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Abstract: The Internet of Things (IoT) is a paradigm that connects a range of physical smart devices
to provide ubiquitous services to individuals and automate their daily tasks. IoT devices collect data
from the surrounding environment and communicate with other devices using different communication
protocols such as CoAP, MQTT, DDS, etc. Study shows that these protocols are vulnerable to attack
and prove a significant threat to IoT telemetry data. Within a network, IoT devices are interdependent,
and the behaviour of one device depends on the data coming from another device. An intruder exploits
vulnerabilities of a device’s interdependent feature and can alter the telemetry data to indirectly control
the behaviour of other dependent devices in a network. Therefore, securing IoT devices have become a
significant concern in IoT networks. The research community often proposes intrusion Detection Sys-
tems (IDS) using different techniques. One of the most adopted techniques is machine learning (ML)
based intrusion detection. This study suggests a stacking-based ensemble model makes IoT devices
more intelligent for detecting unusual behaviour in IoT networks. The TON-IoT (2020) dataset is used
to assess the effectiveness of the proposed model. The proposed model achieves significant improve-
ments in accuracy and other evaluation measures in binary and multi-class classification scenarios for
most of the sensors compared to traditional ML algorithms and other ensemble techniques.

Keywords: ensemble learning; intrusion detection; IoT; sensors security; ToN-IoT; bagging

1. Introduction

Internet of Things (IoT) is influencing our lifestyle from the way we act to the way we behave. It is
a collaborative network with connected smart IoT devices. These devices are equipped with sensors,

http://http://www.aimspress.com/journal/mbe
http://dx.doi.org/10.3934/mbe.2022493


10551

actuators, storage, computational, and communication capabilities to gather sensitive telemetry data
from remote locations and share this data to receiving systems for analysis [1, 2].

In an IoT network, the devices are interconnected and communicate with each other through some
protocols to provide a service. Thus, the behaviour or decision of one device depends on the data
(telemetry) coming from another device, and that implicit relationship is device interdependence.

Today, IoT applications are surprisingly increasing in all fields to automate the traditional systems
in the industry, retail, home and building, health, agriculture, etc. IoT smart objects (sensors and
actuators) provide intelligence to our standard devices by blending computing and network capabilities
[3,4]. Due to which the smart appliances can be operated automatically, e.g., a smart fridge can monitor
the temperature condition and set it according to a threshold value and the state (open/close) of the
smart door based on the detection of movement [5].

As per [6–8] currently, the devices connected to the internet are estimated to be more than 25
billion and up to 50 billion connected devices expected till 2022 [9]. With the exponential (dramatic)
growth of IoT applications, IoT devices have become a smart object for attackers in attaining their
goal of intrusion. For example, in 2015 Ukrainian government reported the outage of power service
due to cyber security attacks in which approximately 225,000 customers were affected. An attacker
penetrated the monitoring system of IoT devices due to a poor security mechanism which resulted in a
power blackout [10]. The requirements for IoT applications vary as per industry. Thus, multi-layered
network security system also takes into account the security challenges across each layer [11].

Various available security solutions such as encryption, firewall, and intrusion detection cannot be
directly installed on IoT applications. Because IoT devices have their unique features such as interde-
pendence, constraint (energy [12–15] , storage etc.,), diversity, intimacy, etc. [16]. These features also
affect the security and privacy [17] of IoT networks. For example, in an automated smart light system,
an intelligent device (sensor) senses the light level and compares it with the threshold value. If the light
level is below than threshold, it tries to balance the light level and automatically turns on the smart bulb.
The smart bulb activation depends on the light level capturing device data in this scenario. Similarly,
another example (illustrated in Figure 1) of an intelligent room consists of multiple IoT devices, i.e., a
smart plug, smart window, thermometer, and air-conditioner (AC). When the thermometer detects that
the temperature inside the room has risen over a threshold and, simultaneously, the smart plug detects
that the AC is turned off, the window will automatically open to stabilize the room’s temperature. Here,
if an intruder wants access to the room, he does not need to attack the smart widow directly. He can
create a physical security breach by gaining access to a smart plug and using it to switch off AC that
raises the temperature in a room and cause to open the window automatically [18].

Such independence among IoT devices in IoT applications opens a path for an intruder to indirectly
control the targeted device by altering the data coming from another device. Therefore, to secure the
sensitive telemetry data of IoT devices and ensure the secure interdependency among IoT devices, a
system such as an Intrusion detection system (IDS) that specifically meets IoT applications’ require-
ments is the need of the day.

1.1. Intrusion detection system

IDS is a software or a monitoring device that keeps track of the network to secure and flags the
administrator if any suspicious activity has been detected. It can detect the malicious attacks data and
normal data which might not be identified with traditional security mechanisms, i.e., firewall [19].
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Figure 1. Intrusion due to device interdependence.

In literature, [19, 20] multiple dimensions, such as the source of information, identification method,
detection method, and learning approach, are used to classify IDSs. Figure 2 illustrate the classification
of IDS.

1.2. Information source based IDS

This type of IDS is mainly divided into Host-based (HIDS) and network-based (NIDS) IDS. HIDS
are usually installed on localhost (i.e., IoT device or system) to secure it from malicious activities. It
monitors the host’s file system, system calls, network events and informs the system when the intruder
performs any suspicious activity. HIDS is installed on a single computer or device and is only capable
of detecting attacks on the system on which it is installed [21]. Whereas NIDS keeps an eye on the
data related to a network, such as IP addresses, network packets, protocols [22], traffic volume, etc., to
detect the intrusion [23]. To achieve real-time intrusion detection, HIDS and NIDS are also used.

1.3. Detection based IDS

In general, Signature-based IDS (SIDS) and Anomaly-based IDS (AIDS) are primary intrusion
detection techniques.

1.3.1. Signature based IDS (SIDS)

SIDS (misuse detection) is a database based mechanism for storing known attack signatures. The
signatures are the patterns of attacks extracted from network packets’ features. SIDS monitors the
packets of network traffic and compares them with the previously stored signatures in the database.
If the pattern matches with any existing database signature, then SIDS generates an alarm. It only
detects the known attacks and is unable to identify the zero-day (unknown) attacks [24]. Thus, the
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system’s security requires the continuous identification of new signatures and updating the database
with expert inception. The performance of a SIDS methodology is contingent upon the rules deployed,
and modifications to the rules may affect the IDS’s performance. The most common example of SIDS
is the Snort tool [25].

1.3.2. Anomaly based IDS

An AIDS is referred to as behaviour-based detection and deals with unknown attacks. It observes
the network and system behaviour and establishes a baseline from typical behavioural patterns using a
variety of ways. Any considerable variation from the baseline of an inspected pattern is labelled as an
anomaly [26] .

1.4. IDS placement schemes

In an IoT network, multiple devices communicate and share data through a medium like a router.
There are a few techniques for deploying intelligent IDS to secure these data-sharing nodes.

1.4.1. Distributed IDS placement

Intrusion detection systems are deployed in every physical resource-constrained object or node in
distributed placement. This aspect of resource-constrained devices must be considered when develop-
ing IDS. [27] address this issue and proposed lightweight IDS. The nodes in a distributed deployment
may also be responsible for keeping an eye on their neighbours. Moreover, distributed IDS comprise
several IDS dispersed around a vast IoT ecosystem and linked to one another or a central server.

1.4.2. Centralized IDS placement

The intrusion detection system is deployed in a central device, such as a router or dedicated host, in
the centralized IDS location. It is also known as NIDS. The network router/dedicated host receives all
the data collected by IoT devices and sends it to the internet. Resultantly [28], an IDS were installed
in a router or dedicated host that can examine all traffic flowing among the nodes and the Internet.

1.4.3. Hybrid IDS placement

HIDS placement blends centralized and distributed placement techniques to take the edge of their
advantages while avoiding their disadvantages.

1.5. Validation strategies of IDS

Validation ensures that the proposed or developed model acts accurately within the scope and de-
termines objectives. There are many validation strategies of IDS. [29] defined the primary strategy
followed by the researcher in literature for validating the proposed techniques are:

• Simulation: includes the methods for simulating some IoT scenarios using software like MAT-
LAB, IoTIFY, etc.
• Empirical: Empirical validation is how a model’s accuracy can be verified through systematic

experimental data collected from an operational setting or context.
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• Hypothetical: having an uncertain relationship to genuine phenomena and level of reality
• Theoretical: use of formal or precise theoretical reasons to validate results
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Figure 2. Categories of IDS.

The dependence feature among IoT devices allows intruders to alter the data into network by com-
promising another dependent IoT device. Without sufficient security and intelligence in smart objects,
attackers manipulate the telemetry data with the help of MItM assault [30] and code injection assaults.
The intruder attempts to send messages between two dependent devices (nodes) in a network and con-
trol the behaviour of other devices.

Therefore, The features (interdependence, constrained, etc.) of IoT devices (sensors) and new di-
verse attacks on telemetry data motivate us to upgrade IDS which meets the specific requirements of
IoT devices and detect tempered telemetry data during communication between objects. It is found
from the literature that ML has shown efficiency in different application areas, including intrusion
detection systems for IoT [31–34]. Other solutions such as deep learning (DL) and artificial neural
network (ANN) are also helpful, but they need more computation power and resources than ML. Deep
learning solutions also requires large amount of data for training. In a survey [35] authors also high-
lighted the security and privacy issues of DL in recent years with respect to two types of attacks. Some
IoT devices, i.e., sensors, are resource-constrained and require a lightweight solution based on com-
putation power and resources [36]. Therefore, ML classifiers have been selected for designing an IDS
for telemetry data security. But a single ML classifier’s detection accuracy is not always good. For
example, single LR does not perform well for non-linear data, and classification done by DT tends to
majority class which causes overfitting. To improve detection rates while lowering training and gen-
eralization errors, complex strategies should be used, which drive us to apply ensemble methods to
detect attacks in telemetry data. Consequently, a stacking-based ensemble model has been proposed
based on ML classifiers to improve the detection rate in this study. In the proposed model, Linear
Discriminant Analysis (LDA), Naive Bayes (NB), Random Forest (RF), and Linear SVC have been
ensembles as a base model, and Logistic Regression (LR) is selected as a meta-model. This model is
deployed on the Ton IoT telemetry dataset for binary and multiclass classification. The model achieves
significant improvement in accuracy. The proposed model handle the variance and biasness issues of
single classifiers. The selected meta model have low variance which solves overfitting problem. The
proposed model detect the attack and also identify the type of attack.
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1.6. Contribution of study

The novel contributions of this study are:

• A stacking based ensemble intrusion detection (ID) model has been proposed for telemetry data
protection
• The proposed model has been evaluated for both binary and multiclass classification scenarios on

single IoT device data and merged IoT devices data.
• Cross comparison of homogeneous and heterogeneous ensemble model has been performed for

telemetry data

1.7. Structure of paper

The remainder of the paper is organized as follows: Section II continues the study of existing ML
and EL approaches for IDS. In contrast, Section III provides an overview of various supervised ML
techniques. Section-IV deals with our research methodology’s flow, followed by a detailed overview of
the dataset and experimental setting. Whereas section-V discusses the experimental outcomes. Section
VI concludes the study with a few concluding points.

2. Literature review

This section focuses on the prevailing IDS techniques based on ML and Ensemble Learning (EL)
used by the research community to identify intrusions across various IoT applications. In the digital
era of the smart environment, various application fields, including industrial processes, public safety,
energy consumption, home automation, environmental monitoring, healthcare, etc., could benefit sig-
nificantly from IoT systems [37]. Different sensors are deployed to control or execute the operations
using multiple techniques [38, 39] in a smart environment. Smart things become more effective when
IoT systems and smart environments are integrated. However, IoT systems are subject to several se-
curity vulnerabilities because of interconnectivity. The attack against any smart environment such as
household appliances could harm the end-user (family). [40] describe that any IoT system’s security
problems can be divided into four categories: authentication and physical threats, confidentiality haz-
ards, data integrity/ aggregation [41] issues, and privacy concerns. Most of the studies [22, 42, 43]
provide efficient and secure data aggregation solutions for wireless sensor networks.

A smart home contains many smart appliances, such as door locks, power switches, light bulbs,
smoke alarms, etc. A variety of network-based attacks can target these devices. The study in [44]
describes how IoT devices are susceptible to attacks with an example. The author performed a test
with three standard smart home devices: nest smoke-alarm, Phillips hue light-bulb, and the Belkin
WeMo power switch. The author observed the network activities of these IoT devices and illustrated
the ease with which security and privacy can be compromised. One of the results of this investigation
was finding flaws in the request-response message passing between the bridge and the Philips hue light
bulb app. The attacker can easily capture the user name and bridge IP address. They used a primary
python language to deliver HTTP-PUT requests and gain complete control of the bridge. As a result,
the author provided a solution for this problem by restricting access at the network level, i.e., the cloud
service provider offers security as an overlay service that does not affect connected home devices. As
a result, the proposed security solution, namely home network access control rules, is a feasible way
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for ensuring privacy and security [45] in smart homes.
Another fascinating discussion about the smart home environment was done by [46]. He addressed

privacy challenges and ramifications with connected devices. The article covers the data collected by
smart home users. This discussion led to the conclusion that malware management was a significant
research gap.

A detection model based on deep learning techniques was proposed by [47]. The experiments
were conducted by collecting data from the gas pipeline system’s Remote Telemetry Unit (RTU). The
vital information was then extracted from this data, valid for the experiments. The proposed model
outperformed other detection algorithms regarding detection rate, precision, and false-positive rate. Its
results for the identification of zero-day attacks were good. For accurately designing and evaluating
IoT/IIoT defense systems, [48] generate a new telemetry-based dataset by using heterogeneous devices.
Diverse cyber-attacks were launched in a dataset. The performance of attack classification over IoT
telemetry data was investigated using a variety of ML and deep learning algorithms. As a result, CART
mainly obtains high accuracy.

A study based on supervised IDS for a smart home (consisting of 8 IoT devices) IoT network
is conducted by [49]. The suggested IDS architecture comprises three levels to identify prevalent
network-based cyber-attacks. The proposed IDS detects malicious activity and determines its type.
Three tests were run with nine different classifiers over different layers. The result shows that the J48
classifier had the best performance in terms of f-measure in all three experiments, with 98%, 96.2%,
and 90%. The system’s flaw was that it required the integration of all three layers to identify an
intrusion. The entire system will be affected in case of failure in any layer.

[50] used an SVM-based classifier including three kernel functions to create a lightweight IDS. The
author solely considered the forms of assault that will impact the traffic intensity in that study. The pro-
posed IDS only evaluates a packet arrival rate attribute according to the given results. The experiments
were performed by using MATLAB version 2018b. Several functions such as linear, polynomial, and
radial-basis evaluated the classifier. Because there were fewer inputs rather than significant inputs,
SVM processing time and complexity were lowered. Traditional evaluation measures, i.e., accuracy,
TPR, FPR, and FDR, were selected to evaluate the model. The inability to recognize intrusions without
a corresponding influence on traffic intensity was a weakness of this proposed technique.

In another ML approach, [51] worked on KDD Cup 99 dataset for classification. The 22 types
of attack were categorized into four classes in the dataset, namely, DDoS, Prob, U2R, R2L. They
were developed Sequential Minimal Optimization (SMO), NB, Bayes Net (bN), Multilayer Perception
(MLP), RF algorithms for the dataset. The results of the algorithms were compared with one another
in terms of false rate, precision, recall, f-measure, and accuracy rate value. The experiments were
performed on weka software for the classification of data.

Another comprehensive study conducted by [52] investigated 14 different ML algorithms that were
applied for IDS in diverse situations. The experiments were conducted on the KDD99 Cup dataset
using the MLA approach. This suggested model showed that algorithms such as RF, ANN, and decision
tree provide superior development than others for identifying attacks. It also reveals that the area of
application and the algorithm influenced the FPR, detection rate, and accuracy.

Furthermore, A comparative evaluation of commonly used ML algorithms such that LR, MNB, G-
NB, B-NB, KNN, DT, AdaBoost, RF, MLP, and GB was tested on the UNSW-NB15 dataset in [53].
The study reveals that The RF classifier exceeds the other classifiers in terms of accuracy, positively
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predicted value, and f-measure, with 87, 98, and 84%, respectively.
Ensemble approaches have gained considerable attention in recent years in intrusion detection. In

a study, [54] an XGBoost ensemble model was proposed to examine the botnet attacks against three
protocols DNS, HTTP, and MQTT. An author claims that its proposed model is built on tree boosting
ML methods, which smooth out the ”bias-variance” trade-off. Precision, accuracy, recall, F-1 measure,
and support evaluated the proposed IDS on the KDDCup99 dataset. The proposed approach attained a
precision of 99.95%. However, the KDDCup99 dataset was obtained from traditional networks, and it
did not include sensor telemetry data. Therefore, it was unable to serve as an adequate IoT benchmark
dataset.

Three standard ensemble techniques bagging, boosting, and stacking, were explored in study [55]
for a NIDS. The selected ML classifiers were NB, ANN, J48, and REPTree, and each classifier was
employed as a based model in the bagging and boosting technique. While in the stacking model,
REPTree was used as the base learner and an ANN as meta learner. The stacking model achieved the
maximum accuracy of 87.92% than bagging and boosting. All tests were conducted on the UNSW-
NB15 data set using the Weka Data Mining tool. The study results depicted that J48 and REPTree
outperformed the NB and ANN by achieving the highest accuracy rates.

Another study [56] was presented an Ada Boost ensemble IDS for mitigating botnet attacks against
the DNS, HTTP, and MQTT protocols used in IoT networks. An Ada boost model was implemented
via DT, NB, and ANN. A new statistical flow feature technique was presented to generate new features
from the protocols and used to evaluate them in malicious activity detection. The evaluation was
conducted on UNSW-NB15 and NIMS botnet datasets using ensemble techniques in accuracy, DR,
and FPR. The new method outperformed three current methods in DR and FPR when compared to
SVM, Markov chain (MC), and Bayesian network (BN).

An AIDS model for IIoT networks with two phases was presented in [57]. In the first phase, SVM
and NB classifiers were an ensemble, and Kfc-validation was used to build the train and test datasets.
The second step used the ANN and RF results as input for model classification. The best classifiers
were determined based on the results. The models were validated using three publicly available data
sets: WUSTL IIOT-2018, N BaIoT, and Bot-IoT. The selected evaluation metrics Precision, recall, and
accuracy attains up to 98% performance on all datasets.

Author [58] introduced an architecture ELNIDS to detect routing attacks against IPv6 Routing Pro-
tocol based on the Signature technique. Four ensemble models, boosted Tree, bagged Tree, subspace
discriminant tree, and RUSBoosted tree, were implemented for this study. The dataset RPL-NIDDS17
was developed by using the NetSim tool. The expanded dataset contained traces of routing attacks on
the RPL protocol. The simulation was carried on Matlab 2017b. Ensemble of Boosted trees achieved
the highest accuracy of 94.5% then others based on provided results.

To determine the effectiveness of ensemble learning for NIDS [59] constructed both homogeneous
and heterogeneous ensemble techniques. Rf was selected inhomogeneous method, and NB, KNN,
RIPPER, DT classifiers were ensemble for the heterogeneous ensemble model. The binary and multi-
class classification was performed on the UNSW NB15 dataset. Reported results depicted that LSTM
achieves accuracy up to 80% for binary type and 72% for multi-classification.In contrast, homogeneous
model RF conducted high accuracy 98% for binary and 87.4% for multi-classification then LSTM. The
results heterogeneous model was comparably same as the homogeneous model.

Authors in [60] proposed an ensemble model based on a Bayesian network and RF as base classifier
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along with vote and RandomCommitte as meta classifiers. The proposed model was evacuated on the
KDDcup99 dataset with 10-fold cross-validation. The model was evaluated regarding the accuracy
and ROC curves as evaluation metrics. Their proposed model achieved better results (0.99%) in terms
of AUC than a single Bayesian network and random tree for all attacks( Probe, DOS, U2R, R2L)
classification.

To develop AIDS, a three-tier paradigm was proposed in [61]. The tries include feature selection,
modeling of the classifier, and validation. The first feature selection tier uses a hybrid technique based
on three evolutionary search algorithms to select important features. The model’s rotation tree and
banging were trained for classification in the second tier. In the last stage, the validation was performed
with 10fcv. The study was conducted on datasets UNSW-NB15 and NSL-KDD datasets. Precision,
accuracy, FPR, and recall were selected for evaluation. The model achieves accuracy 85.8%, sensitivity
86.8%, and detection rate 88.0% for the NSL-KDD dataset.

To increase the efficiency of AIDS in IoT networks [62] employed an RF classifier. Parameter
tuning was performed with different sizes for ensemble trees in their work. The proposed methodology
evaluated FAR, and accuracy for publicly available datasets named UNSW-NB15, GPRS, and NSL-
KDD. The authors use statistical tests such as the Friedman and Nemenyi tests. The results indicate
that the suggested model works better on the NSL-KDD dataset than on the GPRS dataset. It is
demonstrated that the proposed strategy does not produce satisfactory results when dealing with sensor-
related data. An author [48] tested several ML algorithms on proposed ToN-IoT dataset. Random forest
is selected to test the performance of EL for telemetry data of IoT devices.

The Table 1 represents the comparison of literature based on Ensemble Learning techniques.

2.1. Limitations:

The following limitations have been extracted from the literature:

• Old datasets were used concerning telemetry data.
• The selected datasets do not have specific characteristics of IoT and IIoT applications
• Most of the study focused on network-based security and not focused on sensors telemetry data

security
• The evaluation of ensemble techniques to secure the sensors telemetry data is not available in the

literature

3. Supervised models for IDS

From the literature, it is found that researchers have used a variety of machine learning algorithms to
detect intrusions. It is difficult and risky to share network data with the research community since it may
contain sensitive communications or personal information. Due to that, the absence of training data
makes it challenging to use ML for intrusion detection. This section presents the primary mathematics
behind some classical machine learning models used as members of our proposed ensemble-based
model. When applying multiple models to different problems, a comprehensive understanding of what
happens under the hood is often unneeded. Understanding the fundamentals of each algorithm is
beneficial when choosing a model and adjusting parameters to improve model performance.
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3.1. ML classifiers for IDS

3.1.1. Logistic Regression (LR)

LR is a classification algorithm that deals with the discrete set of classes. LR estimates a probability
(chance that a test sample belongs to a particular class) value of the test sample that may be mapped to
two or more discrete types using the logistic sigmoid function [64]. Sigmoid function mapped absolute
values into another value between 0 and 1. During classification, the model predicts that the instances
belong to a negative class if the estimated probability is below 50%; otherwise, illustrations belong to
a positive class [65]. The mathematical representation is shown as:

g(z) =
(1)

(1 + e−z)
(1)

where z is the function’s input, e is the natural log’s base, and g(z) is the output, a probability estimated
between 0 and 1. The cost function for logistic regression is the average log loss overall training cases.
The cost function is written as follows:

J(θ) = −
1
m

m∑
i=1

y(i))log(h(z(θ)(i)) + (1 − y(i))log(1 − h(z(θ)(i))) (2)

where m is the set of possible training samples, yi is the actual label for the ith training sample, and
h(z(θ)(i)) is the model’s prediction for the ith training example.
LR performance is better for the simple datasets with linearly separable classes. The LR underperforms
to increasingly complicated datasets, but regularization methods can avoid this limitation.

3.1.2. Linear support vector machine

SVM stands for Support Vector Machine and is a supervised learning technology that deals with
classification and regression problems. However, in ML, it is usually turned to account for classifica-
tion problems. The number of features determines the number of dimension plans in SVM, and the
value of an attribute is defined as the value of a set of coordinates. In n-dimensional space, the data
elements are marked as a point. Then classification is accomplished by locating the optimal hyperplane
(best decision boundary) that distinctly classifies the data points. Linear SVM classifies the linearly
separable data points by using a straight line [66]. Multiple hyperplanes can be created via kernel such
as a linear, polynomial, Gaussian Radial Basis Function (RBF), etc. The mathematical representation
of a single hyperplane is:

w.x + b = 0 (3)

The equation is driven from two-dimensional vectors, where w is represented as the weight vector, x
is the input vector, and b is the bias. The hyperplane is used to predict by using a hypothesis function
that is defined as:

h(xi) =

{
1 if wx + b ≥ 0
−1 if wx + b < 0

(4)

The data elements above or on the hyperplane are classified as positive class +1, and the data points
below the hyperplane are classified as negative class -1.
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3.1.3. Naive bayes

The Naive Bayes algorithm is a supervised classification technique based on the Bayes theorem. It
does not work as a rule-based classification. It works on probability theory for classification. So NB is
a simplified Bayesian probability model that assumes that all attributes’ class values are independent.
It indicates that the probability calculated for one feature does not affect the other [67]. The three main
types of NB are Gaussian, Multinomial and Bernoulli. NB combines prior probability and conditional
probabilities into a single formula, which is mathematically expressed as follows:

P(L|M) =
P(M|L).P(L)

P(M)
(5)

where P(L) and P(M) are the prior probabilities of the targeted class and independent variable, respec-
tively. However, P(L/M) is the posterior probability of targeted class L for independent variable M.
The probability of P(M/L) is calculated using the following formula:

P(M|L) = P(m1|L) ∗ P(m2|L) ∗ P(m3|L)............. ∗ P(mn|L) (6)

P(M/L) represents the probability calculated for each instance m for targeted class L. Whereas, condi-
tional probability is mathematically expressed as:

P(M) =
1

σ
√

2Π
e
−(x−µ)2/2σ2

(7)

where µ and σ represents the mean and variance of a value for a given class. The values of i and j
can be 1,2,3...n. The Naive Bayes technique is a popular one that is frequently used by the research
community for classification, and feature reduction [68, 69]. Assumption of all mutually independent
attributes and dependence on all attributes being categorical are the limitations of Naive Bayes.

3.1.4. Random Forest (RF)

RF or random decision forests is an EL method, in which a considerable number of de-correlated
trees are built and then averaged [70]. RF generates the forest of decision tree from randomly split
dataset into samples. An individual decision tree is created for each attribute depending upon an
independent random sample [71]. To classify test data, predictions from each tree are obtained, and
finally, the class is assigned to test data by majority voting or averaging technique [48].

3.1.5. Linear Discriminant Analysis (LDA)

At the stage of data pre-processing, LDA is a well-known linear algorithm that is widely used as
a dimensionality reduction [72] and pattern classification method. However, in this study, LDA is
used as a classification approach to developing an IDS. LDA has several advantages, i.e., easy to apply,
efficient, and lower computation cost. Therefore, it makes LDA a good choice for creating an IDS [73].
The main steps of LDA are listed as follows:

• Estimate d-dimensional mean vectors for the distinct classes from the dataset. The mathematical
representation of the mean vector of class metrics is:

µClsi = [ma1 ,ma2 ,ma3 , .......,man] (8)

where m a i represents the mean of the ith attribute of the class matrix.
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• Compute covariance matrix for multivariate features from the training data from the equation as:

Clscov
i =

ClsmcT

i ∗Clsmc
i

ni
(9)

where ClsmcT
represent the mean corrected class matrix. The number of rows are represented by

n. whereas i can be 1 to n.
• Based on the Bayes theorem and the probability of each class, the probability of output class

(attacked/normal) is estimated for a given observation.
• Make final prediction by using discriminate function. The discriminant function expresses as:

fk(x) = x ∗
µk∑ − µ2

k

2 ∗
∑ + log(Pk) (10)

where f k(x) is the discriminate function for class k given observation x, co-variance matrix is as sum
sign. µ sign shows the mean and estimated probability is denoted as P.

3.1.6. Decision Tree (DT)

DT is one of the most widely used for classification and intrusion detection. DT consists of three
basic components, namely decision node (identifies test attribute), branch (possible choice based on
the test attribute value), and a leaf node (the class that the instance is a member of) [74]. The data set
is learned and modeled first, and then a tree is formed in the DT algorithm. When test data is given to
DT, it will be classified based on the prior dataset’s classification procedure. A test is performed for
classification using the test attribute value and a decision procedure (denoted by root node). The class
(normal, attack) is assigned to the test data when the leaf node is reached. DT better perform for huge
datasets [26]. DT has the advantages of better detection performance, generalization accuracy, etc.

3.2. Ensemble Learning (EL)
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Figure 3. Ensemble learning technique.

Each ML algorithm has various constraints, like a low bias and a slight variance. EL address the
limitations of standalone machine learning techniques. The concept of the EL technique was intro-
duced in 1979 by [75] to improve the performance of independent ML algorithms. An ML paradigm
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merges a diverse range of models (weak learners) to produce one optimal predictive model that gives
more accurate results than a single model. The modular structure of EL avoids the overfitting issues
associated with high variance. The algorithms combined in the EL technique should be selected based
upon their computational cost to achieve better performance.

The visual representation of EL is given in Figure 3. In the ensemble learning process, firstly, the
dataset is split into training and testing data. Then training data divides into multiple subsets using
various techniques (i.e., with-replacement, without replacement). The subsets are given to selected
models to train them in the next step. Then the test data(unseen) is provided as input to these trained
models for the prediction. Finally, the predictions made by each model (base learner) are combined
with a majority vote or averaging methodology [76]. Mathematically it is expressed by the equation:

En,m =
1
N

N∑
n=1

Pnn = 1, 2, 3.....N (11)

where En,m is the output of the ensemble model of the N machine learning classifier. P is the prediction
of each classifier.

3.2.1. Types of EL

EL is categorized into two main types: Homogeneous EL and heterogeneous EL. In the homoge-
neous EL approach, the same kind of base classifiers (weak learners) is used to train on a different
subset of data. The result of each classifier is aggregated to improve the precision. The homogeneous
EL uses the same feature selection method for all training data. This type of EL is suitable for large
datasets. Bagging and boosting are the most common type of homogeneous EL. Whereas, in hetero-
geneous EL, different base classifiers are used to train on the same data. This technique works well for
small datasets. The feature selection technique for each base learner is different for the same data. An
example of heterogeneous EL is stacking.

3.2.2. Bagging

The term “bagging” is an acronym for ”bootstrap aggregation.” It is a parallel ensemble process that
reduces the variance by averaging multiple trees and increasing the prediction accuracy [77]. Random
forest is considered the advanced version of bagging. The following lines summarize how to bootstrap
aggregation works:

• The random sample of data are selected from the training dataset with replacement technique
(which means the individual instance can be chosen multiple times)
• In the next step, the base models are trained individually in parallel.
• The final output is obtained by combining the predictions of each base model with an ap-

propriate technique (i.e., majority vote, averaging, weighted average) based on the type of
task(classification, regression)
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Table 2. Features in each file.

File Name Features
IoT Fridge Ts, date, time, fridge temperature , temp condition, label, type
IoT Garage Ts, date, time, door state, s phone signal, label, type
IoT GPS Tracker Ts, date, time, latitude, longitude, label, type

IoT modebus
Ts, date, time, FC1 read input register, FC2 read discrete value,
FC3 read holding register, FC1 read coil, label, type

IoT light motion Ts, date, time, motion status, light status, label, type
IoT thermostate Ts, date, time, current temp, Thermostat status, label, type
IoT weather Ts, date, time, Temperature, Pressure, Humidity, label, type

Table 3. Statistics of TON IoT dataset.

18

TABLE II

STATISTICS OF TON IOT DATASET

File

No

Total

Record

Normal

Instan-

ces

Attack Instances
Total

Attack

% of

attack

data

% of

Normal

data

scan-

ning
DDOS

Ran-

som-

ware

Back-

door

Injec-

tion
XSS

Pass-

word

1 59944 35000 Nil 5000 2902 5000 5000 2042 5000 24944 41 58

2 59587 35000 529 5000 2902 5000 5000 1156 5000 24587 41 58

3 58960 35000 550 5000 2833 5000 5000 577 5000 23960 40 59

4 51106 35000 529 Nil Nil 5000 5000 577 5000 16106 31 68

5 59488 35000 1775 5000 2264 5000 5000 449 5000 24488 41 58

6 52774 35000 61 Nil 2264 5000 5000 449 5000 17774 33 66

7 59260 35000 529 5000 2865 5000 5000 866 5000 24260 41 59

8 401119 245000 3973 25000 16030 35000 35000 6116 35000 156119 38 61

1.IoT-Fridge File 2. IoT Garage 3. IoT GPS Tracker 4. IoT Modbus 5. IoT Light Motion 6. IoT Thermostat 7. IoT weather 8. Integrated File

to train on a different subset of data. The result of each classifier is aggregated to improve the

precision. The homogeneous EL uses the same feature selection method for all training data.

This type of EL is suitable for large datasets. Bagging and boosting are the most common type

of homogeneous EL. Whereas, in heterogeneous EL, different base classifiers are used to train

on the same data. This technique works well for small datasets. The feature selection technique

for each base learner is different for the same data. An example of heterogeneous EL is stacking.

2) Bagging: The term “bagging” is an acronym for ”bootstrap aggregation.” It is a parallel

ensemble process that reduces the variance by averaging multiple trees and increasing the

prediction accuracy [76]. Random forest is considered the advanced version of bagging. The

following lines summarize how to bootstrap aggregation works:

• The random sample of data are selected from the training dataset with replacement technique

(which means the individual instance can be chosen multiple times)

• In the next step, the base models are trained individually in parallel.

• The final output is obtained by combining the predictions of each base model with an

appropriate technique (i.e., majority vote, averaging, weighted average) based on the type

of task(classification, regression)

IV. PROPOSED METHODOLOGY

The workflow of our methodology is illustrated at Figure 4

4. Proposed methodology

The workflow of our methodology is illustrated at Figure 4.

4.1. Dataset: TON IoT

The available datasets used for intrusion detection have some limitations. These datasets are out-
dated in telemetry data and do not have specific IoT and IIoT applications characteristics. The fre-
quently used datasets (KDD-CUP99, UNSWNB (2015), CIC-IDS (2017), BOT IOT (2018), and CIC-
IDS (2017)) in the IDS domain for IoT are compared based on several parameters. Study [48] shows
that these datasets did not have various sensors following with diverse new attacks, which could result
in a lake of telemetry data. Resultantly, the TON IoT dataset was chosen for the evaluation of EL
approaches. The most recent effort to create an IDS dataset was made by UNSW (Australia) in 2020,
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and developed telemetry data name as TON IoT. It is a publicly available dataset [78]. The name
TON shows that this dataset was collected from different Telemetry data of IoT applications, Operat-
ing system logs, and Network traffics of IoT networks. The testbed based on realistic representation of
medium-scale networks has been set up to collect data from cyber range and IoT labs. The testbed was
built using three layers (edge, fog, and cloud) where multiple IoT applications and network elements
interacted with each other. The dataset comprises seven CSV files that have sensors telemetry data.
The features of each file are presented in Table 4.

Type and label features are common in each file. The Label feature in each file comprises 0 (in-
dicate normal instance) and 1 (indicate the attack instance) values. The label feature performs binary
classification, whereas the type feature contains categorical values (indicating the attack type) used for
multiclass classification. The dataset contains nine diverse attacks named scanning, password cracking,
data injection, XSS, backdoor, and ransomware. Table 3 represents the detail description of dataset.
The seven files are combined in one CSV file that holds 401119 instances. A total of 245000 instances
were normal, and 156119 were attacked instances. The dataset is well balanced, with normal records
accounting for 61% of the total and attacked records accounting for 38%.

Table 4. Features in each file.

File Name Features
IoT Fridge Ts, date, time, fridge temperature , temp condition, label, type
IoT Garage Ts, date, time, door state, s phone signal, label, type
IoT GPS Tracker Ts, date, time, latitude, longitude, label, type

IoT modebus
Ts, date, time, FC1 read input register, FC2 read discrete value,
FC3 read holding register, FC1 read coil, label, type

IoT light motion Ts, date, time, motion status, light status, label, type
IoT thermostate Ts, date, time, current temp, Thermostat status, label, type
IoT weather Ts, date, time, Temperature, Pressure, Humidity, label, type

4.2. Pre-processing and Training of dataset

To evaluate the model on the Ton IoT dataset, it is necessary to pre-process it before using it.
Some frequently used methods (cleaning, encoding, and scaling) have been employed to perform pre-
processing on ToN IoT. The detail in each method is given below:

4.2.1. Method for feature selection

To select the essential features from the pole of features in the dataset is the most vital step. The
dataset chosen contains seven files which comprise up to six parts. The integrated file (combined seven
files) holds 22 features vector in total. The chi-Square feature selection technique has been employed
to select the top 19 features. Time, timestamp, and date features were removed due to overfitting
problems at training time [48].
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4.2.2. Method for data cleaning

This step involves handling missing and null values in the dataset. For Ton IoT, the median values
are calculated for each feature. Afterward, all the missing/ null values have been filled with the esti-
mated median value. The reason behind the selection of median is that it is less vulnerable to outlier
mistakes as compared to mean imputation [79].

4.2.3. Method for data encoding

ML deals with numeric data; therefore, the features in categorical form should be converted into
numeric values. The conversion of absolute values into numeric values is data encoding. There were six
features in the selected dataset that contained categorical values. Temperature-condition, light-status,
phone-signals, door-state, thermostat-status, and type. The robust method “Label Encoding” has been
used to perform encoding. Label encoding transforms categorical values into numeric in ascending
order. The categorical features with values on/off, true/false, high/low, open/close were converted into
nominal values 1/0. The “type” feature containing nine different attack names was converted into
numerical values 1 to 9.

4.2.4. Method for normalization

The dataset contains multiple features which have a different range of values. The values of some
features were in binary (1/0), and some were in hundreds or thousands, which leads to inaccurate
results. So, there was a need to rescale all values in a range. To do this, the Min-Max scalar method
has been employed on concerned features before modeling it. Min-Max Scaler method is one of the
most widely used scaling algorithms. In this method, the minimum of all data (data in one column of
the dataset) is subtracted from each value and divided by the minimum and maximum value difference.
The equation of Min-Max scaler is shown as:

y =
(x − min)

(max − min)
(12)

4.2.5. Training of model

At the stage of training, the dataset has been divided into two parts (training data and testing data)
with a ratio of 80: 20. The ratio (80: 20) for splitting the dataset is more recommended in literature
[79, 80] due to the fair chance of selection of data in both training and testing sets. Therefore, 80% of
data has been used to train the given model, and 20% of data has been used to test the model using the
sklearn library’s train-test-split method.

4.2.6. Evaluation metrics

To compare the performance of EL methods, the quantitatively used evaluation matrices: precision
(PRE), recall (REC), f1- score (FS), and accuracy (ACC) were selected. The detail of each metric is
represented in Table 5.
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4.3. Proposed stacking-based ensemble model

Stacking is a type of heterogeneous EL paradigm used for classification problems. It is also known
as stacked generalization [81]. In the proposed stacking ensemble model, two-level estimators were
used to solve the classification of intrusion or normal activities. In the first level, all base learners
were trained on the subsets of the dataset for the prediction of output. Four classifiers Naive Bayes
(NB) [55, 63, 82] , Linear Discriminant Analysis (LDA) [48, 73] Random Forest (RF) [70, 71] and
Linear SVC [66] were selected as base learners. In the next level, Logistic Regression (LR) [64] was
selected as a meta-model that takes predictions of all the base learners as input and produces a final
prediction that is more accurate than homogeneous EL models. LR is mostly used for binary class
classification problems and, with the default setting, cannot be used for multi-class directly. Therefore,
the well-known heuristic method one-vs-rest (OvR) has been used in LR in the “multi-class” parameter
to perform multiclass classification. OvR scheme divides the multi-class data into several binary class
problems, and then the model is trained on each binary class problem. The probability of each has
been calculated. The reason for choosing RF as a classifier is that it performs well on telemetry
data [48]. Studies [55] and [82] also claims that DT and NB has better performance in IDS respectively.
The model is presented to improve the standalone performance of NB, LDA, and Linear SVM with
ensemble techniques for telemetry data.
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Figure 4. Workflow of proposed methodology.
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Table 5. Description of evaluation matrices.

Sr
No

Evaluation
Matric Symbolic Representation / Formula Description

1 True Positive TP
Number of actual Attacked data observations that are
correctly classified as attack

2 True Negative TN
Number of actual Normal data that are correctly
classified as normal

3 False Positive FP
Number of actual normal instances that are incorrectly
predicted as attack

4 False Negative FN
Number of actual attack observation that are incorrectly
predicted as normal

5 Precision R = TP / TP+FP
Fraction of correctly detected attacked observations
and overall detected attack

6 Recall R = TP / TP+FN
Fraction of correctly detected attacked observation and
total number of attack observations in test dataset .

7 Accuracy Acc= TP+TN / TP+TN+FP+FN
Fraction of sum of correctly detected normal and attacked
observation and sum of all correctly and incorrectly normal and
attacked observations in dataset.

8 F-Score F1= 2* (Recall* Precision)/Recall+ Precision Harmonic Mean of Precision and Recall

5. Results and evaluation

To perform the experiments, the hardware specification of the system includes an Intel (R) Core
(TM) i5 CPU running at 3.20 GHz, 16.0 GB of RAM, and Windows 10 Pro. In software specification
Jupyter Notebook (Anaconda3) has been used to implement the proposed model in the programming
language Python version 3.7.3. Several libraries, such as Pandas and sklearn, etc., have been used to
pre-process the model.

The findings and comparison of our suggested model with classic ML models such as LDA, RF,
NB, LR, Linear SVC, and LSTM [48] are presented in this section. We have applied K-fold (4,5,7)
cross-validation on the given model. The proposed model achieves better results with K = 5. Thus,
all the results were obtained using the average value of accuracy, precision, recall, and F-measure.
The proposed model is evaluated against each IoT sensor using binary and multi-attack classification.
To test the performance of a model for heterogeneous telemetry data (data from different sensors), all
the seven dataset files are integrated into one CSV file. The proposed model outperforms binary and
multiclass classification.

5.1. Binary classification

5.1.1. Performance of binary classification on per-device(sensor) data files

The binary classification was applied to the dataset using the state of art models RF, LR, NB, LDA,
SVM, and the proposed stacking-based-ensemble model (Stacking). Table 6 shows the comparison
of the results of binary classification of the proposed model and state-of-art method. The proposed
model outperforms most individual IoT sensors data file compared to traditional ML algorithms. The
experimental results depict that a single ML algorithm does not provide more accurate results for all
IoT sensor data files. The performance of the proposed model in terms of accuracy is 100% for fridge
sensor and Garage door file compared to linear classifiers such as LR, LDA, NB, SVM with 57, 77,
50, and 81% respectively. The 100% result is that both files contain discrete values, which are easier
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Table 6. Binary classification on individual IoT data files.

File Name Reference Model Evaluation Measure
ACC PRE REC FS

IoT Fridge [48]

LR 0.57 0.34 0.58 0.43
LDA 0.77 0.79 0.77 0.77
RF 0.97 0.97 0.97 0.97
NB 0.50 0.53 0.51 0.51
SVM 0.81 0.86 0.82 0.80
LSTM 1.00 1.00 1.00 1.00

Proposed Model stacking 1.00 100 1.00 1.00

IoT GPS Tracker [48]

LR 0.86 0.88 0.86 0.87
LDA 0.86 0.88 0.86 0.87
RF 0.85 0.85 0.85 0.85
NB 0.84 0.86 0.85 0.86
SVM 0.86 0.88 0.87 0.87
LSTM 0.87 0.89 0.88 0.88

Proposed Model stacking 0.95 0.96 0.96 0.96

IoT Modbus [48]

LR 0.67 0.46 0.68 0.55
LDA 0.67 0.46 0.68 0.55
RF 0.97 0.98 0.98 0.98
NB 0.67 0.46 0.68 0.55
SVM 0.67 0.46 0.68 0.55
LSTM 0.68 0.47 0.68 0.55

Proposed Model stacking 0.96 0.97 0.97 0.97

IoT Light Motion [48]

LR 0.58 0.34 0.59 0.43
LDA 0.58 0.34 0.59 0.43
RF 0.58 0.34 0.59 0.43
NB 0.58 0.34 0.59 0.43
SVM 0.58 0.34 0.59 0.43
LSTM 0.59 0.35 0.59 0.44

Proposed Model stacking 0.59 0.35 0.59 0.44

IoT Weather [48]

LR 0.58 0.60 0.59 0.53
LDA 0.60 0.59 0.60 0.53
RF 0.84 0.84 0.84 0.84
NB 0.69 0.72 0.69 0.67
SVM 0.63 0.68 0.63 0.55
LSTM 0.82 0.82 0.81 0.80

Proposed Model stacking 0.97 0.98 0.98 0.98
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to work with. The model outperforms both GPS tracker and Mod bus sensor data file, then ML and
LSTM (a DL model) with 95 and 96%, respectively. The model gave an accuracy of 97% for weather
sensors data. In contrast, The achieved accuracy and other evaluation metrics (precision, recall, and
F1-score) from stacking EL are comparably same as the ML models for Garage door and light motion
file, presented in Table 7 due to the heterogeneity of data sources in Ton-IoT dataset.

Table 7. Binary classification on individual IoT data files.

File Name Reference Model Evaluation measure
ACC PRE REC FS

IoT Garage Door [48]

LR 1.00 1.00 1.00 1.00
LDA 1.00 1.00 1.00 1.00
RF 1.00 1.00 1.00 1.00
NB 1.00 1.00 1.00 1.00
SVM 1.00 1.00 1.00 1.00
LSTM 1.00 1.00 1.00 1.00

Proposed Model stacking 1.00 1.00 1.00 1.00

IoT Thermostat [48]

LR 0.66 0.44 0.66 0.53
LDA 0.66 0.44 0.66 0.53
RF 0.66 0.59 0.66 0.53
NB 0.66 0.44 0.66 0.53
SVM 0.66 0.44 0.66 0.53
LSTM 0.66 0.45 0.67 0.54

Proposed Model stacking 0.66 0.44 0.67 0.53

5.1.2. Performance of binary classification for merged IoT telemetry data

The data of each sensor file is automatically combined into a single CSV file (known as merge IoT
data) by implementing a python script. The three features, date, time, and timestamp, were removed
from the feature vector due to the over-fitting problem. From the results depicted in Table 8, it is evident
that model achieves the 86% accuracy as compare to linear classifiers such as LR (61%), LDA (68%),
NB (62%), SVM (61%), LSTM (81%). The proposed model has better accuracy, precision, recall, and
F1-score results than LSTM in the merge file. The success of our model is due to its ensemble nature
which combines the performance of individual classifiers and boosts up the results.

5.1.3. Cross comparison of proposed model and homogeneous ensemble model(bagging)

Bagging is homogeneous EL that uses the same base model for the classification. Different base
models such as Decision Tree, KNN, SVC, and Logistic Regression are used in bagging to conduct the
experiments. They were finally bagging with Decision Tree as base estimator was selected for com-
parison because it achieves better results than others. The proposed model, which is heterogeneous
in type, is compared with bagging (with DT). Comparison of both homogeneous and proposed het-
erogeneous techniques for binary classification for each file and merged file are presented in Table 9.
The results depicted that the proposed heterogeneous ensemble model outperforms another bagging in
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Table 8. Binary classification on merged IoT telemetry data.

File name Reference Model Evaluation measure
ACC PRE REC FS

Combine file [48]

LR 0.61 0.37 0.61 0.46
LDA 0.68 0.74 0.68 0.62
RF 0.85 0.87 0.85 0.85
NB 0.62 0.63 0.62 0.51
SVM 0.61 0.37 0.61 0.46
LSTM 0.81 0.83 0.81 0.80

Proposed model stacking 0.86 0.87 0.85 0.86

most cases for Binary classification. However, in the case of Merged data file, the accuracy and other
evaluation parameters are comparable to the bagging model in binary type.

Table 9. Binary classification comparison of homogeneous and proposed heterogeneous
model.

Data files Bagging with decision tree Proposed model
Mode ACC PRE REC FS ACC PRE REC FS

IoT Fridge Single 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
IoT Garage Door 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
IoT GPS Tracker 0.92 0.92 0.92 0.92 0.95 0.96 0.96 0.96
IoT Modbus 0.95 0.96 0.96 0.96 0.96 0.97 0.97 0.97
IoT Light Motion 0.58 0.35 0.59 0.44 0.59 0.35 0.59 0.44
IoT Thermostat 0.59 0.55 0.58 0.56 0.66 0.44 0.67 0.53
IoT Weather 0.89 0.89 0.89 0.89 0.97 0.98 0.98 0.98
Integrated Ton IoT Combine 0.82 0.88 0.87 0.86 0.86 0.87 0.85 0.86

Table 10. Proposed stacking model results of multi classification on per-device CSV file.

File Name ACC PRE REC FS
IoT Fridge 0.66 0.65 0.67 0.65
IoT Garage Door 0.66 0.62 0.67 0.62
IoT GPS Tracker 0.91 0.91 0.91 0.91
IoT Modbus.csv 0.98 0.99 0.99 0.99
IoT Light Motion 0.66 0.60 0.66 0.61
IoT Thermostat 0.76 0.75 0.76 0.75
IoT Weather 0.99 0.99 0.99 0.99
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Table 11. Multi classification on merged IoT data files.

File name Reference Model Evaluation measure
ACC PRE REC FS

Combine file [48] LR 0.61 0.38 0.62 0.47
LDA 0.62 0.46 0.63 0.51
RF 0.71 0.69 0.72 0.67
NB 0.54 0.59 0.51 0.52
SVM 0.60 0.37 0.61 0.46
LSTM 0.68 0.64 0.68 0.63

Proposed model stacking 0.77 0.80 0.75 0.74

5.2. Multiclass-classification

5.2.1. Performance of multi classification on per-device (sensor) IoT telemetry data file

The proposed model is applied for multi-classification with all 19 features of the dataset. The time,
timestamp, and date are excluded due to the mentioned reason above. The TON IoT dataset contains a
feature name “type.” The type feature includes seven different IoT attacks names, which helps identify
the attack type. The evaluation of the proposed model for the multi classification problem is presented
in this section. The proposed model has LR as a meta-model mainly used for binary classification
problems. LR with default setting cannot be used for multi class directly. Therefore, the well-known
heuristic method one-vs-rest (OvR) has been used in LR in multi class parameter. OvR scheme divides
the multi-class data into several binary class problems, and then the model is trained on each binary
class problem. The probability of each has been calculated. Finally, the class with the highest proba-
bility has been selected as the final prediction [79]. The results for multi-classification for individual
IoT sensor data files are shown in Table 10. The results depict that the proposed model achieves good
results for mod bus weather file with all metrics up to 98 and 99%, respectively. The model shows
similar results for fridge, light motion, and garage Door sensors. The accuracy score for these files
is 66%. The proposed model outperforms all those data files that have heterogeneous sensors data
compared to the data files that have binary data in case of multi class classification.

5.2.2. Performance of multi classification for merged IoT telemetry data

The summary of multi classification for merge file is presented in Table 11. The results show that
single ML classifiers do not perform well for multi classification. RF has a good score of 71% accuracy
whereas other classifiers (i.e., LR, LDA, NB, SVM) performance is not more excellent than 62%. In
contrast, our proposed model outperforms with 77% accuracy, 80% precision, and 75% recall.

5.2.3. Cross comparison of the proposed model and homogeneous ensemble model(bagging in
multi classification)

In multi classification, both the proposed model and bagging (DT) achieve almost similar results
presented in Table 12 for individual files as well as for merge files in terms of accuracy(bagging = 76%
and stacking = 77%).

Mathematical Biosciences and Engineering Volume 19, Issue 10, 10550–10580.



10573

Table 12. Multi classification comparison of homogeneous and proposed heterogeneous
model.

Data files Bagging with decision tree Proposed stacking model
Mode ACC PRE REC FS ACC PRE REC FS

IoT Fridge Single 0.66 0.65 0.66 0.65 0.66 0.65 0.67 0.65
IoT Garage Door 0.67 0.62 0.67 0.62 0.66 0.62 0.67 0.62
IoT GPS Tracker 0.84 0.84 0.84 0.84 0.91 0.91 0.91 0.91
IoT Modbus 0.98 0.98 0.98 0.98 0.98 0.99 0.99 0.99
IoT Light Motion 0.67 0.60 0.67 0.61 0.66 0.60 0.66 0.61
IoT Thermostat 0.75 0.75 0.76 0.76 0.76 0.75 0.76 0.75
IoT Weather 0.95 0.95 0.95 0.95 0.99 0.99 0.99 0.99
Integrated Ton IoT Combine 0.76 0.87 0.79 0.79 0.77 0.86 0.79 0.79

5.3. Discussion

In an IoT network, devices are interdependent to make smart decisions. Attackers capture the data
of IoT devices to temper it and alter the decision of other IoT objects within the network. This study
examines the performance of ensemble learning for IDS designed for telemetry data. The analysis of
experimental results shows that the proposed model gives optimum performance as compared to other
single ML models (i.e., LR, LDA, RF, NB, SVM), a deep learning model LSTM, and heterogeneous
model (bagging with DT). It is evident from the results that a single classifier does not produce accurate
results for all sensors. The proposed model can detect both binary and multi-class attacks for single
sensor data and for merge data of multiple sensors. To test the performance of the proposed model for
heterogeneous data, the data is integrated into one file from all sensors. Moreover, we have applied
Kfold (with K = 4, K = 5, K = 7) cross-validation on the given model. The proposed model achieves
better results with K = 5. The RF in proposed model boost up the performance of LDA and SVM.
Therefore, our model achieves significant increase in accuracy for both binary and multi-class attack
detection.

6. Conclusions

This study investigates the performance of ensemble learning techniques for IDs of sensors teleme-
try data in IoT networks by using ML classifiers. A stacking-based ensemble model has been proposed
for making the devices more intelligent. The proposed stacking ensemble integrated NB, LDA, Linear
SVC, RF as base classifiers, and LR was selected as meta classifier. The experiments were evaluated
on a recently publicly available ToN-IoT telemetry data set. The ToN-IoT dataset is an accurate rep-
resentation of telemetry data. The experimental results reveal that the stacking ensemble technique
achieves high accuracy for all sensors data compared to the stand-alone ML classifier and bagging
ensemble model. For binary classification, the performance of the proposed model compared to the
state-of-art classifiers in terms of accuracy was 100, 95, 97% for the fridge device, GPS tracker device,
weather sensors, respectively. However, the accuracy performance for Garage door and Thermostat de-
vices were comparably the same as the ensemble model. The proposed model achieved a significant
increase of 86% in accuracy for merge file in binary classification and 77% in multi classification.
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In future work, a deep learning model will be used and extended to improve the proposed model’s
accuracy in identifying unusual and novel types of IoT intrusions in IoT devices.
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