
Date of publication xxxx 00, 0000, date of current version xxxx 00, 0000.

Digital Object Identifier 10.1109/ACCESS.2022.DOI

Lightweight Cryptographic Hash
Functions: Design Trends, Comparative
Study, and Future Directions
SUSILA WINDARTA1 (Member, IEEE), SURYADI2, KALAMULLAH RAMLI.3 (Member, IEEE),
BERNARDI PRANGGONO4 (Senior Member, IEEE), TEDDY SURYA GUNAWAN5 (Senior
Member, IEEE).
1,3Department of Electrical Engineering, Faculty of Engineering, Universitas Indonesia, Depok, Jawa Barat, Indonesia
2Department of Mathematics, Faculty of Mathematics and Natural Sciences, Universitas Indonesia, Depok, Jawa Barat, Indonesia
4Department of Engineering and Mathematics, Sheffield Hallam University, Sheffield, United Kingdom
5Department of Electrical and Computer Engineering, Kulliyyah of Engineering, International Islamic University Malaysia, Kuala Lumpur, Malaysia

Corresponding author: Kalamullah Ramli (e-mail: kalamullah.ramli@ui.ac.id).

This work was supported by the Universitas Indonesia through the Hibah Publikasi Terindeks Internasional (PUTI) Q2 Scheme under
Contract NKB-..../UN2.RST/HKP.06.00/2022. The work of Susila Windarta was supported in part by the Indonesia Endowment Fund for
Education or Lembaga Pengelola Dana Pendidikan (LPDP).

ABSTRACT The emergence of the Internet of Things (IoT) has enabled billions of devices that collect
large amounts of data to be connected. Therefore, IoT security has fundamental requirements. One critical
aspect of IoT security is data integrity. Cryptographic hash functions are cryptographic primitives that
provide data integrity services. However, due to the limitations of IoT devices, existing cryptographic
hash functions are not suitable for all IoT environments. As a result, researchers have proposed various
lightweight cryptographic hash function algorithms. In this paper, we discuss advanced lightweight
cryptographic hash functions for highly constrained devices, categorize design trends, analyze cryptographic
aspects and cryptanalytic attacks, and present a comparative analysis of different hardware and software
implementations. In the final section of this paper, we highlight present research challenges and suggest
future research topics related to the design of lightweight cryptographic hash functions.

INDEX TERMS Internet of Things, lightweight cryptographic hash function, lightweight cryptography,
security

I. INTRODUCTION

THE Internet of Things (IoT) is an essential compo-
nent of computer science and information technology

research. An enormous amount of research on the IoT has
been conducted due to the IoT applications in various fields,
including automotive systems, sensor networks, healthcare,
distributed control systems, cyber-physical systems, smart
grids, agriculture, smart cities, smart homes, transport and
logistics, and smart factories. Moreover, IoT Analytics [1]
has predicted the connectivity between IoT devices to reach
30.90 billion by 2025. The increase in the number of IoT
devices has led to more connections than the use of non-IoT
devices. These connected devices pose the same dilemma
as connectivity between people: convenience and security.
Among these connected devices are devices with the same
or similar resources as standard computers; however, many

devices have limitations. Devices with similar resources to
standard computers can use standard cryptography primi-
tives; however, other devices require unique designs due to
various limitations. Researchers in [2]–[4] defined four de-
sign limitations associated with IoT cryptography primitives,
especially in hardware implementations: memory consump-
tion, implementation size, speed or throughput, and power or
energy (Fig. 3).

One of the most widely used IoT cryptographic primitives
is the cryptographic hash function [5]–[8]. The cryptographic
hash function is a cryptographic primitive that plays an
essential role in various cyber and information security appli-
cations. The cryptographic hash function maps an arbitrary
length input to a fixed-length output. The hash function
outputs the hash value, message digest, digest, or fingerprint.
Cryptographic hash functions have been implemented in

VOLUME 4, 2016 1

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2022.3195572

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

Windarta et al.: Lightweight Cryptographic Hash Functions: Design Trends, Comparative Study , and Future Directions

different cryptographic mechanisms, including data integrity
[7]–[10], entity authentication [7], [8], digital signatures
[5], [6], [11], [12], pseudorandom number generators [7],
cryptographic key derivation [7], [12], key generation [12],
password security, and blockchains [13]–[17]. The use of the
hash function is crucial in digital signature applications. The
hash value of the message is signed using the sender’s private
key. The security of a digital signature is highly dependent on
the security of the cryptographic hash function. If an attacker
finds two messages with the same hash value and convinces
the other party to sign one of the messages, the attacker can
obtain a valid digital signature for the other message. Similar
to password security applications, if an attacker constructs a
password based on the hash value, the security of the system
protected by the password may be at risk.

Therefore, government, industry, and academia have at-
tempted to design and analyze cryptographic hash functions.
When designing a hash function, the designer must consider
both security and performance factors. Some previous works
have described the characteristics of a good cryptographic
hash function by considering these two factors [18]–[21].

In 2012, the Keccak hash function [22] was selected as
the secure hash standard (SHA-3) and was published in the
Federal Information Processing Standard (FIPS) 202 [23]
and NIST SP 800-185 [24]. However, the hash functions
designed in the SHA-3 competition are intended for de-
vices with standard specifications. The primitives are not
designed for small computing devices with limited resources,
such as embedded devices, RFID devices, and sensor net-
works. Lightweight cryptographic algorithms for devices
with limited resources have been widely discussed in the
literature. Some lightweight cryptographic algorithms in-
clude the lightweight block cipher, lightweight stream ci-
pher, lightweight public key cryptosystem, lightweight cryp-
tographic hash function (LWCHF), and lightweight mes-
sage authentication code (MAC). This article focuses on
lightweight cryptographic hash functions because of the vital
role these algorithms play in devices with limited resources.

There has been considerable research on the design of the
LWCHF algorithm since it was first developed in 2008. In
addition, many attacks on the LWCHF algorithm have been
carried out. We aim to present a state-of-the-art LWCHF
algorithm, including the design trends, cryptographic prop-
erties, and hardware and software implementation perfor-
mance. Here, design trends refer to constructs that have
been proposed in the literature, cryptographic properties refer
to cryptanalytic attacks that have been carried out on each
LWCHF algorithm, and the implementation performance
summarizes data related to implementing hash function al-
gorithms on hardware and software, along with the accom-
panying metrics. We obtain the implementation performance
data from algorithm designers or implementations by other
researchers.

The main contributions of this study can be summarized as
follows:

• We surveyed state-of-the-art lightweight cryptographic

hash functions up to early 2022. To the best of our
knowledge, there have been no surveys on lightweight
cryptographic hash functions developed until the final
round of the NIST Lightweight Cryptography Project.

• We classify the design trends for lightweight crypto-
graphic hash functions.

• We analyze and compare lightweight hash functions
based on cryptographic properties (Table 4) and imple-
mentation aspects (Table 5).

• We analyze the challenges associated with designing
and developing a lightweight cryptographic hash func-
tion.

• We identify potential gaps in future research, highlight-
ing essential and practical considerations for developing
lightweight cryptographic hash functions that require
more attention.

This review should support academic and industry
researchers in designing, analyzing, and implementing
lightweight cryptographic hash functions. We hope our
study’s results can inspire researchers in future work aimed
at designing and implementing LWCHFs.

The remainder of this paper is organized as follows. In Sec-
tion II, we describe the methodology we used in this review.
Section III highlights several surveys related to lightweight
cryptographic hash functions. Section IV discusses the the-
oretical basis of cryptographic hash functions and their rela-
tion to lightweight cryptographic hash functions (LWCHFs).
The lightweight cryptography performance metrics associ-
ated with hardware and software implementations are de-
tailed in Section V. Section VI discusses the design trends of
lightweight cryptographic hash functions. A comprehensive
study of a state-of-the-art LWCHF is presented in Section
VII. The results, discussion, research challenges and future
directions are presented in Section VIII. Finally, we conclude
our research in Section IX.

II. SURVEY METHODOLOGY
The approach we used to collect manuscripts for this survey
is shown in Fig. 1. The scientific databases we searched for
articles include IEEE Xplore, ACM Digital Library, Springer,
ScienceDirect, and Google Scholar. The search focused on
papers published between 2008 and the present day (2022).
The search terms used to collect the manuscripts included
several variations of “lightweight cryptographic hash func-
tion”. Based on the search terms, we initially identified more
than 500 papers. These papers were then filtered to fit the
topic coverage based on their title, abstract, content, and
conclusion.

This survey followed a semisystematic methodology [25]
to narrow the literature into several stages. In Stage 1, an
extensive search was used to analyze the literature on all
proposed lightweight cryptographic hash functions to the
best of our knowledge. In Stage 2 of our study, we conducted
an in-depth examination to select literature based on the
LWCHF design. The Stage 2 results were formalized as
design trends and hardware and software performance com-

2 VOLUME 4, 2016

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2022.3195572

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

Windarta et al.: Lightweight Cryptographic Hash Functions: Design Trends, Comparative Study , and Future Directions

Lightweight
Cryptographic Hash

Function

Performance Metrics

Design Consideration

Stage 1

Challenges

Future Research

Hardware

Software

Cryptographic
Properties

Merkle-Damgard

Block Cipher

Sponge
Construction

Cellular
Automata

Performance
Comparison

Trends Design

IEEE
Xplore Springer Science

Direct Scopus Google
Scholar

Semantics
Scholar

Scientific
Databases

Stage 2 Stage 3 Stage 4

FIGURE 1. Survey Methodology.

parisons in Stage 3. In Stage 4, we concluded our evaluation
of the literature and discussed some challenges of this study
and potential future work.

III. RELATED WORKS
Many surveys on research progress in IoT security have been
published in recent years [18], [26]–[28]. Researchers have
mainly focused on IoT security solutions. Security issues are
presented as components of each survey and are treated as
general concepts, and security and privacy are often con-
sidered together as one concept. Unfortunately, no previous
survey has detailed deep-seated IoT security issues related to
lightweight cryptographic hash functions (see Table 1).

Biryukov and Perrin [18] investigated lightweight crypto-
graphic algorithms that had been developed prior to 2017,
including block ciphers, stream ciphers, and hash functions,
which were designed for use in academia, government, and
industry. The authors discussed in detail the design of each
algorithm. However, the authors do not provide a detailed
explanation of the most recent lightweight cryptographic
hash function.

Ankit et al. [26] did not discuss the hash function algo-
rithm, although this algorithm was mentioned in the intro-
duction of their work. In addition, the author does not discuss
state-of-the-art algorithms. Dhanda et al. [27] discussed 54
lightweight cryptography (LWC) algorithms, including 21
lightweight block ciphers, 19 lightweight stream ciphers,
nine lightweight hash functions, and five elliptic curve cryp-
tography (ECC) ciphers that had been developed prior to
2019. When discussing the Keccak algorithm, the author
mistakenly identified the algorithm’s designers as [30], while
the algorithm was actually designed by [31]. The author

did not specify the state-of-the-art hash function algorithm
identified in the previous survey.

Thakor et al. [29] classified the critical characteristics of
LWC algorithms and compared 41 LWC encryption algo-
rithms using seven performance metrics. The seven metrics
are the block/key size, memory, gate area, latency, through-
put, power & energy, and hardware & software efficiency.
In a recent study, Rana et al. [28] discussed state-of-the-art
lightweight cryptographic protocols for IoT networks and
provided a comparative analysis of popular ciphers. The
authors discussed three lightweight cryptography primitives:
the block cipher, stream cipher, and elliptic curve cipher.

IV. OVERVIEW OF CRYPTOGRAPHIC HASH FUNCTIONS
Cryptographic hash functions are workhorses in cryptogra-
phy, and these primitives are used in almost all cryptographic
applications [32]. A cryptographic hash function is defined
as follows (Definition 1):
Definition 1: [19] Suppose x is the message input, and n is
a positive integer. The hash function H is a function with at
least the following properties:

1) Compression: H maps any input x of finite length to an
output H(x) with length n as H : (0, 1)∗ 7→ (0, 1)n..

2) Easy computation: when the hash function H and input
x are known, the hash value H(x) is easy to calculate.

Cryptographic hash functions can generally be classified into
two categories [19]:

1) Modification detection codes (MDCs)
This category is also known as message integrity codes
(MICs). MDCs calculate the hash value of an input
message and determine its integrity by comparing the
hash values of the received messages. The MDC is an

VOLUME 4, 2016 3

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2022.3195572

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

Windarta et al.: Lightweight Cryptographic Hash Functions: Design Trends, Comparative Study , and Future Directions

TABLE 1. Surveys on lightweight cryptographic hash functions.

Survey Ref. Cryptographic primitives
State-of-the-Art in Lightweight Symmetric Cryptogra-
phy

[18] Stream ciphers, block ciphers, hash functions, and crypto-
graphic protocol

A Survey of Lightweight Cryptographic Algorithms for
IoT-Based Applications

[26] Symmetric, asymmetric and hash functions

Lightweight Cryptography: A Solution to Secure IoT [27] Block ciphers, stream ciphers, hash functions, and elliptic curve
cryptography

Lightweight Cryptography Algorithms for Resource-
Constrained IoT Devices: A Review, Comparison and
Research Opportunities

[29] Block ciphers

Lightweight Cryptography in IoT Networks: A Survey [28] Block ciphers, stream ciphers, and elliptic curve ciphers
Our work This paper Lightweight cryptographic hash functions (LWCHFs)

x =?

H(x)
Hash value

x1 =?

H(x1) = H(x2)
Hash value

x2 =?

x1 ̸= x2

x1

H(x1) = H(x2)
Hash value

x2 =?

x1 ̸= x2

Preimage-resistance Second preimage-resistance Collision-resistance

Hash
function H

Hash
function H

Hash
function H

Pre 2nd Pre Coll

FIGURE 2. Three security properties of a cryptographic hash function.

unkeyed hash function with the properties specified in
Definition 2. There are two subclasses of MDCs:

• One-way hash functions (OWHFs): it is compu-
tationally difficult to identify the message input
according to the given hash value.

• Collision-resistant hash functions (CRHFs): it is
difficult to identify any two inputs with the same
hash value.

In this study, we focus on unkeyed hash functions.
2) Message authentication codes (MACs)

This category is also known as keyed hash functions.
The MAC is a hash function with an additional param-
eter: a cryptographic key. The MAC algorithm aims to
assure the integrity of the source and message without
using other mechanisms. The secret key parameter
allows this assurance.

Definition 2: [19] An unkeyed hash function H with message
inputs x, x′ and hash values y, y′ also has the following
properties:

1) Preimage resistance (one-way): given the hash value y,
it is computationally difficult to determine the input x
such that H(x) = y.

2) Second-preimage resistance: given the input x, it is
computationally difficult to determine another input
x ̸= x; thus, H(x′) = H(x). This property is also
known as weak collision resistance.

3) Collision resistance: it is computationally difficult to
find any two inputs x′ ̸= x such that H(x′) = H(x).
Another name for this property is strong collision
resistance.

We denote the preimage, second preimage, and collision
resistance as Pre, 2nd Pre and Coll. Illustrations of
these three properties are shown in Fig. 2.

V. LIGHTWEIGHT CRYPTOGRAPHY PERFORMANCE
METRICS
Researchers in several studies have defined performance
metrics for software and hardware implementations. The de-
signer must specify which metrics are suitable for a particular
application. The choice of metric is crucial because it deter-
mines the design of the lightweight cryptographic algorithm.
Fig. 3 depicts the IoT device implementation metrics used in
the comparison in Subsection VIII-B.

SOFTWARE IMPLEMENTATION
The software implementation metrics are defined as follows:

1) Read-only memory (ROM) or code size [33], [34]: this
metric relates to the fixed amount of data required to
evaluate a function independently of its input. Accord-
ing to [34], this metric is the size of the cryptographic
primitive/algorithm/mechanism code in bytes.

2) Random access memory (RAM) consumption [33],
[34]: this metric corresponds to the amount of data
written to memory during each function evaluation.

3) Energy [27], [35]–[38]: this metric corresponds to the
power consumption during a certain period [34] and is
measured in microjoules µJ . Lower values are better
for this metric. The mathematical equation for energy
consumption is formulated as follows:

Eper bit =
Lat× P

B
,

where Eper bit is the energy per bit, Lat is the latency,
P is the power used by the hardware or software, and
B is the block size.

4) Throughput: this metric measures the average amount
of data processed during each clock cycle.

5) Latency: this metric corresponds to the number of
clock cycles needed to calculate a plaintext/ciphertext
block.

4 VOLUME 4, 2016

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2022.3195572

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

Windarta et al.: Lightweight Cryptographic Hash Functions: Design Trends, Comparative Study , and Future Directions

HARDWARE IMPLEMENTATION
The following metrics are used to evaluate the hardware
implementation efficiency:

1) Gate equivalent (GE) [2], [4], [18], [27], [34], [35]:
this metric measures the memory consumption and
implementation size. The GE is defined as the area
occupied by the semiconductor [34]. Lower values are
better for this metric. This metric measures how much
physical area is required for a circuit that implements
a primitive. Gong [4] noted that the physical area
allocation in an LWC implementation should be less
than 2000 GE. The metric can be defined with the
following equation:

Parea =
L

An
,

where Parea is the physical area allocation, L is the ap-
plication layout area and An is the area of the NAND2
gate.

2) Latency: this metric corresponds to the time a circuit
outputs after the input is given [2], [18], [27], [34],
[39]. The latency is measured in cycles/block or cy-
cles/byte. Lower values are better for this metric. The
latency can be defined as :

Lat = k × tcycle,

where Lat is the latency, k is the number of clock
cycles used to compute the output and tcycle is the time
of one cycle.

3) Throughput [2], [27], [36], [40]: this metric is mea-
sured in bits or bytes per second and corresponds to the
number of plaintexts processed per unit of time. Higher
values are better for this metric. The throughput can be
defined as:

T =
B × F

N
,

where T is the throughput, B is the block size, F is the
frequency and N is the number of cycles per block.

4) Energy consumption: this metric is the same as the
corresponding software metrics.

5) Power consumption [18], [27], [28], [35]: this metric
is measured in Watts (W) or µW and quantifies the
amount of power required to use the circuit. Lower
values are preferred for this metric. The power can be
calculated as:

P =
B × Eper bit

Lat
,

where P is the power, B is the block size, Lat is
the latency, P is the power used by the hardware or
software, and Eper bit is the energy per bit.

VI. TRENDS IN LIGHTWEIGHT CRYPTOGRAPHIC HASH
FUNCTION DESIGN
This section discusses LWCHF design trends for three pop-
ular constructions: Merkle-Damgård construction, sponge

construction, and block cipher-based construction. Some al-
gorithms [41]–[43] use a particular construction, such as
Merkle-Damgård or sponge, as the main construction and
other constructions (e.g., block cipher-based) as building
blocks to develop compression functions or permutations. In
addition, we identify the round functions used in the LWCHF
scheme: the substitution permutation network (SPN), Feistel
network, and addition-rotation-exclusive Or (XOR) (ARX)
structure. Table 2 lists the LWCHF design trends.

A. MERKLE-DAMGÅRD CONSTRUCTION
As mentioned in the introduction, research on the crypto-
graphic hash function began with two crucial papers that
underlie the development of this theory: Ralph Merkle’s
paper [83] and Ivan Bjerre Damgård’s paper [84]. Merkle and
Damgåproposed a cryptographic hash function that utilized
a compression function, which is assumed to be a collision
resistance function. This type of compression function can
be extended to a hash function that is also collision resistant.
Fig. 4 shows the Merkle-Damgård (MD) construction.

The basic idea underlying MD construction can be de-
scribed as follows.
Suppose f is a compression function that is collision resis-
tant. The function f maps {0, 1}n × {0, 1}k 7→ {0, 1}n, a
fixed and public value initialization vector (IV) {0, 1}n and
the message m = (m0,m1, . . . ,mL−1), where mi is k bits.
The hash function H can be constructed as:
h0 = IV ,
hi+1 = f(hi,mi),
H(m) = hL.
In this case, hi is the intermediate hash value and H(m) is
the hash value.

MD construction is vulnerable to length extension attacks
[85], [86]. To prevent these attacks, the message input length
is added at the end of the message input with the required
padding so that the last block is a multiple of k. This
construction is known as Strengthened Merkle-Damgård.

B. LWCHFS BASED ON BLOCK CIPHERS
The use of block ciphers as building blocks in hash function
design [87] is almost as old as the Data Encryption Standards
(DES) algorithm [88]. Suppose that E is a block cipher with
an r bit key k that maps n bit plaintext to n bit ciphertext. To
the best of our knowledge, most researchers have used the
Davies-Meyer (DM) construction [89] to design LWCHFs
based on block ciphers. Fig. 5 depicts three well-known
hash function constructions based on block ciphers: Davies-
Meyer, Matyas-Meyer-Oseas, and Miyaguchi-Preenel [19],
[45].

The steps of the Davies-Meyer algorithm are as follows:
Input: bit string x.
Output: n-bit hash-code.

1) Input x is divided into k-bit blocks, where k is the key
length and padded, if necessary, to complete the last
block. Denote the padded message with t k-bit blocks
as x1x2 . . . xt. n-bits IV must be predefined.

VOLUME 4, 2016 5

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2022.3195572

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

Windarta et al.: Lightweight Cryptographic Hash Functions: Design Trends, Comparative Study , and Future Directions

TABLE 2. Lightweight cryptographic hash function design trends.

ROUND
FUNCTION

CONSTRUCTION

Merkle-Damgård Block
Cipher-Based

Sponge Cellular
AutomataP-Sponge T-Sponge JH mode

ROUND
FUNCTION

CONSTRUCTION

Merkle-Damgård Block
Cipher-Based

Sponge Cellular
AutomataP-Sponge T-Sponge JH mode

Substitution
Permutation
Network
(SPN)

ARMADILLO [44] DM-PRESENT [45],
[46]

QUARK [47] GLUON [48] SipHash [49]

Lesamnta-LW [41] H-PRESENT-128
[45]

PHOTON [50] SipHash [49] SPN-Hash
[51]

Al-Odat et al.
LWCHF [52]

C-PRESENT-128
[45]

SPONGENT [53],
[54]

Gimli-Hash
[55], [56]

Lesamnta-LW [41] SPN-Hash [51]
TWISH [57] Gimli-Hash [55],

[56]
sLiSCP-hash [43],
[58] p
sLiSCP-hash-light
[42], [59] p
ACE-H-256 [60] p
ASCON-HASH
[61]
KNOT-Hash [62],
[63]
DryGascon-Hash
[64]
ORANGISH [65]
PHOTON-Beetle-
Hash [66]
ESCH [67], [68]
Subterranean2.0-
XOF [69], [70]
Xoodyak Hash
Mode [71]
HVH [72]

Feistel
Network

El Hanouti et al.
LWCHF [73]

Lesamnta-LW [41] LHash [74], [75]

sLiSCP-Hash [43],
[58]
sLiSCP-Light-
Hash [42], [59]

Addition,
Rotation &
Exclusive Or
(XOR)

Neeva-Hash [76]
Bussi et al. (2016)
sLiSCP-Hash [43],
[58]
sLiSCP-Light-
Hash [42], [59]
ACE-H-256 [60]

Others El Hanouti et
al. LWCHF [73]
Skew-Tent Map
(chaos based)

LHash [74], [75]
Cellular Automata

L-CAHASH
[77] Cellular
Automata

Hash-One [78]
NFSR

LCAHASH1.1
[79] Cellular
Automata

LNHash [80] Cel-
lular Automata
LNMNT Hash
[81], [82]
New Mersenne
Number Transform
(NMNT)

6 VOLUME 4, 2016

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2022.3195572

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

Windarta et al.: Lightweight Cryptographic Hash Functions: Design Trends, Comparative Study , and Future Directions

LWC Metrics

hardware area

power

latency

throughput

Gate Equivalent
(GE)

watt (W) or µW

cycles/block

bit per second (bps)

Byte per second (Bps)

Hardware
Software

RAM

bytes

ROM

bytes

latency

Throughput

cycles/byte
bit per second (bps)

Byte per second (Bps)

Energy

µ J /bit

cycles/block
cycles/byte

FIGURE 3. IoT device implementation metrics.

f(h0, m0) f(h1, m1)

h1

m0 m1

h0 = IV

f(hL�1, mL�1)

hL�1

mL�1

H(m)

Message

h2

m
k bits k bits k bits

FIGURE 4. Merkle-Damgård Construction

EgHi−1

Hi

xi

Matyas-Meyer-Oseas

E

Hi−1

Hi

xi

Davies-Meyer

EgHi−1

Hi

xi

Miyaguchi-Preneel

FIGURE 5. Hash functions based on block ciphers [19], [45].

2) The output is Ht:
H0 = IV ;Hi = Exi(Hi−1)⊕Hi−1, 1 ≤ i ≤ t.

C. SPONGE CONSTRUCTION
The sponge construction method has 2 (two) stages: the
absorbing and squeezing phases. Fig. 6 illustrates the sponge
construction method. In this construction, the designer
changes the function f by adding a new permutation or
combining existing permutations.

Bertoni et al. [90] proposed the sponge construction
method. This construction was further developed in 2011
[91]. Sponge construction is a method for constructing a hash
function from a permutation without a publicly known key,
which is referred to as P-sponge construction, or a random
function, which is referred to as T-sponge construction [90].
In general, the steps in the sponge construction process can
be described as follows:
Pad the message M if necessary. Then, divide the padded
message into blocks of length r bits. Initialize the internal
state with b = (r + c) bits with bit 0, where r is the (bit) rate

0

0

f

pad

r

c

M
Message

⌊. ⌋ ℓ

squeezingabsorbing

sponge

Hash value
Z

f f f f f

FIGURE 6. Sponge construction

and c is the capacity. Obtain the hash value by absorbing the
padded message and squeezing the internal state.

The absorbing phase includes the following steps:
1) Replace the first r bits of the internal state by XORing

the previous r-bit values with the r-bit padded mes-
sage.

2) Replace the internal state with the output of the f
function.

The above steps are repeated until the entire message block
is processed. The squeezing phase includes Z/r steps, where
Z is the hash value with length ℓ. The steps are as follows:

1) Store the initial r bits of the internal state.
2) Replace the internal state with the output of the f

function.
The hash value Z is generated by concatenating the r-bit
blocks.

The padding algorithm is relatively simple to use. For ex-
ample, the Keccak, or SHA-3, algorithm [23] uses multirate
padding. In the last message block, add bit 1, then bits 0
are added as necessary to ensure that the block length is a
multiple of r.

Bertoni et al. [92] proved the security claim of sponge
construction, which is known as the flat sponge claim. This
claim proves that an attacker can “distinguish” the sponge
construction output from a random oracle with a probability
of N

2c/2
, where c is the capacity and N is the number of times

VOLUME 4, 2016 7

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2022.3195572

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

Windarta et al.: Lightweight Cryptographic Hash Functions: Design Trends, Comparative Study , and Future Directions

TABLE 3. The adversary efforts on sponge construction.

Type Pre 2nd Pre Coll
T-Sponge min(n, c+ r) min(n, c− log2(m)

min(n, c)P-Sponge c− 1 min(n, c
2
)/2

the f function is called. A sponge structure with capacity c,
rate r, and hash value of n bits can absorb messages of length
m < 2c/2. The resistance of sponge constructions to attacks
defined as in Definition 2 is summarized in Table 3.

VII. LIGHTWEIGHT CRYPTOGRAPHIC HASH
FUNCTIONS IN THE WILD
We identify 34 LWCHFs that have been used in academia
and industry. As discussed in Section VI, the design
focuses on the cost, performance, and security trade-
offs. Fig. 7 illustrates these trade-offs. Four algorithms
(11.8%) are based on the Merkle- Damgård construc-
tion: ARMADILLO, ARMADILLO2, the Al-Odat LWCHF,
and the El Hanouti LWCHF. Fourteen point seven per-
cent (5 algorithms) are block cipher-based algorithms:
DM-PRESENT, H-PRESENT-128, C-PRESENT-192, Lesamn-
taLW, and TWISH. The most significant portion (23 algo-
rithms or 67.6%) are sponge construction-based LWCHFs:
Quark, PHOTON, SPONGENT, GLUON, SPN-Hash, SipHash,
LHash, Neeva-Hash, Hash-One, Gimli-Hash, sLiSCP-hash,
sLiSCP-light-hash, LN-Hash, ASCON-hash, ACE-H, KNOT-
Hash, DryGascon-Hash, ORANGISH, PHOTON-Beetle-
Hash, ESCH, Subterranean2.0-XOF, Xoodyak-hash, and
HVH. Two algorithms, or 5.9%, are based on cellular au-
tomata: L-CAHASH and LCAHASH1.0.

Cost Performance

Security

more

HW Security

Functions

SW Security

Functions

type of architecture

less

more

less

µC µP

Physical Algorithmic

Throughput

Energy

•

•

Area

Power

•

FIGURE 7. Security, performance, and cost trade-offs.

A. MERKLE-DAMGÅRD CONSTRUCTION
Badel et al. [44] proposed ARMADILLO and AR-
MADILLO2 as general-purpose cryptographic function de-
signs. ARMADILLO and ARMADILLO2 can be used with
fixed-input length MACs for challenge-response protocols,
hashing & digital signatures, and PRNG & PRF. The pro-
posed hash function includes five variants according to the
length of the hash value: 80 bits, 128 bits, 160 bits, 192 bits,
and 256 bits.

Al-Odat et al. [52] proposed a family of lightweight
cryptographic hash functions based on the Merkle-Damgård
construction. The algorithm has five hash value variants: 160,
224, 256, 384, and 512 bits. Unfortunately, this algorithm
uses a substitution box, which is not explained in the article.
Moreover, the author does not provide data on all LWCHF
performance metrics; data on the power consumption, num-
ber of clock cycles, speed, and memory consumption were
provided, while other performance metrics were ignored. In
addition, the designer does not provide cryptanalytic results
such as differential and linear cryptanalysis.

El Hanouti et al. recently proposed a lightweight hash
function based on the Merkle-Damgård construction with
a Feistel-like structure and a chaotic one-dimensional map
known as the skew-tent map [73]. To the best of our knowl-
edge, this proposal is the first chaotic map-based LWCHF
algorithm. Other chaotic map-based hash functions [93]–
[97] are not recommended for highly constrained devices.
The author claims that the proposed hash function exhibits
excellent performance (rapid implementation) and sufficient
security properties. However, similar to the proposals of Al-
Odat et al., not all performance metrics were considered
in their study. Furthermore, the author does not provide
supporting results concerning the cryptographic properties.

B. LWCHFS BASED ON BLOCK CIPHERS
DM-PRESENT [45] proposed the first lightweight hash func-
tion in the literature. As the name implies, it is a hash function
that uses the PRESENT block cipher and the Davies-Meyer
construction. There are two types of DM-PRESENT hash func-
tions: DM-PRESENT-80 and DM-PRESENT-128. Both vari-
ants utilize 64-bit security. The designers claim that the hash
functions provide a sufficient trade-off between space and
throughput [45].

H-PRESENT-128 [45] is a hash function with 128-bit se-
curity. Bogdanov et al. designed H-PRESENT-128 using the
Hirose construction [98]. H-PRESENT-128 is a double-block
length (DBL) hash function. The compression function of H-
PRESENT-128 takes two 64-bit chaining variables and one
64-bit message (H1, H2,M) and returns an output pair of
updated chaining variables (H ′

1, H
′
2).

Bogdanov et al. designed C-PRESENT-192 [45] with the
goal of developing a lightweight, collision-resistant cryp-
tographic hash function. C-PRESENT-192 uses the same
compression function as DM-PRESENT-128. The designers
concluded that DM-PRESENT-128, as a building block, does
not yield the expected results.

The designers claim that Lesamnta-LW [41] is a secure,
lightweight hash function with a hash length of 256 bits.
The main design goal is to achieve small hardware/software
implementations. The designers chose the MD construction
and an AES-based design for the building blocks. A 4-branch
generalized Feistel network (GFN) and AES components
(SubBytes and MixColumn) are utilized in the hash func-
tion. The MixColumn operation uses the AES maximum
distance separable (MDS) matrix multiplication defined over

8 VOLUME 4, 2016

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2022.3195572

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

Windarta et al.: Lightweight Cryptographic Hash Functions: Design Trends, Comparative Study , and Future Directions

GF(28). TWISH [57] was designed based on the TWINE-128
[99] block cipher algorithm and uses the DM construction.
TWISH is a single-block length hash function that accepts
a 128-bit message input and returns a 64-bit hash value.
The message input in the DM scheme acts as a key. The
designer tested the security of the TWISH function by using
the cryptographic randomness test proposed by [100].

C. SPONGE CONSTRUCTION
The first lightweight sponge construction-based hash func-
tion was QUARK [47]. This hash function was first proposed
at CHES 2010. The version discussed in this section was
updated in 2012. QUARK has been proposed as a lightweight
hash function. The algorithm was inspired by the stream
cipher Grain [101] and the block cipher KATAN [102].
Two nonlinear feedback shift registers (NFSRs) and a linear
feedback shift register (LFSR) are used for the permutation.

PHOTON was proposed by [50] and uses both sponge and
AES-like constructions. PHOTON is a compact hash function
that uses 1120 gate equivalents (GE) to achieve 64-bit secu-
rity. When compared with similar algorithms, the speed of
this algorithm is claimed to be competitive.

SPONGENT [53], [54] is a family of hash functions de-
signed by Bogdanov et al. and presented at CHES 2011.
SPONGENT was designed as a family of hash functions with
an 88-bits hash value to ensure resistance to preimages, 128
bits, 160 bits, 224 bits, and 256 bits. The authors claim
that the algorithm is resistant to attacks aimed at the hash
function.

GLUON [48] was developed by Berger et al. and presented
at AFRICACRYPT 2012. This algorithm uses the feedback
with carry shift register (FCSR) and was motivated by the
stream cipher algorithms F-FCSR-v3 [103] and X-FCSR-
v2 [104]. The developer proposed three instances: GLUON-
128/8, GLUON-160/16, and GLUON-224/32 for 64-bit, 80-bit
and 112-bit security levels, respectively.

Another algorithm is SPN-Hash [51]. This algorithm uses
another type of sponge construction: the JH construction
[105]. The hash function was designed by Choy et al. The
main purpose of the design is to provide provable security
against differential collision attacks. The S-Box used in the
algorithm is the Advanced Encryption Standard (AES) [106].

The SipHash [49] algorithm has an ARX (addition, rota-
tion & XOR) structure. This algorithm is intended for use in
network traffic authentication applications and protected hash
table lookups. SipHash was inspired by the BLAKE [107]
and Skein [108] hash functions, which were both finalists in
the SHA3 competition.

LHash [74], [75] is an LWCHF that was proposed by Wu
et al. and supports three different message digest sizes: 80,
96, and 128 bits. The LWCHF provides preimage security,
second preimage security between 64 and 120 bits, and
collision security between 40 and 60 bits. LHash requires
approximately 817 and 1028 GEs with serial implementa-
tions and 989 and 1200 GEs with 54 and 72 cycles per
block in a faster implementation based on the T function. In

addition, its energy consumption evaluated according to the
energy per bit is extraordinary. The LHash design uses the
Feistel-PG structure in the internal permutation, which take
advantages of the permutation layer on the nibbles to increase
the diffusion speed. The low-area implementation arises due
to the hardware-friendly S-box and a linear diffusion layer.
The designer evaluated LHash’s resistance to known attacks
and confirmed that this LWCHF provides a good security
margin.

Neeva-hash [76] is a sponge construction-based LWCHF
with a message digest length of 224 bits. This algorithm
uses 32 rounds to generate a hash value. The only nonlinear
function in the Neeva-hash LWCHF utilizes a 4 × 4-bit
PRESENT S-Box. State b has 256 bits, the rate is 32 bits,
and the capacity is 224 bits. The round function uses the ARX
structure.

Mukundan et al. proposed Hash-One [78], aiming at both
simplicity and security. Hash-One uses a sponge construction
and two 80- and 81-bit nonlinear feedback shift registers
(NFSRs) and supports message digests with sizes of 160 bits.
The level of security expected by the designer is 160 bits for
preimage resistance and 80 bits for collision resistance.

Gimli-Hash [56] is a derivative of the Gimli permutation
function that was proposed by Bernstein et al. in 2017 [55].
The authors claim that this permutation function can be
used in various platforms, such as 64-bit Intel/AMD server
CPUs, 64-bit and 32-bit ARM smartphone CPUs, 32-bit
ARM microcontrollers, 8-bit AVR microcontrollers, FPGAs,
ASICs with side-channel protection, and ASICs without side-
channel protection.

sLiSCP-hash [43] was designed by AlTawy et al. from
the University of Waterloo, Canada, in 2017. Simeck-based
permutations for lightweight sponge cryptographic primi-
tives (sLiSCP) are designed for integrated duplex sponge
construction and provide minimal overhead for cryptographic
functions in single-hardware designs. The sLiSCP design
follows the four-subblock Type-2 Generalized Feistel-like
Structure (GFS). The algorithm uses the unkeyed Simeck
algorithm [109], [110] with round reduction as the round
function. The algorithm can be used for two applications:
hashing and authenticated encryption.

In the publication [42], AlTawy et al. reviewed the sLiSCP
design and developed an sLiSCP-light permutation. This
permutation is the building block of sLiSCP-light-hash. The
GFS design was changed to a partial substitution-permutation
network (P-SPN) construction, and the resulting sLiSCP per-
mutation hardware area was approximately 16% smaller than
the previous hardware area. This change also improved the
permutation function’s bit diffusion and algebraic properties.
This improvement reduced the number of steps and achieved
better throughput in the hashing and authentication modes.

Zhang et al. presented LNHash [80], a lightweight hash
function that uses linear and nonlinear cellular automata as
internal permutations. The goal of this hash function is to
achieve high diffusion and confusion. Six types of hash func-
tions with different levels and capacities have been proposed.

VOLUME 4, 2016 9

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2022.3195572

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

Windarta et al.: Lightweight Cryptographic Hash Functions: Design Trends, Comparative Study , and Future Directions

The ACE-H-256 [60] is a hash function developed based
on the ACE permutation that has 320 input and output bits.
This hash function uses the 5-block generalized version of
sLiSCP-light [42]. The ACE permutation uses the SIMECK-
box (SB-64) as a nonlinear layer.

ASCON-HASH [61] is a member of the ASCON family of
cryptographic algorithms proposed in the NIST Lightweight
Cryptography competition. Previously, ASCON was the win-
ner of the Competition for Authenticated Encryption: Secu-
rity, Applicability, and Robustness (CAESAR) [111], which
was organized by the NIST to standardize the Authenticated
Encryption (AE) algorithm.

KNOT-Hash [62], [63] belongs to the hash function fam-
ily proposed in the second round of the LWC NIST com-
petition. The hash function defines three operations used
in each round: AddRoundConstantb, SubColumnb, and
ShiftRowb. These operations are performed in different
states and are defined according to the width b parameter in
the sponge construction, i.e., 256 bits, 384 bits, and 512 bits.
The KNOT permutation is similar to the 64-bit RECTAN-
GLE block cipher [112], [113].

DryGascon-Hash [64] is a family of hash functions de-
signed based on the DrySponge construction and the ASCON
[114] algorithm. The DrySponge construction was developed
based on the duplex sponge construction [115]. The designers
of DryGascon claim that the safety of Gascon permutations
is similar to that of ASCON permutations [64].

The ORANGISH algorithm is a member of the ORANGE
cryptographic primitive family proposed by Mridul Nandi
and Bishwajit Chakraborty [65]. The permutation used in this
algorithm is PHOTON256 [50]. The designer used this permu-
tation mainly because it is the lightest 256-bit permutation in
the literature. The hash function is similar to that of JH [105].
JH was one of the five finalists in the SHA3 competition
organized by NIST [116].

PHOTON-Beetle-Hash uses the PHOTON256 [50] permuta-
tion as an algorithmic building block and Beetle’s sponge
mode [117]. The hash function accepts any message input
M ∈ {0.1}∗ and returns a 256-bit long hash H(M) ∈
{0, 1}256.

The hash function ESCH [68] has two variants: ESCH256
and ESCH384. ESCH256 and ESCH384 accept inputs with
arbitrary bit lengths and return hash values of 256 bits and
384 bits, respectively. The designer chose ESCH256 as the
main proposal for the hash function. This algorithm was
developed based on the SPARKLE permutation [67] family,
with a rate of r and a capacity of c.

Subterranean [118] is a cryptographic primitive that was
originally proposed in 1992 and has been used in hash func-
tions and stream cipher functions. A modification of the Sub-
terranean rotation function was used in the Subterranean2.0-
XOF (extendable output function) algorithm [69], [70]. This
algorithm uses the Subterranean2.0 loop function with an
input of arbitrary bit length and an output of 256 bits.
The designers claim that Subterranean2.0-XOF has 224-bit
security.

XOODYAK [71] is a cryptographic primitive intended
for use in hash functions, pseudorandom bit generators
(PRBGs), authentication, encryption, and authenticated en-
cryption (AE). The permutation is the building block of
XOODYAK-HASH MODE. XOODYAK uses a 384-bit permuta-
tion XOODOO [119], [120]. XOODOO is a family of permuta-
tions inspired by KECCAK-p [23], [91]. Similar to KECCAK-
p, the loop function XOODOO operates on a state with 3
horizontal planes known as a plane. Each plane consists of
four 32-bit lane pieces.

HVH [72] is an LWCHF designed by Huang et al. that
was presented at the Security, Privacy, and Anonymity in
Computation, Communication, and Storage (SpaCCS) 2020
International Workshops in Nanjing, China, 18-20 Decem-
ber 2020. HVH uses a sponge construction based on the
lightweight block cipher VH [121]. VH is a lightweight
block cipher that was proposed by Dai et al. in 2015. VH
has a block size of 64 bits and a key length of 80 bits.
The HVH designers defined five different output message
lengths, 88-bit, 128-bit, 160-bit, 224-bit, and 256-bit, for use
in different application scenarios. HVH follows the structure
of the substitution permutation network (SPN). The designer
claims that the HVH hash function family strikes a delicate
balance between hardware and software implementations and
satisfies hardware usage requirements in extreme, resource-
limited environments.

LNMNT Hash is a sponge-based hash function that was
proposed by Nabeel et al. at the 2021 8th International
Conference on Computer and Communication Engineering
(ICCCE) [82]. LNMNT Hash is based on the new Mersenne
number transform (NMNT). The designer provided a security
analysis in [81]. The designer analyzed the randomness, ob-
fuscation, diffusion, hash value distribution, and differential
attacks. There are four classes of LNMNT hash functions:
LNMNTHash80, LNMNTHash128, LNMNTHash160, and
LNMNTHash224.

D. CELLULAR AUTOMATA

L-CAHASH [77] is an LWCHF-based cellular automaton
with two variants: 128-bit and 256-bit. Designers claim that
linear cellular automata have good chaotic properties and
match the security analyses, statistical analyses, and software
performance metrics of the hash function. Security analyses
include the complexity, preimage and collision resistances,
and avalanche criterion. For the statistical analysis, the au-
thor used the Diehard test [122]. The software performance
analysis compares L-CAHASH with GLUON, U-QUARK, D-
QUARK, S-QUARK, and PHOTON.

LCAHASH1.1 [79] is an extension of L-CAHASH [77]
that uses a hybrid cellular automaton with a rule set of 30, 90.
Based on the cycle per byte (CPB) metric, the software per-
formance of LCHASH1.1 is better than that of L-CAHASH.

VIII. RESULTS AND DISCUSSION

10 VOLUME 4, 2016

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2022.3195572

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

Windarta et al.: Lightweight Cryptographic Hash Functions: Design Trends, Comparative Study , and Future Directions

0
300
600
900

1200
1500
1800
2100
2400
2700
3000
3300
3600
3900
4200
4500
4800
5100
5400
5700
6000
6300
6600
6900
7200
7500
7800
8100
8400

Algorit
hm

Xoodyak hash m
ode

Subterra
nean2,0-XOF

sLi
SCP-lig

ht-h
ash

sLi
SCP-hash

sLi
SCP-lig

ht-h
ash

sLi
SCP-lig

ht-h
ash

sLi
SCP-hash

sLi
SCP-hash

ACE (A
CE-H-256)

HVH (4
 bit d

atapath)

HVH (8
8 bit d

atapath)

HVH (4
 bit d

atapath)

HVH (4
 bit d

atapath)

HVH (1
76 bit d

atapath)

HVH (1
36 bit d

atapath)

HVH (4
 bit d

atapath)

HVH (4
 bit d

atapath)

HVH (2
40 bit d

atapath)

HVH (2
80 bit d

atapath)

Spongent (4
 bits

 datapath)

Spongent (4
 bits

 datapath)

Spongent (8
8 bits

 datapath
)

Spongent (4
 bits

 datapath)

Spongent (1
36 bits

 datap
ath

)

Spongent (4
 bits

 datapath)

sLi
SCP-lig

ht-h
ash

Gluon

Spongent (1
76 bits

 datap
ath

)

sLi
SCP-hash

Lh
ash (se

ria
lize

d-96-bit)

Lh
ash (se

ria
lize

d-96-bit)

Lh
ash (se

ria
lize

d-lo
ng)

Lh
ash (se

ria
lize

d-lo
ng)

Photon (se
ria

lize
d)

Lh
ash (b

ased on fu
nctio

n T-96-bit)

Lh
ash (b

ased on fu
nctio

n T-96-bit)

Lh
ash (b

ased on fu
nctio

n T-lo
ng)

Lh
ash (b

ased on fu
nctio

n T-lo
ng)

Hash-O
ne (se

ria
l e

stim
ati

on)

Lh
ash (se

ria
lize

d-lo
ng)

Lh
ash (se

ria
lize

d-lo
ng)

Lh
ash (se

ria
lize

d-96-bit)

Lh
ash (se

ria
lize

d-96-bit)

Photon (se
ria

lize
d)

Photon (p
arallelize

d)

Lh
ash (b

ased on fu
nctio

n T)

Lh
ash (b

ased on fu
nctio

n T-lo
ng)

Lh
ash (b

ased on fu
nctio

n T)

Lh
ash (b

ased on fu
nctio

n T-96-bit)

Gate Equivalent (GE)

40 nm

45 nm

65 nm

90 nm

130 nm

180 nm

FIGURE 8. Best hardware performance in terms of the GE.

0
50

100
150
200
250
300
350
400
450
500
550
600
650
700
750
800
850
900
950

1000
1050
1100
1150
1200
1250
1300

A
lg

or
it

hm

Xo
o

dy
ak

 h
as

h
m

od
e

sL
iS

CP
-l

ig
ht

-h
as

h

sL
iS

CP
-l

ig
ht

-h
as

h

sL
iS

CP
-h

as
h

sL
iS

CP
-l

ig
ht

-h
as

h

sL
iS

CP
-h

as
h

sL
iS

CP
-h

as
h

Le
sa

m
nt

a-
LW

 (
@

30
 M

H
z)

H
V

H
 (2

80
 b

it
da

ta
pa

th
)

Le
sa

m
nt

a-
LW

H
V

H
 (4

 b
it

da
ta

pa
th

)

H
V

H
 (1

76
 b

it
da

ta
pa

th
)

H
V

H
 (4

 b
it

da
ta

pa
th

)

H
V

H
 (2

40
 b

it
da

ta
pa

th
)

H
V

H
 (8

8
bi

t d
at

ap
at

h
)

H
V

H
 (1

36
 b

it
da

ta
pa

th
)

H
V

H
 (4

 b
it

da
ta

pa
th

)

KN
O

T-
H

as
h

KN
O

T-
H

as
h

KN
O

T-
H

as
h

KN
O

T-
H

as
h

Sp
on

ge
nt

 (8
8

bi
ts

 d
at

ap
at

h)

sL
iS

CP
-l

ig
ht

-h
as

h

G
lu

on

sL
iS

CP
-l

ig
ht

-h
as

h

Sp
on

ge
nt

 (4
 b

it
s

da
ta

pa
th

)

sL
iS

CP
-l

ig
ht

-h
as

h

A
RM

AD
IL

LO
2-

A
 (N

=4
)

A
RM

AD
IL

LO
2-

B
(N

=4
)

A
RM

AD
IL

LO
2-

C
(N

=4
)

A
RM

AD
IL

LO
2-

D
 (N

=4
)

A
RM

AD
IL

LO
2-

E
(N

=4
)

dm
-p

re
se

nt
 (1

28
 b

it
 d

at
ap

at
h)

A
RM

AD
IL

LO
2-

A
 (N

=1
)

A
RM

AD
IL

LO
2-

B
(N

=1
)

A
RM

AD
IL

LO
2-

C
(N

=1
)

A
RM

AD
IL

LO
2-

D
 (N

=1
)

A
RM

AD
IL

LO
2-

E
(N

=1
)

dm
-p

re
se

nt
 (6

4
bi

t
da

ta
pa

th
)

h-
pr

es
en

t (
12

8
bi

t d
at

ap
at

h)

SP
N

-H
as

h
 (e

st
im

at
e)

c-
pr

es
en

t
(1

92
 b

it
 d

at
ap

at
h)

SP
N

-H
as

h
 (e

st
im

at
e)

S-
Q

ua
rk

x8

SP
N

-H
as

h

SP
N

-H
as

h

Lh
as

h
(b

as
ed

 o
n

 fu
nc

tio
n

 T
-l

on
g)

Throughput

40 nm

45 nm

65 nm

90 nm

130 nm

180 nm

FIGURE 9. Best hardware performance in terms of the throughput.

0
10
20
30
40
50
60
70
80
90

100
110
120
130
140
150
160
170
180
190
200
210
220
230
240
250
260

Al
go

rit
hm

AC
E

(A
CE

-H
-2

56
)

sL
iS

CP
-li

gh
t-

ha
sh

sL
iS

CP
-h

as
h

sL
iS

CP
-li

gh
t-

ha
sh

sL
iS

CP
-li

gh
t-

ha
sh

sL
iS

CP
-h

as
h

sL
iS

CP
-h

as
h

AC
E

(A
CE

-H
-2

56
)

AC
E

(A
CE

-H
-2

56
)

Sp
on

ge
nt

 (4
 b

its
 d

at
ap

at
h)

Sp
on

ge
nt

 (4
 b

its
 d

at
ap

at
h)

Sp
on

ge
nt

 (8
8

bi
ts

 d
at

ap
at

h)

Sp
on

ge
nt

 (4
 b

its
 d

at
ap

at
h)

Sp
on

ge
nt

 (1
36

 b
its

 d
at

ap
at

h)

Sp
on

ge
nt

 (4
 b

its
 d

at
ap

at
h)

Sp
on

ge
nt

 (1
76

 b
its

 d
at

ap
at

h)

sL
iS

CP
-li

gh
t-

ha
sh

Sp
on

ge
nt

 (2
72

 b
its

 d
at

ap
at

h)

sL
iS

CP
-li

gh
t-

ha
sh

sL
iS

CP
-li

gh
t-

ha
sh

sL
iS

CP
-h

as
h

sL
iS

CP
-h

as
h

sL
iS

CP
-h

as
h

KN
O

T-
Ha

sh

KN
O

T-
Ha

sh

KN
O

T-
Ha

sh

KN
O

T-
Ha

sh

dm
-p

re
se

nt
 (4

4
bi

t d
at

ap
at

h)

U-
Qu

ar
k x

 8

dm
-p

re
se

nt
 (4

 b
it

da
ta

pa
th

)

D-
Q

ua
rk

Ph
ot

on
 (s

er
ial

ize
d)

U-
Qu

ar
k

S-
Q

ua
rk

D-
Q

ua
rk

 x
8

Ph
ot

on
 (p

ar
all

el
ize

d)

dm
-p

re
se

nt
 (6

4
bi

t d
at

ap
at

h)

Power

40 nm

45 nm

65 nm

90 nm

130 nm

180 nm

FIGURE 10. Best hardware performance in terms of the power.

0
100
200
300
400
500
600
700
800
900

1000
1100
1200
1300
1400

Al
go

rit
hm

sL
iS

CP
-li

gh
t-

ha
sh

sL
iS

CP
-li

gh
t-

ha
sh

sL
iS

CP
-li

gh
t-

ha
sh

sL
iS

CP
-h

as
h

sL
iS

CP
-h

as
h

sL
iS

CP
-h

as
h

Gl
uo

n
Gl

uo
n

Gl
uo

n
sL

iS
CP

-li
gh

t-
ha

sh
sL

iS
CP

-li
gh

t-
ha

sh
sL

iS
CP

-li
gh

t-
ha

sh
sL

iS
CP

-h
as

h
sL

iS
CP

-h
as

h
sL

iS
CP

-h
as

h
AR

M
AD

IL
LO

2-
A

(N
=1

)
AR

M
AD

IL
LO

2-
B

(N
=1

)
AR

M
AD

IL
LO

2-
C

(N
=1

)
AR

M
AD

IL
LO

2-
D

(N
=1

)
AR

M
AD

IL
LO

2-
E

(N
=1

)
AR

M
AD

IL
LO

2-
A

(N
=4

)
SP

N-
Ha

sh
 (e

st
im

at
e)

SP
N-

Ha
sh

 (e
st

im
at

e)
AR

M
AD

IL
LO

2-
B

(N
=4

)
AR

M
AD

IL
LO

2-
C

(N
=4

)
AR

M
AD

IL
LO

2-
D

(N
=4

)
AR

M
AD

IL
LO

2-
E

(N
=4

)
SP

N-
Ha

sh
SP

N-
Ha

sh

Latency

65 nm

130 nm

180 nm

FIGURE 11. Best hardware performance in terms of the latency.

A. LWCHF CRYPTOGRAPHIC PROPERTIES
When a designer proposes an LWCHF, in addition to the
implementation performance, the security properties are crit-
ical. The most commonly used term is cryptanalysis, or,
in some literature, cryptanalytic attacks [33], [123]–[127].
Cryptanalytic attacks are attacks that determine the weak
points of cryptographic primitives. Attacks on cryptographic
hash functions are similar to attacks on other cryptographic
primitives. In particular, if the LWCHF building blocks use
existing cryptographic primitives, such as block ciphers or
stream ciphers, automatic generic attacks on cryptographic
primitives may also apply to LWCHFs.

Two important components of cryptanalysis are mathe-
matical cryptanalysis and implementation attacks. Mathe-
matical cryptanalysis involves attacks on the mathematical
structure of cryptographic primitives. Implementation attacks
exploit side-channel information, such as the execution time,
RAM/ROM, power, or energy consumption, to analyze cryp-
tographic primitives. These types of attacks are also called
side-channel attacks. One example of a side-channel attack
is differential fault analysis (DFA), which is commonly used
with cryptographic hash functions [128]–[131]. The principle
of the attack is to push errors or faults with unforeseen envi-
ronmental conditions into the cryptographic implementation
to reveal its internal state. We identified several mathemati-
cal cryptanalysis techniques, including differential cryptanal-
ysis, linear cryptanalysis, integral cryptanalysis, algebraic
cryptanalysis, rebound attacks, zero-sum distinguishers, slide
attacks, rotational distinguishers, cube attacks, meets/misses
in the middle distinguisher, invariant subspace distinguishers,
boomerang attacks, yoyo games, truncated differentials, and
impossible differentials.

Differential cryptanalysis and its derivatives are the most
commonly considered types of cryptanalysis. Biham and
Shamir [125] first proposed this attack in Crypto 1990 to
attack the Data Encryption Standard (DES). This technique
was also described in detail in a book published by the same
researcher [123]. Differential cryptanalysis is a common
technique for analyzing symmetric cryptographic primitives,
particularly block ciphers and hash functions.

At EUROCRYPT 1993, Matsui [132] introduced theoret-
ical attacks using linear cryptanalysis approaches to attack
DES algorithms. Matsui performed practical attacks on the
same algorithm [133]. The basic idea of this attack is to ap-
proximate the algorithm’s operation with a linear expression.
Integral cryptanalysis involves multiset attacks. Multiset at-
tacks are a generic attack class that includes several attacks
that appear in the literature under three different names:
square attacks [134], saturation attacks [135], and integral
cryptanalysis [136]. This type of attack was first discovered
by Daemen, Knudsen, and Rijmen while analyzing the square
block cipher [134]. A similar attack known as a saturation
attack was used by Lucks [135] against the block cipher Rijn-
dael. Biryukov and Shamir showed attacks of the same type
on three arbitrary SPN rounds. Knudsen-Wagner’s integral
attack [136] on five rounds of MISTY [137] is in the same

VOLUME 4, 2016 11

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2022.3195572

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

Windarta et al.: Lightweight Cryptographic Hash Functions: Design Trends, Comparative Study , and Future Directions

0

150

300

450

600

750

900

1050

1200

1350

1500

1650

1800

1950

2100

2250

2400

2550

2700

2850

3000

X
O

O
D

YA
K

 H
A

SH
 M

O
D

E

SU
B

TE
R

R
A

N
EA

N
2

,0
-X

O
F

SL
IS

C
P

-L
IG

H
T-

H
A

SH

SL
IS

C
P

-H
A

SH

SL
IS

C
P

-L
IG

H
T-

H
A

SH

SL
IS

C
P

-L
IG

H
T-

H
A

SH

SL
IS

C
P

-H
A

SH

SL
IS

C
P

-H
A

SH

A
C

E
(A

C
E-

H
-2

5
6

)

H
V

H
 (

4
 B

IT
 D

A
TA

P
A

TH
)

H
V

H
 (

8
8

 B
IT

 D
A

TA
P

A
TH

)

H
V

H
 (

4
 B

IT
 D

A
TA

P
A

TH
)

H
V

H
 (

4
 B

IT
 D

A
TA

P
A

TH
)

H
V

H
 (

1
7

6
 B

IT
 D

A
TA

P
A

TH
)

H
V

H
 (

1
3

6
 B

IT
 D

A
TA

P
A

TH
)

H
V

H
 (

4
 B

IT
 D

A
TA

P
A

TH
)

H
V

H
 (

4
 B

IT
 D

A
TA

P
A

TH
)

H
V

H
 (

2
4

0
 B

IT
 D

A
TA

P
A

TH
)

H
V

H
 (

2
8

0
 B

IT
 D

A
TA

P
A

TH
)

SP
O

N
G

EN
T

(4
 B

IT
S

D
A

TA
P

A
TH

)

SP
O

N
G

EN
T

(4
 B

IT
S

D
A

TA
P

A
TH

)

SP
O

N
G

EN
T

(8
8

 B
IT

S
D

A
TA

P
A

TH
)

SP
O

N
G

EN
T

(4
 B

IT
S

D
A

TA
P

A
TH

)

SP
O

N
G

EN
T

(1
3

6
 B

IT
S

D
A

TA
P

A
TH

)

SP
O

N
G

EN
T

(4
 B

IT
S

D
A

TA
P

A
TH

)

SL
IS

C
P

-L
IG

H
T-

H
A

SH

G
LU

O
N

SP
O

N
G

EN
T

(1
7

6
 B

IT
S

D
A

TA
P

A
TH

)

SL
IS

C
P

-H
A

SH

LH
A

SH
 (

SE
R

IA
LI

ZE
D

-L
O

N
G

)

LH
A

SH
 (

SE
R

IA
LI

ZE
D

-L
O

N
G

)

LH
A

SH
 (

SE
R

IA
LI

ZE
D

-9
6

-B
IT

)

LH
A

SH
 (

SE
R

IA
LI

ZE
D

-9
6

-B
IT

)

P
H

O
TO

N
 (

SE
R

IA
LI

ZE
D

)

LH
A

SH
 (

B
A

SE
D

 O
N

 F
U

N
C

TI
O

N
 T

-L
O

N
G

)

LH
A

SH
 (

B
A

SE
D

 O
N

 F
U

N
C

TI
O

N
 T

-L
O

N
G

)

LH
A

SH
 (

B
A

SE
D

 O
N

 F
U

N
C

TI
O

N
 T

-9
6

-B
IT

)

LH
A

SH
 (

B
A

SE
D

 O
N

 F
U

N
C

TI
O

N
 T

-9
6

-B
IT

)

H
A

SH
-O

N
E

(S
ER

IA
L

ES
TI

M
A

TI
O

N
)

LH
A

SH
 (

SE
R

IA
LI

ZE
D

-9
6

-B
IT

)

LH
A

SH
 (

SE
R

IA
LI

ZE
D

-9
6

-B
IT

)

LH
A

SH
 (

SE
R

IA
LI

ZE
D

-L
O

N
G

)

LH
A

SH
 (

SE
R

IA
LI

ZE
D

-L
O

N
G

)

P
H

O
TO

N
 (

SE
R

IA
LI

ZE
D

)

P
H

O
TO

N
 (

P
A

R
A

LL
EL

IZ
ED

)

LH
A

SH
 (

B
A

SE
D

 O
N

 F
U

N
C

TI
O

N
 T

-9
6

-B
IT

)

LH
A

SH
 (

B
A

SE
D

 O
N

 F
U

N
C

TI
O

N
 T

)

LH
A

SH
 (

B
A

SE
D

 O
N

 F
U

N
C

TI
O

N
 T

-L
O

N
G

)

LH
A

SH
 (

B
A

SE
D

 O
N

 F
U

N
C

TI
O

N
 T

)

Best all metrics

Hardware area (GE) Throughput (Kb/s @100 kHz) Power (μW) or Energy (μJ) Latency (cycles/block or cycles/byte)

FIGURE 12. Best overall hardware performance for each type of technology.

category. Since many hash function constructs use SPNs, this
attack deserves careful consideration.

The main idea of algebraic cryptanalysis is to express
a cryptographic hash function with a nonlinear equation
involving the message input and hash value output. The
nonlinear equations are in the form of polynomial equations.
One advantage of algebraic cryptanalysis is its widespread
application, as a set of polynomial equations can be used to
describe any cryptographic primitive.

Table 4 provides a detailed comparison of the performance
of the LWCHF algorithm from the perspective of various
cryptographic properties. We define the rate as the size of
the message block processed during each round and denote
the preimage, second preimage, and collision resistance as
Pre, 2nd Pre, and Coll. Table 4 shows that almost all
the identified LWCHF algorithms were evaluated by crypt-
analysis. Table 4 summarizes a third-party cryptanalysis.
Although this cryptanalysis cannot be used as a benchmark,
the algorithm that was affected most by the attacks can be
classified as weak and need special attention when imple-
mented. Furthermore, it is necessary to determine whether
the attacks occur in full or reduced rounds.

A lightweight hash function for a particular application
must consider the cryptographic properties. For example,
NIST [39] requires that the hash value length of the current
usage be 256 bits, and a cryptanalytic attack requires at least
2112 computations. Therefore, the user should not use hash
functions with hash values of less than 256 bits for appli-
cations requiring high security levels. Such hash functions
include ARMADILLO and ARMADILLO2 (80, 128, 160,
and 192 bits), the Al-Odat et al. hash function (160), the
El Hanouti hash function, DM-PRESENT, H-PRESENT, C-
RESENT, TWISH, Quark (136, 176), SPN-Hash, and Hash-
One. Thus, PHOTON, SPONGENT, and Lesamnta-LW were

778 1000 1000 1000 1000

2982

13808

19218

GIM
LI-

HASH
 (S

MALL)

KNOT-H
ASH

KNOT-H
ASH

KNOT-H
ASH

KNOT-H
ASH

PHOTO
N-BEET

LE-
HASH

ASC
ON-H

ASH

GIM
LI-H

ASH
 (F

AST)

ROM (byte)

FIGURE 13. Best software performance in terms of ROM.

40 40 40 40 44 45 50 54 248 330 330 559 559 680 1312 78000

KNOT-H
ASH

KNOT-H
ASH

KNOT-H
ASH

KNOT-H
ASH

GIM
LI-

HASH
 (S

MALL)

GIM
LI-

HASH
 (F

AST)

LES
AMNTA

-LW

PHOTO
N-B

EET
LE-

HASH

SU
BTER

RANEA
N2,0-X

OF (
MEM

ORY C
OMPACT)

ACE (
ACE-H

-256) (1
6 BIT)

ACE (
ACE-H

-256) (3
2 BIT)

ACE (
ACE-H

-256) (1
6 BIT)

ACE (
ACE-H

-256) (3
2 BIT)

SU
BTER

RANEA
N2,0-XOF (

BIT R
EFE

REN
CE)

ASC
ON-H

ASH

AL-O
DAT E

T A
L, L

WCHF

RAM (byte)

FIGURE 14. Best software performance in terms of RAM.

selected as lightweight hash function standards in ISO-IEC
29192-5 (2016) [138]. PHOTON and SPONGENT represent
algorithms optimized for hardware, while Lesamnta-LW rep-
resents an algorithm optimized for software.

12 VOLUME 4, 2016

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2022.3195572

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

Windarta et al.: Lightweight Cryptographic Hash Functions: Design Trends, Comparative Study , and Future Directions

Algorithm
Energy (μJ/bit)

atau nJ

ACE (ACE-H-256) (32 bit) 1390
ACE (ACE-H-256) (16 bit) 3340
ACE (ACE-H-256) (32 bit) 5218
ACE (ACE-H-256) (16 bit) 12550

*: estimate
$^\prime$: long message
%

1390

3340

5218

12550

0
500

1000
1500
2000
2500
3000
3500
4000
4500
5000
5500
6000
6500
7000
7500
8000
8500
9000
9500

10000
10500
11000
11500
12000
12500

ACE (ACE-H-256) (32 bit) ACE (ACE-H-256) (16 bit) ACE (ACE-H-256) (32 bit) ACE (ACE-H-256) (16 bit)

Energy

FIGURE 15. Best software performance in terms of the energy.

63,87

25,56

11,91

4,96

ACE (ACE-H-256) (32 BIT) ACE (ACE-H-256) (16 BIT) ACE (ACE-H-256) (32 BIT) ACE (ACE-H-256) (16 BIT)

Throughput @4 MHz (Kbps)

FIGURE 16. Best software performance in terms of the throughput.

B. PERFORMANCE COMPARISON
In addition to studies carried out by the designers, sev-
eral studies have attempted to compare the performance of
LWCHF algorithms [139]–[142]. On the one hand, these
efforts have provided essential information about the perfor-
mance of LWCHFs, and their shortcomings are significant to
note. However, the results may not provide a complete picture
of the algorithm’s potential for a given metric. In addition, the
implementation assumptions or goals of various LWCHFs
differ, and some proposals have more varied implementations
than other proposals. Thus, the results do not indicate a
ranking; rather, they serve as a general recommendation.

1,44 1,96 34 34 69,08 79,9 95 95 115,97 116 116 139 139 139 139 156 156 156 156 157 157 170,7 227 227 231,29244,01 312 312 324 374 406,30 578 726 995 1611 1951
2844 3540

4339 4708 4939

6869 7023
8523 8523

1025110251

12109,012109

1731917319

51180
52042

52742

55260

66434

SP
N-H

ASH
 (E

STI
MATE)

SP
N-H

ASH

GLU
ON

GLU
ON

KNOT-H
ASH

XOODYA
K HASH

 M
ODE (

ARM CORTEX
-M

3)

PHOTO
N (S

ER
IALIZ

ED
)

PHOTO
N (P

ARALLE
LIZ

ED
)

KNOT-H
ASH

PHOTO
N (S

ER
IALIZ

ED
)

PHOTO
N (P

ARALLE
LIZ

ED
)

SP
N-H

ASH

SP
N-H

ASH
 (E

STI
MATE)

SIP
HASH

 (C
OMPACT)

SIP
HASH

 (H
IGH SP

EED
)

PHOTO
N (S

ER
IALIZ

ED
)

PHOTO
N (P

ARALLE
LIZ

ED
)

LH
ASH

 (S
ER

IALIZ
ED

)

LH
ASH

 (B
ASED

 ON FU
NCTIO

N T)

PHOTO
N (S

ER
IALIZ

ED
)

PHOTO
N (P

ARALLE
LIZ

ED
)

XOODYA
K HASH

 M
ODE (

ARM CORTEX
-M

0)

PHOTO
N (S

ER
IALIZ

ED
)

PHOTO
N (P

ARALLE
LIZ

ED
)

KNOT-H
ASH

KNOT-H
ASH

LH
ASH

 (S
ER

IALIZ
ED

)

LH
ASH

 (B
ASED

 ON FU
NCTIO

N T)

L-C
AHASH

L-C
AHASH

PHOTO
N-BEET

LE-
HASH

ESC
H

GIM
LI-

HASH
 (F

AST)

LC
AHASH

1,1

GIM
LI-

HASH
 (S

MALL)

GLU
ON

LC
AHASH

1,2

AL-O
DAT E

T A
L, L

WCHF
HVH

HVH
HVH

HVH
HVH

SP
ONGEN

T (
4 BITS

 DATA
PATH

)

SP
ONGEN

T (
272 BITS

 DATA
PATH

)

LN
HASH

LN
HASH

LN
HASH

LN
HASH

SP
ONGEN

T (
4 BITS

 DATA
PATH

)

SP
ONGEN

T (
176 BITS

 DATA
PATH

)

LN
MNT H

ASH

LN
MNT H

ASH

LN
MNT H

ASH

LN
MNT H

ASH

LES
AMNTA

-LW

Latency (cycles/block or cycle/byte)

FIGURE 17. Best software performance in terms of the latency.

Due to the differences in the metrics that designers use for
various hardware and software implementations, as well as
differences in the devices themselves, fair comparisons are
almost impossible. Table 5 presents a comparison of different
hardware and software implementations. We explored 135
hardware implementations of LWCHFs with 40 nm, 45 nm,
65 nm, 90 nm, 130 nm, and 180 nm technologies. Most
hardware implementations use 180 nm, 130 nm, 90 nm,
65 nm, 45 nm, and 40 nm technology. Table 5 shows that
the performance metrics for many software implementations
are not available. This condition occurs because there are
differences in the designer’s metrics.

1) Hardware
Figs. 8, 9, 10, and 11 illustrate the hardware implementation
performance according to each metric. We summarize the
hardware implementations for each type of technology in
terms of the hardware area (GE), throughput, power, and
latency. The performance of 40 nm technology is marked in
orange, 45 nm technology is marked in gray, 90 nm technol-
ogy is marked in light blue, 130 nm technology is marked in
green, and 180 nm technology is marked in dark blue. All al-
gorithms that exceed the lower limit of 3000 GE are not rated
as efficient, including Xoodyak Hash mode, ACE-H-256,
SipHash, Lesamnta-LW, KNOT-Hash, GLUON, SPN-Hash,
and C-PRESENT. The highest throughputs were generated
by Xoodyak hash mode, Lesamnta-LW, KNOT-Hash, and
ARMADILLO2-A. The SPONGENT, PHOTON, and LHash
algorithms had the lowest throughput. The KNOT-Hash fam-
ily of hash functions and the ARMADILLO family of hash
functions consume the most power, resulting in low hardware
efficiency. This condition is correlated with the number of
GEs and the throughput of the two algorithms. The ACE-
H-256 algorithm uses the lowest power of less than 1 µW .
SPONGENT-80 (with 4- and 8-bit datapaths) and SPONGENT-
128 (4-bit datapath) algorithms also use relatively low power,
in this case, less than 2.5 µW .

SPONGENT-80 with a 4-bit datapath requires the smallest
hardware area of 738 GE. The number of GEs is 79 GE,
which is less than the number of GEs in the LHash-80
implementation in serialized and long message modes.

The lowest latency was generated by Neeva-Hash,
ARMADILLO2-A-80, GLUON-160, and GLUON-224, while
the highest latency was generated by SPN-Hash-256, SPN-
Hash-128, ARMADILLO2-E-256, and ARMADILLO2-D-
160.

Fig. 12 summarizes the best hardware performance based
on the technology used. Two hash function algorithms oc-
cupy the first and second positions, namely, the sLiSCP-light-
hash-160 and sLiSCP-hash-160 algorithms. Both algorithms
obtain good ratings for all metrics and are included in the
charts showing the best metrics. Serial implementations of
several algorithms, such as Photon, LHash, Hash-One, and
SPONGENT, were proven to use small hardware areas be-
tween 800 GE and 1200 GE. In addition to serial implemen-
tations, designers used the bit-slice technique to reduce the

VOLUME 4, 2016 13

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2022.3195572

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

Windarta et al.: Lightweight Cryptographic Hash Functions: Design Trends, Comparative Study , and Future Directions

0

10000

20000

30000

40000

50000

60000

70000

80000

LN
Ha

sh

LN
Ha

sh

D
ry

GA
SC

O
N-

H
as

h

O
RA

N
G

IS
H

SP
N

-H
as

h
(e

st
im

at
e)

SP
N

-H
as

h

G
lu

on

G
lu

on

Xo
od

ya
k

ha
sh

 m
od

e
(A

RM
 C

or
te

x-
M

3)

Ph
ot

on
 (s

er
ia

liz
ed

)

Ph
ot

on
 (p

ar
al

le
liz

ed
)

Ph
ot

on
 (s

er
ia

liz
ed

)

Ph
ot

on
 (p

ar
al

le
liz

ed
)

SP
N

-H
as

h

SP
N

-H
as

h
(e

st
im

at
e)

Si
pH

as
h

(c
om

pa
ct

)

Si
pH

as
h

(h
ig

h
sp

ee
d)

Ph
ot

on
 (s

er
ia

liz
ed

)

Ph
ot

on
 (p

ar
al

le
liz

ed
)

Lh
as

h
(s

er
ia

liz
ed

)

Lh
as

h
(b

as
ed

 o
n

fu
nc

tio
n

T)

Ph
ot

on
 (s

er
ia

liz
ed

)

Ph
ot

on
 (p

ar
al

le
liz

ed
)

Xo
od

ya
k

ha
sh

 m
od

e
(A

RM
 C

or
te

x-
M

0)

Ph
ot

on
 (s

er
ia

liz
ed

)

Ph
ot

on
 (p

ar
al

le
liz

ed
)

Lh
as

h
(s

er
ia

liz
ed

)

Lh
as

h
(b

as
ed

 o
n

fu
nc

tio
n

T)

L-
CA

HA
SH

L-
CA

HA
SH

Es
ch

LC
AH

A
SH

1,
1

G
lu

on

LC
AH

A
SH

1,
2

H
VH

H
VH

H
VH

H
VH

H
VH

Sp
on

ge
nt

 (4
 b

its
 d

at
ap

at
h)

Sp
on

ge
nt

 (2
72

 b
its

 d
at

ap
at

h)

LN
Ha

sh

LN
Ha

sh

LN
Ha

sh

LN
Ha

sh

Sp
on

ge
nt

 (4
 b

its
 d

at
ap

at
h)

Sp
on

ge
nt

 (1
76

 b
its

 d
at

ap
at

h)

LN
M

N
T

Ha
sh

LN
M

N
T

Ha
sh

LN
M

N
T

Ha
sh

LN
M

N
T

Ha
sh

Le
sa

m
nt

a-
LW

Su
bt

er
ra

ne
an

2,
0-

XO
F

(m
em

or
y

co
m

pa
ct

)

AC
E

(A
CE

-H
-2

56
) (

32
 b

it)

AC
E

(A
CE

-H
-2

56
) (

16
 b

it)

AC
E

(A
CE

-H
-2

56
) (

32
 b

it)

AC
E

(A
CE

-H
-2

56
) (

16
 b

it)

Su
bt

er
ra

ne
an

2,
0-

XO
F

(b
it

re
fe

re
nc

e)

Al
-O

da
t e

t a
l,

LW
CH

F

G
im

li-
Ha

sh
 (s

m
al

l)

KN
O

T-
Ha

sh

KN
O

T-
Ha

sh

KN
O

T-
Ha

sh

KN
O

T-
Ha

sh

Ph
ot

on
-B

ee
tle

-H
as

h

As
co

n-
ha

sh

G
im

li-
Ha

sh
 (f

as
t)

All Metrics

ROM (byte) RAM (byte) Energy (μJ/bit) atau nJ Throughput @4 MHz (Kbps) Latency (cycles/block or cycle/byte)

FIGURE 18. Best overall software performance.

hardware area and design complexity. Some algorithms that
use this technique are ACE-H-256, ASCON-HASH, KNOT,
PHOTON-Beetle-Hash, SipHash, and sLiSCP-light-hash.

2) Software

Because the software implementations of the LWCHF algo-
rithm are more varied than the hardware implementations,
many algorithms have empty metric values. This condition
shows that algorithm designers use different hardware, soft-
ware, and metrics. Figs. 13, 14, 15, 16 and 17 illustrate
the software implementation performance based on various
metrics.

The smallest ROM metrics are achieved by Gimli-hash
(small) with 778 bytes, KNOT-Hash, PHOTON-BEETLE-
HASH, ASCON-HASH, and Gimli-Hash (fast). KNOT-Hash,
Gimli-Hash, Lesamnta-LW, and PHOTON-Beetle-Hash have
the smallest RAM size (less than 100 bytes). ACE-H-256
has the lowest energy consumption and highest throughput.
The lowest latencies were obtained by SPN-Hash, GLUON,
KNOT-Hash, Xoodyak-hash mode (on ARM Cortex-M3),
PHOTON, SipHash, and LHash. In contrast, Lesamnta-LW
produced an enormous latency.

Fig. 18 illustrates the best software implementations of all
metrics. The top three software implementation results are
Gimli-Hash (small), ACE-H-256 (32-bit), and KNOT-Hash.

C. RESEARCH CHALLENGES AND FUTURE
DIRECTIONS

Designing lightweight cryptography primitives is a chal-
lenging task. The designer must balance the security, per-
formance, and cost when implementing the algorithms in
either hardware or software. We identified several issues and
challenges that should be considered in future research.

LWCHF design and implementation. The cryptographic
implementation investigated in this study demonstrates the
overall performance of various LWCHF designs. However,
the results of this study are distorted due to the dependence
on tools and technology, resulting in significant deviations
between studies. Therefore, it is crucial to develop another
solution, such as proposing a novel hash function to compare
with the existing hash function. This new paradigm may
increase the quality and quantity of research on lightweight
cryptographic hash functions. In particular, lightweight per-
mutation designs with reasonable diffusion rates and resis-
tance to differential, linear cryptanalysis, or other attacks
were researched. This research opportunity was possible due
to the various permutations designed for multiple cryptogra-
phy primitives. These permutations can be used for various
cryptography primitives, such as AEAD, hash functions,
PRNG, and KDF. Some permutations include ACE [60],
sLiSCP [43], sLiSCP-light [42], XOODOO [119], Sparkle
[67], [68], Alzette [143], and Subterranean2.0 [69], [70].
Substitution box design. An alternative s-box with a smaller
hardware implementation area and similar cryptographic
properties to the proposed s-box, namely, the Simeck s-box
used in permutations of the sLiSCP, sLiSCP-light, ACE-H-
256, sLiSCP-hash, and sLiSCP-light-hash algorithms, should
be developed.
Optimal round function design. An optimal round function
based on a permutation substitution network (SPN), Feistel
network, addition, rotation, and XOR (ARX) structure, or
another approach should be designed.
Security metrics standardization. The metrics for evaluating
the security performance and hardware and software imple-
mentations vary widely. As mentioned in the previous discus-
sion, because of this condition, fair comparisons of different
algorithm implementations are almost impossible. Therefore,

14 VOLUME 4, 2016

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2022.3195572

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

Windarta et al.: Lightweight Cryptographic Hash Functions: Design Trends, Comparative Study , and Future Directions

standard hardware and software security and performance
metrics should be developed to analyze LWCHF security and
implementations on devices with limited resources. Several
attempts to develop such metrics have been made, including
by NIST (USA), Cryptrec (Japan), and ECRYPT (Europe).
Novel cryptanalytic attacks. New cryptanalytic approaches
for analyzing the proposed permutations or hash function
algorithms, particularly differential cryptanalysis and linear
cryptanalysis and attacks on secure hash function properties,
including the preimage, second preimage, and collision resis-
tance, should be researched.

IX. CONCLUSION
The lightweight cryptographic hash function has played a
crucial role in the development of the IoT. This paper presents
recent developments and state-of-the-art implementations
of lightweight cryptographic hash functions. The hardware
and software implementations of LWCHFs were examined
based on nine metrics. In addition, the security, cost, and
performance properties of different proposals were consid-
ered. Furthermore, a comparative analysis was presented,
with the information presented in corresponding tables. A
large number of studies have been conducted as the field
has developed, with brand new algorithms and cryptanalytic
attacks proposed in published works. We hope that the review
presented in this study will contribute to the design of a
robust and secure LWCHF.

VOLUME 4, 2016 15

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2022.3195572

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

Windarta et al.: Lightweight Cryptographic Hash Functions: Design Trends, Comparative Study , and Future Directions

TABLE 4. Cryptographic properties and known cryptanalysis of the lightweight cryptographic hash function ‡.

Algorithm Hash
value

Rate Internal
state

Construction Pre 2nd
Pre

Coll Cryptanalysis

Merkle-Damgård Construction:
ARMADILLO &
ARMADILLO2 [44]

80 48 256 data-dependent
bit
transpositions
[144]

280 280 240 local linearization (practical, found collision in only a
few seconds on a PC) [145]; meet-in-the-middle
attack [146]

128 64 384 2128 2128 264

160 80 480 2160 2160 280

192 96 576 2192 2192 296

256 128 768 2256 2256 2128

Al-Odat et al. LWCHF [86] 160 512 512 JH mode 2160 2160 280 None
224 512 512 2224 2224 2112

256 512 512 2256 2256 2128

384 512 512 2384 2384 2192

512 512 512 2512 2512 2256

El Hanouti et al. LWCHF [73] 128 1024 1024 Feistel-like
structure; skew
tent map

2128 2128 264 none

Block Cipher-Based Construction:
DM-PRESENT [45], [46] 64 80 64 Davies-Meyer 264 None None Multidifferential: 18-round distinguisher, 12-round

collisions [147]; truncated differential [148]64 128 64

H-PRESENT [45], [46] 128 128/8 128 Hirose
construction
[98]

2128 None None Truncated differential [148]

C-PRESENT [45], [46] 192 64 192 2192 None None None
Lesamnta-LW [41] 256 128 256 LW1 block ci-

pher
2256 2256 2120 31 of 32 rounds improved integral analysis [149];

integral cryptanalysis [150]
TWISH [57] 128 128 128 Davies-Meyer 2128 2128 264 None
Sponge Construction:
QUARK [47] 136 8 136 P-Sponge 2128 264 264 Improved conditional differential cryptanalysis [151];

differential cryptanalysis distinguisher for all variants
[152]

176 16 176 2160 280 280

256 32 256 2224 2112 2112

PHOTON [50] 80 20/16 100 P-Sponge 264 240 240 Cube attack [153]
128 16 144 2112 280 280

160 36 196 2124 264 264

224 32 256 2192 2112 2112

256 32 288 2224 2128 2128

SPONGENT [53] 80 8 88 P-Sponge 280 240 240 Algebraic attack on 6-round Spongent-88 [154];
23-round linear distinguisher [155]; improved
zero-sum distinguisher [156]; 18-round zero-sum
distinguisher [157]

128 8 136 2120 264 264

160 16 176 2144 280 280

224 16 240 2208 2112 2112

256 16 272 2240 2128 2128

SPN-Hash [49] 128 256 128 P-Sponge
JH mode

2128 ? 264 none
256 512 256 2128 ? 264

GLUON [48] 128 8 136 T-Sponge 2128 264 264 Collision on update function; preimage with
complexity 2105 [158]160 16 176 2160 280 280

224 32 256 2224 2112 2112

SipHash [49] 64 64 256 T-Sponge
JH mode

264 264 None Differential cryptanalysis [159], rotational XOR, col-
lisions [160]

LHash [74], [75] 80 16 96 P-Sponge 264 240 240 None
96 16 96 280 240 240

128 128 16 296 256 256

128 128 8 2120 260 260

Neeva-hash [76] 256 32 256 P-Sponge; ARX 2224 2112 2112 Correcting block attack on reduced Neeva-hash (32
bits) [161]

Hash-One [78] 160 1 160 P-Sponge 2160 280 280 None
Gimli-Hash [55], [56] 256 128 384 P-Sponge 2128 2128 2128 Quantum collision: 14 rounds [162], [163]; classic

collision: 12 rounds [162], [163]; quantum semifree
start collision: 20 rounds [162], [163]; classic semifree
start collision: 18 rounds [162], [163]; preimage: 5
rounds [164], [165]; 2nd-preimage: 3 rounds [166];
differential cryptanalysis on reduced version [167]

sLiSCP-hash [43], [58] 160 32/32 192 P-Sponge 2128 280 280 Forgery and 8-step collision with 18 permutations
steps [168]192 64/64 256 2128 296 296

192 64/32 256 2160 296 296

sLiSCP-light-hash [43], [58] 160 32/32 192 P-Sponge 2128 280 280 Differential cryptanalysis on sLiSCP-light
permutation [169]192 64/64 256 2128 296 296

192 64/32 256 2160 296 296

LNHash [80] 80 96 16 P-Sponge 272 240 240 None
96 96 16 280 240 240

128 128 16 296 256 256

128 128 8 2120 260 260

160 176 16 2144 280 280

160 176 16 2152 280 280

Continued on the next page

16 VOLUME 4, 2016

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2022.3195572

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

Windarta et al.: Lightweight Cryptographic Hash Functions: Design Trends, Comparative Study , and Future Directions

TABLE 4. continued from previous page

Algorithm Hash
value

Rate Internal
state

Construction Pre 2nd
Pre

Coll Cryptanalysis

ACE (ACE-H-256) [60] 256 64 320 P-Sponge 2192 2128 2128 Impossible differential attack on ACE permutation
[170]

ASCON-HASH [61] 256 64 320 P-Sponge 2128 2128 2128 Collision attack using 2-round differential cryptanal-
ysis [171], [172]; active and passive side-channel key
recovery attacks [173]

KNOT-hash [62], [63] 256 32 256 P-Sponge 2128 2112 2112 Security analysis [174]
256 128 384 2128 2128 2128

384 48 384 2192 2168 2168

512 64 512 2256 2224 2224

DryGASCON [64] 128 128 320 DrySponge None None 264 DryGASCON-256 [175]: 4-round subspace trails.
DryGASCON-128 [175]: 3-round subspace trails,
3.5-round truncated differential, 5-round
differential-linear distinguisher; practical forgery
attacks on DryGASCON by exploiting internal
collisions of the underlying permutation [176]

256 128 576 P-Sponge None None 2128

ORANGISH [65] 128 – 128 P-Sponge 2128 2112 2112 None
PHOTON-Beetle-Hash [66] 128 32 128 P-Sponge 2128 2112 2112 None
ESCH [68] 256 128 384 P-Sponge 2128 2128 2128 None

384 128 512 2192 2192 2192

Subterranean 2.0 [69], [70] 256 – 257 P-Sponge 2224 2224 2224 None

Xoodyak Hash Mode [71] 256 User 384 P-Sponge 2128 2128 2128 None
HVH [72] 88 88 8 P-Sponge 272 240 240 None

128 128 8 2120 264 264

160 160 16 2144 280 280

224 224 16 2208 2112 2112

256 256 32 2224 2128 2128

LNMNT Hash [77] 80 – – P-Sponge 250 – – None
128 – – 280 – –
160 – – 2100 – –
224 – – 2120 – –

Cellular Automata:
L-CAHASH [77] 128 128 128 Cellular

Automata
2128 2128 264 None

256 256 256 – – –
LCAHASH1.1 [79] 128 128 128 Cellular

Automata
2128 2128 264 None

256 256 256 – – –

‡ : order by year proposed

TABLE 5. Performance of Hardware and Software Implementations of LWCHF algorithms.

Algorithm Hash
value Rate Internal

State
Hardware Software

Technology Hardware
area (GE)

Throughput
(Kb/s
@100
kHz)

Power
(µW) or
Energy
(µJ)

Latency
(cy-
cles/block)

ROM
(byte)

RAM
(byte)

Energy
(µJ /bit)

Throughput
@4
MHz
(Kbps)

Latency
(cy-
cles/block)

Merkle-Damgård Construction:

ARMADILLO
and
ARMADILLO2
[44]

80 48 256 180 nm 4030/2923 1090/272 77/44 44/176 – – – – –
128 64 384 6025/4353 1000/250 118/65 64/256 – – – – –
160 80 480 7492/5406 1000/250 158/83 80/320 – – – – –
192 96 576 8999/6554 1000/250 183/102 96/384 – – – – –
256 128 768 11914/8653 1000/250 251/137 128/512 – – – – –

Al-Odat et al.
LWCHF [52]

160 512 512 – – – – – – – – – –
224 512 512 – – 35,4 µJ – – 78 MB 3540
256 512 512 – – – – – – – – –
384 512 512 – – – – – – – – –
512 512 512 – – – – – – – – –

El Hanouti et al.
LWCHF [73]

128 1024 1024 – – – – – – – – – –

Block Cipher-Based Construction:

DM-PRESENT
[45], [46]

64 80 64 180 nm 2213/1600 242.42/14.63 6.28/1.83 – – – – – –

64 128 64 180 nm 2530/1886 387.88/22.9 7.49/2.94 – – – – – –
H-PRESENT [45],
[46]

128 128/8 128 180 nm 4256/2330 200/11.45 – – – – – – –

C-PRESENT [45],
[46]

192 64 192 180 nm 8048/4600
(estimate)

59,26/1,9 – – – – – – –

Lesamnta-LW
[41]

256 128 256 90 nm 8240 125,550/20,000
(30 MHz)

– – – 50 – – 66434 (8
bits)

Continued on the next page

VOLUME 4, 2016 17

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2022.3195572

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

Windarta et al.: Lightweight Cryptographic Hash Functions: Design Trends, Comparative Study , and Future Directions

TABLE 5. Continued from previous page

Algorithm Hash
value Rate Internal

State
Hardware Software

Technology Hardware
area (GE)

Throughput
(Kb/s
@100
kHz)

Power
(µW) or
Energy
(µJ)

Latency
(cy-
cles/block)

ROM
(byte)

RAM
(byte)

Energy
(µJ /bit)

Throughput
@4
MHz
(Kbps)

Latency
(cy-
cles/block)

TWISH [57] 128 128 128 – – – – – – – – – –
Sponge Construction:

QUARK [47] 136 8 136 180 nm 1379/2392 1.47/11.76 2.44/4.07 – – – – – –
176 16 176 1702/2819 2.27/18.18 3.10/4.76 – – – – – –
256 32 256 2296/4640 3.13/50.0 4.35/8.39 – – – – – –

PHOTON [50] 80 20/16 100 180 nm 865/1168 2.82/15.15 – – – – – – 95
128 16 144 1122/1708 1.61/10.26 – – – – – – 156
160 36 196 1396/2117 2.70/20 – – – – – – 116
224 32 256 1736/2786 1.86/15.69 – – – – – – 227
256 32 288 2177/4362 3.21/20.51 – – – – – – 157

SPONGENT [53] 80 8 88 130 nm 738/1127 35.8/111.3 1.57/2.31 – – – – – –
128 8 136 1060/1687 0.34/11.43 2.20/3.58 – – – – – –
160 16 176 1329/2190 0.40/17.78 2.85/4.47 – – – – – –
224 16 240 1728/2903 0.22/13.33 3.73/5.97 – – – – – –
256 16 272 1950/3281 0.17/11.43 4.21/6.62 – – – – – –

GLUON [48] 128 8 136 – 2071 12.12 – 66 – – – – 17319
160 16 176 2799.3 32 – 50 – – – – 8523
224 32 256 4724 58.18 – 55 – – – – 1951

SPN-Hash [49] 128 256 128 180 nm 2777/4600 36.1/55.7 – 710/230 – – – – 34
256 512 256 4625/8500 35.8/111.3 – 1430/230 – – – – 34

SipHash [49] 64 64 256 – 3700/13500 – – – – – – – 1.96/1.44
LHash [74], [75] 80 16 96 180 nm 817/989 2.40;1.44/

29.63;17.78
– – – – – – 139

96 16 96 817/989 2.40;1.44/
29.63;17.78

– – – – – – 139

128 128 16 1028/1200 1.81;22.22/
1.21;14.81

– – – – – – 156

128 128 8 1028/1200 0.91;11.1/
0.40;4.94

– – – – – – 312

Neeva-hash [76] 256 32 256 – – – – – – – – – –
Hash-One [78] 160 1 160 180 nm (estimate)

1006/
2130

– – – – – – – –

Gimli-Hash [55],
[56]

256 128 384 180 nm 2395 – – – 778/19218 44/45 – – 1611/726

sLiSCP-hash
[43], [58]

160 32/32 192 65 nm/ 2271/2492 29.62/29.62 4.62/7.44 108/144 – – – – –

192 64/64 256 130 nm 3019/
3305

44.44/22.22 5.88/8.75 108/144 – – – – –

192 64/32 256 3019/3305 22.22/22.22 5.88/8.75 108/144 – – – – –
sLiSCP-light-
hash [42], [59]

160 32/32 192 65 nm/ 1938/2051 44.44/44.44 3.97/5.05 72/96 – – – – –

192 64/64 256 130 nm 2584/2714 66.67/66.67 4.77/7.27 72/96 – – – – –
192 64/32 256 2584/2714 33.33/33.33 4.77/7.27 72/96 – – – – –

LNHash [80] 80 96 16 – – – – – – – – – –
96 96 16 – 927* – – – – – – – –
128 128 16 – 1224* – – – – – – – 10251
128 128 8 – 1224* – – – – – – – 10251
160 176 16 – 1539* – – – – – – – 12109
160 176 16 – 1539* – – – – – – – 12109

ACE
(ACE-H-256)
[60]

256 64 320 65 nm 4250 – – – – 330/330 3340/1390 4.96/11.91 –
90 nm 3660 – – – – 559/559 12550/521825.56/63.87 –
130 nm 4350 – – – – – – – –

ASCON-HASH
[61]

256 64 320 – 2570 14000 15 – 13808 1312 – – –

KNOT-Hash [62],
[63]

256 32 256 130 nm 3803 376 4.17 – 1000 40 – – 115.97†

256 128 384 5850 1280 6.38 – 1000 40 – – 69.08 †

384 48 384 5608 369 6.22 – 1000 40 – – 244.01†

512 64 512 7420 365 8.24 – 1000 40 – – 231.29†

DryGASCON-
Hash [64]

128 128 320 Xilinx
Zynq-
7000
FPGA

– – – 65 – – – – –

256 128 576 – – – – – – – – – –
ORANGISH [65] 128 – 128 – – – – – – – – – –
PHOTON-Beetle-
Hash [66]

128 32 128 180 1736 – – – 2982 54 – – 406.30

ESCH [68] 256 128 384 8-bit
AVR AT-
mega128

– 578 (cy-
cles/byte)

– – – – – – 1978/559

384 128 512 – – – – – – – – – 2992/830

Continued on the next page

18 VOLUME 4, 2016

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2022.3195572

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

Windarta et al.: Lightweight Cryptographic Hash Functions: Design Trends, Comparative Study , and Future Directions

TABLE 5. Continued from previous page

Algorithm Hash
value Rate Internal

State
Hardware Software

Technology Hardware
area (GE)

Throughput
(Kb/s
@100
kHz)

Power
(µW) or
Energy
(µJ)

Latency
(cy-
cles/block)

ROM
(byte)

RAM
(byte)

Energy
(µJ /bit)

Throughput
@4
MHz
(Kbps)

Latency
(cy-
cles/block)

Subterranean2.0-
XOF [69], [70]

256 – 257 45 nm 2452 – – – – 680/248 – – –

Xoodyak hash
mode [71]

256 user 384 40 nm 8097 0,75 Gb/s – – – – – – 170.7/79.9

HVH [72] 88 88 8 ? 857/1129 2.02/44.44 – – – – – – 4339
128 128 8 1145/1537 1.31/44.44 – – – – – – 7023
160 160 16 1385/1876 2.02/88.89 – – – – – – 4708
224 224 16 1769/2420 1.48/88.89 – – – – – – 6869
256 256 32 2009/2680 2.54/177.78 – – – – – – 4939

LNMNT Hash
[81], [82]

80 ? ? – – – 5.52 – – – – – 51180

128 ? ? – – – 6.57 – – – – – 52042
160 ? ? – – – 6.68 – – – – – 52742
224 ? ? – – – 6.82 – – – – – 55260

Cellular Automata:
L-CAHASH [77] 128 128 128 – – – – – – – – – 324

256 256 256 – – – – – – – – – 374
LCAHASH1.1
[79]

128 128 128 – – – – – – – – – 995

256 256 256 – – – – – – – – – 2844

*: estimate
†: long message

REFERENCES
[1] K. L. Lueth, “State of the IoT 2020: 12 billion IoT

connections, surpassing non-IoT for the first time,” 2020. [Online].
Available: https://iot-analytics.com/state-of-the-iot-2020-12-billion-iot-
connections-surpassing-non-iot-for-the-first-time/

[2] T. Eisenbarth, S. Kumar, C. Paar, A. Poschmann, and L. Uhsadel, “A
Survey of Lightweight-Cryptography Implementations,” IEEE Design &
Test of Computers, vol. 24, no. 6, pp. 522–533, 2007. [Online]. Available:
http://www.computer.org/csdl/mags/dt/2007/06/mdt2007060522.html

[3] CRYPTREC, “Cryptrec cryptographic technology guide-
line - lightweight cryptography - (english version),”
https://www.cryptrec.go.jp/report/cryptrec-gl-2003-2016en.pdf, March
2017.

[4] G. Gong, “Securing Internet-of-Things,” in International Symposium on
Foundations and Practice of Security. Springer, 2018, pp. 3–16.

[5] L. Zhou, C. Su, and K.-H. Yeh, “A Lightweight Cryptographic Protocol
with Certificateless Signature for the Internet of Things,” ACM Transac-
tions on Embedded Computing Systems, vol. 18, no. 3, pp. 1–10, 2019.

[6] S. Banerjee, V. Odelu, A. K. Das, S. Chattopadhyay, J. J. P. C. Rodrigues,
and Y. Park, “Physically Secure Lightweight Anonymous User Authen-
tication Protocol for Internet of Things Using Physically Unclonable
Functions,” IEEE Access, vol. 7, pp. 85 627–85 644, 2019.

[7] S. Shin and T. Kwon, “A Privacy-Preserving Authentication, Authoriza-
tion, and Key Agreement Scheme for Wireless Sensor Networks in 5G-
Integrated Internet of Things,” IEEE Access, vol. 8, pp. 67 555–67 571,
2020.

[8] R. Kalaria, A. S. M. Kayes, W. Rahayu, and E. Pardede, “A
Secure Mutual authentication approach to fog computing environment,”
Computers & Security, vol. 111, p. 102483, 2021. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S0167404821003072

[9] A. Amiruddin, A. A. P. Ratna, and R. F. Sari, “Systematic review
of internet of things security,” International Journal of Communication
Networks and Information Security, vol. 11, no. 2, pp. 248–255, 08 2019,
copyright - Copyright Kohat University of Science and Technology
(KUST) Aug 2019; Last updated - 2020-01-06. [Online]. Avail-
able: https://www.proquest.com/scholarly-journals/systematic-review-
internet-things-security/docview/2333652943/se-2?accountid=17242

[10] K.-L. Tsai, F.-Y. Leu, I. You, S.-W. Chang, S.-J. Hu, and H. Park, “Low-
power aes data encryption architecture for a lorawan,” IEEE Access,
vol. 7, pp. 146 348–146 357, 2019.

[11] K.-L. Tsai, Y.-L. Huang, F.-Y. Leu, I. You, Y.-L. Huang, and C.-H.
Tsai, “Aes-128 based secure low power communication for lorawan iot
environments,” IEEE Access, vol. 6, pp. 45 325–45 334, 2018.

[12] K.-L. Tsai, F.-Y. Leu, L.-L. Hung, and C.-Y. Ko, “Secure session key
generation method for lorawan servers,” IEEE Access, vol. 8, pp. 54 631–
54 640, 2020.

[13] S. Nakamoto, “Bitcoin: A Peer-to-Peer Electronic Cash System,” pp.
1–9, 2008. [Online]. Available: https://bitcoin.org/bitcoin.pdf

[14] K. Christidis and M. Devetsikiotis, “Blockchains and Smart Contracts for
the Internet of Things,” IEEE Access, vol. 4, pp. 2292–2303, 2016.

[15] O. Novo, “Blockchain Meets IoT: An Architecture for Scalable Access
Management in IoT,” IEEE Internet of Things Journal, vol. 5, no. 2, pp.
1184–1195, 2018.

[16] L. Wang, X. Shen, J. Li, J. Shao, and Y. Yang, “Cryptographic primitives
in blockchains,” Journal of Network and Computer Applications, vol.
127, pp. 43–58, 2019.

[17] F. H. Pohrmen and G. Saha, “LightBC: A Lightweight Hash-Based
Blockchain for the Secured Internet of Things,” in International Con-
ference on Innovative Computing and Communications, D. Gupta,
A. Khanna, S. Bhattacharyya, A. E. Hassanien, S. Anand, and A. Jaiswal,
Eds. Singapore: Springer Singapore, 2021, pp. 811–819.

[18] A. Biryukov and L. Perrin, “State of the Art in Lightweight Symmetric
Cryptography,” Cryptology ePrint Archive, Report 2017/511, pp. 1–55,
2017. [Online]. Available: https://eprint.iacr.org/2017/511.pdf

[19] A. J. Menezes, P. C. Van Oorschot, and S. A. Vanstone, Handbook of
Applied Cryptography, 1st ed. Boca Raton, FL, USA.: CRC press, 1997.

[20] D. R. Stinson, “Some observations on the theory of
cryptographic hash functions,” Designs, Codes and Cryptography,
vol. 38, no. 2, pp. 259–277, 2006. [Online]. Available:
http://www.springerlink.com/index/F621241047Q60866.pdf

[21] P. Rogaway and T. Shrimpton, “Cryptographic Hash-Function Basics:
Definitions, Implications, and Separations for Preimage Resistance,
Second-Preimage Resistance, and Collision Resistance,” in Fast Software
Encryption. FSE 2004. Lecture Notes in Computer Science, vol. 3017,
2004, pp. 371–388.

[22] G. Bertoni, J. Daemen, M. Peeters, and G. van Assche, “Keccak,” in
Annual International Conference on the Theory and Applications of
Cryptographic Techniques: EUROCRYPT 2013, vol. 7881. Springer,
2013, pp. 313–314.

[23] NIST, “Fips pub 202 sha-3 standard : Permutation-based hash and ex-
tendable output functions,” 2015.

[24] J. Kelsey, S.-j. Chang, and R. Perlner, “SHA-
3 Derived Functions : cSHAKE, KMAC, TupleHash
and ParallelHash,” p. 185, 2016. [Online]. Avail-
able: https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-
185.pdf

[25] H. Snyder, “Literature review as a research methodology:
An overview and guidelines,” Journal of Business Re-
search, vol. 104, pp. 333–339, 2019. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S0148296319304564

[26] A. Shah and M. Engineer, “A Survey of Lightweight Cryptographic
Algorithms for IoT-Based Applications,” in Smart Innovations in Com-

VOLUME 4, 2016 19

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2022.3195572

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

Windarta et al.: Lightweight Cryptographic Hash Functions: Design Trends, Comparative Study , and Future Directions

munication and Computational Sciences, S. Tiwari, M. C. Trivedi, K. K.
Mishra, A. K. Misra, and K. K. Kumar, Eds. Singapore: Springer
Singapore, 2019, pp. 283–293.

[27] S. S. Dhanda, B. Singh, and P. Jindal, “Lightweight Cryptography:
A Solution to Secure IoT,” Wireless Personal Communications,
vol. 112, no. 3, pp. 1947–1980, 2020. [Online]. Available:
https://doi.org/10.1007/s11277-020-07134-3

[28] M. Rana, Q. Mamun, and R. Islam, “Lightweight cryptography
in IoT networks: A survey,” Future Generation Computer
Systems, vol. 129, pp. 77–89, 2022. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S0167739X21004404

[29] V. A. Thakor, M. A. Razzaque, and M. R. A. Khandaker, “Lightweight
Cryptography Algorithms for Resource-Constrained IoT Devices: A Re-
view, Comparison and Research Opportunities,” IEEE Access, vol. 9, pp.
28 177–28 193, 2021.

[30] E. B. Kavun and T. Yalçin, “A lightweight implementation of keccak hash
function for radio-frequency identification applications,” in RFIDSec,
2010.

[31] G. Bertoni, J. Daemen, M. Peeters, and G. Van Assche, “Keccak sponge
function family main document,” Submission to NIST (Round 2), vol. 3,
no. 30, pp. 320–337, 2009.

[32] B. Schneier, “NIST Hash Workshop Live-
blogging (5),” 2005. [Online]. Available:
https://www.schneier.com/blog/archives/2005/11/nist_hash_works_4.html

[33] G. Hatzivasilis, K. Fysarakis, I. Papaefstathiou, and C. Manifavas, “A
review of lightweight block ciphers,” Journal of Cryptographic Engineer-
ing, vol. 8, pp. 141–184, 2017.

[34] ISO, “Iso/iec 29192-1:2012(en) information technology — secu-
rity techniques — lightweight cryptography — part 1: General,”
https://www.iso.org/standard/56425.html, 2012.

[35] S. Kerckhof, F. Durvaux, C. Hocquet, D. Bol, and F.-X. Standaert,
“Towards green cryptography: A comparison of lightweight ciphers from
the energy viewpoint,” in CHES, 2012.

[36] M. Alizadeh, W. H. Hassan, M. Zamani, S. Karamizadeh, and E. Ghaz-
izadeh, “Implementation and evaluation of lightweight encryption al-
gorithms suitable for rfid,” Journal of Next Generation Information
Technology, vol. 4, pp. 65–77, 2013.

[37] B. Aslan, F. Y. Aslan, and M. T. Sakalli, “Energy consumption analysis
of lightweight cryptographic algorithms that can be used in the security
of internet of things applications,” Secur. Commun. Networks, vol. 2020,
pp. 8 837 671:1–8 837 671:15, 2020.

[38] A. Caforio, F. Balli, S. Banik, and F. Regazzoni, “A deeper look at
the energy consumption of lightweight block ciphers,” 2021 Design,
Automation & Test in Europe Conference & Exhibition (DATE), pp. 170–
175, 2021.

[39] NIST, “Submission Requirements and Evaluation Criteria for the
Lightweight Cryptography Standardization Process,” 2018. [Online].
Available: https://csrc.nist.gov/CSRC/media/Projects/Lightweight-
Cryptography/documents/final-lwc-submission-requirements-
august2018.pdf

[40] C. Pei, Y. Xiao, W. Liang, and X. Han, “Trade-off of security and
performance of lightweight block ciphers in industrial wireless sensor
networks,” EURASIP Journal on Wireless Communications and Net-
working, vol. 2018, pp. 1–18, 2018.

[41] S. Hirose, K. Ideguchi, H. Kuwakado, T. Owada, B. Preneel, and
H. Yoshida, “A Lightweight 256-Bit Hash Function for Hardware and
Low-End Devices: Lesamnta-LW BT,” in Information Security and Cryp-
tology - ICISC 2010, K.-H. Rhee and D. Nyang, Eds. Berlin, Heidelberg:
Springer Berlin Heidelberg, 2011, pp. 151–168.

[42] R. AlTawy, R. Rohit, M. He, K. Mandal, G. Yang, and G. Gong, “sLiSCP-
light: Towards Hardware Optimized Sponge-specific Cryptographic Per-
mutations,” ACM Trans. Embed. Comput. Syst., vol. 17, no. 4, pp. 1–26,
2018.

[43] ——, “Towards a Cryptographic Minimal Design: The sLiSCP Family
of Permutations,” IEEE Transactions on Computers, vol. 67, no. 9, pp.
1341–1358, 2018.

[44] S. Badel, N. Dagtekin, J. Nakahara, K. Ouafi, N. Reffé, P. Sepehrdad,
P. Susil, and S. Vaudenay, “ARMADILLO: A Multi-purpose Crypto-
graphic Primitive Dedicated to Hardware,” in Cryptographic Hardware
and Embedded Systems, CHES 2010, vol. 6225. Springer, 2010, pp.
398–412.

[45] A. Bogdanov, G. Leander, C. Paar, A. Poschmann, M. J. B. Robshaw, and
Y. Seurin, “Hash Functions and RFID Tags: Mind the Gap,” in Crypto-
graphic Hardware and Embedded Systems – CHES 2008, E. Oswald and

P. Rohatgi, Eds. Berlin, Heidelberg: Springer Berlin Heidelberg, 2008,
pp. 283–299.

[46] A. Y. Poschmann, “Lightweight cryptography - cryptographic
engineering for a pervasive world,” Cryptology ePrint Archive, Paper
2009/516, 2009. [Online]. Available: https://eprint.iacr.org/2009/516

[47] J.-P. Aumasson, L. Henzen, W. Meier, and M. Naya-Plasencia,
“Quark: A Lightweight Hash,” pp. 1–15, 2010. [Online]. Available:
http://dx.doi.org/10.1007/s00145-012-9125-6

[48] T. P. Berger, J. D’Hayer, K. Marquet, M. Minier, and G. Thomas, “The
GLUON Family: A Lightweight Hash Function Family Based on FC-
SRs,” in Progress in Cryptology - AFRICACRYPT 2012, A. Mitrokotsa
and S. Vaudenay, Eds. Berlin, Heidelberg: Springer, 2012, pp. 306–323.

[49] J.-P. Aumasson and D. J. Bernstein, “SipHash: A Fast Short-Input PRF
BT,” in Progress in Cryptology-INDOCRYPT 2012, S. Galbraith and
M. Nandi, Eds. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012,
pp. 489–508.

[50] J. Guo, T. Peyrin, and A. Poschmann, “The PHOTON Family of
Lightweight Hash Functions,” in Advances in Cryptology – CRYPTO
2011. CRYPTO 2011. Lecture Notes in Computer Science, vol 6841, vol.
6841. Springer, 2011.

[51] J. Choy, H. Yap, K. Khoo, J. Guo, T. Peyrin, A. Poschmann, C. H.
Tan, A. Mitrokotsa, and S. Vaudenay, “SPN-Hash: Improving the Prov-
able Resistance against Differential Collision Attacks,” in Progress in
Cryptology-AFRICACRYPT 2012. AFRICACRYPT 2012. Berlin,
Heidelberg: Springer Berlin Heidelberg, 2012, pp. 270–286.

[52] Z. A. Al-Odat, E. M. Al-Qtiemat, and S. U. Khan, “An Efficient
Lightweight Cryptography Hash Function for Big Data and IoT Appli-
cations,” in 2020 IEEE Cloud Summit, 2020, pp. 66–71.

[53] A. Bogdanov, M. Knezevic, G. Leander, D. Toz, K. Varici, and I. Ver-
bauwhede, “SPONGENT: A Lightweight Hash Function,” in Crypto-
graphic Hardware and Embedded Systems-CHES 2011. CHES 2011.
Lecture Notes in Computer Science, vol 6917, vol. 6917. Springer,
2011, pp. 312–325.

[54] A. Bogdanov, M. Knežević, G. Leander, D. Toz, K. Varici, and I. Ver-
bauwhede, “SPONGENT: The design space of lightweight cryptographic
hashing,” IEEE Transactions on Computers, vol. 62, no. 10, pp. 2041–
2053, 2013.

[55] D. J. Bernstein, S. Kölbl, S. Lucks, P. M. C. Massolino, F. Mendel,
K. Nawaz, T. Schneider, P. Schwabe, F.-X. Standaert, and Y. Todo,
“Gimli: a cross-platform permutation,” in International Conference on
Cryptographic Hardware and Embedded Systems. Springer, 2017, pp.
299–320.

[56] ——, “Gimli 20190927,” 2019. [Online]. Avail-
able: https://csrc.nist.gov/CSRC/media/Projects/lightweight-
cryptography/documents/round-2/spec-doc-rnd2/gimli-spec-round2.pdf

[57] D. I. Afryansyah, Magfirawaty, and K. Ramli, “The Development and
Analysis of TWISH: A Lightweight-Block-Cipher-TWINE-Based Hash
Function,” in 2018 Thirteenth International Conference on Digital Infor-
mation Management (ICDIM), 2018, pp. 210–215.

[58] R. AlTawy, R. Rohit, M. He, K. Mandal, G. Yang, and G. Gong, “sliscp:
Simeck-based permutations for lightweight sponge cryptographic prim-
itives,” in Selected Areas in Cryptography – SAC 2017, C. Adams and
J. Camenisch, Eds. Cham: Springer International Publishing, 2018, pp.
129–150.

[59] ——, “sLiSCP-light: Towards Lighter Sponge-specific
Cryptographic Permutations,” 2017. [Online]. Available:
http://cacr.uwaterloo.ca/techreports/2017/cacr2017-04.pdf

[60] M. Aagaard, R. AlTawy, G. Gong, K. Mandal, and R. Rohit, “ACE: An
authenticated encryption and hash algorithm,” Submission to NIST-LWC,
2019.

[61] C. Dobraunig, F. Mendel, M. Eichlseder, and M. Schläffer,
“Ascon v1.2 Submission to NIST,” p. 52, 2021. [Online].
Available: https://csrc.nist.gov/CSRC/media/Projects/lightweight-
cryptography/documents/finalist-round/updated-spec-doc/ascon-spec-
final.pdf

[62] W. Zhang, T. Ding, B. Yang, Z. Bao, Z. Xiang, F. Ji, and X. Zhao,
“KNOT: Algorithm Speci cations and Supporting Document,” 2019. [On-
line]. Available: https://csrc.nist.gov/CSRC/media/Projects/lightweight-
cryptography/documents/round-2/spec-doc-rnd2/knot-spec-round.pdf

[63] ——, “Update on Security Analysis and Im-
plementations of KNOT,” 2020. [Online]. Avail-
able: https://csrc.nist.gov/CSRC/media/Projects/lightweight-
cryptography/documents/round-2/status-update-
sep2020/KNOT_Update.pdf

20 VOLUME 4, 2016

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2022.3195572

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

Windarta et al.: Lightweight Cryptographic Hash Functions: Design Trends, Comparative Study , and Future Directions

[64] S. Riou, “DryGASCON Lightweight Cryptography
Standardization Process round 1 submission,” 2019. [Online].
Available: https://csrc.nist.gov/CSRC/media/Projects/lightweight-
cryptography/documents/round-2/spec-doc-rnd2/drygascon-spec-
round2.pdf

[65] B. Chakraborty and M. Nandi, “ORANGE,” 2019. [Online]. Available:
https://www.isical.ac.in/ lightweight/Orange/

[66] Z. Bao, A. Chakraborti, N. Datta, J. Guo,
M. Nandi, T. Peyrin, and K. Yasuda, “PHOTON-Beetle
Authenticated Encryption and Hash Family,” 2021. [Online].
Available: https://csrc.nist.gov/CSRC/media/Projects/lightweight-
cryptography/documents/finalist-round/updated-spec-doc/photon-beetle-
spec-final.pdf

[67] C. Beierle, A. Biryukov, L. Cardoso dos Santos, J. Großschädl,
L. Perrin, A. Udovenko, V. Velichkov, and Q. Wang, “Lightweight
AEAD and Hashing using the Sparkle Permutation Family,”
IACR Transactions on Symmetric Cryptology, vol. 2020, no.
S1 SE - Articles, pp. 208–261, Jun 2020. [Online]. Available:
https://tosc.iacr.org/index.php/ToSC/article/view/8627

[68] C. Beierle, A. Biryukov, L. C. dos Santos, J. Großschädl, A. Moradi,
L. Perrin, A. R. Shahmirzadi, A. Udovenko, V. Velichkov, and Q. Wang,
“Schwaemm and Esch: Lightweight Authenticated Encryption and
Hashing using the Sparkle Permutation Family,” 2021. [Online].
Available: https://csrc.nist.gov/CSRC/media/Projects/lightweight-
cryptography/documents/finalist-round/updated-spec-doc/sparkle-spec-
final.pdf

[69] J. Daemen, P. M. C. Massolino, and Y. Rotella,
“The Subterranean 2.0 cipher suite,” 2019. [Online].
Available: https://csrc.nist.gov/CSRC/media/Projects/lightweight-
cryptography/documents/round-2/spec-doc-rnd2/subterranean-spec-
round2.pdf

[70] J. Daemen, P. M. C. Massolino, A. Mehrdad, and Y. Rotella, “The
subterranean 2.0 cipher suite,” IACR Transactions on Symmetric
Cryptology, vol. 2020, no. S1, p. 262–294, Jun. 2020. [Online].
Available: https://tosc.iacr.org/index.php/ToSC/article/view/8622

[71] J. Daemen, S. Hoffert, S. Mella, M. Peeters, G. V. Assche, and R. V.
Keer, “Xoodyak, a lightweight cryptographic scheme,” 2021. [Online].
Available: https://csrc.nist.gov/CSRC/media/Projects/lightweight-
cryptography/documents/finalist-round/updated-spec-doc/xoodyak-
spec-final.pdf

[72] Y. Huang, S. Li, W. Sun, X. Dai, and W. Zhu, “Hvh: A lightweight
hash function based on dual pseudo-random transformation,” in Security,
Privacy, and Anonymity in Computation, Communication, and Storage,
G. Wang, B. Chen, W. Li, R. Di Pietro, X. Yan, and H. Han, Eds. Cham:
Springer International Publishing, 2021, pp. 492–505.

[73] I. El Hanouti, H. El Fadili, S. Hraoui, and A. Jarjar, “A Lightweight Hash
Function for Cryptographic and Pseudo-Cryptographic Applications,” in
WITS 2020, S. Bennani, Y. Lakhrissi, G. Khaissidi, A. Mansouri, and
Y. Khamlichi, Eds. Singapore: Springer Singapore, 2022, pp. 495–505.

[74] W. Wu, S. Wu, L. Zhang, J. Zou, and L. Dong, “LHash: A Lightweight
Hash Function (Full Version),” IACR Cryptol. ePrint Arch., vol. 2013, p.
867, 2013.

[75] ——, “LHash: A Lightweight Hash Function,” in Information Security
and Cryptology. Inscrypt 2013. Lecture Notes in Computer Science, vol
8567., L. D., X. S., and Y. M., Eds., vol. 8567. Cham: Springer, 2014,
pp. 291–308.

[76] K. Bussi, D. Dey, M. Kumar, and B. K. Dass, “Neeva: A lightweight
hash function,” Cryptology ePrint Archive, Report 2016/042, 2016,
https://ia.cr/2016/042.

[77] C. Hanin, B. Echandouri, F. Omary, and S. El Bernoussi, “L-CAHASH:
A Novel Lightweight Hash Function Based on Cellular Automata
for RFID,” in Ubiquitous Networking, E. Sabir, A. García Armada,
M. Ghogho, and M. Debbah, Eds. Cham: Springer International
Publishing, 2017, pp. 287–298.

[78] P. Megha Mukundan, S. Manayankath, C. Srinivasan, and M. Sethu-
madhavan, “Hash-One: a lightweight cryptographic hash function,” IET
Information Security, vol. 10, no. 5, pp. 225–231, 2016.

[79] A. Sadak, B. Echandouri, F. Ezzahra, C. Hanin, and F. Omary, “Lcahash-
1.1: A new design of the lcahash system for iot,” International Journal of
Advanced Computer Science and Applications, 2019.

[80] X. Zhang, Q. Xu, X. Li, and C. Wang, “A Lightweight Hash Function
Based on Cellular Automata for Mobile Network,” in 2019 15th Inter-
national Conference on Mobile Ad-Hoc and Sensor Networks (MSN),
2019, pp. 247–252.

[81] N. Nabeel, M. H. Habaebi, and M. D. R. Islam, “Security Analysis
of LNMNT-LightWeight Crypto Hash Function for IoT,” IEEE Access,
vol. 9, pp. 165 754–165 765, 2021.

[82] N. Nabeel, M. H. Habaebi, and M. R. Islam, “Lnmnt-new mersenne num-
ber based lightweight crypto hash function for iot,” 2021 8th International
Conference on Computer and Communication Engineering (ICCCE), pp.
68–71, 2021.

[83] R. C. Merkle, “One Way Hash Functions and DES,” in Advances in
Cryptology — CRYPTO’ 89 Proceedings, G. Brassard, Ed. New York,
NY: Springer New York, 1990, pp. 428–446.

[84] I. B. Damgård, “A Design Principle for Hash Functions,” in Advances in
Cryptology-CRYPTO’ 89 Proceedings. CRYPTO 1989. Lecture Notes in
Computer Science, vol 435. New York, NY: Springer New York, 1989,
pp. 416–427. [Online]. Available: http://link.springer.com/10.1007/0-
387-34805-0_39

[85] T. Duong and J. Rizzo, “Flickr’s api signature
forgery vulnerability,” 2009. [Online]. Available:
https://packetstormsecurity.com/files/81729/flickr_api_signature_forgery.pdf

[86] Z. Al-Odat and S. Khan, “Constructions and attacks on hash
functions,” in 2019 International Conference on Computational Science
and Computational Intelligence (CSCI). Los Alamitos, CA, USA:
IEEE Computer Society, dec 2019, pp. 139–144. [Online]. Available:
https://doi.ieeecomputersociety.org/10.1109/CSCI49370.2019.00030

[87] B. O. Brachtl, D. Coppersmith, M. M. Hyden, S. M. Matyas Jr, C. H.
Meyer, J. Oseas, S. Pilpel, and M. Schilling, “Data authentication using
modification detection codes based on a public one way encryption
function,” Mar. 13 1990, uS Patent 4,908,861.

[88] NBS, “Data Encryption Standard,” in In FIPS PUB 46, Federal Informa-
tion Processing Standards Publication, 1977, pp. 42–46.

[89] B. Preneel, “Davies-meyer hash function,” in Encyclopedia of Cryptog-
raphy and Security, 2005.

[90] G. Bertoni, J. Daemen, M. Peeters, and G. van Assche,
“Sponge Functions,” pp. 1–22, 2007. [Online]. Available:
https://keccak.team/files/SpongeFunctions.pdf

[91] G. Bertoni, J. Daemen, M. Peeters, and G. Van Assche, “The keccak
reference,” pp. 1–14, 2011.

[92] G. Bertoni, J. Daemen, M. Peeters, and G. Van Assche, “On the indif-
ferentiability of the sponge construction,” in Advances in Cryptology –
EUROCRYPT 2008, N. Smart, Ed. Berlin, Heidelberg: Springer Berlin
Heidelberg, 2008, pp. 181–197.

[93] Y. Li, G. Ge, and D. Xia, “Chaotic hash function based on the dynamic
s-box with variable parameters,” Nonlinear Dynamics, vol. 84, pp. 2387–
2402, 2016.

[94] M. Alawida, A. Samsudin, N. Alajarmeh, J. S. Teh, M. Ahmad, and W. H.
Alshoura, “A Novel Hash Function Based on a Chaotic Sponge and DNA
Sequence,” IEEE Access, vol. 9, pp. 17 882–17 897, 2021.

[95] J. S. Teh, K. Tan, and M. Alawida, “A chaos-based keyed hash function
based on fixed point representation,” Cluster Computing, vol. 22, no. 2,
pp. 649–660, 2019. [Online]. Available: https://doi.org/10.1007/s10586-
018-2870-z

[96] N. Abdoun, S. El Assad, T. Manh Hoang, O. Deforges, R. Assaf,
and M. Khalil, “Designing Two Secure Keyed Hash Functions
Based on Sponge Construction and the Chaotic Neural Network,”
Entropy, vol. 22, no. 9, p. 1012, sep 2020. [Online]. Available:
https://www.mdpi.com/1099-4300/22/9/1012

[97] J. S. Teh, M. Alawida, and J. J. Ho, “Unkeyed hash function based
on chaotic sponge construction and fixed-point arithmetic,” Nonlinear
Dynamics, vol. 100, no. 1, pp. 713–729, 2020. [Online]. Available:
https://doi.org/10.1007/s11071-020-05504-x

[98] S. Hirose, “Some Plausible Constructions of Double-Block-Length Hash
Functions,” in International Workshop on Fast Software Encryption FSE
2006, vol. 4047. Springer, 2006, pp. 210–225. [Online]. Available:
http://www.iacr.org/cryptodb/archive/2006/FSE/3233/3233.pdf

[99] T. Suzaki, K. Minematsu, S. Morioka, and E. Kobayashi,
“$$\$textnormal ${$$\$textsc ${$TWINE$}$$}$ $: A Lightweight
Block Cipher for Multiple Platforms,” in International Conference on
Selected Areas in Cryptography. Springer, 2012, pp. 339–354.

[100] A. Doganaksoy, B. Ege, O. KoÃ§ak, and F. Sulak, “Cryptographic
Randomness Testing of Block Ciphers and Hash Functions,” Turkey, p.
564, 2010.

[101] M. Hell and T. Johansson, “Breaking the F-FCSR-H Stream Cipher in
Real Time,” in ASIACRYPT 2008, vol. 5350. Springer, 2008, pp. 557–
569.

VOLUME 4, 2016 21

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2022.3195572

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

Windarta et al.: Lightweight Cryptographic Hash Functions: Design Trends, Comparative Study , and Future Directions

[102] C. De Cannière, O. Dunkelman, and M. Knežević, “Katan and ktantan —
a family of small and efficient hardware-oriented block ciphers,” in Cryp-
tographic Hardware and Embedded Systems - CHES 2009, C. Clavier
and K. Gaj, Eds. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009,
pp. 272–288.

[103] F. A. Thierry Berger and C. Lauradoux, “F-
FCSR (Phase 3 Profile 2),” 2008. [Online]. Available:
https://www.ecrypt.eu.org/stream/p3ciphers/ffcsr/ffcsr_p3.pdf

[104] F. Arnault, T. P. Berger, C. Lauradoux, and M. Minier, “X-fcsr: a new
software oriented stream cipher based upon fcsrs,” 2007, this paper was
accepted as a short paper at Indocrypt 2007 marine.minier@insa-lyon.fr
13782 received 25 Sep 2007, last revised 26 Sep 2007. [Online].
Available: http://eprint.iacr.org/2007/380

[105] H. Wu, “The hash function JH,” 2011. [Online]. Available:
https://www3.ntu.edu.sg/home/wuhj/research/jh/jh_round3.pdf

[106] NIST, “Announcing the advanced encryption standard (aes),” 2001.
[Online]. Available: http://csrc.nist.gov/publications/fips/fips197/fips-
197.pdf

[107] J.-P. Aumasson, W. Meier, R. Phan, and L. Henzen, The Hash Function
BLAKE. Springer Publishing Company, Incorporated, 2014.

[108] N. Ferguson, “The Skein Hash Function Family,” Argu-
ment, vol. 30, no. 4, p. 79, 2010. [Online]. Available:
http://www.schneier.com/skein.html

[109] G. Yang, B. Zhu, V. Suder, M. D. Aagaard, and G. Gong, “The simeck
family of lightweight block ciphers,” in Cryptographic Hardware and
Embedded Systems – CHES 2015, T. Güneysu and H. Handschuh, Eds.
Berlin, Heidelberg: Springer Berlin Heidelberg, 2015, pp. 307–329.

[110] ——, “The simeck family of lightweight block ciphers,” Cryptology
ePrint Archive, Paper 2015/612, 2015, https://eprint.iacr.org/2015/612.
[Online]. Available: https://eprint.iacr.org/2015/612

[111] D. J. Bernstein, “Caesar: Competition for authenticated encryption:
Security, applicability, and robustness,” 02 2019. [Online]. Available:
https://competitions.cr.yp.to/caesar.html

[112] W. Zhang, Z. Bao, D. Lin, V. Rijmen, B. Yang, and I. M. R. Verbauwhede,
“Rectangle: A bit-slice ultra-lightweight block cipher suitable for multi-
ple platforms,” IACR Cryptol. ePrint Arch., vol. 2014, p. 84, 2014.

[113] ——, “Rectangle: a bit-slice lightweight block cipher suitable for mul-
tiple platforms,” Science China Information Sciences, vol. 58, pp. 1–15,
2015.

[114] C. Dobraunig, M. Eichlseder, F. Mendel, and M. Schläffer, “Ascon v1.
2,” Submission to the CAESAR Competition, 2016.

[115] G. Bertoni, J. Daemen, M. Peeters, and G. Van Assche, “Duplexing the
Sponge: Single-Pass Authenticated Encryption and Other Applications,”
in Selected Areas in Cryptography, A. Miri and S. Vaudenay, Eds.
Berlin, Heidelberg: Springer Berlin Heidelberg, 2012, pp. 320–337.

[116] NIST, “Federal Register::Announcing Request for Candidate
Algorithm Nominations for a New Cryptographic
Hash Algorithm (SHA-3) Family,” 2007. [Online].
Available: https://www.federalregister.gov/documents/2007/11/02/E7-
21581/announcing-request-for-candidate-algorithm-nominations-for-a-
new-cryptographic-hash-algorithm-sha-3

[117] A. Chakraborti, N. Datta, M. Nandi, and K. Yasuda, “Beetle Family
of Lightweight and Secure Authenticated Encryption Ciphers,” IACR
Transactions on Cryptographic Hardware and Embedded Systems, vol.
2018, no. 2 SE - Articles, pp. 218–241, may 2018. [Online]. Available:
https://tches.iacr.org/index.php/TCHES/article/view/881

[118] L. Claesen, J. Daemen, M. Genoe, and G. Peeters, “Subterranean: A
600 Mbit/sec cryptographic VLSI chip,” in Proceedings of 1993 IEEE
International Conference on Computer Design ICCD’93, 1993, pp. 610–
613.

[119] J. Daemen, S. Hoffert, G. Van Assche, and R. Van Keer, “The design
of Xoodoo and Xoofff,” IACR Transactions on Symmetric Cryptology,
vol. 2018, no. 4 SE - Articles, pp. 1–38, dec 2018. [Online]. Available:
https://tosc.iacr.org/index.php/ToSC/article/view/7359

[120] J. Daemen, S. Hoffert, M. Peeters, G. V. Assche, and R. V. Keer,
“Xoodoo cookbook,” Cryptology ePrint Archive, Report 2018/767,
2018. [Online]. Available: https://eprint.iacr.org/2018/767.pdf

[121] D. Xuejun, H. Yuhua, C. Lu, T. Lu, and S. Fei, “VH: A Lightweight
Block Cipher Based on Dual Pseudo-random Transformation,” in IEEE
CLOUD 2015, 2015.

[122] G. Marsaglia, “The marsaglia random number cdrom including the
diehard battery of tests of randomness,” Jan 2016. [Online]. Available:
https://web.archive.org/web/20160125103112/http://stat.fsu.edu/pub/diehard/

[123] E. Biham and A. Shamir, Differential Cryptanalysis of the Data Encryp-
tion Standard. Berlin, Heidelberg: Springer-Verlag, 1993.

[124] ——, “Differential Cryptanalysis of the Full 16-Round DES,” in
CRYPTO 1992, vol. 740. Springer, 1992, pp. 487–496.

[125] ——, “Differential Cryptanalysis of DES-like Cryptosystems,” in
CRYPTO 1990, vol. 537. Springer, 1990, pp. 2–21.

[126] E. Biham, “New Types of Cryptanalytic Attacks Using Related Keys,” J.
Cryptology, vol. 7, pp. 229–246, 1994.

[127] M. J. Wiener, “The Full Cost of Cryptanalytic Attacks,” J. Cryptology,
vol. 17, pp. 105–124, 2004.

[128] N. Bagheri, N. Ghaedi, and S. K. Sanadhya, “Differential fault analysis
of sha-3,” in INDOCRYPT, 2015.

[129] R. Altawy and A. M. Youssef, “Differential fault analysis of streebog,” in
ISPEC, 2015.

[130] M. Safkhani and M. a. Arghavani, “A survey of cube, differential fault
analysis attacks and linear structures on keccak hash function (sha-3),” 2,
vol. 5, no. 2, 2017. [Online]. Available: http://monadi.isc.org.ir/article-1-
76-en.html

[131] P. Luo, Y. Fei, L. Zhang, and A. A. Ding, “Differential fault analysis
of sha-3 under relaxed fault models,” Journal of Hardware and Systems
Security, vol. 1, pp. 156–172, 2017.

[132] M. Matsui, “Linear Cryptanalysis Method for DES Cipher,” in EURO-
CRYPT 1993, vol. 765. Springer, 1993, pp. 386–397.

[133] ——, “The First Experimental Cryptanalysis of the Data Encryption
Standard,” in CRYPTO 1994, vol. 839. Springer, 1994, pp. 1–11.

[134] J. Daemen, L. Knudsen, and V. Rijmen, “The Block Cipher SQUARE,”
Lecture Notes in Computer Science, vol. 1267, pp. 149–165, 1997.

[135] S. Lucks, “Attacking Seven Rounds of Rijndael under 192-bit and 256-bit
Keys,” 2000.

[136] L. Knudsen and D. Wagner, “Integral cryptanalysis (Extended
Abstract),” Fast Software Encryption, pp. 112–127, 2002.
[Online]. Available: http://link.springer.com/10.1007/3-540-45661-9_9
http://link.springer.com/chapter/10.1007/3-540-45661-9_9

[137] M. Matsui, “New Block Encryption Algorithm MISTY,” in FSE 1997,
vol. 1267. Springer, 1997, pp. 54–68.

[138] ISO, “Iso/iec 29192-5:2016(en) information technology — security
techniques — lightweight cryptography — part 5: Hash-functions,”
https://www.iso.org/standard/56425.html, 2016.

[139] J.-P. Kaps, W. Diehl, M. Tempelmeier, F. Farahmand, E. Homsirikamol,
and K. Gaj, “A comprehensive framework for fair and efficient bench-
marking of hardware implementations of lightweight cryptography,”
IACR Cryptol. ePrint Arch., vol. 2019, p. 1273, 2019.

[140] M. O. A. Al-Shatari, F. A. Hussin, A. A. Aziz, G. Witjaksono, and
X.-T. Tran, “FPGA-Based Lightweight Hardware Architecture of the
PHOTON Hash Function for IoT Edge Devices,” IEEE Access, vol. 8,
pp. 207 610–207 618, 2020.

[141] NIST, “Benchmarking of lightweight cryptographic
algorithms on microcontrollers,” GitHub Repository.
https://github.com/usnistgov/Lightweight-Cryptography-Benchmarking,
2020.

[142] S. Renner, E. Pozzobon, and J. Mottok, “Lwc benchmark,” GitHub
repository. https://lab. las3.de/gitlab/lwc/compare., 2021.

[143] C. Beierle, A. Biryukov, L. Cardoso dos Santos, J. Großschädl, L. Perrin,
A. Udovenko, V. Velichkov, and Q. Wang, “Alzette: A 64-bit arx-box,” in
Advances in Cryptology – CRYPTO 2020, D. Micciancio and T. Risten-
part, Eds. Cham: Springer International Publishing, 2020, pp. 419–448.

[144] A. A. Moldovyan and N. A. Moldovyan, “A cipher based on data-
dependent permutations,” Journal of Cryptology, vol. 15, pp. 61–72,
2001.

[145] M. Naya-Plasencia and T. Peyrin, “Practical cryptanalysis of armadillo2,”
in Fast Software Encryption. FSE 2012. Lecture Notes in Computer
Science, vol 7549, 2012.

[146] M. A. Abdelraheem, C. Blondeau, M. Naya-Plasencia, M. Videau, and
E. Zenner, “Cryptanalysis of armadillo 2,” in Advances in Cryptology-
ASIACRYPT 2011. ASIACRYPT 2011. Lecture Notes in Computer
Science, vol 7073, 2011.

[147] T. Koyama, Y. Sasaki, and N. Kunihiro, “Multi-differential Cryptanalysis
on Reduced DM-PRESENT-80: Collisions and Other Differential Prop-
erties,” in ICISC, 2012.

[148] C. Blondeau, T. Peyrin, and L. Wang, “Known-key distinguisher on full
present,” IACR Cryptol. ePrint Arch., vol. 2015, p. 575, 2015.

[149] Y. Sasaki and K. Aoki, “Improved integral analysis on tweaked lesam-
nta,” in ICISC, 2011.

22 VOLUME 4, 2016

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2022.3195572

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

Windarta et al.: Lightweight Cryptographic Hash Functions: Design Trends, Comparative Study , and Future Directions

[150] R. Shiba, K. Sakamoto, F. Liu, K. Minematsu, and T. Isobe, “Integral
and impossible-differential attacks on the reduced-round lesamnta-lw-
bc,” IET Information Security, 2021.

[151] K. Zhang, J. Guan, and X. Fei, “Improved conditional differential crypt-
analysis,” Secur. Commun. Networks, vol. 8, pp. 1801–1811, 2015.

[152] J. Yang, M. Liu, D. Lin, and W. Wang, “Symbolic-like computation and
conditional differential cryptanalysis of quark,” in IWSEC, 2018.

[153] C. Lu, Y. Lin, S. Jen, and J. Yang, “Cryptanalysis on PHOTON hash func-
tion using cube attack,” in 2012 International Conference on Information
Security and Intelligent Control, 2012, pp. 278–281.

[154] M. Walter, “Algebraic methods in analyzing lightweight cryptographic
symmetric primitives,” 2012.

[155] M. A. Abdelraheem, “Estimating the probabilities of low-weight differ-
ential and linear approximations on present-like ciphers,” in Information
Security and Cryptology – ICISC 2012, T. Kwon, M.-K. Lee, and
D. Kwon, Eds. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013,
pp. 368–382.

[156] S. Fan and M. Duan, “Improved Zero-Sum Distinguisher for
SPONGENT-88,” in Proceedings of the 2015 International Conference
on Electromechanical Control Technology and Transportation.
Atlantis Press, 2015/11, pp. 582–587. [Online]. Available:
https://doi.org/10.2991/icectt-15.2015.111

[157] L. Sun, W. Wang, and M. Wang, “Milp-aided bit-based division property
for primitives with non-bit-permutation linear layers,” IACR Cryptol.
ePrint Arch., vol. 2016, p. 811, 2016.

[158] L. Perrin and D. Khovratovich, “Collision spectrum, entropy loss, t-
sponges, and cryptanalysis of gluon-64,” in Fast Software Encryption,
C. Cid and C. Rechberger, Eds. Berlin, Heidelberg: Springer Berlin
Heidelberg, 2015, pp. 82–103.

[159] C. Dobraunig, F. Mendel, and M. Schläffer, “Differential Cryptanalysis
of SipHash,” in Selected Areas in Cryptography – SAC 2014, A. Joux
and A. Youssef, Eds. Cham: Springer International Publishing, 2014,
pp. 165–182.

[160] W. Xin, Y. Liu, B. Sun, and C. Li, “Improved cryptanalysis on siphash,”
in Cryptology and Network Security, Y. Mu, R. H. Deng, and X. Huang,
Eds. Cham: Springer International Publishing, 2019, pp. 61–79.

[161] B. Hayat Susanti, M. Rakha Rafi Bayhaqi, and M. W. Ardyani, “Correct-
ing block attack on the 32-bit reduced neeva,” in 2020 1st International
Conference on Information Technology, Advanced Mechanical and Elec-
trical Engineering (ICITAMEE), Oct 2020, pp. 85–90.

[162] A. F. Gutiérrez, G. Leurent, M. Naya-Plasencia, L. Perrin, A. Schrot-
tenloher, and F. Sibleyras, “New results on Gimli: full-permutation dis-
tinguishers and improved collisions,” Cryptology ePrint Archive, Report
2020/744, 2020.

[163] A. Flórez Gutiérrez, G. Leurent, M. Naya-Plasencia, L. Perrin, A. Schrot-
tenloher, and F. Sibleyras, “New Results on Gimli: Full-Permutation
Distinguishers and Improved Collisions,” in Advances in Cryptology –
ASIACRYPT 2020, S. Moriai and H. Wang, Eds. Cham: Springer
International Publishing, 2020, pp. 33–63.

[164] F. Liu, T. Isobe, and W. Meier, “Exploiting weak diffusion of
gimli: Improved distinguishers and preimage attacks,” Cryptology
ePrint Archive, Paper 2020/561, 2020, https://eprint.iacr.org/2020/561.
[Online]. Available: https://eprint.iacr.org/2020/561

[165] ——, “Exploiting weak diffusion of gimli: Improved distinguishers
and preimage attacks,” IACR Transactions on Symmetric Cryptology,
vol. 2021, no. 1, p. 185–216, Mar. 2021. [Online]. Available:
https://tosc.iacr.org/index.php/ToSC/article/view/8837

[166] ——, “Preimages and collisions for up to 5-round gimli-hash us-
ing divide-and-conquer methods,” Cryptology ePrint Archive, Report
2019/1080, 2019, https://ia.cr/2019/1080.

[167] ——, “Automatic Verification of Differential Characteristics: Application
to Reduced Gimli,” in Advances in Cryptology – CRYPTO 2020, D. Mic-
ciancio and T. Ristenpart, Eds. Cham: Springer International Publishing,
2020, pp. 219–248.

[168] Y. Liu, Y. Sasaki, L. Song, and G. Wang, “Cryptanalysis of reduced sliscp
permutation in sponge-hash and duplex-AE modes,” in International
Conference on Selected Areas in Cryptography. Springer, 2018, pp.
92–114.

[169] L. Kraleva, R. Posteuca, and V. Rijmen, “Cryptanalysis of the permuta-
tion based algorithm spoc,” in Progress in Cryptology – INDOCRYPT
2020, K. Bhargavan, E. Oswald, and M. Prabhakaran, Eds. Cham:
Springer International Publishing, 2020, pp. 273–293.

[170] J. Liu, G. Liu, and L. Qu, “A new automatic tool searching for impossible
differential of nist candidate ace,” Mathematics, vol. 8, no. 9, p. 1576,
Sep 2020. [Online]. Available: http://dx.doi.org/10.3390/math8091576

[171] R. Zong, X. Dong, and X. Wang, “Collision Attacks on Round-Reduced
Gimli-Hash/Ascon-Xof/Ascon-Hash,” Cryptology ePrint Archive, Re-
port 2019/1115, 2019.

[172] C. Tezcan, “Analysis of ascon, drygascon, and shamash permutations,”
International Journal of Information Security Science, vol. 9, no. 3, pp.
172–187, 2020.

[173] K. Ramezanpour, A. Abdulgadir, W. Diehl, J.-P. Kaps,
and P. Ampadu, “Active and passive side-channel key
recovery attacks on ascon,” 2020. [Online]. Available:
https://csrc.nist.gov/CSRC/media/Events/lightweight-cryptography-
workshop-2020/documents/papers/active-passive-recovery-attacks-
ascon-lwc2020.pdf

[174] W. Zhang, T. Ding, C. Zhou, and F. Ji, “Security
analysis of knot-aead and knot-hash,” 2020. [Online].
Available: https://csrc.nist.gov/CSRC/media/Events/lightweight-
cryptography-workshop-2020/documents/papers/security-analysis-of-
KNOT-lwc2020.pdf

[175] C. Tezcan, “Analysis of ascon, drygascon, and shamash
permutations,” Cryptology ePrint Archive, Paper 2020/1458,
2020, https://eprint.iacr.org/2020/1458. [Online]. Available:
https://eprint.iacr.org/2020/1458

[176] H. Liang, S. Mesnager, and M. Wang, “Cryptanalysis of the aead and hash
algorithm drygascon,” Cryptography and Communications, vol. 14, no. 3,
pp. 597–625, 2022. [Online]. Available: https://doi.org/10.1007/s12095-
021-00542-7

SUSILA WINDARTA (Member, IEEE) received a
degree in cryptography from the National Crypto
Academy, Bogor, Indonesia, a bachelor’s degree in
information systems from Gunadarma University,
Indonesia, and a master’s degree in mathemat-
ics from the Department of Mathematics, Faculty
of Mathematics and Natural Sciences, Universi-
tas Indonesia, Depok, Indonesia. He is currently
pursuing a Ph.D. degree with the Department of
Electrical Engineering, Faculty of Engineering,

Universitas Indonesia. Since 2013, he has worked as a Lecturer in the
Department of Cyber-Security Engineering, National Cyber and Crypto
Polytechnic, Indonesia. His research interests include cryptography and
information security-related topics, especially cryptographic hash functions
and security protocols.

N. Hayati et al.: Novel Secure Root Key Updating Scheme for LoRaWANs Based on CTR_AES DRBG 128

[47] M. Aljohani, I. Ahmad, M. Basheri, and M. O. Alassafi,
‘‘Performance analysis of cryptographic pseudorandom number
generators,’’ IEEE Access, vol. 7, pp. 39794–39805, 2019, doi:
10.1109/ACCESS.2019.2907079.

[48] V. T. Hoang and Y. Shen, ‘‘Security analysis of NIST CTR-DRBG,’’
in Advances in Cryptology-CRYPTO, vol. 12170, D. Micciancio and
T. Ristenpart, Eds. Cham, Switzerland: Springer, 2020, pp. 218–247, doi:
10.1007/978-3-030-56784-2_8.

[49] J. Woodage and D. Shumow, ‘‘An analysis of NIST SP 800-90A,’’ in Proc.
Annu. Int. Conf. Theory Appl. Cryptograph. Techn., 2019, pp. 151–180.

[50] S. Cohney, A. Kwong, S. Paz, D. Genkin, N. Heninger, E. Ronen, and
Y. Yarom, ‘‘Pseudorandom black swans: Cache attacks on CTR_DRBG,’’
in Proc. IEEE Symp. Secur. Privacy (SP), San Francisco, CA, USA,
May 2020, pp. 1241–1258, doi: 10.1109/SP40000.2020.00046.

[51] C. Boyd, A. Mathuria, and D. Stebila, Protocols for Authentication and
Key Establishment. Berlin, Germany: Springer, 2020, doi: 10.1007/978-3-
662-58146-9.

[52] E. Barker, Recommendation for Key Management Part 1: General,
Standard NIST SP 800-57pt1r4, National Institute of Standards and Tech-
nology, Jan. 2016, doi: 10.6028/NIST.SP.800-57pt1r4.

[53] Advanced Encryption Standard (AES), Standard FIPS 197, 2001.
[54] N. Hayati, K. Ramli, M. Suryanegara, and Y. Suryanto, ‘‘Potential devel-

opment of AES 128-bit key generation for LoRaWAN security,’’ in Proc.
2nd Int. Conf. Commun. Eng. Technol. (ICCET), Nagoya, Japan, Apr. 2019,
pp. 57–61, doi: 10.1109/ICCET.2019.8726884.

[55] D. M. Haahr. (1998). Premier Business Centres, 8 Dawson
Street Dublin 2, D02 N767, Ireland: Randomness and Integrity
Services Ltd. Accessed: Sep. 25, 2021. [Online]. Available:
https://www.random.org/bytes/

[56] T. Symul, S. M. Assad, and P. K. Lam, ‘‘Real time demonstration of
high bitrate quantum random number generation with coherent laser
light,’’ Appl. Phys. Lett., vol. 98, no. 23, Jun. 2011, Art. no. 231103, doi:
10.1063/1.3597793.

[57] C. Kenny. (Apr. 2005). Random Number Generators: An Evaluation
and Comparison of Random.org and Some Commonly Used Generators.
Accessed: Sep. 25, 2021. [Online]. Available: https://www.random.org/
analysis/Analysis2005.pdf

[58] L. Bassham, A. Rukhin, J. Soto, J. Nechvatal, M. Smid, S. Leigh,
M. Levenson, M. Vangel, N. Heckert, and D. Banks, ‘‘A sta-
tistical test suite for random and pseudorandom number genera-
tors for cryptographic applications,’’ Nat. Inst. Standards Technol.,
Gaithersburg, MD, USA, Tech. Rep. Special Publication (NIST SP) -
800-22 Rev 1a, 2010. Accessed: Nov. 11, 2021. [Online]. Available:
https://tsapps.nist.gov/publication/get_pdf.cfm?pub_id=906762

[59] Z. êíha and M. S˝s. Fast_NIST_STS_v6.0.1. Accessed: Dec. 1, 2021.
[Online]. Available: https://randomness-tests.fi.muni.cz

[60] M. S˝s and Z. Z.êíha, ‘‘Faster randomness testing with the NIST statistical
test suite,’’ in Security, Privacy, and Applied Cryptography Engineering,
vol. 8804, R. S. Chakraborty, V. Matyas, and P. Schaumont, Eds. Cham,
Switzerland: Springer, 2014, pp. 272–284, doi: 10.1007/978-3-319-12060-
7_18.

[61] M. S˝s, Z. êíha, and V. Matyá≤, ‘‘Algorithm 970: Optimizing the NIST
statistical test suite and the Berlekamp–Massey algorithm,’’ ACM Trans.
Math. Softw., vol. 43, no. 3, pp. 1–11, Jan. 2017, doi: 10.1145/2988228.

[62] M. S˝s, Z. êíha, V. Matyá≤, K. Márton, and A. Suciu, ‘‘On the interpreta-
tion of results from the NIST statistical test suite,’’ ROMJIST J., vol. 18,
no. 1, pp. 18–23, 2015.

[63] C. J. F. Cremers, ‘‘The Scyther tool: Verification, falsification, and analysis
of security protocols,’’ inComputer Aided Verification, vol. 5123, A. Gupta
and S. Malik, Eds. Berlin, Germany: Springer, 2008, pp. 414–418, doi:
10.1007/978-3-540-70545-1_38.

[64] M. Eldefrawy, I. Butun, N. Pereira, and M. Gidlund, ‘‘Formal security
analysis of LoRaWAN,’’ Comput. Netw., vol. 148, pp. 328–339, Jan. 2019,
doi: 10.1016/j.comnet.2018.11.017.

[65] K.-L. Tsai, F.-Y. Leu, L.-L. Hung, and C.-Y. Ko, ‘‘Secure session
key generation method for LoRaWAN servers,’’ IEEE Access, vol. 8,
pp. 54631–54640, 2020, doi: 10.1109/ACCESS.2020.2978100.

[66] C. Cremers and S. Mauw, Operational Semantics and Verification of
Security Protocols. Berlin, Germany: Springer, 2012, doi: 10.1007/978-
3-540-78636-8.

[67] F. A. Putra, K. Ramli, N. Hayati, and T. S. Gunawan, ‘‘PURA-SCIS
protocol: A novel solution for cloud-based information sharing protection
for sectoral organizations,’’ Symmetry, vol. 13, no. 12, p. 2347, Dec. 2021,
doi: 10.3390/sym13122347.

[68] C. J. F. Cremers, ‘‘Scyther: Semantics and verification of security proto-
cols,’’ Technische Univ. Eindhoven, Eindhoven, The Netherlands, 2006.
Accessed: Nov. 21, 2021, doi: 10.6100/IR614943.

[69] LoRa Alliance Technical Committee Regional Parameters Workgroup,
LoRa Alliance, Inc. (Jan. 2018). LoRaWANTM 1.1 Regional
Parameters. Revision: B, LoRa Alliance, Inc. Accessed: Aug. 21, 2021.
[Online]. Available: https://iotas.ru/files/documents/LoRaWAN%20
Regional%20Parameters%20v1.1rB.pdf

NUR HAYATI (Member, IEEE) received the
bachelor’s degree in applied science from the
Politeknik Elektronika Negeri Surabaya as a
telecommunication engineering major, in 2010,
and the master’s degree in computer engineering
from the Universitas Indonesia, in 2015, where
she is currently pursuing the Ph.D. degree. She
is an Electrical Engineering Lecturer for under-
graduate students with the Faculty of Engineer-
ing, Universitas Muhammadiyah Yogyakarta. Her

research interests include embedded systems, computer networks, and the
IoT security.

KALAMULLAH RAMLI (Member, IEEE)
received the master’s degree in telecommunication
engineering from the University of Wollongong,
Wollongong, NSW, Australia, in 1997, the Ph.D.
degree in computer networks from the Universitaet
Duisburg–Essen (UDE), NRW, Germany, in 2000,
and the Ph.D. degree, in 2003. He has been a
Lecturer at the Universitas Indonesia (UI), since
1994, and a Professor of computer engineering,
since 2009. The government of Indonesia has

awarded him several competitive research grants and international collab-
orative grants with UDE and UI. He currently teaches advanced commu-
nication networks, embedded systems, object-oriented programming, and
engineering and entrepreneurship. His research interests include embedded
systems, information and data security, computers and communications,
and biomedical engineering. He is a prolific author, having published over
123 journals/conference papers and having written four books.

SUSILA WINDARTA (Member, IEEE) received
the degree in cryptography from the National
Crypto Academy, Bogor, Indonesia, the bachelor’s
degree in information systems from Gunadarma
University, Indonesia, and the master’s degree
in mathematics from the Department of Mathe-
matics, Faculty of Mathematics and Natural Sci-
ences, Universitas Indonesia, Depok, Indonesia.
He is currently pursuing the Ph.D. degree with the
Department of Electrical Engineering, Faculty of

Engineering, Universitas Indonesia. Since 2013, he has been working as
a Lecturer with the Department of Cyber-Security Engineering, National
Cyber and Crypto Polytechnic, Indonesia. His research interests include
cryptography and information security-related topics, especially crypto-
graphic hash functions and security protocols.

MUHAMMAD SURYANEGARA (Senior
Member, IEEE) received the bachelor’s degree
in electrical engineering from the Universitas
Indonesia, in 2003, the master’s degree from Uni-
versity College London, London, U.K., in 2004,
and the Ph.D. degree from the Tokyo Institute
of Technology, Japan, in 2011. He is currently
an Associate Professor of telecommunications
management with the Universitas Indonesia. He is
also a Lecturer with the Graduate Program in

Telecommunications Management, part of the Department of Electrical
Engineering, Universitas Indonesia. He has publishedmore than 70 academic
articles as a main author or coauthor. He is the principal investigator in the
research area of ICT policy and technology management, the IoT, 4G/5G,
and wireless communication technology, concerning both technical research
and regulatory aspects. He engaged in international regulatory activities,
among others, as a Drafting Group Chairman of the Asia Pacific Telecom-
munity (APT) Preparatory Group for ITU’s World Radiocommunications
Conference (WRC-15) and WRC-19.

VOLUME 10, 2022 18819

KALAMULLAH RAMLI (Member, IEEE) re-
ceived a master’s degree in telecommunication
engineering from the University of Wollongong,
Wollongong, NSW, Australia, in 1997 and a Ph.D.
degree in computer networks from the Universitaet
Duisburg-Essen (UDE), NRW, Germany, in 2003.
He has been a Lecturer at the Universitas Indone-
sia (UI) since 1994 and a Professor of Computer
Engineering since 2009. He currently teaches ad-
vanced communication networks, embedded sys-

tems, object-oriented programming, and engineering and entrepreneurship.
His research interests include embedded systems, information and data
security, computers and communication, and biomedical engineering. He is
a prolific author, with more than 125 journals/conference papers and eight
books/book chapters published.

VOLUME 4, 2016 23

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2022.3195572

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

Windarta et al.: Lightweight Cryptographic Hash Functions: Design Trends, Comparative Study , and Future Directions

Suryadi (Member, IndoMS) received a B.S degree in Mathematics from the Faculty of
Mathematics and Natural Sciences, Universitas Indonesia, Indonesia, 1990, a Master's
degree in informatics engineering from Institute Technology Bandung, Indonesia, 1998,
and a Ph.D. degree from Department of Electrical and Computer Engineering,
Universitas Indonesia, Indonesia 2013. Lecturer (Associate Professor) in Department of
Mathematics, Faculty of Mathematics and Natural Sciences Universitas Indonesia, and
Department of electrical engineering Universitas Indonesia. His research interest is
information security, cryptography, and computational mathematics. He is an author and
co-author, has published over 30 papers in leading international journals and
conferences, and has written two books and contributed to one book chapter.

SURYADI SURYADI (Member, IndoMS) re-
ceived a B.S. degree in mathematics from the Fac-
ulty of Mathematics and Natural Sciences, Univer-
sitas Indonesia, Indonesia, 1990, a master’s degree
in informatics engineering from Institute Technol-
ogy Bandung, Indonesia, 1998, and a Ph.D. degree
from the Department of Electrical and Computer
Engineering, Universitas Indonesia, Indonesia, in
2013. They have been a Lecturer (Associate Pro-
fessor) in the Department of Mathematics, Faculty

of Mathematics and Natural Sciences Universitas Indonesia, and the Depart-
ment of Electrical Engineering, Universitas Indonesia. His research interests
include information security, cryptography, and computational mathematics.
He is an author and coauthor, has published over 30 papers in leading
international journals and conferences, and has written two books and
contributed to one book chapter.

E-mail mailto:b.pranggono@shu.ac.uk

1142252657 tel:1142252657

About

BERNARDI PRANGGONO (Senior Member,
IEEE) Dr. Bernardi Pranggono is currently a Se-
nior Lecturer in the Department of Engineering
and Mathematics, Sheffield Hallam University. Dr.
Pranggono received his B. Eng. degree in elec-
tronics and telecommunication engineering from
Waseda University, Japan, an M. DigComms de-
gree in digital communications from Monash Uni-
versity, Australia, and a Ph.D. degree in electron-
ics and electrical engineering from the University

of Leeds, UK. He has previously held academic and research positions
at Glasgow Caledonian University, Queen’s University Belfast, and the
University of Leeds. He has held industrial positions at Oracle, Pricewater-
houseCoopers, Accenture, and Telstra. His current research interests include
cybersecurity, the Internet of Things, cloud computing, and green ICT. He
is an associate editor of Frontiers of Computer Science and Frontiers in
Communications and Networks. Dr. Pranggono is a Fellow of the Higher
Education Academy (HEA) and a Senior Member of the Institute of Electri-
cal and Electronics Engineers (IEEE).

TEDDY SURYA GUNAWAN (Senior Member,
IEEE) Teddy Surya Gunawan received his BEng
degree in Electrical Engineering with cum laude
award from Institut Teknologi Bandung (ITB),
Indonesia in 1998. He obtained his M.Eng degree
in 2001 from the School of Computer Engineering
at Nanyang Technological University, Singapore,
and PhD degree in 2007 from the School of Elec-
trical Engineering and Telecommunications, The
University of New South Wales, Australia. His

research interests are in speech and audio processing, biomedical signal
processing and instrumentation, image and video processing, and parallel
computing. He is currently an IEEE Senior Member (since 2012), was
chairman of IEEE Instrumentation and Measurement Society – Malaysia
Section (2013 and 2014), Professor (since 2019), Head of Department
(2015-2016) at Department of Electrical and Computer Engineering, and
Head of Programme Accreditation and Quality Assurance for Faculty of
Engineering (2017-2018), International Islamic University Malaysia. He
is Chartered Engineer (IET, UK) and Insinyur Profesional Madya (PII,
Indonesia) since 2016 (upgraded to Insinyur Profesional Utama since 2021),
registered ASEAN engineer since 2018, and ASEAN Chartered Profesional
Engineer since 2020.

24 VOLUME 4, 2016

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2022.3195572

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

