
A game theoretic model of the behavioural gaming that takes place at the
EMS - ED interface?

Michalis Panayides∗, Vince Knight, Paul Harper

School of Mathematics, Cardiff University, Cardiff CF24 4AX, United Kingdom

Abstract

This research describes the development and application of a 3-player game theoretic model be-

tween two queueing systems and a service that distributes individuals to them. The resultant

model is used to explore dynamics between all players. The first aspect of this work is the devel-

opment of a queueing system with two consecutive waiting spaces where the strategic managerial

behaviour corresponds to how individuals use these waiting spaces. Two modelling techniques are

deployed: discrete event simulation and Markov chains. The state probabilities of the Markov

chain system are used to extract the performance measures of the queueing model (e.g. mean time

in each waiting room, mean number of individuals in each room, etc.). A 3-player game theoretic

model is subsequently proposed between the two queueing systems and the service that distributes

individuals to them. In particular this can be viewed as a 2-player normal-form game where the

utilities are determined by a third player with its own strategies and objectives. A backwards

induction technique is used to get the utilities of the normal-form game between the two queueing

systems. This particular system has many applications, including those in healthcare where it cap-

tures the emergent behaviour between the Emergency Medical Service (EMS) and the Emergency

Department (ED). The impact of time-target measures on patient well-being is explored in this

paper.

Keywords: OR in health services, Game theory, Queueing theory, Behavioural modelling

1. Introduction

Emergency departments (EDs) are under increasing pressure to meet patient waiting time

targets and satisfy regulations [22]. It is widely reported (e.g. [25, 32, 33]) that ED congestion

severely impacts not only patients in the ED but also Emergency Medical Services (EMS). A

?This document is the result of the research project funded by The Healthcare Improvement Studies (THIS)
institute.
∗Corresponding author
Email addresses: panayidesM@cardiff.ac.uk (Michalis Panayides), knightva@cardiff.ac.uk (Vince Knight),

harper@cardiff.ac.uk (Paul Harper)

Preprint submitted to Elsevier June 23, 2022

major concern for ambulances is that they are held waiting parked outside the ED to offload

(dispatch) their patient when the ED is particularly busy [13]. Since the patient waiting time in

ED is measured from the time they enter the ED itself, there is no incentive, should the patient

be stable in the ambulance, to offload them from EMS to ED services. As a result, ambulance

blocking not only impacts on patients waiting for ED service, but has a major knock-on effect to

delaying the ability of ambulances to respond to new EMS calls, thus placing lives at risk [17].

There are numerous news articles that focus on the complexity that arises when ambulances

stay blocked outside of the hospital for a long amount of time [3, 15]. Some news reports comment

on the long idle time of ambulances when they are not in use [46] and there are several reports of

examples where this became an issue for new patients [35] and paramedics [14].

This paper aims to describe the EMS-ED interface using a game theoretic model informed by an

underlying queueing model. The model describes the situation where an ambulance service would

have to distribute its patients between two EDs. The two EDs can be thought of as two queueing

systems and the EMS as a distributor that distributes patients to them, aiming to minimise some

performance measure. The patients that are distributed by the EMS arrive at the hospital via

an ambulance and are then either offloaded at the ED or stay blocked outside in the ambulance.

Whether or not the ambulance and its patient stay blocked is determined by the threshold that the

given ED chooses to play. A high threshold indicates that the ED accepts ambulance patients even

if it is relatively full, while a low threshold means that the ED blocks ambulances more frequently.

In the United Kingdom, the National Heath Services (NHS) sets some regulations on ED

performance. One of these regulations is that 95% of patients that arrive at the ED should be

admitted, transferred or discharged within four hours. This is where gaming behaviour might be

observed between the EDs and the EMS. An assumption of this work is that some managerial

decision making is involved in choosing when to start blocking ambulances. This is similar to [18].

The major contributions of this paper are:

� A queueing model with two consecutive waiting spaces where one would serve as a parking

space for the ambulances.

� Analytic performance measure formulas for the queueing model.

� A 3-player game theoretic model between the EMS and two EDs.

� Numerical experiments showing emergent behaviour of gaming between EDs and the EMS.

Specifically, our focus is on the construction of a 3-player game theoretic model between two

queueing systems and a service that distributes individuals to them. The resultant model is then

used to explore the emergent dynamics between the three players. This study explores two new

concepts: getting performance measures for a new queueing theoretic model with a parking space

and a service centre, and using a learning algorithm to model the emergence of behaviour. The

developed theoretical model is illustrated through the application to a healthcare system of two

2

EDs and the EMS, exploring the inefficiencies that emerge and ways to apply some incentive

mechanisms to improve them. The EDs are modelled as two queueing systems each with a tandem

buffer and a service centre. The performance measures are then used as the utilities of the game.

The novelty of the queueing model here is a contribution not only the game theoretic literature but

also to the queueing theoretic literature. To the authors knowledge, no such model of a tandem

queueing model with a pair of parameters for the buffer has been previously considered.

This paper consists of two main sections. Section 3 presents a novel queueing model for a

hospital with two types of patients and two waiting zones. A detailed description of how to acquire

the performance measure formulas of such queueing system is given. Section 4 gives an overview

of the game theoretic model and several theoretic results pertaining to the performance measures

of this model which are used to build the utilities of the game.

2. Literature review

A number of papers have been published that touch upon the use of queueing models together

with game theoretic concepts. In [9] the authors study a simultaneous price competition between

two firms that are modelled as two distinct queueing systems with a fixed capacity and a combined

arrival rate. They calculate the Nash equilibrium both for identical and heterogeneous firms and

show that for the former a pure Nash equilibrium always exist and for the latter a unique equilibrium

exists where only one firm operates. The authors have also extended their model in [10] by allowing

the players (firms) to choose capacities. A main result from this paper was that when both firms

operate independently as a monopoly, the equilibria are socially optimal, but this is not the case

when the firms operate together. Another extension of [9] was introduced in [12] where a long-

run version of the competition was considered that also had capacity as a decision variable. An

additional paper that focuses on competition is [19] where the authors created a competition

between two sellers where seller 1 supplies a product instantly and seller 2 is modelled as a make-

to-order M/M/1 queue. The game that is played requires the two sellers to make a choice on

the price of the product and then seller 2 to set a capacity that guarantees a maximum expected

delay. In our work, while giving some consideration to equilibrium behaviour, similar to the work

of [9, 10], emergent behaviour is more precisely addressed by considering learning algorithms like

asymmetric replicator dynamics [21].

In the above models, the players are attempting to increase their share of individuals choosing

to queue. In public healthcare type settings, this is not necessarily the case. Rational usage

of public services will not necessarily lead to a socially optimal outcome. Rather, the overall

service needs to be considered as players aim to minimise their experienced congestion. In [39]

a healthcare application was studied where patients could choose between two hospitals, where a

utility function is derived that is based on patients’ perceived quality of life. In [27] the authors

place the individuals’ choices between different public services within the formulation of routing

games and measure inefficiencies using a concept known as the price of anarchy (PoA) [28]. They

3

show that the price of anarchy increases with worth of service and that is low for systems with

insufficient capacities. In [11] a two-tier healthcare system with a capacity constrained is studied

where patients can choose between two systems to receive their service. The first system is labelled

as the free system (public government-funded hospital) which offers service without seeking any

profit and the second one is the toll system (private hospital) that aims to maximise its own profit.

The authors, also compare the two-tier system with its one-tier equivalent, where only the free

system exists. In [26] a normal form game is built that is informed by a two-dimensional Markov

chain in order to model interactions between critical care units. In [48] a queueing-game-theoretical

model is introduced where there are two types of service providers; a high quality high-congested

hospital and a low quality low-congested hospital. The authors study a two-stage Stackelberg game

where the government is the leader and the arriving patients are the followers. In [18] the authors

study the network effect of ambulance diversion by proposing a non-cooperative game between two

EDs that are modelled as a queueing network. Each ED’s objective is to minimise its own waiting

time and chooses a diversion threshold based on the patients it has. In equilibrium both EDs

choose to divert ambulances in order to avoid getting arrivals from the other ED. In this paper

this concept is extended by allowing the ambulance service to decide how to distribute its patients

among the two EDs. The players of the game are both the hospitals and the customers of the

hospitals, as opposed to the previous models which are one or the other. Thus, the novelty of our

work is combining both these aspects.

Another specific part of our research, as described later in the paper, is the construction of

a queueing system with a tandem buffer and a single service centre. There are several examples

from literature that touch upon queueing models with tandem queues. In [16] the authors explore

threshold joining strategies in a Markov model that has two tandem queues. Another example is the

one described in [8] where they investigated a network of multiple tandem queues where customers

decide which queue to attend before joining. Similarly, in [5] the authors examine a network of N

tandem M/M/1 queues and with multi-type customers. The customers in this paper react to a price

p by picking demand rates that maximise utility. In [47] a profit maximisation problem is studied

that has two servers; an M/M/1 queue and a parking service providing complementary service while

the customer is in the first service. The providers gain a reward when customers complete both

services and no reward when they finish one of them. One of the main conclusions of this study

is that by increasing the general demand both providers lower their prices to compensate for the

increase in wait. The problem was later extended by [43] where they considered arrivals of batches

that can share the parking service. Finally, [2] examines a tandem network of two M/M/1 queues

that are ran by two different profit-maximising service providers. The network receives three types

of customers; those requiring both services, customers requiring the first service and customers

requiring the second service. The authors showed that optimal prices also maximise social utility

and that removing two types of customers that don’t need both services leads to higher profit and

lower demand rate. In our work, the concepts described in [16, 8, 5] are extended by introducing a

4

threshold parameter that determines when individuals can progress from one queue to the other.

3. A queueing model for the ED-EMS interface

In this section, a more in-depth explanation of the queueing model shown in figure 1 will be

given. This is a queueing model that consists of two waiting zones: the parking space and the

hospital waiting space.

M︷ ︸︸ ︷

Parking space

T

N︷ ︸︸ ︷

Hospital

C

λ2

λ1

Figure 1: A diagrammatic representation of the queueing model. The threshold T only applies to type 2 individuals.

If the number of individuals in the hospital is T , only individuals of type 1 are accepted (at a rate λ1) and individuals

of type 2 (arriving at a rate λ2) are blocked in the parking space.

The model consists of two types of individuals; type 1 and type 2. Type 2 individuals are

patients arriving in ambulances who can be blocked (usually patients that are deemed not to be

critical) and type 1 individuals are individuals arriving from other sources (e.g walk-in patients,

urgent patients from either walk-ins or ambulances). Type 1 individuals arrive instantly at the

hospital’s waiting space and wait to receive their service. Type 2 individuals arrive at the parking

space and wait there until they are allowed to move into the hospital. They are allowed to proceed

only when the number of patients in the hospital is less than the pre-determined threshold T . When

the number of individuals is equal to or exceeds this threshold, all type 2 patients that arrive will

stay blocked in the parking space until the number of patients in the hospital falls below T . This

is shown diagrammatically in Figure 1. The parameters of the described queueing model are:

� λi: The arrival rate of individuals of type i ∈ {1, 2}

� µ: The service rate for individuals receiving service

� C: The number of servers (either healthcare professionals or available beds in the ED)

� T : The threshold at which type 2 individuals are blocked

Under the assumption that all rates (arrival and service) are Markovian the queueing system

corresponds to a Markov chain [23]. The states of the Markov chain are denoted by (u, v) where:

� u is the number of individuals blocked in the parking space

5

� v is the number of individuals waiting or being served in the hospital

We denote the state space of the Markov chain as S = S(T) which can be written as the disjoint

union (1).

S(T) =S1(T) ∪ S2(T) where:

S1(T) =
{

(0, v) ∈ N2
0 | v < T

}
(1)

S2(T) ={(u, v) ∈ N2
0 | v ≥ T}

The generator matrix Q of the Markov chain consists of the rates between the numerous states

of the model. Every entry Qij = Q(ui,vi),(uj ,vj) represents the rate from state i = (ui, vi) to state

j = (uj , vj) for all (ui, vi), (uj , vj) ∈ S. The entries of Q can be calculated using the state-mapping

function described in (2):

Qij =



Λ, if (ui, vi)− (uj , vj) = (0,−1) and vi < t

λ1, if (ui, vi)− (uj , vj) = (0,−1) and vi ≥ t

λ2, if (ui, vi)− (uj , vj) = (−1, 0)

viµ, if (ui, vi)− (uj , vj) = (0, 1) and vi ≤ C or

(ui, vi)− (uj , vj) = (1, 0) and vi = T ≤ C

Cµ, if (ui, vi)− (uj , vj) = (0, 1) and vi > C or

(ui, vi)− (uj , vj) = (1, 0) and vi = T > C

−
∑|Q|

j=1Qij if i = j

0, otherwise

(2)

Note that Λ here denotes the overall arrival rate in the model by both types of individuals (i.e.

Λ = λ1 + λ2). A visualisation of how the transition rates relate to the states of the model can be

seen in the general Markov chain model shown in Figure 2.

6

S1

S2

General Case

(0,0)

(0,1)

. . .

(0,T) (0,T+1) . . . (0,C) . . .

(1,T) (1,T+1)
. . . (1,C) . . .

(2,T)
(2,T+1)

. . . (2,C) . . .

... ...

...

(ui, vi)

Λ

µ

Λ

2µ

Λ

Tµ

λ1

(T + 1)µ

λ1

(T + 2)µ

λ1

Cµ

λ1

Cµ

λ1

(T + 1)µ

λ1

(T + 2)µ

λ1

Cµ

λ1

Cµ

λ1

(T + 1)µ

λ1

(T + 2)µ

λ1

Cµ

λ1

Cµ

λ2Tµ

λ2Tµ

λ2Tµ

λ2

λ2

λ2

λ2

λ2

λ2

λ1

viµ (vi + 1)µ

λ1

λ2

λ2

Figure 2: General case of the Markov chain model

In order to consider this model numerically an adjustment needs to be made. The problem

defined above assumes no upper boundary to the number of patients that can wait in the hospital or

to the ones that are blocked in the parking space. Therefore, a different state space S̃ is constructed

where S̃ ⊆ S and there is a maximum allowed number of patients N that can be in the hospital

and a maximum allowed number of ambulances M that can be blocked in the parking space:

S̃ = {(u, v) ∈ S |u ≤M,v ≤ N} (3)

The generator matrix Q defined in (2) can be used to get the probability vector π. The vector

π is commonly used to study stochastic systems and it’s main purpose is to keep track of the

probability of being at any given state of the system. πi is the steady state probability of being in

7

state (ui, vi) ∈ S̃ which is the ith state of S̃ for some ordering of S̃. The term steady state refers to

the instance of the vector π where the probabilities of being at any state become stable over time.

Thus, by considering the steady state vector π the relationship between it and Q is given by:

dπ

dt
= πQ = 0

Using vector π there are numerous performance measures of the model that can be calculated.

The following equations utilise π to get performance measures for the average number of patients

at the different nodes of the queueing model:

� Average number of patients in the entire system:

L =

|π|∑
i=1

πi(ui + vi)

� Average number of patients in the hospital:

LH =

|π|∑
i=1

πivi

� Average number of patients/ambulances in the parking space:

LA =

|π|∑
i=1

πiui

Consequently, there are some additional performance measures of interest that are not as

straightforward to calculate. Such performance measures are the mean waiting time in the system

(for both type 1 and type 2 individuals), the mean time blocked in the parking space (only valid

for type 2 individuals) and the proportion of individuals in the hospital whose waiting time falls

within a predefined time target (for both types).

3.1. Waiting time

Waiting time is the amount of time that patients wait in the hospital’s waiting space before

they can receive their service. For a given set of parameters there are three different performance

measures around the mean waiting time that can be calculated. The mean waiting time of type 1

individuals:

W (1) =

∑
(u,v)∈S(1)

A
v≥C

1
Cµ × (v − C + 1)× π(u, v)∑
(u,v)∈S(1)

A

π(u, v)
(4)

The mean waiting time of type 2 individuals:

8

W (2) =

∑
(u,v)∈S(2)

A
min(v,T)≥C

1
Cµ × (min(v + 1, T)− C)× π(u, v)∑

(u,v)∈S(2)
A

π(u, v)
(5)

The overall mean waiting time:

W =
λ1PL′1

λ2PL′2 + λ1PL′1
W (1) +

λ2PL′2
λ2PL′2 + λ1PL′1

W (2) (6)

Here S
(1)
A and S

(2)
A are the set of accepting states for type 1 and type 2 individuals. These are

the set of states that the model is able to accept a specific type of individuals.

S
(1)
A = {(u, v) ∈ S | v < N} (7)

S
(2)
A =

{(u, v) ∈ S | u < M}, if T ≤ N

{(u, v) ∈ S | v < N}, otherwise
(8)

Equation 6 makes use of the proportion of type 1 and type 2 individuals that are not lost to

the system. These probabilities are given by PL′1 and PL′2 where:

PL′1 =
∑

(u,v)∈S(1)
A

π(u, v) PL′2 =
∑

(u,v)∈S(2)
A

π(u, v) (9)

Appendix B gives more details on the recursive formula that equations (4), (5) and (6) originate

from.

Figure 3 shows a comparison between the calculated mean waiting time using Markov chains

and the simulated waiting time using discrete event simulation over a range of values of λ2 (details

of the discrete event simulation model are given in appendix A). The figure is used to demonstrate

the accuracy of the waiting time formula of the constructed queueing model as well as the effect

of truncating the model. The simulation was run 100 times and the recorded mean waiting time

at each iteration is used to populate the violin plots. In detail, figure 3 shows the calculated mean

waiting time using the Markov chain, using a truncated simulation and using a simulation with

infinite capacity (without the artificial parameters N and M). Each plot corresponds to different

values of N and M and is run over different values of λ2. The untruncated simulation values are

the same at all three graphs since the effect of truncation does not apply to it. The waiting times

generated by the truncated simulation match the ones generated by the Markov chains model.

Note that this comparison includes both type 1 and type 2 individuals. A separate comparison of

only type 1 and only type 2 individuals can be found in appendix E.

9

2 3 4 5 6
2

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

W
ai

tin
g

tim
e

N = M = 10
Finite state Markov chain
Simulation
Truncated simulation

2 3 4 5 6
2

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

W
ai

tin
g

tim
e

N = M = 30
Finite state Markov chain
Simulation
Truncated simulation

2 3 4 5 6
2

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

W
ai

tin
g

tim
e

N = M = 50
Finite state Markov chain
Simulation
Truncated simulation

Truncation effect on waiting time

Figure 3: Comparison of mean waiting time between values obtained from the Markov chain formula, values obtained

from the truncated simulation and values obtained from the untruncated simulation.

3.2. Blocking time

Blocking time is the amount of time that type 2 patients wait in the parking space before

they are allowed to proceed into the hospital. Unlike the waiting time, the blocking time is only

calculated for type 2 individuals. That is because type 1 individuals cannot be blocked. Thus,

one only needs to consider the pathway of type 2 individuals to get the mean blocking time of the

system. The mean blocking time can by calculated using:

B =

∑
(u,v)∈S(2)

A

π(u,v) b(A2(u, v))∑
(u,v)∈S(2)

A

π(u,v)
(10)

Here S
(2)
A is the set of accepting states of type 2 individuals (defined in equation (8)) and

Ai(u, v) for i ∈ {1, 2} is the state that the system would go to when the system is at state (u, v)

and an individual of type i arrives.

A1(u, v) = (u, v + 1) (11)

A2(u, v) =

(u, v + 1), if v < T

(u+ 1, v), if v ≥ T
(12)

The term b(u, v) is the mean time that an individual will be blocked for, when the individual

arrives in the system at state (u, v). For all the states of the system b(u, v) is given by:

10

b(u, v) =



0, if (u, v) /∈ Sb
c(u, v) + b(u− 1, v), if v = N = T

c(u, v) + b(u, v − 1), if v = N 6= T

c(u, v) + ps(u, v)b(u− 1, v) + pa(u, v)b(u, v + 1), if u > 0 and

v = T

c(u, v) + ps(u, v)b(u, v − 1) + pa(u, v)b(u, v + 1), otherwise

(13)

Note that Sb is defined as the set of states where individuals can be blocked and is given by:

Sb = {(u, v) ∈ S | u > 0} (14)

Additionally, c(u, v) is the mean sojourn time for each state and ps and pa are the probabilities

that the next event to occur will be a service completion or an arrival of a type 1 individual:

c(u, v) =

 1
min(v,C)µ , if v = N

1
λ1+min(v,C)µ , otherwise

(15)

ps(u, v) =
min(v, C)µ

λ1 + min(v, C)µ
, pa(u, v) =

λ1

λ1 + min(v, C)µ
(16)

The system of equations produced by (13) can be solved by considering the linear system

Zx = y. Assuming i and j represent states (ui, vi), (uj , vj) ∈ Sb then Zij is given by:

Zij =



pa, if j = i+ 1 and vi 6= N

ps, if j = i− 1 and vi 6= N, vi 6= T

or j = i−N + T and ui ≥ 2, vi = T

1, if j = i− 1 and vi = N

−1, if i = j

0, otherwise

(17)

Equation (18) shows this.

Z =



−1 pa 0 . . . 0 0 0 0 0 . . . 0 0

ps −1 pa . . . 0 0 0 0 0 . . . 0 0

0 ps −1 . . . 0 0 0 0 0 . . . 0 0
...

...
...

. . .
...

...
...

...
...

. . .
...

...

0 0 0 . . . 1 −1 0 0 0 . . . 0 0

ps 0 0 . . . 0 0 −1 pa 0 . . . 0 0

0 0 0 . . . 0 0 ps −1 pa . . . 0 0
...

...
...

. . .
...

...
...

...
...

. . .
...

...

0 0 0 . . . 0 0 0 0 0 . . . 1 −1



, x =



b(1, T)

b(1, T + 1)

b(1, T + 2)
...

b(1, N)

b(2, T)

b(2, T + 1)
...

b(M,N)



, y =



−c(1, T)

−c(1, T + 1)

−c(1, T + 2)
...

−c(1, N)

−c(2, T)

−c(2, T + 1)
...

−c(M,N)



(18)

11

Additional details on the blocking time formula (10) can be found in appendix C.

Figure 4 illustrates a comparison between the formulas that arise from the Markov chain

model and the equivalent values of the blocking time extracted from discrete event simulation

(appendix A). The blocking time is calculated using both methods for a range of values of λ2.

The figure is used to demonstrate the accuracy of the blocking time formula of the constructed

queueing model as well as the effect of truncating the model. The simulation was run 100 times and

the recorded mean blocking time at each iteration is used to populate the violin plots. Similar to

figure 3, these plots shows a comparison between the calculated mean blocking time using Markov

chain, using a truncated simulation and using a simulation without the artificial parameters N

and M . The blocking times generated by the truncated simulation match the ones generated by

the Markov chains model. Note that this comparison includes only type 2 individuals since type 1

individuals cannot be blocked.

2 3 4 5 6
2

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Bl
oc

ki
ng

 ti
m

e

N = M = 10
Finite state Markov chain
Simulation
Truncated simulation

2 3 4 5 6
2

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Bl
oc

ki
ng

 ti
m

e

N = M = 30
Finite state Markov chain
Simulation
Truncated simulation

2 3 4 5 6
2

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Bl
oc

ki
ng

 ti
m

e

N = M = 50
Finite state Markov chain
Simulation
Truncated simulation

Truncation effect on blocking time

Figure 4: Comparison of mean blocking time between values obtained from the Markov chain formula, values obtained

from the truncated simulation and values obtained from the untruncated simulation.

3.3. Proportion of individuals within target

Another performance measure that is taken into consideration is the proportion of individuals

whose time in the hospital (waiting and service time) is within a specified time target t. Similar

to section 3.1, three formulas are needed for this performance measure.

The proportion of type 1 individuals within a time target:

P (X(1) < t) =

∑
(u,v)∈S(1)

A

P (X
(1)
A1(u,v) < t)πu,v∑

(u,v)∈S(1)
A

πu,v
(19)

The proportion of type 2 individuals within a time target:

P (X(2) < t) =

∑
(u,v)∈S(2)

A

P (X
(2)
A2(u,v) < t)πu,v∑

(u,v)∈S(2)
A

πu,v
(20)

12

The terms A1(u, v) and A2(u, v) are defined by equations 11 and 12 in section 3.2. The overall

proportion individuals within a time target (where PL′1 and PL′1 are defined in (9)):

P (X < t) =
λ1PL′1

λ2PL′2 + λ1PL′1
P (X(1) < t) +

λ2PL′2
λ2PL′2 + λ1PL′1

P (X(2) < t) (21)

Here P (X
(1)
(u,v)) and P (X

(2)
(u,v)) are defined as the proportion of individuals within the time target

t when starting from state (u, v). These expression can be calculated by:

P (X
(1)
(u,v) < t) =



1−
∑v−1

i=0
1
i!e
−µt(µt)i, if C = 1

and v > 1

1− (µC)v−Cµ
∑|~r|

k=1

∑rk
l=1

Ψk,l(−λk)trk−le−λkt

(rk−l)!(l−1)! , if C > 1

and v > C

1− e−µt, if v ≤ C

(22)

where ~r = (v − C, 1), ~λ = (Cµ, µ) and λ0 = 0, r0 = 1.

P (X
(2)
(u,v) < t) =



1−
∑min(v,T)−1

i=0
1
i!e
−µt(µt)i, if C = 1

and v, T > 1

1− (µC)min(v,T)−Cµ
∑|~r|

k=1 if C > 1

×
∑rk

l=1
Ψk,l(−λk)trk−le−λkt

(rk−l)!(l−1)! , and v, T > C

1− e−µt, if v ≤ C

or T ≤ C

(23)

where ~r = (min(v, T)− C, 1), ~λ = (Cµ, µ) and λ0 = 0, r0 = 1.

The function Ψk,l used in equations (22) and (23) is defined as:

Ψk,l(t) =


(−1)l(l−1)!

λ2

[
1
tl
− 1

(t+λ2)l

]
, k = 1

− 1
t(t+λ1)r1 , k = 2

Please refer to appendix D for a more in-depth explanation of the origins of equations (19) -

(23).

Figure 5 shows a comparison of the mean proportion of individuals within target when using

Markov chains and discrete event simulation (appendix A). The figure is used to demonstrate the

accuracy of the formula for the proportion of individuals within time of the constructed queueing

model as well as the effect that truncating the model has on the formula. The simulation was

run 100 times and the recorded proportions at each iteration is used to populate the violin plots.

Similar to figures 3 and 4, these plots shows a comparison between the calculated mean proportion

of individuals within time using Markov chain, using a truncated simulation and using a simulation

13

without the artificial parameters N and M . The proportions generated by the truncated simulation

match the ones generated by the Markov chains model. Note that this comparison includes both

type 1 and type 2 individuals. A separate comparison of only type 1 and only type 2 individuals

can be found in appendix E.

2 3 4 5 6
2

0.35

0.40

0.45

0.50

0.55

0.60

0.65

0.70

0.75

%
 w

ith
in

 ta
rg

et

N = M = 10

Finite state Markov chain
Simulation
Truncated simulation

2 3 4 5 6
2

0.35

0.40

0.45

0.50

0.55

0.60

0.65

0.70

0.75

%
 w

ith
in

 ta
rg

et

N = M = 30

Finite state Markov chain
Simulation
Truncated simulation

2 3 4 5 6
2

0.35

0.40

0.45

0.50

0.55

0.60

0.65

0.70

0.75

%
 w

ith
in

 ta
rg

et

N = M = 50

Finite state Markov chain
Simulation
Truncated simulation

Truncation effect on proportion within target

Figure 5: Comparison of mean proportion of individuals within target time between values obtained from the Markov

chain formula, values obtained from the truncated simulation and values obtained from the untruncated simulation.

3.4. Truncation effect timings

The choice of the artificial parameters N and M is an important decision of the model. In

the untruncated simulation these values are not needed. This is not possible when obtaining the

steady state probabilities of the finite state Markov chain. Table 1 shows the relative timings of

the different approaches used to get the performance measures.

Simulation timings Markov chain timings

Value of Single 100 Waiting time Blocking time Proportion within

N and M trial trials formula formula time formula

10 1 144.3 0.015 0.014 0.014

30 1 143.4 3.731 3.828 3.649

50 1 139.8 31.57 38.39 31.98

∞ 1 142.1 N/A N/A N/A

Table 1: Relative timings of the simulation and Markov chain model

4. Strategic manipulation of the ED-EMS interface

The problem studied is a 3-player normal form game. The players are:

� the decision makers of two Emergency Departments (EDs)

14

� the Emergency Medical Services (EMS) that distribute individuals in ambulances to the EDs

This is a standard normal form game [34], in that each player in this game has their own

objectives which they aim to optimise. More specifically, the EDs’ objective is captured by an

upper bound of the time that a fixed proportion of individuals spend in the system, while the EMS

aims to minimise the time that its ambulances are blocked. This can be generalised for any such

system where instead of EDs there are some queueing systems and instead of the EMS there is

some distributor that allocates individuals to the queueing systems.

The parameters of the model correspond to the following parameters of the ED and the EMS:

� λ2: The rate of patients (who can be blocked) that the EMS receives and distributes to EDs

� λ1i : The arrival rate of other patients to ED i ∈ {A,B}

� µi: The service rate of patients at ED i ∈ {A,B}

� Ci: The number of available resources (healthcare professionals) in the ED i ∈ {A,B}

� Ti: The action that ED i ∈ {A,B} chooses to play which corresponds to the threshold at

which they do not accept EMS patients.

� Ni: The total patient capacity of the ED i ∈ {A,B}

� Mi: The total parking capacity of the ED i ∈ {A,B}

� t: The time target for both EDs

� α ∈ [0, 1] : Weighted average of blocking time and lost individuals (equation 25)

The strategies of the two EDs are the range of thresholds that they can choose from and their

utilities are the proportions of individuals whose time in the system is within a predetermined

target time. The EMS has to decide how to distribute its patients among the two EDs so that the

weighted combination of the ambulance blocking time and the percentage of lost ambulances is

minimised. This can be illustrated by figure 6. The interaction between the two EDs is a normal

form game that is then used to inform the decision of the EMS. Note that the formulated game

here assumes that prior to making a choice the EMS knows the strategies that each ED is playing

(figure 7). This corresponds to reacting to experienced delays.

15

λ2

pA

pB

TA

pAλ2

λA1

TB

pBλ2

λB1

Figure 6: A diagrammatic representation of the game theoretic model. Patients arrive at the EMS at a rate of λ2

and then a proportion of them are distributed to hospitals A (pA) and the remaining proportion to hospital B (pB)

so that pA+pB = 1. The corresponding arrival rates of type 2 patients to hospitals A and B are thus given by: pAλ2

and pBλ2.

The queueing systems of the hospitals are designed in such a way where they can accept two

types of individuals (section 3). Each hospital may then choose to block type 2 individuals when

the hospital reaches a certain capacity. The strategy sets for each hospital is the set {T ∈ N | 1 ≤
T ≤ N} where N ∈ {NA, NB} are the total capacities of hospitals A and B. We denote the chosen

actions from the strategy set as TA, TB and call these thresholds.

Both hospitals follow a queueing model with two waiting spaces for individuals. The first

waiting space (i.e. the waiting space of the hospital) is where the patients queue right before

receiving their service and has a queue capacity of N − C, where N is the total capacity of the

hospital and C is the number of healthcare professionals able to see them. The second waiting

space (i.e. the parking space for ambulances) is where ambulances, that are sent from the EMS

distributor, stay until their patients are allowed to enter the hospital. The parking space has a

capacity of M and no servers. This is shown diagrammatically in Figure 1.

Note here that both types of individuals can become lost to the system. An individual allocated

from the ambulance service becomes lost to the system whenever an arrival occurs and the parking

space is at full capacity (M ambulances already parked). Similarly, type 1 individuals get lost

whenever they arrive at the waiting space of the hospital and it is at full capacity (N−C individuals

already waiting).

Following this queueing model, the two queueing systems’ choice of strategy will then rely solely

on satisfying their own objective. The objective function is defined as:

arg max
Ti

−
(
P̂ − P (Wi < t)

)2
i ∈ A,B (24)

whereW is the waiting time of a potential individual, t is the time target and P̂ is the percentage

of individuals need to be within that target. In other words, their aim is to find the threshold that

16

minimises the difference between the probability P (Wi < t) and the percentage goal (or maximise

its negation).

The third player, the ambulance service, has their own choices to make and their own goals to

satisfy. The strategy set of the third player is the proportion 0 ≤ pA ≤ 1 of individuals to send to

hospital A. Similarly the proportion of individuals to send to hospital B is given by pB = 1− pA.

In addition, the ambulance service aims to minimise any potential blockages that may occur, given

the pair of thresholds chosen by the two hospitals. Thus, its objective is to minimise the blocked

time of the individuals (BA and BB) that they send to hospitals A and B. Apart from the time

being blocked, an additional aspect that may affect the decision of the distributor is the proportion

of lost individuals LA and LB. Equation 25 can be used to capture a mixture between the two

objectives Li and Bi where i ∈ {A,B}:

(pA, pB) s.t. αLA(pA) + (1− α)BA(pA) = αLB(pB) + (1− α)BB(pB) (25)

Here, α represents the “importance” of each objective, where a high α indicates a higher weight

on the proportion of lost individuals and a smaller α a higher weight on the time blocked. The

choice of pA and pB rely solely on equation 25. Note that the current system is modelled using

unobservable queues which is not necessarily an unrealistic approach [40]. Another approach would

be to allow the ambulance service to observe the state of each hospital before deciding which one

to join for a given individual. There are several other factors that can affect the routing of the

patients that are outside the scope of this paper. For example the distance from each hospital

or even the priority level of each patient may be a significant factor that affects the ambulance

service’s decision.

Using either equation (25) or (24) gives an imperfect information extensive form game. An

imperfect information game is defined as an extensive form game where some of the information

about the game state is hidden for at least one of the players [6]. In this study the state of the

problem that is hidden is the threshold that each hospital ED chooses to play. In other words, each

hospital chooses to play a strategy without knowing the other hospital’s strategy. The ambulance

service then, fully aware of the chosen threshold strategies, distributes individuals among the two

systems in order to minimise the time that its ambulances will be blocked. Figure 7 illustrates

this.

Hospital HA decides on a threshold, then the hospital HB chooses its own threshold, without

knowing the strategy of HA, and finally the ambulance service makes its choice. Note here that

the dotted line represents the fact that HB is unaware of the state of the game when making its

own decisions.

From equation 24 the utilities of the hospitals can be formulated. The 2-player normal form

game between the two hospitals is defined by:

� Players: Hospitals HA and HB

17

HA

.

.

HB

.

.

D

.

.

Figure 7: Imperfect information Extensive Form Game between the distributor and the 2 queueing systems

� Strategy spaces: TA = {1, 2, . . . , NA}, TB = {1, 2, . . . , NB}

� Utilities:

U iTA,TB = 1−
(
P̂ − P (Wi < t)

)2
where i ∈ {A,B} (26)

Consequently, the payoff matrices of the game can be populated by these utilities:

A =


UA1,1 UA1,2 . . . UA1,NB
UA2,1 UA2,2 . . . UA2,NB

...
...

. . .
...

UANA,1 UANA,2 . . . UANA,NB

 , B =


UB1,1 UB1,2 . . . UB1,NB
UB2,1 UB2,2 . . . UB2,NB

...
...

. . .
...

UBNA,1 UBNA,2 . . . UBNA,NB

 (27)

Based on the choice of strategy of these two hospitals, the ambulance service will then make

their own choice of the proportion of individuals to send to each system.

4.1. Building the game

The problem defined in this section describes a normal-form game between the decision makers

of two hospitals and a third player, the ambulance service, that decides how to distribute individuals

to the two systems. The strategy space of the two hospitals is defined as the possible values

that the threshold parameter can take Ti ∈ [1, Ni]. Then, the ambulance service has to decide

on the proportion of individuals to send to each hospital pA and pB, where pA, pB ∈ [0, 1] and

pA + pB = 1. In practice this would correspond to a learned behaviour through experience of

waiting at each hospital. Figure 7 shows a diagrammatic representation of the game to be played

and the decisions to be made. As described in section 4, hospital A decides on a strategy and

at the same time, hospital B chooses its own threshold but unaware of the first hospital’s choice.

Finally, the ambulance service makes its choice based on the strategies that the hospitals chose to

play.

The utilities to each player can be represented by 3 matrices: the two payoff matrices of the

normal form game and the routing matrix. The payoff matrices and their utilities are defined by

equations (26) and (27).

18

The routing matrix holds the values (pA, pB) which are the proportion of ambulance patients

to send to queueing systems A and B. Each pair (pA, pB) can be calculated using equation (25)

and is essentially a best response to the actions of the hospitals. Thus, using equation (25) for all

possible sets of thresholds, we can get the full routing matrix R (equation 28) that consists of the

proportions to send to hospital A (pA) and to hospital B (pB).

R =


(pA1,1, p

B
1,1) (pA1,2, p

B
1,2) . . . (pA1,NB , p

B
1,NB

)

(pA2,1, p
B
2,1) (pA2,2, p

B
2,2) . . . (pA2,NB , p

B
2,NB

)
...

...
. . .

...

(pANA,1, p
B
NA,1

) (pANA,2, p
B
NA,2

) . . . (pANA,NB , p
B
NA,NB

)

 (28)

Note that since pAi,j + pBi,j = 1 the routing matrix needs only to store one of the two values;

either pAi,j or pBi,j . Thus, the routing matrix R can be simplified to:

R =


pA1,1 pA1,2 . . . pA1,NB
pA2,1 pA2,2 . . . pA2,NB

...
...

. . .
...

pANA,1 pANA,2 . . . pANA,NB

 (29)

The game can thus be partitioned into a normal form game between the two hospitals and then

finding the ambulance service’s best strategy.

Now consider Figure 7 and the flow of the game that was described (i.e. HA, HB → D).

Due to the fact that the payoff matrices A and B depend on the routing matrix R the entries of

the matrices are calculated in a backwards way (D → HA, HB). This is done using backwards

induction. For each action choice of the hospitals, first solve the game from the ambulance’s point

of view. This in effect results in a 2-player normal form game representing the hospital’s point of

view. Thus, for every pair of strategies TA, TB, the values of pA and pB that satisfy equation (25)

are found numerically using Brent’s bisection algorithm [7]. Each pair (pA, pB) corresponds to the

best response of the ambulance service to the two hospitals’ played strategies. Finally, using the

routing matrix, equation (26) can also be used to populate the payoff matrices of the hospitals

since we now know the arrival rate of each hospital.

Having calculated the payoff matrices A and B, several algorithms can be used to measure some

form of the emergent behaviour. One possibility would be to compute the Nash equilibrium which

is the point of the game were both players have no incentive to deviate from their played strategies

[29]. In other words their chosen strategies are a best response to each other. Computation of Nash

equilibria can be done in a relatively efficient way using the Lemke Howson algorithm [31]. Lemke-

Howson uses best response polytopes to get one of the Nash equilibrium of the game. Other

algorithms exists that will compute all Nash equilibria but for large games the computational

complexity becomes problematic. All game theoretic calculations were done in Python using the

Nashpy library [45].

19

Another approach to measuring emergent behaviour is to consider the emergence itself and not

only stable end points. Indeed, some Nash equilibria might not arise naturally. Thus in order to

analyse the strategies played by the two hospitals, the learning algorithm asymmetric replicator

dynamics is used [1]. The two hospitals are modelled as two separate populations where each

individual in the population is assigned a strategy. As the game progresses the proportion of each

player playing each strategy changes based on their previous interactions. The fitness of each

strategy is defined as:

fx = Ay, fy = xTB (30)

Here, x ∈ Rm×1 and y ∈ Rn×1 correspond to the proportion of individuals that play each

strategy in each population. Similarly, the average fitness of each strategy is given by:

φx = fxx
T , φy = fyy (31)

The rate of change of strategy i of both types of individuals is captured by:

dx

dt i
= xi((fx)i − φx), for all i (32)

dy

dt i
= yi((fy)i − φy), for all i (33)

In addition to asymmetric replicator dynamics, the learning algorithms fictitious play and

stochastic fictitious play [21] were used.

4.2. Results

This subsection aims to analyse how the gaming framework can affect the performance measures

of the two hospitals and how to escape certain inefficient situations.

The most commonly used method for analysing normal form games is the Nash equilibrium

described in section 4.1. Consider the following game:

� λ1A = 1

� µA = 2

� CA = 2

� NA = 10

� MA = 6

� λ1B = 2

� µB = 2.5

� CB = 2

� NB = 10

� MB = 6

� λ2 = 2

� R = 2

� α = 0.5

The set of possible actions to choose from for player 1 and player 2 is the set of thresholds that

the EDs can choose from:

TA ∈ [1, NA], TB ∈ [1, NB] (34)

20

For this example, the only Nash equilibrium of the game is achieved when both players choose

a threshold of TA = 10, TB = 10. This means that the two players’ best response to each other is

to only block ambulances when they are full.

Nash equilibria is a theoretical measure which can be inconsistent with intuitive notions about

what should be the outcome of a game [36]. Therefore it might not be the best way to describe

human behaviour. Since the work of Maynard Smith [41], evolutionary game theory gives the tools

for the emergence of stable behaviour. One such model that allows for asymmetric payoffs, as is

the case above, is replicator dynamics described in section (4.1). Stable outcomes of this algorithm

will correspond to a subset of Nash equilibria but more importantly, will give a model of emergent

behaviour.

The use of a learning algorithm allows to investigate, not only the outcome of the game, but

also how that outcome is reached. Consider Figure 8. By running asymmetric replicator dynamics

on the system the behaviour that emerges can be observed. It can be seen that for this particular

set of parameters the strategies of the two hospitals converge over time. Both hospital 1 (row

player) and hospital 2 (column player) seem to be playing the same strategy s10 which indicates

that thresholds TA = 10 and TB = 10 are played. What is more important in this example is how

the two hospitals reached these decisions which also highlights the importance of using a learning

algorithm. Hospital 2 is able to reach the decision in a short amount of time while hospital 1 takes

longer and goes through numerous strategies to get there.

Figure 8: Asymmetric replicator dynamics run

In order to analyse how efficient the strategies played at every iteration are, the concept of the

price of anarchy is used. Price of anarchy (PoA) is a measure that is used to quantify the efficiency

of a behaviour [38]. In other words the price of anarchy is the worst-case equilibria measure and it

is defined as:

PoA =
maxs∈E F (s)

mins∈S F (s)
(35)

Here, S is the set of all sets of strategies (sA, sB), E is the set of all possible sets of equilibria

21

and F is the cost function to measure the efficiency for.

To study the efficiency of the strategies being played, a new concept is introduced that considers

the ratio between each hospital’s best achievable blocking time and the one that is being played.

This new concept is defined as the compartmentalised price of anarchy of the players of the game

and is defined as PoAi(s̃), where i ∈ {A,B} to distinguish among the two players/hospitals where

s̃ is the strategy that is being played by player i. The compartmentalised price of anarchy aims

to measure inefficiencies in the model. The PoA for the blocking time of player i for strategy s̃ is

given by:

PoAi(s̃) =
Bi(s̃)

mins∈Si Bi(s)
(36)

For this particular scenario, two busy queueing systems will be used with a high traffic intensity

(ρ > 1). Consider a game with two smaller (lower Ni,Mi) and busier (higher λ1i and λ2) hospitals

with the following set of parameters:

� λ1A = 4.5

� µA = 2

� CA = 3

� TA ∈ [1, NA]

� NA = 6

� MA = 5

� λ1B = 6

� µB = 3

� CB = 2

� TB ∈ [1, NB]

� NB = 7

� MB = 4

� λ2 = 10.7

� R = 2

� α = 0.9

Initial scenario: Using equation (36) and asymmetric replicator dynamics, the emergent

behaviour can be measured and the compartmentalised price of anarchy at every iteration for

both players. Figure 9 shows the strategies that are being played and the values of PoAA(s) and

PoAB(s) for all iterations of the learning algorithm until it reaches an evolutionary stable pair of

strategies.

22

0 20 40 60 80 100
Timepoints

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ob

ab
ilit

y

Hospital A

s1
s2
s3
s4
s5
s6

0 20 40 60 80 100
Timepoints

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ob

ab
ilit

y

Hospital B

s1
s2
s3
s4
s5
s6
s7

0 20 40 60 80 100
0

2

4

6

8

10
Hospital A - PoA

0 20 40 60 80 100
0

2

4

6

8

10
Hospital B - PoA

Figure 9: The strategies played when running asymmetric replicator dynamics along with the compartmentalised

price of anarchy of the blocking time at each iteration of the learning algorithm

The learning algorithm reaches a stable pair of strategies where TA = 5 and TB = 6. Thereafter,

the price of anarchy for both players stabilises and barely increases.

Increasing λ2: Figure 10 shows a similar run of the algorithm but when the strategies begin

to stabilise, an increase in the arrival rate of ambulances occurs (i.e. λ2 = 24).

23

0 20 40 60 80 100
Timepoints

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ob

ab
ilit

y

Parameter increase
Hospital A

s1
s2
s3
s4
s5
s6

0 20 40 60 80 100
Timepoints

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ob

ab
ilit

y

Parameter increase
Hospital B

s1
s2
s3
s4
s5
s6
s7

0 20 40 60 80 100

2

3

4

5

6

7

Hospital A - PoA

0 20 40 60 80 100
2

3

4

5

6

7

8

9

Hospital B - PoA

Figure 10: The strategies played when running asymmetric replicator dynamics along with the compartmentalised

price of anarchy of the blocking time at each iteration of the learning algorithm. After a number of iterations the

arrival rate of ambulance patients is significantly increased to flood the system completely λ2 = 24.

By increasing λ2 there is no change as to how players behave (TA = 5, TB = 6), but the

efficiency of the system does change. There is a decline in the price of anarchy of the blocking time

which at first glance indicates that upon flooding the system it becomes the loss in efficiency due

to rational individual behaviour decreases. This is non-sensical however. What it really shows is

that the steep increase in λ2 leaves the system unable to cope regardless of the decisions made.

Increasing number of servers CA and CB: Figure 11 shows a run of asymmetric replicator

dynamics with a change in the number of servers of the hospitals. The number of servers are

increased from CA = 3, CB = 2 to CA = 4, CB = 3.

24

0 20 40 60 80 100
Timepoints

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ob

ab
ilit

y

Parameter increase
Hospital A

s1
s2
s3
s4
s5
s6

0 20 40 60 80 100
Timepoints

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ob

ab
ilit

y

Parameter increase
Hospital B

s1
s2
s3
s4
s5
s6
s7

0 20 40 60 80 100

1

2

3

4

5

6

7

Hospital A - PoA

0 20 40 60 80 100

2

4

6

8

Hospital B - PoA

Figure 11: The strategies played when running asymmetric replicator dynamics along with the compartmentalised

price of anarchy of the blocking time at each iteration of the learning algorithm. After a number of iterations the

number of servers for both systems are increased by one.

In this case, both the behaviour as well as the price of anarchy change. The players change

their strategies from TA = 5, TB = 6 to TA = 6, TB = 7 and the PoA of the blocking time goes

down. By adding more resources to the models they are able to increase their efficiency. Although

this is a good way to escape such inefficiencies, it might not always be cost efficient.

Incentivising players: From Figures 10 and 11 it is observed that we can change some

parameters of the model to make it more efficient. The approach used on Figure 12 is slightly

different than the previous cases. Once the played strategies in asymmetric replicator dynamics

strategies converge, the payoff matrices of the two are scaled in such a way so that the utilities

of the selected strategy are penalised. This corresponds to a precise policy change where more

societally beneficial behaviours are incentivised.

25

Matrices A and B represent the original payoff matrices while matrices Ã and B̃ represent the

incentivised payoff matrices. It can be observed that matrix Ã is a scaled version of matrix A only

on the row that is most frequently played and similarly matrix B̃ of matrix B only on the column

that is most frequently played (matrix A: row 5, matrix B: column 6, see Figure 12). Note that

for the presentation of data, an affine transformation has been applied to obtain the values of the

payoff matrices (Aij = 10000(aij − 0.999) and Bij = 10000(bij − 0.999) where aij and bij are the

raw utilities). The results are not affected by this scaling.

A =



5.0518 5.0518 5.0518 5.0518 5.0518 5.0518 5.0518

5.4989 5.4977 5.4960 5.4924 5.4844 5.4654 5.3875

6.8232 6.8192 6.8150 6.8065 6.7871 6.7334 6.4906

9.0298 9.0244 9.0187 9.0078 8.9827 8.9082 8.5145

9.9996 9.9994 9.9992 9.9987 9.9972 9.9893 9.8571

8.7740 8.8006 8.8249 8.8660 8.9438 9.1295 9.7157



B =



1.7127 2.5822 4.6186 6.8497 8.9418 9.9999 8.2148

1.7127 2.5477 4.5634 6.8047 8.9150 9.9996 8.3358

1.7127 2.4528 4.3784 6.6441 8.8278 9.9965 8.5306

1.7127 2.4141 4.2867 6.5470 8.7656 9.9919 8.6745

1.7127 2.3415 4.0998 6.3265 8.6058 9.9716 8.9634

1.7127 2.1269 3.4930 5.4885 7.8353 9.7075 9.7322



Ã =



5.0518 5.0518 5.0518 5.0518 5.0518 5.0518 5.0518

5.4989 5.4977 5.4960 5.4924 5.4844 5.4654 5.3875

6.8232 6.8192 6.8150 6.8065 6.7871 6.7334 6.4906

9.0298 9.0244 9.0187 9.0078 8.9827 8.9082 8.5145

6.9996 6.9994 6.9992 6.9987 6.9972 6.9893 6.8571

8.7740 8.8006 8.8249 8.8660 8.9438 9.1295 9.7157



B̃ =



1.7127 2.5822 4.6186 6.8497 8.9418 6.9999 8.2148

1.7127 2.5477 4.5634 6.8047 8.9150 6.9996 8.3358

1.7127 2.4528 4.3784 6.6441 8.8278 6.9965 8.5306

1.7127 2.4141 4.2867 6.5470 8.7656 6.9919 8.6745

1.7127 2.3415 4.0998 6.3265 8.6058 6.9716 8.9634

1.7127 2.1269 3.4930 5.4885 7.8353 6.7076 9.7322



26

0 20 40 60 80 100
Timepoints

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ob

ab
ilit

y

Incentives
Hospital A

s1
s2
s3
s4
s5
s6

0 20 40 60 80 100
Timepoints

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ob

ab
ilit

y

Incentives
Hospital B

s1
s2
s3
s4
s5
s6
s7

0 20 40 60 80 100
0

1

2

3

4

5
Hospital A - PoA

0 20 40 60 80 100
0

1

2

3

4

5
Hospital B - PoA

Figure 12: The strategies played when running asymmetric replicator dynamics along with the compartmentalised

price of anarchy of the blocking time at each iteration of the learning algorithm. After a number of iterations the

most dominant strategy is being penalised.

Figure 12 shows that players start playing strategies TA = 5 and TB = 6 and mid-run of the

learning algorithm a penalty is applied to these strategies on the payoff matrix. By incentivising

the players in such a way the players change their strategies to TA = 6 and TB = 7, and thus

ambulance patients are accepted in the ED more often. Hence, the PoA for both EDs is decreased,

meaning that the whole system is more efficient in terms of the blocking time.

5. Conclusion

The motivation behind this study has been that emergency departments are under a lot of

pressure to treat patients. This is, in practice, often centrally controlled through a mechanism of

some sort of performance measure target. This paper shows how this can negatively impact the

27

pathway of both the ambulance patients and the ambulance service itself. Due to some managerial

decision making that takes place at the ED, ambulances stay blocked outside of the ED at the

hospital’s parking zone in an attempt to satisfy these regulations. The main contributions of this

paper are:

� A queueing model with 2 consecutive waiting spaces where one would serve as a parking

space for the ambulances;

� Analytic performance measure formulas for the queueing model;

� A 3-player game theoretic model between the EMS and two EDs;

� Numerical experiments showing emergent behaviour of gaming between EDs and the EMS.

Although our research is motivated by the particular EMS-ED example, our developed modelling

framework and behavioural insights has application to similar systems across a range of sectors and

settings. The queueing model can be applied to any setting where individuals may be blocked on

a separate queue. An example of such setting can be any type of delivery service where customers

can purchase goods either online or in-person. At busier times, the person delivering the product

may be blocked outside the store in an attempt to improve the waiting times for walk-in customers.

This study explores a generic 3-player game theoretic model between the decision makers of two

queueing systems and a service that distributes individuals to these two systems (section 4). It also

describes the construction of the underlying queueing theoretic model that has a tandem buffer

and a single service centre (section 3). Furthermore, the formulas for the performance measures

of the queueing model are also derived (sections 3.1, 3.2, 3.3). This novel queueing model is the

first contribution of the paper. The game theoretic model is then applied to a healthcare scenario

by looking at the interface between the EDs and the EMS. The inefficiencies that emerge from

the perspective of the EMS were explored along with ways to apply some incentive mechanisms

to improve them. The key findings from this paper that were observed when playing the game

between two EDs and the EMS are:

� Inefficiencies can be learned and emerge naturally;

� Targeted incentivisation of behaviours can help escape inefficiencies.

The former relates to the results of asymmetric replicator dynamics that showed that inefficient

scenarios can arise by playing the game, while the latter implies that the learned inefficiencies can

be escaped by carefully applying certain incentives to the players. This applied game theoretic

model is the second main contribution of this paper.

The model presented here assumes the presence of only two players that can receive individuals.

However, in a realistic healthcare scenario an ambulance may have to decide among multiple

EDs. An immediate extension of this work would be to consider a multiplayer system that could

28

represent a group of hospitals in a concentrated area. Additionally, the game theoretic model that

was created uses a discrete strategy space for the EDs (something that is also present in various

related literature [18, 26]). The single threshold parameter that is used for the ED’s decision

may not be the best way to describe the model. In reality ED managers might adopt far more

complex parameters for their decision making process. Moreover this work assumes that the EMS

and EDs act in a selfish and rational way by only aiming to satisfy their own objectives. In some

settings, cooperation may be observed and would therefore require an adapted modelling approach.

Another extension would be to explore the behaviour of the ED staff via an agent-based simulation

model. This in turn can be used to model emergent behaviour based on assumptions of individual

behavioural traits of ED staff. Finally, future work could touch upon the derivation of a closed

form formula for the steady state probability vector of the queueing model (section 3) to allow for

faster computations of π.

Acknowledgements

The authors are most grateful for the funding and support received by The Healthcare Im-

provement Studies (THIS) institute for supporting Michalis Panayides with a Fellowship.

References

[1] Accinelli, E. and Carrera, E. J. S. (2011). Evolutionarily stable strategies and replicator dynamics in asymmetric

two-population games. In Dynamics, Games and Science I, pages 25–35. Springer.

[2] Afeche, P. (2007). Decentralized service supply chains with multiple time-sensitive customer segments: Pricing

capacity decisions and coordination. Technical report, Working paper, University of Toronto.

[3] Aitken, V. (2021). The red cross drafted into scotland’s biggest hospital as ambulances queue up. Daily Record.

[4] Akkouchi, M. (2008). On the convolution of exponential distributions. J. Chungcheong Math. Soc, 21(4):501–510.

[5] Başar, T. and Srikant, R. (2002). A stackelberg network game with a large number of followers. Journal of

optimization theory and applications, 115(3):479–490.

[6] Berwanger, D. and Doyen, L. (2008). On the power of imperfect information. Leibniz International Proceedings

in Informatics, LIPIcs, 2:73–82.

[7] Brent, R. P. (1973). Algorithms for minimization without derivatives, chap. 4.

[8] Burnetas, A. N. (2013). Customer equilibrium and optimal strategies in markovian queues in series. Annals of

Operations Research, 208(1):515–529.

[9] Chen, H. and Wan, Y.-W. (2003). Price competition of make-to-order firms. IIE Transactions, 35(9):817–832.

[10] Chen, H. and Wan, Y.-w. (2005). Capacity competition of make-to-order firms. Operations Research Letters,

33(2):187–194.

[11] Chen, W., Zhang, Z. G., and Chen, X. (2020). On two-tier healthcare system under capacity constraint.

International Journal of Production Research, 58(12):3744–3764.

[12] Cheng, H. K., Demirkan, H., and Koehler, G. J. (2003). Price and capacity competition of application services

duopoly. Information Systems and e-Business Management, 1(3):305–329.

[13] Clarey, A., Allen, M., Brace-McDonnell, S., and Cooke, M. (2014). Ambulance handovers: can a dedicated ed

nurse solve the delay in ambulance turnaround times? Emergency Medicine Journal, 31(5):419–420.

[14] Clarke, O. (2021). A&e queues mean wales ambulances can’t take 999 calls. BBC Wales.

29

[15] Crouch, J. (2021). Thousands of hours lost as ambulance idle outside hospitals in derbyshire. Staffordshire Live.

[16] D’Auria, B. and Kanta, S. (2015). Pure threshold strategies for a two-node tandem network under partial

information. Operations Research Letters, 43(5):467–470.

[17] Day, S. (2021). Woman, 85, has ’appalling’ three hour wait for ambulance. East Anglia.

[18] Deo, S. and Gurvich, I. (2011). Centralized vs. decentralized ambulance diversion: A network perspective.

Management Science, 57(7):1300–1319.

[19] Fan, M., Kumar, S., and Whinston, A. B. (2009). Short-term and long-term competition between providers of

shrink-wrap software and software as a service. European Journal of Operational Research, 196(2):661–671.

[20] Favaro, S. and Walker, S. G. (2010). On the distribution of sums of independent exponential random variables

via wilks’ integral representation. Acta applicandae mathematicae, 109(3):1035–1042.

[21] Fudenberg, D., Drew, F., Levine, D. K., and Levine, D. K. (1998). The theory of learning in games, volume 2.

MIT press.

[22] Halliwell, A. (2021). Cqc covid insight: Winter pressures on emergency care. Practice Management, 31(4):28–30.

[23] Kemeny, J. G. and Snell, J. L. (1976). Markov chains, volume 6. Springer-Verlag, New York.

[24] Khaled, S., Kadri, T., and Kadry, S. (2013). Hypoexponential distribution with different parameters. Journal

of Applied Mathematics, 4:624–631.

[25] Knapper, Dave & Dresch, M. (2021). Ambulances queue 10 in a row outside hospital buckling under ’significant’

pressure. Mirror.

[26] Knight, V., Komenda, I., and Griffiths, J. (2017). Measuring the price of anarchy in critical care unit interactions.

Journal of the Operational Research Society, 68(6):630–642.

[27] Knight, V. A. and Harper, P. R. (2013). Selfish routing in public services. European Journal of Operational

Research, 230(1):122–132.

[28] Koutsoupias, E. and Papadimitriou, C. (1999). Worst-case equilibria. In Annual Symposium on Theoretical

Aspects of Computer Science, pages 404–413. Springer.

[29] Kreps, D. M. (1989). Nash equilibrium. In Game Theory, pages 167–177. Springer.

[30] Legros, B. and Jouini, O. (2015). A linear algebraic approach for the computation of sums of erlang random

variables. Applied Mathematical Modelling, 39(16):4971–4977.

[31] Lemke, C. E. and Howson, Jr., J. T. (1964). Equilibrium points of bimatrix games. Journal of the Society for

Industrial and Applied Mathematics, 12(2):413–423.

[32] Lemmer, R. (2021). Portsmouth’s queen alexandra hospital patients see more than 250 hour-long ambulance

handover delays. The News.

[33] Mahase, E. (2020). Covid-19: Hospitals in crisis as ambulances queue and staff are asked to cancel leave. The

BMJ.

[34] Maschler, M., Solan, E., and Zamir, E. (2013). Game Theory. Cambridge University Press.

[35] McAdams, B. (2021). Caldicot girl waited nine hours for ambulance after fall. South Wales Argus.

[36] Myerson, R. B. (1978). Refinements of the nash equilibrium concept. International journal of game theory,

7(2):73–80.

[37] Panayides, M. (2021). 11michalis11/ambulancedecisiongame: v0.0.2.

[38] Roughgarden, T. (2005). Selfish routing and the price of anarchy. MIT press.

[39] Sadat, S., Abouee-Mehrizi, H., and Carter, M. W. (2015). Can hospitals compete on quality? Health care

management science, 18(3):376–388.

[40] Shone, R., Knight, V. A., and Williams, J. E. (2013). Comparisons between observable and unobservable m/m/1

queues with respect to optimal customer behavior. European Journal of Operational Research, 227(1):133–141.

[41] Smith, J. M. (1986). Evolutionary game theory. Physica D: Nonlinear Phenomena, 22(1-3):43–49.

[42] Stewart, W. J. (2019). Probability, Markov Chains, Queues, and Simulation. Princeton University Press.

[43] Sun, W., Li, S.-y., Tian, N.-s., and Zhang, H.-k. (2009). Equilibrium analysis in batch-arrival queues with

complementary services. Applied Mathematical Modelling, 33(1):224–241.

30

[44] The Ciw library developers (2020). Ciwpython/ciw: v2.1.3.

[45] The Nashpy project developers (2021). Nashpy: v0.0.25.

[46] Thomas, J. (2021). Ambulances queue at hereford hospital as nhs pressure mounts. Hereford Times.

[47] Veltman, A. and Hassin, R. (2005). Equilibrium in queueing systems with complementary products. Queueing

Systems, 50(2):325–342.

[48] Wang, J., Wang, Z., Zhang, Z. G., and Wang, F. (2021). Efficiency-quality trade-off in allocating resource to

public healthcare systems. International Journal of Production Research, pages 1–22.

31

Appendices

A. Discrete event simulation

For the purposes of this study, a discrete event simulation (DES) model was constructed to

support the Markov chain version described in section 3. The queueing model was built in python

using the Ciw library [44].

The constructed model simulates a queueing system with two waiting spaces and two types of

individuals. The expected behaviour of the nodes in Ciw have been modified such that individuals

moving from waiting zone 2 into waiting zone 1 get blocked if there are more than T individuals

in waiting zone 1.

The same performance measures described in sections 3.1, 3.2 and 3.3 can also be calculated

using the DES model. The simulation can be ran a number of times to eliminate stochasticity and

the outcomes of the two methods can be directly comparable.

A.1. Tutorial: building the DES model

The DES model is constructed in a generic way that so that it can be used for any queueing

system with two waiting spaces and two types of individuals. For instance, consider a queueing

system with the following parameters, as described in section 3:

� λ1 = 2

� λ2 = 3

� µ = 1

� C = 6

� T = 10

� N = 20

� M = 10

10︷ ︸︸ ︷ 10

20︷ ︸︸ ︷
6

3

2

Figure 13: A diagrammatic representation of the queueing model example

This model will be studied by using ambulance_game [37]. Install the created library in your

python environment, by running the following command in the command line:

$ python -m pip install ambulance_game

Having installed the package, the following code can be used to simulate the queueing system

defined earlier and get all the data records for a single run.

>>> import ambulance_game as abg

>>> Simulation = abg.simulation.simulate_model(

32

... lambda_1 =3,

... lambda_2 =2,

... mu=1,

... num_of_servers =6,

... threshold =10,

... system_capacity =20,

... buffer_capacity =10,

... seed_num =0,

...)

>>> all_records = Simulation.get_all_records ()

>>> all_records [3]

Record(id_number =1, customer_class =0, node=2, arrival_date =0 .4728763843239206,

waiting_time =0.0, service_start_date =0 .4728763843239206, service_time =0

.5457131455415929, service_end_date =1 .0185895298655134, time_blocked =0.0,

exit_date =1 .0185895298655134, destination =-1, queue_size_at_arrival =0,

queue_size_at_departure =4)

The above block code outputs the fourth individual record from the simulation object. The

simulation object can be used to view every event that occurred in the simulation The data records

can then be used to get overall performance measures about the constructed queueing model. The

overall waiting time that individuals wait in waiting zone 1 can be acquired by running:

>>> import numpy as np

>>> mean_wait = np.mean(

... [record.waiting_time for record in all_records if record.node == 2]

...)

>>> mean_wait

0.3608431242229529

This value is the average waiting time of all the customers in the system for a single run. By

nature, discrete event simulation can output different results for different runs of the same set of

parameters. This stochasticity can be reduced by running the simulation multiple times and then

getting the mean waiting time from all the runs.

>>> all_simulations = abg.simulation.get_multiple_runs_results(

... lambda_1 =3,

... lambda_2 =2,

... mu=1,

... num_of_servers =6,

... threshold =10,

... system_capacity =20,

... buffer_capacity =10,

... seed_num =0,

... num_of_trials =10,

...)

>>> mean_wait = np.mean(

... [np.mean(w.waiting_times) for w in all_simulations]

...)

33

>>> mean_wait

0.3566390561071839

A.2. How-to guide

A.2.1. How to install:

The package can be installed by either running:

$ python -m pip install ambulance_game

in the command line or via the instructions provided in the GitHub repository.

A.2.2. How to simulate the model:

The required arguments that need to be passed to the simulate_model() function are the follow-

ing:

� lambda 1 (λ1): The arrival rate of class 1 individuals.

� lambda 2 (λ2): The arrival rate of class 2 individuals.

� mu (µ): The service rate of the servers.

� num of servers (C): The number of servers in the system.

� threshold (T): The threshold that indicates when to start blocking class 2 individuals.

To get the simulation object with all the data records, the following code can be used:

>>> import ambulance_game as abg

>>> Simulation = abg.simulation.simulate_model(

... lambda_1 =3,

... lambda_2 =2,

... mu=1,

... num_of_servers =6,

... threshold =10,

... seed_num =0,

...)

>>> Simulation.get_all_records ()[4]

Record(id_number =2, customer_class =0, node=2, arrival_date =0 .5727571550618586,

waiting_time =0.0, service_start_date =0 .5727571550618586, service_time =0

.7159547497671506, service_end_date =1 .2887119048290092, time_blocked =0.0,

exit_date =1 .2887119048290092, destination =-1, queue_size_at_arrival =1,

queue_size_at_departure =3)

Additional arguments that can be passed to the function are:

� system capacity (N): The maximum number of individuals in waiting zone 1.

� buffer capacity M : The maximum number of individuals in waiting zone 2.

34

� seed num: The seed number for the random number generator.

� runtime: How long to run the simulation for.

A.2.3. How to get the performance measures for a single run:

From a single run of the simulation the data records can be used to get the average for certain

performance measures. The following code can be used to get the mean waiting time, blocking

time, service time and the proportion of individuals within target.

>>> records = Simulation.get_all_records ()

>>> mean_wait = np.mean(

... [w.waiting_time for w in records]

...)

>>> mean_wait

0.23845862661827116

>>> mean_block = np.mean(

... [b.time_blocked for b in records]

...)

>>> mean_block

0.08501727452006658

>>> mean_service = np.mean(

... [s.service_time for s in records]

...)

>>> mean_service

0.7102610863960119

>>> target = 1

>>> proportion_within_target = np.mean(

... [w.waiting_time <= target for w in records]

...)

>>> proportion_within_target

0.9387470071827614

A.2.4. How to get the average performance measures:

To reduce the effects of stochasticity in the simulation, the simulation can be run numerous

times and get the average performance measures out of all the runs.

>>> import numpy as np

>>> import ambulance_game as abg

>>> all_simulations = abg.simulation.get_multiple_runs_results(

... lambda_1 =3,

... lambda_2 =2,

... mu=1,

... num_of_servers =6,

35

... threshold =10,

... system_capacity =20,

... buffer_capacity =10,

... seed_num =0,

... runtime =2000,

... num_of_trials =10,

... target =1,

...)

>>> mean_wait = np.mean ([

... np.mean(w.waiting_times) for w in all_simulations

...])

>>> mean_wait

0.35585979549204577

>>> mean_service = np.mean ([

... np.mean(s.service_times) for s in all_simulations

...])

>>> mean_service

1.002184850213415

>>> mean_block = np.mean ([

... np.mean(b.blocking_times) for b in all_simulations

...])

>>> mean_block

0.3976966024549059

>>> np.mean ([p.proportion_within_target for p in all_simulations])

0.45785790578122043

A.2.5. How to get the steady state probabilities vector π:

To get the steady state probabilities of the model based on the simulation the following code

can be used:

>>> import numpy as np

>>> import ambulance_game as abg

>>> simulation_object = abg.simulation.simulate_model(

... lambda_1 =1,

... lambda_2 =2,

... mu=2,

... num_of_servers =2,

... threshold =3,

... system_capacity =4,

... buffer_capacity =2,

... seed_num =0,

... runtime =2000,

...)

>>> probs = abg.simulation.get_simulated_state_probabilities(

36

... simulation_object=simulation_object,

...)

>>> np.round(probs, decimals =3)

array ([[0 .166, 0.266, 0.192, 0.147, 0.025],

[nan, nan, nan, 0.094, 0.024],

[nan, nan, nan, 0.058, 0.027]])

>>> total = np.nansum(probs)

>>> np.round(total, decimals =5)

1.0

Similarly to get the average steady state probabilities over multiple runs, one can use:

>>> import numpy as np

>>> import ambulance_game as abg

>>> probs = abg.simulation.get_average_simulated_state_probabilities(

... lambda_1 =1,

... lambda_2 =2,

... mu=2,

... num_of_servers =2,

... threshold =3,

... system_capacity =4,

... buffer_capacity =2,

... seed_num =0,

... runtime =2000,

... num_of_trials =10,

...)

>>> np.round(probs, decimals =3)

array ([[0 .18 , 0.267, 0.197, 0.144, 0.024],

[nan, nan, nan, 0.085, 0.022],

[nan, nan, nan, 0.054, 0.026]])

>>> total = np.nansum(probs)

>>> np.round(total, decimals =5)

1.0

A.2.6. How to get the optimal distribution of class 2 individuals among 2 queueing models:

In the scenario where there are two queueing models and a service that distributes individuals

to the models, (i.e. the scenario described in this paper) the simulation can be used to decide what

proportion of individuals to send to each the model. Note that the output of the function shows

the value of p1, the proportion of class 2 individuals to be sent to queueing model 1.

>>> import ambulance_game as abg

>>> abg.simulation.calculate_class_2_individuals_best_response(

... lambda_2 =4,

... lambda_1_1 =1,

... lambda_1_2 =1,

37

... mu_1=4,

... mu_2=3,

... num_of_servers_1 =2,

... num_of_servers_2 =2,

... threshold_1 =3,

... threshold_2 =3,

... system_capacity_1 =3,

... system_capacity_2 =3,

... buffer_capacity_1 =2,

... buffer_capacity_2 =2,

... seed_num_1 =0,

... seed_num_2 =0,

... num_of_trials =3,

... warm_up_time =100,

... runtime =1000,

...)

0.6343260586929469

A.3. Reference

The primary tool that was used in the construction of the discrete event simulation model was

the python library ciw. See Ciw’s documentation for a more detailed explanation of how it works

and what are its capabilities [44].

Find below a detailed list of the functions that were created for the simulation model:

� build_model: Builds a ciw object that represents a model of a queueing network with two

waiting spaces.

� build_custom_node: Build a custom node to replace the default ciw.Node. Inherits from the

original ciw.Node class and replaces two methods.

� simulate_model: Simulate the model by using the custom node and returning the simulation

object

� extract_times_from_records: Get the required times (waiting, service, blocking) out of ciw’s

records where all individuals are treated the same way

� extract_times_from_individuals: Extract waiting times and service times for all individuals

and proceed to extract blocking times for only class 2 individuals

� get_list_of_results: Modify the outputs so that they are returned in a list format where it is

sometimes easier to be used by other functions.

� get_multiple_runs_results: Get the waiting times, service times and blocking times for multiple

runs of the simulation

38

� extract_total_individuals_and_the_ones_within_target_for_both_classes:

Extract the total number of individuals that pass through the model and the total number of

individuals that exit the model within the given target.

� get_mean_proportion_of_individuals_within_target_for_multiple_runs: Get the average propor-

tion of individuals within target by running the simulation multiple times

� get_simulated_state_probabilities: Calculates the vector π in a dictionary format or an array

format

� get_average_simulated_state_probabilities: This function runs

get simulated state probabilities for multiple iterations to eliminate any stochasticity from the

results

� get_mean_blocking_difference_between_two_systems: Given a predefined proportion of class’s 2

arrival rate calculate the mean difference between blocking times of two systems with a given

set of parameters

� calculate_class_2_individuals_best_response Obtains the optimal distribution of class 2 indi-

viduals such that the blocking times in the two systems are identical and thus minimised

A.4. Explanation

Based on Ciw’s functionality the simulation model stores all data records in a Record object.

For every event that takes place a record is created with all the relevant information. For this

specific library, the records that are stored, along with the range of values that they can take are

as follows:

� id number ∈ R.

� customer class = 0

� node = {0, 1, 2,−1}

� arrival date ∈ R+

� waiting time ∈ R+

� service start date ∈ R+

� service time ∈ R+

� service end time ∈ R+

� time blocked ∈ R+

� exit date ∈ R+

� destination = {1, 2,−1}

� queue size at arrival ∈ N

� queue size at departure ∈ N

B. Mean waiting time

The recursive formula described here is the origin of the closed-form formula described in

section 3.1.

39

To calculate the mean waiting time one must first identify the set of states (u, v) where a wait

will occur. For this particular Markov chain, this points to all states that satisfy v > C i.e. all

states where the number of individuals in the service centre exceed the number of servers. The set

of such states is defined as waiting states and can be denoted as a subset of all the states, where:

Sw = {(u, v) ∈ S | v > C} (37)

Additionally, there are certain states in the model where arrivals cannot occur. A type 1

individual cannot arrive whenever the model is at any state (u,N) for all u where N is the system

capacity. Equivalently, a type 2 individual cannot arrive in the model when the model is at any

state (M,v) for all v ≥ T . Therefore the set of all such states that an arrival may occur are defined

as accepting states and are denoted as:

S
(1)
A = {(u, v) ∈ S | v < N} (7 revisited)

S
(2)
A =

{(u, v) ∈ S | u < M} if T ≤ N

{(u, v) ∈ S | v < N} otherwise
(8 revisited)

Moreover, another element that needs to be considered is the expected waiting time In order

to do so a variation of the Markov model has to be considered where when the individual arrives

at any of the states of the model no more arrivals can occur after that.

Thus, one may acquire the desired time by calculating the inverse of the sum of the out-flow

rate of that state. Since arrivals are ignored though the only way to exit the state will only be via

a service. In essence this notion can be expressed as:

c(1)(u, v) =

0, if u > 0 and v = T

1
min(v,C)µ , otherwise

(38)

Now, like in the type 1 individuals case, the sojourn time is needed. For type 2 individuals

whenever individuals are at any row apart from the first one they automatically get a wait time of

0 since they are essentially blocked.

c(2)(u, v) =

0, if u > 0

1
min(v,C)µ , otherwise

(39)

Note that whenever any type 1 individual is at a state (u, v) where u > 0 and v = T (i.e.

all states (1, T), (2, T) . . . , (M,T)) the sojourn time is set to 0. This is done to capture the trip

thorough the Markov chain from the perspective of individuals. Meaning that they will visit all

states of the threshold column but only the one in the first row will return a non-zero sojourn time.

40

Thus, the expected waiting time of type 1 and type 2 individuals when upon arriving at state (u, v)

can be given by the following recursive formulas:

w(1)(u, v) =


0, if (u, v) /∈ Sw
c(1)(u, v) + w(1)(u− 1, v), if u > 0 and v = T

c(1)(u, v) + w(1)(u, v − 1), otherwise

(40)

w(2)(u, v) =


0, if (u, v) /∈ Sw
c(2)(u, v) + w(2)(u− 1, v), if u > 0 and v = T

c(2)(u, v) + w(2)(u, v − 1), otherwise

(41)

Finally, the mean waiting time can be calculated by summing over all expected waiting times of

accepting states multiplied by the probability of being at that state and dividing by the probability

of being in any accepting state. Note here that Ai is defined in section 3.2 by equations 11 and 12.

W (1) =

∑
(u,v)∈S(1)

A

w(1)(A1(u, v))π(u,v)∑
(u,v)∈S(1)

A

π(u,v)
(42)

W (2) =

∑
(u,v)∈S(2)

A

w(2)(A2(u, v))π(u,v)∑
(u,v)∈S(2)

A

π(u,v)
(43)

C. Mean blocking time

The set of states where individuals can be blocked is defined as:

Sb = {(u, v) ∈ S | u > 0} (14 revisited)

The mean sojourn time for each state is given by the inverse of the out-flow of that state [42].

However, whenever a type 2 individual arrives at the system, no subsequent arrival of another type

2 individual can affect its pathway or total time in the system. Therefore, looking at the mean

time in the system from the perspective of an individual of the second type, all such type 2 arrivals

need to be ignored. Note here that this is not the case for individuals of the first type. Whenever a

type 2 individual is blocked and a type 1 individual arrives the type 2 individuals will stay blocked

for some additional amount of time. Thus, the mean time that a type 2 individual spends at each

state is given by:

c(u, v) =

 1
min(v,C)µ , if v = N

1
λ1+min(v,C)µ , otherwise

(15 revisited)

41

In equation (15), both service completions and type 1 arrivals are considered. Thus, from a

blocked individual’s perspective whenever the system moves from one state (u, v) to another state

it can either:

� be because of a service being completed: we will denote the probability of this happening by

ps(u, v).

� be because of an arrival of an individual of type 1: denoting such probability by pa(u, v).

The probabilities are given by:

ps(u, v) =
min(v, C)µ

λ1 + min(v, C)µ
, pa(u, v) =

λ1

λ1 + min(v, C)µ
(16 revisited)

Having defined c(u, v) and Sb a formula for the blocking time that is expected to occur at each

state can be given by:

b(u, v) =



0, if (u, v) /∈ Sb
c(u, v) + b(u− 1, v), if v = N = T

c(u, v) + b(u, v − 1), if v = N 6= T

c(u, v) + ps(u, v)b(u− 1, v) + pa(u, v)b(u, v + 1), if u > 0 and

v = T

c(u, v) + ps(u, v)b(u, v − 1) + pa(u, v)b(u, v + 1), otherwise

(13 revisited)

A direct approach will be used to solve this equation here. By enumerating all equations of

(13) for all states (u, v) that belong in Sb a system of linear equations arises where the unknown

variables are all the b(u, v) terms. Note here that these equations correspond to all blocking states

as defined in (14). Equations that correspond to non-blocking states have a value of 0 as defined

in (13) The general form of the equation in terms of C, T,N and M is given by:

42

b(1, T) = c(1, T) + pab(1, T + 1) (44)

b(1, T + 1) = c(1, T + 1) + psb(1, T) + pab(1, T + 1) (45)

b(1, T + 2) = c(1, T + 2) + psb(1, T + 1) + pab(1, T + 3) (46)

...

b(1, N) = c(1, N) + b(1, N − 1) (47)

b(2, T) = c(2, T) + psb(1, T) + pab(2, T + 1) (48)

b(2, T + 1) = c(2, T + 1) + psb(2, T) + pab(2, T + 2) (49)

...

b(M − 1, N) = c(M,N − 1) + b(M,N − 1) (50)

b(M,T) = c(T,N) + psb(T − 1, N) + pab(T,N + 1) (51)

...

b(M,N) = c(M,N) + b(M,N − 1) (52)

The equivalent matrix notation of the linear system of equations (44) - (52) is given by Zx = y,

where:

Z =



−1 pa 0 . . . 0 0 0 0 0 . . . 0 0

ps −1 pa . . . 0 0 0 0 0 . . . 0 0

0 ps −1 . . . 0 0 0 0 0 . . . 0 0
...

...
...

. . .
...

...
...

...
...

. . .
...

...

0 0 0 . . . 1 −1 0 0 0 . . . 0 0

ps 0 0 . . . 0 0 −1 pa 0 . . . 0 0

0 0 0 . . . 0 0 ps −1 pa . . . 0 0
...

...
...

. . .
...

...
...

...
...

. . .
...

...

0 0 0 . . . 0 0 0 0 0 . . . 1 −1



, x =



b(1, T)

b(1, T + 1)

b(1, T + 2)
...

b(1, N)

b(2, T)

b(2, T + 1)
...

b(M,N)



, y =



−c(1, T)

−c(1, T + 1)

−c(1, T + 2)
...

−c(1, N)

−c(2, T)

−c(2, T + 1)
...

−c(M,N)



(18 revisited)

The elements of the matrix Z can be acquired using Zij defined in equation (17) where i and

j are states (ui, vi), (uj , vj) ∈ Sb (14).

Zij =



pa, if j = i+ 1 and vi 6= N

ps, if j = i− 1 and vi 6= N, vi 6= T

or j = i−N + T and ui ≥ 2, vi = T

1, if j = i− 1 and vi = N

−1, if i = j

0, otherwise

(17 revisited)

Thus, having calculated the mean blocking time for all blocking states b(u, v), they can be

43

combined together in a formula. Using the arriving states A2 defined in section 3.2 by equation 12

the resultant formula for the mean blocking time is given by:

B =

∑
(u,v)∈SA π(u,v) b(A2(u, v))∑

(u,v)∈SA π(u,v)
(10 revisited)

To illustrate how the described formula works consider a Markov model where C = 2, T =

2, N = 4,M = 2 (figure 14). The equations that correspond to such a model are shown in (53)-

(58) and their equivalent matrix notation form is shown in (59).

(0,0) (0,1)

Λ

µ

(0,2)

Λ

2µ

(1,2)

λ22µ

(2,2)

λ22µ

(0,3)

λ1

2µ

(1,3)

λ1

2µ

λ2

(2,3)

λ1

2µ

λ2

(0,4)

λ1

2µ

(1,4)

λ1

2µ

λ2

(2,4)

λ1

2µ

λ2

Figure 14: Example of Markov chain with

C = 2, T = 2, N = 4,M = 2

b(1, 2) = c(1, 2) + pab(1, 3) (53)

b(1, 3) = c(1, 3) + psb(1, 2)

+ pab(1, 4) (54)

b(1, 4) = c(1, 4) + b(1, 3) (55)

b(2, 2) = c(2, 2) + psb(1, 2)

+ pab(2, 3) (56)

b(2, 3) = c(2, 3) + psb(2, 2)

+ pab(1, 4) (57)

b(2, 4) = c(2, 4) + b(2, 3) (58)

Z =



−1 pa 0 0 0 0

ps −1 pa 0 0 0

0 1 −1 0 0 0

ps 0 0 −1 pa 0

0 0 0 ps −1 pa

0 0 0 0 1 −1


, x =



b(1, 2)

b(1, 3)

b(1, 4)

b(2, 2)

b(2, 3)

b(2, 4)


, y =



−c(1, 2)

−c(1, 3)

−c(1, 4)

−c(2, 2)

−c(2, 3)

−c(2, 4)


(59)

D. Mean proportion of individuals within target

In order to consider such measure though one would need to obtain the distribution of time

in the system for all individuals. The complexity of such task is caused by the fact that different

individuals arrive at different states of the Markov model. Consider the case when an arrival occurs

when the model is at a specific state.

44

(0,0) (0,1)

Λ

µ

(0,2)

Λ

µ

(1,2)

λ2µ

(2,2)

λ2µ

(0,3)

λ1

µ

(1,3)

λ1

µ

λ2

(2,3)

λ1

µ

λ2

(0,4)

λ1

µ

(1,4)

λ1

µ

λ2

(2,4)

λ1

µ

λ2

Figure 15: Example Markov model C = 1, T = 2, N = 4,M = 2

Time distribution at specific state (1 server): Consider the Markov model of Figure 15 with one

server and a threshold of two individuals. Assume that an individual of the first type arrives when

the model is at state (0, 3), thus forcing the model to move to state (0, 4). The distribution of the

time needed for the specified individual to exit the system from state (0, 4) is given by the sum of

exponentially distributed random variables with the same parameter µ. The sum of such random

variables forms an Erlang distribution which is defined by the number of random variables that

are added and their exponential parameter. Note here that these random variables represent the

individual’s pathway from the perspective of the individual. Thus, Xi represents the time that it

takes to move from the ith position of the queue to the (i− 1)th position (i.e. for someone in front

of them to finish their service) and X0 is the time it takes to move from having a service to exiting

the system.

(0, 4)⇒ X3 ∼ Exp(µ)

(0, 3)⇒ X2 ∼ Exp(µ)

(0, 2)⇒ X1 ∼ Exp(µ)

(0, 1)⇒ X0 ∼ Exp(µ)

S = X3 +X2+X1 +X0 = Erlang(4, µ) (60)

Thus, the waiting and service time of an individual in the model of Figure 15 can be captured

by an erlang distributed random variable. The general CDF of the erlang distribution Erlang(k, µ)

is given by:

P (S < t) = 1−
k−1∑
i=0

1

i!
e−µt(µt)i (61)

Unfortunately, the erlang distribution can only be used for the sum of identically distributed

random variables from the exponential distribution. Therefore, this approach cannot be used when

45

one of the random variables has a different parameter than the others. In fact the only case where

it can be used is only when the number of servers are C = 1, or when an individual arrives and goes

straight to service (i.e. when there is no other individual waiting and there is an empty server).

Time distribution at a state (multiple servers):

(0,0) (0,1)

Λ

µ

(0,2)

Λ

2µ

(1,2)

λ22µ

(2,2)

λ22µ

(0,3)

λ1

2µ

(1,3)

λ1

2µ

λ2

(2,3)

λ1

2µ

λ2

(0,4)

λ1

2µ

(1,4)

λ1

2µ

λ2

(2,4)

λ1

2µ

λ2

Figure 16: Example Markov model C = 2, T = 2, N = 4,M = 2

Figure 16 represents the same Markov model as Figure 15 with the only exception that there

are 2 servers here. By applying the same logic, assuming that an individual arrives at state (0, 4),

the sum of the following random variables arises.

(0, 4)⇒ X2 ∼ Exp(2µ)

(0, 3)⇒ X1 ∼ Exp(2µ) (62)

(0, 2)⇒ X0 ∼ Exp(µ)

Since these exponentially distributed random variables do not share the same parameter, an

erlang distribution cannot be used. In fact, the problem can now be viewed either as the sum

of exponentially distributed random variables with different parameters or as the sum of erlang

distributed random variables. The sum of erlang distributed random variables is said to follow the

hypoexponential distribution. The hypoexponential distribution is defined with two vectors of size

equal to the number of Erlang random variables [4], [24]. The vector ~r contains all the k-values of

the erlang distributions and ~λ is a vector of the distinct parameters as illustrated in equation (63).

Erlang(k1, λ1)

Erlang(k2, λ2)

...

Erlang(kn, λn)


Hypo((k1, k2, . . . kn)︸ ︷︷ ︸

~k

, (λ1, λ2, . . . λn)︸ ︷︷ ︸
~λ

) (63)

46

Equivalently, for this particular example:

X2∼Exp(2µ)

X1∼Exp(2µ)

}
X1+X2=S1∼Erlang(2,2µ)

X0∼Exp(µ)⇒ X0=S2∼Erlang(1,µ)

S1+S2=H∼Hypo((2,1),(2µ,µ)) (64)

Therefore, the CDF of this distribution can be used to get the probability of the time in spent

in the system being less than a given target. The general CDF of the hypoexponential distribution

Hypo(~r,~λ), is given by the following expression [20]:

P (H < t) = 1−

 |~r|∏
j=1

λ
rj
j

 |~r|∑
k=1

rk∑
l=1

Ψk,l(−λk)trk−le−λkt

(rk − l)!(l − 1)!

where Ψk,l(t) = − ∂l−1

∂tl−1

 |~r|∏
j=0,j 6=k

(λj + t)−rj


and λ0 = 0, r0 = 1 (65)

The computation of the derivative makes equation (65) computationally expensive. In [30] an

alternative linear version of that CDF is explored via matrix analysis, and is given by the following

formula:

F (x) =1−
n∑
k=1

k−1∑
l=0

(−1)k−1

(
n

k

)(
k − 1

l

) n∑
j=1

j−1∑
s=1

e−xλs
s−1∏
l=1

(
λl

λl − λs

)ks

×
∑

s<a1<···<al−1<j

(
λs

λs − λa1

)ks a1−1∏
m=s+1

(
λm

λm − λa1

)km

×
a2−1∏
n=a1

(
λn

λn − λa2

)kn
· · ·

j−1∏
r=al−1

(
λr

λr − λaj

)kr ks−1∑
q=0

((λs − λa1)x)q

q!
,

for x ≥ 0

(66)

Specific CDF of hypoexponential distribution: Equations (65) and (66) refers to the general

CDF of the hypoexponential distribution where the size of the vector parameters can be of any

size [20]. In the Markov chain models described in Figures 15 and 16 the parameter vectors of the

hypoexponential distribution are of size two, and in fact, for any possible version of the investigated

Markov chain model the vectors can only be of size two. This is true since for any dimensions of

this Markov chain model there will always be at most two distinct exponential parameters; the

parameter for finishing a service (µ) and the parameter for moving forward in the queue (Cµ).

For the case of C = 1 the hypoexponential distribution will not be used as this is equivalent to an

47

erlang distribution. Therefore, by fixing the sizes of ~r and ~λ to 2, the following specific expression

for the CDF of the hypoexponential distribution arises, where the derivative is removed:

P (H < t) = 1−

 |~r|∏
j=1

λ
rj
j

 |~r|∑
k=1

rk∑
l=1

Ψk,l(−λk)trk−le−λkt

(rk − l)!(l − 1)!

where Ψk,l(t) =


(−1)l(l−1)!

λ2

[
1
tl
− 1

(t+λ2)l

]
, k = 1

− 1
t(t+λ1)r1 , k = 2

and λ0 = 0, r0 = 1 (67)

Note here that the only difference between equations (65) and (67) is the Ψ function. The next

part proves that the expression for Ψ can be simplified for the cases of k = 1, 2. Equation (68)

shows the expression to be proved.

Ψ(k,l)(t) = − ∂l−1

∂tl−1

 |~r|∏
j=0,j 6=k

(λj + t)−rj

 =


(−1)l(l−1)!

λ2

[
1
tl
− 1

(t+λ2)l

]
, k = 1

− 1
t(t+λ1)r1 , k = 2

(68)

Proof of equation (68): This section aims to show that there exists a simplified version of

equation (65) that is specific to the proposed Markov model. Function Ψ is defined using the

parameter t and the variables k and l. Given the Markov model, the range of values that k and l

can take can be bounded. First, from the range of the double summation in equation (65), it can

be seen that k = 1, 2, . . . , | ~r |. Now, | ~r | represents the size of the parameter vectors that, for

the Markov model, will always be 2. That is because, for all the exponentially distributed random

variables that are added together to form the new distribution, there only two distinct parameters,

thus forming two erlang distributions. Therefore:

k = 1, 2

By observing equation (65) once more, the range of values that l takes are l = 1, 2, . . . , rk, where

r1 is subject to the individual’s position in the queue and r2 = 1. In essence, the hypoexponential

distribution will be used with these bounds:

k = 1 ⇒ l = 1, 2, . . . , r1

k = 2 ⇒ l = 1 (69)

Thus the left hand side of equation (68) needs only to be defined for these bounds. The specific

hypoexponential distribution investigated here is of the form Hypo((r1, 1)(λ1, λ2)). Note the initial

conditions λ0 = 0, r0 = 1 defined in equation (65) also hold here. Thus the proof is split into two

parts, for k = 1 and k = 2.

48

� k = 2, l = 1

LHS = − ∂1−1

∂t1−1

 2∏
j=0,j 6=2

(λj + t)−rj


= −

(
(λ0 + t)−r0 × (λ1 + t)−r1

)
= −

(
t−1 × (λ1 + t)−r1

)
= − 1

t(t+ λ1)r1

�

� k = 1, l = 1, . . . , r1

LHS = − ∂l−1

∂tl−1

 2∏
j=0,j 6=1

(λj + t)−rj


= − ∂l−1

∂tl−1

(
(λo + t)−r0 × (λ2 + t)−r2

)
= − ∂l−1

∂tl−1

(
1

t(t+ λ2)

)
In essence, it is only needed to show that:

− ∂l−1

∂tl−1

(
1

t(t+ λ2)

)
=

(−1)l(l − 1)!

λ2

[
1

tl
− 1

(t+ λ2)l

]
Proof by Induction:

1. Base case (l = 1):

LHS = − ∂1−1

∂t1−1

(
1

t(t+ λ2)

)
= − 1

t(t+ λ2)

RHS =
(−1)1(1− 1)!

λ2

[
1

t1
− 1

(t+ λ2)1

]
= − t+ λ2 − t

λ2t(t+ λ2)

= − 1

t(t+ λ2)

LHS = RHS

2. Assume true for l = x:

− ∂x−1

∂tx−1

(
1

t(t+ λ2)

)
=

(−1)x(x− 1)!

λ2

[
1

tx
− 1

(t+ λ2)x

]

49

3. Prove true for l = x+ 1. Need to show that:

∂x

∂tx

(
−1

t(t+ λ2)

)
=

(−1)x+1(x)!

λ2

[
1

tx+1
− 1

(t+ λ2)x+1

]

LHS =
∂

∂t

[
∂x−1

∂tx−1

(
−1

t(t+ λ2)

)]
=

∂

∂t

[
(−1)x(x− 1)!

λ2

(
1

tx
− 1

(t+ λ2)x

)]
=

(−1)x(x− 1)!

λ2

(
(−x)

tx+1
− (−x)

(t+ λ2)x

)
=

(−1)x(x− 1)!(−x)

λ2

(
1

tx+1
− 1

(t+ λ2)x

)
=

(−1)x+1(x)!

λ2

(
1

tx+1
− 1

(t+ λ2)x

)
= RHS

�

Proportion within target for both types of individuals: Given the two CDFs of the Erlang and

Hypoexponential distributions a new function has to be defined to decide which one to use among

the two. Based on the state of the model, there can be three scenarios when an individual arrives.

1. There is a free server and the individual does not have to wait

X(u,v) ∼ Erlang(1, µ)

2. The individual arrives at a queue at the nth position and the model has C > 1 servers

X(u,v) ∼ Hypo((n, 1), (Cµ, µ))

3. The individual arrives at a queue at the nth position and the model has C = 1 servers

X(u,v) ∼ Erlang(n+ 1, µ)

Note here that for the first case Erlang(1, µ) is equivalent to Exp(µ). Consider X
(1)
(u,v) to be the

distribution of type 1 individuals and X
(2)
(u,v) the distribution of type 2 individuals, when arriving

at state (u, v) of the model.

X
(1)
(u,v) ∼


Erlang(v, µ), if C = 1 and v > 1

Hypo ([v − C, 1] , [Cµ, µ]) , if C > 1 and v > C

Erlang(1, µ), if v ≤ C

(70)

50

X
(2)
(u,v) ∼


Erlang(min(v, T), µ), if C = 1 and v, T > 1

Hypo ([min(v, T)− C, 1] , [Cµ, µ]) , if C > 1 and v, T > C

Erlang(1, µ), if v ≤ C or T ≤ C

(71)

Thus, the CDF of the random variables X
(1)
(u,v) and X

(2)
(u,v) can be calculated using equations

(61) and (67):

P (X
(1)
(u,v) < t) =



1−
∑v−1

i=0
1
i!e
−µt(µt)i, if C = 1

and v > 1

1− (µC)v−Cµ
∑|~r|

k=1

∑rk
l=1

Ψk,l(−λk)trk−le−λkt

(rk−l)!(l−1)! , if C > 1

where ~r = (v − C, 1) and ~λ = (Cµ, µ) and v > C

1− e−µt, if v ≤ C

(19 revisited)

P (X
(2)
(u,v) < t) =



1−
∑min(v,T)−1

i=0
1
i!e
−µt(µt)i, if C = 1

and v, T > 1

1− (µC)min(v,T)−Cµ if C > 1

×
∑|~r|

k=1

∑rk
l=1

Ψk,l(−λk)trk−le−λkt

(rk−l)!(l−1)! , and v, T > C

where ~r = (min(v, T)− C, 1)

~λ = (Cµ, µ)

1− e−µt, if v ≤ C

or T ≤ C

(20 revisited)

In addition, the set of accepting states for type 1 (S
(1)
A) and type 2 (S

(2)
A) individuals defined

in (7) and (8) are also needed here. Note here that, S denotes the set of all states of the Markov

chain model.

S
(1)
A = {(u, v) ∈ S | v < N}

S
(2)
A =

{(u, v) ∈ S | u < M}, if T ≤ N

{(u, v) ∈ S | v < N}, otherwise

51

The following formula uses the state probability vector π to get the weighted average of the

probability below target of all states in the Markov model.

P (X(1) < t) =

∑
(u,v)∈S(1)

A

P (X
(1)
A1(u,v) < t)πu,v∑

(u,v)∈S(1)
A

πu,v
(72)

P (X(2) < t) =

∑
(u,v)∈S(2)

A

P (X
(2)
A2(u,v) < t)πu,v∑

(u,v)∈S(2)
A

πu,v
(73)

Note that A1(u, v) and A2(u, v) are defined in section 3.2 by equations 11 and 12.

Overall proportion within target: The overall proportion of individuals for both types of individ-

uals is given by the equivalent formula of equation (6). The following formula uses the probability

of lost individuals from both types to get the weighted sum of the two probabilities.

PL′1 =
∑

(u,v)∈S(1)
A

π(u, v), PL′2 =
∑

(u,v)∈S(2)
A

π(u, v)

P (X < t) =
λ1PL′1

λ2PL′2 + λ1PL′1
P (X(1) < t)

+
λ2PL′2

λ2PL′2 + λ1PL′1
P (X(2) < t) (21 revisited)

52

E. Type 1 and type 2 performance measure comparisons using simulation and Markov

chains

2 3 4 5 6
2

0.1

0.2

0.3

0.4

0.5

0.6

W
ai

tin
g

tim
e

Mean waiting time of type 1 individuals using Markov chain and simulation
Markov chain
Simulation

Figure 17: Comparison of mean waiting time for type 1 individuals between values obtained from the Markov chain

formulas and values obtained from simulation.

53

2 3 4 5 6
2

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

0.50
W

ai
tin

g
tim

e
Mean waiting time of type 2 individuals using Markov chain and simulation

Markov chain
Simulation

Figure 18: Comparison of mean waiting time for type 2 individuals between values obtained from the Markov chain

formulas and values obtained from simulation.

2 3 4 5 6
2

0.2

0.3

0.4

0.5

0.6

Pr
op

or
tio

n

Proportion of type 1 individuals within target
Markov chain
Simulation

Figure 19: Comparison of proportion within target time for type 1 individuals between values obtained from the

Markov chain formulas and values obtained from simulation.

54

2 3 4 5 6
2

0.2

0.3

0.4

0.5

0.6

Pr
op

or
tio

n

Proportion of type 2 individuals within target
Markov chain
Simulation

Figure 20: Comparison of proportion within target time for type 2 individuals between values obtained from the

Markov chain formulas and values obtained from simulation.

55

