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ABSTRACT

IMAGE RESTORATION AND RECONSTRUCTION
USING PROJECTIONS ONTO EPIGRAPH SET OF
CONVEX COST FUNCTIONS

Mohammad Tofighi
M.S. in Electrical and Electronics Engineering
Advisor: Prof. Dr. A. Enis Cetin
July, 2015

This thesis focuses on image restoration and reconstruction problems. These
inverse problems are solved using a convex optimization algorithm based on or-
thogonal Projections onto the Epigraph Set of a Convex Cost functions (PESC).
In order to solve the convex minimization problem, the dimension of the problem
is lifted by one and then using the epigraph concept the feasibility sets corre-
sponding to the cost function are defined. Since the cost function is a convex
function in RY, the corresponding epigraph set is also a convex set in RN*!. The
convex optimization algorithm starts with an arbitrary initial estimate in R¥*!
and at each step of the iterative algorithm, an orthogonal projection is performed
onto one of the constraint sets associated with the cost function in a sequential
manner. The PESC algorithm provides globally optimal solutions for different
functions such as total variation, ¢;-norm, ¢s-norm, and entropic cost functions.
Denoising, deconvolution and compressive sensing are among the applications of
PESC algorithm. The Projection onto Epigraph Set of Total Variation function
(PES-TV) is used in 2-D applications and for 1-D applications Projection onto
Epigraph Set of ¢;-norm cost function (PES-¢) is utilized.

In PES-¢; algorithm, first the observation signal is decomposed using wavelet
or pyramidal decomposition. Both wavelet denoising and denoising methods using
the concept of sparsity are based on soft-thresholding. In sparsity-based denoising
methods, it is assumed that the original signal is sparse in some transform domain
such as Fourier, DCT, and/or wavelet domain and transform domain coefficients
of the noisy signal are soft-thresholded to reduce noise. Here, the relationship be-
tween the standard soft-thresholding based denoising methods and sparsity-based
wavelet denoising methods is described. A deterministic soft-threshold estima-
tion method using the epigraph set of ¢;-norm cost function is presented. It is
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demonstrated that the size of the ¢1-ball can be determined using linear algebra.
The size of the ¢;-ball in turn determines the soft-threshold. The PESC, PES-TV
and PES-/; algorithms, are described in detail in this thesis. Extensive simula-
tion results are presented. PESC based inverse restoration and reconstruction
algorithm is compared to the state of the art methods in the literature.

Keywords: Convex optimization, epigraph of a convex cost functions, projection
onto convex sets, total variation function, ¢;-norm function, denoising, deconvo-

lution, compressive sensing.



OZET

DISBUKEY MALIYET FONKSIYONLARI'NIN
EPIGRAF KUMESINE DIK IZDUSUMLER KULLANAN
IMGE RESTORASYONU VE YENIDEN INSA
ALGORITMASI

Mohammad Tofighi
Elektrik ve Elektronik Miihendisligi, Yiksek Lisans
Tez Danigmani: Prof. Dr. A. Enis Cetin
Temmuz, 2015

Bu tez, imge restorasyonu ve yeniden insasi ile alakali problemler tizerinedir. nge
restorasyonu ve yeniden inga problemleri, Disbiikey Maliyet Fonksiyonlari’nin
Epigraf Kiimesine Dik Izdiigtimleri (PESC) ile ¢oziliir. Digbiikey kiigiiltme
problemini ¢ozmek icin ilk adimda problemin boyutu bir artirilir ve ardindan
epigraf fikri kullanilarak maliyef fonksiyonlarinin fizibilite kiimeleri tanimlanir.
Maliyet fonksiyonu R¥ icerisinde oldugundan dolay1, ona karsilik gelen epigraf
seti digbiikey de RN*! icerisindedir. Digbiikey kiiciiltme algoritmasi RN*!
icerisinde rastgele bir tahmin ile baglar ve yinelemeli algoritmanin her adiminda
birbirini takip eden gekilde, maliyet fonksiyonlarini1 kisitlayan kiimeler tizerine dik
izdlsgiimler gergeklegtirir. PESC algoritmasi, tam degisim, ¢;-norm, ¢s-norm, en-
tropik maliyet fonksiyonu gibi degisik bir ¢ok fonksiyon icin global en iyi ¢oziimler
verir. Tam Degisim Fonksiyonunun Epigraf Kiimesi Uzerine Izdiigiim (PES-TV)
2 boyutlu uygulamalar icin, ¢;-norm Fonksiyonunun Epigraf Kiimesi Uzerine
Izdiigiim (PES-¢,) ise 1 boyutlu uygulamalar icin degerlendirilmistir.

PES-/¢; algoritmasinda, gozlemlenen sinyal ilk adimda dalgacik ve ya piramit
ayrigimi  kullanmilarak dagilmigtir. Dalgacik tabanh giiriiltiiden arindirma ve
diger seyreklik tabanl giiriiltiidden arindirma teknikleri yumusak esiklendirmeye
dayahdir. Seyreklik tabanli giiriiltiiden arindirma metodlarinda, asil sinyalin,
Fourier, DCT, ve ya dalgacik gibi herhangi bir doniigim uzayinda, seyrek olduk-
lar1 varsayilmaktadir ve giriiltiilii sinyalin dontigiim uzayimndaki katsayilarina
yumusak esiklendirme uygulanir. Burada, standart yumusak egiklendirmeye
dayali giiriiltiiden arindirma metodlart ile seyreklik tabanh dalgacik kul-

lanarak gtiriiltiiden arimdirma metodlar1 aciklanmigtir. ¢1-norm maliyet
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fonksiyonunun epigraf kiimesini kullanan bir yumusak esik tahmin metodu
sunulmugtur.  Dogrusal cebir kullanarak ¢; topunun biiyiikliigiiniin belir-
lenebilecegi gosterilmistir. Yumusak esigi ¢; topunun biiyiikligii belirlemekte-
dir. PESC, PES-TV ve PES-/; algoritmalar1 detaylh olarak anlatilmigtir. Kap-
samli benzetim sonuclar: sunulmustur. PESC tabanl ters restorasyon ve yeniden
inga algoritmasi, edebiyattaki en gelismis tekniklerle karsilagtirilmigtir.

Anahtar sézciikler: Digbiikey optimizasyon, digbiikey maliyet fonksiyonlari’nin
epigrafi, digbiikey kiimeler tizeri'ne izdiigim, tam degisim fonksiyonu, ¢;-norm

fonksiyonu, giiriiltiiden arindirma, ters evrisi, sikigtirilmig algilama.
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Chapter 1

Introduction

Many signal and image restoration and reconstruction problems can be consid-
ered as inverse problems. In these problems we try to recover the original signal
or image from observations which are usually corrupted by noise. Denoising,
deconvolution, and compressive sensing are among the well-known inverse prob-
lems. In restoration methods, the aim is to get as much closer as possible to the
original image. The distance between the estimated image and the original image
is called the cost, and the function which measures this cost is the cost function.
Therefore, in these methods the aim is to minimize a given cost function. Since
most of the cost functions in such problems are convex functions, convex opti-
mization algorithms can be considered to solve them. In the following sections a
convex optimization method and its application to denoising, deconvolution, and

compressive sensing problems are described.

1.1 Convex Optimization

Convex optimization studies the problem of minimizing the convex functions. In

a convex function the objective and the constraint functions are convex, which



means they satisfy the following inequality:

flax+ By) < af(x)+ Bf(y) (1.1)

for all x,y € R and all a,83 € R with a + 3 = 1,a > 0,5 > 0. Some inverse
problems can be solved using convex optimization methods. Consider Ax = b,
where A is matrix and x and b are vectors. Here the aim is to solve as inverse
problem to find the solution z. The trivial solution would be x = A~1b. However,
every A will not be invertible, therefore, to solve this problem, pseudo-inverse of

A would be required, then the solution would be x = A'h.

Sometimes the inverse of the matrix A cannot be found directly, then opti-
mization methods can be used for such inverse problems. In order to solve these
problems, an objective function is defined. This function measures how close
the obtained estimated solution from the optimization process, fits the observed
data. This function is the cost function of the optimization problem. There are
many cost functions used in inverse problems. The standard cost function f(z)

is usually of the following form:
fx) = 1lb— Ax]f3, (1.2)

which ||.||3 is the fy-norm. The f(z) is the fo-norm between the observed data
and the predicted data.

Plenty of optimization methods are proposed according to the problem.
Among them descent methods such as gradient descent method and steepest
descent method, and the Newton’s method are well-known [5]. All these nonlin-
ear methods solve the optimization problems in an iterative manner, such that in
each iteration the value of the cost function is measured and the aim is to obtain

minimum cost (or maximum efficiency).

One of the methods used in convex optimization is Projection Onto Convex
Sets (POCS). This method, similar to Descent methods, tries to find the minimum
point on the cost function by iterative projections onto convex sets. A set C is

convex if the line segment between any two points in C lies inside C, i.e., if for



any x1,xs € C and any 6 with 0 < 6 < 1, we have:
Ox1 + (1 —0)xe €C. (1.3)

In POCS the projections are performed onto the sets. Sometimes projection onto
the surface of a function is very hard. Therefore, to make it easier, projections can
be performed onto the hyperplane passing through the points over the epigraph

set of convex sets. A hyperplane can be defined as follows:
H = {x|]a"x = b} (1.4)

where a € R", a # 0, and b € R. Geometrically, the above hyperplanes can be
interpreted as the set of the points with a constant inner product to a given vector
a, as the normal vector. Considering these information, the POCS algorithm is

described in the following section.

1.2 Projection Onto Convex Sets (POCS)

In this thesis, a new convex optimization algorithm based on orthogonal Projec-
tions onto the Epigraph Set of a Convex cost function (PESC) is introduced. This
algorithm is based on standard POCS algorithm. In Bregman’s standard POCS
approach [6, 7], the algorithm converges to the intersection of convex constraint
sets, as in Figure 1.1. In this section, it is shown that it is possible to use a
convex cost function in a POCS based framework using the epigraph set and the

new framework is used in many signal and image processing applications [8-13].

Bregman also developed iterative methods based on the so-called Bregman
distance to solve convex optimization problems [11]. In Bregman’s approach, it
is necessary to perform a Bregman projection at each step of the algorithm, which

may not be easy to compute the Bregman distance in general [10,12].

In standard POCS approach, the goal is simply to find a vector, which is in
the intersection of convex constraint sets [7,14-35]. In each step of the iterative

algorithm an orthogonal projection is performed onto one of the convex sets .

3



Bregman showed that successive orthogonal projections converge to a vector,
which is in the intersection of all the convex sets, as in Figure 1.1. If the sets do
not intersect, iterates oscillate between members of the sets [36,37], as in Figure
1.2. Since, there is no need to compute the Bregman distance in standard POCS,

it found applications in many practical problems.

Ca
————--_----M

—___

—____—

Figure 1.1: Sets C; and Cy are two convex sets. The initial vector z; is sequentially
projected onto the sets C; and Cs to find the vector, x, in the intersection of these
sets.

In PESC approach, the dimension of the signal reconstruction or restoration
problem is lifted by one and sets corresponding to a given convex cost function
are defined. This approach is graphically illustrated in Figurel.2. If the cost
function is a convex function in RY, the corresponding epigraph set is also a
convex set in RV, As a result, the convex minimization problem is reduced
to finding the [w*, f(w*)] vector over the epigraph set corresponding to the cost
function as shown in Figure 1.2. As in standard POCS approach, the new itera-
tive optimization method starts with an arbitrary initial estimate in R¥*! and an

orthogonal projection is performed onto one of the constraint sets. The resulting



vector is then projected onto the epigraph set. This process is continued in a se-
quential manner at each step of the optimization problem. This method provides
globally optimal solutions for convex cost functions, such as total-variation [38],
filtered variation [9], ¢;-norm [39], and entropic function [16]. The iteration pro-
cess is shown in Figure 1.2. Regardless of the initial value w,, iterates converge

to [w*, f(w*)] pair as shown in Figure 1.2.

This Thesis is organized as follows. In Section 1.3, the epigraph of a convex
cost function is defined and the convex minimization method based on the PESC
approach is introduced. In Chapter 2, the TV based PESC algorithm is presented.
In Chapter 3, the /1-norm based PESC algorithm is described. The new approach
does not require a regularization parameter as in other TV based methods [15,
26, 38]. In Chapter 4, deconvolution using PESC is described. In Chapter 5,
compressive sensing using PESC is introduced. At the end of each chapter, the

simulation results are presented. Finally, this thesis is concluded in Chapter 6.

1.3 Projection Onto Epigraph Set of a Convex
Cost Function (PESC)

Let us first consider a convex minimization problem

min f(w), (1.5)

weRN

where f : RY — R is a convex cost function. We increase the dimension by one

to define the epigraph set of f in RV*! as follows:

Cr={w=[w"y": y=f(w)}, (1.6)

which is the set of N + 1 dimensional vectors, whose (N + 1) component y
is greater than f(w). We use bold face letters for N dimensional vectors and
underlined bold face letters for N + 1 dimensional vectors, respectively. Another

set that is related with the cost function f(w) is the level set:

Co={w=w'y": y<0, we RV} (1.7)



where it is assumed that f(w) > 0 for all f(w) € R. Both Cf and C;, are closed
and convex sets in RV*!. Other closed and convex sets describing a feature of the
desired solution can be also used in this approach. Sets C; and C, are graphically

illustrated in Figure 1.2. An important component of the PESC approach is to

E

Figure 1.2: Two convex sets Cy and Cy corresponding to the convex cost function f.
We sequentially project an initial vector w, onto Cs and Cy to find the global minimum,
which is located at w* = [w* f(w*)]T.

perform an orthogonal projection onto the epigraph set. Let w; be an arbitrary
vector in RY*!. The projection w, is determined by minimizing the distance

between w, and Cy, i.e.,
w, = argmin |w, — w2 (1.8)
ﬂGCf

Equation (1.8) is the ordinary orthogonal projection operation onto the set Cy €
RN*1. In order to solve the problem in Eq. (1.8), we do not need to compute
the Bregman’s so-called D-projection or Bregman projection. Projection onto the
set Cs is trivial. We simply force the last component of the N + 1 dimensional
vector to zero. In the PESC algorithm, iterates eventually oscillate between the

two nearest vectors of the sets Cs and Cy as shown in Figure 1.2. As a result, we
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obtain

Tim w,, = [w* (W] (19)
where w* is the N dimensional vector minimizing f(w). The proof of Eq. (1.9)
follows from Bregman’s POCS theorem [6]. It was generalized to non-intersection
case by Gubin et. al [36]. Since the two closed and convex sets C; and Cy are
closest to each other at the optimal solution case, iterations oscillate between the
vectors [w* f(w*)]T and [w* 0]7 in R¥*1 as n tends to infinity. It is possible to

increase the speed of convergence by non-orthogonal projections [27].

If the cost function f is not convex and have more than one local minimum,
then the corresponding set C; is not convex in RV*!. In this case, the iterates

may converge to one of the local minima.

In current TV based denoising methods [38,40], the following cost function is
used:

f(w) =|v—wl|?+ATV(w), (1.10)

where v is the observed signal. The solution of this problem can be obtained

using the method in an iterative manner, by performing successive orthogonal

projections onto Cy and C; , as discussed above. In this case, the cost function is
f(w) = ||v — w2+ ATV(w). Therefore,

Cr={w e R |v—w|> +\TV(w) < y}. (1.11)

The denoising solutions that we obtained are very similar to the ones found by
Chambolle’s in [38] as both methods use the same cost function. One problem
in [38] is the estimation of the regularization parameter A. One has to determine
the A in an ad-hoc manner or by visual inspection. In Chapter 1, new denoising
methods with a different TV based cost function and ¢;-norm cost function are
described. The new method with TV function does not require a regularization
parameter. Concept of epigraph is first used in signal reconstruction problems

in [41,42]. We also independently developed epigraph based algorithms in [43].

As mentioned before, a hyperplane is in the form of H = {x|a’x = b}. This

hyperplane can be interpreted in the following form:
H = {x|]a” (x — x¢) = 0}, (1.12)
7



where xq is any point over the hyperplane (which satisfies a’xq = b). The pro-

T

jection onto a hyperplane a'x = b with normal a can easily be computed using

simple algebra. The projection is as follows:
b—a'x

a, (1.13)
lall3

XpIX—|—

where ||.||3 is the Euclidean norm. This operation is illustrated in Figure The con-
vex optimization application in image reconstruction is described in the following

sections.

Figure 1.3: Graphical illustration of projection onto a hyperplane.

1.4 Denoising

Denoising refers to removing unwanted signal from the original signal while the
important information of the original signal is preserved as much as possible.
Many signal and image denoising methods are proposed in signal processing lit-
erature in the past decades. However, the study in this field is open and many
researchers are focused over the issue of denoising signals and images under var-

ious conditions.

The denoising problem can typically be studied under optimization problems,



in which appropriate objective function is minimized under some certain con-
straints. For instance, in [8, 26, 38] a denoising algorithm based on the Total
Variation (TV) function as the constraint is proposed. The idea of minimizing
the TV for image denoising was first suggested in [8]. In [8], the noisy image is the
addition of original image and random Gaussian noise with estimated variance

equal to o2. Therefore, the aim is to solve the following minimization problem:
min{TV(w) : |[W — Woe||* = N?0?}, (1.14)
where N? is the total number of the pixels.

In [26], for image with sharp contours and block features, the following restora-

tion problem is studied:
min{TV(w) + \|w — v||* = N*¢*} X >0, (1.15)

where A is the regularization parameter. Finding the exact A is a computationally

expensive issue. Therefore, it is determined in an add-hoc manner.

In [44] and in this thesis [13,43,45], the same minimization in 1.15 is considered.

The problem in 1.15 is split into two constraints as:
min{||w — v||*} such that TV(w) <7, (1.16)

where 7 is a positive constraint bound on TV value in [44]. However, in our
method in [13,43,45], there is no need to define a constraint on the TV value,
since the TV value of the obtained image converges to the TV value of the original
image. It can be inferred that, both (1.15) and (1.16) are equivalent for some
specific values of the regularization parameters. However, in [44], the adjustment
of A parameter is eliminated, and instead 7 is required sufficient adjustment which
is easier compared to defining A. In the proposed method in [44], the authors use

a proximal algorithm and epigraph projection to solve minimization problem.

In [46], a denoising algorithm based on 3D filtering of similar image blocks is
proposed. In this algorithm, the similar blocks of the noisy image are grouped

together using block matching methods and a 3D array is obtained. Then this



arrays are denoised using a 3D collaborative Wiener filter. Then the denoised

blocks are combined together to reconstruct the image.

In [47], an adaptive data-driven threshold for denoising images via wavelet
soft-thresholding is proposed and it claims that lossy compression can also be
used for denoising. The reason for this claim is that a lossy compression such as

quantization with zero-zero is similar to soft-thresholding.

In [48], a denoising algorithm based on interscale orthonormal wavelet thresh-
olding is proposed. In this algorithm, the denoising process is parameterized
directly as the summation of basic nonlinear processes in which their weights are
unknown. Then to solve the denoising problem, the estimate of the mean square
error between original image and noisy image is minimized. However, they do
not use the original image to estimate MSE. They use an accurate, statistically
unbiased, MSE estimate which is quadratic in the unknown weights. They use
the Stein’s Unbiased Risk Estimate (SURE) which is similar to a priori estimate
of the MSE resulting from an arbitrary processing of noisy data. In this algorithm

the thresholding is performed in discrete wavelet domain.

In [1], multivariate wavelet denoising is combined with Principle Component
Analysis (PCA). Wavelet denoising methods are popular for 1D signal denoising.
The proposed algorithm in [1] is also used for 1D signal denoising. This work
deals with regression models such as w = wqi; + &, where the observation w is
p-dimensional, and £ is the additive noise. In this method, PCA is used to detect
the insignificant components of the signal and enhance the denoising process by

eliminating those components of the wavelet coefficients.

In this thesis, we propose a convex optimization method based on Projections
onto Epigraph Set of Convex Cost function (PESC) to solve inverse problems
such as denoising, deconvolution, and compressive sensing. The PESC method
is used to solve the denoising problem similar to (1.16). The PESC algorithm is
used both for 2D signals (images) and 1D signals. Total variation cost function
is used for 2D denoising (Projections onto Epigraph Set of TV (PES-TV)) and

¢1-norm cost function is used for 1D signals denoising (Projections onto Epigraph
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Set of ¢;-Ball (PES-¢1)). The PESC method is illustrated in detail in Chapter 2.
The simulation results for comparing the PESC algorithm with other algorithms

are also provided at end of Chapter 2.

1.5 Deconvolution

Deconvolution is the act of reversing the effect of the convolution. In other
words, the deconvolution algorithms try to reconstruct the signals which are
convolved together. In image processing applications, usually one of the signals
is the original signal and the second one is the blurring signal which degrades the
quality of the original signal. The deconvolution algorithms found applications
in many fields of image processing, i.e., medical image processing. For instance,
the images obtained from microscopes has the focusing problem and are usually
blurred. The aim of deconvolution algorithms is to enhance the quality of these

images as much as possible.

In [49,50], Vonesch et al. proposes a deconvolution algorithm based on a Fast
Thresholding Landweber (FTL) algorithm. This algorithm minimizes a quadratic
data term subject to a regularization on the ¢;-norm of the wavelet coefficients

of the solution. In this approach, it is assumed that the PSF is known.

We propose a deconvolution algorithm based on PESC algorithm. In this
method, two constraint sets are defined and the projection onto these sets are
performed to obtain the deblurred image. The first set is the set of hyperplanes
obtained from the deconvolution problem, and the intersection of these hyper-
planes is the deconvolution solution. In order to speed up the deconvolution pro-
cess and enhance the quality of the output image, we impose the TV constraint
using Projection onto Epigraph Set of TV function (PES-TV). This deconvolu-
tion method is presented in detail in Chapter 4. The simulation results are also

presented in 4.2.
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1.6 Compressive Sensing

According to Shannon/Nyquist sampling theorem, in order to avoid losing infor-
mation during sampling, transformation, and reconstruction, the sampling rate
should be equal or greater than two times of the signal bandwidth. However, in
many applications, increasing the sampling rate is very expensive [39]. Therefore,
many methods are studied during last decades to solve this problem. The Com-
pressive Sensing (SC) theory is proposed according to sparse nature of the signal
as a possible solution. Sparsity expresses the idea that a signal can be represented
with much smaller amount of components than suggested by its bandwidth. In
other words, CS exploits the fact that many natural signals are sparse and com-
pressible in the sense that they have shorter representation in a proper transform

domain.

In [51], Matching Pursuit (MP) algorithm is proposed. According to this algo-
rithm any signal is decomposed into a linear expansion of waveforms that belong
to a redundant function dictionary. Then in selection of the waveforms the aim
is to find the best match for the signal structures. In adaptive signal representa-
tions, matching pursuits are the general procedure. Therefore, an interpretation
of the signal structures are provided by matching pursuit decomposition. This
algorithm is a greedy algorithm. It chooses a waveform which is best adopted to
an approximate of a part of the signal, in an iterative manner. Matching pursuits
are very flexible in signal representations, because they have unlimited choice of

dictionaries.

In [52], the Compressive Sensing Matching Pursuit (CoSaMP) algorithm is
proposed. CoSaMP is an iterative recovery algorithm for CS problems. This
algorithm recovers the signal from its noisy samples using four inputs. These
inputs are: observation matrix, a vector of (noisy) samples of the unknown signal,
the sparsity level of the signal to be produced (s), and a stopage criterion. In the
first step, it forms a proxy of the residual from the current samples and determines
the largest ones. Then using these samples it updates the current approximation.

The algorithm solves a least square problem to approximate the updated signal.
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Then it preserves the largest entries in the least squares signal approximation.
Then the samples are updated to reflect the residual. This is performed according
to Algorithm 1 in [52].

In [53], the £,-norm optimization based CS reconstruction algorithm is pro-
posed. Considering ® as an M x N measurment matrix, and $w = b the vector
of an N-dimensional signal w. This algorithm solves the CS problem by solving
the minimization problem as w* = H‘IAi,nHng subject to dw = b, which w* is the

reconstructed signal.

Considering that the CS problem is a convex inverse problem, we can apply
PESC algorithm to such problems. In this approach, two sets are defined, and the
combination of these two sets leads to the CS problem’s solution. The first set is
the set of hyperplanes defined in CS problems, which are the observation hyper-
planes. The intersection of these hyperplanes is the solution or the reconstructed
signal. The second set, which imposes the TV constraint to the estimated image
at each step of the iterations enhances the performance of the PES-TV algorithm.
This algorithm is illustrated in detail in Chapter 5, and the simulation results are

also presented in 5.3.
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Chapter 2

Denoising Using Projection onto
Epigraph Set of Total Variation
Function (PES-TV)

Denoising refers to the process of reducing noise in a given signal, image and
video. The basic idea of projection-based denoising algorithm is described in
Chapter 1. As mentioned before, Projection onto Epigraph Set of Convex Cost
function (PESC), can be used for denoising 2D signals. The Total Variation (TV)
cost function is used for denoising 2D signals. In Section 2.1, the Projection onto
Epigraph Set of TV function (PES-TV) is presented.

2.1 The PES-TV Algorithm

In this section, we present a new denoising method, based on the epigraph set of
the TV function. Let the original signal or image be w,,;, and its noisy version

be v. Suppose that the observation model is the additive noise model:

V = Worig + 1, (2.1)
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where m is the additive noise. In this approach, we solve the following problem
for denoising;:

w* = argmin||v — w|?, (2.2)
ﬂECf

where v = [vT 0] and C; is the epigraph set of TV or FV in R¥*!. The TV
function, which we used for an M x M discrete image w = [w™/], 0 < 4,5 <

M —1 € RMXM g a5 follows:

TV(w) =Y (w9 — wh| + |whith — wh|). (2.3)

irj
The minimization problem (2.2) is essentially the orthogonal projection onto the
set C; = {w € RV* : TV(w) < y}. This means that we select the nearest
vector w* on the set Cy to v. This is graphically illustrated in Figure 2.1. Let us
explain the projection onto an epigraph set of a convex cost function ¢ in detail.

Equation (2.2) is equivalent to:

wh = Lb(wp)] = argmin | H - Lb(w)] I, (2.4)

where w* = [w], ¢(w,)] is the projection of [v,0] onto the epigraph set. The
projection w* must be on the boundary of the epigraph set. Therefore, the

projection must be on the form [w, ¢(w,)]. Equation (2.4) becomes:

e L:van] — argain v — w3 + o(w)” (25)

In the case of total variation ¢p(w) = TV (w). It is also possible to use A¢(.) as a

the convex cost function and Eq. 2.5 becomes:

| Wp | _ : w2 2 2
wh = Lb(wp)] = arggelgl\v wlj3 + Ao(w)”. (2.6)

Actually, Combettes and Pesquet and other researchers including us used a
similar convex set in denoising and other signal restoration applications [9, 26,40,
42]. The following convex set in RY describes all signals whose TV is bounded
by an upper bound e:

Cr={w:TV(w) <e}. (2.7)
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The parameter € is a fixed upper bound on the total variation of the signal and
it has to be determined a priori in an ad-hoc manner. On the other hand we
do not specify a prescribed number on the TV of vectors in the epigraph set
based approach. The upper bound on TV is automatically determined by the
orthogonal projection onto Cy from the location of the corrupted signal as shown

in Figure 2.1.

In current TV based denoising methods [38,40] the following cost function is
used:
f(w) = |lv—wl|5+ATV(w). (2.8)

The solution of (2.8) can be also obtained using the method that we discussed in
Section 1.3. Similar to the LASSO approach [54] a major problem with this ap-
proach is the estimation of the regularization parameter A. One has to determine
the A in an ad-hoc manner or by visual inspection. It is experimentally observed
that Eq. (2.6) produces good denoising results when A = 1. Experimental results

are presented in Section 2.3.1. During this orthogonal projection operations, we
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Figure 2.1: Graphical representation of the minimization of Eq. (2.2), using
projections onto the supporting hyperplanes of C;. In this problem the sets C
and C; intersect because TV (w) = 0 for w = (0,0, ...,0]” or for a constant vector.
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do not require any parameter adjustment as in [38].

2.1.1 Implementation of PES-TV

The projection operation described in Eq. (2.2) can not be obtained in one step
when the cost function is TV. The solution is determined by performing successive
orthogonal projections onto supporting hyperplanes of the epigraph set C;. In
the first step, TV(vy) and the surface normal at v; = [vi TV(vg)] in RV*!
are calculated. In this way, the equation of the supporting hyperplane at v, is
obtained. The vector v, = [vl 0] is projected onto this hyperplane and w, is
obtained as our first estimate as shown in Figure 2.1. In the second step, w, is
projected onto the set Cs; by simply making its last component zero. The TV of
this vector and the surface normal, and the supporting hyperplane is calculated
as in the previous step. We calculate the distance between v, and w, at each
step of the iterative algorithm described in the previous paragraph. The distance
vy — w, || does not always decrease for high 4 values. This happens around the
optimal denoising solution w*. Once we detect an increase in ||v, — w; |, we
perform a refinement step to obtain the final solution of the denoising problem.
In refinement step, the supporting hyperplane at v,,_; = % is used in
the next iteration. For instance, when v, is projected, the distance is increased,
therefore, in ¢ = 0 in Figure 2.1, instead of v, vector v, will be used in next step.
Next, v, is projected onto the new supporting hyperplane, and w, is obtained.
In Figure 2.1, by projecting the w, onto Cf, the vector w is obtained which
is very close to the denoising solution w*. In general iterations continue until

|lw; —w,_4|| <€, where € is a prescribed number, or iterations can be stopped

after a certain number of iterations. A typical convergence graph is shown in
Figure 2.2 for the “note” image. It is possible to obtain a smoother version of w*
by simply projecting v inside the set Cy instead of the boundary of C;. The PES-
TV algorithm is evaluated by comparison with well-known denoising algorithms.

The simulation results are presented in 2.3.1.
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Figure 2.2: Euclidian distance from v to the epigraph of TV at each iteration,
with noise standard deviation of o = 30.

2.2 Denoising Images Corrupted by Impulsive
Noise Using 3D Block Maching, 3D Wiener
Filtering, and the PESC algorithm

The Block Matching 3D (BM3D) denoising algorithm [46], is introduced by Dabov
et al. This method outperforms almost all the denoising algorithms proposed up
to now in two-dimensional (2D) for Gaussian noise. However, it is unable to
denoise an image corrupted by impulsive noise. We modified this algorithm using
PES-TV algorithm to denoise the images corrupted both by Gaussian noise and
impulsive noise. This algorithm is a two step method which is presented in the

following sections.

2.2.1 Two Step Denoising Framework

A novel algorithm for denoising images that are corrupted by impulsive noise
is presented. Impulsive noise generates pixels which their gray level values are

not consistent with the neighboring pixels. The proposed denoising algorithm
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is a two step procedure. In the first step, image denoising is formulated as a
convex optimization problem, whose constraints are defined as limitations on
local variations between neighboring pixels. Projections onto the epigraph set of
TV function (PES-TV) are performed in the first step. Unlike similar approaches
in the literature, the PES-TV method does not require any prior information
about the noise variance. The first step is only capable of utilizing local relations
among pixels. It does not fully take advantage of correlations between spatially
distant areas of an image with similar appearance. In the second step a Wiener
filtering approach is cascaded to the PES-TV based method to take advantage of
global correlations in an image. In this step, the image is first divided into blocks
and blocks with similar content are jointly denoised using a 3D Wiener filter. The
denoising performance of the proposed two-step method was compared against

three state of the art denoising methods under various impulsive noise models.

In the first step, local variations among neighboring pixel values are minimized
in order to remove the impulsive components of the observed image. The first
step does not fully take advantage of the correlation between distant areas of an
image with similar appearance, e.g., blue sky region covering all the top portions
of an image, cheek of a facial image and even textural regions of a shirt. In the
second stage of the denoising method similar image blocks are determined using a

block matching algorithm and they are denoised using Wiener filtering as in [46].

The first step of the proposed algorithm is based on Projections onto the
Epigraph Set of the Total Variation function (PES-TV) [13,14,45]. In the PES-
TV approach, the denoising operation is formulated as an orthogonal projection
problem in which the input image is projected onto the epigraph set of the To-
tal Variation (TV) function. This stage produces the initial (basic estimate) for
second stage. In the second stage, the clock matching algorithm uses this ba-
sic estimate to group similar blocks more accurately. After block matching and
obtaining the coordinates of the similar blocks, the second stage uses these coor-
dinates to group the blocks of the noisy image. Later these 3D arrays of similar

blocks are denoised using 3D Wiener filtering.

In [46], Dabov et al. proposed Block-Matching 3D filtering (BM3D) denoising
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method that can utilize the correlation between similar areas of the image by
jointly denoising them together. BM3D seems to be the best image denoising
method for images corrupted by Gaussian noise [6,7,9,17,25,26,28-30,36,38,40,42,
44,46,48,55-58]. BM3D is also a two-stage algorithm. However the first stage of
BM3D requires an estimate of the noise variance beforehand to determine the hard
thresholding level used in the first stage. Hard-thresholding based method fails
to produce a good estimate of the image under impulsive noise in the first stage.
As a result, the second stage of the BM3D does not produce a reliable denoised
image when the noise is impulsive. On the other hand, the PES-TV denoising
method does not need an estimate of the noise variance. It does not require
any parameter adjustment, either. When we combine the second part of BM3D
with the PES-TV approach, we get better results than ordinary BM3D approach
for images corrupted by impulsive noise and very similar results for Gaussian
noise. The noise information is more effective in the first step of the denoising
algorithms than in the second step. An approximate estimation of the noise
variance is enough for performing denoising in the second step. Furthermore,
with an appropriate denoised image obtained in the first step, estimated variance
of the noise for second step will also be more reliable. The First step is introduced

in 2.1, and the second step is illustrated in the following section.

2.2.2 Second Step of the Denoising Framework: Block
Matching And Collaborative Filtering

The second step of the proposed denoising method is the “3D” approach intro-
duced by Dabov et al. [46]. The output of the PES-TV based denoising stage is
fed into the “3D” Block Matching (BM) step of BM3D.

In natural images, spatially distant areas/blocks are correlated with each other.
However, most denoising algorithms do not exploit this fact and only consider
local pixel variations in an image. Dabov et al. introduced block matching
and collaborative Wiener filtering concepts in a denoising framework to take

advantage of similarities between spatially distant blocks in an image. They
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first group similar looking regions in an image by block matching. Then, they
denoise all those regions together using a three dimensional (3D) approach called
collaborative Wiener filtering. We borrow this procedure from [46] and use it as
the second step of our denoising scheme as shown in Figure 2.3. In this section,

we briefly review the BM3D denoising method.

Step 1 Step 2
Noisy Denoised
image image
[} » PES-TV > Inverse 3D I
L= " transform
Block-matching T
A 4 +
Noise variance Wiener filtering
estimation | @—b 3D transfom / T

Figure 2.3: Graphical representation of the proposed two stage denoising process.

2.2.3 Block Matching

First the PES-TV denoised image is divided into non-overlapping regions of fixed
size called reference blocks (Bg). Then each reference block is compared against

candidate blocks of similar appearance (B¢) using the following equation:

|Br — Bells

d(Br, Bo) = 1Pn—Fells (2.9)

where N = M? is the number of pixels in each block. Blocks satisfying the
similarity condition are grouped together to construct 3D arrays of Similar Blocks
(SB). The set of blocks satisfying the condition of block matching threshold are
grouped together. This set is as follows:

GSBR = {C € Wy _rec - d(BRa BC) < 7—th} (210)

where ¢ represents the coordinate of blocks in the reconstructed image obtained
by the PES-TV stage, Wy _,... is the reconstructed image in the PES-TV stage,
and 7, is the block matching threshold. This threshold is determined according
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to deterministic speculations based on the denoised image in the first step [46].
Each set Ggp,, is an NV x NGSBR 3D array of similar blocks, where NGSBR is the

number of blocks in the set Ggp,,.

2.2.4 Collaborative Filtering

The 3D arrays obtained by block matching have both spatial and “temporal”
similarity. Therefore, the noise can be efficiently removed by the collaborative 3D
Wiener filtering. Wiener shrinkage coefficients for the set of blocks are determined
from the 3D transform coefficient as follows:
_IT@EE)P

I T(GEE )P+ 0%

Wasp, (2.11)

where G§f is the 3D array for similar blocks from Basic Estimate (BE), which
is the output of the PES-TV step, T'(.) is the transformation operator, |T'(G5E)|?
is the power spectrum of the basic estimate image, and o2 is the variance of
the noise which is estimated from the difference image obtained by subtracting
the observed image and image obtained in the first stage. After obtaining the
coefficients, the collaborative filtering is realized by element wise multiplication
of Weygp, by the 3D arrays of noisy image using the coordinates obtained in
PES-TV stage, G'§p,,, as follows:

rec

Wree =T (Wagy,, T(G5p,))- (2.12)

After filtering the 3D array, inverse transform and aggregation operation [46] is
performed to get the final denoised image. The overall process is explained graph-
ically in Figure 2.3. The simulation results for PES-TV, and BM3D with PES-TV

and other algorithms are presented in Section 2.3.1, and 2.3.2, respectively.
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2.3 Simulation Results

2.3.1 Denoising Using PES-TV

The PES-TV algorithm is tested with a wide range of images. Let us start
with the “Note” image shown in Figure 2.6a. This is corrupted by a zero mean
Gaussian noise with ¢ = 45 in Figure 2.6b. The image is restored using PES-
TV, SURE-LET [48], and Chambolle’s algorithm [38] and the denoised images
are shown in Figure 2.6¢, 2.6d, and 2.6e, with SNR values equal to 15.08, 13.20,
and 11.02 dB, respectively. SURE-LET and Chambolle’s algorithm produce some
patches of gray pixels at the background. The regularization parameter A in Eq.
(1.10) is manually adjusted to get the best possible results for each image and
each noise type and level in [38], and SURE-LET require the knowledge about
noises standard deviation in [48]. Moreover, Structural Similarity Index (SSIM) is
also calculated as in [59] for all methods. PES-TV algorithm not only produces
higher SNR and SSIM values than other methods, but also provides visually
better looking image. The same experiments are also done over “cancer cell”
image, which the results are presented in Figure 2.7. Denoising results for other
noise levels are presented in Table 2.1. We also tested the PES-TV algorithm

against e-contaminated Gaussian noise (salt-and-pepper noise) with the PDF of

i X

f(x) = ep(—) + (1 = €)o(—), (2.13)

01 02

where ¢(x) is the standard Gaussian distribution with mean zero and unit stan-
dard deviation. The results of the tests are presented in Table 2.3. The perfor-
mance of the reconstruction is measured using the SNR criterion, which is defined
as follows

SNR = 20 x logig(—Werial (2.14)

||Wom'g — Wyree ||

where W, is the original signal and w,.. is the reconstructed signal. All the
SNR values in Tables are in dB.

To evaluate the performance of the PES-TV algorithm, it is also possible to
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Figure 2.4: Normalized root mean square error in each iteration for “Note” image
corrupted with Gaussian noise with o = 25.

use Normalized Root Mean Square Error metric as

|Wi - WorigH

NRMSE(i) = | ] —=1,..,N, (2.15)
orig

where N is the number of the iterations, w; is the denoised image in i*" step, and
Worig is the original image. NRMSE is used to illustrate the convergence of the
PES-TV based denoising algorithm as is used in [26] . As shown in Figure 2.4,
NRMSE value decreases as the iterations proceeds while denoising the “Note”
image corrupted with Gaussian noise (o = 25). For the same image another
convergence metric called Normalized Total Variation (NTV), which is defined
in [26] as

NTV(i) = —Tzf\g‘(vw)g)

=1,...,N, (2.16)
where w; and Wi, are the restored image in ' iteration, and the original im-
age, respectively. As an indicator of the successful convergence of the PES-TV
algorithm, the NTV curve converges to 1 in Figure 2.5, which means that the TV
value of the output image converges to the TV value of the original image using
PES-TV algorithm. In Figure 2.2, error value in each iteration step versus i is

shown. These three curves show that iterations converge to a solution roughly
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Figure 2.5: Normalized total variation in each iteration for “Note” image cor-
rupted with Gaussian noise with ¢ = 25.

around 100" iteration in “Note” image, which corrupted by independent Gaus-
sian noise with o = 25. In Table 2.2, denoising results for 34 images including
10 well-known test images from image processing literature and 24 images from
Kodak Database [60], with different noise levels are presented. In almost all cases
PES-TV method produces higher SNR and SSIM results than [38, 48].

2.3.2 Denoising Using BM3D and PESC

The basic estimate, which is obtained in the first step, affects the main denoising
process in Wiener filtering step. In BM3D approach, first step requires the knowl-
edge of the variance of the noise, however for impulsive noise the exact variance
is unknown. Therefore this step fails to generate an appropriate estimate for
impulsive noises for second step. Through the PES-TV approach [13] we bring

solution to these issues.
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Table 2.1: Comparison of the results for denoising algorithms with Gaussian noise for
“note” image.

‘ Noisea| Input | PES-TV | Chambolle [38] ‘ SURE-LET [48] ‘
SNR | SSIM SNR | SSIM | SNR | SSIM | SNR SSIM
5 21.12 | 0.2201 | 30.63 | 0.2367 | 29.48 | 0.2326 | 27.42 | 0.2212
10 15.12 | 0.2037 | 25.93 | 0.2290 | 24.89 | 0.2213 | 22.20 | 0.2086
15 11.56 | 0.1917 | 22.91 | 0.2216 | 21.76 | 0.2141 | 19.13 | 0.1999
20 9.06 | 0.1825 | 20.93 | 0.2165 | 19.55 | 0.2065 | 16.95 | 0.1867
25 714 | 0.1716 | 19.27 | 0.2111 | 17.73 | 0.2006 | 15.34 | 0.1810
30 5.59 | 0.1636 | 17.89 | 0.2102 | 16.43 | 0.1950 | 13.93 | 0.1767
35 421 | 0.1565 | 16.68 | 0.2073 | 15.23 | 0.1903 | 12.87 | 0.1706
40 3.07 | 0.0.1488 | 15.90 | 0.2030 | 14.07 | 0.1855 | 11.77 | 0.1645
45 2.05 | 0.1407 | 15.08 | 0.1984 | 13.20 | 0.1815 | 11.02 | 0.1606
20 1.12 | 0.1332 | 14.25 | 0.1909 | 12.19 | 0.1766 | 10.17 | 0.1862

| Average | 8.00 | 0.1712 [19.95 | 0.2107 | 18.45 | 0.2004 | 16.08 | 0.1862

The impulsive noise changes the pixel values in the image as follows:

. Vil if x</|
vyl = (2.17)

imin + y(imax - Z-rnin)7 lf X > l
where v/ is the (i, j)* pixel in the original image, =,y € [0, 1] are two uniformly
distributed random variable, [ is the parameter to determine the pixels to corrupt
with noise, and iy and iy, are the severity of the noise [61]. The salt &
pepper noise and the e-contaminated Gaussian noise are two types of impulsive
noises. The e-contaminated Gaussian noise is widely used to represent impulsive

noise [55,62]. The e-contaminated Gaussian noise model is as follows:

. % with probability 1— e
i =" Y (2.18)
ny?,  with probability e

where 1, and 7, are independent Gaussian noise sources with variances 0% and o3,
respectively. We assume that 01 < 09, and € is a small positive number [57]. The
reconstruction performance is measured using the Signal-to-Noise Ratio (SNR)
as in 2.14 and Peak-SNR (PSNR) criterion, which is defined as follows:

max(Wopig)

Hworig - WrecHZ/N
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Table 2.2: Comparison of the results for denoising algorithms under Gaussian noise
with standard deviations of o.

‘ Images ‘ o ‘ Input SNR ‘ PES-TV ‘ Chambolle [38§] ‘ SURE-LET [48] ‘
House 30 13.85 27.60 27.13 27.38
House 50 9.45 24.61 24.36 24.59
Lena 30 12.95 23.85 23.54 23.92
Lena 50 8.50 21.68 21.37 21.38

Mandrill 30 13.04 19.98 19.64 20.56
Mandrill 50 8.61 17.94 17.92 18.22
Living room | 30 12.65 21.33 20.88 21.29
Living room | 50 8.20 19.34 19.05 19.19
Lake 30 13.44 22.19 21.86 22.23
Lake 50 8.97 20.26 19.90 20.07
Jet plane 30 15.57 26.31 25.91 26.49
Jet plane 50 11.33 24.07 23.54 24.10
Peppers 30 12.65 24.24 23.59 23.78
Peppers 50 8.20 22.05 21.36 21.82
Pirate 30 12.13 21.43 21.30 21.27
Pirate 50 7.71 19.58 19.43 19.32
Cameraman | 30 12.97 24.20 23.67 24.58
Cameraman | 50 8.55 21.80 21.22 22.06
Flower 30 11.84 21.97 20.89 17.20
Flower 50 7.42 19.00 18.88 13.21
| 24-Kodak(ave.) [ 30 | 11.92 | 21.05 | 20.80 | 20.92 |
| 24-Kodak(ave.) | 50 | 748 | 18.97 | 18.58 | 18.88 |
Averagetstd | 30 | 12.27+1.66 | 23.12+2.35 22.66+2.34 22.70£2.91
Averagetstd | 50 | 7.84+1.67 | 20.85+2.17 20.26+3.13 20.51+£2.07

where w,,, is the original signal, w,. is the reconstructed signal, and NV is the

total number of pixels in image.

Denoising results for “Note” image with e-contaminated noise are summarized
in Table 2.3. In this toy example, the PES-TV approach produces the best
results. The denoising results for a set of 34 images including 10 well-known test
images from image processing literature and 24 images from Kodak Database [63],
which are corrupted by e-contaminated noise with o1 = 5 and ¢ = 0.1, and o, €
[30,80] are presented in Tables 2.5 and 2.6 for PES-TV and BM3D algorithms,

respectively. In this case, the noise is the combination of two Gaussian noises
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with different variances, therefore it can not be exactly modeled using a single
variance parameter. The PES-TV algorithm performs better and produces higher
PSNR values compared to all other denoising results obtained using [38, 46, 48],
because it does not require knowledge of variance of the noise. We also present

an additional illustrative example in Figure 2.9.

In another set of experiments, images that are corrupted by a mixture of salt
& pepper and Gaussian noises are denoised using the proposed algorithm and
also with BM3D and BM3D with median filtering for comparison purposes. The

salt & pepper impulsive noise model is as follows:

Smin, With probability p
vyl = Smax, With probability ¢ (2.20)
viJ with probability 1 —p — ¢
where v¥/ is the gray level pixel value of the original image, [Smin, Smax| are the
dynamic range of the original image, Smin < V¥ < Spmay for all (i, j) values, v’ is

the gray level pixel value of the noisy image, r = p+ ¢ defines the noise level [64].

The density of the salt & pepper noise is set to 0.02 and 0.05 and Gaussian
noise is added with different variances. Results for this set of experiments are
shown in Table 2.7 and 2.8, respectively. In almost all cases the PSNR values
for PES-TV algorithm are higher than other algorithms. In Table 2.7 and 2.8
an a-trimmed mean filter [65] is used before processing. The third column refers
to median filtering followed by second stage (3D Wiener filtering) of the BM3D
algorithm (BM3D,y).
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should

(e) SURE-LET

Figure 2.6: (a) A portion of original “Note” image, (b) image corrupted with
Gaussian noise with o = 45, denoised images, using: (¢) PES-TV; SNR = 15.08
dB and SSIM = 0.1984, (d) Chambolle’s algorithm; SNR = 13.20 dB and SSIM
= 0.1815, (e) SURE-LET; SNR = 11.02 dB and SSIM = 0.1606. Chambolle’s
algorithm and SURE-LET produce some patches of gray pixels at the background.
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(a) Original (b) Noisy

(c) PES-TV (d) Chambolle’s algo.

(e) SURE-LET

Figure 2.7: (a) Original “Cancer cell” image, (b) image corrupted with Gaussian
noise with o = 20, denoised image, using: (¢) PES-TV; SNR = 32.31 dB and
SSIM = 0.5182, (d) Chambolle’s algorithm; SNR = 31.18 dB and SSIM = 0.3978,
(¢) SURE-LET algorithm; SNR = 31.23 dB and SSIM = 0.4374.
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(c) PES-TV (d) Chambolle’s algo.

Figure 2.8: “Flower” image experiments: experiments (a) Original “Flower” im-
age, (b) “Flower” image corrupted with Gaussian noise with o = 30, (c¢) De-
noised “Flower” image, using PES-TV algorithm; SNR = 21.97 dB, (d) Denoised
“Flower” image, using Chambolle’s algorithm; SNR = 20.89 dB.

31



Table 2.3: Comparison of the results for denoising algorithms for e-Contaminated
Gaussian noise for “note” image

| € | o01] 0y ] Input SNR | PES-TV | Chambolle [38] | SURE-LET [48] |
09 [ 5[30] 1464 23.44 22.26 16.11
09 [ 5 [40] 1255 21.39 20.32 13.65
09 [ 5[50 ] 1075 19.49 18.63 11.64
09 [ 5]60] 929 17.61 17.37 10.25
09 [ 5|70 798 16.01 16.24 8.91
09 | 5|80 689 14.54 14.97 7.88
09 [10[30| 1256 22.83 21.71 17.06
09 [10[40] 1113 21.00 19.97 14.26
09 [10]50] 985 19.35 18.46 12.20
09 [10]60 | 858 17.87 17.10 10.69
09 [10]70 ] 7.52 16.38 16.03 9.18
09 [10]80] 6.46 15.05 15.12 8.14
095 ] 5 [30] 1675 24.52 23.78 19.12
0955 |40 | 14.98 22.59 21.54 16.62
0955 |50 | 1341 20.54 19.91 14.62
0955 [ 60| 1210 18.72 18.63 13.11
0955 |70 | 10.80 17.13 17.50 11.71
0955 80| 976 15.63 16.38 10.54
0.95 10 [ 30 | 13.68 23.79 22.62 19.34
0.95 [ 10 [ 40 | 12.66 22.09 21.12 17.06
0.95[10 |50 | 11.71 20.65 19.60 15.16
0.95 [10 [ 60 | 10.72 19.10 18.30 13.40
0951070 | 9.82 17.59 17.22 12.11
09510 80| 892 16.12 16.45 10.91
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(c) (d)

Figure 2.9: “Cameraman” image experiments: (a) Detail from the original “Cam-
eraman” image, (b) “Cameraman” image corrupted with Gaussian noise with
o = 50, (¢) Denoised “Cameraman” image, using PES-TV algorithm; SNR =
21.55 dB, (d) Denoised “Cameraman” image, using Chambolle’s algorithm; SNR
= 21.22 dB.
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(g) Peppers (h) Pirate

Figure 2.10: Sample images used in our experiments (a) House, (b) Jet plane, (c)
Lake, (d) Lena, (e) Living room, (f) Mandrill, (g) Peppers, (h) Pirate.
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Table 2.4: Comparison of the SNR results for denoising algorithms for e-
contaminated Gaussian noise for “Note” image

’ € ‘ o1 ‘ 09 ‘ SNRput ‘ PES-TV & BM3D ‘ Chambolle ‘ BM3D ‘

0.1 | 5130 14.64 29.67 22.26 24.43
0.1 | 5|40 12.55 27.84 20.32 20.75
0.1 | 5 |50 10.75 25.84 18.63 17.59
0.1 | 5160 9.29 24.12 17.37 15.09
0.1 |5 |70 7.98 22.52 16.24 13.14
0.1 | 5|80 6.89 21.03 14.97 11.60
0.1 |10 ] 30 12.56 25.98 21.71 25.73
0.1 | 10 | 40 11.13 24.74 19.97 23.83
0.1 | 10 | 50 9.85 23.24 18.46 21.56
0.1 | 10 | 60 8.58 22.07 17.10 19.11
0.1 | 10|70 7.52 20.49 16.03 16.71
0.1 |10 | &80 6.46 18.84 15.12 14.87
0.05 | 5 |30 16.75 28.60 23.78 26.93
0.05 | 5 |40 14.98 26.04 21.54 23.10
0.05 ]| 5 | 50 13.41 23.91 19.91 19.98
0.05] 5 |60 12.10 21.63 18.63 17.60
0.05 ] 5 |70 10.80 19.50 17.50 15.87
0.05 | 5 |80 9.76 17.23 16.38 14.38
0.05 | 10 | 30 13.68 26.90 22.62 26.70
0.05 | 10 | 40 12.66 25.68 21.12 25.46
0.05 | 10 | 50 11.71 24.72 19.60 23.73
0.05 | 10 | 60 10.72 23.62 18.30 21.43
0.05 | 10 | 70 9.82 21.77 17.22 19.33
0.05 | 10 | 80 8.92 20.29 16.45 17.25
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Figure 2.11: (a) A portion of original “Peppers” image, (b) image corrupted by e-
contaminated noise with ¢ = 0.1, o3 = 5, and o2 = 50, (c) denoised image, using
PES-TV algorithm; PSNR = 32.02 dB and, (d) denoised image, using BM3D; PSNR
= 27.62 dB. Standard BM3D algorithm fails to clear impulsive noise.
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Figure 2.12: (a) A portion of original “Lena” image, (b) image corrupted by salt
& pepper noise with density 0.05, and additive white Gaussian noise with standard
deviation o = 20, (c) denoised image, using PES-TV algorithm; PSNR = 32.57 dB,
(d) denoised image, using BM3D; PSNR = 28.95 dB, and (e) denoised image, using
BM3D-Median; PSNR = 30.10 dB.
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Table 2.5: PSNR Results for denoising using PES-TV algorithms under e-

contaminated noise with ¢ = 0.1, oy = 5, with different o5’s.

| Images [02=30 |05=40 [ 52=50 [ 02 =60 | 05 =70 | 55 =80 |
House 36.87 34.39 31.87 29.74 28.00 26.53
Lena 34.55 32.85 31.40 29.97 28.55 27.27
Mandrill 28.31 27.86 27.36 26.76 25.33 24.59
Living room | 31.61 30.94 29.57 28.41 27.46 26.38
Lake 32.03 31.29 29.71 28.64 27.57 26.58
Jet plane 34.56 32.75 31.20 29.85 28.32 27.05
Peppers 34.64 33.39 32.02 30.56 29.22 27.87
Pirate 31.46 30.80 29.60 28.50 27.49 26.53
Cameraman | 35.29 33.45 31.45 29.74 28.14 26.65
Flower 31.17 31.03 29.85 28.78 27.69 26.88
Kodak(ave.) | 32.85 31.19 29.88 28.65 27.51 26.48

| Average | 33.08 | 3153 | 30.14 | 2886 | 27.64 [ 27.30 |

Table 2.6: PSNR Results for denoising using BM3D algorithms under e-

contaminated noise with ¢ = 0.1, oy = 5, with different o5’s.

| Images [02=30 |02=40 [ 52 =50 [ 02 =60 | 05 =70 | 55 =80 |
House 34.65 | 3040 | 2759 | 2534 | 2369 | 2240
Lena 3353 | 3013 | 27.28 | 2513 | 2355 | 22.29
Mandrill | 3148 | 2888 | 26.66 | 2489 [ 2336 | 22.27
Living room | 33.06 | 30.14 [ 27.64 | 2556 | 23.90 [ 2249
Lake 33.70 | 3036 | 27.63 | 2542 | 2375 | 22.46
Jet plane | 3350 | 30.28 | 27.67 | 2547 [ 24.02 | 22.68
Peppers 33.66 | 30.50 | 27.62 | 2548 | 2386 | 22.46
Pirate 3258 | 2974 [ 27.67 | 2520 | 23.69 | 2245
Cameraman | 33.99 | 3032 | 2739 | 2529 | 2369 | 2240
Flower 3272 [ 3027 [ 2791 [ 2576 | 24.07 | 22.76
Kodak(ave.) | 3311 | 30.53 | 2810 | 26.05 | 2437 | 23.04

| Average | 33.28 | 3050 | 28.00 [ 2592 | 2426 | 2293 |
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An illustrative comparison of PES-TV vs. BM3D and BM3D,, is presented
in Figure 2.11 for “peppers” image. In the example images the success of the
PES-TV algorithm can be easily observed. For example in Figure 2.11, the white
and black dots of e-contaminated noise still remains in the image denoised using
BM3D algorithm. On the other hand, this issue is solved by the PES-TV method.

In [56], the proximity operator based denoising results for the Cameraman and
Lena images are reported for various regularization parameter A values for Gaus-
sian noise with ¢ = 15 and 25 standard deviation levels. Best PSNR values for
Lena image for 0 = 15 (0 = 25) is 32.33 dB (30.13 dB), when the regularization
parameter A = 0.09 (A = 0.05). We obtain PSNR values equal to 32.43 dB and
30.12 dB, respectively, without any regularization parameter adjustment. For
Cameraman our results are much better with PSNR = 33.10 dB and 30.60 dB
compared to 30.39 dB and 27.77 dB with A = 0.1 and A = 0.07 for 0 = 15 and
25, respectively.

The first step of the BM3D approach relies on hard-thresholding, which cannot
remove isolated large amplitude impulsive noise components. On the other hand,
the PES-TV approach successfully reduces the impulsive noise and produces bet-
ter estimates for the Wiener filtering based second stage of the BM3D denoising
method. It is experimentally observed that the proposed scheme on images cor-
rupted by impulsive noise results in much better denoising performance compared
to both Chambolle’s method and standard BM3D denoising.
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Chapter 3

Denoising Using Projection onto
Epigraph Set of /{-Norm
Functions (PES-/)

As mentioned before, Projection onto Epigraph Set of Convex Cost function
(PESC), can be also used for denoising 1D signals. The ¢;-norm cost function is
used for denoising 1D signals. Dobov et al.’s template based approach connot be
used in most signals because there are no repetitive windows in most practical 1D
signals. In the following sections, the Projection onto Epigraph Set of ¢;-norm
function (PES-¢;) is introduced.

3.1 The (PES-/;) Algorithm

In standard wavelet denoising, a signal corrupted by additive noise is wavelet
transformed and resulting wavelet signals are soft- or hard-thresholded. After
this step the denoised signal is reconstructed from the thresholded wavelet sig-
nals [2,51]. Thresholding wavelet coefficients intuitively makes sense because

wavelet signals obtained from an orthogonal or biorthogonal wavelet filter-bank
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exhibit large amplitude coefficients only around edges or change instances of the
original signal. The assumption is that other wavelet coefficients with small
amplitude should be due to noise. A wide range of wavelet denoising methods
which take advantage of the sparse nature of practical signals in wavelet domain
are developed based on the Donoho and Johnstone’s original denoising idea, see
e.g. [1-3,13,47,51,66].

3.1.1 Problem Statement

Orthogonal projection of a vector onto a hyperplane is the key mathematical

operation used in this thesis. Let w, be a vector in R¥. The orthogonal projection

Wpo Of W, onto the hyperplane h = aTw, = S_%_ a[n]w,[n] is given by

h — Zi{:l a[n|w,[n]

ajn] n=12,...,K, (3.1)
a3

Wpo[n] = Wo[n] +

where w,[n], wyo[n], and a[n] are the n-th entries of the vectors w,, wy,, and a,
respectively, and ||al|; is the Euclidean length (norm) of the vector a. Orthogonal
projection onto a hyperplane is also the key step of the well-known normalized

LMS adaptive filtering algorithm and many online learning algorithms [67].

Consider the following basic denoising framework. Let v[n] be a discrete-time

signal and x[n] be a noisy version of v[n]:
z[n] =vln] +¢&n], n=12,...,N, (3.2)

where £[n] is the additive, i.i.d, zero-mean, white Gaussian noise with variance 2.
An L-level discrete wavelet transform of x[n] is computed and the lowband signal
x;, and wavelet signals wi, wy,..., Wy are obtained. After this step, wavelet
signals are soft-thresholded as shown in Figure 3.1. The soft-threshold, #, can be
selected in many ways [1,2,4,47] using statistical methods. One possible choice
is

0 = ~y.0.4/2log(N)/N, (3.3)
where 7 is a constant [2]. In Eq. (3.3) the noise variance o2 has to be known or

properly estimated from the observations, x[n].
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AWout

Figure 3.1: Soft-thresholding operation: wyut, = sign(wiy, »){max(|wi,, —0;,0|)}

It is possible to define a soft-threshold 6#; for each wavelet signal w;. Here,
a method of estimating soft-threshold values 6; using a deterministic approach

based on linear algebra and orthogonal projections is presented.

3.1.2 Wavelet Signals Denoising with Projections onto /;-
balls

Let us first study the projection of wavelet signals wi, wo, ..., wy onto ¢;-balls,
which we will use to describe the projection onto the epigraph set of /;-norm cost
function. We will use the term vector and signal in an interchangeable manner

from now on. An ¢;-ball C;, with size d; is defined as follows:

Ci={weR" : ) |wn]| <d}, (3.4)

where w[n| is the n-th component of the vector w, and d; is the size of the ¢;-
ball. In other words, an ¢;-ball is the set of vectors characterized by the fact
that the sum of the magnitude of its components is lower than some specified
value. Geometrically, such an ¢;-ball is a diamond shaped region bounded by a

collection of hyperplanes as depicted in Figure 3.2. The orthogonal projection of
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a wavelet vector w; onto an £;-ball is mathematically defined as follows:

w,; = argmin ||w; — w3 (3.5)
such that [|w;|| =) |wiln]| < d;,

where w; is the i-th wavelet signal, ||.||2 is the Euclidean norm, and ||.||; is the ¢,

norm. The orthogonal projection operation onto an ¢;-ball is graphically shown

in Figure 3.2. When ||w;||; < d; is satisfied, the wavelet signal is inside the ball,

the projection has no effect and wy,; = w;. In general, it can be shown that the

orthogonal projection operation soft-thresholds each wavelet coefficient w;[n] as
follows:

wpi[n] = sign(w;[n]) max{(|w;[n]| — 6;),0}, (3.6)

where sign(w;[n]) is the sign of w;[n], and 6; is a soft-thresholding constant whose
value is determined according to the size of the ¢;-ball, d; [68]. Algorithm 1 is
an example of a method to solve the minimization problem (3.5) and thereby

provide the constant ; for a given d; value [68].

A 4

Figure 3.2: Graphical illustration of projection onto an ¢;-ball with size d;: Vec-
tors wy,; and wp, are orthogonal projections of w; and w, onto an ¢;-ball with
size d;, respectively. The vector w; is inside the ball, ||w;||; < d;, and projection
has no effect: wy = w;

Projection of a wavelet signal onto an ¢;-ball reduces amplitudes of wavelet
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coefficients of the input vector and eliminates the small valued wavelet coeffi-
cients, which are less than the threshold #;. As a result, wavelet coefficients
which are probably due to noise, are removed by the projection operation. Pro-
jection operation onto an /;-ball retains the edges and sharp variation regions
of the original signal because wavelet signals have large amplitude valued co-
efficients corresponding to edges [51] and they are not significantly affected by
soft-thresholding. In standard wavelet denoising methods, the low-band signal
X7, is not processed because x;, is a low resolution version of the original signal
containing large amplitude coefficients almost for all n for most practical signals

and images.

Algorithm 1 Order (Klog(K)) algorithm implementing projection onto the ¢;-
ball with size d;.
1: Inputs:
A vector w; = [wi[1],...,w;[K]] and a scalar d; >0

2: Initialize:
Sort |w;[n]| for n=1,..., K and obtain the rank ordered
sequence u; > 2 >,...,> ux. Lhe soft-threshold value, 6,, is
given by

p J
Oi:%(z,un—di) such that p:max{je{1,27...,K}:uj—%(2pr—di)>0}
n=1 r=1

3: Output:
Wpi[n] = sign(wi[n]) max{|w;[n]| — 6;,0}, n=1,2,... . K

Let us consider Figure 3.2 once again and consider the vector w,. The vector

Wp, is the orthogonal projection of w, onto one of the boundary hyperplanes of
the ¢;-ball:

Z sign(w,[n])w[n] — d; = 0. (3.7)

The vector Wy, in Figure 3.2 is the projected version of wy, back to the quadrant
of w,. It is also possible to use the vector wy, for denoising purposes. The
vertical entry of wp, is the same as Wy, which is zero, but the horizontal entry
of Wy, is larger in amplitude than the first entry of Wy, which is the projection
vector in ¢;-ball. In general, zero valued entries of the wy, and Wy, are the same.
Therefore, significant coefficients of wavelet signals can be determined after two

orthogonal projections, and the rest of coefficients are zeroed out.
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In standard wavelet denoising, the noise variance now has to be estimated to
determine the soft-threshold value. Equivalently, the size of the ¢;-ball, d;, has to
be estimated. Moreover, both standard wavelet denoising and the ¢;-ball based

denoising need to determine the number of wavelet decomposition levels.

The next step is the estimation of the size of the ¢;-ball, d;. We estimate the
size of the ¢i-ball, d;, by projecting w; onto the epigraph set of /;-norm cost
function which is an upside down pyramid in RV*! as shown in Figure 3.3. An
upside down pyramid is constructed by a family of ¢;-balls or diamond shaped
regions with different sizes ranging from 0 to dmax; = ), |[Wi[n]|, whose value
is the /1-norm of w;. When we orthogonally project w; onto the upside down
pyramid, we not only estimate the size of the ¢;-ball, but also soft-threshold the

wavelet signal w; as discussed in the Section 3.1.3.

3.1.3 Estimation of Denoising Thresholds

The epigraph set of /;-norm cost function is an upside down pyramid shaped
region as shown in Figure 3.3. Each horizontal slice of the upside down pyramid
is an /;-ball. The smallest value of the ¢;-ball is 0, which is at the bottom of
the pyramid. The largest value of the ¢;-ball in the upside down pyramid is
dmaxi = ||W;||1, which is determined by the boundary of the ¢;-ball touching the
wavelet signal w;, i.e., the wavelet signal w; is on one of the boundary hyperplanes
of the ¢;-ball.

Orthogonal projection of w; onto an ¢;-ball with d = 0 produces an all-zero
result. Projection of w; onto an ¢;-ball with size dpmaxi, does not change w;
because w; is on the boundary of the ¢;-ball. Therefore, for meaningful results,
the size of the ¢;-ball, d; = zp,;, must satisfy the inequality 0 < z,; < dpax,i, for

denoising. This condition can be expressed as follows:

K
[willy = D Iwilk]] < 2, (3.8)

k=1
where K is the length of the wavelet vector w = [w[1],w[2],..., w[K]]T € RE.
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The condition (3.8) corresponds to the epigraph set C of the ¢;-norm cost function
in RE+! which is graphically illustrated in Figure 3.3 for w; € R? [13,66]. The

epigraph set C is defined in RV as follows:
C= {ﬂz - [WzTa Zpi]T € RK—H : ||Wz||1 < Zpiy Rpi < dmax,i}v (39)

which represents a family of ¢;1-balls for 0 < zp; < dypay; in R In (3.9) there
are K + 1 variables: w;[1],..., w;[K], and z,. Since the space is now K + 1

dimensional, we increase the size of wavelet signals by one:
w; = [WzT’ O]T = [wi[l]’ wi[2]7 SR 7wi[K]: O]Ta (310)

where w; € RET!. The signal w, is the K + 1 dimensional version of vector
w; € RE. From now on, we underline vectors in R¥*! to distinguish them from

K dimensional vectors.

The extended wavelet vector w, can be projected onto the epigraph set C to
determine the vector w; = [Wy[1], ..., Wp[K], z,;]" as graphically illustrated in
Figure 3.3. This projection is unique and is the closest vector on the epigraph
set to w; = [w!,0]7. The baseline mathematical operation is an orthogonal
projection onto a hyperplane which is the face (boundary) of the epigraph set
C in the quadrant of the w,. The orthogonal projection w,; of w; is a denoised
version of w, because it is equivalent to the orthogonal projection of w; onto the

(1-ball with size z,; in R¥ as graphically illustrated in Figure 3.3.

Orthogonal projection onto the epigraph set C can be computed in two steps.
In the first step, [wl,0]7 is projected onto the boundary hyperplane of the epi-
graph set which is defined as:

Z sign(w;[n]).w;[n] — 2 =0, (3.11)

where the coefficients of the above hyperplane are determined according to the
signs of w;[n]. This hyperplane determines the boundary of the epigraph set C
facing the vector w; as shown in Figure 3.3. The projection vector w,, onto the
hyperplane (3.11) in RE*! is determined using Equation (3.1), which is:

> [wiln]

1 sign(w[n]) n=1,2,..., K, (3.12)

wpi[n] = wiln] —
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where K +1 = ||[sign(w;[1]), . .., sign(w;[k]), —1]||* and the last component z,; of

w,; is given by

~ Yasign(wiln))wiln] SR [waln]]
“pi = K+1 T K+l (3.13)

As mentioned earlier above, this orthogonal projection operation also determines

the size of the ¢;-ball, d; = z,;, which can be verified using geometry.

In general, the projection vector w,; may or may not be the projection of w;,
onto the epigraph set C. In Figures 3.2 and 3.3, it is. The ¢;-ball in Figure 3.2
can be interpreted as the projection of 3-D ¢;-ball onto 2-D plane (view from the
top). The issue comes from the fact that projecting onto the ¢;-ball has been
simplified to projecting onto a single hyperplane, which may not yield the desired
result in some specific geometrical configurations. For instance, in Figure 3.2,
the vector wy,, is neither the orthogonal projection of w, onto the ¢;-ball, nor to
the epigraph set of the ¢;-ball, because wy, is not on the ¢;-ball. Such cases can
easily be spotted by checking the signs of the entries of the projection vectors. If
the signs of the entries wy;[n] of projection vector wy,; are the same as w;[n| for
all n then the wy,; is on the epigraph set C, otherwise wy,; is not on the ¢;-ball. If
W is not on the ¢;-ball we can still project w; onto the £;-ball using Algorithm
1 or Duchi et al’s ¢;-ball projection algorithm [68] using the value of d; = z;

determined in Equation (3.13).

In summary, we have the following two steps: (i) project w, = [w!,0]” onto
the boundary hyperplane of the epigraph set C and determine d; using Equation
(3.13); (ii) if sign(w;[n]) = sign(wy,[n]) for all n, wy; is the projection vector;
otherwise, use d; = z,, in Algorithm 1 to determine the final projection vector.
Since there are ¢+ = 1,2,..., L wavelet signals, each wavelet signal w; should
be projected onto possibly distinct ¢;-balls with sizes d;. Notice that d; is not
the value of the soft-threshold, it is the size of the f;-ball. The value of the
soft-threshold is determined using Algorithm 1.

In practice, we may further simplify step (ii) in denoising applications. Our
goal is to zero out insignificant wavelet coefficients. Therefore, we compare signs

of entries of wp,, and w,. We can zero out those entries whose signs change after
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A 2

Figure 3.3: Projection of w;[n] onto the epigraph set of ¢;-norm cost function:
C={w: ZnK:_Ol |wlk]| < 2}, gray shaded region

the orthogonal projection. Therefore, step (ii) becomes

o] = Wpo[n], if sign(wp,[n]) = sign(w,[n]) (3.14)

0, otherwise.
This operation is also graphically illustrated in Figure 3.2. The vector w, is
projected onto the boundary hyperplane facing w, to obtain wp,, which then
projected back to the quadrant of w, to obtain the denoised version wy,. This
process can be iterated a couple of times to approach the orthogonal projection

vector wy,, as shown in Figure 3.2.

Stronger denoising of the input vector is simply a matter of selecting a 2, value
smaller than z,; in Equation (3.13). A z, value closer to zero leads to a higher
threshold and forces more wavelet coefficients to be zero after the projection

operation.
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3.1.4 How to Determine the Number of Wavelet Decom-

position Levels

There are many ways to estimate the number of wavelet decomposition levels [1].
It is also possible to use the Fourier transform of the noisy signal to approximately
estimate the bandwidth of the signal. Once the bandwidth w, of the original
signal is approximately determined, it can be used to estimate the number of
wavelet transform levels and the bandwidth of the low-band signal x;. In an L-
level wavelet decomposition, the low-band signal x; approximately comes from
the [0, 57| frequency band of the signal x. Therefore, 77 must be comparable to

wp so that the actual signal components are not soft-thresholded. Only wavelet

signals wy,...,wy_1, W, whose Fourier transforms approximately occupy the

bands (7,7, ..., [s7=1, 52=2], [3r, 37=7), respectively, should be soft-thresholded in
denoising. For example, consider the cusp signal defined in MATLAB. It is
possible to estimate an approximate frequency value wg for this signal. The
cusp signal is corrupted by additive zero-mean white Gaussian noise with o =
20% of the maximum amplitude of the original signal as shown in Figure 3.8b.
The magnitude of the Fourier transform of the cusp signal is shown in Figure
3.4. For this signal, an L = 5 level wavelet decomposition is suitable because
the magnitude of the Fourier transform approaches the noise floor level at high

frequencies after wy ~ J; as shown in Figure 3.4. Therefore, L =5 (35 > wy) is

selected as the number of wavelet decomposition levels.

It is also possible to use a pyramidal structure for signal decomposition instead
of the wavelet transform. The noisy signal is low-pass filtered with cut-off fre-
quency g for cusp signal and the output x;,[n] is subtracted from the noisy signal
x[n] to obtain the high-pass signal xp,[n] as shown in Figure 3.5. The signal is
projected onto the epigraph of ¢;-ball and xp4[n| is obtained. Projection onto
the Epigraph Set of ¢;-ball (PES-¢;), described in the previous section, removes
the noise by soft-thresholding. The pyramidal signal decomposition approach is
similar to undecimated wavelet transform. The denoised signal zg,[n] is recon-

structed by adding zp4[n| and z;,[n| as shown in Figure 3.5. It is possible to use
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Figure 3.4: Discrete-time Fourier transform magnitude of cusp signal corrupted
by noise. The wavelet decomposition level L is selected as 5 satisfying 75 > wo,
which is the approximate bandwidth of the signal.

different thresholds for different subbands as in wavelet transform, using a mul-
tistage pyramid as shown in Figure 3.5. In the first stage a low-pass filter with
cut-off 7 can be used and xy,1[n] is projected onto the epigraph set of ¢;-ball
producing a threshold for the subband [7,7]. In the second stage, another low-

pass filter with cut-off 7 can be used and z,[n] is projected onto the epigraph

set producing a threshold for [7, 7], etc.
Ml ) pppg |l V@ NP L (O™
+ +
+ +
X, [n] %,4[n]
o)l PES-],
+

Figure 3.5: Pyramidal filtering based denoising. the high-pass filtered signal is
Projected onto the Epigraph Set of ¢; (PES-¢).

The simulation results for PES-¢; algorithm with both pyramidal structure
and wavelet transform domain are compared to the well-known algorithms. This

simulation results are presented in Section 3.2.
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3.2 Simulation Results

Epigraph set based threshold selection is compared with wavelet denoising meth-
ods used in MATLAB [1,2,47]. The heavy sine signal shown in Figure 3.6a is
corrupted by a zero mean Gaussian noise with ¢ = 20% of the maximum am-
plitude of the original signal. The signal is restored using PES-¢; with pyramid
structure, PES-¢; with wavelet, MATLAB’s wavelet multivariate denoising algo-
rithm [1], MATLAB’s soft-thresholding denoising algorithm (for minimaxi and
rigrsure thresholds), and wavelet thresholding denoising method. The denoised
signals are shown in Figure 3.6¢, 3.6d, 3.6e, 3.6f, 3.6g, and 3.6h with SNR val-
ues equal to 23.84, 23.79, 23.52, 23.71, 23.06 dB, and 21.38, respectively. The
original, noisy and denoised signals for piece-regular, and cusp signals are
also presented in Figures 3.7 and 3.8, respectively. In Figures 3.7b and 3.8b,
the original signal is corrupted by a zero mean Gaussian noise with ¢ = 10%
of the maximum amplitude of the original signal. On the average, the proposed
PES-¢; with pyramid and PES-¢; with wavelet method produce better thresholds
than the other soft-thresholding methods. In another example the cusp signal
is corrupted by a zero mean Gaussian noise with o = 20% of the maximum
amplitude of the original signal as in Figure 3.10a. The denoising results for
this case is presented in Figure 3.10b. MATLAB codes of the denoising algo-
rithms and other simulation examples are available in the following web-page:

http://signal.ee.bilkent.edu.tr/1DDenoisingSoftware.html.

Extensive simulation results for other test signals in MATLAB are presented
in Tables 3.1, 3.2, and 3.3, for the cases with Gaussian noise with ¢ = 10,
20, and 30 % of maximum amplitude of original signal, respectively. These
results are obtained by averaging the SNR values after repeating the simu-
lations for 300 times. The SNR is calculated using the formula: SNR =
20 X log1o(||Worigll /|| Worig — Wrecl|). In this lecture note, it is shown that soft-

denoising threshold can be determined using basic linear algebra.
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Original “heavy sine” signal Noisy “heavy sine” signal (¢ = 20% of maximum amplitude of the criginal signal)
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Figure 3.6: (a) Original heavy sine signal, (b) signal corrupted with Gaussian
noise with ¢ = 20% of maximum amplitude of the original signal, and denoised
signal using (¢) PES-¢;-ball with pyramid; SNR = 23.84 dB and, (d) PES-¢;-ball
with wavelet; SNR = 23.79 dB, (cont.)
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Denoised “heavy sine” signal (SNR = 23.52 dB} Denoised “heavy sine” signal (SNR — 23.71 dB)
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(e) Wavelet denoising in MATLAB [1] (f) Wavelet denoising minimaxi algorithm [2]
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(g) Wavelet denoising rigrsure algorithm [3]  (h) Wavelet denoising with T = 36 [2,4]

Figure 3.6: (e) Wavelet denoising in Matlab; SNR = 23.52 dB [1], (f) Wavelet de-
noising minimaxi algorithm [2]; SNR = 23.71 dB, (g) Wavelet denoising rigrsure
algorithm [3]; SNR = 23.06 dB, (h) Wavelet denoising with T = 35 [2,4]; SNR
= 21.38 dB.
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Figure 3.7: (a) Original piece-regular signal, (b) signal corrupted with Gaus-
sian noise with ¢ = 10% of maximum amplitude of the original signal, and
denoised signal using (c¢) PES-¢;-ball with pyramid; SNR = 23.84 dB and, (d)
PES-/¢;-ball with wavelet; SNR = 23.79 dB, (cont.)
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Denoised “piece-regular” signal (SNR. — 17.68 dB)
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(e) Wavelet denoising in MATLAB [1] (f) Wavelet denoising minimaxi algorithm [2]
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(g) Wavelet denoising rigrsure algorithm [3]  (h) Wavelet denoising with T = 36 [2,4]

Figure 3.7: (e) Wavelet denoising in Matlab; SNR = 23.52 dB [1], (f) Wavelet de-
noising minimaxi algorithm [2]; SNR = 23.71 dB, (g) Wavelet denoising rigrsure
algorithm [3]; SNR = 23.06 dB, (h) Wavelet denoising with T = 35 [2,4]; SNR
= 21.38 dB.
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Figure 3.8: (a) Original cusp signal, (b) signal corrupted with Gaussian noise
with ¢ = 10% of maximum amplitude of the original signal, and denoised signal
using (¢) PES-¢;-ball with pyramid; SNR = 23.84 dB and, (d) PES-¢;-ball with
wavelet; SNR = 23.79 dB, (cont.)
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Denoising CUSP signal (SNR = 30.43)
T
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(e) Wavelet denoising in MATLAB [1] (f) Wavelet denoising minimaxi algorithm [2]
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(g) Wavelet denoising rigrsure algorithm [3]  (h) Wavelet denoising with T = 36 [2,4]

Figure 3.8: (e) Wavelet denoising in Matlab; SNR = 23.52 dB [1], (f) Wavelet de-
noising minimaxi algorithm [2]; SNR = 23.71 dB, (g) Wavelet denoising rigrsure
algorithm [3]; SNR = 23.06 dB, (h) Wavelet denoising with T = 34 [2,4]; SNR
= 21.38 dB.
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Figure 3.9: Signals which are used in the simulations.
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Noisy “cusp” signal (¢ = 20% of maximum amplitude of original signal)
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Figure 3.10: (a) The cusp signal and its corrupted version with Gaussian noise
with 0 = 20% of maximum amplitude of the original signal, (b) Original signal
(blue), denoised signal (green) using PES-¢;-ball with pyramid; SNR = 28.26 dB
and, denoised signal (cyan) using PES-/;-ball with wavelet; SNR = 25.30 dB,
denoised signal (magenta) using MATLAB wavelet multivariate method; SNR =
25.08 dB [1], denoised signal (petroleum blue) using wavelet denoising rigrsure
algorithm [2]; SNR = 23.28 dB, denoised signal (red) using wavelet denoising
minimaxi algorithm [3]; SNR = 24.52 dB.
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Chapter 4

Deconvolution Using PESC and
its Applications on Medical

Image Processing

In image processing, the deconvolution refers to act of removing the effect of
blurring filter or point spread function (PSF) and enhance the quality of the
image. In this chapter a deconvolution algorithm based on PESC algorithm is
presented. The TV constraint is imposed to the estimated image at each step
of the iterative deconvolution algorithm in order to regularized the image and
remove noise from it. The PES-TV based deconvolution algorithm is described
in detail in the following sections. The simulation results are also presented at

the end of this chapter.

4.1 Deconvolution Using PESC

In this section, a new deconvolution method, based on the epigraph set of the
convex cost function is presented. It is possible to use TV, FV and /;-norm as

the convex cost function. Let the original signal or image be W, and its blurred
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and noisy version be z:

Z = Wig * h + 7, (4.1)

where h is the blurring matrix and n is the additive Gaussian noise. In this

approach we solve the following problems:
w* = argmin||v — w||?, (4.2)
EECf

where, v = [v? 0] and C; is the epigraph set of TV or FV in RVt Here we
repeat Eq. 2.3, the TV function, which we used for an M x M discrete image
w=[w], 0<i,j<M-—1 € RM*M:

TV(w) = (Iw' — whi] 4 [whI ! — w'i]). (4.3)
1,

To estimate this problem we use POCS framework using the following sets:
Ci={wecR¥z=(wxh)[i]} i=12 ., L, (4.4)

where L is the number of pixels and z; is the i'* observation; and the epigraph
set:
Oy = fw € R w — [w” 4|7 s 5> TV(w)}. (45)

Notice that the sets C; are in RY and C; is in RV, However, it is straightfor-
ward to extend C;’s to RV*! and they are still closed and convex sets in RV*1,
Let us describe the projection operation onto the set Cy = {T'V(w) < y}, briefly.
Notice that, this C; is different from the set {|[v — w|* + ATV(w) < y}. This
means that we select the nearest vector w* on the set C; to v. This is graphically
illustrated in Figure 4.1 (repeated from Figure 2.1). During this orthogonal pro-
jection operations, we do not require any parameter adjustment as in [38]. The

proposed deconvolution algorithm consists of cyclical projections onto the sets C;
and C f-

Projection onto the sets are very easy to compute because they are hyper-

planes:
zi — (v, + h)[i] LT
2 ’

where v, is the r" iterate, v, is the projection vector onto the hyperplane C;.

(4.6)

Vitl = Vp +

This operation is illustrated graphically in Figure 4.2. In this figure, starting from
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Supporting
hyperplanes /_)
l’ II v

1 7
17 /,
1

Figure 4.1: Graphical representation of the minimization of Eq. (4.2), using
projections onto the supporting hyperplanes of C;. In this problem the sets C
and C; intersect because TV (w) = 0 for w = [0,0, ..., 0]” or for a constant vector.

initial estimate vy, the projections converge to the intersection of the hyperplanes
after some iterations. The pseudo-code of the algorithm is described in Algorithm
2.

The sets C; and C; may or may not intersect in RV 1. If they intersect, iterates
converge to a solution in the intersection set. It is also possible to use hyperslabs,
Cin = {w|zi — ¢ < (wxh)[i] < z + ¢}, instead of hyperplanes C; in this
algorithm. In this case it is more likely that the closed and convex sets of the

proposed framework intersect.
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Figure 4.2: Graphical representation of the projections onto hyperplanes de-
scribed in (4.6).

Algorithm 2 The pseudo-code for the deconvolution with PESC based algorithm
Begin

z € RVN h e RNwxNn [ ¢ 7+
V< Z
for k=1to K
forx =1to N
fory=1to N
v(zx — | Nu/2| to x + [Nn/2|,y — | Nw/2] to y + [Nn/2]) + v(z —
| NL/2] to x + | Nn/2],y — | Nn/2] toy + | Nn/2]) + z(@y)—vrhlay p

[IR[I*

endfor
endfor
while ||w — v|| > ¢
w <— Project v onto C;
w < Project w onto C;
endwhile

endfor
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Implementation: The sub-gradient projections of v,, are performed as in Eq.
4.6. Then after a loop of these projections are terminated, the PESC algorithm
will be applied to the output v,,. The minimization operation described in Eq.
(4.2) can not be obtained in one step when the cost function is TV. The solution
is determined by performing successive orthogonal projections onto supporting
hyperplanes of the epigraph set Cs. In the first step, TV(vy) and the surface
normal at v, = [vi TV(vy)] in R¥*! are calculated. In this way, the equation
of the supporting hyperplane at v; is obtained. The vector v, = [v{ 0] is
projected onto this hyperplane and w, is obtained as our first estimate as shown
in Figure 2.1. In the second step, w; is projected onto the set Cs by simply
making its last component zero. The TV of this vector and the surface normal,
and the supporting hyperplane are calculated as in the previous step. Next, v, is
projected onto the new supporting hyperplane, and w, is obtained. In Figure 2.1,
w, is very close to the denoising solution w*. In general iterations continue until
|lw, — w,_;|| <€, where € is a prescribed number, or iterations can be stopped

after a certain number of iterations.

We calculate the distance between vy and w; at each step of the iterative
algorithm described in the previous paragraph. The distance |[vo — w,||* does
not always decrease for high ¢ values. This happens around the optimal denoising
solution w*. Once we detect an increase in |[vo — w,||*, we perform a refinement

step to obtain the final solution of the denoising problem. In refinement step,
Voi—51+Vai_3

5 is used in the next iteration. A

the supporting hyperplane at vo; 1 =

typical convergence graph is shown in Figure 2.2 for the “note” image.

It is possible to obtain a smoother version of w* by simply projecting v inside
the set C; instead of the boundary of Cy.

4.2 Simulation Results

The PESC algorithm is tested with standard images. The noise standard devia-

tion o is chosen so that the averaged blurred signal to noise ratio BSN R reaches
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a target value:

_ Iz — Ez]|”
BSNR = 10 x 10910( NO‘% )7 (47)

where z is the blurred image without noise z = w,,;, * h, N is the whole number
of pixels, and o is the additive noise’s standard deviation. In addition to the

visual results, the deblurring algorithm is compared in term of Improved Signal
to Noise Ratio (ISNR) as follows:

|12 = Worig|*

||Wrec - Worig||2

ISNR = 10 x lOgl()(

), (4.8)

which w,.. is the reconstructed and deblurred image. The ISNR as a function of

iteration number for the experiment done over MRI image is given in Figure 4.3.

Improved SNR

4 1 1 1 1 1 1 |

0 10 20 30 50 60 70 80

40
Iteration number

Figure 4.3: ISNR as a function of the iteration number for MRI image.

Table 4.1 and 4.2 represent the ISNR and SNR values for five BSNR values
for PESC algorithm and FTL algorithm proposed by Vonesch etal [50]. Table 4.3
represents SNR and ISNR values for five different microscopic cancer cell images
for PESC and FTL algorithms for BSNR = 45. According to the these tables,

in almost all cases PESC based deconvolution algorithm performs better than
FTL [50] in sense of ISNR and SNR.

70



a) Original ) Blurred
) PESC ) FTL

Figure 4.4: Sample image used in our experiments (a) Original, (b) Blurred
(BSNR = 50), (c) Deblurred by PESC (SNR = 18.53 dB), (d) Deblurred by FTL
(SNR = 14.92 dB).
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(c) PESC (d) FTL

Figure 4.5: Cancer cell image (a) Original, (b) Blurred (BSNR = 50), (c¢) De-
blurred by PESC (SNR = 40.58 dB), (d) Deblurred by FTL (SNR = 39.35 dB).
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In an example, in Figure 4.4 the original, blurred, and deblurred images for a
MRI image, for both algorithms are presented. In this image the original MRI
image is blurred using 9 x 9 Gaussian blurring matrix and is corrupted with
additive white Gaussian noise with such a variance to obtain BSNR = 50 value.
In another example in Figure 4.5 the results for cancer cell image is presented. The
original image is blurred with 9 x 9 uniform blurring matrix and is corrupted with
additive white Gaussian noise with such a variance to obtain BSNR = 50 value.
The blurred image, and the deblurred images for both algorithms are presented
in Figure 4.5. According to this figure, PESC algorithm performs better than
FTL not only in sense of SNR, but also the results for PESC are visually better
than FTL.

Table 4.3: ISNR and SNR results for PESC and FTL based deconvolution algo-
rithms for BSNR = 45.

’ Image | PESC | FTL ‘
Cancer cell-1 | 9.71 | 42.40 | 8.23 | 40.91
Cancer cell-2 | 10.47 | 41.87 | 8.79 | 40.16
Cancer cell-3 | 10.55 | 40.86 | 8.93 | 39.22
Cancer cell-4 | 9.02 | 42.09 | 7.63 | 40.73
Cancer cell-5 | 9.23 | 42.81 | 7.86 | 41.43
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Chapter 5

Compressive Sensing Using
PESC

The aim in compressive sensing problems is to recover the image from a limited
number of samples taken from the original image such that the output image
includes as much information as possible. In this chapter, a compressive sensing
algorithm based on PESC algorithm is presented. This algorithm is illustrated in
detail in the following sections, including the extensive simulation results at the

end of the chapter.

5.1 Compressive Sensing Problem

In transform based signal and image coding, a given signal x is transformed
into another domain defined by the orthogonal transformation matrix @ . The
transformation procedure is simply finding the inner product of the signal x with

the rows 1); of the transformation matrix 1) represented as follows:
S| = <X,’L/Jl> l:1,2,...,N, (51)
where x is a column vector of size N.
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The discrete-time signal can be reconstructed from its transform coefficients

sy, as follows:
N

X = Z sp or x=1p’.s, (5.2)

1=1
where s is a vector containing the transform domain coefficients s; and 47 is the

inverse transform matrix.

The basic idea in digital waveform coding is that the signal should be approx-
imately reconstructed from only a few of its non-zero transform coefficients. In
most cases, including the JPEG image coding standard, the transform matrix
1) is chosen in such a way that the new signal s is efficiently represented in the

transform domain with a small number of coefficients.

The CS theory introduced in [39,69-72] provides answers to the question of re-
constructing a signal from its compressed measurement vector v, which is defined

as follows:
v=c¢x=a¢P s=0s, (5.3)

where ¢ is the M x N measurement matrix and M < N. Reconstruction of
the original signal x from its compressed measurements v cannot be achieved
by simple matrix inversion or inverse transformation techniques. To recover x,
an iterative method is used. This iterative method is illustrated in the following

section.

5.2 PESC Based Compressive Sensing Algo-

rithm

Instead of solving the CS problem using /y-norm and ¢;-norm minimization, other
methods were developed in the literature [73-75]. For example, in [73], a Bayesian
solution to the CS problem is obtained. One popular approach is to replace
lo-norm with f,-norm, where p € (0, 1] or as a combination of two different

norms [8,53,74,75]. We use the epigraph of /;-norm cost function, the TV or any
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other convex cost function together with the measurement hyperplanes to solve

this problem. Let the epigraph set be

Cr={s=1[s"yl": f(s) <y} (5.4)

where f(s) can be the convex cost function representing the ¢;-norm or the TV

function, and the measurement hyperplane sets are defined as follows:
Ci={s"0;=v;}, i=12..1L, (5.5)

where 0; is the " row of the @ matrix and v; is the i*" entry of the observation
vector v. All of the above sets are closed and convex sets. Therefore, it is
possible to device an iterative signal reconstruction algorithm in R¥*! by making
successive orthogonal projections onto the sets Cy and C;, © = 1,2,..., L. The
crucial step of this algorithm providing regularization is the projection onto the
set Cy.

5.2.1 Projection onto the set C;

Let s, be a vector in RY and the corresponding augmented vector be s, = [s! 0] €

RN*1. The projection vector s, is obtained as follows:

s, = [ f(s” ] — argminlls — s, 3 + /(5)" (5.6)

Sp)

The projection s, for an arbitrary vector s, = [s! v s, n41] € RV is given by

s, = [ S ] = argmin||s — s, x5 + (Sons1 — f(8))?, (5.7)
f(sp) s

where s,y is a vector containing the first N component of s, and s, y41 is the
(N +1)** component. To solve the minimization problem, the PESC algorithm is
used. Here, the convex cost function is TV function: f(s) = TV(s). In PES-TV
algorithm the aim is to minimize the distance between the observation image s
and the epigraph set of the TV function. In other words, the aim is to find the
nearest s on the surface of the TV function to sy, as shown in Figure 5.1. This

process is defined in Chapter 2.
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Figure 5.1: Graphical representation of PES-TV algorithm.

5.2.2 CS Algorithm

In this case, we replace the level set Cy in Section 2.1 with the measurement

hyperplanes C;, and the epigraph set is as follows:
Cr={s|TV(s) <e€}. (5.8)

The hyperplanes in general form an undetermined set of equations. As a result

their intersection

Cimt = () Ci (5.9)

is highly unlikely to be an empty set. Individual C!s may intersect with the
epigraph set Cy but the intersection of hyperplanes C;,; may not intersect with
the epigraph set C;. This scenario has not been studied in POCS theory to
the best of our knowledge [36,40] but it is very similar to the scenario that we
discussed in Section 2.1. As we point out in Section 1.3, two nonintersecting

convex sets case studied by Gubin et.al [36]. Therefore, we expect that iterates
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oscillate between a vector in the intersection of hyperplanes C;,; and a vector in
the epigraph set Cy. We conjecture that the iterates oscillate between the nearest
vectors in sets C; and C;,,; similar to the case discussed in Section 2.1. Therefore,

we essentially obtain a solution to the following problem:
min||s; —s|]o such that sy e Cy and s € Cipy. (5.10)

If the sets Cy and C;,, intersect, the iterates converge to a vector in the intersection
set Cine N Cy by Bregman’s POCS theorem.

The iterative algorithm consists of performing successive orthogonal projec-
tions onto hyperplanes corresponding to measurements v; = sT.0;, for i =
1,2,..., L, followed by an orthogonal projection onto the epigraph set C;. The
algorithm is described in Algorithm 3.

If the initial condition is chosen as s, =

So . :
O] then Eq. (5.6) is used to imple-

ment the projection onto the epigraph set. The algorithm is essentially similar to
the proximity operator based algorithms [76,77]. However, f2(s) is used instead

of f(s) as the regularizing term as shown in (5.6).

In our approach it is also possible to define a smoothing parameter in both
denoising and compressive sensing solutions as well. The epigraph set C; can be
modified as follows:

Cra={s: y>aTV(s)}. (5.11)

The choice of the parameter o« > 1 provides smoother solution than usual and

a < 1 relaxes the smoothing constraint. In this case, Eq. (5.6) becomes

s, = [ 5 ] = argmin||s — s,||3 + a*f(s)*. (5.12)
f(sp

It is experimentally observed that o = 1 usually provides better denoising results
than the manually selected best A values in standard TV denoising introduced
in [38].
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Algorithm 3 The pseudo-code for the compressive sensing with PESC based

algorithm
Input

S()GRN
for 1 =1 to M,

for j = 0to L, (L: number of measurements)

s;+1 = Project s; onto C; ;
endfor
endfor
w = Project s, onto Cy, (s, € RV
if|lw —s.|| <e
Terminate
else
Go to first for
endif

5.3 Simulation Results

The PESC algorithm is tested with one-dimensional (1D) signals, and 29 two-
dimensional (2-D) images (24 images from Kodak database [60], and 5 standard
image processing images) in compressive sensing examples. In all the experiments,

the measurement matrices are chosen as zero mean Gaussian random matrices.

Consider the cusp and piecewise-smooth signals shown in Figure 5.2 and
5.3 (blue curves), respectively. These signals consist of 1024 samples. In the
DCT domain, both signals can be approximated in a sparse manner. In the first
set of experiments, the original signals are reconstructed with M = 204 and 717
measurements with SNR values of 45 and 58 dB for cusp signal and 22 and 42 dB
for piecewise-smooth signal, respectively. The reconstructed signals using the
TV cost functional based PESC algorithm are shown in Figures 5.2a, and 5.2b

for cusp signal, and in Figures 5.3a and 5.3b for the piecewise-smooth signal.
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PESC algorithm is compared with four well known CS reconstruction algo-
rithms from the literature; CoSamp [52], ¢;magic [69], Matching Pursuit (MP)
[51], and ¢, optimization based CS reconstruction [53] algorithms. Three different
values for p = 0.8, 1, and 1.7 are used in £, optimization based CS reconstruction

algorithm.

All CS reconstruction algorithms are implemented with different number of
measurements ranging from 10% to 80% of the total number of the samples of
the 1D signal. The main region of interest in these experiments is 20% — 60%
range. Reconstruction SNR versus the number of measurements are plotted for
the cusp and piecewise-smooth signals in Figure 5.6 and Figure 5.7, respectively.
To eliminate the effect of zero mean random Gaussian measurement matrices, the
experiments are repeated 10 times and averaged to obtain the plots. The PESC

algorithm performs better than other algorithms.

Both cusp and piecewise-smooth signals are compressible signals in DCT
domain. On the other hand, the impulsive signal shown in Figure 5.4 is not com-
pressible in DCT domain, but it is sparse in time domain. The random impulse
signal with 256 samples and 25 impulses in random sample indexes is recon-
structed with PESC algorithm from 60% of measurements. The reconstructed
signal is also shown in Figure 5.4. Obviously, the TV function is not suitable for
such signals. Smooth signal assumption of the TV cost function definitely fails
in this signal. The reconstructed signal is not perfect as shown in Figure 5.5,
because the random impulse signal contains isolated impulses. The SNR curve
due to the TV based PESC method is well below the other algorithms in Figure
5.5.

The epigraph of ¢;-norm should be used for this signal. When we use the

epigraph of /;-norm together with the mean value constraint set
1
Cu={x:5 D alnl=n} (5.13)

we obtain Figure 5.4. It is very easy to estimate the mean value of the signal
by using a compressive measurement with a random vector containing random

variables with a nonzero mean. We need C,, because we have to rescale the signal
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after the projections onto the epigraph set of £;-norm. The signal is reconstructed

from 153 measurements in Figure 5.4.

Table 5.1: Comparison of the results for compressive sensing with Fowler’s algo-
rithm and the PESC Algorithm (20% of measurements)

Image Fowler | Fowler | PESC | PESC
B=32 | B=64 | B=32 | B=64
Kodak(ave.) | 20.00 | 19.94 | 20.36 | 21.06
Mandrill 15.72 | 15.79 | 1540 | 15.85
Lena 24.81 | 24.74 | 24.21 | 24.94
Barbara 18.49 | 19.66 | 17.28 | 17.59
Peppers 23.98 | 2343 | 25.26 26.35
Goldhill 22.05 | 2193 | 21.75 | 22.62

| Average | 20.17 | 20.11 | 20.43 | 21.13 |

Our second set of experiments consists of CS reconstruction with 2D signals.
Five well known images (Peppers, Mandrill, Lena, Barbara, Goldhill) from the
image processing literature and 24 images from the “Kodak True Color images”
database [63] are used in Tables 5.2, 5.1, and 5.3. These tables compare the SNR
values for compressive sensing with PESC and Fowler’s algorithm [78] for these
images with two block-sizes of 32 x 32 and 64 x 64 for both algorithms. Images
in Kodak dataset are 24 bit per pixel color images. All the color images are
transformed into YUV color space and the 8 bit per pixel luminance component
(Y channel) is used in our tests. Since all the images are natural images they are

all compressible in DCT domain.

Fowler’s algorithm is a block based compressed sensing algorithm therefore, we
also divided the images into blocks and reconstructed those blocks individually.
Random measurements, which are 20, 30, 40% of the total number of pixels in
images, are used in Tables 5.1, 5.2, and 5.3 on both the TV based PESC algorithm
and Fowler’s method, respectively. On average, for 30% of measurement and
for 64 x 64, and 32 x 32 blocks, we achieve approximately 1.24 dB, and 0.42
dB higher SNR respectively, compared to Fowler’s algorithm. In Figure 5.8, a
portion of “peppers” and “goldhill” images are presented. The CS results for

82



Table 5.2: Comparison of the results for compressive sensing with Fowler’s algo-
rithm and the PESC Algorithm (30% of measurements)

Image Fowler | Fowler | PESC | PESC
B=32 | B=64 | B=32 | B=64
Kodak(ave.) | 21.40 | 21.36 | 21.96 | 22.74
Mandrill 16.47 | 16.77 | 16.65 16.96
Lena 26.82 | 26.71 | 26.02 | 26.86
Barbara 20.05 | 20.40 | 18.21 18.62
Peppers 24.66 | 24.46 | 27.06 27.93
Goldhill 22.78 | 2344 | 23.64 | 24.24

| Average | 21.53 | 21.53 | 22.02 | 22.77 |

Table 5.3: Comparison of the results for compressive sensing with Fowler’s algo-
rithm and the PESC Algorithm (40% of measurements)

Image Fowler | Fowler | PESC | PESC
B=32 | B=64 | B=32 | B=64
Kodak(ave.) | 22.99 22.54 23.07 24.11
Mandrill 17.56 | 17.80 17.74 18.07
Lena 28.51 | 28.36 | 27.27 | 28.25
Barbara 21.34 | 22.12 | 19.00 | 19.62
Peppers 25.96 | 29.02 28.00 29.02
Goldhill 24.04 | 24.80 24.74 25.54

| Average | 23.08 | 22.77 [ 23.15 | 24.11 |

30% measurements for PES-TV and Fowler’s algorithm, for “peppers”’ image
using 32 x 32 blocks are presented in Figure 5.9. The same case for “peppers”
image using 64 x 64 blocks are presented in Figure 5.10. Similarly, the results for
“goldgill” image is shown in Figures 5.11 and 5.12. The SNR values in Tables 5.2,
5.1, and 5.3, and visual examples in Figures 5.9, 5.10, 5.11, and 5.12 indicates
the efficiency of PES-TV based compressive sensing algorithm.
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Figure 5.2: The reconstructed cusp signal for (a) 204 measurements (SNR = 45
dB), and (b) 717 measurements (SNR = 58 dB).
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Figure 5.3: The reconstructed piecewise-smooth signal for (a) 204 measure-
ments (SNR = 21.53 dB), and (b) 717 measurements (SNR = 42 dB).
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of ¢, norm is used. The signal is reconstructed from 30% of measurements
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(a) | (b)

Figure 5.9: Results of CS experiments for “peppers” image in the case with 32x 32
blocks, and using measurements as much as %30 of the samples by: (a) PESC
algorithm; with SNR = 27.06 dB, and (b) Fowler’s algorithm; with SNR = 24.66
dB.
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(a)

Figure 5.10: Results of CS experiments for “peppers” image in the case with
64 x 64 blocks, and using measurements as much as %30 of the samples by: (a)
PESC algorithm; with SNR = 27.93 dB, and (b) Fowler’s algorithm; with SNR
= 24.46 dB.

(a) (b)

Figure 5.11: Results of CS experiments for “goldhill” image in the case with
32 x 32 blocks, and using measurements as much as %30 of the samples by: (a)
PESC algorithm; with SNR = 23.64 dB, and (b) Fowler’s algorithm; with SNR
= 22.78 dB.
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(a) (b)

Figure 5.12: Results of CS experiments for “goldhill” image in the case with
64 x 64 blocks, and using measurements as much as %30 of the samples by: (a)
PESC algorithm; with SNR = 24.24 dB, and (b) Fowler’s algorithm; with SNR
= 23.44 dB.
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Chapter 6

Conclusion

In this thesis, new signal reconstruction and restoration methods using the epi-
graph set of a convex cost function is developed. The reconstructed signal is
obtained by making orthogonal projections onto the epigraph set of convex sets
representing the desired signal in RV*!. The PESC algorithm based denoising,
deconvolution, and compressive sensing algorithms are developed. It is shown
that, in all scenarios, PESC approach may not need the optimization of the reg-

ularization parameter as in standard TV based signal reconstruction methods.

Two different versions of the PESC algorithm are developed for denoising 1D
and 2D signals. For 2D signal denoising, PES-TV algorithm is developed. The
PES-TV denoising method is based on the epigraph of the TV function. Epigraph
sets of other convex cost functions can be also used in the new denoising approach.
The new algorithm does not need the optimization of the regularization parameter
as in standard TV denoising methods. Experimental results indicate that better
SNR and SSIM results are obtained compared to standard TV based denoising
in a large range of images. The proposed method can be incorporated into the so
called 3D denoising methods [79]. In 3D denoising methods similar image blocks
are grouped and shrinked according to the noise level. Since our method does

not need the noise variation, it will lead to more flexible 3D methods.
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Moreover, a novel algorithm for denoising images that are corrupted by im-
pulsive noise is presented. This algorithm is a two stage algorithm, which in
the first stage the PES-TV based denoising algorithm produces basic denoised
estimate for the second stage. Using this basic estimate, the second stage groups
the similar blocks of the noisy image and denoise these 3D arrays of the similar
blocks using collaborative 3D Wiener filtering. The PES-TV algorithm does not
require noise variance to denoise the image, then produces better basic estimate
for second stage in comparison with standard BM3D algorithm. Experimental re-
sults indicates that higher SNR and PSNR, and better visual results are obtained

using the proposed denoising method compared to other algorithms.

For 1D signals, the PES-¢; algorithm is proposed. It is shown that it is possible
to determine denoising soft-threshold using a deterministic approach based on
linear algebra and projection onto convex set constructed from the epigraph set
of /1-norm cost function. The main assumption is that the original signal is sparse

in wavelet domain or in some transform domain.

Orthogonal projection based denoising is computationally efficient because
projection onto a boundary hyperplane of an /¢;-ball or the epigraph set can
be implemented by performing only one division and K + 1 additions and/or sub-
tractions, and sign computations. Once the size of the ¢;-ball using (3.12) and
(3.13) is determined, the orthogonal projection onto an ¢;-ball operation is an
Order(K) operation. Equations (3.12) and (3.13) only involve multiplications by
+1. However, it is not possible to incorporate any prior knowledge about the noise
probability density function or any other statistical information to the orthogonal
projection based denoising method. However, it produces good denoising results
under additive white Gaussian noise. Most of the denoising methods available in

MATLAB also assumes that the noise is additive, white Gaussian.

In this thesis, new deconvolution and compressive sensing methods based on
the epigraph of the TV function are also developed. The TV constraint is im-
posed to the image in each step of iterative reconstruction algorithm to regularize
the estimated image, reduce the convergence time, and enhance the image qual-

ity. The simulation results indicate the successful performance of the proposed
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algorithms.

The PESC algorithm is also used to solve some other problems as well. In [80],
a blind deconvolution algorithm is proposed. Two closed and convex sets for
blind deconvolution problem are proposed. Most blurring functions in microscopy
are symmetric with respect to the origin. Therefore, they do not modify the
phase of the Fourier transform (FT) of the original image. As a result blurred
image and the original image have the same FT phase. Therefore, the set of
images with a prescribed F'T phase can be used as a constraint set in blind
deconvolution problems. Another convex set that can be used during the image
reconstruction process is the epigraph set of TV function. This set does not need
a prescribed upper bound on the total variation of the image. The upper bound is
automatically adjusted according to the current image of the restoration process.
Both of these two closed and convex sets can be used as a part of any blind

deconvolution algorithm.

In [81], a range resolution improvement method based on PESC based deconvo-
lution algorithm is proposed. Here instead of TV constraint, ¢;-norm constraint
is imposed. One of the main disadvantages of using commercial broadcasts in
a Passive Bistatic Radar (PBR) system is the range resolution. Using multiple
broadcast channels to improve the radar performance is offered as a solution to
this problem. However, it suffers from detection performance due to the side-
lobes that matched filter creates for using multiple channels. In this framework,
we introduced a deconvolution algorithm to suppress the side-lobes. The two-
dimensional matched filter output of a PBR is further analyzed as a deconvolution
problem. The deconvolution algorithm is based on making successive projections
onto the hyperplanes representing the time delay of a target. Resulting itera-
tive deconvolution algorithm is globally convergent because all constraint sets

are closed and convex.
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