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ABSTRACT In the major human pathogen Klebsiella pneumoniae, MgrB inactivation by
disruptive insertion sequence (IS) elements and mutations leading to early termination
are known to play an important role in polymyxin resistance. In this study, we examined
a collection of invasive blaKPC-2-producing K. pneumoniae isolates belonging to the high-
risk clone sequence type 258 (ST258) displaying high rates of resistance to many antimi-
crobials, including polymyxins. We identified a deleterious substitution (W20S) in MgrB
and confirmed by genetic complementation analysis that this variant was inactive, lead-
ing to increased polymyxin B and colistin MICs.

IMPORTANCE Carbapenem-resistant Gram-negative bacteria are designated critical patho-
gens by the World Health Organization. Polymyxins (i.e., polymyxin B and colistin) are
last-resort antibiotics and particularly useful against these multidrug-resistant bacteria. In
Klebsiella pneumoniae, the inactivation of MgrB, a negative regulator of PhoPQ, was
shown to be the major pathway leading to colistin resistance. While gene disruption by
insertion sequence (IS) elements and mutations leading to early termination (stop co-
dons) are frequent, deleterious mutations are not observed frequently and have not
been characterized. Here, we identified a deleterious substitution (W20S) in MgrB among
a collection of bloodstream infection, blaKPC-2-producing K. pneumoniae sequence type
258 (ST258) isolates, displaying high rates of resistance to polymyxins and associated
with a high mortality rate. The dissemination of such a MgrB-W20S mutation leading to
polymyxin resistance within the ST258 high-risk clone background is problematic and
thus warrants particular attention.
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Polymyxins are last-resort antibiotics, particularly against carbapenem-resistant
Gram-negative bacteria. This family of polycationic antimicrobial peptides includes

polymyxin B and polymyxin E (i.e., colistin). In Klebsiella pneumoniae, it is well estab-
lished that the most frequent mechanism of polymyxin resistance is the inactivation of
chromosomally encoded mgrB. The small (47 amino acids) membrane protein MgrB is
a negative regulator of the two-component system PhoPQ that controls lipopolysac-
charide (LPS) modifications. MgrB prevents PhoPQ hyperactivation by directly interact-
ing in the membrane with the PhoQ sensor kinase, while unfunctional or the absence
of MgrB leads to enhanced PhoPQ activity and downstream addition of 4-amino-4-
deoxy-L-arabinose (L-Ara4N) on lipid A decreasing the LPS negative charge (1). MgrB
inactivation has been shown to arise by (i) gene interruption by an insertion sequence
(IS) element, (ii) nucleotide deletion/insertion leading to frameshift and premature stop
codons, or (iii) nucleotide nonsense substitution creating a premature stop codon (2, 3).
Here, we identified for the first time a single amino acid substitution (W20S) responsible
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for MgrB inactivation increasing polymyxin MICs in carbapenemase blaKPC-2-producing K.
pneumoniae sequence type 258 (ST258) invasive isolates.

We recently described the clinical and epidemiological features associated with a
cohort of 165 polyclonal blaKPC-2-producing K. pneumoniae bloodstream infections in a
Brazilian tertiary hospital between 2014 and 2016 (4). Among the 42 blaKPC-2 isolates
belonging to the sequence type 258 (ST258), we observed unexpectedly high rates of
resistance to colistin (MIC50, 8 mg/mL; MIC90, 128mg/mL; 80% resistant). ST258 blaKPC-2
isolates carried multiple resistance genes, including rmtB aminoglycoside 16S-methyl-
ase, severely limiting therapeutic options (see Table S1 in the supplemental material)
(5). The clinical burden of these 42 ST258 K. pneumoniae bloodstream infection cases is
described in Table S1 (Hospital Sao Paulo/Universidade Federal de São Paulo Ethics
Committee for Clinical Research protocol 1.814.158). Overall (all-cause) 30-day mortal-
ity was 59.5%. The low number of polymyxin susceptible isolates precluded a deeper
analysis of the impact of polymyxin resistance on the outcome.

All ST258 isolate genomes (previously sequenced using an Illumina MiSeq instru-
ment [5]) were analyzed for the presence of polymyxin resistance determinants. The
mcr resistance genes were not detected in any of the isolates, and none of two-compo-
nent-systems, namely, phoPQ and crrAB, carried mutations. The pmrB mutation R256G
was present in all ST258s from our collection, including susceptible isolates. In mgrB,
we identified a single nucleotide substitution, namely, 59G.C, leading to amino acid
change W20S that was present in 93% (39/42) of the ST258 isolates and carried by the
strains displaying the highest MICs (MIC distributions are shown in Fig. 1). Strains carry-
ing MgrB W20S variants showed statistically higher polymyxin resistance levels than
the EUCAST epidemiological cutoff (ECOFF) MIC panel distribution (6) (Wilcoxon-Mann-
Whitney one-sided test, exact P = 2.2e-16; using the R Stats Package, version 4.0.3 [7]).
We hypothesized that this mutation resulted in a nonfunctional MgrB leading to an
increase in polymyxin MICs.

To confirm its role in polymyxin resistance, we performed complementation experi-
ments in the following three ST258 K. pneumoniae isolates carrying the mgrBW20S
mutation: two KPC-2-producers (P27 and HSP12) from the collection and one addi-
tional KPC-negative (P52) ST258 strain that was isolated from the same hospital. For
genetic complementation, an apramycin resistance gene was amplified from pIJ773 (8)
using the primers Xce-apra-F (59-CCACATGTATCCGTCGACCTGCAGTTCG-39) and apra-
Xce-R (59-CCACATGTGTGTAGGCTGGAGCTGCTTCG-39). The resulting product was
digested using the FastDigest restriction enzyme XceI (Invitrogen, Thermo Fisher
Scientific Inc.) and cloned into pBluescript SK1 (Stratagene Inc.) to build pskA (9). The
wild-type (WT) and mutant mgrB were amplified with its own promoter from the
strains MGH78578 (mgrB-WT) and P52 (mgrB-W20S), respectively, using the primers

FIG 1 Polymyxin B and colistin MIC distribution of K. pneumoniae ST258 isolates exhibiting wild-type (WT) mgrB (blue)
and a W20S mgrB mutation (violet) analyzed in this study. The number of isolates was displayed on the left axis. The
gray bars show the colistin MIC distribution from the EUCAST ECOFF (n = 1841) database (6) with the number of
isolates displayed on the right axis.
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Eco-mgrB-ext-F (59-GGAATTCCTTAAGAAGGCCGTGCTATCC-39) and mgrB-BamHI-ext-R
(59-CGGGATCCCGAAGGCGTTCATTCTACCACC-39) adapted from Cannatelli et al. (10).
After restriction with BamHI and EcoRI, the PCR products were cloned in pskA and their
sequences were verified by Sanger sequencing (Fasteris, Geneva, Switzerland).
Polymyxin B and colistin MICs were determined in triplicate by broth microdilution fol-
lowing EUCAST guidelines, using Escherichia coli ATCC 25922 as a quality control. To
prevent spontaneous plasmid loss, MICs of all strains carrying pskA plasmid had to be
determined in the presence of 25 mg/mL apramycin. Strains carrying the empty pskA
plasmid were used as a control, and presence of the plasmid did not significantly influ-
ence the MICs (Table 1). The expression of mgrB-WT on the pskA plasmid was able to
restore susceptibility to both polymyxin B and colistin in the three different strains har-
boring the chromosomal W20S mutation with more than 64-fold MIC reduction
(Table 1). On the other hand, when the complementation was performed with mgrB-
W20S, the strains remained resistant to polymyxins confirming that this MgrB variant
was not functional.

This description of a deleterious mutation in MgrB at position W20 is in agree-
ment with a recent biochemical functional analysis of MgrB in Escherichia coli
showing that W20 is a key residue for a MgrB/PhoQ interaction (11). Its role in poly-
myxin resistance was not characterized because in E. coli mgrB plays a minor role
compared with the acquisition of mcr (12). Two K. pneumoniae isolates carrying a
mgrB W20R mutation have been reported previously, but this mutation was not fur-
ther investigated (3, 13). Based on our results, we can speculate that the W20R sub-
stitution is also a loss-of-function mutation influencing polymyxin MICs. The pro-
posed EUCAST ECOFFs for colistin (2 mg/mL) did not fully discriminate isolates
possessing a W20S mgrB mutation from the wild-type population; five (5/39) iso-
lates were still classified as susceptible to colistin by the current breakpoint. It is
possible that other factors interfered with MgrB/PhoPQ polymyxin resistance path-
ways in these isolates.

To investigate any fitness cost linked with a W20S mutation, growth curves were
performed in triplicates after dilution (1/100) of the log-phase culture (at optical
density [OD], 1) in 1 mL of fresh Mueller-Hinton broth (MHB), distributed in a 24-
well plate under continuous shaking (180 rpm) at 37°C in the plate reader Infinite
200Pro (Tecan Trading AG, Switzerland). Doubling times were calculated for the
three MgrB WT isolates and three randomly chosen W20S isolates. The W20S muta-
tion did not impair the fitness of the tested strains since the generation times of
the three strains with a W20S mutation (HSP12, 23.27 min; P27, 22.67 min; P52,
22.84 min) were similar to those of the strains with WT mgrB (HSP87, 23.87 min;
P15, 23.71 min; P39, 22.02 min). Growth curves are shown in Fig. S1 in the supple-
mental material. The presence of a compensatory mutation explaining this absence

TABLE 1 Polymyxin B and colistin MIC of complemented P27, P52, and HSP12 strains

Strain

MIC (mg/mL) of:

InterpretationPolymyxin B Colistin
P27 16 16 R
P271 pskA-emptya 16 16 R
P271 pskA-mgrB-WTa #0.25 #0.25 S
P271 pskA-mgrB-W20Sa 16 8 R
P52 16 16 R
P521 pskA-emptya 8 16 R
P521 pskA-mgrB-WTa #0.25 #0.25 S
P521 pskA-mgrB-W20Sa 8 16 R
HSP12 32 32 R
HSP121 pskA-emptya 16 32 R
HSP121 pskA-mgrB-WTa #0.25 #0.25 S
HSP121 pskA-mgrB-W20Sa 8 16 R
aMIC in the presence of apramycin 25mg/mL to circumvent plasmid loss.

Impact of MgrB W20S on Polymyxin Resistance
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of fitness cost could not be ruled out in our experiment. This observation is in line
with previous publications showing that MgrB inactivation does not impose a fit-
ness cost both in mutant isogenic strains and in the context of a clinical outbreak
(14–16).

Here, we reported and confirmed by genetic experiments a novel amino acid
substitution leading to polymyxin resistance in clinical high-risk K. pneumoniae iso-
lates. This KPC-2-producing ST258 subclone carrying the W20S mutation was able
to disseminate locally provoking 39 bloodstream infections over a 3-year period
(2014 to 2016) (4). The heavy usage of polymyxin B in this hospital, in both empiri-
cal and directed therapies, due to a high rate of carbapenem-resistant isolates,
might play a role in the efficient dissemination of this clone. In a previous study,
we showed that the polymyxin B resistance rate has increased dramatically in this
hospital, raising from 0% to 30.6% between the years 2009 and 2015 among 224 K.
pneumoniae isolates recovered from blood cultures (17). The local dissemination of
this polymyxin-resistant variant of the major international clone ST258 is thus wor-
risome, justifying that specific attention is needed to detect this new polymyxin re-
sistance determinant.

Data availability. Sequences are available under BioProject accession numbers
PRJNA510003, PRJNA628956, PRJNA629307, PRJNA628957, PRJNA629309, PRJNA628954,
PRJNA628953, and PRJEB41225.
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