 95% (above the dashed
line in Fig. 3a). We computed the area under the curve
within that region (hsr-AUROC) and found that X-CAP
vastly improved performance (Fig. 3b). X-CAP increased
the hsr-AUROC by 0.61 absolute points, a nearly 9-fold
improvement, and correctly classified 80.0% of benign
variants at 95% sensitivity. ALoFT—the next best model—
only correctly classified 17.6% of benign variants at the
same sensitivity.
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Fig. 3 X-CAP outperforms competitors. a For each model, we plot the ROC curve and associated AUROC metric on the test set ofDoriginal . X-CAP
has the highest AUROC, improving upon the previous state-of-the-art by 0.14 absolute points. The orange and green dotted lines display X-CAP’s
performance when trained only on variants present in the databases used by MutPred-LoF and ALoFT, respectively. To ensure a fair comparison, we
randomly subsampled these datasets to the size used in the original papers (n indicates the size of the training set). bWe enlarge the portion of the
plot above the dashed line in panel a to show performance in the clinically relevant, high-sensitivity region (TPR ≥ 0.95). We also display the
hsr-AUROC, which is the normalized area under the curve in the high-sensitivity region. We optimized X-CAP to excel in this region, rather than over
the full ROC. At 95% sensitivity, X-CAP correctly classifies 80.0% of benign stopgain variants, over four times more than any other classifier

To explicitly quantify the impact of X-CAP’s featuriza-
tion and training methodology, we retrained X-CAP using
only variants in Doriginal also present in the databases uti-
lized by MutPred-LoF and ALoFT. We ensured that our
training datasets were of the same size as those in the
original papers to ensure a fair comparison. Even when
trained on these older and smaller datasets, X-CAP signif-
icantly outperformed both methods (see Fig. 3 legends).
Nonetheless, training on additional variant data does fur-
ther improve X-CAP performance.

X-CAP generalizes to other variant databases
To ensure that X-CAP is robust to distribution shifts and
generalizes well, we evaluated our classifier on a sec-
ond dataset, aptly termedDvalidation. This dataset contains
newly discovered benign stopgains in gnomAD genomes
3.0 and pathogenic stopgains in HGMD 2020.1. It also
contains pathogenic stopgains from ClinVar, which has a
different curation strategy than HGMD.
Despite this distribution shift, the performance of all

tools and, in particular, the marked improvement that
X-CAP brings is nearly identical on Dvalidation (compare
Fig. 3 to Additional file 1: Fig. S3 and Additional file 1:
Fig. S2 to Additional file 1: Fig. S4) in terms of the over-
all AUROC, AUPRC, and hsr-AUROC, with almost a
6-fold improvement in the last. The stability of X-CAP’s
performance indicates that the model generalizes well.

X-CAP outperforms competitors on patient data
Although tools such as X-CAP are trained on large
datasets of pathogenic and benign variants, in practice

they are used to reduce the number of VUS in individ-
ual patients by identifying likely benign variants. Since
patients with monogenic disease conceptually differ from
other individuals by only 1 to 2 pathogenic variants, we
used a large control population of individuals as a proxy
for undiagnosed patients without a causal stopgain muta-
tion. Specifically, we sourced 480 exomes from a control
cohort in an Inflammatory Bowel Disease (IBD) exome
sequencing study [26] and removed both common vari-
ants and those variants previously seen by any classifier.
After calibrating eachmodel to achieve 95% sensitivity, we
found that X-CAP eliminated 80.2% of benign variants,
which is 4.2-fold more than the next best classifier (Fig. 4).
These numbers are also very consistent with the true-
negative rates observed in Fig. 3b and Additional file 1:
Fig. S3b.
Ultimately, we would like these tools to provide higher

scores to disease-causing stopgains in patient exomes.
To test this, we collected causal stopgains from 10
patients in the Deciphering Developmental Disorders
(DDD) project [27]. Table 2 displays the score that each
classifier assigned to the causal variants. In six out of
ten cases, X-CAP assigned the highest percentile score,
whereas no other classifier did so more than once. More-
over, this test vividly demonstrates the importance of
calibration for clinical use. If the decision rules orig-
inally recommended by each tool were to be used,
MutPred-LoF would have mischaracterized the disease-
causing variant five times, and ALoFT three times.
Thanks to careful calibration, X-CAP made only one such
mistake.
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Fig. 4 X-CAP eliminates the most benign stopgain VUS in control exomes. We plot the fraction of rare benign stopgain variants that were assigned
scores below the 95%-sensitivity threshold for each classifier. These variants were taken from exomes from a control population (N = 480) in an
Inflammatory Bowel Disease (IBD) study. The performance of all classifiers on exomes nicely matches their performance on aggregated variant sets
in Fig. 3b and Additional file 1: Fig. S3b. X-CAP increases the percentage of benign VUS eliminated by 4.4-fold

Discussion
Single base-pair stopgain substitutions comprise the
third-largest class of disease-causing mutations (Fig. 1a);
however, only a fraction of stopgains can be assumed to
be pathogenic as the average individual contains upwards
of twelve rare stopgains (Fig. 1b). X-CAP helps advance
the state of the art in stopgain pathogenicity prediction.
X-CAP is a calibrated machine learning model that, at
95% sensitivity, correctly classifies more than 80% of rare

benign variants (Fig. 3b and Additional file 1: Fig. S3b),
four times more than the previous best model. Con-
cretely, for the average patient with twelve rare benign
stopgains, X-CAP can greatly downgrade interest in nine
to ten while still retaining any pathogenic mutation with
very high probability. Moreover, X-CAP provides higher
scores to disease-causing stopgains (Table 2) than other
models do, so clinicians can use our model to more
confidently identify causal variants. X-CAP performs con-

Table 2 X-CAP prioritizes causal stopgains in patient exomes. Each row in the table describes a single patient, the causative gene and
variant, the genotype of the variant, and the percentile-normalized score provided by each classifier. For each method, raw scores were
percentile-normalized in comparison to the scores output by the classifier on the test set ofDoriginal. All ten patients contain one rare
stopgain and no other rare mutations in the causal gene. Bolded entries have the highest percentile for a given variant. Italicized
entries would have been misclassified on the basis of the original authors’ recommendations (CADD, DANN, and Eigen do not provide
a decision rule). X-CAP assigns the highest percentile six out of the ten times and mischaracterizes only one variant. No other tool
assigns the highest percentile-normalized score more than once, and MutPred-LoF and ALoFT mischaracterize variants five and three
times, respectively

Patient ID Gene HGVS GT X-CAP MutPred-LoF ALoFT CADD DANN Eigen

DDDP108441 FOXP1 c.C1366T:p.Q456X 0/1 89.4 87.7 89.4 89.2 81.3 95.1

DDDP108556 MED12 c.C5916A:p.Y1972X 0/1 90.8 26.6 93.3 23.7 52.0 8.9

DDDP108105 SATB2 c.C1375T:p.R459X 0/1 98.8 77.3 96.4 57.2 64.1 70.0

DDDP109873 EP300 c.C5581T:p.Q1861X 0/1 90.8 98.9 98.8 57.2 44.1 46.5

DDDP111266 CASK c.C613T:p.R205X 1/1 99.1 17.9 97.5 46.0 81.3 6.8

DDDP107416 AUTS2 c.C976T:p.Q326X 0/1 54.0 78.6 67.4 17.9 81.3 45.3

DDDP108492 DYRK1A c.C691T:p.R231X 0/1 98.7 19.5 90.7 57.2 81.3 70.7

DDDP100091 KDM6A c.C3047A:p.S1016X 0/1 93.6 30.8 93.1 66.0 64.1 11.2

DDDP110976 POGZ c.T2579A:p.L860X 0/1 93.3 22.9 79.0 12.3 14.4 25.2

DDDP110748 ANKRD11 c.C1801T:p.R601X 0/1 92.6 83.2 69.5 10.0 21.0 15.2
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sistently well even on the latest discoveries (such as the
new pathogenic stopgains added in HGMD 2020.1 and
included inDvalidation), suggesting it could have assisted in
accelerating their discovery.
The GBT model powering X-CAP, along with our care-

ful featurization, makes X-CAP extremely robust. For
example, X-CAP maintains strong performance on vari-
ants that are present in genes which were unobserved
during training (Additional file 1: Fig. S5). Our model’s
performance is also consistent irrespective of the number
of transcripts that a variant overlaps (Additional file 1: Fig.
S6). And if we rectify the class imbalance in X-CAP’s train-
ing set (144,420 benign stopgains vs. 22,584 pathogenic
stopgains) by randomly subsampling the benign class,
performance only decreases slightly (Additional file 1:
Fig. S7).
Feature analysis (Additional file 1: Fig. S8) reveals how

our different features come together to contribute to X-
CAP’s performance. In particular, inspired by S-CAP’s dis-
tinct dominant and recessive classifiers for core splicing
variants [10], we set out to explicitly model the zygosity
of stopgain variants. While 1000 Genomes, ExAC, gno-
mAD, and certainly real patient sequencing data come
with zygosity, both HGMD and ClinVar choose not to
provide the zygosity of pathogenic variants. To address
this issue, we predict the zygosity of pathogenic variants
from our training data, thereby allowing X-CAP to pre-
dict pathogenicity of variants whether their zygosity is
given (always preferred) or not. Ablating this (internal)
feature modestly reduces X-CAP performance across the
ROC curve (Additional file 1: Fig. S9). In the future, our
heuristic could be bolstered by extending natural language
processing tools, such as AVADA [47], to extract true
zygosity tags of curated pathogenic variants directly from
the primary literature. Other methodological improve-
ments over ALoFT and MutPred-LOF that we introduce
include (1) limiting training to rare variants, (2) incorpo-
rating benign heterozygous stopgains within the training
set, and (3) performing hyperparameter tuning and fea-
ture selection based on performance at high sensitivity as
opposed to the overall AUROC.
Aside from zygosity, X-CAP also integrates novel fea-

tures related to nonsense-mediated decay, stop codon
read-through, and alternative translation reinitiation.
Many of these features have high importance scores,
indicating that they are integral to the model’s decision-
making process (Additional file 1: Fig. S8). Our current
development of these stopgain-specific features has been
guided by general trends observed in molecular exper-
iments. However, as individual-level RNA-Seq [48] and
Cap Analysis of Gene Expression (CAGE) [49] datasets
are assembled, deep learning tools, similar to LaBran-
choR [50] and SpliceAI [51], can be trained to predict

these phenomena directly from sequences. These pre-
dictions could then easily be added as features into our
model to potentially improve performance. It is tempting
to consider extending our stopgain substitution predictor
to cover frameshifting mutations, as they too often result
in premature stop codons. However, because frameshift-
ing mutations result in hard to predict, variable-length
amino acid sequence disruptions, we feel a rather differ-
ent feature library will need to be constructed to optimize
performance.
The aforementioned improvements make X-CAP

extremely powerful and well adapted to clinical prac-
tice, where stopgains are often the first variants to be
inspected. X-CAP is also extremely valuable as a high-
quality feature in more comprehensive systems, such as
AMELIE [7], that integrate pathogenicity prediction tools
and supporting literature evidence for patient variants
to provide cheap, accessible, democratized, automated
patient diagnoses.

Conclusions
Stopgain variants are an important and understudied class
of mutations. In the clinic, there is need for computa-
tional tools to identify pathogenic stopgains. Here, we
presented X-CAP, a calibrated machine learning model
that incorporates variant zygosity, measures of gene and
exon essentiality, and novel stopgain-specific features to
predict pathogenicity. X-CAP significantly outperforms
previous models, particularly in the clinically relevant
high-sensitivity region. Additional analysis of our model’s
performance on patient exomes suggests that it can pro-
vide a transformative clinical impact. Predictions for all
stopgains in the human proteome and source code to run
X-CAP on specific variants are available at https://github.
com/bejerano-lab/X-CAP [21].
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