
C-STREAM: A COROUTINE-BASED
ELASTIC STREAM PROCESSING ENGINE

a thesis submitted to

the graduate school of engineering and science

of bilkent university

in partial fulfillment of the requirements for

the degree of

master of science

in

computer engineering

By

Semih Şahin

June, 2015

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Bilkent University Institutional Repository

https://core.ac.uk/display/52940377?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

C-Stream: A Coroutine-based Elastic Stream Processing Engine

By Semih Şahin

June, 2015

We certify that we have read this thesis and that in our opinion it is fully adequate,

in scope and in quality, as a thesis for the degree of Master of Science.

Assoc. Prof. Dr. Buğra Gedik(Advisor)

Assoc. Prof. Dr. Hakan Ferhatosmanoğlu

Assist. Prof. Dr. Gültekin Kuyzu

Approved for the Graduate School of Engineering and Science:

Prof. Dr. Levent Onural
Director of the Graduate School

ii

ABSTRACT

C-STREAM: A COROUTINE-BASED ELASTIC
STREAM PROCESSING ENGINE

Semih Şahin

M.S. in Computer Engineering

Advisor: Assoc. Prof. Dr. Buğra Gedik

June, 2015

Stream processing is a computational paradigm for on-the-fly processing of live

data. This paradigm lends itself to implementations that can provide high

throughput and low latency, by taking advantage of various forms of paral-

lelism that is naturally captured by the stream processing model of computa-

tion, such as pipeline, task, and data parallelism. In this thesis, we describe the

design and implementation of C-Stream, which is an elastic stream processing

engine. C-Stream encompasses three unique properties. First, in contrast to

the widely adopted event-based interface for developing stream processing oper-

ators, C-Stream provides an interface wherein each operator has its own control

loop and rely on data availability APIs to decide when to perform its compu-

tations. The self-control based model significantly simplifies development of op-

erators that require multi-port synchronization. Second, C-Stream contains a

multi-threaded dynamic scheduler that manages the execution of the operators.

The scheduler, which is customizable via plug-ins, enables the execution of the

operators as co-routines, using any number of threads. The base scheduler imple-

ments back-pressure, provides data availability APIs, and manages preemption

and termination handling. Last, C-Stream provides elastic parallelization. It can

dynamically adjust the number of threads used to execute an application, and

can also adjust the number of replicas of data-parallel operators to resolve bot-

tlenecks. We provide an experimental evaluation of C-Stream. The results show

that C-Stream is scalable, highly customizable, and can resolve bottlenecks by

dynamically adjusting the level of data parallelism used.

Keywords: Stream processing, Big data, Coroutine.

iii

ÖZET

C-STREAM: EŞ PROGRAM TABANLI ESNEK AKAN
VERİ İŞLEME MOTORU

Semih Şahin

Bilgisayar Mühendisliği, Yüksek Lisans

Tez Danışmanı: Doç. Dr. Buğra Gedik

Haziran, 2015

Akan veri işleme, canlı veriyi havada işleme üzerine olan bir programlama paradig-

masıdır. Bu paradigma içinde barındırdığı ardışık düzen, veri ve görev par-

alelleştirme methodlarını kullanarak, uygulamaların birim zamanda üretilen iş

miktarını arttırmasına yada birim iş parçası başına duşen ortalama işlem süresinin

azalmasına olanak saglar. Bu tez çalışmasında, elastik akan veri işleme motoru

olan C-Stream dizayn ve uygulamaları geliştirilmiştir. İlk olarak C-Stream, lit-

eratürdeki çalışmaların çoğunluğunun benimsediği olaya-dayalı işleç geliştirme

methodunun aksine eş-program tabanlı işleç geliştirme modelini sunmaktadır.

Bu modelde her işleç, kendi kontrol döngüsüne sahip olmakta, veri erişilebilirlik

uygulama programi arabirimi (UPA) ile veri işleme zamanını kontrol edebilmek-

tedir. Bu model çok-portlu işleç geliştirme sürecini basitleştirmektedir. Ikinci

olarak, C-Stream işleçlerin çalışmasını kontrol eden, çok izlekli dinamik zaman-

layıcı barındırmaktadır. Bu zamanlayıcı, eklentiler ile de özelleştirilebilmektedir.

Eklentilerden bagımsız olarak, zamanlayıcı geri-baski problemini çozer, işleçlerin

veri erişilebilirlik UPA’sına ulaşımını saglar, işleçlerin çalısma esnasında durdurul-

ması ve sonlanmasını kontrol eder. Son olarak, C-Stream elastik paralelleştirme

ozelliğine sahiptir. Dinamik olarak aktif çalısan izlek sayısını kontrol etmekle

beraber, uygulamada tıkanmaya sebep olan işleçleri tespit ederek, onların kopya

sayısını arttırır ve tıkanmayı ortadan kaldırır. Yaptığımız deneyler gostermekte-

dir ki, C-Stream ölçeklenebilir, özelleştirilebilir ve esnek paralelleştirme ozelliğine

sahip bir akan veri işleme uygulaması geliştirme motorudur.

Anahtar sözcükler : Akan veri isleme, Buyuk veri, es-program.

iv

Acknowledgement

First and foremost, I owe my deepest gratitude to my supervisor, Assoc. Prof. Dr.

Buğra Gedik for his encouragement, motivation, guidance and support through-

out my studies.

Special thanks to Assoc. Prof. Dr. Hakan Ferhatosmanoğlu and Assist. Prof.

Dr. Gültekin Kuyzu for kindly accepting to be in my committee. I owe them my

appreciation for their support and helpful suggestions.

I would like to thank to my father Ertuğrul, my mother Öznur and my brother

Ali for always being cheerful, motivating and supportive. None of this would

have been possible without their love. I am tremendously grateful for all the

selflessness and the sacrifices they have made on my behalf. I am sure that, they

are proud of me for this work.

I consider myself to be very lucky to have the most valuable friends Bahadır,

Said, Salih, Selahattin, Süheyl, Mustafa, Abdurrahman and Doğukan. I would

also like to thank to my special office mates for sharing their knowledge and sup-

porting me all the time.

v

Contents

1 Introduction 1

2 Programming Model 4

2.1 Basic Concepts . 4

2.2 Flow Composition . 5

2.3 Operator Development . 7

3 Runtime 11

3.1 Execution Model . 11

3.2 Scheduler . 12

3.2.1 Overview . 12

3.2.2 Base Scheduler Algorithm 13

3.2.3 Scheduler Plug-Ins . 21

4 Adaptation 23

vi

CONTENTS vii

4.1 Dynamic Thread Pool Size . 23

4.2 Elastic Data Parallelism . 24

4.2.1 Bottleneck Detection . 25

4.2.2 Replica Controller . 26

5 Experiments 27

5.1 Base Experiments . 27

5.2 Adaptation Experiments . 34

6 Related Work 37

7 Conclusion 40

List of Figures

2.1 Example flow graph from Figure 2.1. 7

4.1 Elastic data parallelism. 24

5.1 Application topologies. 28

5.2 # of threads vs. throughput . 29

5.3 # of threads vs. latency . 30

5.4 Data parallel cost experiments . 32

5.5 Data parallel application size experiments 33

5.6 Chain selectivity experiments . 33

5.7 Adaptation 1 busy experiment . 34

5.8 Adaptation 2 busy experiment . 35

5.9 Adaptation data parallel experiment 36

viii

Chapter 1

Introduction

As the world becomes more instrumented and interconnected, the amount of

live data generated from software and hardware sensors increases exponentially.

Data stream processing is a computational paradigm for on-the-fly analysis of

such streaming data at scale. Applications of streaming can be found in many

domains, such as financial markets [1], telecommunications [2], cyber-security [3],

and health-care [4] to name a few.

A streaming application is typically represented as a graph of streams and

operators [5], where operators are generic data manipulators and streams connect

operators to each other using FIFO semantics. In this model, the data is analyzed

as it streams through the set of operators forming the graph. The key capability

of streaming systems is their ability to process high volume data sources with

low latency. This is achieved by taking advantage of various forms of parallelism

that is naturally captured by the streaming model of computation [6], such as

pipeline, task, and data parallelism.

While streaming applications can capture various forms of parallelism, there

are several challenges in taking advantage of them in practice. First, the opera-

tors, which are the building blocks of streaming applications, should be easy to

1

develop and preferably sequential in nature, saving the developers from the com-

plexities of parallelism. Second, we need a flexible scheduler that can dynamically

schedule operators to take advantage of pipeline, task, and data parallelism in a

transparent manner. Furthermore, the scheduler should be configurable so that

we can adjust the trade-off between low latency and high throughput. Last, but

not the least, the stream processing system should be elastic in the sense that the

level and kind of parallelism applied can be adjusted depending on the resource

and workload availability.

In this thesis, we describe the design and implementation of C-Stream, which

is an elastic stream processing engine. C-Stream addresses all of the aforemen-

tioned challenges. First, in contrast to the widely adopted event-based inter-

face for developing stream processing operators, C-Stream provides an interface

wherein each operator has its own control loop and rely on data availability APIs

to decide when to perform its computations. This model significantly simpli-

fies development of multi-input port operators that otherwise require complex

synchronization. Furthermore, it enables intra-operator optimizations such as

batching. Second, C-Stream contains a multi-threaded dynamic scheduler that

manages the execution of the operators. The scheduler, which is customizable via

plug-ins, enables the execution of the operators as co-routines, using any number

of threads. The base scheduler implements back-pressure, provides data availabil-

ity APIs, and manages preemption and termination handling. Scheduler plug-ins

are used to implement different scheduling policies that can prioritize latency or

throughput. Last, C-Stream provides elastic parallelization. It can dynamically

adjust the number of threads used to execute an application, and can also adjust

the number of replicas of data-parallel operators to resolve bottlenecks. For the

latter we focus on stateless operators, but the techniques also apply on parti-

tioned parallel operators1. Finally, we have evaluated our system using a variety

of topologies under varying operator costs. The results show that C-Stream is

scalable (with increasing number of threads), highly customizable (in terms of

scheduling goals), and can resolve bottlenecks by dynamically adjusting the level

of data parallelism used (elasticity).

1This requires state migration and ordering support, which is not yet implemented in our
prototype, but have been implemented in other systems [7].

2

In summary, this thesis makes the following contributions:

• We propose an operator development API that facilitates sequential imple-

mentations, significantly simplifying development of multi-port operators

that otherwise require explicit synchronization.

• We develop a flexible scheduler and accompanying runtime machinery for

executing operators that are implemented as co-routines, using multiple

threads.

• We present techniques for elastic executing, including the adjustment of the

level of parallelism used and the number of operator replicas employed.

• We provide a detailed evaluation of our system to showcase its efficacy.

The rest of this thesis is organized as follows. Chapter 6, discusses related work.

Chapter 2 overviews the programming model and the operator development APIs

used by C-Stream. Chapter 3 describes the co-routine based runtime, the multi-

threaded scheduler, and the custom scheduler plug-ins we have developed for it.

Chapter 4 explains how Stream-C achieves elasticity. Chapter 5 presents our

experimental evaluation and Chapter 7 concludes the thesis.

3

Chapter 2

Programming Model

In this chapter, we first give a brief overview of the basic concepts in stream

processing. We then describe the programming model used by C-Stream. The

latter has two aspects: flow composition and operator development.

2.1 Basic Concepts

A streaming application takes the form an operator flow graph. Operators are

generic data manipulators that are instantiated as part of a flow graph, with

specializations (e.g., parameter configurations and port arity settings). Operators

can have zero or more input and output ports. An operator with only output ports

is called a source operator and an operator with only an input port is called a sink

operator. Each output port produces a stream, that is an ordered series of tuples.

An output port is connected to an input port via a stream connection. These

connections carry tuples from the stream, providing FIFO semantics. There

could be multiple stream connections originating from an output port, called a

fan-out. Similarly, there could be multiple stream connections destined to an

input port, called a fan-in.

4

Three major kinds of parallelism are inherently present within streaming ap-

plications.

Pipeline parallelism: As one operator is processing a tuple, its upstream operator

can process the next tuple in line, at the same time.

Task parallelism: A simple fan-out in the flow graph gives way to task parallelism,

where two different operators can process copies of a tuple, at the same time.

Data parallelism: This type of parallelism can be taken advantage of by creating

replicas of an operator and distributing the incoming tuples among them, so that

their processing can be parallelized. This requires a split operation, but more

importantly, a merge operation after the processing, in order to re-establish the

original tuple order. Data parallelism can be applied to stateless as well as parti-

tioned stateful operators [8]. Stateless operators are those that do not maintain

state across tuples. Partitioned operators do maintain state, but the state is

partitioned based on the value of a key attribute. In order to take advantage of

data parallelism, the streaming runtime has to modify the flow graph behind the

scenes.

Stream-C takes advantage of all these forms of parallelism, which we cover in

Chapter 4.

2.2 Flow Composition

There are two aspects of developing a streaming application. The first is to com-

pose an application by instantiating operators and connecting them via streams.

This is called flow composition. It is a task typically performed by the streaming

application developer. The second is operator development, which we cover in

detail in the next section.

Stream-C supports flow composition using an API-based approach, employing

the C++11 language. Listing 2.1 shows how a simple streaming application is

composed using these APIs. Figure 2.1 depicts the same application in graphical

5

form.

Flow flow("sample application");

// create the operators

auto& names = flow.createOperator<FileSource>("name_source")

.set_fileName("data/names.dat")

.set_fileFormat({{"id",Type::Integer},{"name",Type::String}});

auto& values = flow.createOperator<TCPSource>("value_source")

.set_address("my.host.com", 44000)

.set_dataFormat({{"id",Type::Integer},{"value",Type::Integer}});

auto& filter = flow.createOperator<Filter>("empty_filter")

.set_filter(MEXP1(t_.get<Type::String>("name") != ""));

auto& combiner = flow.createOperator<Barrier>("combiner", 2);

auto& sink = flow.createOperator<FileSink>("file_sink")

.set_fileName("data/out.dat")

.set_fileFormat({{"id",Type::Integer},

{"name",Type::String},{"value",Type::Integer}});

// create the connections

flow.addConnections((names,0) >> (0,filter,0) >> (0,combiner));

flow.addConnections((values,0) >> (1,combiner,0) >> (0,snk));

// configure the runner

FlowRunner & runner = FlowRunner::createRunner();

runner.setInfrastructureLogLevel(Info);

runner.setApplicationLogLevel(Trace);

// run the application and wait for completion

int numThreads = 2;

runner.run(flow, numThreads);

runner.wait(flow);

Listing 2.1: Flow composition in C-Stream.

A Flow object is used to hold the data flow graph. Operators are created using

the createOperator function of the Flow object. This function takes the operator

kind as a template parameter and the runtime name of the operator instance

being created as a parameter. Optionally, it takes the arity of the operator as a

parameter as well. For instance, the instance of the Barrier operator referenced

by the combiner variable is created by passing the number of input ports, 2

in this case, as a parameter. Operators are configured via their set methods,

6

names

values

filter

combiner sink

FileSource

TCPSource

Filter

Barrier FileSink

Figure 2.1: Example flow graph from Figure 2.1.

which are specific to each operator kind. The parameters to operators can also be

lambda expressions, such as the filter parameter of the Filter operator. Such

lambda expressions can reference input tuples (represented by the t variable in

the example code).

The connections between the operator instances are formed using the

createConnections function of the Flow object. The >> C++ operator is

overloaded to create chains of connections. For instance, (names,0) >>

(0,filter,0) >> (0,combiner) represents a chain of connections, where the

output port 0 of the operator instance referenced by names is connected to the

input port 0 of the one referenced by filter and the output port 0 of the latter

is connected to the input port 0 of the operator instance referenced by combiner.

The flow is run via the use of a FlowRunner object. The run method of the

FlowRunner object takes the Flow object as well as the number of threads to be

used for running the flow as parameters.

2.3 Operator Development

The success of the stream processing paradigm depends, partly, on the availabil-

ity of a wide range of generic operators. Such operators simplify the composi-

tion of streaming applications by enabling the application developers to pick and

configure operators from a pre-existing set of cross-domain and domain specific

7

operators.

Problems with the Event-driven Programming Model

The classical approach to operator development has been to use an event-driven

model, where a new operator is implemented by extending a framework class and

overriding a tuple processing function to implement the custom operator logic.

Examples abound [9, 10, 5].

However, the event-driven approach has several disadvantages. First, it makes

the implementation of multi-input port operators that require synchronization,

difficult. Consider the implementation of a simple Barrier operator, whose goal

is to take one tuple from each of its input ports and combine them into one. It is

an operator that is commonly used at the end of task parallel flows. Recall that

in the event-based model, the operator code executes as a result of tuple arrivals.

Given that there is no guarantee about the order in which tuples will arrive from

different input ports, the operator implementation has to keep an internal buffer

per input port in order to implement the barrier operation. When the last empty

internal buffer receives a tuple, then the operator can produce an output tuple.

More important than the increased complexity of implementation, there is also

the problem of limiting memory use and/or creating back-pressure. Consider the

case when one of the input ports is receiving data at a higher rate. In this case,

the internal buffer will keep growing. In order to avoid excessive memory usage,

the operator has to block within the tuple handler function, which is an explicit

form of creating back-pressure. Once blocking gets into the picture, then complex

synchronization problems arise, such as how long to block.

Second, the even-driven approach makes it more difficult to implement intra-

operator batching optimizations, as tuples arrive one at a time. Finally, in the

presence of multi-input port operators, termination handling becomes more dif-

ficult. One way to handle termination is to rely on punctuations [11], which are

out-of-band signals within a stream. One kind of puctuation is a final marker

punctuation that indicates no more tuples are to be received from a stream. A

8

multi-input port operator would track these punctuations from its input ports to

determine when all its ports are closed.

Self-control based Programming Model

C-Stream uses a self-control based programming model, where each operator

runs its own control loop inside a process function. An operator completes its

execution when its control loop ends, i.e, when the process function returns. This

happens typically due to a termination request or due to no more input data being

available for processing.

A typical operator implementation in C-Stream relies on data availability API

calls to block until all the input data it needs is available for processing. A data

availability call requests the runtime system to put the operator into waiting state

until the desired number of tuples are available from the input ports. The wait

ends when the requested data is available or when the system knows that the

data will never be available. The latter can happen if one or more of the ports on

which data is expected close before there are enough tuples to serve the request.

An input port closes when all of its upstream operators are complete.

Listing 2.2 shows how a barrier operator is implemented in C-Stream. We

focus on the process method, which contains the control loop of the operator.

The first thing the operator does is to setup a wait specification, which contains

the number of tuples the operators needs from each one of the input ports. For

the barrier operator, the specification contains the value 1 for each one of the

input ports. After the wait spec is set up, the operator enters into its main loop.

The context object is used to check whether an explicit shutdown is requested.

If not, the operators passes the wait specification to the waitOnAllPorts data

availability API call. in order to wait until at least one tuple is available from

each one of the input ports. If the call reports that the request cannot be satisfied

due closed ports, then the barrier operator completes, as it cannot produce any

additional output anymore. Otherwise it pops one tuple from each input port,

combines them into a new output tuple and pushes this new tuple into the output

9

port.

class Barrier : public Operator

{

public:

Barrier(std::string const& name, int const numInputs)

: Operator(name, numInputs, 1)

{}

void process(OperatorContext& context)

{

unordered_map<InputPort*, size_t> waitSpec;

for (auto iport : context.getInputPorts())

waitSpec[iport] = 1;

auto& oport = *context.getOutputPorts().front();

while (!context.isShutdownRequested()) {

Status status = context.waitOnAllPorts(waitSpec);

if (status == Status.Over) break;

Tuple resultTuple;

for (auto iport : context.getInputPorts())

resultTuple.append(iport->popFrontTuple());

oport.pushTuple(resultTuple);

}

}

};

Listing 2.2: Barrier operator implementation in C-Stream.

10

Chapter 3

Runtime

In this chapter we describe the runtime of C-Stream. We first explain the basic ex-

ecution model used by C-Stream and then provide the algorithms that constitute

the base scheduler. We end this chapter with scheduler plug-in we implemented.

3.1 Execution Model

The most straightforward way to support the programming model provided by

C-Stream for operator development is to execute each operator as a separate

thread. However, it is known that this kind of execution model does not scale

with the number of operators [12]. Instead, C-Stream executes each operator

as a co-routine. This way each operator has a stack of its own and the runtime

system can suspend/resume the execution of an operator at well controlled points

within its process function. In particular, C-Stream can suspend the execution

of an operator at two important points within the operator’s processing logic: 1)

data availability calls, 2) tuple submission calls. These are also the points where

the operator may need blocking, as there may not be sufficient data available for

processing in the input ports, or they may not be sufficient space available for

11

submitting tuples to downstream input ports. One of the big advantages of co-

routines compared to threads is that, they can be suspended/resumed completely

at the application level and with little overhead1.

C-Stream executes operators using a pool of worker threads. When an operator

blocks on a data availability call or on a tuple submission call, the scheduler

assigns a new operator to the thread. We cover the details of how the thread

pool size is adjusted in Chapter 4, where we introduce elastic parallelism in C-

Stream.

3.2 Scheduler

C-Stream has a pluggable scheduler. The scheduler provides the following base

functionality, irrespective of the plug-in used to customize its operation: data

availability, back-pressure, preemption, termination.

3.2.1 Overview

Data availability: The scheduler supports data availability APIs by tracking

the status of the wait specifications of the operators. It puts the operators into

Ready or Waiting state depending on the availability of their requested number

of tuples from the specified input ports. Such requests could be conjunctive (e.g.,

one from each input port) or disjunctive (e.g., one from any port). However, data

availability has to also consider the termination scenarios. While an operator

may be waiting for availability of data from an input port, that data may never

arrive, as the upstream operator(s) may never produce any additional items due

to termination. The scheduler tracks this via the Completed operator state.

Backpressure: The scheduler handles backpressure by putting limited size

1The boost co-routines library we use can context switch in 33 cycles on a modern 64-
bit Intel processor, see http://www.boost.org/doc/libs/1_58_0/libs/coroutine/doc/html/coroutine/

performance.html

12

http://www.boost.org/doc/libs/1_58_0/libs/coroutine/doc/html/coroutine/performance.html
http://www.boost.org/doc/libs/1_58_0/libs/coroutine/doc/html/coroutine/performance.html

buffers on operator input ports. When an operator submits a tuple, the run-

time system checks if space is available in the downstream input port buffers. In

the case of space unavailability, the operator doing the submission will be put

into Waiting state until there is additional space in the downstream input ports

to enable progress. Care needs to be taken for handling termination. If the down-

stream input port is attached to an operator that has moved to the Completed

state due to a global termination request, then the operator should be put back

into the Ready state, so that it can terminate as well (avoiding a deadlock). An-

other important case is flows that involve cycles. Back-pressure along a cyclic

path can cause deadlock. C-Stream handles this by limiting the feedback loops

in the application to control ports – input ports that cannot result in production

of new tuples, but can change the internal state of the operator.

Termination: C-Stream handles termination using two mechanisms. The first

one is the Completed state for the operators, as we have outlined earlier. The

second one is the notion of closed input ports. In order for an operator to move

into the Complete state, it needs to exit its main control loop, and for most op-

erators, that happens when either an explicit shutdown is requested, or when the

input ports are closed, that is no more tuples can be received from them. An

operator moving into Complete state may result in unblocking some downstream

operators that are waiting on data availability, and these operators can learn

about the unavailability of further data via their input ports’ closed status.

Preemption: C-Stream’s base scheduler uses a quanta based approach to pre-

empt operators in order to provide low latency. Furthermore, C-Stream maintains

per operator and per input port statistics, such as the amount of time each oper-

ator has been executed over the recent past or how much tuples have waited on

input port buffers. Such statistics can be used by scheduler plug-ins to implement

more advanced preemption policies.

3.2.2 Base Scheduler Algorithm

We now describe the base scheduler algorithm. Recall that there are two points

at which the operator code interacts with the scheduler. These are the data

13

Algorithm 1: OperatorContext::waitForAllPorts(waitSpec)

Param : waitSpec, wait specification that maps an input port to the number of
tuples to wait on that port

Result: Over, if the request can never be satisfied; Done, if the wait specification is
satisfied

begin
needToWait← true
while needToWait do

allAvailable← true
foreach (iport, count) in waitSpec do

if |iport| < count then
allAvailable← false
break

if allAvailable then
needToWait← false

else
foreach (iport, count) in waitSpec do

if iport.isClosed() and |iport| < count then
return Over

if needToWait then
scheduler.markReadBlocked(this, waitSpec, Conj)

else
scheduler.checkForPreemption(this)

return Done

availability calls and the tuple submission calls. We start our description of the

algorithm from these.

Data availability calls: The operator context object provides two data avail-

ability calls, namely waitOnAllPorts (conjunctive wait) and waitOnAnyPort

(disjunctive wait). The pseudo-code for these are given in Algorithms 1 and 2,

respectively.

The waitForAllPorts call takes a wait specification as a parameter, which

maps ports to the number of tuples to wait from them. It blocks until the specified

number of tuples are available from the input ports and returns Done. However,

if at least one of the ports on which we are waiting tuples is closed without

having the sufficient number of tuples presents, then the call returns Over. The

closed status of a port is determined using the isClosed call on the input port,

which returns true when all the upstream operators of a port are in Completed

14

Algorithm 2: OperatorContext::waitForAny(waitSpec)

Param : waitSpec, wait specification that maps an input port to the number of
tuples to wait on that port

Result: Over, if the request can never be satisfied; Done, if the wait specification is
satisfied

begin
needToWait← true
while needToWait do

oneAvailable← false
foreach (iport, count) in waitSpec do

if |iport| ≥ count then
oneAvailable← true
break

if oneAvailable then
needToWait← false

else
cannotSatisfy ← true
foreach (iport, count) in waitSpec do

if not iport.isClosed() or |iport| ≥ count then
cannotSatisfy ← false
if |iport| ≥ count then

needToWait← false
break

if cannotSatisfy then
return Over

if needToWait then
scheduler.markReadBlocked(this, waitSpec,Disj)

else
scheduler.checkForPreemption(this)

return Done

state. The completion of operators typically propagate from the source towards

the sinks. For example, in a typical chain topology, the source operator will

move to the Completed state when it exits from its main loop, typically due to

its source data being depleted or due to a global shutdown request. Note that a

source operator cannot be waiting on an input port, as it does not have any. The

source operator moving into Completed state will cause the downstream operator

to receive an Over status if it was waiting for data on its input port, unblocking

it, so that it can exit its main loop as well.

In the case where we need to wait, this is achieved by making a

15

Algorithm 3: OutputPort::push(tuple)

Param : tuple, tuple to be pushed to all subscriber input ports
begin

needToWait← true
while needToWait do

waitSpec← {}
if not isShutdownRequested() then

foreach iport in subscribers do
if |iport| ≥ maxQueueSize then

waitSpec.add(iport)

if |waitSpec| = 0 then
needToWait← false
foreach iport in subscribers do

iport.pushTuple(tuple)

if needToWait then
scheduler.markWriteBlocked(oper, waitSpec)

else
scheduler.checkForPreemption(oper)

markReadBlocked call to the scheduler, asking it to put the operator into Read-

Blocked state. This is also a blocking call. The outer while loop in the algorithm

ensures that the return from the scheduler call is not due to termination of port

closure.

Finally, in the case that we do not need to wait, we still make a call to the

scheduler, named checkForPreemption. This is to check whether the operator

should be preempted or not. The scheduler simply forwards this call to the

scheduler plug-in, which decides whether the operator should be preempted.

The waitForAny call is similar in nature, but returns Over only when none of

the ports can ever satisfy the request. In both algorithms, the check for the Over

state is done using a separate loop to avoid checking whether a port is closed in

the fast path.

Tuple submission calls: Output ports handle the tuple submissions, pseudo-

code of which is given in Algorithm 3. To implement back-pressure, tuple submis-

sions must block if at least one of the subscriber input ports are full (the number

of tuples is equal to maxQueueSize) However, there are two cases in which the

16

input port sizes may go over slightly over the limit.

The first is the shutdown case, where a request for shutdown has been made.

In this case the tuple should be enqueued into the downstream ports right away,

moving the control back to the operator’s processing loop, so that it can detect

the shutdown request and return from its process method. This will enable the

runtime to move the operator into the Completed state.

The other case is when different operators that are being run by other threads

submitting tuples between our check of the queue sizes and doing the actual

submission of tuples. This results in temporarily exceeding the queue size limit.

However, this is a small compromise that avoids the need to hold multi-port locks.

The queue sizes would quickly go down once the publishers eventually move into

the WriteBlocked state.

The output port uses the markWriteBlocked scheduler function for moving

operators to the WriteBlocked state. If no blocking is needed due to back-

pressure, the preemption is checked via the checkForPreemption scheduler

method.

Moving operators into blocked state: The scheduler uses the

markReadBlocked and markWriteBlocked methods to move operators into

blocked state, whose pseudo-codes are give in Algorithms 4and 5, respectively.

The scheduler methods are executed while holding a scheduler lock.

In the markReadBlocked method, the scheduler quickly re-checks if the port

closures should prevent the scheduler from moving the operator into blocked state.

For conjunctive wait specifications, this happens when any one of the ports are

closed; and for disjunctive ones, when all of the ports are closed. Otherwise, the

wait specification of the operator is recorded as part of scheduler state (waitCond

variable). Then the wait condition is re-evaluated (waitCond.isReady() call in

the pseudo-codes), as between the time the operator context has detected that

it should ask the scheduler to block and the time of the actual call to block, the

state of the input ports may have changed. If this re-evaluation still indicates

17

Algorithm 4: Scheduler::
markReadBlocked(oper, waitSpec, mode)

Param : oper, operator to be blocked
Param : waitSpec, the wait specification of the operator
Param : mode, the mode of the blocking (Conj or Disj)
begin

// while holding the scheduler lock
if mode = Conj then

foreach (iport, count) in waitSpec do
if iport.isClosed() then

return
else

allClosed← true
foreach (iport, count) in waitSpec do

if iport.isClosed() 6= true then
allClosed← false break

if allClosed then
return

waitCond← oper.getReadWaitCondition()
waitCond.setMode(mode)
waitCond.setCondition(waitSpec)
if waitCond.isReady() = false then

updateOperState(oper,ReadBlocked)
else

updateOperState(oper,Ready)
oper.yield()

the need to block, then the scheduler updates the operator state to ReadBlocked.

Otherwise, it sets it to Ready. In both cases yield() is called on the operator as

the last step. Recall that operators are co-routines. Thus, the yield moves the

control back to the worker thread, which will ask the scheduler for an available

operator to execute. The scheduler will forward this request to the scheduler

plug-in, which will pick one of the ready operators for execution.

In the markWriteBlocked method, we first check if a shutdown is requested

and if so, we return. This avoids a potential deadlock if a subscribing input port

whose operator has completed is full. Otherwise, we record the wait specification

of the operator as part of scheduler state (waitCond variable), and re-evaluate

it (waitCond.isReady()) to make sure it is safe to block the operator. Then the

operator’s scheduling state is updated and yield() is called as before.

18

Algorithm 5: Scheduler::
markWriteBlocked(oper, waitSpec)

Param : oper, operator to be blocked
Param : waitSpec, set of ports that are full
begin

// while holding the scheduler lock
if isShutdownRequested() then

return;
waitCond← oper.WriteWaitCondition
waitCond.setCondition(waitSpec)
if not waitCond.isReady() then

updateOperState(oper,WriteBlocked)
else

updateOperState(oper,Ready)
oper.yield()

Algorithm 6: Scheduler::markCompleted(oper)

Param : oper, operator to be moved into completed state
begin

// while holding the scheduler lock
updateOperState(oper, Completed)
foreach downOper in oper.subscribers() do

if downOper.state() = ReadBlocked then
updateOperState(downOper,Ready)

if isShutdownRequested() then
foreach upOper in oper.publishers() do

if upOper.state() = WriteBlocked then
updateOperState(upOper,Ready)

Moving operators into completed state: An operator moves into the Com-

plete state when it exits its process method, at which point the markCompleted

method of the scheduler is called. The pseudo-code for this method is given in

Algorithm 6. As can be see, as the scheduler simply moves the operator into

Completed state. But it has to consider two important scenarios.

First, if the are subscribers to the output ports of the operator that are in

ReadBlocked state, these subscribers may never satisfy their wait specifications

due to the completion of this operator. For this purpose, the scheduler puts them

into Ready state. Recall from Algorithms 1 and 1 that once markReadBlock

returns, the operator will re-evaluate whether is should return Over or Done to

19

Algorithm 7: Scheduler::markInputPortWritten(iport)

Param : iport, input port that is written
begin

// while holding the scheduler lock foreach oper in
operators.readBlockedOn(iport) do

waitCond← oper.readWaitCondition()
if waitCond.isReady() then

updateOperatorState(oper,Ready)
else if waitCond.isReady(iport) then

waitCond.remove(iport)

Algorithm 8: Scheduler::markInputPortRead(iport)

Param : iport, input port that is read
begin

// while holding the scheduler lock foreach oper in
operators.writeBlockedOn(iport) do

waitCond← oper.writeWaitCondition()
if waitCond.isReady() then

updateThreadState(oper,Ready)

the user code, or go back to blocked state via another markReadBlocked call to

the scheduler.

Second, if there is a pending termination request and there are publishers to

the input ports of the operator that are in WriteBlocked state, these publisher

may never unblock as the completed operator will not process any tuples from

its input ports anymore.

For this purpose, the scheduler puts them into Ready state. Recall from Al-

gorithm 3 that once the markWriteBlock returns, the operator will see the

shutdown request and push the tuple to the downstream buffers right away.

Moving operators into ready state: The popTuple and pushTuple methods

of the input ports go through the scheduler so as to unblock operators when

needed. A tuple being pushed into an input port buffer can potentially unblock

operators that are in ReadBlocked state and whose wait specifications include the

port in question. Similarly, a tuple popped from an input port can potentially

unblock operators that are in WriteBlocked state. These cases are handled by

20

the markInputPortWritted and markInputPortRead methods of the scheduler,

whose pseudo-codes are given in Algorithms 7 and 8.

The markInputPortWritten method iterates over the ReadBlocked operators

whose wait specifications include the input port that is written. It re-evaluates

their wait specification and if satisfied, puts them into Ready state. Otherwise,

it checks whether the part of the wait specification that is about the input port

that is written is satisfied, and if so, removes that input port from the waiting

specification of the operator. The markInputPortRead works similarly, with the

exception that it does not remove the current input port form the wait speci-

fication when the it is partially satisfied. This is because input ports can have

multiple publishers, so the the availability of space has to be re-evaluated the

next time.

A note on locks : For the sake of simplicity we have not detailed the locking

scheme used by the scheduler in our descriptions of the algorithms. In practice

scheduler operations make use of reader/writer locks. The common case of not

blocking/unblocking operators is handled by just using reader locks, avoiding

congestion.

3.2.3 Scheduler Plug-Ins

The scheduler consults the scheduler plug-in to decide on: (i) whether an op-

erator needs to be preempted or not, and (ii) which Ready operator a thread

should execute next. To help plug-ins implement these functionality, the sched-

uler makes available the following information: Last scheduled time of operators,

input port buffers, recent read rates of input ports, recent write rates of output

ports, enqueue time of tuples waiting in input port buffers, and fraction of con-

junctive and disjunctive wait calls made by the operator. Using these statistics,

different scheduler plug-ins can be implemented considering different QoS such

as low latency or high throughput.

We have developed the following schedulers, all using a configurable quanta

21

based preemption:

• RandomScheduling: The operator to be scheduled is selected randomly

among Ready operators.

• MaxQueueLengthScheduling: The operator to be scheduled is the one

with the maximum input queue size, with the exception that if there is

a source operator in Ready state, then it is scheduled. Ties are broken

randomly.

• MinLatencyScheduling: Scheduling decision is based on the timestamp

of the front tuple in the input ports buffers of Ready operators. The oper-

ator whose front tuple has the minimum timestamp value is scheduled. For

source operators, these values are set to operators’ last scheduled time.

• LeastRecentlyRunScheduling: Among the Ready operators, the least

recently scheduled is selected.

• MaxRunningTime: Scheduling decision is based on the estimation of

how long an operator can execute. To compute that, statistics such as port

buffer fullness, read rate from input ports and write rate to output ports are

used. The execution time of the operator is computed as the minimum of

how long it can read from its input port buffers (buffer tuple count divided

by operator’s read rate from the input port) and how long it can write to

input port buffers of its subscriber operators (available space in port buffer

of subscriber operator divided by operator’s write rate to the output port).

22

Chapter 4

Adaptation

In this chapter we describe the adaptation capabilities of C-Stream, which include

two main functionalities: i) adjusting the number of threads used to schedule the

operators, ii) using data parallelism to resolve bottlenecks.

4.1 Dynamic Thread Pool Size

C-Stream adjusts the number of threads used to schedule the operators based

on a metric called average utilization. The pool size controller tracks this metric

periodically, using an adaption period of, ∆. At the end of each adaptation

period, for each worker thread a utilization value is computed as the fraction of

time the thread run operators during the last period. The average utilization,

denoted by U , is then computed over all threads, and gives a value in range [0, 1].

A low threshold Ul is used to decrease the number of threads when the average

utilization is low (threads are mostly idle). I.e., if U < Ul, then the number of

threads is decreased. A high threshold, 1 − ε = Uh > Ul, is used to increase the

number of threads when the utilization is close to 1. I.e., if U > Ul, then the

number of threads is increased. C-Stream updates the thread counts by 1 at each

adaptation period.

23

MergeSplit

Op

Op

Op

bottleneck

add
seq nums

reorder
seq nums

no con-
gestion

congestion

Op

Figure 4.1: Elastic data parallelism.

4.2 Elastic Data Parallelism

C-Stream applies elastic data parallelism, where streaming operators are repli-

cated to resolve bottlenecks. For this purpose, C-Stream first detects bottleneck

operators and then increases the number of replicas for them. Increasing the

number of replicas enables the operators to be executed by more than one thread

at the same time, as well as enable the original bottleneck processing task to

receive more scheduling time.

Figure 4.1 illustrates how C-Stream uses data parallelism to resolve bottle-

necks. In the upper part of the figure, we see an operator that is determined as

the bottleneck. Note that its downstream input port is not experiencing conges-

tion, yet its input port does. In the bottom part of the figure, we see that the

bottleneck is resolved by replicating the operator in question. This is achieved

by using split and merge operators before and after the bottleneck operator, re-

spectively. The split operator partitions the stream over the replicas. It also

assigns sequence numbers to the tuple, so that these tuples can be ordered later

by the merge operator. If the bottleneck operator is a partitioned stateful one,

24

Algorithm 9: DetectBottleneck(candidates)

Param: candidates, list of single input/output operators
Result: bottleneck operator if exists, null otherwise
begin

foreach op ∈ candidates do
if not op.isReplicated then

if op.iport.writeBlockedRatio ≥ τ
and op.oport.writeBlockedRatio < τ then

return op
else

avgIPortWriteBlockedRatio =
∑

op′∈op.replicas op
′.iport.writeBlockedRatio

|op.replicas|
if avgIPortWriteBlockedRatio ≥ τ
and op.oport.writeBlockedRatio < τ then

return op
return null

the splitting can be performed using hashing on the partitioning key, otherwise

it will be a round-robin distribution.

4.2.1 Bottleneck Detection

Stream-C performs bottleneck detection based on a simple principle: an operator

that has no downstream input ports that are congested, yet at least one input

port that is congested is a bottleneck operator. The former condition makes sure

that we do not include operators that are blocked due to back-pressure in our

definition. The second condition simply finds operators that are not processing

its input tuples fast enough, thus is a bottleneck.

To define congestion, we use a metric called write blocked ratio. For an input

port, it is the fraction of time the port buffer stays full. For an output port,

we define it as the maximum write blocked ratio of the subscribing downstream

input ports. Algorithm 9 describes how bottleneck operators are found using

these metrics.

Stream-C applies data parallelism only for operators with single input and sin-

gle output ports, thus bottleneck operators are selected from candidate operators

25

with this property. Among the candidates, if an operator is not replicated then

it is a bottleneck iff its input port’s write blocked ratio is above the congestion

threshold τ ; and its output port’s write blocked ratio is below the congestion

threshold. If an operator is replicated, then the same rule applies, with the ex-

ception that the write blocked ratio for the input port is computed by averaging

it over all the replicas of the operator. There is no change for the output port

write blocked ratio, as there is only a single downstream input port subscribing

to the output port of all the replicas, which is the input of the merge operator.

4.2.2 Replica Controller

C-Stream has a replica controller that adjusts the number of replicas of operators

to improve the throughput. Every adaptation period, it runs the bottleneck

detection procedure to locate a bottleneck operator. If there are no bottleneck

operators (all input ports have write block ratios that are blow the congestion

threshold τ), then it does not take any action. If there is a bottleneck operator,

then its number of replicas are incremented by one.

26

Chapter 5

Experiments

In this chapter, we present our experimental results. First, we provide base

experiments studying the performance and scalability of C-Stream under varying

topologies, application sizes, operator costs, and scheduler plug-ins. Second, we

provide experiments showing the effectiveness of our adaptation module.

All of our experiments were performed on a host with two 2 GHz Intel Xeon

processors, each containing 6 cores. In total, we have a machine with 12 cores,

running Linux with kernel version 2.6. In the base experiments, the default

value for the number of threads is set as 4, and the default selectivity is set

as 1, even though we experiment with varying values for both. In adaptation

experiments, the default selectivity value is 1, and the default scheduler plug-

in is RandomScheduling. In all of our experiments, quanta value is set as 50

milliseconds.

5.1 Base Experiments

Our base evaluations are performed on applications with varying topologies under

varying application sizes, operator costs, and selectivity values. For this purpose,

we generate parameterized topologies, which include chain, data parallel, tree and

27

Source Busy Busy Sink

(a) Chain

Split

Busy

Busy

Busy

Merge SinkSource

(b) Data parallel

Split

Busy

Source

Split

Busy Split

Busy Sink

Busy
Busy Sink

Busy Sink

Busy Sink

(c) Tree

Source

Merge

Merge

Merge

Busy

Busy

Busy

Busy

Busy Sink

Source

Source Busy

BusySource

(d) Reverse tree

Figure 5.1: Application topologies.

reverse tree topologies. Structures of these topologies are shown in Figure 5.1.

In these experiments, our adaptation module is disabled and we use throughput

and average latency as performance metrics to evaluate scalability of the system

as well as the impact of different scheduling plug-ins on these metrics.

We have 12 busy operators in our chain and data parallel experiments. In tree

and reverse tree experiments, we set the tree depth to 6, and branching factor to

2, resulting in 63 busy operators in total. Unless otherwise stated, costs of the

busy operators are equal and 100 microseconds per tuple.

Number of threads: In our first experiment, we show the effect of the num-

ber of threads on throughput and latency for each scheduler plug-in and for

each topology. For the chain topology, as we increase the number of threads,

throughput increases linearly and average latency decreases as shown in Fig-

ures 5.2a and 5.3a. Throughput we obtain from different scheduler plug-in is

nearly the same. The reason is that, since we have 12 busy operators of equal

cost and 12 threads at most, roughly speaking, all operators require the same

amount of scheduling, which is a scheduling requirement that can be satisfied

by all the scheduler plug-ins with ease. Despite having similar throughput, we

observe that the LeastRecently plug-in provides the best latency results.

Figures 5.2b and 5.3b show the effect of the number of threads on through-

put and latency, respectively, for the data parallel topology. While throughput

increases as we increase the number of threads, it starts decreasing after some

value between 9 and 11, depending on the scheduler plug-in used. The reason

28

0 2 4 6 8 10 12 14
of threads

0.0

0.2

0.4

0.6

0.8

1.0
th

ro
u
g
h
p
u
t

(t
u
p
le

s/
m

ill
is

e
c)

1e1 thread

random
maxRunningTime
maxTupleWait
leastRecently
maxQueue

(a) Chain

0 2 4 6 8 10 12 14
of threads

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

th
ro

u
g
h
p
u
t

(t
u
p
le

s/
m

ill
is

e
c)

1e1 thread

random
maxRunningTime
maxTupleWait
leastRecently
maxQueue

(b) Data parallel

0 2 4 6 8 10 12 14
of threads

0.0

0.5

1.0

1.5

2.0

th
ro

u
g
h
p
u
t

(t
u
p
le

s/
m

ill
is

e
c)

1e1 thread

random
maxRunningTime
maxTupleWait
leastRecently
maxQueue

(c) Tree

0 2 4 6 8 10 12 14
of threads

0.2

0.4

0.6

0.8

1.0

th
ro

u
g
h
p
u
t

(t
u
p
le

s/
m

ill
is

e
c)

1e1 thread

random
maxRunningTime
maxTupleWait
leastRecently
maxQueue

(d) Reverse tree

Figure 5.2: # of threads vs. throughput

is that the merge operator eventually becomes a bottleneck, since it is sequen-

tial. Having more threads than actually needed makes the problem worse, due to

the scheduling overhead. In particular, after closer examination, we have found

that significant drops in performance are due to having too many threads. These

threads pick up operators that were recently executed, just because they are again

in ready state after little space opens up in their downstream ports. However,

once these operators resume execution, they would quickly move into waiting

state after doing just a little work, causing significant scheduling overhead. This

experiment shows the importance of setting the number of threads correctly,

which we address via our adaptation module. We study the effectiveness of our

adaptation module in Section 5.2. From these experiments, we also observe that

MaxQueue provides slightly higher performance compared to other alternatives,

29

0 2 4 6 8 10 12 14
of threads

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6
la

te
n
cy

 (
m

ic
ro

se
cs

)
1e7 thread

random
maxRunningTime
maxTupleWait
leastRecently
maxQueue

(a) Chain

0 2 4 6 8 10 12 14
of threads

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

la
te

n
cy

 (
m

ic
ro

se
cs

)

1e6 thread

random
maxRunningTime
maxTupleWait
leastRecently
maxQueue

(b) Data parallel

0 2 4 6 8 10 12 14
of threads

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

la
te

n
cy

 (
m

ic
ro

se
cs

)

1e7 thread

random
maxRunningTime
maxTupleWait
leastRecently
maxQueue

(c) Tree

0 2 4 6 8 10 12 14
of threads

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

la
te

n
cy

 (
m

ic
ro

se
cs

)

1e8 thread

random
maxRunningTime
maxTupleWait
leastRecently
maxQueue

(d) Reverse tree

Figure 5.3: # of threads vs. latency

but at the cost of significantly increased latency, especially for small number of

threads. MaxTupleWait and leastRecently plug-ins provide the lowest latencies.

Figures 5.2c and 5.3c show the effect of the number of threads on throughput

and latency, respectively, for the tree topology. Similar to data parallel topol-

ogy, throughput increases only up to a certain number of threads, after which

a downward trend in throughout starts. However, unlike the data parallel sce-

nario, the decrease in throughput is less steep. In the tree topology, the input

rates of operators decrease as we go deeper down in the tree, since the tuples are

distributed randomly across the downstream ports. Concretely, if the input rate

for a an operator is r, then the input rate for its downstream operators is r/b,

where b is the branching factor. This causes upstream busy operators to become

30

bottlenecks. This experiment again shows that to obtain high thread utilization

and high throughput, bottleneck operators should be detected and resolved. The

MaxQueue plug-in provides higher throughput compared to other alternatives,

but only up to 4 threads, reaching as high as 3 times. However, this comes at the

cost of increased latency, as high as 3.5 times. Lowest latency is again provided

by the LeastRecently plug-in.

Figures 5.2d and 5.3d show the effect of the number of threads on throughput

and latency, respectively, for the reverse tree topology. Results are similar to data

parallel and tree, in which throughput increases up to a certain value of number of

threads and then start decreasing. It is surprising that Random plug-in provides

the best throughput (10% higher than other alternatives). While MaxQueue has

shows solid performance for all other topologies with respect to throughput, it

performs poorly for the reverse topology. In particular, the highest throughout

it could reach is 40% lower than that of Random. At peak throughput, latencies

provided by different plug-ins are close to each other, except for MaxTupleWait,

which shows higher latency.

We summarize our observations as follows:

• Stream-C without elastic adaptation scales well with increasing threads

only up to a certain point. For certain topologies such as data parallel, the

throughput significantly decreases if the number of threads becomes higher

than the ideal.

• While the MaxQueue scheduler plug-in can provide improved throughput

for certain topologies, such as data parallel and tree topologies, the Random

is quite robust across all topologies in terms of throughput.

• While the LeastRecently scheduler plug-in can provide improved latency for

certain topologies, such as chain, data parallel, and tree, the Random is

quite robust across all topologies in terms of latency.

Operator Cost: In this experiment, we show the effect of busy operator costs

on throughput and latency, using data parallel topology of 12 busy operators.

31

0 50 100 150 200 250
cost (microsecs)

1.0

1.5

2.0

2.5

3.0

3.5

4.0
th

ro
u
g
h
p
u
t

(t
u
p
le

s/
m

ill
is

e
c)

1e1 cost

random
maxRunningTime
maxTupleWait
leastRecently
maxQueue

(a) Cost vs. throughput

0 50 100 150 200 250
cost (microsecs)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

la
te

n
cy

 (
m

ic
ro

se
cs

)

1e6 cost

random
maxRunningTime
maxTupleWait
leastRecently
maxQueue

(b) Cost vs. latency

Figure 5.4: Data parallel cost experiments

We fix the number of threads to 4. Figure 5.4a shows that throughput decreases

as we increase the cost of the busy operators and the decrease is throughput is

linear in the increase in operator cost. Figure 5.4b shows that latency increases

as we increase the busy operator cost and again we see a mostly linear trend.

The only exception is MaxQueue scheduler plug-in, whose initial rate of latency

increase shows an increasing trend, but as the operator cost increases, the rate of

increase stabilizes. Furthermore, it rate of latency increase is higher than other

plug-ins.

Application Size: This experiment shows the effect of application size (in terms

of the number of operators) on the throughput and latency, for the data parallel

topology. Figure 5.5a shows that for most of the scheduler plug-ins throughput

does not change significantly, since the number of data parallel operators is at

least equal to the number of threads, which is 4. The MaxQueue plug-in shows

increasing throughput as a result of increasing number of data parallel operators,

whereas others show a slight decrease. The slight decrease can be explained

by increased operator management and scheduling overhead. The reason for the

increase in MaxQueue plug-in’s performance is a surprising one: increased number

of data parallel operators result in smaller input queue sizes for them and this in

turn increases the amount of scheduling time that the merger gets. Figure 5.5b

shows the effect of the number of data parallel operators on latency. We observe

that MaxQueue and MaxRunningTime has linearly increasing latencies, whereas

32

4 6 8 10 12 14 16 18 20
width

2.0

2.2

2.4

2.6

2.8

3.0

3.2

3.4
th

ro
u
g
h
p
u
t

(t
u
p
le

s/
m

ill
is

e
c)

1e1 width

random
maxRunningTime
maxTupleWait
leastRecently
maxQueue

(a) Width vs. throughput

4 6 8 10 12 14 16 18 20
width

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

la
te

n
cy

 (
m

ic
ro

se
cs

)

1e6 width

random
maxRunningTime
maxTupleWait
leastRecently
maxQueue

(b) Width vs. latency

Figure 5.5: Data parallel application size experiments

0.5 0.6 0.7 0.8 0.9 1.0 1.1
selectivity

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

th
ro

u
g
h
p
u
t

(t
u
p
le

s/
m

ill
is

e
c)

1e1 selectivity

random
maxRunningTime
maxTupleWait
leastRecently
maxQueue

(a) Selectivity vs. throughput

0.5 0.6 0.7 0.8 0.9 1.0 1.1
selectivity

0

1

2

3

4

5

6

la
te

n
cy

 (
m

ic
ro

se
cs

)
1e6 selectivity

random
maxRunningTime
maxTupleWait
leastRecently
maxQueue

(b) Selectivity vs. latency

Figure 5.6: Chain selectivity experiments

other plug-ins show more stable results in terms of latency.

Selectivity: In this experiment, we show the effect of operator selectivity on

throughput and latency, using the chain topology of 12 busy operators. Each busy

operator has the same cost, and same selectivity value. Selectivity determines the

number of tuples will be generated by operator per tuple, thus it plays a role on

system workload. As shown in Figure 5.6a, throughput decreases and as shown

in Figure 5.6b, latency increases as we increase operator selectivity.

33

0 20 40 60 80 100 120 140 160
cost (microsecs)

0

2

4

6

8

10

12

14

co
u
n
t

ReplicaCount
ThreadCount

0

20

40

60

80

100

th
ro

u
g
h
p
u
t

(t
u
p
le

s/
m

ill
is

e
c)

Adaptation Experiment

Throughput-Adaptive
Throughput-Base

(a) Cost vs. thread count and throughput

0 200 400 600 800 1000 1200 1400
time (seconds)

0

2

4

6

8

10

12

14

co
u
n
t

Adaptation Time Experiment

ReplicaCount
ThreadCount

(b) Time vs. thread count

Figure 5.7: Adaptation 1 busy experiment

5.2 Adaptation Experiments

In this section, we look at the performance of elastic parallelization module of

C-Stream. First, we perform our experiments using the chain topology, setting

maximum number of threads to 12. The chain topology with adaptation is sim-

ilar to data parallel topology, but the number of replicas for the data parallel

operator is adjusted automatically. Furthermore, with adaption, there could be

multiple data parallel sections. We compare throughput values obtained from

elastic scaling against the throughput values of single thread, single replica sce-

nario. Results show that, while we increase the busy operator costs, throughput

remains the same, as adaptation module adjusts the number of active threads and

operator replicas accordingly. Second, we perform an experiment on data parallel

topology. We compare throughput values obtained from elastic scaling against

the case that number of threads is set manually. Results show that, depending

on the threshold values, adaptation module adjusts the number of threads and

we obtain the maximum throughput.For all the experiments in this section, max-

imum number of threads is set to 12. Scheduler plug-in is RandomScheduling.

τ (congestion threshold) is set to 0.01, low threshold Ul is set to 0.90, and high

threshold Uh is set to 0.95. Our adaptation period is 10 seconds.

We have a single busy operator in our first experiment. Figure 5.7a shows that,

34

0 20 40 60 80 100 120
cost (microsecs)

0

2

4

6

8

10

12

14

co
u
n
t

ReplicaCount1
ReplicaCount2
ThreadCount

0

20

40

60

80

100

th
ro

u
g
h
p
u
t

(t
u
p
le

s/
m

ill
is

e
c)

Adaptation Experiment

Throughput-Adaptive
Throughput-Base

(a) Cost vs. thread count and throughput

0 200 400 600 800 1000 1200 1400 1600
time (seconds)

0

2

4

6

8

10

12

14

co
u
n
t

Adaptation Time Experiment

ReplicaCount1
ReplicaCount2
ThreadCount

(b) Time vs. thread count

Figure 5.8: Adaptation 2 busy experiment

the number of threads and replicas of busy operator both increase as the cost of

the busy operator is increased. Furthermore, while throughput value decreases

dramatically in the single thread single replica scenario, adaptation module of C-

Stream prevents that, and throughput values remain stable as the operator cost

increases. C-Stream achieves this by increasing the number of operator replicas

and thread.

Figure 5.7b plots the number of operator replicas and the thread count, as a

function of time, for the operator cost of 80 microseconds. It shows that number

of threads and replicas increase and eventually stabilize. In this particular case,

the stabilization happens at 5 replicas and 7 threads.

In the second experiment, we use 2 busy operators of same cost. Figure 5.8a

shows that, together with number of active threads, the number of replicas for

each of the busy operators increase as the cost of the busy operators increases.

Also, it shows that, while throughput value decreases in the base case, C-Stream

adaptation module maintains a stable throughput.

Figure 5.8b plots the number of operator replicas and the thread count, as a

function of time, for the operator cost of 60 microseconds. It shows that adap-

tation module resolves the bottleneck and increments the replica count for one

of the busy operators first, and increments the replica count of the other busy

35

0 2 4 6 8 10 12 14
of threads

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

th
ro

u
g
h
p
u
t

(t
u
p
le

s/
m

ill
is

e
cs

)

1e1

non-adaptive
adaptive, Uh =0.90

adaptive, Uh =0.95

Figure 5.9: Adaptation data parallel experiment

operator after that, and this pattern continues until there is no congestion in the

flow. The congestion goes away when both busy operators reach at 4 replicas.

The total number of threads stabilizes at 10 treads.

In the third adaptation experiment, we use data parallel topology of 12 busy

operators. High threshold Uh is set to 0.95 and 0.90 in this experiments, other

threshold values remain the same. Figure 5.9 plots the throughput attained as

a function of the number of threads for the case when the adaptation module

is disabled, and the final throughput achieved via the adaptation module for

different high thresholds. Figure 5.9 shows that setting Uh to 0.90, increases the

number of threads more aggressively than the case of Uh = 0.95, and obtains the

maximum throughput achievable with the system.

36

Chapter 6

Related Work

Stream processing has been an active area of research and development over the

last decade. Systems such as STREAM [13], Borealis [14], TelegraphCQ [15],

IBM InfoSphere Streams [16], and StreamBase [17] are examples of academic and

industrial stream processing middleware, and in many cases these systems provide

declarative languages for developing streaming applications as well. StreamIt [18],

Aspen [19] and SPL [5] are domain specific programming languages for high-level

stream programming, which shield users from the complexity of distributed sys-

tems. There are also open-source stream processing platforms such as Storm [9],

Apache S4 [10], and Apache Samza [20].

Storm [9], Apache S4 [10], Apache Samza [20], SPL [5], and many other systems

adopt an event-driven model for operator development. In this model, process

function of an operator is fired for each incoming tuple. The problem with this

approach is that, development of multi-port operators requires additional effort

to provide port synchronization and to handle back-pressure resulting from the

difference incoming stream rates to the input ports. In C-Stream, operators have

their own control loop, and tuple access is orchestrated via our data availabil-

ity API. To manage operator termination, punctuations are used in InfoSphere

Streams [11]. In C-Stream, termination is handled by our base scheduler, sepa-

rating the termination control from operator’s tuple execution control loop. This

37

feature further simplifies the operator development in C-Stream.

Scheduling relies on operator grouping in SPADE [21], in which set of operators

are grouped and assigned to a processing element. Within a single processing ele-

ment, there could be multiple threads, but the assignment of operators to threads

is not flexible. In their on Aurora, Carney et al. form superboxes fpr schedul-

ing, which is a sequence of operators that are executed as an atomic group [12].

However, no results are given on throughput scalability with increasing number

of worker threads. In C-Stream, our scheduling relies on assigning one co-routine

per operator, while keeping the number of worker threads flexible. Furthermore,

C-Stream supports elastic parallelization, adjusting the number of threads to

resolve bottlenecks.

StreamIt compiler auto-parallelizes operators using round robin split to guar-

antee ordering, but only for stateless operators with static selectivity. In [7]

and [8], stateful operators are parallelized by partitioning the state by keys. The

same method is can also be found in distributed database systems [22] [23],

and it is also the main technique behind the success of batch processing systems

such as Map/Reduce [24] and [25]. Brito et al. describes how to apply auto-

parallelization using software transactional memory [26], but only if selectivity is

1 and memory is shared.

To exploit the parallelization opportunities on data flow graph, auto-pipelining

solution is proposed in [27] for multi-core processors to improve throughput

of streaming applications. In the area of auto-parallelization, dynamic multi-

threaded concurrency platforms such as Cilk++ [28], OpenMP [29] and x10 [30],

decouple expressing a programs innate parallelism from its execution configu-

ration. OpenMP and Cilk++ are widely used language extensions for shared

memory programs, in which parallel execution in a program is expressed at de-

velopment time, and system takes advantage of it at run-time.

Kremlin [31] is an auto-parallelization framework that complements OpenMP.

Kremlin recommends to programmers a list of regions for parallelization, which

is ordered by achievable program speedup.

38

Elastic parallelization should be supported to achieve higher throughput in

stream processing. In Storm [9], data parallelism can be achieved by requesting

multiple copies of operators [9]. However, preserving order should be handled

by the developer. In S4 [10], creating processing element replicas enables data

parallelism. Again, safety is left to developer. In C-Stream’s elastic parallelization

module, using split/merge operators before/after operator replicas tuple order is

preserved.

Elasticity is more involved in distributed streaming environments or in the

Cloud. It requires machine to operator mapping (placement), and operator mi-

gration after scaling in/out decisions. FUGU [32] is an allocation component for

distributed complex event processing systems, and it is able to elastically scale in

and out with a varying system load. In [33], auto-scaling techniques are presented

on top of FUGU, including local thresholds, global thresholds, and reinforcement

learning. StreamMine3G [34] is another elastic stream processing system, sup-

porting both vertical and horizontal scalability. Stormy [35], on the other hand, is

an elastic stream processing engine running on the Cloud. As part of the elastic-

ity, migration protocols are proposed for operators in [36] [8]. In [8], Gedik et al.

proposes incremental migration protocol relying on consistent hashing. In [36].

Heinze et al. presents their migration algorithm trying to reduce the migration

latency, which is based on the operator movement cost estimation. In contrast,

C-Stream is a single-node multi-core stream processing system, with a focus on

flexible scheduling and elastic streaming execution.

39

Chapter 7

Conclusion

In this thesis, we present C-Stream — a coroutine based scalable, highly customiz-

able, and elastic stream processing engine. Unlike traditional event based stream

processing operators, in C-Stream each operator is implemented as coroutine hav-

ing its own control loop and each can decide when to perform its computations

using data availability API. This property of C-Stream simplifies the develop-

ment of operator that requires multiport synchronization. Second, we present a

customizable scheduler in C-Stream. Base scheduler handles back pressure, pro-

vides data availability API, and manages preemption and termination handling.

It can also be configured via plug-ins for various demands, such as to obtain high

throughput or low latency. Third, our adaptation module adjusts the level of par-

allelism by detecting bottleneck operators. It increments the replica count until

bottleneck is resolved. Adaptation module also measures the thread utilization

so that it decides when to increase/decrease number of threads as workload on

the system changes. In the experiments, we show the efficacy of our system.

40

Bibliography

[1] X. J. Zhang, H. Andrade, B. Gedik, R. King, J. Morar, S. Nathan, Y. Park,

R. Pavuluri, E. Pring, R. Schnier, P. Selo, M. Spicer, C. Venkatramani,

A. Frenkiel, W. D. Pauw, M. Pfiefer, P. Allen, N. Cohen, and K.-L. Wu,

“Implementing a high-volume, low-latency market data processing system

on commodity hardware using ibm middleware,” in Workshop on High-

Performance Computational Finance at Supercomputing, 2009.

[2] P. Zerfos, M. Srivatsa, D. Dennerline, H. Franke, and D. Agrawal, “Plat-

form and applications for massive-scale streaming network analytics,” IBM

Journal of Research and Development, vol. 57, no. 3/4, pp. 11:1 – 11:13,

2013.

[3] D. L. Schales, M. Christodorescu, J. R. Rao, R. Sailer, M. P. Stoecklin,

W. Venema, and T. Wang, “Stream computing for large-scale, multi-channel

cyber threat analytics,” in IEEE International Conference on Information

Reuse and Integration (IRI), pp. 8–15, 2014.

[4] M. K. Garg, D.-J. Kim, D. S. Turaga, and B. Prabhakaran, “Multimodal

analysis of body sensor network data streams for real-time healthcare,” in

Multimedia Information Retrieval, pp. 469–478, 2010.

[5] M. Hirzel, H. Andrade, B. Gedik, G. Jacques-Silva, R. Khandekar, V. Ku-

mar, M. Mendell, H. Nasgaard, S. Schneider, R. Soule, and K.-L. Wu,

“Streams processing language: Analyzing big data in motion,” IBM Journal

of Research and Development, vol. 57, no. 3/4, pp. 7:1–7:11, 2013.

41

[6] M. Hirzel, R. Soule, S. Schneider, B. Gedik, and R. Grimm, “A catalog of

streaming optimizations,” ACM Computing Surveys (CSUR), vol. 4, no. 46,

2014.

[7] S. Schneider, M. Hirzel, and B. G. an Kun-Lung Wu, “Safe data parallelism

for general streaming,” IEEE Transactions on Computers (TC), vol. 64,

no. 2, pp. 504–517, 2015.

[8] B. Gedik, S. Schneider, M. Hirzel, and K.-L. Wu, “Elastic scaling for data

stream processing,” IEEE Transactions on Parallel and Distributed Systems

(TPDS), vol. 25, no. 6, pp. 1447–1463, 2014.

[9] Storm, “Storm project.” http://storm-project.net. Retrieved June., 2015.

[10] “S4 project.” http://incubator.apache.org/s4. Retrieved June., 2015.

[11] H. Andarade, B. Gedik, and D. Turaga, Fundamentals of Stream Processing:

Application Design, Systems, and Analytics, ch. 4 Application development

– data flow programming, section 4.3.5 Punctuations. Cambridge University

Press, 2014.

[12] D. Carney, U. Çetintemel, A. Rasin, and S. Zdonik, “Operator scheduling in

a data stream manager,” in Very Large Data Bases Conference, 2003.

[13] A. Arasu, B. Babcock, S. Babu, M. Datar, K. Ito, I. Nishizawa, J. Rosenstein,

and J. Widom, “Stream: The stanford stream data manager,” in Proceedings

of the 2003 ACM SIGMOD International Conference on Management of

Data, SIGMOD ’03, (New York, NY, USA), pp. 665–665, ACM, 2003.

[14] D. J. Abadi, Y. Ahmad, M. Balazinska, M. Cherniack, J. hyon Hwang,

W. Lindner, A. S. Maskey, E. Rasin, E. Ryvkina, N. Tatbul, Y. Xing, and

S. Zdonik, “The design of the borealis stream processing engine,” in In CIDR,

pp. 277–289, 2005.

[15] S. Chandrasekaran, O. Cooper, A. Deshpande, M. J. Franklin, J. M. Heller-

stein, W. Hong, S. Krishnamurthy, S. R. Madden, F. Reiss, and M. A. Shah,

“Telegraphcq: Continuous dataflow processing,” in Proceedings of the 2003

42

http://storm-project.net
http://incubator.apache.org/s4

ACM SIGMOD International Conference on Management of Data, SIGMOD

’03, (New York, NY, USA), pp. 668–668, ACM, 2003.

[16] B. Gedik and H. Andrade, “A model-based framework for building extensi-

ble, high performance stream processing middleware and programming lan-

guage for ibm infosphere streams,” Software: Practice and Experience Jour-

nal, Wiley (SP&E), vol. 11, no. 42, 2012.

[17] Storm, “Streambase systems.” www.streambase.com. Retrieved June., 2015.

[18] W. Thies, M. Karczmarek, and S. P. Amarasinghe, “Streamit: A language

for streaming applications,” in Proceedings of the 11th International Confer-

ence on Compiler Construction, CC ’02, (London, UK, UK), pp. 179–196,

Springer-Verlag, 2002.

[19] G. Upadhyaya, V. S. Pai, and S. P. Midkiff, “Expressing and exploiting con-

currency in networked applications in aspen,” in In Proc. of ACM SIGPLAN

Symposium on Principles and Practice of Parallel Programming, pp. 13–23,

ACM Press, 2007.

[20] “Apache Samza project.” http://incubator.apache.org/samza. Retrieved June.,

2015.

[21] B. Gedik, H. Andrade, K.-L. Wu, P. S. Yu, and M. Doo, “Spade: The system

s declarative stream processing engine,” in Proceedings of the 2008 ACM

SIGMOD International Conference on Management of Data, SIGMOD ’08,

(New York, NY, USA), pp. 1123–1134, ACM, 2008.

[22] D. J. Dewitt, S. Ghandeharizadeh, D. A. Schneider, A. Bricker, H. I. Hsiao,

and R. Rasmussen, “The gamma database machine project,” IEEE Trans.

on Knowl. and Data Eng., vol. 2, pp. 44–62, Mar. 1990.

[23] G. Graefe, “Encapsulation of parallelism in the volcano query processing

system,” in Proceedings of the 1990 ACM SIGMOD International Conference

on Management of Data, SIGMOD ’90, (New York, NY, USA), pp. 102–111,

ACM, 1990.

43

www.streambase.com
http://incubator.apache.org/samza

[24] J. Dean and S. Ghemawat, “Mapreduce: Simplified data processing on large

clusters,” Commun. ACM, vol. 51, pp. 107–113, Jan. 2008.

[25] M. Isard, M. Budiu, Y. Yu, A. Birrell, and D. Fetterly, “Dryad: Distributed

data-parallel programs from sequential building blocks,” in Proceedings of

the 2Nd ACM SIGOPS/EuroSys European Conference on Computer Systems

2007, EuroSys ’07, (New York, NY, USA), pp. 59–72, ACM, 2007.

[26] A. Brito, C. Fetzer, H. Sturzrehm, and P. Felber, “Speculative out-of-order

event processing with software transaction memory,” in Proceedings of the

Second International Conference on Distributed Event-based Systems, DEBS

’08, (New York, NY, USA), pp. 265–275, ACM, 2008.

[27] Y. Tang and B. Gedik, “Autopipelining for data stream processing,” IEEE

Trans. Parallel Distrib. Syst., vol. 24, no. 12, pp. 2344–2354, 2013.

[28] Cilk++. https://cilkplus.org/. Retrieved June., 2015.

[29] Openmp. http://openmp.org. Retrieved June., 2015.

[30] P. Charles, C. Grothoff, V. Saraswat, C. Donawa, A. Kielstra, K. Ebcioglu,

C. von Praun, and V. Sarkar, “X10: An object-oriented approach to non-

uniform cluster computing,” in Proceedings of the 20th Annual ACM SIG-

PLAN Conference on Object-oriented Programming, Systems, Languages,

and Applications, OOPSLA ’05, (New York, NY, USA), pp. 519–538, ACM,

2005.

[31] S. Garcia, D. Jeon, C. M. Louie, and M. B. Taylor, “Kremlin: Rethinking

and rebooting gprof for the multicore age,” in Proceedings of the 32Nd ACM

SIGPLAN Conference on Programming Language Design and Implementa-

tion, PLDI ’11, (New York, NY, USA), pp. 458–469, ACM, 2011.

[32] T. Heinze, Y. Ji, Y. Pan, F. Josef, G. Zbigniew, and J. C. Fetzer, “Elastic

complex event processing under varying query load.”

[33] T. Heinze, V. Pappalardo, Z. Jerzak, and C. Fetzer, “Auto-scaling tech-

niques for elastic data stream processing,” in Proceedings of the 8th ACM

44

https://cilkplus.org/
http://openmp.org

International Conference on Distributed Event-Based Systems, DEBS ’14,

(New York, NY, USA), pp. 318–321, ACM, 2014.

[34] A. Martin, A. Brito, and C. Fetzer, “Scalable and elastic realtime click stream

analysis using streammine3g,” in Proceedings of the 8th ACM International

Conference on Distributed Event-Based Systems, DEBS ’14, (New York, NY,

USA), pp. 198–205, ACM, 2014.

[35] S. Loesing, M. Hentschel, T. Kraska, and D. Kossmann, “Stormy: An elastic

and highly available streaming service in the cloud,” in Proceedings of the

2012 Joint EDBT/ICDT Workshops, EDBT-ICDT ’12, (New York, NY,

USA), pp. 55–60, ACM, 2012.

[36] T. Heinze, Z. Jerzak, G. Hackenbroich, and C. Fetzer, “Latency-aware elastic

scaling for distributed data stream processing systems,” in Proceedings of

the 8th ACM International Conference on Distributed Event-Based Systems,

DEBS ’14, (New York, NY, USA), pp. 13–22, ACM, 2014.

45

	Introduction
	Programming Model
	Basic Concepts
	Flow Composition
	Operator Development

	Runtime
	Execution Model
	Scheduler
	Overview
	Base Scheduler Algorithm
	Scheduler Plug-Ins

	Adaptation
	Dynamic Thread Pool Size
	Elastic Data Parallelism
	Bottleneck Detection
	Replica Controller

	Experiments
	Base Experiments
	Adaptation Experiments

	Related Work
	Conclusion

