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ABSTRACT

HEART SOUND SEGMENTATION USING SIGNAL
PROCESSING METHODS

Devrim Şahin

M.S. in Computer Engineering

Advisor: Assoc. Prof. Dr. Hakan Ferhatosmanoğlu

July, 2015

Heart murmurs are pathological heart sounds that originate from blood flow-
ing with abnormal turbulence due to physiological defects of the heart, and are
the prime indicator of many heart-related diseases. Murmurs can be diagnosed
via auscultation; that is, by listening with a stethoscope. However, manual detec-
tion and classification of murmur requires clinical expertise and is highly prone
to misclassification. Although automated classification algorithms exist for this
purpose; they heavily depend on feature extraction from ‘segmented’ heart sound
waveforms. Segmentation in this context refers to detecting and splitting cardiac
cycles. However, heart sound signal is not a stationary signal; and typically has
a low signal-to-noise ratio, which makes it very difficult to segment using no ex-
ternal information but the signal itself. Most of the commercial systems require
an external electrocardiography (ECG) signal to determine S1 and S2 peaks, but
ECG is not as widely available as stethoscopes. Although algorithms that pro-
vide segmentation using sound alone exist, a proper comparison between these
algorithms on a common dataset is missing. We propose several modifications to
many of these algorithms, as well as an evaluation method that allows a unified
comparison of all these approaches. We have tested each combination of algo-
rithms on a real data set [1], which also provides manual annotations as ground
truth. We also propose an ensemble of several methods, and a heuristic for which
algorithm’s output to use. Whereas tested algorithms report up to 62% accuracy,
our ensemble method reports a 75% success rate. Finally, we created a tool named
UpBeat to enable manual segmentation of heart sounds, and construction of a
ground truth dataset. UpBeat is a starting medium for auscultation segmenta-
tion, time-domain based feature extraction and evaluation; which has automatic
segmentation capabilities, as well as a minimalistic drag-and-drop interface which
allows manual annotation of S1 and S2 peaks.

Keywords: Heart sound, Segmentation, Fourier, Wavelet transform.
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ÖZET

İŞARET İŞLEME YÖNTEMLERİ KULLANILARAK

KALP SESİ BÖLÜTLEME

Devrim Şahin

Bilgisayar Mühendisliği, Yüksek Lisans

Tez Danışmanı: Assoc. Prof. Dr. Hakan Ferhatosmanoğlu

Temmuz, 2015

Kalpte oluşan fiziksel bozuklukların kan akışını etkilemesi sonucu oluşan
seslere üfürüm denir. Üfürümler birçok kalp hastalığının birincil habercisidir.
Kalp seslerini stetoskop aracılığıyla dinlemek (oskültasyon) suretiyle üfürümler
üzerinden teşhis yapılabilse de, bu tür teşhisler tıbbi uzmanlık gerektirmek-
tedir ve hatalara oldukça açıktır. Literatürde otomatik sınıflandırma algorit-
maları önerilmiş olsa da; ses dalgabiçimlerinden ayıklanacak olan özniteliklerin
kalp atımı içerisindeki konumları teşhis açısından önem taşıdığı için, öncelikle bir-
inci ve ikinci kalp seslerinin konumlarını belirlemek ve buna göre öznitelik seçmek
gereklidir. Kalp atımlarının saptanması ve ayrıştırılması işlemine bölütleme
(segmentasyon) adı verilmektedir. Kalp sinyalinin organik yapısı dolayısıyla
öngörülebilir bir frekans-zaman profilinin olmaması, sadece ses kaydını kullanarak
bölütleme işini zorlaştırmaktadır. Birçok ticari sistemde harici olarak bir elek-
trokardiyografi (EKG) sinyali de kaydedilse de, EKG aygıtlarının stetoskop kadar
yaygın olmaması bu sistemlerin erişilebilirliğini düşürmektedir. Yalnızca kalp
sesi kullanarak bölütleme yapan algoritmalar olsa da, bu algoritmaların hepsinin
üzerinde sonuç sunduğu ortak bir veritabanı yoktur. Bu çalışmada, var olan al-
goritmalara çeşitli uyarlamaların yanı sıra, bu çeşitlemeleri karşılaştırmak için
kullanılabilecek bir değerlendirme ölçütü öneriyoruz. Örnekleri için elle yapılmış
bölütlemelerin mevcut olduğu Pascal [1] veritabanından alınmış 66 kayıt üzerinde
bu yaklaşımların tüm kombinasyonlarını karşılaştırıyoruz. Bunun yanı sıra
birkaç yöntemi karıştırarak sonuç kalitesini artırmayı amaçlayan bir birleşim
de öneriyoruz. Karşılaştırdığımız tekil algoritmalar %62’ye varan başarılar
gösterirken önerdiğimiz birleşim ile %75’lik bir başarı oranına ulaştık. Son
olarak, Pascal gibi denetleme amaçlı veritabanlarının kolayca ve hatasız şekilde
oluşturulabilmesi için bir araç ürettik.

Anahtar sözcükler : Kalp sesi, Bölütleme, Fourier, Dalgacık dönüşümü.
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Chapter 1

Introduction

Figure 1.1: The anatomy of mammal heart

In living organisms, distribution and transportation of blood is conducted by the

cardiovascular system. The circulation of blood allows the cardiovascular system

to transport oxygen to and carbon dioxide from cells; distribute nutrients, hor-

mones, blood cells; as well as fight pathogens, regulate acidity, body temperature,

glucose concentration etc. [2]

Cardiovascular system consists of the heart, blood and blood vessels [3]. Heart

is the central component of the circulatory system. It pumps oxygenated blood

into the cells and collects oxygen-poor blood to the lungs. Correct operation of

the heart is, thus, vitally important. Among the 57 million deaths that occurred

globally in 2008, 36 million were due to non-communicable diseases (NCDs),
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of which the most common is cardiovascular diseases [4]. Turkey’s profile in

fighting heart diseases is not promising either; where NCDs are accounted for

approximately 86% of total deaths, the highest of which is cardiovascular diseases

with a proportion of 47% [5]. This makes detection and classification of heart

diseases very important.

Figure 1.1 depicts the mammal heart. The left and right sides of the heart

are isolated from each other; and perform slightly different tasks simultaneously.

Each side is divided into two chambers with a valve in between. The smaller

chambers that are on top are named the atria, whereas the lower chambers are

called ventricula [6]. The blood enters the heart through the atria on both sides;

the right side receives oxygen-poor blood collected from the body, whereas the

left-side receives oxygen-rich blood collected from the lungs. When both atriums

contract, the blood is pumped into the ventricles on both sides. After this, the

ventricular muscles contract strongly and pump the blood into the pulmonary

trunk on the right, which carries oxygen-poor blood into the lungs; and aorta

on the left, which distributes oxygen-rich blood to the body. During these two

contractions, two audible sounds are generated, called ‘lub’ and ‘dub’ respectively.

There exist four valves in between these chambers which prevent blood from

leaking backwards during each of the contractions. [2]

Heart is a complicated machinery that may fail to operate correctly on many lev-

els. Putting severe cases as traumatic ruptures and heart attacks aside, anatomi-

cal or developmental defects can occur. One example is the failure of heart valves

to properly close, in which case some of the blood flows backwards turbulently.

Another problem may occur in the thin blood vessel named Ductus Arteriosus

between the pulmonary artery and aorta (depicted in Figure 1.1). This vessel is

used in fetuses to bypass the lungs that are not yet functional, but closes in birth

and becomes the arterial ligament. However, a failure in the developmental stage

can cause this vessel to remain open, leading to the congenital disorder known as

Patent Ductus Arteriosus (PDA), causing shortness of breath and poor growth

etc. [7] Both of these problems present themselves with a characteristic abnormal

sound, known as a heart murmur.
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There are various tools and techniques available for cardiologists to achieve a

diagnosis, including auscultation, electrocardiography, echocardiography, Holter

monitors, computer tomography, magnetic resonance imaging and so on. How-

ever, most of these options require an expensive setup. For example, magnetic

resonance imaging (MRI) requires a medical MRI scanner, which has a cost of

more than $1000 per scan (United States national median cost, excluding in-

surance) [8]. In Turkey, the price the patient is to pay is as low as 72 TRY

[9], but the rest of the expense is then covered by the state. In any case, this

prevents medical doctors from asking for an MRI scan immediately for every pa-

tient. Therefore, even when cardiologists suspect that a more complicated test is

required, they decide to resort to simpler, less expensive methods as a first step.

The simplest, cheapest, and therefore most commonly used technique is known

as cardiac auscultation.

Cardiac auscultation (or “auscultation”, shortly) is the process of listening to

heart sounds using a simple equipment such as a stethoscope. If these heart

sounds are recorded, the recording is called a phonocardiogram, or PCG. As a

medical test, auscultation is fairly simple to apply; and the only required equip-

ment being the stethoscope, it is virtually cost-free. This means that even in

third-world countries, auscultation has a very broad availability.

The problem with auscultation, however, is that the interpretation of the sounds

heard (or recorded) is not trivial. Diagnosis through cardiac auscultation requires

years of clinical expertise and proper education to conduct properly. Furthermore,

even with years of experience, the analysis remains critically subjective. It is re-

ported that up to 80% of diagnoses made by expert physicians using auscultation

are actually incorrect [10]. The main reason the error rates are as high as reported

is that auscultatory analysis is very inconclusive. Since the well-being of the pa-

tients is involved, physicians tend to make Type-I errors (false alarms) almost

deliberately, in order to avoid missing any potential abnormalities. This is a nec-

essary attitude when the cost of Type-II errors (misses) is high (e.g. advancement

of diseases, possibly death).
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Given that auscultation is a comparably inconclusive test, one can argue that in-

creasing the reliability of the test by developing an objective auscultation analysis

approach would allow the physicians to avoid a significant amount of expense,

creating a relief on the healthcare budgets of especially less developed countries

[10]. Such a system would then increase the confidence of the diagnosis, and thus

broaden availability of cardiac diagnostics even where more complicated tests are

not easily accessible. With the electronic stethoscopes becoming more available

by the day, it is now possible to discuss the possibility of an computer-aided af-

fordable analysis tool that will provide objective measures of heart disease risks.

There have been numerous approaches for detecting heart diseases using a range

of signal processing and machine learning techniques. The majority of these

algorithms share a three-step approach; involving (1) cardiac cycle segmentation,

(2) feature extraction, and (3) classification. The last two steps are well-studied

in the literature; many different machine learning approaches including but not

limited to support vector machines, artificial neural networks, even decision trees

were applied on the problem of the classification of heart sounds once they are

segmented [6, 10–26], however the approaches to the segmentation step remain

outdated. Bentley et al. acknowledge that once the segmentation challenge is

solved, the following steps will be “considerably easier”[1].

Cardiac cycle segmentation (the details of which will be discussed in length) is

detection of the ‘beats’ of heart, such that any abnormalities determined can be

taken into consideration regarding its location. Location of an abnormal com-

ponent in the phonocardiogram is a very important feature for classification of

heart murmurs. Murmurs are one of the most common abnormalities that can be

detected via auscultation. These are audible turbulent sounds which may be gen-

erated by leaking heart valves, holes in cardiac muscles, developmental disorders,

and a myriad of other conditions [7]. For all of these cases, the characteristics of

the murmur change drastically. Murmurs can appear at different locations in the

cardiac cycle, may increase or decrease in amplitude, be constantly loud; or may

be observed at different frequency bands and different auscultation locations. All

of these features help detecting the nature of the murmur.
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However, trying to find the characteristics of murmur using only one cardiac cycle

is not a reliable approach. Heart sound recordings are rarely (if ever) devoid of

noise; moreover, the statistical properties of the noise present in such signals re-

main to be unpredictable: Additive white noise, lung sounds, mechanical sounds,

loud peaks originating from physical movement of the stethoscope, even reverber-

ations of the original heart sound echoing from internal tissues frequently appear

in the phonocardiogram. Hence, it is critical to have a robust segmentation algo-

rithm that is capable of correctly detecting as many cardiac cycles as possible in

order to make reliable diagnoses.

In this study, we investigate several approaches to heart sound segmenta-

tion using only phonocardiogram recordings. The initial approach is a six-

step algorithm, of which majority of the work in the literature is a variation

[6, 11, 13, 15–19, 23, 25, 27–32]. These six steps include preprocessing (resampling

and normalization), a time-frequency transform (selection of relevant frequency

bands), rectification (transformation of the signal to a non-negative domain that

represents magnitude), envelope detection (elimination of high frequency modu-

lation), peak selection (thresholding and detection of peak candidates), and peak

merging (elimination of redundant peaks and classification of the remaining can-

didates as S1/S2). Throughout the literature, different studies have proposed

different methods for each of these six steps. We provide a comparison of these

works by implementing all of these variations and testing every combination on a

common real data set [1]. As a contribution, we also propose a modified version

of the Maximal Marginal Relevance (MMR) method [33], which is widely used in

the information retrieval context, as an alternative to the traditional approach.

We define the similarity metrics that MMR uses such that diverse peaks are

picked, maximizing both their amplitudes and temporal distances to each other.

We also introduce an ensemble of the aforementioned methods in order to boost

the algorithm’s performance. For our tests, we use the annotated Pascal heart

sound data set [1] and score each algorithm using a common evaluation metric

that we propose. Finally, we developed an application that helps constructing

and annotating a ground truth data set for heart sound segmentation, which is

also a powerful tool for waveform visualization and playback, useful in providing

5



an intuition for cardiac auscultation.

The rest of this thesis is organized as follows:

Chapter 2 provides a mathematical background for the signal processing tech-

niques required for the discussion of our work.

Chapter 3 formally presents the problem, challenges and limitations; and sum-

marizes the methodology and results of the related work in cardiac cycle

segmentation.

Chapter 4 introduces UpBeat, a heart sound signal visualization, playback and

annotation tool that we have developed.

Chapter 5 discusses the implementation of the heart sound segmentation algo-

rithms in detail.

Chapter 6 explains the dataset, introduces our evaluation metric; then lists and

discusses the results for both individual methods and the ensemble. Finally

we conclude by discussing future work.
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Chapter 2

Mathematical Background

In this section we will describe most of the approaches taken in the related work

and this study. Although topics such as Fourier Transform are mentioned for the

sake of completeness, a certain level of knowledge of signal processing is assumed

with the intent of keeping the discussion brief and to-the-point.

2.1 Time-Frequency Transforms

Since a heart sound recording consists of both relevant and irrelevant information

of different frequencies, it is a common practice to perform a time-frequency

transform on the initial heart sound signal in order to filter and de-noise the

original signal. Several time-frequency transform methods are discussed below,

after a brief discussion of the Fourier transform.

2.1.1 Fourier Transform

Fourier transform is an operation that matches a signal onto the orthogonal

Fourier space [34]. What it accomplishes is representing a time-domain signal
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in terms of a summation of its weighted sinusoidal components with different fre-

quencies. As a result it provides a frequency domain representation of the signal.

It is formulated in the continuous domain as follows [35]:

F (k) =
1

2π

∞
∫

−∞

f(x)e−ikxdx

Reverse Fourier transform is defined as the inverse of this operation, where the

frequency domain representation of the signal is converted to a time frequency

signal:

f(x) =
1

2π

∞
∫

−∞

F (k)eikxdk

Discrete Fourier Transform (DFT) is defined on a discrete series x[n] as below:

F [k] =
N−1
∑

j=0

x[k]e−i2πjk/N

Both the input and the output of the Fourier transform are complex, therefore

are difficult to imagine. Converting the complex number z to its amplitude-phase

notation is often more meaningful:

z = a+ ib =⇒ |z| =
√
a2 + b2, ∠z = arctan(

b

a
).

Then z = |z|ei∠z. This is the radial notation of a complex number z on the

complex domain, where |z| is the amplitude and ∠z is the positive angle to

the real axis. While the amplitude of the Fourier transform of a signal (|F (k)|)
represents the ‘amount’ of every frequency in the given signal, phase of the Fourier

transform (∠F (k)) keeps the phase information (or ‘time delay’, indirectly) for

each frequency k. Every plot of a Fourier transform in this thesis will depict the

amplitude of the transform only. Since we are interested in the amount in each

frequency instead of the phase of it, this intuitively makes sense. However we

keep both real and imaginary values separately in the code.

To further simplify the matters, we will use the property that if the input of the

8



Figure 2.1: On the left is f1(t) and its Fourier transform. On the right is f2(t)
and its Fourier transform. The amplitudes on the frequency domain are identical.

Fourier transform is strictly real, the output is symmetrical along the y-axis, that

is; F (k) = F (−k) iff ℜ{f(x)} = f(x). For our application, it is a given that the

recorded data is real. Therefore it is possible to consider only positive frequencies

for a real input, since the negative side will be redundant.

2.1.2 Short-Time Fourier Transform and Spectrogram

Fourier transform is informative for signals where the frequency distribution of the

signal does not change significantly. For other signals where there the frequencies

that the signal consists of, or their amplitudes change; the result will become a

superposition of them. Consider two signals as follows: In the first signal, we

have f1(t) = u(−t)cos(2π10t) + u(t)cos(2π20t), where u(t) is the step function.

This signal is a cosine with a 10Hz frequency up to t = 0, then changes its

frequency into 20Hz. Also let f2(t) = u(t)cos(2π10t) + u(−t)cos(2π20t), that is,
the frequency drops from 20Hz to 10Hz at t = 0. The Fourier transforms of these

two signals F1(k) and F2(k) are equivalent, in that |F1(k)| = |F2(k)| (see Figure

2.1). Therefore it is said that Fourier transform loses the time information.

For many applications, we want to keep the time information; that is, we have a

signal of which the frequency distribution is dynamic and should be attributed to

time itself. That is to say, we would like to find out which frequencies are present

at which time. One example to this is finding the notes of a song: Finding which
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notes are present in the song is never enough, we also would like to know their

locations in time to analyse a song. Therefore we need a function that maps a

time-domain signal onto the time-frequency domain.

One way of doing this is separating the signal to small time periods, then taking

the Fourier transform for each period. This approach is called STFT (Short-Time

Fourier Transform) [36]:

STFTx[n](m, f) =
∞
∑

n=−∞

x[n]w[n−m]e−i2πfn

Here, w[n] is a window function (such as a Hann window) that helps reduce arti-

facts. Although this approach is intuitive, one disadvantage is that there exists a

trade-off between frequency and time resolutions. When we keep the time periods

very small, very quick changes in frequency can be detected precisely, however the

frequencies themselves cannot be clearly detected (because each Fourier transform

has small number of samples to work on). If we keep the intervals too large, the

frequency resolution increases, however detecting the position of the frequency

change exactly becomes a problem. Another approach to transforming the signal

onto the time-frequency domain is known as wavelet transform.

Finally, spectrogram is defined as the squared magnitude of the Short-Time

Fourier Transform; that is, |STFT (t, w)|2.

2.1.3 Wavelet Transform

Wavelet transform is another method of representing a function in the form of a

given orthonormal basis function. Whereas Fourier transform loses the time infor-

mation altogether, wavelets are capable of representing both time and frequency

axes with different resolutions [37].

Wavelet transform differs from Short-Time Fourier Transform on how it samples

from the time-frequency domain. While STFT divides the time-frequency do-

main into equal time and frequency intervals as a grid; wavelet transform follows
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Figure 2.2: Comparison of short-time Fourier transform with wavelet transform
in terms of how they partition the time-frequency domain

a dyadic layout where it allocated higher frequencies more samples, whereas fre-

quency ranges are more refined for lower frequencies. An example is given in

Figure 2.2. As it can be seen, wavelet transform actually applies a more rea-

sonable trade-off between time and frequency resolutions, by having more time

samples where frequencies change rapidly (high-frequency components), and vice

versa. Wavelet transform depends on two functions called the mother wavelet

function and the scaling function [37], and different functions can provide differ-

ent wavelets, each of which might be more appropriate for a certain task than

others. At each step, the input signal is passed through a high-pass filter and a

low-pass filter, after which both outputs are downsampled by 2. The process is

iterated on the low-frequency side until the size of the coefficient is equal to 1.

Figure 2.3 depicts the process, and a simple example is described while discussing

Haar wavelets.

2.1.3.1 Haar Wavelet

Haar wavelet the simplest form of wavelet transform.
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Figure 2.3: Wavelet transform. At each step, detail and approximation coeffi-
cients are generated with half the input length. Approximation coefficients are
applied the same process until the output length is 1.

The mother wavelet function for Haar transform is defined as:

ψ(t) =



















1 if 0 ≤ t < 1
2
,

−1 if 1
2
≤ t < 1,

0 otherwise.

and the scaling function is:

φ(t) =







1 if 0 ≤ t < 1,

0 otherwise.

An example of the Haar wavelet decomposition on a discrete signal is given in

Figure 2.4. In the first step, each pair of elements effectively generate two coeffi-

cients, such that a1[t] =
1
2
I[2t] + 1

2
I[2t + 1] and d1[t] =

1
2
I[2t]− 1

2
I[2t + 1] (for a

correct Haar transform each of these equations should have been multiplied with√
2 for energy preservation but we will omit this detail for simplicity). Effectively,

a low pass filter and a high-pass filter with cut-off frequencies fc = fs/4 are ap-

plied onto the input (the frequency responses of which can be seen in Figure 2.5),

then the result is downsampled with a factor of two. The a1 are the 1st level

12



Figure 2.4: An example to the Haar wavelet transform

‘approximation’ coefficients, whereas d1 are the 1
st level ‘detail’ coefficients. This

process is then iteratively repeated on the approximation coefficients, until the

length of both sides is 1. Given that the initial length of data is 2N for an integer

N , the total number of resulting coefficients will have a length of 2N as well.

Note that at each step we iterate over the approximation coefficients only. The

reason is that the approximation coefficients represent the lower frequencies

whereas detail coefficients consist of the high-frequency information. It follows

that the low frequency components of a given signal tend to change more slowly

whereas high-frequency information quickly changes; therefore it makes sense al-

locating more samples to represent the detail coefficients. This corresponds to a

separation of the time-frequency plane in a different way than that of the short-

time Fourier transform, as seen in Figure 2.2.

Once the wavelet coefficients are obtained, perfect reconstruction of the sam-

ples is possible within the limitations of the given quantization scheme [37]. For

Haar wavelets, I[2k] = a1[k] + d1[k] and I[2k + 1] = a1[k] − d1[k]. For our ex-

ample, I = {(8 + 1), (8 − 1), (4 + (−1)), (4 − (−1)), (8 + (−2)), (8 − (−2)), (4 +

(−2)), (4 − (−2))} = {9, 7, 3, 5, 6, 10, 2, 6}, which is equal to the initial signal.

13



0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

10
−2

10
−1

10
0

 

 

LPF [0.5,0.5] HPF [0.5,−0.5]

Figure 2.5: Frequency responses of the high-pass and low-pass filters that are
used in the Haar wavelet decomposition process. The y-axis is the logarithm of
magnitude, the x-axis is the normalized frequency.

Furthermore; if we were to set every d1 coefficient to zero, the reconstruction

would yield I ′ = {8, 8, 4, 4, 8, 8, 4, 4}; which is a rather close approximation of the

initial signal. Technically speaking, we would have suppressed the high frequency

components; and practically filtered the signal. Selecting the detail and approxi-

mation coefficients that correspond to the frequency bands we want and setting

the others to be zero would effectively give us these frequency bands.

One disadvantage of Haar wavelets is that despite their simplicity, they lack

differentiability, since the function is explicitly discrete. Another issue that arises

can be seen from Figure 2.5, as the filters that correspond to the transform

operation do not very effectively separate the two frequency bands; therefore

Haar wavelets cannot achieve a very good resolution in terms of frequency.

2.1.3.2 Daubechies Wavelet

Daubechies wavelets can be considered as a generalization of Haar wavelets, for

Haar wavelet is also known as Daubechies-2 wavelet (D2) [38]. To provide a crude

perspective, whereas scaling sequence provides a low-pass filter, wavelet sequence

acts as a band pass filter. Daubechies presented a family of wavelets with a filter
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Figure 2.6: An example to the Daubechies-4 wavelet transform

size of 2p, by solving the equation below using Bezout theorem [39]:

Hφ(e
iw) =

√
2

(

1 + e−iw

2

)p

R(eiw)

For p=2, the obtained polynomial is:

P (
2− z − z−1

4
) = 2− 1

2
z − 1

2
z−1

of which the roots are 2+
√
3 and 2−

√
3. The discrete-time factorization is then:

hφ[n] =

√
2 +

√
6

8
δ[n] +

3
√
2 +

√
6

8
δ[n− 1] +

3
√
2−

√
6

8
δ[n− 2] +

√
2−

√
6

8
δ[n− 3]

This gives us the Daubechies-4 wavelet transform, or “D4” in short [39], the

scaling and wavelet functions for which are given in Figure 2.6.

Other wavelet families with different derivations exist, however they are beyond

our scope, because many papers regarding heart sound segmentation use Haar

and D4 wavelets [6, 18, 19, 30]. This makes sense due to a comparison between

wavelet families that revealed that D4 is optimal for heart sound analysis [10].
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2.1.4 S-Transform

S-Transform is a special variation of STFT such that it allows variable window

sizes [40]. In S-Transform, the window function w(t) is selected as

w(t) =
|f |√
2π
e−t2f2/2

therefore S-transform is defined as

S(t, f) =

∞
∫

−∞

x(k)
|f |√
2π
e−(t−k)2f2/2e−i2πfkdk

Although S-transform can provide a good resolution, its computational complex-

ity is as high as O(N3) [41]. An FFT-based implementation has a computational

complexity of O(N2log2(N)) [42], which requires that the acquisition of the en-

tire signal is completed. It is possible to reduce the computational complexity of

S-transform further down to O(Nlog2(N)) using approximations [41]; of which

the implementation might lead to madness [43].

2.1.5 Constant-Q Transform

Constant-Q transform maps the linear frequency domain of a Fast Fourier Trans-

form onto a logarithmic frequency domain [44], such that the kth frequency com-

ponent is at fk = 2k/24fmin. Originally being designed for the geometric posi-

tioning of musical notes, Constant-Q transform separates every octave into 24

intervals; hence the k/24. fmin is the minimum sampled frequency for which in-

formation is desired. The name Constant-Q comes from the fact that the window

on which discrete Fourier transform is performed is selected to have the length

of Q cycles, where Q is a constant. In regular DFT where the kth frequency

component is at kδf , the number of cycles becomes variable, i.e. dependent to k.
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Here, Q is named the quality factor [45]. The equation becomes the one below:

X[k] =
1

N [k]

N [k]−1
∑

n=0

W [k, n]x[n]e−i2πQn/N [k]

where

N [k] = Nmax2
−k/24

and

W [k, n] = α + (1− α)cos(2πn/N [k]).

which is a Hamming window adapted to the exponential frequency [45].

2.2 Maximal Marginal Relevance

Maximal Marginal Relevance (often abbreviated as MMR) is a method first pro-

posed by Carbonell and Goldstein for text retrieval and summarization [33]. In a

context where sorting a retrieved document set S with respect to their relevance

with a given query Q produces redundant or repetitive results, diversity becomes

a desirable property. A result set is said to be diverse if the retrieved documents

are dissimilar to each other. Diversifying the result set helps represent a large va-

riety of topics in the top results, while avoiding highly similar (or even duplicate)

results.

Assume that for a given document collection C; the information retrieval system

R = IR(C,Q, θ) retrieves a ranked list of documents R that have a similarity

with the query Q above a given relevance threshold θ. then the maximal marginal

relevance is calculated as follows:

MMR = arg max
Di∈R\S

[

λSim1(Di, Q)− (1− λ) max
Dj∈S

Sim2(Di, Dj)

]

Here, S is the subset of R that is to be returned. Initially S(0) = ∅. At each

kth iteration, S(k) = S(k−1) ∪MMR. In other words, S contains the elements

that are already picked, and the next element is chosen from the difference set
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Figure 2.7: Top-5 results without MMR (left) and with MMR (right, λ = 0.5).
Black point represents the query.

R\S such that it both maximizes the similarity to the query, and minimizes the

maximum similarity to any element in S. The parameter λ ∈ [0, 1] tunes the

relative importance of these two factors against each other.

Since initially S is an empty set; initially R\S = R and maxDj∈S Sim2(Di, Dj)

is 0. Therefore D1 = arg maxDi∈R Sim1(Di, Q), meaning, the first picked el-

ement D1 will be the most similar one to the query Q. After this, next

element will be both similar to Q and dissimilar to D1 (more formally;

arg maxDi∈R\{D1} [λSim1(Di, Q)− (1− λ)Sim2(Di, D1)]), and so on.

Figure 2.7 depicts an example of the MMR algorithm. Here, Sim1(x, y) =

Sim2(x, y) = 1
||x−y||2

, that is, geometric inverse of the squared Euclidean dis-

tance. It can be seen in the second subfigure that similarity is traded off with

diversity, such that data points that are redundantly similar to one another are

not picked.

We will use this equation to pick large but diverse samples in the time series of

the heart sound signal, representing separate peaks.
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Chapter 3

Related Work

Figure 3.1: Normal heart sound recording, depicting the heart sounds S1 and S2

[46]

The detection and separation of cardiac cycles with the intent of recognizing

heartbeats is named “heart sound segmentation”. Since heart murmurs with dif-

ferently distributed energies within the cardiac cycle may reflect different clinical

conditions, a good segmentation algorithm is essential for detecting the temporal

locations of such events with respect to the regular cardiac cycle events.

The mammal heart consists of four chambers, symmetrically separated into two

sides. The contraction of these chambers sequentially, combined with four uni-

directional valves, effectively pumps blood in one direction. Two audible sounds

are generated during these contractions, namely the first heart sound (S1) and
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the second heart sound (S2), also occasionally referred to as the ‘lub’ and the

‘dub’ (or ‘dup’) [10]. The interval from one S1 to the next is named a cardiac

cycle. Therefore, each cardiac cycle also contains an S2 peak. This S2 peak sep-

arates the cardiac cycle into two sub-intervals: The interval between S1 and the

following S2 is called a systolic period, whereas the interval between an S2 and

the next S1 is called a diastolic period [6]. In total, a cardiac cycle consists of an

S1 peak, a systolic period, an S2 peak, and a diastolic period in the given order.

Typically, the diastolic period of a given cardiac cycle has a longer duration than

its systolic period.

A heart sound recording may include other sounds, some of which are inaudible

without amplification (for example, S3 and S4). However, S1 and S2 are the only

heart sounds that are commonly expressed in any phonocardiogram, therefore

these two sounds are used by every segmentation algorithm unanimously.

There are various challenges that makes the segmentation task non-trivial. First

of all, heart sound recordings are very noisy, and the assumptions made on a cer-

tain dataset do not hold for another. The source of noise is not only electronic,

but also mechanical; including but not limited to the reverberations of heart

sounds from internal tissues, sharp peaks originating from sudden movements of

the stethoscope, abnormalities in the heart and so on [32]. Attempts at removing

these noises by isolating S1 and S2 sounds in their frequency bands do not work

well, because not only these noises may occur at any frequency band, but also S1

and S2 have different frequencies at every patient and even between cycles [10].

Although attempts have been made to eliminate lung sounds from these record-

ings [32], a reliable method for the removal of the noises in phonocardiograms,

clearly expressing S1 and S2 sounds, remains to be discovered. Therefore, seg-

mentation algorithms try to employ approaches specific to the characteristics of

the heart sound signal, depending heavily on assumptions obtained from medical

observations [6, 15, 17, 23–26, 29–32]. Even though there have been attempts at

designing heart sound classification techniques that do not depend on segmenta-

tion [22], these are reported to show a more robust performance on segmented

data [11]. Therefore, heart sound segmentation remains to be a ‘bottleneck’ for

the performance of many algorithms proposed for heart disease detection and

classification.
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Another challenge in this line of research is that most of the methods in the

literature have been tested on the datasets that were preprocessed and curated

exclusively and are kept private. This means that there is no guarantee that

a particular method that is tested on a given dataset would provide a similar

performance on another dataset. A proper unification and comparison of these

methods on a common reliable dataset is missing.

There has been extensive work regarding the cardiac cycle segmentation problem

in the last two decades. Two major subsets of these approaches are ECG based

segmentation and PCG segmentation. While ECG segmentation algorithms use

the electrocardiogram signal to segment the phonocardiogram, PCG segmenta-

tion algorithms only receive the heart sound waveform as input.

3.1 ECG Segmentation

There are various heart sound segmentation algorithms using the electrocardio-

gram signal as reference. The advantage of this approach is that ECG signal is

not affected by heart murmurs, which are not electrical events; which makes it

desirable for industrial applications. Dominant peaks in PCG envelope might not

be strongly correlated with cardiac activities in the presence of strong abnormal

sounds [28]. Therefore the performance of a PCG segmentation algorithm can be

rather sensitive to abnormalities when compared to an ECG-aided segmentation

algorithm.

Given the PCG and ECG recordings, an ECG segmentation starts by attempt-

ing at segmenting the ECG signal first [47]. A QRS detection method such as

Tompkins algorithm [12] is applied onto the ECG signal to locate the R waves. It

is observed that R waves are temporally correlated with S1 sounds; therefore S1

sounds in the PCG signal must be in the vicinity of R waves in the ECG signal

[28]. One approach is to call the interval between two R waves a cardiac cycle,

and try to detect S1 and S2 sounds within each cardiac cycle [21]. Another is

called “ECG gating”, and involves searching S1 in the predefined neighborhood
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of the R waves, then looking for S2 peaks in between [16,17].

There are several advantages of such segmentation algorithms. First of all, the

presence of murmurs does not affect the ECG waveform, thus the performance of

the algorithm [10]. Segmentation of ECG signals is relatively easier and rather

well-studied compared to PCG signals. Finally, reported accuracies of ECG seg-

mentation algorithms are typically higher than PCG segmentation algorithms.

However, these algorithms require an ECG signal to be recorded along with PCG

in the first place. Considering that the design objective we have set was minimiz-

ing hardware requirements to reduce cost and increase availability, this approach

seems misplaced. Also, precise temporal alignment of PCG and ECG signals is

necessary for ECG-aided segmentation algorithms to operate, since they require

that the segmentation obtained in one can be mapped onto the other; which re-

quires a synchronous operation of two independent systems, with good temporal

precision non-trivial to achieve. Finally, even though ECG signal is segmented

properly, S1 and S2 sounds are still looked up on the PCG signal. Especially the

location of S2 can be affected as significantly in the presence of strong murmurs.

Therefore we turn our gaze towards PCG segmentation algorithms permanently

from this point on.

3.2 PCG Segmentation

PCG segmentation algorithms do not use any secondary external signals such as

ECG waveforms to achieve segmentation. Rather, segmentation itself is achieved

directly on the PCG waveform. Since heart abnormalities make themselves ap-

parent on the heart sound, they can affect the performance of the segmentation

algorithm. However, this is the only desirable approach to the problem in terms

of cost, since it does not require the installation, synchronization and acquisi-

tion of any external module such as an electrocardiogram. Since heart sound

signals are highly organic signals, it is very difficult to find a constant factor in

them. Often, the temporal lengths of every systolic and diastolic period deviate.

Even though S1 and S2 are assumed to be highly audible, their amplitudes might

22



change significantly, to the point of disappearance in the presence of certain ab-

normalities. Finally, S1 and S2 peaks do not seem to have fixed frequencies, but

rather present themselves within different frequency bands in two separate car-

diac cycles. These limitations of the heart sound signal led researchers to develop

a rather unique approach to heart sound segmentation. The general approach to

PCG segmentation can be found in [6, 23, 25, 29,31,32].

One of the earliest solutions that was dependent on only the PCG signal was

proposed in [27]. The idea was to threshold the absolute value envelogram of

the signal after it was passed through a band-pass filter. Although this approach

was defined to be easy to implement on an analog circuit, Liang et al. extended

and refined the idea significantly in [29]. The suggested methodology has several

steps, and inspired many other papers in the field in terms of the approach to be

taken towards the solution of the problem. In order to discuss all these papers in

a unified frame, we describe the methodology with a slightly enhanced separation

of steps as below:

STEP 0: Preprocessing

STEP 1: Time-frequency transformation

STEP 2: Transformation to a non-negative domain

STEP 3: Envelope detection

STEP 4: Picking up peaks

STEP 5: Rejection and merging of extra peaks

A vast majority of heart sound segmentation algorithms (reminding the reader

that ECG segmentation algorithms are out of scope at this point) follow this

general pattern with variations in each step [6,11,13,15–19,23,25,27–32]. Other

approaches include Mel-cepstrum analysis [22], SAX-based multiresolution motif

discovery [48] and matching pursuit method [10].
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11025 → 2205 Hz [6, 29, 31]
8000 → 2000 Hz [18]
8000 → 4000 Hz [23]
44100 → 4410 Hz [13]
44100 → 4096 Hz [16]

Table 3.1: Decimation schemes of various PCG segmentation algorithms

3.2.1 Step 0: Preprocessing

The preprocessing step involves the re-sampling and normalization of the original

recording.

Liang et al. worked with heart sound recordings with a sampling frequency of

fs = 11025 Hz. The frequency of the recordings was decimated to fs = 2205 Hz,

and then the signals were normalized. Before the downsampling step, the signal

is passed through a Chebyshev Type-I low pass filter with a cut-off frequency at

882 Hz. Downsampling is required for avoiding redundant sampling of a signal

where only the 50− 700 Hz range contains clinical information [23].

The normalization of the signal is achieved as below:

xnorm(t) =
x(t)− µ

σ

where µ is the mean of x(t), and σ is the standard deviation[19]. Gupta et al.

later report that the performance of the algorithm is negatively affected by this

normalization scheme [23], and used the formula

xnorm(t) =
x(t)

max
t ∈ R

|x(t)|

which limits xnorm within the [−1, 1] range.

Generally, the original recordings are re-sampled to a sampling frequency either

around 4000 Hz, or 2000 Hz. Table 3.1 lists the decimation schemes employed by

several papers.
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In our study, we use the Pascal heart sound classification challenge dataset [1]

which has a sampling frequency of 44100 Hz. We decimate these signals to 4410

Hz first. Initially we were to receive annotated heart sounds recorded by the

3MTM Littmann® electronic stethoscope, for which fs = 4000 Hz [18]. The

signals were to be normalized and used as is.

3.2.2 Step 1: Time-Frequency Transformation

Often, the received heart sound recording contains substantial amount of noise

and irrelevant information. Therefore many authors employ a time-frequency

transform by which certain frequency bands are considered. Initial papers such

as [29] did not have any frequency band selection/suppression step. Vepa [11] and

Delgado-Trejos et al. [13] used the Short-Time Fourier Transform to suppress

irrelevant frequency bands. Strunic et al. [15] obtained the spectrogram of the

signal and used the 45 Hz band for segmentation, upon the observation that

both S1 and S2 peaks present themselves at that frequency band. Livanos et al.

[25] compared S-transform with Morlet wavelet and STFT. Mondal et al. [32]

proposed using Hilbert transform and Heron’s formula in order to eliminate lung

sounds mainly.

Upon the observation that D4, Meyer and Morlet wavelets are optimal for heart

sound analysis [10], wavelet transform has been preferred by many works [6, 17–

19, 30]. Since S1 and S2 sounds may express themselves at variable frequencies

that may not be contained in a single wavelet band, several wavelet bands are

considered at once in parallel [6, 30].

In our work, we will be considering four wavelet bands as d7, d6, d5 and a5; cor-

responding to the frequency bands
[

fs
128
, fs
64

]

,
[

fs
64
, fs
32

]

,
[

fs
32
, fs
16

]

,
[

0, fs
32

]

respectively.

For fs = 4096 Hz, these frequency bands correspond to 32-64 Hz, 64-128 Hz,

128-256 Hz and 0-128 Hz respectively. Our application converts any signal into a

sampling frequency of either 4000 Hz or 4410 Hz, therefore the frequency ranges

will have very similar boundaries.
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3.2.3 Step 2: Transformation to a Non-Negative Domain

Normal heart sound activities such as S1 and S2 behave similar to amplitude

modulated signals [23]. Extracting the envelope of the signal is therefore essential

for further analysis, which first requires the signal to be ‘rectified’ into the non-

negative y-axis (Step 2). Liang et al. [29] tried four different equations to map

the original signal to the non-negative domain, as shown in Figure 3.2:

Absolute value: E = |x|
Energy (square): E = x2

Shannon entropy: E = −|x| log |x|
Shannon energy: E = −x2 log x2

Shannon energy emphasizes the medium energy signal more efficiently, and atten-

uates low and high intensity signals, which helps suppress noise; therefore used

by most of the future applications [17, 18, 29, 30, 49]. Although Shannon entropy

shares this property, it further accentuates the low intensity noise [49].
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Figure 3.2: Non-negative transforms

3.2.4 Step 3: Envelope Detection

After the time-frequency transform and rectification (which, at this point, we can

call energy calculation), the temporal locations at which the amplitude exceeds
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a certain threshold should be detected. However, the signal is still not smooth

enough for such an operation; especially noise around the threshold may cause

redundant peaks caused by the fluctuations.

In this step, the envelope of the signal is calculated in order to get rid of

noise and smooth the peaks. Liang et al. [29] used the envelogram approach,

where the rectified signal is averaged over tumbling time windows of 20 ms

length, with 10 ms overlap. The length of 20 ms windows correspond to

N = ⌊t · fs⌉ = ⌊0.02 s · 2205 Hz⌉ = ⌊44.1⌉ = 44 samples in their case. Note that

in the original paper Step 2 and Step 3 are described as one step as below:

Es = − 1

N

N
∑

i=1

x2norm(i) · log x2norm(i)

Here, xnorm is the normalized and decimated signal obtained in Step 0. This

approach has been also employed by other papers [18, 32].

Another approach is to apply a homomorphic filter onto the signal [20,23]. Since

the heart sound recording have similar characteristics to that of an amplitude-

modulated signal; it can be considered as the multiplication of a high-frequency

carrier signal HF (t) and a low-frequency message LF (t) (which we want to ob-

tain) [23]. Then the original signal is f(t) = HF (t) ·LF (t). Taking the logarithm

of both sides gives us

log(f(t)) = log(HF (t)) + log(LF (t))

Assume that we have a low pass filter LPF that can perfectly suppress HF (t)

and leave LF (t) as is. Then the homomorphic filter is defined as

eLPF{log(f(t))} = eLPF{log(HF (t))+log(LF (t))}

= elog(LPF{HF (t)})+log(LPF{LF (t)})

= elog(LF (t))

= LF (t).
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Clearly, the method assumes that log(f(t)) is defined; that is, f(t) > 0 for all t.

Our tests revealed that both methods return very similar envelopes, therefore we

proceeded with the envelogram method.

3.2.5 Step 4: Picking Up Peaks

Once the envelope is obtained, a threshold is applied onto the signal in order to

obtain peak candidates. Any interval that exceeds this threshold is considered a

peak candidate. The highest point in the interval becomes the center of the peak,

and the width of the interval is considered the peak width.

While the threshold criterion in [29] is not given, the figures in that paper show

slightly different thresholds between 0.75 and 0.8. One method to select a thresh-

old automatically is using the mean of the envelope. Gupta et al. used 35%

of the maximum peak as the threshold value instead [23]. Hedayioglu selected

thr = 0.5

(

max
t∈R

Es(t) + min
t∈R

Es(t)

)

as the threshold [6].

3.2.6 Step 5: Rejection and Merging of Extra Peaks

Not all peak candidates might be actually meaningful, nor can we assume that

we have picked every relevant peak. In order to merge the extraneous peaks that

might have been obtained in the thresholding step, Liang et al. proposed a set

of rules as described below [29]:

1. The intervals between adjacent peaks are calculated.

2. Low-level time limit and high-level time limit are calculated using intervals.

3. If the interval is less than the low-level time limit, one of the peaks is extra

(i.e. redundant).
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� 50 ms is the largest splitted normal sound interval observed. Therefore

if two peaks appear within 50 ms of each other, this is assumed to be

due to a split heart sound. If the energy of the first peak is not too

small compared to that of the second one, the first peak is selected.

� Otherwise, the second one is selected.

4. If the interval is greater than the high-level time limit, it is concluded that

a peak was too weak to be detected. Lower the threshold by a certain

amount, and repeat.

There are three uncertainties in the set of rules above, shown in italic. First of

all, low-level and high-level time limits are not well defined. We assume that

these values are obtained as below:

Low-level time limit = µ− c1 · σ
High-level time limit = µ+ c2 · σ

where µ is the mean of intervals, and σ is the standard deviation such that

µ =
1

N − 1

N−1
∑

i=1

pi+1 − pi, σ2 =
1

N − 1

N−1
∑

i=1

[(pi+1 − pi)− µ]2

where P = {p1, p2, · · · , pN} are the temporal locations of the peaks such that

pi < pj iff i < j (i.e. peaks are sorted). Hedayioglu also makes the same

assumption [6].

Another uncertainty is the “not too small” expression in the elimination process.

Once all peaks are within a reliable margin, the algorithm decides which peaks

are S1 and which are S2. The approach is to select the widest interval and

classify it as diastolic, then alternate towards both directions. The idea is that

diastolic periods are always longer than systolic periods, therefore the longest

period should be diastolic. Any peaks between a systolic and a diastolic period

is an S1, and vice versa.

Gupta et al. implemented a similar algorithm to that of Liang et al. in [23]:
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1. Peaks closer than 80 ms are combined into a single peak.

2. Mean peak width is calculated.

3. Any peaks with width less than half the mean peak are considered to be

noise and rejected.

4. Peaks wider than 120 ms are limited to 120 ms.

Haghighi-Mood and Torry [28] proposed an intermediary step in which a morpho-

logical transform is applied in order to get rid of the peaks that might have been

generated by the existence of murmurs. Their assumption is that the S1 and S2

peaks are sharp whereas murmurs are more likely to generate wider peaks. Their

idea is to suppress each peak according to its width. If P = {p1, p2, · · · , pk} is

the sorted set of all peaks above a threshold of -25 dB; then

Esm(k) =

{

Es(k)− 0.5 [Es(pi − ℓ) + Es(pi + ℓ)] for pi − ℓ ≤ k ≤ pi + ℓ

0 otherwise

After this, S1 and S2 sounds are determined using K-means clustering. He-

dayioglu further simplified this final step using the basic assumption that a dias-

tolic period is always longer than the systolic period; therefore the median of all

intervals should easily separate the interval set into systolic and diastolic intervals

given that the number of S1 peaks is equal to the number of S2 peaks that are

detected [6]. After labeling each interval; any peak that comes before a systolic

period is S1, and vice versa.

3.2.7 Results

Liang et al. defined a correctness ratio as the fraction of correctly determined

peaks, and reported a correctness ratio of 93%, having detected 479 peaks out of

515 correctly. However, this measure needs to be extended for the cases where a

peak is missed, an extra peak is included, a peak is detected properly but labeled

with the wrong name, or a peak is detected but shifted by a certain amount.
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Hedayioglu implemented Liang et al.’s algorithm and reported an accuracy of

49.32% on another dataset [6]. Hedayioglu’s algorithm, which includes the par-

allel analysis of four wavelet bands and a better S1 - S2 classification approach

has a reported accuracy of 61.85% on this dataset. The difference between 93%

and 49% is presumably due to different interpretations of which peaks to count

as correctly identified, or the datasets that were used.

As there has been no benchmark in the literature that includes a common evalu-

ation measure and a common data set, the current methods results are virtually

incomparable. Our first aim is to implement all these methods with the intent of

testing them all using a common dataset and well-defined evaluation metrics.
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Chapter 4

Data Acquisition and Annotation

The privacy regulations imposed upon medical data makes public heart sound

recording data sets scarce. It is typical that the authors curate their own datasets,

as well as annotate these recordings. However annotation of heart sounds requires

marking the samples at which each peak occurs; and this should be done by hand.

Therefore properly annotating a dataset requires extensive work, and a knowledge

of signal processing environments such as MATLAB, with which a medical doctor

may not necessarily be familiar. Even then the task is cumbersome; and requires

attention. For example, the annotations provided in the Pascal dataset include

two files where the sample numbers have been incorrectly noted down [1]. As long

as the user cannot see the actual position of the annotated samples, the datasets

provide little or no intuition upon inspection. Therefore the need arose to develop

a simplistic tool for heart sound visualization, playback and annotation with an

easy-to-use, drag-and-drop interface.

Although we ended up using a subset of the Pascal heart sound classification

challenge dataset as our test set [1]; initially we planned to curate our own dataset.

Collection of the heart sound recordings were to be conducted using a 3MTM

Littmann® electronic stethoscope, which provides .wav files with a sampling

frequency of 4000 Hz. We developed an application named UpBeat, with an

intuitive graphical user interface to simplify the annotation process significantly.
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UpBeat is capable of providing automatic segmentation, which then can be refined

manually.

4.1 UpBeat: Heart Sound Segmentation and

Annotation Tool

Annotated data for cardiac cycles are essential for developing heart sound models

and medical decision support tools. Such collections require significant efforts to

generate and are not made publicly available due to several concerns including

the privacy of participants. We are aware of only one public data set [1]. Larger

and more variant datasets are required for better modeling and avoiding over-

fitting; therefore an easy-to-use, cross-platform cardiac cycle annotation tool is

essential.

There have been few attempts in developing a general-purpose application [15,47],

which are mostly dependent on the MATLAB environment instead of a stand-

alone application. We have developed the first open-source, extensible, cross-

platform tool in the literature that enables generation of ground truth data for

cardiac cycle annotation and segmentation algorithms. The tool provides a bench-

mark platform for heart sound segmentation, feature extraction for heart disease

detection and classification, involves an automatic segmentation algorithm, audi-

tory playback and visual feedback for heart sound training. UpBeat is useful for

constructing a medical ground truth for heart sound segmentation, evaluating an-

notation results, and allows time-domain averaging-based basic feature extraction

which is resilient to recordings from different locations with different heart rates.

We also introduce the .sgm file format as a general and extensible representation

of cardiac segmentation and annotation. Since the algorithms in this thesis are

implemented as a Java library, which UpBeat is designed to use, UpBeat can very

trivially employ any other automatic segmentation algorithm. We acknowledge

that there is still room for improvement in the methods we incorporated, and

isolate the segmentation library from the interface.
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Figure 4.1: Initial screen of UpBeat. In order to use the software, one should click
on the folder icon and select the .wav file to annotate. Note that the screenshots
are also vector drawings, since UpBeat allows for exporting vector screenshots.

Having visual and auditory feedback is crucial for manual annotation of heart

sound data. In the absence of such information, correct annotation becomes very

cumbersome and requires extreme attention. The peaks in the Pascal dataset are

hand-curated and their sample indices are stored in .csv files. We have detected

that typos are present in at least two files. Instead of specifying the locations

of peaks in terms of seconds or sample indices one by one meticulously in a

tabular fashion, we have developed a graphical user interface by which users can

visually and aurally perceive and annotate the signal. We have implemented the

application in Java using OpenGL bindings that are provided by the JOGAMP

library. Using OpenGL allows us to achieve a very fast, flexible and cross-platform

interface. The application can be controlled using solely a three-button mouse;

or alternatively, only the left mouse button along with a keyboard.

Figure 4.1 shows the initial screen of the program. The only component initially

visible is the menu bar. Although the main screen contains more options, two

buttons are displayed in the initial screen. The first “bulb” icon is the theme

selection icon. Using this, the user can toggle between dark and light themes.

The “folder” icon under the “Signal” category lets users to load the .wav file to

be annotated into the program. Once a .wav file is selected, the waveform is read

and loaded from the file, the automatic segmentation algorithm is executed, and

the interface changes to what is seen in Figure 4.2.
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Figure 4.2: Main screen of UpBeat.

Figure 4.3: Buttons in the main menu, enumerated respectively.

Figure 4.2 is the main click-and-drag interface on which the users are to annotate

the waveform. Note that the menu has been extended to include the following

categories and buttons, as seen in Figure 4.3:

Theme controls the color themes of the program

1. Toggles between the light and dark themes.

Signal has controls regarding the signal file selection

2. Opens a file dialog to choose the .wav file to be annotated.

Segmentation has controls regarding the annotation process

3. Opens a file dialog to import a previously saved .sgm segmentation

file.

4. Opens a file dialog to export the current segmentation into an .sgm

file.

5. Overwrites the current segmentation with the automatic segmentation

results.
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Figure 4.4: Dark theme.

6. Clears the segmentation for the user to start over.

Features has controls regarding feature selection

7. Shows/hides the feature display panel on the right.

Sound has controls regarding audio playback

8. Plays/pauses the heart sound recording

9. Stops the playback

Figure 4.4 shows the dark theme, which can be toggled from the first button in

the menu. At the very bottom of the window, hint texts regarding the menu

buttons that are hovered by the pointer are shown in the toolbar. Above that is

the zoom bar. The zoom bar allows the user to magnify a certain time interval

on the signal. The zoom bar shows the entire signal, on top of which a box

indicates the zoomed region. One can magnify a region of the signal by dragging

the handles of the zoom bar to cover that particular area. As the zoom bar is

modified, the large waveform in the middle of the screen will be updated to show

that particular region, as depicted in Figure 4.5.

Now that the signal in the middle is magnified, we can see the signal and the

peaks in more detail. The region shows a normalized version of the signal, where

the x-axis is marked to indicate seconds. Note that the signal is automatically
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Figure 4.5: Zoom bar example. Notice how the waveform on the zoom bar shows
the entire signal, whereas the waveform rendered above is only the yellow section
of the zoom bar.

segmented into sections and colored using blue and green. A green region depicts a

systolic interval; that is, between an S1 and the next S2. A blue region indicates

a diastolic interval, which is between an S2 and the following S1. An S2 - S2

interval is colored in red; whereas an S1 - S1 interval is not colored. Each of the

peaks is indicated with a vertical white line, and S1/S2 texts under them. Editing

peaks can be achieved with a 3-button mouse. Left-click adds an S1 peak (Shift

+ left-click adds an S2). Middle click converts an S1 to S2 (and vice versa). Right

click removes a peak. Existing peaks can also be dragged around. Alternatively,

Alt key + left-click serves as the middle click, in the absence of a middle mouse

button; and Ctrl + left-click simulates the right-click.

If the automatic segmentation algorithm works with few errors, as it generally

does; then a few minor corrections might be enough to complete the annotation

process. Otherwise, the cross sign on the menu bar can help reset the segmenta-

tion and start over (Figure 4.6).

The user might need to actually listen to the sound to properly annotate the

signal. After all, physicians are trained to auscultate and diagnose by ear. The

sound category in the menu allows the user to listen to the signal, and meanwhile

track the audio position visually. As shown in Figure 4.7, only the magnified

region is played in order to avoid confusion.
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Figure 4.6: Using the clear button, the user can delete the segmentation so far
and start over.

Figure 4.7: The play button allows the user to listen to the heart sound recording,
and actually auscultate. The progress of the sound is depicted in the middle with
the yellow color, so that the physician can know the position of the audio.
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Figure 4.8: The save button can be used for exporting the segmentation into an
.sgm file. The user can load the segmentation and modify it later on using the
load button on the left.

Once the segmentation is completed, it can be saved in an .sgm file. The format of

the file is minimalistic; the first value in the file is an integer; stating the number

of peaks in the file. The second value is also an integer, stating the number of

float fields in each peak. In our application, each peak is described by four values:

The first value is the location of the peak, in terms of milliseconds. The second

is the width of the peak; which is used by some segmentation algorithms. The

third feature is the amplitude of the peak. Finally, the fourth feature states the

type of the peak (S1 = 0, S2 = 1). All these four features are written as float

numbers to the .sgm with this order. The file format is extensible in the sense

that the user might choose to save more features than 4 for each peak. As long

as the first four features are not altered, all of the algorithms described in this

paper would work without any problem. Users can export their segmentations to

.sgm files using the Save button in the Segmentation category as shown in Figure

4.8

UpBeat also has a simple feature display tool, which finds the valid S1 - S2 -

S1 subchains in the segmentation, and draws these intervals by warping them

such that the systolic periods will overlap. The average of the energies of all

such available beats are then used for calculating 32 equidistant features, which

are then shown in the feature display window. The feature display tool can be

toggled using the eye icon as shown in Figure 4.9. This allows the user to intuit
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Figure 4.9: The feature display tool, which provides an intuition about the cor-
rectness of the segmentation.

how correct their segmentation process is. Any singular beat that is visibly off

can be observed.

We have also implemented a “quick segmentation” method, where the annotator

plays the sound and presses the Space key whenever they want to add a peak to

the position of yellow progress bar (which indicates the position of the playback).

If the previous peak is S1, the following peak will be added as an S2 and vice

versa. Furthermore, each of these peaks will immediately snap to the closest

largest sample in the data, so that they can properly show the positions of the

peaks. This was an experimental inclusion for Prof. Dr. Ali Oto to use, and is

not visible on the menu; however it remains fully functional.

UpBeat is capable of creating, loading, editing and saving a segmentation scheme

using a set of helpful features, and is capable of calculating and displaying the

average time-domain features of the cardiac cycle. Among the features of our pro-

gram is the playback of the sound, automatic segmentation of the signal; easy-to-

use interface for manual segmentation, and finally an advanced zoom mechanism

that allows detailed analysis of portions to be segmented. The presented tool can

be used to create a ground truth for heart sound segmentation. It is a starting

medium for other researchers to expand on what is available.
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Chapter 5

Implementation of the Heart

Sound Segmentation Algorithms

As previously discussed, the majority of the work in the literature follows a pat-

tern that can be separated into six sequential steps, and the variation between

different PCG segmentation papers originate from their selection of methods in

each of these six steps.

Comparison of these methods as they are given in the literature would be incom-

plete. An approach taken in Part 1 by Method X might have been very useful

to be used with Method Y in Part 2. We compared every combination of all the

methods discussed in Chapter 3, also including novel ideas in several steps. In to-

tal, we tested more than 240 variations. Naturally, not all of these combinations

are meaningful, as to be seen empirically.

5.1 Algorithms

We have implemented several algorithms, including a majority of the work in the

literature. At several steps, we have our own contributions. We also implemented
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other approaches such as MMR.

5.1.1 The Generic 6-Step Algorithm

The steps of the 6-step approach described in the related work are implemented

as follows.

5.1.1.1 Preprocessing

All the inputs of the program are re-sampled to a frequency of 4410 Hz, and then

normalized, such that the amplitude of the signal is scaled between -1 and 1. It

has been shown that this works better than the statistical normalization in our

case [23].

5.1.1.2 Time-frequency Transform

For the time-frequency transform step; STFT, Constant Q-transform,

Daubechies-4 wavelet and band pass filter are implemented. The FFT size for

the STFT scheme is set to 256, where the window function is selected as

w[n] =
1− cos(2πn/256)

2

For the D4 wavelet, we consider d7, d6, d5 and a5 bands; which correspond to

the frequency bands 34.45 - 68.90 Hz, 68.90 - 137.81 Hz, 137.81 - 275.63 Hz, and

0 - 137.81 Hz, respectively. Hedayioglu and Liang et al. use d4, d5 and a4 bands;

which correspond to the 138 - 275 Hz, 69 - 138 Hz and 0-138 Hz bands with their

sampling frequency [6, 29].

Our contributions in this step are the Constant Q-transform and the band-pass

filter. The band-pass filter is designed to pass frequencies between 30 Hz and 60

Hz, using MATLAB’s fdatool. Since some approaches only considered the 45 Hz
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band for segmentation; filtering the 30-60 Hz band makes sense.

Constant-Q transform was implemented as described by Brown [45]. Short-time

approach for time-frequency analysis is implemented, also the output is modified

to return the absolute value instead of complex output. We divide the 32 - 64

Hz band into 8 bins, therefore Q = 1/(2(1/8)− 1) ≈ 11. We empirically found out

that these parameters provide a sharp representation of S1 and S2 sounds.

5.1.1.3 Rectification and Envelope Detection

Absolute value, energy, Shannon energy and Shannon entropy are implemented

as is. Since envelogram and homomorphic filter provide very similar results, only

envelogram is implemented.

5.1.1.4 Thresholding and Merging Peaks

Both methodologies proposed by Gupta et al. and Hedayioglu [6, 23] are im-

plemented. The approach that Liang et al. proposed is very similar to that of

Hedayioglu, the only difference is the peak classification. We implemented our

own peak classification method that outperform these.

At each step, we also consider the case where that step is omitted. The total

number of combinations is 240; as depicted in Figure 5.1.

5.1.2 MMR

We have also proposed another approach that does not follow the regular algorith-

mic framework. The idea behind this approach is that we want to find the highest

peaks in the rectified signal, assuming that these peaks represent the S1 and S2

sounds (Note that the regular threshold method also makes the assumption that

these sounds have high amplitudes).
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Figure 5.1: Every variation of the generic 6-step algorithm. There are 240 possi-
bilities, some of which might be redundant.

If each peak consisted of only one sample that is high, this could have been

achieved by sorting the samples and taking the highest peaks. However, if nth

sample has the highest amplitude, it is very probable that the second highest

sample will become either n− 1 or n+1. Therefore we also want this ranking to

be diverse, such that every peak is represented in the highest samples list with

a single point. Diversity means that the peaks are temporally separated in this

context.

In order to achieve diversity, we employ the MMR equation proposed by Carbonell
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et al. [33] as below:

MMR = arg max
Di∈R\S

[

λSim1(Di, Q)− (1− λ) max
Dj∈S

Sim2(Di, Dj)

]

This equation was proposed for text retrieval, however we can convert it to fit

our needs. For example, we can define each document Di as the samples from

the signal, (ti, yi). Let Q be a constant value such that yi ≤ Q for any i. We

select Q = maxDi∈S yi. Then the L-distance to query is defined as dist(Di, Q) =

|Q − yi|/Q = 1 − yi/Q. If the signal is normalized beforehand, then Q = 1 is a

simple choice; in which case Sim1(Di, Q) = yi.

We also want the retrieved peaks to be diverse in terms of their positions in time.

However we need this metric to be normalized as well. We selected the Gaussian

probability distribution as below:

Sim2(Di, Dj) =
1√
2πσ

e−
(Di−Dj)

2

2σ2 .

The parameter σ gives us a non-linear elasticity on the importance of the distance

of peaks. We can set this parameter to highly discourage any other samples within

the range of a peak.

The MMR formula is altered as follows:

MMR = arg max
Di∈D\S

[

λyi − (1− λ) max
Dj∈S

1√
2πσ

e−
(Di−Dj)

2

2σ2

]

= arg max
Di∈D\S

[

λyi −
1− λ√
2πσ

e−
minDj∈S(Di−Dj)

2

2σ2

]

Given that both similarity metrics were normalized between 0 and 1, ranking is

not affected by amplitude scaling and duration of the signal.

Since the data points are considered as discrete independent documents, this

method also does not assume equidistant sampling. Therefore one can opti-

mize the MMR process by reducing samples. For example, samples below a low

threshold (e.g. the median of the signal) can be removed. Instead, we used an
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elimination process where the taken samples are supposed to be the local maxima

in their 1-neighborhood, similar to how 1D SIFT algorithm detects key points

[50].

MMR is an iterative process; therefore requires the number of peaks to be detected

(k). Also, λ should be specified in advance. We added an extra parameter called

∆. The iterations are continued as long as there is at least one interval greater

than ∆, or the number of added peaks is less than k. Using 2-fold cross-validation,

we detected that λ = 0.5, σ = 120 ms, ∆ = 375 ms, k = tN/200 ms are optimal.

This is meaningful biologically, since 120 ms is the widest a peak can be [23]; and

2k = 400 ms is a feasible mean length for periods.
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Chapter 6

Evaluation and Conclusion

6.1 Dataset

In order to test our methods, we used the Pascal heart sound classification chal-

lenge dataset [1].

Pascal dataset consists of two subsets, called Dataset A and Dataset B. Dataset

A is classified into four subcategories named ‘normal’, ‘murmur’, ‘extra heart

sound’ and ‘artifact’; whereas Dataset B consists of three classes named as ‘nor-

mal’, ‘murmur’ and ‘extrasystole’. Although the total number of recordings in

the dataset is 862; only the recordings in the ‘normal’ category has segmenta-

tion information for us to use as ground truth during evaluation. We have also

eliminated two segmentation schemes, because they had typos in the file that

corresponded to invalid segmentation schemes. Finally, any file with a duration

less than 2 seconds has been discarded, since most of the methods to be compared

require at least a few beats so that statistical parameters make sense. In the end

we are left with 66 reliable files.
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6.2 Evaluation

All methods listed in the previous chapter are tested on the reduced dataset.

Although there are evaluation techniques proposed in the literature, most of

these metrics do not handle the case where the numbers of detected peaks to

not match. For instance, below is the evaluation metric required by the Pascal

challenge [1]:

δk =

Nk/2
∑

i=1

(|RS1i − TS1i|+ |RS2i − TS2i|)

Nk

where δk is the average distance of the k
th recording in the dataset, Nk is the total

number of peaks in the ground truth, RS1i (RS2i) are the locations of S1 (S2)

peaks of the ith heartbeat in the ground truth, TS1i (TS2i) are the locations of

S1 (S2) peaks in the calculated segmentation. The total error of the algorithm

on the entire dataset of N documents is calculated as

δ =
N
∑

j=0

δj.

The assumption inherent in this scheme is that all peaks in the ground truth have

corresponding peaks in the calculated segmentation. This may not be the case if

several peaks are missed (Type-II error), or if extra peaks are included (Type-I

error). One implementation would be to match the closest peak of the same type

for every peak; however in that case making a Type-I error has no cost (since

there will be no extra peaks to match these peaks), whereas Type-II errors will

have a distance longer than a beat can be. This is also not desired, because a

missing peak might not be a big problem for the classification algorithm that will

follow. Reversing the order in which we check the integrity of the peaks does not

help either. Below are several evaluation metrics we propose.
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6.2.1 Method 1

We have proposed a more strict evaluation approach as follows. For every S1-S2-

S1 sub-chain (‘beat’) in the ground truth segmentation, let the temporal locations

of these peaks be ti−1, ti and ti+1. The calculated segmentation scheme is said to

have this beat if and only if all the following conditions hold:

1. There exists exactly one S1 peak t′i−1 within the range [ti−1 − τ, ti−1 + τ ].

2. There exists no S2 peaks within this range.

3. There exists exactly one S1 peak t′i+1 within the range [ti+1 − τ, ti+1 + τ ].

4. There exists no S2 peaks within this range.

5. There exists exactly one S2 peak t′i within the range [t′i−1, t
′
i+1].

6. There exists no S1 peaks within this range.

If all of these conditions are satisfied, the beat is said to have been detected by

the algorithm. The number of the detected beats is then divided to the number

of beats in the ground truth, which gives us an accuracy score, where the greater

value is better. Our tests revealed that τ = 50 ms provides a distinguishing

ranking, which also makes sense since a peak may have a width of 100 ms. An

example to how these rules work is depicted in Figure 6.1.

6.2.2 Method 2

Although the first evaluation method we propose is more to-the-point in that it

directly evaluates the ratio of cardiac cycles we correctly annotate; the discrete

nature of it requires another more sensitive evaluation metric. For example,

consider two segmentation algorithms. For each ground truth peak pi at t = ti,

let the first algorithm A1 annotate a peak at t = ti + 30 ms, and the second

algorithm A2 annotate a peak at t = ti− 4 ms. Assume the type of peak (S1/S2)
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Figure 6.1: Several cases which involves the first evaluation metric. S1 peaks
are described with lines with circles on them, and S2 lines have diamonds. The
dashed lines represent the τ neighborhood of the S1 peaks. Of all the cases above,
only the first (topmost) is considered a valid (detected) beat.

is correct for all peaks in both A1 and A2. Since both algorithms generate unique

peaks within the 50 ms range of the ground truth, both will have a score of 1.0.

However, in reality A2 consistently produces closer results to the ground truth. It

can be argued that the first metric fails to differentiate between these two cases.

For this purpose we suggest a second evaluation metric as follows.

Since the intervals between an S1 and the following S2 is a systolic period, and

the interval between an S2 and the following S1 peak is a diastolic, and these

two regions never overlap; one can separate the time domain of a heart sound

signal into two subsets as S and D, respectively. The time domain is separated

by the ground truth into two such subsets as SG and DG, whereas the same

time domain is divided into SC and DC by the calculated peaks. If these regions

perfectly overlap, then segmentation is 100% successful.

Let SS = |SG ∩ SC |, DD = |DG ∩DC |, SD = |SG ∩DC |, and DS = |DG ∩ SC |.
These four parameters represent the cardinalities (in this case, total lengths) of

regions, respectively, in which:
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1. Both the ground truth and solution are in systolic region,

2. Both the ground truth and solution are in diastolic region,

3. The ground truth is in the systolic region, but the solution claims diastolic

region,

4. The ground truth is in the diastolic region, but the solution claims systolic

region.

Whereas SS andDD are correct classifications, SD andDS are incorrect. There-

fore a metric can be defined as x = SS+DD
SS+DD+SD+DS

. When the ground truth and

calculated segmentations are identical, x = 1. However, the implication of the

case where x = 0 is that SS = DD = 0. This means that the segmentation loca-

tions are still identical, however every systolic period is identified as a diastolic

and vice versa. Therefore this is similar to correlation, in that a random (uncor-

related) segmentation would yield x = 0.5 instead of 0. Therefore we update our

evaluation metric as

|2x− 1| = |2 SS +DD

SS +DD + SD +DS
− 1| = |SS +DD − SD −DS

SS +DD + SD +DS
|.

This version will yield 1 when the segmentations are identical, and 0 when com-

pletely uncorrelated. An example is seen in Figure 6.2.

Figure 6.2: An example of how the second evaluation metric is calculated. S1

peaks are described with lines with circles on them, and S2 lines have diamonds.
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6.2.3 Method 3

We have also developed a third metric that makes use of the Hungarian algorithm

to assign calculated peaks to the ground truth peaks. For n ground truth peaks

and m calculated peaks; we construct an n×m distance matrixM , such that mij

has the distance between ith ground truth peak and jth calculated peak (that is,

mij = ti − t′j). Then we try to assign ground truth peaks and calculated peaks

to each other, such that the total distance is minimized. This means that we

are trying to assign every calculated peak to the closest ground truth peak; and

this corresponds to picking min{n,m} elements from M that minimizes their

total with the condition that at most one element is selected from every row and

column. This is an NP-complete problem and can be solved using the Hungarian

algorithm. The summation can then be divided by the number of peaks to provide

a score. Unlike the two previous scores, in Method 3 the smaller score is better.

However, there are some problems with this approach. The fact that in the

ground truth dataset the annotations are not ‘snapped’ to the maximum samples

of each peak, but rather is placed at the beginning of each peak, means that the

best algorithm might not have the smallest error. Over-optimizing the similarity

in this fashion might be (and as we will see in the Results section, is) erroneous.

6.3 Results

The methods listed in Chapter 5 are tested on a valid subset of the Pascal heart

sound challenge dataset [1]. There were 66 normal heart sound recordings in

Dataset A and Dataset B combined with a valid annotation, full segmentation

and a duration longer than 3 seconds. This limitation on the file duration is

required since most of the methods do not work on very short files, which consist

of very few segments. Also, several files were not completely segmented, which

would mean that the evaluation quality would be reduced due to an erroneous

ground truth dataset. Such files were also excluded. Finally, annotations of two

heart sound files had errors. Excluding all these files, we ended up with a reliable
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dataset of 66 sound files.

We have tested all the algorithm variations on all files. For each algorithm, we

calculate the evaluation scores and average them over these 66 files. We repeated

these tests for all of our evaluation metrics. Results are listed below, with respect

to each evaluation metric.

6.3.1 Metric 1

Step 1 Step 2 Step 3 Step 4&5 Score
None Envelogram Energy Gupta 0.62660

MMR 0.61779
QTransform None Absolute None 0.61691
QTransform None None None 0.61691
QTransform None Absolute Gupta 0.59621
QTransform None None Gupta 0.59621
QTransform Envelogram Absolute None 0.59503
QTransform Envelogram None None 0.59503
QTransform None ShannonEnergy Gupta 0.58386

BandPassFilter Envelogram Energy Gupta 0.58241
QTransform Envelogram Absolute Gupta 0.57699
QTransform Envelogram None Gupta 0.57699

BandPassFilter Envelogram ShannonEnergy Gupta 0.57544
DaubechiesD4 D5Band Envelogram Energy Gupta 0.56933

STFT Envelogram Absolute Gupta 0.56634
STFT Envelogram None Gupta 0.56634

QTransform Envelogram ShannonEnergy Gupta 0.56158
STFT Envelogram Energy Gupta 0.55962
STFT Envelogram Energy None 0.55461

DaubechiesD4 A5Band Envelogram Energy Gupta 0.55354

Table 6.1: Evaluation scores of the top-20 algorithms, according to Evaluation
Metric 1

Table 6.1 lists the scores of the top 20 algorithms, according to our first evaluation

metric. Maximal Marginal Relevance outperforms all methods except Gupta’s

method with no initial time-frequency transform. This might be because the

signals in the datasets are already preprocessed. Q-Transform and band pass

filter appear to be competing with the methods in the literature. Also, since
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our implementation of Q-Transform reduces the number of samples taken (due

to high computational cost), envelogram becomes a redundant step.

6.3.2 Metric 2

Table 6.2 lists the scores of the top 20 algorithms with respect to our second

evaluation metric. Maximal Marginal Relevance outperforms all other methods.

The following four methods are also the Top-4 results for the first metric. Again,

Q-Transform without envelogram produces competitive results.

Step 1 Step 2 Step 3 Step 4&5 Score
MMR 0.62383

None Envelogram Energy Gupta 0.61765
QTransform None Absolute None 0.58738
QTransform None None None 0.58738

BandPassFilter Envelogram ShannonEnergy Gupta 0.58497
BandPassFilter Envelogram Energy Gupta 0.57260
QTransform None ShannonEnergy Gupta 0.57005

None Envelogram ShannonEnergy Gupta 0.56909
QTransform Envelogram Absolute None 0.56585
QTransform Envelogram None None 0.56585

DaubechiesD4 A5Band Envelogram Energy Gupta 0.56577
QTransform None Absolute Gupta 0.56332
QTransform None None Gupta 0.56332

STFT Envelogram Energy Gupta 0.54927
STFT Envelogram Absolute Gupta 0.54921
STFT Envelogram None Gupta 0.54921

QTransform Envelogram Absolute Gupta 0.54908
QTransform Envelogram None Gupta 0.54908

BandPassFilter Envelogram Absolute Gupta 0.54320
STFT Envelogram Energy None 0.54087

Table 6.2: Evaluation scores of the top-20 algorithms, according to Evaluation
Metric 2
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6.3.3 Metric 3

Table 6.3 lists the scores of the top 20 algorithms with respect to our second

evaluation metric. Unlike the previous two metrics, these results do not appear

to be informative; as the first 86 algorithms have an average error below 50

ms. Also, because the peaks in the ground truth seem to be annotated at the

beginning of the peak instead of at the largest sample, the exact average distance

to the peaks might not be a very sensitive measure. Although the MMR method

does not appear in this list, its average error is 35.32 ms, giving it a 52nd order.

Step 1 Step 2 Step 3 Step 4&5 Score
DaubechiesD4 D6Band Envelogram Absolute Hedayioglu 13.36058

STFT Envelogram Energy Hedayioglu 14.00491
STFT Envelogram Absolute Hedayioglu 14.74057
STFT Envelogram None Hedayioglu 14.74057

DaubechiesD4 D6Band Envelogram ShannonEnergy Hedayioglu 15.90085
DaubechiesD4 D6Band Envelogram Energy Hedayioglu 17.9021

QTransform None Energy Hedayioglu 18.02057
DaubechiesD4 D5Band Envelogram ShannonEnergy Hedayioglu 20.25292
DaubechiesD4 A5Band Envelogram Energy Hedayioglu 20.26519
DaubechiesD4 D5Band Envelogram Absolute Hedayioglu 20.27933

QTransform None Absolute Hedayioglu 21.10549
QTransform None None Hedayioglu 21.10549

DaubechiesD4 A5Band Envelogram Absolute Hedayioglu 21.24261
QTransform Envelogram Energy Hedayioglu 22.03681

STFT Envelogram ShannonEnergy Hedayioglu 22.64943
BandPassFilter Envelogram Absolute Hedayioglu 22.68577
QTransform None Energy Gupta 24.02679

DaubechiesD4 D5Band Envelogram None Hedayioglu 24.08979
BandPassFilter Envelogram Energy Gupta 24.21508

None Envelogram Absolute Hedayioglu 24.43124

Table 6.3: Evaluation scores of the top-20 algorithms, according to Evaluation
Metric 3

We also attempted to create an ensemble of methods in order to increase the

scores further.
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6.4 Ensemble

Although we have a ranking of methods, the scores obtained do not have statis-

tically significant advantage over each other. In order to achieve better perfor-

mance, we propose an ensemble of 24 methods. Table 6.4 lists the methods that

we picked for this ensemble.

We first calculated that if we had a perfect ensemble metric, such that for each

file we could perfectly select the best performing algorithm we have; then the

ensemble score would be 0.84 (according to the first evaluation score). This means

that although singular methods cannot exceed a score of 0.63, this is not an upper

limit enforced by the dataset, and there is significant room for improvement.

We attempted to use the standard deviation of the systolic and diastolic intervals

as an ensemble score, however this further reduces the ensemble score. Our final

metric is as follows:

To merge the methods, we count the number of S1 - S2 - S1 chains in the calculated

segmentation, and divide it to the total number of peaks. The segmentation

scheme with a higher ratio of such chains has a higher score. Whichever algorithm

has the highest score for a given file is selected as the answer, and presented

as the outcome of the ensemble. Our ensemble achieved a score of 0.75123,

outperforming any singular method. The same ensemble has an evaluation score

of 0.77259 according to the second metric.

The ensemble has a score of 37.460518 ms according to the third evaluation

metric, which is ‘worse’ than the top-20 methods. This strengthens our concerns

regarding the inefficiency of the third metric.
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Step 1 Step 2 Step 3 Step 4&5
STFT Envelogram Absolute Gupta

QTransform Envelogram Absolute Gupta
DaubechiesD4 D6Band Envelogram Absolute Gupta
DaubechiesD4 D5Band Envelogram Absolute Gupta
DaubechiesD4 A5Band Envelogram Absolute Gupta

BandPassFilter Envelogram Absolute Gupta
None Envelogram Absolute Gupta
STFT Envelogram Energy Gupta

DaubechiesD4 D6Band Envelogram Energy Gupta
DaubechiesD4 D5Band Envelogram Energy Gupta

BandPassFilter Envelogram Energy Gupta
None Envelogram Energy Gupta

BandPassFilter Envelogram ShannonEntropy Gupta
DaubechiesD4 D6Band Envelogram ShannonEnergy Gupta

BandPassFilter Envelogram ShannonEnergy Gupta
DaubechiesD4 D5Band Envelogram None Gupta

STFT None Absolute Gupta
None Envelogram Absolute Hedayioglu
STFT Envelogram ShannonEntropy Hedayioglu

DaubechiesD4 D6Band Envelogram ShannonEntropy Hedayioglu
DaubechiesD4 A5Band Envelogram ShannonEnergy Hedayioglu

STFT None ShannonEnergy Hedayioglu
None Envelogram Energy None

MMR

Table 6.4: Methods selected for the ensemble

6.5 Conclusion

In this work we have investigated the topic of heart sound segmentation. The

literature on cardiac analysis lacks the unification of results on a common data set

with properly defined evaluation metrics. We have implemented, compared and

combined the majority of the work in the literature. We have also proposed sev-

eral additions on the generic 6-step segmentation algorithm, as well as introducing

the well-known Maximal Marginal Relevance equation on the segmentation prob-

lem. We introduced two evaluation measures which take into consideration the

Type-I and Type-II errors that can occur on segmentation. When tested with

the first evaluation metric, the maximal marginal relevance method outperforms
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other algorithms, whereas the Constant-Q transform competes with other meth-

ods effectively. We also described a way of combining several methods in order

to increase performance. While the maximum score a singular method could

achieve was 0.63 (meaning that the 63 percent of heartbeats have been correctly

annotated with at most a 50 ms deviation from the ground truth), our ensemble

shows 0.75 accuracy. The second evaluation metric that we introduce provides

a similar ranking for the methods that we evaluate. In this case, the maximum

score belongs to the MMR algorithm (0.62), whereas the ensemble has a score of

0.77.

We also programmed an intuitive, easy-to-use standalone application that can

be used for manual heart sound segmentation to allow constructing ground truth

datasets, or provide a means of visualization that can help obtain an insight on the

heart sound waveform. The tests were performed on the 66 suitable files in Pascal

dataset. We propose as future work to extend the dataset for more reliable tests,

refine the ensemble method as empirical results show that there is more room for

performance improvement, and experiment with other time-frequency transform

methods such as SAX [51] and piecewise linear modeling [52] etc.
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