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Abstract. We characterize the existence of the maximum likelihood estimator for discrete
exponential family on finite set. Our criterion is simple to apply as we show in various
settings, most notably for exponential models of random graphs. As an application, we point
out the size of independent identically distributed samples for which the maximum likelihood
estimator exists with high probability.

1. Introduction and preliminaries

Exponential families are of paramount importance in probability and statistics. They were
introduced by Fisher, Pitman, Darmois and Koopman in 1934-36 and have many properties
that make them indispensable in theory and applications, see Lehmann and Casella (1998,
Section 2.7), Barndorff-Nielsen (1978, Chapter 9), Andersen (1970), Diaconis (1988, Chapter
9.E), Diaconis and Freedman (1984), and Lauritzen (1984). In this paper we study discrete
exponential families, more specifically, exponential families on finite sets, and give a new
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characterization of the existence of the maximum likelihood estimator (MLE) for exponential
family and the data at hand. We also present applications, in particular for specific exponential
families we give a threshold of the sample size sufficient for the existence of MLE with high
probability for i.i.d. samples.

The computation of MLE is in general difficult with the number of variables increasing. On
the other hand, for given data and an exponential family, MLE may fail to exist. In particular,
Crain (1974, 1976) pointed out to problems with the maximum likelihood estimation when
the number of parameters is too large for the sample size. He also gave a sufficient condition
for MLE to exist almost surely – the Haar condition.

A complete characterization of the existence of MLE for rather general exponential families
was given by Barndorff-Nielsen. Namely, by Barndorff-Nielsen (1978, Theorem 9.13), MLE
for a sample and an exponential family exists if and only if the vector of the sample means
calculated for a basis of the linear space of exponents belongs to the interior of the convex
hull of the pointwise range of the basis.

This beautiful criterion is alas cumbersome to apply. Therefore, Jacobsen (1989) gives
an alternative condition for discrete exponential families, together with applications to Cox
regression, logistic regression and multiplicative Poisson models. Similar condition is presented
by Albert and Anderson (1984) for log-linear model. Haberman (1974) gives a characterization
of the existence of MLE for hierarchical log-linear models. His conditions can be interpreted
in terms of polytope geometry, see also Eriksson et al. (2006), and Fienberg and Rinaldo
(2012). Brown (1986) characterizes the existence of MLE when the log-partition function is
steep and regularly convex, and interprets the problem of finding MLE as the optimization
of the Kullback-Leibler divergence. Darroch et al. (1980) connect the properties of MLE in
decomposable models with graph-theoretical notions, thus starting the theory of graphical
models in statistics. Sufficient conditions for the existence of MLE in specific exponential
families are also given by Stone (1990) and Bogdan and Ledwina (1996). Geyer (1990) looks
for MLE in the closure of convex exponential families, relates the existence of MLE with
the linear programming feasibility problem, and in the case of nonexistent MLE, reduces
the considered exponential family until MLE exists for the family. He also applies MCMC
algorithms to calculate MLE. A comparison between the conditions of Barndorff-Nielsen and
Jacobsen is discussed in Konis (2007). In addition, Konis presents an implementation of
Jacobsen’s test using linear programming. A broad survey of the history of log-linear models
and further motivation for the study of the existence of MLE can be found in Fienberg and
Rinaldo (2007, 2012).

The main inspiration for our work is Bogdan and Bogdan (2000, Theorem 2.3) on the exis-
tence of MLE for exponential families of continuous functions on finite interval. In Theorem 2.2
below we propose a similar characterization, which is new in the setting of discrete exponential
families. We obtain the result by a straightforward, self-contained approach, which does not
depend on the delicate convex analysis of Barndorff-Nielsen (1978).

The paper is composed as follows. In Section 2 we state and prove our criterion, using the
notion of set of uniqueness. The criterion is restated in Section 2.2 as a linear programming
problem. In Section 3 we give applications to exponential families spanned by Rademacher and
Walsh functions, and to exponential families of random graphs. In particular we give sharp
or plain thresholds for the sample size to secure the existence of MLE with high probability.
In Appendix A we give auxiliary results and reformulations of our criterion and pin down its
connections with the criterion of Barndorff-Nielsen.
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1.1. Discrete exponential family. Consider a finite set X 6= ∅ and weight function µ : X →
(0,∞). As usual, RX is the family of all the real-valued functions on X . For φ ∈ RX we
define the partition and the log-partition functions,

Z(φ) =
∑
x∈X

eφ(x)µ(x), ψ(φ) = logZ(φ), (1.1)

respectively, and the exponential density

p = e(φ) = eφ−ψ(φ) = eφ/Z(φ). (1.2)

Clearly, p > 0 and
∑

x∈X p(x)µ(x) = 1. For arbitrary real number c we have ψ(φ+c) = ψ(φ)+c,
hence

e(φ+ c) = e(φ). (1.3)

Moreover, for φ1, φ2 ∈ RX we have e(φ1) = e(φ2) if and only if φ1 − φ2 is constant. Consider
x1, . . . , xn ∈ X , a sample. For φ ∈ RX we denote, as usual,

φ̄ =
1

n

n∑
i=1

φ (xi).

The likelihood function of p = e(φ) is defined as

Le(φ) (x1, . . . , xn) = Lp (x1, . . . , xn) =
n∏
i=1

p(xi),

and the log-likelihood function is

le(φ) (x1, . . . , xn) := logLe(φ) (x1, . . . , xn) = n
(
φ̄− ψ (φ)

)
. (1.4)

Of course, for every c ∈ R we have

le(φ+c)(x1, . . . , xn) = le(φ)(x1, . . . , xn). (1.5)

We note that the likelihood functions are uniformly bounded. Indeed, for every φ ∈ RX ,

ψ(φ) = log
∑
x∈X

eφ(x)µ(x) ≥ max
X

φ+ min
X

logµ, (1.6)

and so by (1.4) and (1.6),

le(φ) (x1, . . . , xn) ≤ −nmin
X

logµ and Le(φ) (x1, . . . , xn) ≤ (min
X

µ)−n. (1.7)

We fix a linear subspace B ⊂ RX . The exponential family spanned by B is

e(B) := {p = e(φ) : φ ∈ B}. (1.8)

Since X is a finite set, e(B) will be called discrete exponential family (we do not consider
infinite countable sets, for which see Jacobsen (1989)).
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We call p̂ ∈ e(B) an MLE for x1, . . . , xn and e(B) if

Lp̂ (x1, . . . , xn) = sup
p∈e(B)

Lp (x1, . . . , xn) ,

or, equivalently,

lp̂ (x1, . . . , xn) = sup
p∈e(B)

lp (x1, . . . , xn) .

The following result is well known (see, e.g., Johansen (1979, Theorem 2.1) or Diaconis
(1988, p. 177)), but for the reader’s convenience we give a proof in Appendix A.1.

Lemma 1.1. If MLE exists, then it is unique.

Despite the boundedness (1.7), MLE may fail to exist, as shown by the following example.

Example 1.2. Let X = {0, 1}, µ ≡ 1, B = RX , n = 1 and x1 = 1. Let a, b ∈ R and
φ = a + b1{1}. Then Z(φ) = ea(1 + eb), e(φ) = eb1{1}/(1 + eb), and Le(φ)(x1) = e(φ)(1) =

eb/(1 + eb). Thus, supLe(φ)(x1) = 1, but the supremum is not attained for any a, b ∈ R, so
MLE does not exist in this case. On the other hand, if n = 3, x1 = x2 = 0, and x3 = 1,
then Le(φ)(x1, x2, x3) = eb/(1 + eb)3. By calculus, the maximum is attained when eb = 1/2,
therefore p̂ = (2− 1{1})/3 is the MLE in this case.

We note that the first supremum in Example 1.2 is approached when b → ∞, or for the
density p = 1{1}, which, however, is not in e(RX ) but rather in e(R{1}). Below in Theorem 2.2
we characterize the situation when the genuine MLE exists, and in Theorem 2.6 we treat, by
a suitable reduction of X , the case when the supremum of the likelihood function is ‘’attained
at infinity”. Before we proceed, we owe the reader some comments on the notation used in
this paper and in the literature.

1.2. Alternative setting. Let d be a natural number. Consider a nonempty finite set S ⊂
Rd, weight m on S and the linear space spanned by the coordinate functions on Rd. The
corresponding exponential densities have the form

πθ(y) = eθ·y/ζ(θ), y ∈ S, (1.9)

where θ ∈ Rd, · is the scalar product in Rd and ζ(θ) =
∑

y∈S e
θ·ym(y). Thus, (1.9) is a

natural, or standard, exponential family, see Letac (1992) or Brown (1986). Since the range
of the vector of parameters θ is the whole of Rd, which is open, the exponential family (1.9)
is regular, see Lauritzen (1996, Appendix D.1). The setting is actually generic, as we explain
momentarily. If functions φ1, . . . , φd span the linear space B in the general discussion above
and we let T (x) = (φ1(x), . . . , φd(x)) for x ∈ X , then for every φ ∈ B there is θ ∈ Rd such
that φ(x) = θ · T (x) for x ∈ X , and

e(φ) = eθ·T /Z(θ · T ). (1.10)

This is the form used by most authors, see Lauritzen (1996) or Johansen (1979), and T is called
the canonical statistics. Furthermore, we let S = T (X ) ⊂ Rd and m(y) =

∑
x:T (x)=y µ(x) for

y ∈ S. With the notation of (1.9) and (1.10) we have

πθ(y) = e(φ)(x) if T (x) = y. (1.11)

If x1, . . . , xn ∈ X is the sample and we denote y1 = T (x1), . . . , yn = T (xn), then the corre-
sponding likelihoods are equal, too. Therefore πθ̂ is the maximum likelihood estimator for
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y1, . . . , yn and {πθ, θ ∈ Rd} if and only if e(θ̂ · T ) is the maximum likelihood estimator for
x1, . . . , xn and {e(φ), φ ∈ B}. This makes a complete connection between our setting and
the setting of natural exponential families with finite support S. The same setting of discrete
exponential families on finite set is described, using slightly different language, in Sullivant
(2018, §6.2). We also recall that if φ1, . . . , φd are affinely independent, then the representation
(1.10) is minimal, see Johansen (1979, Chapter 1) or Lauritzen (1996), where the affine inde-
pendence means that θ · T = const implies θ = 0. In general, one allows the representation to
be nonminimal because over-parametrization is often natural in applications. We shall return
to this discussion again in Section A.6, but for now we get back to the setting of B and (1.8).
The latter allows to work without coordinates and benefit from properties of specific linear
spaces B, which could otherwise be obscured by an arbitrary choice of T and S.

2. Main results

Let 1 denote the function on X identically equal to 1. Assume that 1 ∈ B. This entails no
restriction on the considered exponential families e(B), but allows an elegant formulation of
the criterion of existence of MLE in terms of B, in fact in terms of the cone of nonnegative
functions in B:

B+ := {φ ∈ B : φ ≥ 0}.
We note in passing that Appendix A.6 gives a reformulation of our criterion for the existence
of MLE without requiring that 1 ∈ B.

Let U ⊂ X . We say that U is a set of uniqueness for B if φ = 0 is the only function in
B such that φ = 0 on U . Similarly, we say that U is a set of uniqueness for B+ if φ = 0 is
the only function in B+ such that φ = 0 on U . Put differently, U is of uniqueness for B+ if
the conditions φ ∈ B+ and φ = 0 on U imply that φ = 0 on X . Of course, if U is a set of
uniqueness for B, then U is a set of uniqueness for B+.

Example 2.1. Let X = {−2,−1, 0, 1, 2} ⊂ R. Let B denote the class of all real functions on
X that are of the form a + bx on {−2,−1, 0} and a + cx on {0, 1, 2} with some a, b, c ∈ R.
Then {−1, 2} is a set of uniqueness for B+ but {−2, 2} is not. We also observe that {−1, 2}
is not a set of uniqueness for B, so the nonnegativity of functions in B+ plays a role here.

Being a set of uniqueness is a monotone property in the sense that every set larger than a
set of uniqueness is also of uniqueness. Furthermore, if U is a set of uniqueness for B+ and A
is a linear subspace of B, then U is of uniqueness for A+.

The following is a crucial definition: For U ⊂ X and φ ∈ B we let

λU (φ) = max
X

φ−min
U
φ.

Here is our characterization of the existence of MLE for discrete exponential families.

Theorem 2.2. MLE for e(B) and x1, . . . , xn ∈ X exists if and only if {x1, . . . , xn} is of
uniqueness for B+.

Proof : Let us start with the “only if” part. If U = {x1, . . . , xn} is not a set of uniqueness for
B+, then there is a nonzero function f ∈ B+ such that f(x1) = . . . = f(xn) = 0. Let φ ∈ B
be arbitrary. Let ϕ = φ − f . We have ϕ̄ = φ̄, but ψ(ϕ) < ψ(φ), where ψ is defined in (1.1).
So, by (1.4), le(φ) (x1, . . . , xn) < le(ϕ) (x1, . . . , xn). Therefore no φ ∈ B is MLE for x1, . . . , xn.
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To prove the other implication, we let U be a set of uniqueness for B+. By (1.4) for ϕ ∈ B,

le(ϕ)(x1, . . . , xn) = n (ϕ− ψ (ϕ)) ≤ n
(

1

n

(
min
U
ϕ+ (n− 1) max

X
ϕ

)
− ψ (ϕ)

)
.

Let C = minx∈X logµ(x). By (1.6), (1.5),

le(ϕ) (x1, . . . , xn) ≤ min
U
ϕ+ (n− 1) max

X
ϕ− nmax

X
ϕ− nC

= −λU (ϕ)− nC → −∞,

as λU (ϕ) → ∞. By Lemma A.1, λU (ϕ) → ∞ if λX (ϕ) → ∞. In particular, there exists
M > 0 such that if λX (ϕ) > M , then

le(ϕ)(x1, . . . , xn) < le(0)(x1, . . . , xn) = −n logµ(X ).

By (1.5) and continuity, the maximum of le(ϕ)(x1, . . . , xn) is attained on the compact set
{ϕ ∈ B : 0 ≤ ϕ ≤M}. �

The above proof is different from that of Bogdan and Bogdan (2000, Theorem 2.3), Barndorff-
Nielsen (1978, Theorem 9.13) and Sullivant (2018, Theorem 8.2.1); the use of λU makes our
arguments more direct.

Remark 2.3. By Theorem 2.2 we see that the existence of MLE depends on the sequence
(x1, . . . , xn) only through the set {x1, . . . , xn}. Furthermore, the existence of MLE does not
depend on µ, i.e., we may take constant µ without loosing generality. Summarizing, the
existence of MLE depends only on B and the set {x1, . . . , xn}. Of course, the actual MLE,
say p̂, does depend on the sequence (x1, . . . , xn), the weight µ and B.

2.1. Nonexistence of MLE. In this section we elaborate on the case of nonexistence of MLE
in the spirit of Geyer (1990). To this end we fix x1, . . . , xn ∈ X and assume that there is a
nontrivial δ ∈ B+ such that δ(x1) = . . . = δ(xn) = 0. By Theorem 2.2, supp∈e(B) lp (x1, . . . , xn)

is not attained at any p ∈ e(B). However, the supremum is “attained at infinity”, in fact for
an exponential density on a proper subset of the state space X . Indeed, fix δ as above. If
ϕ ∈ B and k ∈ (0,∞), then

le(ϕ)(x1, . . . , xn) ≤ le(ϕ−kδ)(x1, . . . , xn),

see the first part of the proof of Theorem 2.2. Furthermore,

ψ (ϕ− kδ)→ log
∑

x∈X :δ(x)=0

eϕ(x)µ(x), as k →∞. (2.1)

We let X̃ = {x ∈ X : δ(x) = 0} and carrying on with the notation for X̃ we obtain measure
µ̃, linear space B̃ with cone B̃+, log-partition function ψ̃, likelihood function L̃, log-likelihood
function l̃ and exponential family e(B̃). Put simpler, we discard {x ∈ X : δ(x) > 0} and
achieve the following reduction.

Lemma 2.4. sup
p̃∈e(B̃) l̃p̃ (x1, . . . , xn) = supp∈e(B) lp (x1, . . . , xn).

Proof : For φ ∈ B we let φ̃ = φ|X̃ . Since {x1, . . . , xn} ⊂ X̃ ,

φ̃ =
1

n

n∑
i=1

φ̃(xi) =
1

n

n∑
i=1

φ(xi) = φ. (2.2)
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Furthermore,

ψ(φ) = log

(∑
x∈X

eφ(x)µ(x)

)
≥ log

∑
x∈X̃

eφ(x)µ(x)

 = ψ̃(φ̃).

Thus φ− ψ(φ) ≤ φ̃− ψ̃(φ̃), and so

sup
p∈e(B)

lp(x1, . . . , xn) ≤ sup
p̃∈e(B̃)

l̃p̃(x1, . . . , xn).

Let δ ∈ B+ and k be as in (2.1). Using (2.1) and (2.2),

le(φ−kδ)(x1, . . . , xn)→ l̃
e(φ̃)

(x1, . . . , xn), as k →∞.

Therefore,

sup
p∈e(B)

lp(x1, . . . , xn) ≥ sup
p̃∈e(B̃)

l̃p̃(x1, . . . , xn).

�

Motivated by Lemma 2.4, we define

{x1, . . . , xn}B+ =
⋂
φ−1({0}), (2.3)

where the intersection is taken over all φ ∈ B+ such that φ(x1) = . . . = φ(xn) = 0. Thus for
all φ ∈ B+, if φ vanishes on {x1, . . . , xn}, then it vanishes on {x1, . . . , xn}B+ , and the latter is
the largest such set. Put differently, if there is δ ∈ B+ such that δ(x1) = . . . = δ(xn) = 0 but
δ(x) > 0, then x /∈ {x1, . . . , xn}B+ , and conversely. In particular, U ⊂ X is set of uniqueness
for B+ if and only if UB+ = X .

Example 2.5. In the setting of Example 2.1 we have {−2}B+ = {−2} and {−1}B+ = {−2,−1, 0}.

We note that if x 6∈ {x1, . . . , xn}B+ , then there is φ ∈ B+ such that φ = 0 on {x1, . . . , xn}
but φ(x) > 0. Since X is finite, by adding such functions we can construct δ ∈ B+ that
vanishes precisely on {x1, . . . , xn}B+ , i.e., δ−1({0}) = {x1, . . . , xn}B+ . We adopt the setting
of Lemma 2.4 with this δ, in particular with X̃ = {x1, . . . , xn}B+ , and we get the following
result.

Theorem 2.6. There is a unique p̃ ∈ e(B̃) such that l̃p̃ (x1, . . . , xn) = supp∈e(B) lp (x1, . . . , xn).

Proof : By the definition of {x1, . . . , xn}B+ and by Theorem 2.2, Lemma 1.1 and 2.4, there is
a unique p̃ ∈ e(B̃) such that

l̃p̃(x1, . . . , xn) = sup
p̂∈e(B̃)

l̃p̂(x1, . . . , xn) = sup
p∈e(B)

lp (x1, . . . , xn) .

�

Example 2.7. For the first sample in Example 1.2 we get X̃ = {x1}B+ = {1}, and p̃ = 1 on X̃ .

For more substantial applications of Theorem 2.6 we refer to Example 3.2 and Example 3.9.
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2.2. Linear programming. Before we address special spaces B, we offer the reader a down-to-
earth perspective. To start with, by a comment at the beginning of Section 2, we get the
following simple result.

Corollary 2.8. If {x1, . . . , xn} is of uniqueness for B then MLE exists for e(B) and x1, . . . , xn.

Notably, the condition in Corollary 2.8 may be verified by solving the following linear problem:

φ ∈ B,
φ(x1) = ... = φ(xn) = 0.

Indeed, {x1, . . . , xn} is of uniqueness for B if and only if the homogeneous linear system has
only the trivial solution. In contrast, Theorem 2.2 is a linear programming problem. Indeed,
{x1, . . . , xn} is of uniqueness for B+ if and only if the supremum of the (objective) function∑

x∈X φ(x) is zero for the class of functions satisfying

φ ∈ B,
φ(x1) = ... = φ(xn) = 0,

φ ≥ 0.

In this vein Rinaldo et al. (2009, Appendix C) observe that the condition of Barndorff-Nielsen
is actually a linear programming problem and make connections to the geometry (of the convex
hull of the set S in Section 1.2). The linear programming also occurs in the study of the closures
of convex exponential families Geyer (1990) or binary logistic regression models Konis (2007).
Furthermore, Wang et al. (2019) consider the linear programming in the case when MLE fails
to exist. See also Sullivant (2018) for further information on linear programming and cases
of nonexistence of MLE for discrete exponential families. Since the linear programming in
general runs in polynomial time, see Schrijver (1986), it should be the method of choice when
verifying the existence of MLE for discrete exponential families and data at hand. Having
said this, for special linear spaces B one can come across interesting mathematics, as we
demonstrate below. We also remark in passing that the linear problem in Corollary 2.8 is the
Haar condition of Crain (1976) in our setting. Quite generally, the sufficient Haar condition
of Crain for the existence of MLE is in the uniqueness of a linear problem while our necessary
and sufficient condition is in the uniqueness of a linear-programming problem. The latter is
still computationally manageable but more subtle (and optimal); see also the last sentence in
Example 2.1 for a difference between these two conditions in a very simple setting.

3. Applications

Maximization of likelihood is fundamental in estimation, model selection and testing. In
many procedures it is important to know if MLE actually exists for given data x1, . . . , xn
and the linear space of exponents B; see Fienberg and Rinaldo (2012, Introduction) for a list
of such problems. Fienberg and Rinaldo (2012) interpret the existence of MLE by using the
geometry of the polyhedral cone spanned by the rows of a specific design matrix. This result is
connected with the criterion of Barndorff-Nielsen (1978). They also inquire which parameters
are estimable when MLE is missing.

Below we show that the notion of the set of uniqueness is useful in characterizing the
existence of MLE in discrete exponential families for specific spaces B. There are two types
of results we propose:
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(1) conditions for the existence of MLE for a given sample,
(2) probability bounds for the existence of MLE for independent identically distributed

samples.
To this end let X and B be as in Section 1.1. Let X1, X2, . . . be i.i.d. random variables with
values in X . We define the random (stopping) time

νuniq = inf{n ≥ 1 : {X1, . . . , Xn} is a set of uniqueness for B+}.
We will estimate tails of the distribution of νuniq in terms of X , B and n. Typically we are
interested in uniformly distributed Xi’s: P(Xi = x) = 1/K, x ∈ X , i = 1, 2, . . ., where
K = |X |. In the setting of Theorem 2.2 we consider B = RX . We fix arbitrary µ > 0 on X ,
see Remark 2.3. Here is a trivial observation.

Lemma 3.1. MLE for e(RX ) and x1, . . . , xn exists if and only if {x1, . . . , xn} = X .

Proof : By Theorem 2.2 it is enough to verify that X is the only set of uniqueness for RX+ .
Obviously, X is a set of uniqueness for RX+ (in fact for RX ). On the other hand, if U ⊂ X
and x0 ∈ X \ U , then 1x0 vanishes on U but not on X , hence U is not of uniqueness for RX+
(neither it is for RX ). �

Example 3.2. Using notation of Section 2.1, we have UB+ = U , for every U ⊂ X . Clearly,
U ⊂ UB+ . On the other hand, using Equation (2.3), one may observe that for every x /∈ U the
function φ(x) = 1{x} ∈ B+ and φ = {0} on U , but x /∈ φ−1({0}), so UB+ ⊂ U . In particular,
{x1, . . . , xn}B+ = {x1, . . . , xn} is the new state space X̃ .

Later on we give examples which use the full strength of Theorem 2.2 and the nonnegativity
of functions in B+ therein. For now we propose a probabilistic consequence of Lemma 3.1.

Corollary 3.3. Let B = RX and K = |X |. Let X1, X2, . . . be independent random variables,
each with uniform distribution on X . Then, for every c ∈ R,

lim
K→∞

P (νuniq < K logK +Kc) = e−e
−c
.

Proof : Let νX = inf{n ≥ 1 : {X1, . . . , Xn} = X}. The random variable νX yields a connection
to the classical Coupon Collector Problem, see Erdős and Rényi (1961), and Pósfai (2010).
Namely, by Erdős and Rényi (1961),

lim
K→∞

P (νX < K logK +Kc) = e−e
−c
.

By Lemma 3.1, νX = νuniq, and the proof is complete. �

We aim to cover with large probability the whole of X by a sample of suitable size depending
on K.

Corollary 3.4. Let ε ∈ (0, 1), K = |X | and B = RX . Let X1, X2, . . . be independent random
variables, each with uniform distribution on X . If K →∞, then

P (νuniq < (1− ε)K logK)→ 0 and P (νuniq < (1 + ε)K logK)→ 1. (3.1)

Proof : By Lemma 3.1 and Corollary 3.3, for every c ∈ R we get

lim sup
K→∞

P (νuniq < (1− ε)K logK) ≤ lim sup
K→∞

P (νuniq < K logK +Kc)

= e−e
−c
.
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Thus limK→∞P (νuniq < (1− ε)K logK) = 0. The second part of (3.1) is obtained analo-
gously. �

Remark 3.5. We summarize (3.1) by saying that K logK is a sharp threshold of the sample
size for the existence of MLE for e(RX ) and uniform i.i.d. samples. Sharp thresholds are
widely used in the theory of random graphs, see Erdős and Rényi (1960, Equation 3). It is
also convenient to use them here to indicate the minimal size of i.i.d. samples that guarantees
the existence of MLE with high probability.

3.1. Rademacher functions. For k ∈ N, let us consider X = Qk := {−1, 1}k, the k-dimensional
discrete cube with, say, the uniform weight µ(χ) = 2−k, χ ∈ Qk (but see Remark 2.3). Thus,
K = |X | = 2k. For j = 1, . . . , k and χ = (χ1, . . . , χk) ∈ Qk we define the Rademacher
functions:

rj(χ) = χj ,

and we denote r0(χ) = 1. Let
Bk = Lin{r0, r1, . . . , rk}.

We define, as usual, the exponential family

e(Bk) = {e(r) : r ∈ Bk}.

Theorem 3.6. MLE for e(Bk) and x1, . . . , xn ∈ Qk exists if and only if for all j = 1, . . . , k
we have {rj(x1), . . . , rj(xn)} = {−1, 1}.

Proof : By Theorem 2.2 we only need to prove that the above condition characterizes the sets
of uniqueness for Bk+. If j ∈ {1, . . . , k} is such that rj(x1) = . . . = rj(xn) = 1, then we let
r = r0 − rj . Clearly, r ∈ Bk+ and r is not identically zero, but r(xi) = 0 for all i = 1, . . . , n.
Thus, {x1, . . . , xn} is not a set of uniqueness for Bk+. Similarly, if rj(x1) = . . . = rj(xn) = −1,
then we consider the function r = r0 + rj ∈ Bk+. For the converse implication we consider
arbitrary

r =
k∑
j=0

ajrj ∈ Bk+.

Let χ = −(sign(a1), . . . , sign(ak)), where, say, sign(0) = 1. Obviously, χ ∈ Qk, and since
r(χ) ≥ 0, we get

a0 ≥
k∑
j=1

|aj |. (3.2)

Assume that r = 0 on {x1, . . . , xn}. Let j ∈ {1, . . . , k}. There are x, x′ ∈ {x1, . . . , xn} such
that rj(x) = 1 and rj(x′) = −1. We have

0 = r(x) + r(x′) = 2a0 +
∑
i 6=j

ai[ri(x) + ri(x
′)].

It follows that
a0 ≤

∑
i 6=j
|ai|.

By (3.2), aj = 0, for every j ≥ 1. Thereby a0 = 0 and r ≡ 0. We see that {x1, . . . , xn} is a set
of uniqueness for Bk+. �



Maximum likelihood for discrete exponential families 1055

Example 3.7. Let x ∈ Qk be arbitrary. By Theorem 3.6, MLE for e
(
Bk
)
and {x,−x} exists.

We define the positive and negative half-cubes, respectively:

H+
j = {χ ∈ Qk : rj(χ) = 1}, H−j = {χ ∈ Qk : rj(χ) = −1}, j = 1, . . . , k. (3.3)

We note that Bk is also spanned by the indicator functions of half-cubes, namely 1+j =

(r0 + rj)/2 and 1−j = (r0 − rj)/2, j = 1, . . . , k.

Corollary 3.8. MLE for e(Bk) and x1, . . . , xn ∈ Qk exists if and only if {x1, . . . , xn} has a
nonempty intersection with each half-cube.

The proof of Corollary 3.8 is immediate from Theorem 3.6 and the discussion above.

Example 3.9. If MLE fails to exist for e(Bk) and x1, . . . , xn ∈ Qk, then the following analysis
may shed some light on Theorem 2.6. Let

J = {j ∈ {1, . . . , k} : {rj(x1), . . . , rj(xn)} = {−1, 1}}, J ′ = {1, . . . , k} \ J.

Since we consider the case when MLE does not exist, by Theorem 3.6, J ′ 6= ∅. For j ∈ J ′ we
let

Hj = {χ ∈ Qk : rj(χ) = rj(x1) = . . . = rj(xn)}.

Clearly, this is a half-cube, see (3.3). We will show that

{x1, . . . , xn}Bk+ =
⋂
j∈J ′

Hj . (3.4)

We note that for j ∈ J ′, rj is constant on the right-hand side of (3.4). Accordingly, the
right-hand side of (3.4) is isomorphic to {−1, 1}|J | or to Q|J |.

Now if r =
∑k

j=0 ajrj ∈ Bk+ and r(x1) = . . . = r(xn) = 0, then r =
∑

j∈J ajrj + c ≥ 0

on {−1, 1}|J |, where c = a0 +
∑

j∈J ′ ajrj(x1) is the sum of terms which are constant on⋂
j∈J ′ Hj . In the case when J = ∅, it is obvious that {x1, . . . , xn}Bk+ =

⋂
j∈J ′ Hj = {x1}, since

x1 = . . . = xn. However, if J 6= ∅, then by definition of J and Theorem 3.6 with k = |J |,
r = 0 on

⋂
j∈J ′ Hj . Thus

⋂
j∈J ′ Hj ⊂ {x1, . . . , xn}Bk+ . On the other hand, we observe that for

each j ∈ J ′, 1Hc
j

= 0 on the sample and 1Hc
j
> 0 on Hc

j , hence H
c
j ∩ {x1, . . . , xn}Bk+ = ∅ and

{x1, . . . , xn}Bk+ ⊂
⋂
j∈J ′ Hj .

By Theorem 2.6, MLE exists for e(B̃k) and x1, . . . , xn with the measure µ̃ := µ|X̃ on
X̃ :=

⋂
j∈J ′ Hj . Of course, X̃ is isomorphic with Q|J |, if we ignore the J ′ coordinates of the

points in X̃. In this way we may also think that µ̃ and x1, . . . , xn are on Q|J |. Thus, one
may calculate the supremum of the log-likelihood function for e(Bk), x1, . . . , xn and µ as the
maximum of a log-likelihood function on Q|J |. Of course, the total mass of µ̃ is a fraction of
that of µ. For instance, if µ is the uniform probability weight on Qk then µ̃ is uniform with
the total mass 2−|J

′|, which adds n|J ′| log 2 to the log-likelihood that would be obtained for
Q|J | with the uniform probability weight, see, e.g., (1.2).

Here is a probabilistic application of Theorem 3.6.



1056 Krzysztof Bogdan, Michał Bosy and Tomasz Skalski

Corollary 3.10. Let k ∈ N and X1, X2, . . . , Xn be independent random variables, each with
uniform distribution on Qk. Then,

P

(
MLE exists for e(Bk) and X1, . . . , Xn

)
=

(
1− 1

2n−1

)k
≥ 1− k

2n−1
→ 1, as n→∞.

Proof : We have P(Xi = x) = 2−k for all x ∈ Qk and i = 1, . . . , n. We let Rij = rj(Xi)
for i = 1, . . . , n and j = 1, . . . , k. Thus, P(Rij = 1) = P(Rij = −1) = 1

2 and {Rij}i,j are
independent. By Theorem 3.6,

P

(
MLE exists for e(Bk) and X1, . . . , Xn

)
=P
(
{Rij : i = 1, . . . , n} = {−1, 1} for j = 1, . . . , k

)
=

(
1− 2

2n

)k
.

Applying the Bernoulli inequality finishes the proof. �

Corollary 3.11. For k ∈ N let X1, . . . , Xn(k) be independent random variables, each with
uniform distribution on Qk. If n(k) = log2 k + b+ o(1) for some b ∈ R as k →∞, then

lim
k→∞

P

(
MLE exists for e(Bk) and X1, . . . , Xn(k)

)
= e−2

1−b
.

Proof : By Corollary 3.10,

P

(
MLE exists for e(Bk) and X1, . . . , Xn(k)

)
=

(
1− 1

k 2b−1+o(1)

)k
→ e−2

1−b
, as k →∞. (3.5)

�

Corollary 3.12. log2 k is a sharp threshold of the sample size for the existence of MLE for
e(Bk) and i.i.d. uniform samples on Qk.

Proof : Let ε ∈ (0, 1) and (the sample size) n = n(k) < (1− ε) log2 k. Then,

P (νuniq < n) ≤ P (νuniq < (1− ε) log2 k) .

For every b ∈ R by the equation in (3.5) we have

lim sup
k→∞

P (νuniq < (1− ε) log2 k) ≤ lim sup
k→∞

P (νuniq < log2 k + b)

= e−2
1−b
.

Since b is arbitrary, we conclude that lim supk→∞P (νuniq < n(k)) = 0. Analogously, for the
sample size n = n(k) > (1 + ε) log2 k we get

lim inf
k→∞

P (νuniq > n(k)) = 1,

which ends the proof. �

The above is in stark contrast to Corollary 3.4, as summarized in Remark 3.5. Indeed, in
the present setting we have K = |Qk| = 2k, so the sharp threshold for the sample size needed
for the existence of MLE is log2 log2K. The following result on the expectation of νuniq agrees
well with the sharp threshold.
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Lemma 3.13. Let νuniq be as in Corollary 3.11. Let Hk =
∑k

i=1
1
k be the k-th harmonic

number. Then,
Hk

log 2
+ 1 ≤ E(νuniq) <

Hk

log 2
+ 2, k = 1, 2, . . . .

Proof : Observe that νuniq = max {τ1, . . . , τk}, where

τj = min {n ≥ 1 : {rj(X1), . . . , rj(Xn)} = {−1, 1}} , j = 1, . . . , k.

From the fact that X1, X2, . . . are independent and uniformly distributed, we deduce that

1rj(Xi)6=rj(X1), i = 2, 3, . . . , j = 1, 2 . . . ,

are independent with symmetric Bernoulli distribution. Then τ1, . . . , τk are independent, and

τj + 1 ∼ Geom (1/2)

for j = 1, . . . , k. The result follows from Eisenberg (2008). �

In Section 5 we return to Rademacher functions, but for now we turn to exponential families
of random graphs, a major motivation for this work.

4. Random graphs

In this section we focus on random graphs. Their various applications can be found in
Rinaldo et al. (2009), Schweinberger et al. (2020) and Mukherjee et al. (2018). What is im-
portant for us, many such models are indeed discrete exponential families. As usual, maximum
likelihood can be used to select a suitable graph model within the exponential family, see, e.g.,
Pitman (1979, Chapter 1 and 8) and Bezáková et al. (2006). In this section we characterize
the existence of MLE in such context. The theory of random graphs started with probabilistic
proofs of the existence or nonexistence of specific graphs by Erdős, see, e.g., Bollobás (1998).
Asymptotic properties of random graphs were developed in the seminal papers of Erdős and
Rényi (1959, 1960) and Gilbert (1959). Rinaldo et al. (2009) discuss geometric interpreta-
tions of the existence of MLE for discrete exponential families with applications to random
graphs and social networks. Chatterjee and Diaconis (2013) give normalizing constants that
are crucial for the computation of MLE for exponential random graph models. Furthermore,
they include examples when MLE fails to exist. The same authors together with Sly discuss
in Chatterjee et al. (2011) the asymptotic probability of the existence and uniqueness of MLE
for the β-model of graphs. This allows to connect the β-model with a random uniform model
of graphs with a given degree sequence, which is then explored using graphons (graph limits,
see Lovász and Szegedy (2006)). They also present an algorithm for the computation of MLE
in the β-model.

Perry and Wolfe (2012) put nonasymptotic conditions for the existence of MLE in various
random graph models parameterized by vertex-specific parameters. Rinaldo et al. (2013) char-
acterize the existence of MLE for β-models. They interpret the Barndorff-Nielsen’s criterion
using the geometry of multidimensional polytopes of vertex-degree sequences, see also Fien-
berg and Rinaldo (2012). Wang et al. (2019) transfer the criterion into discrete hierarchical
models, using the notion of simplicial complices. These models include, e.g., graphical models
and Ising models. Wang, Rauh and Massam also improve the approximation of the set of
estimable parameters in the case of the nonexistence of MLE, which is discussed in the setting
of marginal polytopes.
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Let us start with the notation. Graph is a pair G = (V,E), where V = {1, . . . , N}, N ∈ N,
is the set of nodes and E is the set of edges, i.e.,

E ⊂
(
V
2

)
:= {(r, s) : 1 ≤ r < s ≤ N} .

We only consider simple undirected graphs (containing no loops or multiple edges). Let
m = |E|. If m =

(
N
2

)
, then the graph is called complete and is denoted as KN . On the

other hand, the empty graph (with m = 0) is denoted as KN . For graphs G = (V,E1) and
H = (V,E2) we let, as usual,

G ∪H := (V,E1 ∪ E2), G ∩H := (V,E1 ∩ E2).

Furthermore, G ⊂ H means that E1 ⊂ E2. Let GN be the family of all the graphs with N
nodes, i.e., with V = {1, . . . , N}. By a random graph we understand a random variable G
with values in GN . The families of distributions of such random variables are called random
graph models. We focus on the exponential model of random graphs GN,c defined as follows.

For 1 ≤ r < s ≤ N and G ∈ GN , we let

1G(r, s) =

{
1, if (r, s) ∈ E,
0, otherwise.

We define χr,s : GN → {−1, 1} by χr,s(G) = 1− 21G(r, s). We consider the linear space

BGN = Lin
{

1, χr,s(G) : 1 ≤ r < s ≤ N
}
.

Let c ∈ R(V2) be a corresponding vector of coefficients. Following the setting of Section 1.1 we
let µ(G) = 1 for each G ∈ GN (but see Remark 2.3) and consider the exponential family

GN,c := e(BGN ) =
{
pc := eφc−ψ(φc) : c ∈ R(V2)

}
, (4.1)

where

φc(G) =
∑

(r,s)∈(V2)

cr,sχr,s(G), ψ(φc) = log
∑
G∈GN

eφc(G),

for G ∈ GN , see also (1.3). As usual, for pc ∈ GN,c we let Lpc(G1, . . . , Gn) =
∏n
i=1 pc(Gi), etc.

Lemma 4.1. Let c ∈ R(V2) and let G be a random graph with distribution GN,c. Let 1 ≤ r <
s ≤ N . Then the probability of the appearance of the edge (r, s) in G equals

pr,s =
ecr,s

1 + ecr,s
. (4.2)

The result is well known but for convenience a proof is given in Appendix A.3.

Lemma 4.2. Let c ∈ R(V2) and let G be a random graph with distribution GN,c. Let 1 ≤
r1, s1, r2, s2 ≤ N , r1 < s1, r2 < s2, and (r1, s1) 6= (r2, s2). Then the appearances of edges
(r1, s1) and (r2, s2) in G are independent events.

The proof of the result is similar to that of Lemma 4.1, and can be found in Appendix A.4.
For instance, if pr,s = p ∈ (0, 1) for every edge (r, s), then the exponential random graph with
distribution GN,c is the Erdős-Rényi random graph GN,p in Erdős and Rényi (1959, 1960). The
latter means that P(e ∈ E(G)) = p for every edge e ∈

(
V
2

)
, and the events e ∈ E(G) and

f ∈ E(G) are independent for different edges e, f .
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Theorem 4.3. MLE for e(BGN ) and G1, . . . , Gn ∈ GN exists if and only if
n⋃
i=1

Gi = KN and
n⋂
i=1

Gi = KN .

Proof : By Theorem 2.2, MLE exists if and only if {G1, . . . , Gn} is of uniqueness for BGN+ .
We first prove the “only if" part of Theorem 4.3. Let us assume that there exists an

edge (r0, s0) /∈
⋃n
i=1Gi. Then the function χr0,s0 ∈ B

GN
+ equals zero on G1, . . . , Gn, but

not on the whole GN . In addition, if there is an edge (r0, s0) ∈
⋂n
i=1Gi, then the function

(1 +χr0,s0) ∈ BGN+ vanishes for G1, . . . , Gn, but it is not equal to zero, e.g., for the graph KN .
We next prove the ‘if’ part of the theorem. Let φ = k0 +

∑
r<s kr,sχr,s ∈ B

GN
+ , where

k0, kr,s ∈ R for all 1 ≤ r < s ≤ N . Since φ(G) ≥ 0 for every G ∈ GN ,

k0 ≥
∑
r<s

|kr,s|. (4.3)

Let (r0, s0) ∈
(
V
2

)
. Let φ(G1) = . . . = φ(Gn) = 0. Since

⋃n
i=1Gi = KN and

⋂n
i=1Gi = KN ,

there exists a pair of graphs G′, G′′ ∈ {G1, . . . , Gn} such that χr0,s0(G′) = 1, χr0,s0(G′′) = −1.
Therefore,

0 = φ(G′) + φ(G′′) = 2k0 +
∑
r<s

kr,s
(
χr,s(G

′) + χr,s(G
′′)
)

= 2k0 +
∑
r<s

(r,s) 6=(r0,s0)

kr,s
(
χr,s(G

′) + χr,s(G
′′)
)
.

It follows that k0 ≤
∑

(r,s)6=(r0,s0)
|kr,s| and eventually we get kr0,s0 = 0, thanks to (4.3). Since

(r0, s0) is arbitrary, kr,s = 0 for every 1 ≤ r < s ≤ N . Then also c0 = 0, and thus φ ≡ 0. �

In the above random graph model it is possible to compute explicitly the probability of the
existence of MLE for i.i.d. samples of graphs in GN . To this end, for 1 ≤ r < s ≤ N we fix
cr,s ∈ R. By Lemma 4.1 the probability of the appearance of the edge (r, s) in random graph
G with distribution GN,c is

pr,s =
ecr,s

1 + ecr,s
.

Lemma 4.4. Let {G1, . . . ,Gn} be i.i.d. with distribution GN,c. Then the probability of the ex-
istence of MLE for e(BGN ) equals∏

1≤r<s≤N

(
1− pnr,s − (1− pr,s)n

)
. (4.4)

Proof : By Theorem 4.3, MLE for e(BGN ) exists if and only if among the random graphs
G1, . . . ,Gn every edge (r, s), 1 ≤ r < s ≤ N , appears at least once, but not n times. For
every edge (r, s) the above condition is satisfied with probability 1− (1− pr,s)n− (pr,s)

n. The
independence of the occurrences of different edges in GN,c yields the product (4.4). �

In particular, if c = 0, then the probability of the existence of MLE for e(BGN ) equals(
1− 21−n

)(N2 )
,

which is an analogue of Corollary 3.11. From the above results we can deduce asymptotic
bounds for the i.i.d. sample size for which MLE exists with high probability. To this end we
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recall the classical result on p = p(N) ∈ (0, 1) such that G from GN,p has at least one edge
with high probability.

Remark 4.5. Frieze and Karoński (2016, Lemma 1.10) Let GN,p(N) be a random graph with
distribution GN,p(N). Then

lim
N→∞

P
(
GN,p(N) has at least one edge

)
=

{
0 if p (N) = o

(
N−2

)
,

1 if N−2 = o (p (N)) .

The above may be summarized by saying that N−2 is a threshold for the probability p
such that G with distribution GN,p has at least one edge. For more information on threshold
functions in the theory of random graphs see, e.g., Frieze and Karoński (2016). In particular,
a sharp threshold (mentioned previously) is a threshold but the converse is not true in general.

Lemma 4.6. Let G1, . . . ,Gn be i.i.d. random variables with distribution GN,c. Then logN is
a threshold of the sample size n for the existence of MLE for e(BGN ).

Proof : According to Lemma 4.4, the probability of the existence of MLE for e(BGN ) and
G1, . . . ,Gn equals

PMLE =
∏

1≤r<s≤N

(
1− pnr,s − (1− pr,s)n

)
.

We define the function

f(x) = 1− xw − (1− x)w , x ∈ (0, 1), w ≥ 2. (4.5)

Clearly, f(x) = f(1− x) and for w ≥ 2 we have f increasing when 0 < x < 1
2 and decreasing

when 1
2 < x < 1. Using (4.5) we can bound PMLE from above by

PBIG :=
(
1− 21−n

)(N2 )
.

Applying Corollary 3.10 and the equality in (3.5) for k =
(
N
2

)
, we observe that for every

b ∈ R and for n = n(N) = log2
(
N
2

)
+ b+ o(1) we have PBIG → e−2

1−b , as N →∞. Therefore,
for n(N) = o(logN) we obtain PMLE ≤ PBIG → 0, as N →∞.

We consider the sample size n = n(N) (depending on N). We will prove that if logN/n→ 0
as N →∞, then PMLE → 1. To this end we bound PMLE from below by

PSMALL := (1− pnmax − (1− pmax)n)(
N
2 ) ,

where cmax = max1≤r<s≤N |cr,s| and pmax = ecmax/(1 + ecmax).
Take n independent Erdős-Rényi random graphs H1, . . . ,Hn with distribution GN,pmax .

Then the probability of the existence of MLE for e(BGN ) and for H1, . . . ,Hn equals exactly
PSMALL. Note that intersection and union of the graphs are also Erdős-Rényi random graphs,
namely

n⋂
i=1

Hi ∼ GN,pnmax ,

n⋃
i=1

Hi =

n⋂
i=1

Hi ∼ GN,1−qnmax ,

where

qmax := 1− pmax =
e−cmax

1 + e−cmax
.



Maximum likelihood for discrete exponential families 1061

From Remark 4.5, with high probability we have
n⋂
i=1

Hi = KN and
n⋃
i=1

Hi = KN ,

provided

pnmax = o(N−2) and qnmax = o(N−2).

By definition, cmax > 0, so pmax > qmax. In order to get PSMALL → 1 as n → ∞, it suffices
to have pnmax = o(N−2). If n(N)/ logN → ∞ as N → ∞, then the above condition is
satisfied. Therefore logN is a threshold of the sample size for existence of MLE for e(BGN )
and independent G1, . . . ,Gn from GN,c. �

5. Applications to Walsh functions

We return to Rademacher functions to discuss the spaces spanned by their products. Let
k ∈ N, 1 ≤ q ≤ k, and

Bkq = Lin {wS : S ⊂ {1, . . . , k} and |S| ≤ q} ,

where
wS(x) =

∏
i∈S

ri(x), x ∈ Qk, S ⊂ {1, . . . , k},

are the Walsh functions, see, e.g., Jendrej et al. (2015).
The case Bk1 = Bk was discussed in Section 3.1 and the case q = 2 is related to the Ising

model of ferromagnetism in statistical mechanics, see Wainwright and Jordan (2008, Example
3.1).

Lemma 5.1. The dimension of the linear space Bkq is
∑q

j=0

(
k
j

)
.

The proof of Lemma 5.1 is given in Appendix A.5.

Corollary 5.2. For q ≤ k
2 we have

dim
(
Bkq
)
≤ 2kH2(

q
k
) ≤

(
ek

q

)q
,

where H2(p) = −p log2 p− (1− p) log2(1− p) is the binary entropy function.

The proof follows from Lemma 5.1 and the entropy bound for the sum of binomial coeffi-
cients, see, e.g., Galvin (2014, Theorem 3.1).

Characterization of the existence of MLE for e(Bkq ) and the related sharp thresholds seem
to be hard for general q, even for q = 2, see Remark 5.4. In the next section we discuss the
products of k − q Rademacher functions for fixed q ∈ N (q ≤ k). We especially focus on the
products of k − 1 and k Rademacher functions. Below we characterize the existence of MLE
for e(Bkk−1). As we will see, we get a qualitatively different result than that in Section 3.1. Let
E and O be the sets of all those points in Qk that have an even and odd number of positive
coordinates, respectively.

Theorem 5.3. MLE exists for e(Bkk−1) and x1, . . . , xn ∈ Qk if and only if E or O ⊂
{x1, . . . , xn}.
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Proof : Thanks to Theorem 2.2, we only need to characterize the sets of uniqueness for(
Bkk−1

)
+
. To this end, we consider the hypercube GQk , defined as the graph with vertices

in Qk and edges between all pairs of points which differ by exactly one coordinate. Thus,

V (GQk) = Qk and E(GQk) = {{x, y} ∈ Qk×Qk : |{j : rj(x) 6= rj(y)}| = 1} .

Let U = {x1, . . . , xn}. Assume that U is a set of uniqueness. Let e ∈ E and o ∈ O. The
hypercube graph GQk is connected, so there exists a path (e, v1, v2, . . . , v2p, o) in GQk . Then(

1{e,v1} + 1{v2,v3} + . . .+ 1{v2p,o}
)
−
(
1{v1,v2} + 1{v3,v4} + . . .+ 1{v2p−1,v2p}

)
(5.1)

= 1{e} + 1{o} (5.2)

is a nontrivial nonnegative function on Qk. Therefore, we must have {e, o} ∩U 6= ∅. Then we
easily conclude that E ⊂ U or O ⊂ U .
For the converse implication, we consider q ∈ {0, . . . , k} and (k − q)-subcubes defined as
follows,

q⋂
i=1

Hji , (5.3)

where 1 ≤ j1 < j2 < . . . < jq ≤ k and Hji = H+
ji

or H−ji , see (3.3). When q = k − 1, the
intersection, or a 1-cube, is a pair of points in Qk which differ by exactly one coordinate, so
they have a different parity. Moreover, each such pair can be obtained in this way. Using (5.3),
as in the proof of Lemma 5.1 we see that 1{e,o} ∈ Bkk−1 for each e ∈ E and o ∈ O. Furthermore,
each q-subcube of Qk with q ≥ 1 can be covered by disjoint pairs {e, o} as above. Therefore,
the functions 1{e,o} ∈ Bkk−1 with e ∈ E and o ∈ O span the linear space Bkk−1.
We next claim that for every f ∈ Bkk−1,∑

x∈O
f(x) =

∑
x∈E

f(x). (5.4)

Indeed, if f = 1{e,o} with e ∈ E and o ∈ O, then the equality is true because both sides of
(5.4) are equal to 1. Since such functions span Bkk−1 it follows that (5.4) is true for every
f ∈ Bkk−1.

Finally, if nonnegative f ∈ Bkk−1 vanishes on E , then the sum over O also equals zero, hence
f ≡ 0, and the same conclusion holds if we assume that f = 0 on O. Thus U is the set of
uniqueness if O ⊂ U or E ⊂ U . �

Remark 5.4. A naïve extension of Corollary 3.8 fails for e(Bk2), if we try to replace the half-
cubes with (k− 2)-subcubes, that is, quarter-cubes. This is seen from Theorem 5.3 for k = 3.
Indeed, the set

{(1, 1,−1), (1,−1, 1), (−1, 1, 1), (1,−1,−1), (−1, 1,−1), (−1,−1, 1)}

is not of uniqueness for (B32)+, as follows from (5.1) with e = (−1,−1,−1) and o = (1, 1, 1),
even though the set has nonmpty intersection with each quarter-cube.

We will briefly treat the case of e(Bkk), as follows.

Corollary 5.5. k2k log 2 is a sharp threshold of the sample size for the existence of MLE for
e(Bkk) and i.i.d. samples uniform on Qk.



Maximum likelihood for discrete exponential families 1063

Proof : Observe that e(Bkk) is isomorphic to e(RX ) for |X | = 2k. The existence of MLE for
e(Bkk) is characterized in (more general) Lemma 3.1, and the sharp threshold is given after
Corollary 3.4. �

Corollary 5.5 is in stark contrast with the result for the (smaller) space e(Bk1) because for
e(Bk1) the sharp threshold, and so the threshold, equal log2 k, by Corollary 3.12.

Remark 5.6. Let 1 ≤ q1 ≤ q2 ≤ k. Then every set U of uniqueness for (Bkq2)+ is of uniqueness
for (Bkq1)+, because (Bkq1)+ ⊂ (Bkq2)+.

A characterization of the existence of MLE for e(Bkq ) for arbitrary q, even for q = 2, turned
out to be difficult. Accordingly, we do not give a sharp threshold for the size of the uniform
i.i.d. sample needed for the existence of MLE for e(Bkq ). However, the case of e(Bkk−q) seems
a little easier in the sense that we are able to give the less precise threshold for the existence
of MLE for e(Bkk−q). Moreover, for each fixed q the threshold for e(Bkk−q) is the same as for
e(Bkk), namely k2k as k →∞.

Lemma 5.7. Fix q ∈ N. Then k2k is a threshold of the sample size for the existence of MLE
for e(Bkk−q) and i.i.d. sample uniform on Qk.

Proof : If limk→∞ n(k)/(k2k) =∞, then by Remark 5.6 and Corollary 5.5, for k →∞ we get

P

({
X1, . . . , Xn(k)

}
is of uniqueness for

(
Bkk−q

)
+

)
≥ P

({
X1, . . . , Xn(k)

}
is of uniqueness for Bkk

)
→ 1,

as needed. On the other hand, every set U of uniqueness for (Bkk−q)+ must intersect with every
subcube defined by fixing last k − q coordinates, because each q-subcube is the support of a
function in (Bkk−q)+, to wit, of its indicator. There are 2k−q such q-subcubes, each of which we
can suggestively denote by (∗, . . . , ∗, εq+1, . . . , εk), where εq+1, . . . , εk = ±1. Observe that the
family of the above subcubes is a partition of Qk. We consider each q-subcube as a coupon
in the Coupon Collector Problem. If a sample point falls into the q-subcube, we consider
the coupon as collected. The probability of collecting a given coupon is 2q−k. Therefore, if
n(k) = o

(
2kk
)
, hence n(k) = o

(
2k−q (k − q)

)
, then

P

({
X1, . . . , Xn(k)

}
is of uniqueness for (Bkk−q)+

)
→ 0, as k →∞,

as needed. �

Appendix A. Appendix

A.1. Proof of Lemma 1.1. Let p̂ = e(φ0), p̃ = e(φ1) ∈ e(B) and p̂ 6= p̃, so that φ1−φ0 6= const.
Let φt = φ0 + t(φ1 − φ0), pt = e(φt) for t ∈ R and l(t) = lpt(x1, . . . , xn). We claim that l is
strictly concave, that is l′′ < 0. Indeed, since φt = φ0 + tφ1 is a linear function, by (1.4) we
get

l′′(t) = −n d
2

dt2
logZ(φt).
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Let X be a random variable with values in X such that P(X = x) = p(x)µ(x). As usual, for
every f : X → R we have

Ef(X) =
∑
x∈X

f(x)p(x)µ(x).

Clearly, (logZ(φt))
′ = Z(φt)′

Z(φt)
and (logZ(φt))

′′ = Z(φt)′′

Z(φt)
−
(
Z(φt)′

Z(φt)

)2
. Hence, thanks to (1.1),

Z(φt)
′ =

∑
x∈X

eφt(x)µ(x) (φ1(x)− φ0(x))

Z(φt)
′′ =

∑
x∈X

eφt(x)µ(x) (φ1(x)− φ0(x))2.

Thus,
Z(φt)

′

Z(φt)
= E[φ1(X)− φ0(X)]

Z(φt)
′′

Z(φt)
= E[φ1(X)− φ0(X)]2

and so
d2

dt2
logZ(φt) = E [φ1(X)− φ0(X)−E(φ1(X)− φ0(X))]2 > 0,

since φ1−φ0 is not constant. Hence, l is strictly concave, in particular l(1/2) > (l(0)+ l(1))/2.
If supp∈e(B) Lp(x1, . . . , xn) = Lp̂(x1, . . . , xn) = Lp̃(x1, . . . , xn), then l(1/2) > supp∈e(B) lp(x1, . . . , xn),
which is absurd; thus at most one of p̃ and p̂ can be the MLE.

A.2. Control by oscillations. λU defined in Section 2 may be thought of as a specific measure
of oscillation of φ. Of course, λU ≥ 0. Furthermore, for every c ∈ R,

λU (φ+ c) = λU (φ), φ ∈ B, (A.1)

and for every (positive number) k > 0 we have (homogeneity),

λU (kφ) = kλU (φ), φ ∈ B, k ≥ 0. (A.2)

If U = X , then λX (−φ) = λX (φ) for φ ∈ B, and so λX is a seminorm. Clearly, λU ≤ λX .
However, if there is a nontrivial φ ∈ B+ such that φ = 0 on U , then λU (φ) = supX φ > 0 but
λU (−φ) = 0. The following result is the engine of Theorem 2.2.

Lemma A.1. U ⊂ X is the set of uniqueness for B+ if and only if λU is comparable with λX
on B, i.e., there exist constants c1, c2 > 0 such that c1λX (φ) ≤ λU (φ) ≤ λX (φ) for all φ ∈ B.

Proof : We first prove the “if” part. Assume U is not a set of uniqueness for B+. Then
there exists a nonzero function φ ∈ B+ such that φ = 0 on U . We have λU (−φ) = 0 and
λX (−φ) > 0, hence λU and λX are not comparable on B.

We now prove the “only if” part, which is delicate. For all ϑ, φ ∈ B we have

λU (ϑ+ φ) ≤ max
X

ϑ+ max
X

φ−min
U
ϑ−min

U
φ

= λU (ϑ) + λU (φ) ≤ λU (ϑ) + λX (φ).

It follows that λU (ϑ) ≥ λU (ϑ− φ)− λX (φ), hence

λU (ϑ+ φ) ≥ λU (ϑ)− λX (φ).

Therefore, |λU (ϑ+ φ)− λU (ϑ)| ≤ λX (φ). As a consequence, λU is continuous on B.
We will prove that there is a number h > 0 such that λU (φ) ≥ hλX (φ) for every φ ∈ B.

Let S = {φ ∈ B : minX φ = 0 and maxX φ = 1}. Let φ ∈ S. If λU (φ) = 0, then φ = 1 on U .
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Consider ϕ = 1−φ. Clearly, ϕ ≥ 0 and ϕ = 0 on U . It follows that ϕ = 0 on X , because U is
of uniqueness. Then φ ≡ 1, which contradicts the assumption φ ∈ S. Therefore, λU (φ) > 0.
Since S is compact and λU is continuous, h := minS λU > 0. By (A.2) and (A.1) we obtain
λU (φ) ≥ hλX (φ) for all φ ∈ B. �

A.3. Proof of Lemma 4.1. By (4.1), each G ∈ GN appears in GN,c with probability pc(G) =

eφc(G)−ψ(φc). Then,

pr,s = P ((r, s) ∈ E (G)) =
∑
G∈GN

(r,s)∈E(G)

eφc(G)∑
G∈GN e

φc(G)

=

∑
G∈GN

(r,s)∈E(G)

eφc(G)∑
G∈GN

(r,s)∈E(G)

eφc(G) +
∑

G∈GN
(r,s)/∈E(G)

eφc(G)

=

∑
G∈GN

(r,s)∈E(G)

e

∑
(k,l)∈(V2)

ck,lχk,l(G)

∑
G∈GN

(r,s)∈E(G)

e

∑
(k,l)∈(V2)

ck,lχk,l(G)
+
∑

G∈GN
(r,s)/∈E(G)

e

∑
(k,l)∈(V2)

ck,lχk,l(G)
. (A.3)

Note that ∑
(k,l)∈(V2)

ck,lχk,l(G) = cr,sχr,s(G) + C(G),

where
C(G) =

∑
(k,l)∈(V2)
(k,l)6=(r,s)

ck,lχk,l(G).

Therefore

e

∑
(k,l)∈(V2)

ck,lχk,l(G)
= ecr,sχr,s(G) eC(G).

Clearly, cr,sχr,s(G) is cr,s if (r, s) ∈ E(G) and it is 0 if (r, s) /∈ E(G). Thus, (A.3) equals

ecr,s
∑

G∈GN
(r,s)∈E(G)

C(G)∑
G∈GN

(r,s)∈E(G)

eC(G) + ecr,s
∑

G∈GN
(r,s)/∈E(G)

eC(G)
.

Let S be the graph with only one edge (r, s). The map G 7→ G \ S is a bijection between the
graphs with the edge (r, s) and graphs without (r, s). In addition, C(G) = C(G \ S), and so
we get (4.2).

A.4. Proof of Lemma 4.2. By (4.1), each G ∈ GN appears in GN,c with probability pc(G) =

eφc(G)−ψ(φc). Then,

P ((r1, s1) , (r2, s2) ∈ E (G)) =
∑
G∈GN

(r1,s1),(r2,s2)∈E(G)

eφc(G)∑
G∈GN e

φc(G)
.
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As in the proof of Lemma 4.1, we observe that∑
(k,l)∈(V2)

ck,lχk,l(G) = cr1,s1χr1,s1(G) + cr2,s2χr2,s2(G) + C̃(G),

where
C̃(G) =

∑
(k,l)∈(V2)

(k,l)6=(r1,s1)
(k,l)6=(r2,s2)

ck,lχk,l(G).

Thus,

e

∑
(k,l)∈(V2)

ck,lχk,l(G)
= ecr1,s1χr1,s1 (G) ecr2,s2χr2,s2 (G) eC̃(G).

Let S1 and S2 be the graphs with only one edge, (r1, s1) and (r2, s2), respectively. Let

GN12 = {G ∈ GN : S1 ⊂ G,S2 ⊂ G} ,
GN10 = {G ∈ GN : S1 ⊂ G,S2 6⊂ G} ,
GN02 = {G ∈ GN : S1 6⊂ G,S2 ⊂ G} ,
GN00 = {G ∈ GN : S1 6⊂ G,S2 6⊂ G} .

a partition of GN . We observe that the maps

G 7→ G \ S1, G 7→ G \ S2, G 7→ G \ (S1 ∪ S2)
are bijections between GN10 , GN02 , GN12 , respectively, and GN00 . Also, for every G ∈ GN ,

C̃(G) = C̃(G \ S1) = C̃(G \ S2) = C̃(G \ (S1 ∪ S2)).

Put differently, C̃(G) does not depend on the edges (r1, s1) and (r2, s2). As in the proof of
Lemma 4.1, we obtain

P ((r1, s1) , (r2, s2) ∈ E (G))

=
ecr1,s1ecr2,s2

1 + ecr1,s1 + ecr2,s2 + ecr1,s1ecr2,s2
= pr1,s1 pr2,s2 .

A.5. Proof of Lemma 5.1.

Proof : Consider the positive half-cubes H+
1 , . . . ,H

+
k . Let

B = Lin

∏
i∈Iq

1H+
i

: Iq ⊂ {0, . . . , k} and |Iq| ≤ q

 .

We have B = Bkq , because r0 = 1Qk , ri = 21H+
i
− 1Qk and by induction it is easy to see

that for every S ⊂ {1, . . . , k} and |S| < q, if Walsh function wS ∈ B then their product with
Rademacher function wSri ∈ B, for any i = 0, . . . , n. Note that for any permutation σ of
{1, 2, . . . , q},

1H+
i1

1H+
i2

· · ·1H+
iq

= 1H+
iσ(1)

1H+
iσ(2)

· · ·1H+
iσ(q)

.

The functions 1Qk and 1H+
i1

· · ·1H+
iq
, 1 ≤ i1 ≤ . . . ≤ iq ≤ k, are linearly independent. Indeed,

assume that
r := α01Qk +

∑
i1,...,iq∈{1,...,k}

αi1···iq1H+
i1

· · ·1H+
iq

= 0.
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There are points x0 ∈
⋂k
i=1H

−
i , xi1 . . . xiq ∈

⋂
l∈{i1,...,iq}H

−
l ∩

⋂
l 6=i1,...,iq H

−
l for each 1 ≤ i1 ≤

i2 ≤ . . . ≤ iq ≤ k. We obtain α0 = r(x0) = 0 and αi1···iq = r(xi1···iq) = 0 as needed. �

A.6. Propagation of extrema, relative interior and the criterion of Barndorff-Nielsen. In this
section we give auxiliary results, but also explain connections to the criterion of Barndorff-
Nielsen. Let B be an arbitrary linear subspace of RX . In Corollary A.5 below we adapt the
criterion in Theorem 2.2 to such e(B). Let B′ be the linear space spanned by B and 1.

Lemma A.2. If U ⊂ X , then φ = minX φ on U implies φ = minX φ on X for every φ ∈ B if
and only if φ = maxX φ on U implies φ = maxX φ on X for every φ ∈ B.

Proof : The property with the minima is equivalent to the one with the maxima because B is
closed upon multiplication by −1 and because max(−φ) = −minφ. �

Definition A.3. We say that U ⊂ X propagates extrema for B if φ = infX φ on U implies
that φ = infX φ on X for every φ ∈ B.

Due to Lemma A.2, the property could be equivalently stated using maxima.

Lemma A.4. A nonempty U ⊂ X propagates extrema for B if and only if U is of uniqueness
for B′+.

Proof : Assume that U is of uniqueness for B′+. Let φ ∈ B and φ = minX φ on U . Then
ϕ = φ−minX φ ∈ B′+ and ϕ = 0 on U , so ϕ = 0 on X and φ = minX φ on X . It follows that
U propagates extrema for B. Conversely, assume that U propagates extrema for B. Let φ ∈ B.
Then φ = ϕ+ c for some ϕ ∈ B and c ∈ R. If φ ≥ 0 and φ = 0 on U , then ϕ = minX ϕ = −c
on U , hence ϕ = −c on X , and so φ = 0 on X . Thus, U is of uniqueness for B′+. �

Theorem 2.2 yields the following.

Corollary A.5. MLE for e(B) and x1, ..., xn ∈ X exists if and only if {x1, . . . , xn} propagates
extrema for B.

Proof : The MLE for e(B) and e(B′) must be the same. Indeed, we have e(B) = e(B′) so the
suprema of the likelihood functions are the same, see Section 1.1. Of course, if φ ∈ B and e(φ)
is the MLE for e(B) then it is also the MLE for e(B′). Conversely, if φ ∈ B′, then φ = ϕ + c
for some ϕ ∈ B and c ∈ R. If e(φ) is the MLE for e(X ′), then e(ϕ) is the MLE for e(B).
Considering B′, by Theorem 2.2 we see that MLE for e(B′) and x1, ..., xn ∈ X exists if and
only if {x1, . . . , xn} is of uniqueness for B′+, and – by Lemma A.4 – if and only if {x1, . . . , xn}
propagates extrema for B. �

The next lemma hinges on the trivial observation that if the sample mean equals the
minimum, then the sample is constant.

Lemma A.6. {x1, . . . , xn} propagates extrema for B if and only if for every φ ∈ B, minX φ <
maxX φ implies minX φ < φ̄ < maxX φ.

Proof : Let {x1, . . . , xn} propagate extrema for B. If minX φ = φ̄, then φ = minX φ on
{x1, . . . , xn}, hence φ = minX φ on X and so minX φ = maxX φ. A similar argument works if
φ̄ = maxX φ; see also Lemma A.2. Conversely, if {x1, . . . , xn} does not propagate extrema for
B then there is φ ∈ B such that φ = minX φ on {x1, . . . , xn}, but maxX φ > minX φ. Then
minX φ = φ̄ < maxX φ. �
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Recall the setting and notation of Section 1.2. The following theorem was essentially proved
in Barndorff-Nielsen (1978, Theorem 9.13), except that it was stated for the minimal represen-
tation of exponential families. The formulation presented in Theorem A.7 below was given in
Johansen (1979, Theorem 3.5), which covers the arbitrary canonical representation and does
so with a more direct proof. Notably, Johansen (1979) uses the notion of relative interior of a
convex set. Let C be the convex hull of S. We say that t ∈ Rd is in the relative interior of C
if for every θ ∈ Rd, miny∈C θ · y < maxy∈C θ · y implies miny∈C θ · y < θ · t < maxy∈C θ · y.

Theorem A.7. Johansen (1979, Theorem 3.5.) MLE for e(B) and x1, ..., xn ∈ X exists, if
and only if T̄ is in the relative interior of C.

To close the circle of ideas, we give a self-contained proof of Theorem A.7, which may also be
used to obtain Theorem 2.2 from Theorem A.7.

Proof of Theorem A.7: By the discussion in this section we know very well that MLE for
x1, ..., xn and e(B) exists if and only if for every φ ∈ B, minX φ < maxX φ implies minX φ <
φ̄ < maxX φ. Recall that φ ∈ B if and only if there is θ ∈ Rd such that φ = θ · T . Then
minx∈X φ(x) = miny∈S θ · y = miny∈C θ · y, maxx∈X φ(x) = maxy∈C θ · y, and, of course,
φ̄ = θ · T̄ . Therefore the existence of MLE for x1, ..., xn and e(B) is equivalent to T̄ being in
the relative interior of C. �

For clarity, we recall that we agreed in Example 1.2 that the existence of MLE for x1, ..., xn ∈
X and e(B) is the same as the existence of MLE for x1, ..., xn and the exponential family given
by the canonical statistics T and (1.10), and that it is equivalent to the existence of MLE for the
sample y1 := T (x1), ..., yn = T (xn) ∈ Rd and the standard exponential family in (1.11). From
the above discussion we also see that the convex hull C and the notion of relative interior are
merely auxiliary objects to express the property in Lemma A.6, or the propagation of extrema
property.
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