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ABSTRACT

IMAGE RESTORATION AND RECONSTRUCTION
USING PROJECTIONS ONTO EPIGRAPH SET OF

CONVEX COST FUNCTIONS

Mohammad Tofighi

M.S. in Electrical and Electronics Engineering

Advisor: Prof. Dr. A. Enis Çetin

July, 2015

This thesis focuses on image restoration and reconstruction problems. These

inverse problems are solved using a convex optimization algorithm based on or-

thogonal Projections onto the Epigraph Set of a Convex Cost functions (PESC).

In order to solve the convex minimization problem, the dimension of the problem

is lifted by one and then using the epigraph concept the feasibility sets corre-

sponding to the cost function are defined. Since the cost function is a convex

function in RN , the corresponding epigraph set is also a convex set in RN+1. The

convex optimization algorithm starts with an arbitrary initial estimate in RN+1

and at each step of the iterative algorithm, an orthogonal projection is performed

onto one of the constraint sets associated with the cost function in a sequential

manner. The PESC algorithm provides globally optimal solutions for different

functions such as total variation, `1-norm, `2-norm, and entropic cost functions.

Denoising, deconvolution and compressive sensing are among the applications of

PESC algorithm. The Projection onto Epigraph Set of Total Variation function

(PES-TV) is used in 2-D applications and for 1-D applications Projection onto

Epigraph Set of `1-norm cost function (PES-`1) is utilized.

In PES-`1 algorithm, first the observation signal is decomposed using wavelet

or pyramidal decomposition. Both wavelet denoising and denoising methods using

the concept of sparsity are based on soft-thresholding. In sparsity-based denoising

methods, it is assumed that the original signal is sparse in some transform domain

such as Fourier, DCT, and/or wavelet domain and transform domain coefficients

of the noisy signal are soft-thresholded to reduce noise. Here, the relationship be-

tween the standard soft-thresholding based denoising methods and sparsity-based

wavelet denoising methods is described. A deterministic soft-threshold estima-

tion method using the epigraph set of `1-norm cost function is presented. It is
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demonstrated that the size of the `1-ball can be determined using linear algebra.

The size of the `1-ball in turn determines the soft-threshold. The PESC, PES-TV

and PES-`1 algorithms, are described in detail in this thesis. Extensive simula-

tion results are presented. PESC based inverse restoration and reconstruction

algorithm is compared to the state of the art methods in the literature.

Keywords: Convex optimization, epigraph of a convex cost functions, projection

onto convex sets, total variation function, `1-norm function, denoising, deconvo-

lution, compressive sensing.



ÖZET

DIŞBÜKEY MALİYET FONKSIYONLARI’NIN
EPİGRAF KÜMESİNE DİK İZDÜŞÜMLER KULLANAN

İMGE RESTORASYONU VE YENİDEN İNŞA
ALGORİTMASI

Mohammad Tofighi

Elektrik ve Elektronik Mühendisliği, Yüksek Lisans

Tez Danışmanı: Prof. Dr. A. Enis Çetin

Temmuz, 2015

Bu tez, imge restorasyonu ve yeniden inşası ile alakalı problemler üzerinedir. İmge

restorasyonu ve yeniden inşa problemleri, Dışbükey Maliyet Fonksiyonları’nın

Epigraf Kümesine Dik İzdüşümleri (PESC) ile çözülür. Dışbükey küçültme

problemini çözmek için ilk adımda problemin boyutu bir artırılır ve ardından

epigraf fikri kullanılarak maliyef fonksiyonlarının fizibilite kümeleri tanımlanır.

Maliyet fonksiyonu RN içerisinde olduğundan dolayı, ona karşılık gelen epigraf

seti dışbükey de RN+1 içerisindedir. Dışbükey küçültme algoritması RN+1

içerisinde rastgele bir tahmin ile başlar ve yinelemeli algoritmanın her adımında

birbirini takip eden şekilde, maliyet fonksiyonlarını kısıtlayan kümeler üzerine dik

izdüşümler gerçekleştirir. PESC algoritması, tam değişim, `1-norm, `2-norm, en-

tropik maliyet fonksiyonu gibi değişik bir çok fonksiyon için global en iyi çözümler

verir. Tam Değişim Fonksiyonunun Epigraf Kümesi Üzerine İzdüşüm (PES-TV)

2 boyutlu uygulamalar için, `1-norm Fonksiyonunun Epigraf Kümesi Üzerine

İzdüşüm (PES-`1) ise 1 boyutlu uygulamalar için değerlendirilmiştir.

PES-`1 algoritmasında, gözlemlenen sinyal ilk adımda dalgacık ve ya piramit

ayrışımı kullanılarak dağılmıştır. Dalgacık tabanlı gürültüden arındırma ve

diğer seyreklik tabanlı gürültüden arındırma teknikleri yumuşak eşiklendirmeye

dayalıdır. Seyreklik tabanlı gürültüden arındırma metodlarında, asıl sinyalin,

Fourier, DCT, ve ya dalgacık gibi herhangi bir dönüşüm uzayında, seyrek olduk-

ları varsayılmaktadır ve gürültülü sinyalin dönüşüm uzayındaki katsayılarına

yumuşak eşiklendirme uygulanır. Burada, standart yumuşak eşiklendirmeye

dayalı gürültüden arındırma metodları ile seyreklik tabanlı dalgacık kul-

lanarak gürültüden arındırma metodları açıklanmıştır. `1-norm maliyet
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fonksiyonunun epigraf kümesini kullanan bir yumuşak eşik tahmin metodu

sunulmuştur. Doğrusal cebir kullanarak `1 topunun büyüklüğünün belir-

lenebileceği gösterilmiştir. Yumuşak eşiği `1 topunun büyüklüğü belirlemekte-

dir. PESC, PES-TV ve PES-`1 algoritmaları detaylı olarak anlatılmıştır. Kap-

samlı benzetim sonuçları sunulmuştur. PESC tabanlı ters restorasyon ve yeniden

inşa algoritması, edebiyattaki en gelişmiş tekniklerle karşılaştırılmıştır.

Anahtar sözcükler : Dışbükey optimizasyon, dışbükey maliyet fonksiyonları’nın

epigrafı, dışbükey kümeler üzeri’ne izdüşüm, tam değişim fonksiyonu, `1-norm

fonksiyonu, gürültüden arındırma, ters evrişi, sıkıştırılmış algılama.
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I want to thank Mürüvet Parlakay for her tireless and great manner in every

moment in Electrical and Electronics Engineering Department.

I would like to thank the Scientific and Technological Research Council
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Sharif, Burak Şahinbaş. Life is always tough, but sometimes it crashes

you down. However, I had the chance to have these valuable friends around

me to help me in every obstacle in my path to this moment. These are the

precious people in Bilkent, who are like a family to me and I am going to

miss them so much.

• First friends I have made in Bilkent EE department, who pave the way for

me to adjust to the new environment and keep it up during first semesters,

whom I will always be indebted to Elif Aydoğdu, and Alexander Suhre, Y.
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vii



viii

• All my valuable friends, whom I had precious time during three years of

my life in Bilkent with: Seher Acer, Volkan Açıkel, Başar Akbay, Mehmet
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Chapter 1

Introduction

Many signal and image restoration and reconstruction problems can be consid-

ered as inverse problems. In these problems we try to recover the original signal

or image from observations which are usually corrupted by noise. Denoising,

deconvolution, and compressive sensing are among the well-known inverse prob-

lems. In restoration methods, the aim is to get as much closer as possible to the

original image. The distance between the estimated image and the original image

is called the cost, and the function which measures this cost is the cost function.

Therefore, in these methods the aim is to minimize a given cost function. Since

most of the cost functions in such problems are convex functions, convex opti-

mization algorithms can be considered to solve them. In the following sections a

convex optimization method and its application to denoising, deconvolution, and

compressive sensing problems are described.

1.1 Convex Optimization

Convex optimization studies the problem of minimizing the convex functions. In

a convex function the objective and the constraint functions are convex, which
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means they satisfy the following inequality:

f(αx + βy) ≤ αf(x) + βf(y) (1.1)

for all x, y ∈ RN and all α, β ∈ R with α + β = 1, α ≥ 0, β ≥ 0. Some inverse

problems can be solved using convex optimization methods. Consider Ax = b,

where A is matrix and x and b are vectors. Here the aim is to solve as inverse

problem to find the solution x. The trivial solution would be x = A−1b. However,

every A will not be invertible, therefore, to solve this problem, pseudo-inverse of

A would be required, then the solution would be x = A+b.

Sometimes the inverse of the matrix A cannot be found directly, then opti-

mization methods can be used for such inverse problems. In order to solve these

problems, an objective function is defined. This function measures how close

the obtained estimated solution from the optimization process, fits the observed

data. This function is the cost function of the optimization problem. There are

many cost functions used in inverse problems. The standard cost function f(x)

is usually of the following form:

f(x) = ‖b− Ax‖22, (1.2)

which ‖.‖22 is the `2-norm. The f(x) is the `2-norm between the observed data

and the predicted data.

Plenty of optimization methods are proposed according to the problem.

Among them descent methods such as gradient descent method and steepest

descent method, and the Newton’s method are well-known [5]. All these nonlin-

ear methods solve the optimization problems in an iterative manner, such that in

each iteration the value of the cost function is measured and the aim is to obtain

minimum cost (or maximum efficiency).

One of the methods used in convex optimization is Projection Onto Convex

Sets (POCS). This method, similar to Descent methods, tries to find the minimum

point on the cost function by iterative projections onto convex sets. A set C is

convex if the line segment between any two points in C lies inside C, i.e., if for
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any x1, x2 ∈ C and any θ with 0 ≤ θ ≤ 1, we have:

θx1 + (1− θ)x2 ∈ C. (1.3)

In POCS the projections are performed onto the sets. Sometimes projection onto

the surface of a function is very hard. Therefore, to make it easier, projections can

be performed onto the hyperplane passing through the points over the epigraph

set of convex sets. A hyperplane can be defined as follows:

H = {x|aTx = b} (1.4)

where a ∈ Rn, a 6= 0, and b ∈ R. Geometrically, the above hyperplanes can be

interpreted as the set of the points with a constant inner product to a given vector

a, as the normal vector. Considering these information, the POCS algorithm is

described in the following section.

1.2 Projection Onto Convex Sets (POCS)

In this thesis, a new convex optimization algorithm based on orthogonal Projec-

tions onto the Epigraph Set of a Convex cost function (PESC) is introduced. This

algorithm is based on standard POCS algorithm. In Bregman’s standard POCS

approach [6, 7], the algorithm converges to the intersection of convex constraint

sets, as in Figure 1.1. In this section, it is shown that it is possible to use a

convex cost function in a POCS based framework using the epigraph set and the

new framework is used in many signal and image processing applications [8–13].

Bregman also developed iterative methods based on the so-called Bregman

distance to solve convex optimization problems [11]. In Bregman’s approach, it

is necessary to perform a Bregman projection at each step of the algorithm, which

may not be easy to compute the Bregman distance in general [10, 12].

In standard POCS approach, the goal is simply to find a vector, which is in

the intersection of convex constraint sets [7, 14–35]. In each step of the iterative

algorithm an orthogonal projection is performed onto one of the convex sets .
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Bregman showed that successive orthogonal projections converge to a vector,

which is in the intersection of all the convex sets, as in Figure 1.1. If the sets do

not intersect, iterates oscillate between members of the sets [36,37], as in Figure

1.2. Since, there is no need to compute the Bregman distance in standard POCS,

it found applications in many practical problems.

𝐶1

𝐶2

𝑥1

𝑥3

𝑥5
𝑥

𝑥2

𝑥4

Figure 1.1: Sets C1 and C2 are two convex sets. The initial vector x1 is sequentially
projected onto the sets C1 and C2 to find the vector, x, in the intersection of these
sets.

In PESC approach, the dimension of the signal reconstruction or restoration

problem is lifted by one and sets corresponding to a given convex cost function

are defined. This approach is graphically illustrated in Figure1.2. If the cost

function is a convex function in RN , the corresponding epigraph set is also a

convex set in RN+1. As a result, the convex minimization problem is reduced

to finding the [w∗, f(w∗)] vector over the epigraph set corresponding to the cost

function as shown in Figure 1.2. As in standard POCS approach, the new itera-

tive optimization method starts with an arbitrary initial estimate in RN+1 and an

orthogonal projection is performed onto one of the constraint sets. The resulting
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vector is then projected onto the epigraph set. This process is continued in a se-

quential manner at each step of the optimization problem. This method provides

globally optimal solutions for convex cost functions, such as total-variation [38],

filtered variation [9], `1-norm [39], and entropic function [16]. The iteration pro-

cess is shown in Figure 1.2. Regardless of the initial value w0, iterates converge

to [w∗, f(w∗)] pair as shown in Figure 1.2.

This Thesis is organized as follows. In Section 1.3, the epigraph of a convex

cost function is defined and the convex minimization method based on the PESC

approach is introduced. In Chapter 2, the TV based PESC algorithm is presented.

In Chapter 3, the `1-norm based PESC algorithm is described. The new approach

does not require a regularization parameter as in other TV based methods [15,

26, 38]. In Chapter 4, deconvolution using PESC is described. In Chapter 5,

compressive sensing using PESC is introduced. At the end of each chapter, the

simulation results are presented. Finally, this thesis is concluded in Chapter 6.

1.3 Projection Onto Epigraph Set of a Convex

Cost Function (PESC)

Let us first consider a convex minimization problem

min
w∈RN

f(w), (1.5)

where f : RN → R is a convex cost function. We increase the dimension by one

to define the epigraph set of f in RN+1 as follows:

Cf = {w = [wT y]T : y ≥ f(w)}, (1.6)

which is the set of N + 1 dimensional vectors, whose (N + 1)st component y

is greater than f(w). We use bold face letters for N dimensional vectors and

underlined bold face letters for N + 1 dimensional vectors, respectively. Another

set that is related with the cost function f(w) is the level set:

Cs = {w = [wT y]T : y ≤ 0, w ∈ RN+1}, (1.7)
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where it is assumed that f(w) ≥ 0 for all f(w) ∈ R. Both Cf and Cs are closed

and convex sets in RN+1. Other closed and convex sets describing a feature of the

desired solution can be also used in this approach. Sets Cf and Cs are graphically

illustrated in Figure 1.2. An important component of the PESC approach is to

Figure 1.2: Two convex sets Cf and Cs corresponding to the convex cost function f .
We sequentially project an initial vector w0 onto Cs and Cf to find the global minimum,
which is located at w∗ = [w∗ f(w∗)]T .

perform an orthogonal projection onto the epigraph set. Let w1 be an arbitrary

vector in RN+1. The projection w2 is determined by minimizing the distance

between w1 and Cf , i.e.,

w2 = argmin
w∈Cf
‖w1 −w‖2. (1.8)

Equation (1.8) is the ordinary orthogonal projection operation onto the set Cf ∈
RN+1. In order to solve the problem in Eq. (1.8), we do not need to compute

the Bregman’s so-called D-projection or Bregman projection. Projection onto the

set Cs is trivial. We simply force the last component of the N + 1 dimensional

vector to zero. In the PESC algorithm, iterates eventually oscillate between the

two nearest vectors of the sets Cs and Cf as shown in Figure 1.2. As a result, we
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obtain

lim
n→∞

w2n = [w∗ f(w∗)]T , (1.9)

where w∗ is the N dimensional vector minimizing f(w). The proof of Eq. (1.9)

follows from Bregman’s POCS theorem [6]. It was generalized to non-intersection

case by Gubin et. al [36]. Since the two closed and convex sets Cs and Cf are

closest to each other at the optimal solution case, iterations oscillate between the

vectors [w∗ f(w∗)]T and [w∗ 0]T in RN+1 as n tends to infinity. It is possible to

increase the speed of convergence by non-orthogonal projections [27].

If the cost function f is not convex and have more than one local minimum,

then the corresponding set Cf is not convex in RN+1. In this case, the iterates

may converge to one of the local minima.

In current TV based denoising methods [38,40], the following cost function is

used:

f(w) = ‖v −w‖2 + λTV(w), (1.10)

where v is the observed signal. The solution of this problem can be obtained

using the method in an iterative manner, by performing successive orthogonal

projections onto Cf and Cs , as discussed above. In this case, the cost function is

f(w) = ‖v −w‖22 + λTV(w). Therefore,

Cf = {w ∈ RN+1 : ‖v −w‖2 + λTV(w) ≤ y}. (1.11)

The denoising solutions that we obtained are very similar to the ones found by

Chambolle’s in [38] as both methods use the same cost function. One problem

in [38] is the estimation of the regularization parameter λ. One has to determine

the λ in an ad-hoc manner or by visual inspection. In Chapter 1, new denoising

methods with a different TV based cost function and `1-norm cost function are

described. The new method with TV function does not require a regularization

parameter. Concept of epigraph is first used in signal reconstruction problems

in [41,42]. We also independently developed epigraph based algorithms in [43].

As mentioned before, a hyperplane is in the form of H = {x|aTx = b}. This

hyperplane can be interpreted in the following form:

H = {x|aT (x− x0) = 0}, (1.12)
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where x0 is any point over the hyperplane (which satisfies aTx0 = b). The pro-

jection onto a hyperplane aTx = b with normal a can easily be computed using

simple algebra. The projection is as follows:

xp = x +
b− aTx

‖a‖22
a, (1.13)

where ‖.‖22 is the Euclidean norm. This operation is illustrated in Figure The con-

vex optimization application in image reconstruction is described in the following

sections.

𝑏 = 𝑎𝑇𝑥

𝑥

𝑥𝑝

Figure 1.3: Graphical illustration of projection onto a hyperplane.

1.4 Denoising

Denoising refers to removing unwanted signal from the original signal while the

important information of the original signal is preserved as much as possible.

Many signal and image denoising methods are proposed in signal processing lit-

erature in the past decades. However, the study in this field is open and many

researchers are focused over the issue of denoising signals and images under var-

ious conditions.

The denoising problem can typically be studied under optimization problems,
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in which appropriate objective function is minimized under some certain con-

straints. For instance, in [8, 26, 38] a denoising algorithm based on the Total

Variation (TV) function as the constraint is proposed. The idea of minimizing

the TV for image denoising was first suggested in [8]. In [8], the noisy image is the

addition of original image and random Gaussian noise with estimated variance

equal to σ2. Therefore, the aim is to solve the following minimization problem:

min{TV(w) : ‖w −worig‖2 = N2σ2}, (1.14)

where N2 is the total number of the pixels.

In [26], for image with sharp contours and block features, the following restora-

tion problem is studied:

min{TV(w) + λ‖w − v‖2 = N2σ2} λ ≥ 0, (1.15)

where λ is the regularization parameter. Finding the exact λ is a computationally

expensive issue. Therefore, it is determined in an add-hoc manner.

In [44] and in this thesis [13,43,45], the same minimization in 1.15 is considered.

The problem in 1.15 is split into two constraints as:

min{‖w − v‖2} such that TV(w) ≤ τ, (1.16)

where τ is a positive constraint bound on TV value in [44]. However, in our

method in [13, 43, 45], there is no need to define a constraint on the TV value,

since the TV value of the obtained image converges to the TV value of the original

image. It can be inferred that, both (1.15) and (1.16) are equivalent for some

specific values of the regularization parameters. However, in [44], the adjustment

of λ parameter is eliminated, and instead τ is required sufficient adjustment which

is easier compared to defining λ. In the proposed method in [44], the authors use

a proximal algorithm and epigraph projection to solve minimization problem.

In [46], a denoising algorithm based on 3D filtering of similar image blocks is

proposed. In this algorithm, the similar blocks of the noisy image are grouped

together using block matching methods and a 3D array is obtained. Then this
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arrays are denoised using a 3D collaborative Wiener filter. Then the denoised

blocks are combined together to reconstruct the image.

In [47], an adaptive data-driven threshold for denoising images via wavelet

soft-thresholding is proposed and it claims that lossy compression can also be

used for denoising. The reason for this claim is that a lossy compression such as

quantization with zero-zero is similar to soft-thresholding.

In [48], a denoising algorithm based on interscale orthonormal wavelet thresh-

olding is proposed. In this algorithm, the denoising process is parameterized

directly as the summation of basic nonlinear processes in which their weights are

unknown. Then to solve the denoising problem, the estimate of the mean square

error between original image and noisy image is minimized. However, they do

not use the original image to estimate MSE. They use an accurate, statistically

unbiased, MSE estimate which is quadratic in the unknown weights. They use

the Stein’s Unbiased Risk Estimate (SURE) which is similar to a priori estimate

of the MSE resulting from an arbitrary processing of noisy data. In this algorithm

the thresholding is performed in discrete wavelet domain.

In [1], multivariate wavelet denoising is combined with Principle Component

Analysis (PCA). Wavelet denoising methods are popular for 1D signal denoising.

The proposed algorithm in [1] is also used for 1D signal denoising. This work

deals with regression models such as w = worig + ξ, where the observation w is

p-dimensional, and ξ is the additive noise. In this method, PCA is used to detect

the insignificant components of the signal and enhance the denoising process by

eliminating those components of the wavelet coefficients.

In this thesis, we propose a convex optimization method based on Projections

onto Epigraph Set of Convex Cost function (PESC) to solve inverse problems

such as denoising, deconvolution, and compressive sensing. The PESC method

is used to solve the denoising problem similar to (1.16). The PESC algorithm is

used both for 2D signals (images) and 1D signals. Total variation cost function

is used for 2D denoising (Projections onto Epigraph Set of TV (PES-TV)) and

`1-norm cost function is used for 1D signals denoising (Projections onto Epigraph
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Set of `1-Ball (PES-`1)). The PESC method is illustrated in detail in Chapter 2.

The simulation results for comparing the PESC algorithm with other algorithms

are also provided at end of Chapter 2.

1.5 Deconvolution

Deconvolution is the act of reversing the effect of the convolution. In other

words, the deconvolution algorithms try to reconstruct the signals which are

convolved together. In image processing applications, usually one of the signals

is the original signal and the second one is the blurring signal which degrades the

quality of the original signal. The deconvolution algorithms found applications

in many fields of image processing, i.e., medical image processing. For instance,

the images obtained from microscopes has the focusing problem and are usually

blurred. The aim of deconvolution algorithms is to enhance the quality of these

images as much as possible.

In [49,50], Vonesch et al. proposes a deconvolution algorithm based on a Fast

Thresholding Landweber (FTL) algorithm. This algorithm minimizes a quadratic

data term subject to a regularization on the `1-norm of the wavelet coefficients

of the solution. In this approach, it is assumed that the PSF is known.

We propose a deconvolution algorithm based on PESC algorithm. In this

method, two constraint sets are defined and the projection onto these sets are

performed to obtain the deblurred image. The first set is the set of hyperplanes

obtained from the deconvolution problem, and the intersection of these hyper-

planes is the deconvolution solution. In order to speed up the deconvolution pro-

cess and enhance the quality of the output image, we impose the TV constraint

using Projection onto Epigraph Set of TV function (PES-TV). This deconvolu-

tion method is presented in detail in Chapter 4. The simulation results are also

presented in 4.2.
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1.6 Compressive Sensing

According to Shannon/Nyquist sampling theorem, in order to avoid losing infor-

mation during sampling, transformation, and reconstruction, the sampling rate

should be equal or greater than two times of the signal bandwidth. However, in

many applications, increasing the sampling rate is very expensive [39]. Therefore,

many methods are studied during last decades to solve this problem. The Com-

pressive Sensing (SC) theory is proposed according to sparse nature of the signal

as a possible solution. Sparsity expresses the idea that a signal can be represented

with much smaller amount of components than suggested by its bandwidth. In

other words, CS exploits the fact that many natural signals are sparse and com-

pressible in the sense that they have shorter representation in a proper transform

domain.

In [51], Matching Pursuit (MP) algorithm is proposed. According to this algo-

rithm any signal is decomposed into a linear expansion of waveforms that belong

to a redundant function dictionary. Then in selection of the waveforms the aim

is to find the best match for the signal structures. In adaptive signal representa-

tions, matching pursuits are the general procedure. Therefore, an interpretation

of the signal structures are provided by matching pursuit decomposition. This

algorithm is a greedy algorithm. It chooses a waveform which is best adopted to

an approximate of a part of the signal, in an iterative manner. Matching pursuits

are very flexible in signal representations, because they have unlimited choice of

dictionaries.

In [52], the Compressive Sensing Matching Pursuit (CoSaMP) algorithm is

proposed. CoSaMP is an iterative recovery algorithm for CS problems. This

algorithm recovers the signal from its noisy samples using four inputs. These

inputs are: observation matrix, a vector of (noisy) samples of the unknown signal,

the sparsity level of the signal to be produced (s), and a stopage criterion. In the

first step, it forms a proxy of the residual from the current samples and determines

the largest ones. Then using these samples it updates the current approximation.

The algorithm solves a least square problem to approximate the updated signal.
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Then it preserves the largest entries in the least squares signal approximation.

Then the samples are updated to reflect the residual. This is performed according

to Algorithm 1 in [52].

In [53], the `p-norm optimization based CS reconstruction algorithm is pro-

posed. Considering Φ as an M ×N measurment matrix, and Φw = b the vector

of an N-dimensional signal w. This algorithm solves the CS problem by solving

the minimization problem as w? = min
w
‖w‖pp subject to Φw = b, which w? is the

reconstructed signal.

Considering that the CS problem is a convex inverse problem, we can apply

PESC algorithm to such problems. In this approach, two sets are defined, and the

combination of these two sets leads to the CS problem’s solution. The first set is

the set of hyperplanes defined in CS problems, which are the observation hyper-

planes. The intersection of these hyperplanes is the solution or the reconstructed

signal. The second set, which imposes the TV constraint to the estimated image

at each step of the iterations enhances the performance of the PES-TV algorithm.

This algorithm is illustrated in detail in Chapter 5, and the simulation results are

also presented in 5.3.
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Chapter 2

Denoising Using Projection onto

Epigraph Set of Total Variation

Function (PES-TV)

Denoising refers to the process of reducing noise in a given signal, image and

video. The basic idea of projection-based denoising algorithm is described in

Chapter 1. As mentioned before, Projection onto Epigraph Set of Convex Cost

function (PESC), can be used for denoising 2D signals. The Total Variation (TV)

cost function is used for denoising 2D signals. In Section 2.1, the Projection onto

Epigraph Set of TV function (PES-TV) is presented.

2.1 The PES-TV Algorithm

In this section, we present a new denoising method, based on the epigraph set of

the TV function. Let the original signal or image be worig and its noisy version

be v. Suppose that the observation model is the additive noise model:

v = worig + η, (2.1)
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where η is the additive noise. In this approach, we solve the following problem

for denoising:

w? = argmin
w∈Cf
‖v −w‖2, (2.2)

where v = [vT 0] and Cf is the epigraph set of TV or FV in RN+1. The TV

function, which we used for an M ×M discrete image w = [wi,j], 0 ≤ i, j ≤
M − 1 ∈ RM×M is as follows:

TV (w) =
∑
i,j

(|wi+1,j − wi,j|+ |wi,j+1 − wi,j|). (2.3)

The minimization problem (2.2) is essentially the orthogonal projection onto the

set Cf = {w ∈ RN+1 : TV (w) ≤ y}. This means that we select the nearest

vector w? on the set Cf to v. This is graphically illustrated in Figure 2.1. Let us

explain the projection onto an epigraph set of a convex cost function φ in detail.

Equation (2.2) is equivalent to:

w? =

[
wp

φ(wp)

]
= argmin

w∈Cf
‖

[
v

0

]
−

[
w

φ(w)

]
‖, (2.4)

where w? = [wT
p , φ(wp)] is the projection of [v, 0] onto the epigraph set. The

projection w? must be on the boundary of the epigraph set. Therefore, the

projection must be on the form [wT
p , φ(wp)]. Equation (2.4) becomes:

w? =

[
wp

φ(wp)

]
= argmin

w∈Cf
‖v −w‖22 + φ(w)2. (2.5)

In the case of total variation φ(w) = TV (w). It is also possible to use λφ(.) as a

the convex cost function and Eq. 2.5 becomes:

w? =

[
wp

φ(wp)

]
= argmin

w∈Cf
‖v −w‖22 + λ2φ(w)2. (2.6)

Actually, Combettes and Pesquet and other researchers including us used a

similar convex set in denoising and other signal restoration applications [9,26,40,

42]. The following convex set in RN describes all signals whose TV is bounded

by an upper bound ε:

Cf = {w : TV(w) ≤ ε}. (2.7)
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The parameter ε is a fixed upper bound on the total variation of the signal and

it has to be determined a priori in an ad-hoc manner. On the other hand we

do not specify a prescribed number on the TV of vectors in the epigraph set

based approach. The upper bound on TV is automatically determined by the

orthogonal projection onto Cf from the location of the corrupted signal as shown

in Figure 2.1.

In current TV based denoising methods [38, 40] the following cost function is

used:

f(w) = ‖v −w‖22 + λTV(w). (2.8)

The solution of (2.8) can be also obtained using the method that we discussed in

Section 1.3. Similar to the LASSO approach [54] a major problem with this ap-

proach is the estimation of the regularization parameter λ. One has to determine

the λ in an ad-hoc manner or by visual inspection. It is experimentally observed

that Eq. (2.6) produces good denoising results when λ = 1. Experimental results

are presented in Section 2.3.1. During this orthogonal projection operations, we

𝐯0𝐯4𝐯2

𝐯1

𝐯5

𝐯3

𝐰0
𝐰2

𝐰1

𝐰3

𝐰∗

Denoising
Solution

Supporting
hyperplanes

TV(w)

𝐶𝑓

𝐶𝑠

Figure 2.1: Graphical representation of the minimization of Eq. (2.2), using
projections onto the supporting hyperplanes of Cf . In this problem the sets Cs
and Cf intersect because TV (w) = 0 for w = [0, 0, ..., 0]T or for a constant vector.
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do not require any parameter adjustment as in [38].

2.1.1 Implementation of PES-TV

The projection operation described in Eq. (2.2) can not be obtained in one step

when the cost function is TV. The solution is determined by performing successive

orthogonal projections onto supporting hyperplanes of the epigraph set Cf . In

the first step, TV(v0) and the surface normal at v1 = [vT0 TV(v0)] in RN+1

are calculated. In this way, the equation of the supporting hyperplane at v1 is

obtained. The vector v0 = [vT0 0] is projected onto this hyperplane and w0 is

obtained as our first estimate as shown in Figure 2.1. In the second step, w0 is

projected onto the set Cs by simply making its last component zero. The TV of

this vector and the surface normal, and the supporting hyperplane is calculated

as in the previous step. We calculate the distance between v0 and wi at each

step of the iterative algorithm described in the previous paragraph. The distance

‖v0 −wi‖
2 does not always decrease for high i values. This happens around the

optimal denoising solution w?. Once we detect an increase in ‖v0 −wi‖
2, we

perform a refinement step to obtain the final solution of the denoising problem.

In refinement step, the supporting hyperplane at v2i−1 =
v2i−5+v2i−3

2
is used in

the next iteration. For instance, when v2 is projected, the distance is increased,

therefore, in i = 0 in Figure 2.1, instead of v3, vector v5 will be used in next step.

Next, v4 is projected onto the new supporting hyperplane, and w2 is obtained.

In Figure 2.1, by projecting the w2 onto Cf , the vector w3 is obtained which

is very close to the denoising solution w?. In general iterations continue until

‖wi −wi−1‖ ≤ ε, where ε is a prescribed number, or iterations can be stopped

after a certain number of iterations. A typical convergence graph is shown in

Figure 2.2 for the “note” image. It is possible to obtain a smoother version of w?

by simply projecting v inside the set Cf instead of the boundary of Cf . The PES-

TV algorithm is evaluated by comparison with well-known denoising algorithms.

The simulation results are presented in 2.3.1.
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Figure 2.2: Euclidian distance from v0 to the epigraph of TV at each iteration,
with noise standard deviation of σ = 30.

2.2 Denoising Images Corrupted by Impulsive

Noise Using 3D Block Maching, 3D Wiener

Filtering, and the PESC algorithm

The Block Matching 3D (BM3D) denoising algorithm [46], is introduced by Dabov

et al. This method outperforms almost all the denoising algorithms proposed up

to now in two-dimensional (2D) for Gaussian noise. However, it is unable to

denoise an image corrupted by impulsive noise. We modified this algorithm using

PES-TV algorithm to denoise the images corrupted both by Gaussian noise and

impulsive noise. This algorithm is a two step method which is presented in the

following sections.

2.2.1 Two Step Denoising Framework

A novel algorithm for denoising images that are corrupted by impulsive noise

is presented. Impulsive noise generates pixels which their gray level values are

not consistent with the neighboring pixels. The proposed denoising algorithm
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is a two step procedure. In the first step, image denoising is formulated as a

convex optimization problem, whose constraints are defined as limitations on

local variations between neighboring pixels. Projections onto the epigraph set of

TV function (PES-TV) are performed in the first step. Unlike similar approaches

in the literature, the PES-TV method does not require any prior information

about the noise variance. The first step is only capable of utilizing local relations

among pixels. It does not fully take advantage of correlations between spatially

distant areas of an image with similar appearance. In the second step a Wiener

filtering approach is cascaded to the PES-TV based method to take advantage of

global correlations in an image. In this step, the image is first divided into blocks

and blocks with similar content are jointly denoised using a 3D Wiener filter. The

denoising performance of the proposed two-step method was compared against

three state of the art denoising methods under various impulsive noise models.

In the first step, local variations among neighboring pixel values are minimized

in order to remove the impulsive components of the observed image. The first

step does not fully take advantage of the correlation between distant areas of an

image with similar appearance, e.g., blue sky region covering all the top portions

of an image, cheek of a facial image and even textural regions of a shirt. In the

second stage of the denoising method similar image blocks are determined using a

block matching algorithm and they are denoised using Wiener filtering as in [46].

The first step of the proposed algorithm is based on Projections onto the

Epigraph Set of the Total Variation function (PES-TV) [13, 14, 45]. In the PES-

TV approach, the denoising operation is formulated as an orthogonal projection

problem in which the input image is projected onto the epigraph set of the To-

tal Variation (TV) function. This stage produces the initial (basic estimate) for

second stage. In the second stage, the clock matching algorithm uses this ba-

sic estimate to group similar blocks more accurately. After block matching and

obtaining the coordinates of the similar blocks, the second stage uses these coor-

dinates to group the blocks of the noisy image. Later these 3D arrays of similar

blocks are denoised using 3D Wiener filtering.

In [46], Dabov et al. proposed Block-Matching 3D filtering (BM3D) denoising
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method that can utilize the correlation between similar areas of the image by

jointly denoising them together. BM3D seems to be the best image denoising

method for images corrupted by Gaussian noise [6,7,9,17,25,26,28–30,36,38,40,42,

44,46,48,55–58]. BM3D is also a two-stage algorithm. However the first stage of

BM3D requires an estimate of the noise variance beforehand to determine the hard

thresholding level used in the first stage. Hard-thresholding based method fails

to produce a good estimate of the image under impulsive noise in the first stage.

As a result, the second stage of the BM3D does not produce a reliable denoised

image when the noise is impulsive. On the other hand, the PES-TV denoising

method does not need an estimate of the noise variance. It does not require

any parameter adjustment, either. When we combine the second part of BM3D

with the PES-TV approach, we get better results than ordinary BM3D approach

for images corrupted by impulsive noise and very similar results for Gaussian

noise. The noise information is more effective in the first step of the denoising

algorithms than in the second step. An approximate estimation of the noise

variance is enough for performing denoising in the second step. Furthermore,

with an appropriate denoised image obtained in the first step, estimated variance

of the noise for second step will also be more reliable. The First step is introduced

in 2.1, and the second step is illustrated in the following section.

2.2.2 Second Step of the Denoising Framework: Block

Matching And Collaborative Filtering

The second step of the proposed denoising method is the “3D” approach intro-

duced by Dabov et al. [46]. The output of the PES-TV based denoising stage is

fed into the “3D” Block Matching (BM) step of BM3D.

In natural images, spatially distant areas/blocks are correlated with each other.

However, most denoising algorithms do not exploit this fact and only consider

local pixel variations in an image. Dabov et al. introduced block matching

and collaborative Wiener filtering concepts in a denoising framework to take

advantage of similarities between spatially distant blocks in an image. They
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first group similar looking regions in an image by block matching. Then, they

denoise all those regions together using a three dimensional (3D) approach called

collaborative Wiener filtering. We borrow this procedure from [46] and use it as

the second step of our denoising scheme as shown in Figure 2.3. In this section,

we briefly review the BM3D denoising method.

PES-TV

Noise variance 
estimation

B

Block-matching

B
3D transfom

Wiener filtering

Inverse 3D 
transform

Noisy 
image

Denoised 
image

Step 1 Step 2

Figure 2.3: Graphical representation of the proposed two stage denoising process.

2.2.3 Block Matching

First the PES-TV denoised image is divided into non-overlapping regions of fixed

size called reference blocks (BR). Then each reference block is compared against

candidate blocks of similar appearance (BC) using the following equation:

d(BR, BC) =
‖BR −BC‖22

N
, (2.9)

where N = M2 is the number of pixels in each block. Blocks satisfying the

similarity condition are grouped together to construct 3D arrays of Similar Blocks

(SB). The set of blocks satisfying the condition of block matching threshold are

grouped together. This set is as follows:

GSBR = {c ∈ wTV−rec : d(BR, BC) ≤ τth} (2.10)

where c represents the coordinate of blocks in the reconstructed image obtained

by the PES-TV stage, wTV−rec is the reconstructed image in the PES-TV stage,

and τth is the block matching threshold. This threshold is determined according
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to deterministic speculations based on the denoised image in the first step [46].

Each set GSBR is an N ×NGSBR
3D array of similar blocks, where NGSBR

is the

number of blocks in the set GSBR .

2.2.4 Collaborative Filtering

The 3D arrays obtained by block matching have both spatial and “temporal”

similarity. Therefore, the noise can be efficiently removed by the collaborative 3D

Wiener filtering. Wiener shrinkage coefficients for the set of blocks are determined

from the 3D transform coefficient as follows:

WGSBR
=

|T (GBE
SBR

)|2

|T (GBE
SBR

)|2 + σ2
, (2.11)

where GBE
SBR

is the 3D array for similar blocks from Basic Estimate (BE), which

is the output of the PES-TV step, T (.) is the transformation operator, |T (GBE
SB )|2

is the power spectrum of the basic estimate image, and σ2 is the variance of

the noise which is estimated from the difference image obtained by subtracting

the observed image and image obtained in the first stage. After obtaining the

coefficients, the collaborative filtering is realized by element wise multiplication

of WGSBR
by the 3D arrays of noisy image using the coordinates obtained in

PES-TV stage, Gn
SBR

, as follows:

wwie
rec = T−1(WGSBR

T (Gn
SBR

)). (2.12)

After filtering the 3D array, inverse transform and aggregation operation [46] is

performed to get the final denoised image. The overall process is explained graph-

ically in Figure 2.3. The simulation results for PES-TV, and BM3D with PES-TV

and other algorithms are presented in Section 2.3.1, and 2.3.2, respectively.
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2.3 Simulation Results

2.3.1 Denoising Using PES-TV

The PES-TV algorithm is tested with a wide range of images. Let us start

with the “Note” image shown in Figure 2.6a. This is corrupted by a zero mean

Gaussian noise with σ = 45 in Figure 2.6b. The image is restored using PES-

TV, SURE-LET [48], and Chambolle’s algorithm [38] and the denoised images

are shown in Figure 2.6c, 2.6d, and 2.6e, with SNR values equal to 15.08, 13.20,

and 11.02 dB, respectively. SURE-LET and Chambolle’s algorithm produce some

patches of gray pixels at the background. The regularization parameter λ in Eq.

(1.10) is manually adjusted to get the best possible results for each image and

each noise type and level in [38], and SURE-LET require the knowledge about

noises standard deviation in [48]. Moreover, Structural Similarity Index (SSIM) is

also calculated as in [59] for all methods. PES-TV algorithm not only produces

higher SNR and SSIM values than other methods, but also provides visually

better looking image. The same experiments are also done over “cancer cell”

image, which the results are presented in Figure 2.7. Denoising results for other

noise levels are presented in Table 2.1. We also tested the PES-TV algorithm

against ε-contaminated Gaussian noise (salt-and-pepper noise) with the PDF of

f(x) = εφ(
x

σ1
) + (1− ε)φ(

x

σ2
), (2.13)

where φ(x) is the standard Gaussian distribution with mean zero and unit stan-

dard deviation. The results of the tests are presented in Table 2.3. The perfor-

mance of the reconstruction is measured using the SNR criterion, which is defined

as follows

SNR = 20× log10(
‖worig‖

‖worig −wrec‖
), (2.14)

where worig is the original signal and wrec is the reconstructed signal. All the

SNR values in Tables are in dB.

To evaluate the performance of the PES-TV algorithm, it is also possible to
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Figure 2.4: Normalized root mean square error in each iteration for “Note” image
corrupted with Gaussian noise with σ = 25.

use Normalized Root Mean Square Error metric as

NRMSE(i) =
‖wi −worig‖
‖worig‖

i = 1, ..., N, (2.15)

where N is the number of the iterations, wi is the denoised image in ith step, and

worig is the original image. NRMSE is used to illustrate the convergence of the

PES-TV based denoising algorithm as is used in [26] . As shown in Figure 2.4,

NRMSE value decreases as the iterations proceeds while denoising the “Note”

image corrupted with Gaussian noise (σ = 25). For the same image another

convergence metric called Normalized Total Variation (NTV), which is defined

in [26] as

NTV(i) =
TV(wi)

TV(worig)
i = 1, ..., N, (2.16)

where wi and worig are the restored image in ith iteration, and the original im-

age, respectively. As an indicator of the successful convergence of the PES-TV

algorithm, the NTV curve converges to 1 in Figure 2.5, which means that the TV

value of the output image converges to the TV value of the original image using

PES-TV algorithm. In Figure 2.2, error value in each iteration step versus i is

shown. These three curves show that iterations converge to a solution roughly
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Figure 2.5: Normalized total variation in each iteration for “Note” image cor-
rupted with Gaussian noise with σ = 25.

around 100th iteration in “Note” image, which corrupted by independent Gaus-

sian noise with σ = 25. In Table 2.2, denoising results for 34 images including

10 well-known test images from image processing literature and 24 images from

Kodak Database [60], with different noise levels are presented. In almost all cases

PES-TV method produces higher SNR and SSIM results than [38,48].

2.3.2 Denoising Using BM3D and PESC

The basic estimate, which is obtained in the first step, affects the main denoising

process in Wiener filtering step. In BM3D approach, first step requires the knowl-

edge of the variance of the noise, however for impulsive noise the exact variance

is unknown. Therefore this step fails to generate an appropriate estimate for

impulsive noises for second step. Through the PES-TV approach [13] we bring

solution to these issues.

25



Table 2.1: Comparison of the results for denoising algorithms with Gaussian noise for
“note” image.

Noise σ Input PES-TV Chambolle [38] SURE-LET [48]

SNR SSIM SNR SSIM SNR SSIM SNR SSIM
5 21.12 0.2201 30.63 0.2367 29.48 0.2326 27.42 0.2212
10 15.12 0.2037 25.93 0.2290 24.89 0.2213 22.20 0.2086
15 11.56 0.1917 22.91 0.2216 21.76 0.2141 19.13 0.1999
20 9.06 0.1825 20.93 0.2165 19.55 0.2065 16.95 0.1867
25 7.14 0.1716 19.27 0.2111 17.73 0.2006 15.34 0.1810
30 5.59 0.1636 17.89 0.2102 16.43 0.1950 13.93 0.1767
35 4.21 0.1565 16.68 0.2073 15.23 0.1903 12.87 0.1706
40 3.07 0.0.1488 15.90 0.2030 14.07 0.1855 11.77 0.1645
45 2.05 0.1407 15.08 0.1984 13.20 0.1815 11.02 0.1606
50 1.12 0.1332 14.25 0.1909 12.19 0.1766 10.17 0.1862

Average 8.00 0.1712 19.95 0.2107 18.45 0.2004 16.08 0.1862

The impulsive noise changes the pixel values in the image as follows:

vi,j0 =

vi,j, if x < l

imin + y(imax − imin), if x > l
(2.17)

where vi,j is the (i, j)th pixel in the original image, x, y ∈ [0, 1] are two uniformly

distributed random variable, l is the parameter to determine the pixels to corrupt

with noise, and imax and imin are the severity of the noise [61]. The salt &

pepper noise and the ε-contaminated Gaussian noise are two types of impulsive

noises. The ε-contaminated Gaussian noise is widely used to represent impulsive

noise [55, 62]. The ε-contaminated Gaussian noise model is as follows:

vi,j0 =

η
i,j
1 , with probability 1− ε

ηi,j2 , with probability ε
(2.18)

where η1 and η2 are independent Gaussian noise sources with variances σ2
1 and σ2

2,

respectively. We assume that σ1 � σ2, and ε is a small positive number [57]. The

reconstruction performance is measured using the Signal-to-Noise Ratio (SNR)

as in 2.14 and Peak-SNR (PSNR) criterion, which is defined as follows:

PSNR = 20× log10(
max(worig)

‖worig −wrec‖2/N
), (2.19)
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Table 2.2: Comparison of the results for denoising algorithms under Gaussian noise
with standard deviations of σ.

Images σ Input SNR PES-TV Chambolle [38] SURE-LET [48]

House 30 13.85 27.60 27.13 27.38
House 50 9.45 24.61 24.36 24.59
Lena 30 12.95 23.85 23.54 23.92
Lena 50 8.50 21.68 21.37 21.38

Mandrill 30 13.04 19.98 19.64 20.56
Mandrill 50 8.61 17.94 17.92 18.22

Living room 30 12.65 21.33 20.88 21.29
Living room 50 8.20 19.34 19.05 19.19

Lake 30 13.44 22.19 21.86 22.23
Lake 50 8.97 20.26 19.90 20.07

Jet plane 30 15.57 26.31 25.91 26.49
Jet plane 50 11.33 24.07 23.54 24.10
Peppers 30 12.65 24.24 23.59 23.78
Peppers 50 8.20 22.05 21.36 21.82
Pirate 30 12.13 21.43 21.30 21.27
Pirate 50 7.71 19.58 19.43 19.32

Cameraman 30 12.97 24.20 23.67 24.58
Cameraman 50 8.55 21.80 21.22 22.06

Flower 30 11.84 21.97 20.89 17.20
Flower 50 7.42 19.00 18.88 13.21

24-Kodak(ave.) 30 11.92 21.05 20.80 20.92

24-Kodak(ave.) 50 7.48 18.97 18.58 18.88

Average±std 30 12.27±1.66 23.12±2.35 22.66±2.34 22.70±2.91

Average±std 50 7.84±1.67 20.85±2.17 20.26±3.13 20.51±2.07

where worig is the original signal, wrec is the reconstructed signal, and N is the

total number of pixels in image.

Denoising results for “Note” image with ε-contaminated noise are summarized

in Table 2.3. In this toy example, the PES-TV approach produces the best

results. The denoising results for a set of 34 images including 10 well-known test

images from image processing literature and 24 images from Kodak Database [63],

which are corrupted by ε-contaminated noise with σ1 = 5 and ε = 0.1, and σ2 ∈
[30, 80] are presented in Tables 2.5 and 2.6 for PES-TV and BM3D algorithms,

respectively. In this case, the noise is the combination of two Gaussian noises
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with different variances, therefore it can not be exactly modeled using a single

variance parameter. The PES-TV algorithm performs better and produces higher

PSNR values compared to all other denoising results obtained using [38, 46, 48],

because it does not require knowledge of variance of the noise. We also present

an additional illustrative example in Figure 2.9.

In another set of experiments, images that are corrupted by a mixture of salt

& pepper and Gaussian noises are denoised using the proposed algorithm and

also with BM3D and BM3D with median filtering for comparison purposes. The

salt & pepper impulsive noise model is as follows:

vi,j0 =


smin, with probability p

smax, with probability q

vi,j, with probability 1− p− q

(2.20)

where vi,j is the gray level pixel value of the original image, [smin, smax] are the

dynamic range of the original image, smin ≤ vi,j ≤ smax for all (i, j) values, vi,j0 is

the gray level pixel value of the noisy image, r = p+ q defines the noise level [64].

The density of the salt & pepper noise is set to 0.02 and 0.05 and Gaussian

noise is added with different variances. Results for this set of experiments are

shown in Table 2.7 and 2.8, respectively. In almost all cases the PSNR values

for PES-TV algorithm are higher than other algorithms. In Table 2.7 and 2.8

an α-trimmed mean filter [65] is used before processing. The third column refers

to median filtering followed by second stage (3D Wiener filtering) of the BM3D

algorithm (BM3DM).
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(a) Original (b) Noisy

(c) PES-TV (d) Chambolle’s algo.

(e) SURE-LET

Figure 2.6: (a) A portion of original “Note” image, (b) image corrupted with
Gaussian noise with σ = 45, denoised images, using: (c) PES-TV; SNR = 15.08
dB and SSIM = 0.1984, (d) Chambolle’s algorithm; SNR = 13.20 dB and SSIM
= 0.1815, (e) SURE-LET; SNR = 11.02 dB and SSIM = 0.1606. Chambolle’s
algorithm and SURE-LET produce some patches of gray pixels at the background.
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(a) Original (b) Noisy

(c) PES-TV (d) Chambolle’s algo.

(e) SURE-LET

Figure 2.7: (a) Original “Cancer cell” image, (b) image corrupted with Gaussian
noise with σ = 20, denoised image, using: (c) PES-TV; SNR = 32.31 dB and
SSIM = 0.5182, (d) Chambolle’s algorithm; SNR = 31.18 dB and SSIM = 0.3978,
(e) SURE-LET algorithm; SNR = 31.23 dB and SSIM = 0.4374.
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(a) Original (b) Noisy

(c) PES-TV (d) Chambolle’s algo.

Figure 2.8: “Flower” image experiments: experiments (a) Original “Flower” im-
age, (b) “Flower” image corrupted with Gaussian noise with σ = 30, (c) De-
noised “Flower” image, using PES-TV algorithm; SNR = 21.97 dB, (d) Denoised
“Flower” image, using Chambolle’s algorithm; SNR = 20.89 dB.
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Table 2.3: Comparison of the results for denoising algorithms for ε-Contaminated
Gaussian noise for “note” image

ε σ1 σ2 Input SNR PES-TV Chambolle [38] SURE-LET [48]

0.9 5 30 14.64 23.44 22.26 16.11
0.9 5 40 12.55 21.39 20.32 13.65
0.9 5 50 10.75 19.49 18.63 11.64
0.9 5 60 9.29 17.61 17.37 10.25
0.9 5 70 7.98 16.01 16.24 8.91
0.9 5 80 6.89 14.54 14.97 7.88

0.9 10 30 12.56 22.88 21.71 17.06
0.9 10 40 11.13 21.00 19.97 14.26
0.9 10 50 9.85 19.35 18.46 12.20
0.9 10 60 8.58 17.87 17.10 10.69
0.9 10 70 7.52 16.38 16.03 9.18
0.9 10 80 6.46 15.05 15.12 8.14

0.95 5 30 16.75 24.52 23.78 19.12
0.95 5 40 14.98 22.59 21.54 16.62
0.95 5 50 13.41 20.54 19.91 14.62
0.95 5 60 12.10 18.72 18.63 13.11
0.95 5 70 10.80 17.13 17.50 11.71
0.95 5 80 9.76 15.63 16.38 10.54

0.95 10 30 13.68 23.79 22.62 19.34
0.95 10 40 12.66 22.09 21.12 17.06
0.95 10 50 11.71 20.65 19.60 15.16
0.95 10 60 10.72 19.10 18.30 13.40
0.95 10 70 9.82 17.59 17.22 12.11
0.95 10 80 8.92 16.12 16.45 10.91
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(a) (b)

(c) (d)

Figure 2.9: “Cameraman” image experiments: (a) Detail from the original “Cam-
eraman” image, (b) “Cameraman” image corrupted with Gaussian noise with
σ = 50, (c) Denoised “Cameraman” image, using PES-TV algorithm; SNR =
21.55 dB, (d) Denoised “Cameraman” image, using Chambolle’s algorithm; SNR
= 21.22 dB.
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(a) House (b) Jet plane (c) Lake

(d) Lena (e) Living room (f) Mandrill

(g) Peppers (h) Pirate

Figure 2.10: Sample images used in our experiments (a) House, (b) Jet plane, (c)
Lake, (d) Lena, (e) Living room, (f) Mandrill, (g) Peppers, (h) Pirate.
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Table 2.4: Comparison of the SNR results for denoising algorithms for ε-
contaminated Gaussian noise for “Note” image

ε σ1 σ2 SNRInput PES-TV & BM3D Chambolle BM3D

0.1 5 30 14.64 29.67 22.26 24.43
0.1 5 40 12.55 27.84 20.32 20.75
0.1 5 50 10.75 25.84 18.63 17.59
0.1 5 60 9.29 24.12 17.37 15.09
0.1 5 70 7.98 22.52 16.24 13.14
0.1 5 80 6.89 21.03 14.97 11.60

0.1 10 30 12.56 25.98 21.71 25.73
0.1 10 40 11.13 24.74 19.97 23.83
0.1 10 50 9.85 23.24 18.46 21.56
0.1 10 60 8.58 22.07 17.10 19.11
0.1 10 70 7.52 20.49 16.03 16.71
0.1 10 80 6.46 18.84 15.12 14.87

0.05 5 30 16.75 28.60 23.78 26.93
0.05 5 40 14.98 26.04 21.54 23.10
0.05 5 50 13.41 23.91 19.91 19.98
0.05 5 60 12.10 21.63 18.63 17.60
0.05 5 70 10.80 19.50 17.50 15.87
0.05 5 80 9.76 17.23 16.38 14.38

0.05 10 30 13.68 26.90 22.62 26.70
0.05 10 40 12.66 25.68 21.12 25.46
0.05 10 50 11.71 24.72 19.60 23.73
0.05 10 60 10.72 23.62 18.30 21.43
0.05 10 70 9.82 21.77 17.22 19.33
0.05 10 80 8.92 20.29 16.45 17.25
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(a) (b)

(c) (d)

Figure 2.11: (a) A portion of original “Peppers” image, (b) image corrupted by ε-
contaminated noise with ε = 0.1, σ1 = 5, and σ2 = 50, (c) denoised image, using
PES-TV algorithm; PSNR = 32.02 dB and, (d) denoised image, using BM3D; PSNR
= 27.62 dB. Standard BM3D algorithm fails to clear impulsive noise.
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(a) (b)

(c) (d)

(e)

Figure 2.12: (a) A portion of original “Lena” image, (b) image corrupted by salt
& pepper noise with density 0.05, and additive white Gaussian noise with standard
deviation σ = 20, (c) denoised image, using PES-TV algorithm; PSNR = 32.57 dB,
(d) denoised image, using BM3D; PSNR = 28.95 dB, and (e) denoised image, using
BM3D-Median; PSNR = 30.10 dB.
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Table 2.5: PSNR Results for denoising using PES-TV algorithms under ε-
contaminated noise with ε = 0.1, σ1 = 5, with different σ2’s.

Images σ2 = 30 σ2 = 40 σ2 = 50 σ2 = 60 σ2 = 70 σ2 = 80

House 36.87 34.39 31.87 29.74 28.00 26.53
Lena 34.55 32.85 31.40 29.97 28.55 27.27

Mandrill 28.31 27.86 27.36 26.76 25.33 24.59
Living room 31.61 30.94 29.57 28.41 27.46 26.38

Lake 32.03 31.29 29.71 28.64 27.57 26.58
Jet plane 34.56 32.75 31.20 29.85 28.32 27.05
Peppers 34.64 33.39 32.02 30.56 29.22 27.87
Pirate 31.46 30.80 29.60 28.50 27.49 26.53

Cameraman 35.29 33.45 31.45 29.74 28.14 26.65
Flower 31.17 31.03 29.85 28.78 27.69 26.88

Kodak(ave.) 32.85 31.19 29.88 28.65 27.51 26.48

Average 33.08 31.53 30.14 28.86 27.64 27.30

Table 2.6: PSNR Results for denoising using BM3D algorithms under ε-
contaminated noise with ε = 0.1, σ1 = 5, with different σ2’s.

Images σ2 = 30 σ2 = 40 σ2 = 50 σ2 = 60 σ2 = 70 σ2 = 80

House 34.65 30.40 27.59 25.34 23.69 22.40
Lena 33.53 30.13 27.28 25.13 23.55 22.29

Mandrill 31.48 28.88 26.66 24.89 23.36 22.27
Living room 33.06 30.14 27.64 25.56 23.90 22.49

Lake 33.70 30.36 27.63 25.42 23.75 22.46
Jet plane 33.50 30.28 27.67 25.47 24.02 22.68
Peppers 33.66 30.50 27.62 25.48 23.86 22.46
Pirate 32.58 29.74 27.67 25.20 23.69 22.45

Cameraman 33.99 30.32 27.39 25.29 23.69 22.40
Flower 32.72 30.27 27.91 25.76 24.07 22.76

Kodak(ave.) 33.11 30.53 28.10 26.05 24.37 23.04

Average 33.28 30.50 28.00 25.92 24.26 22.93
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An illustrative comparison of PES-TV vs. BM3D and BM3DM is presented

in Figure 2.11 for “peppers” image. In the example images the success of the

PES-TV algorithm can be easily observed. For example in Figure 2.11, the white

and black dots of ε-contaminated noise still remains in the image denoised using

BM3D algorithm. On the other hand, this issue is solved by the PES-TV method.

In [56], the proximity operator based denoising results for the Cameraman and

Lena images are reported for various regularization parameter λ values for Gaus-

sian noise with σ = 15 and 25 standard deviation levels. Best PSNR values for

Lena image for σ = 15 (σ = 25) is 32.33 dB (30.13 dB), when the regularization

parameter λ = 0.09 (λ = 0.05). We obtain PSNR values equal to 32.43 dB and

30.12 dB, respectively, without any regularization parameter adjustment. For

Cameraman our results are much better with PSNR = 33.10 dB and 30.60 dB

compared to 30.39 dB and 27.77 dB with λ = 0.1 and λ = 0.07 for σ = 15 and

25, respectively.

The first step of the BM3D approach relies on hard-thresholding, which cannot

remove isolated large amplitude impulsive noise components. On the other hand,

the PES-TV approach successfully reduces the impulsive noise and produces bet-

ter estimates for the Wiener filtering based second stage of the BM3D denoising

method. It is experimentally observed that the proposed scheme on images cor-

rupted by impulsive noise results in much better denoising performance compared

to both Chambolle’s method and standard BM3D denoising.
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Chapter 3

Denoising Using Projection onto

Epigraph Set of `1-Norm

Functions (PES-`1)

As mentioned before, Projection onto Epigraph Set of Convex Cost function

(PESC), can be also used for denoising 1D signals. The `1-norm cost function is

used for denoising 1D signals. Dobov et al.’s template based approach connot be

used in most signals because there are no repetitive windows in most practical 1D

signals. In the following sections, the Projection onto Epigraph Set of `1-norm

function (PES-`1) is introduced.

3.1 The (PES-`1) Algorithm

In standard wavelet denoising, a signal corrupted by additive noise is wavelet

transformed and resulting wavelet signals are soft- or hard-thresholded. After

this step the denoised signal is reconstructed from the thresholded wavelet sig-

nals [2, 51]. Thresholding wavelet coefficients intuitively makes sense because

wavelet signals obtained from an orthogonal or biorthogonal wavelet filter-bank

42



exhibit large amplitude coefficients only around edges or change instances of the

original signal. The assumption is that other wavelet coefficients with small

amplitude should be due to noise. A wide range of wavelet denoising methods

which take advantage of the sparse nature of practical signals in wavelet domain

are developed based on the Donoho and Johnstone’s original denoising idea, see

e.g. [1–3,13,47,51,66].

3.1.1 Problem Statement

Orthogonal projection of a vector onto a hyperplane is the key mathematical

operation used in this thesis. Let wo be a vector in RK . The orthogonal projection

wpo of wo onto the hyperplane h = aTwo =
∑K

n=1 a[n]wo[n] is given by

wpo[n] = wo[n] +
h−

∑K
n=1 a[n]wo[n]

‖a‖22
a[n] n = 1, 2, . . . , K, (3.1)

where wo[n],wpo[n], and a[n] are the n-th entries of the vectors wo,wpo, and a,

respectively, and ‖a‖2 is the Euclidean length (norm) of the vector a. Orthogonal

projection onto a hyperplane is also the key step of the well-known normalized

LMS adaptive filtering algorithm and many online learning algorithms [67].

Consider the following basic denoising framework. Let v[n] be a discrete-time

signal and x[n] be a noisy version of v[n]:

x[n] = v[n] + ξ[n], n = 1, 2, . . . , N, (3.2)

where ξ[n] is the additive, i.i.d, zero-mean, white Gaussian noise with variance σ2.

An L-level discrete wavelet transform of x[n] is computed and the lowband signal

xL and wavelet signals w1,w2, . . . ,wL are obtained. After this step, wavelet

signals are soft-thresholded as shown in Figure 3.1. The soft-threshold, θ, can be

selected in many ways [1, 2, 4, 47] using statistical methods. One possible choice

is

θ = γ.σ.
√

2log(N)/N, (3.3)

where γ is a constant [2]. In Eq. (3.3) the noise variance σ2 has to be known or

properly estimated from the observations, x[n].
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𝜃𝑖

-𝜃𝑖

0

𝑤𝑜𝑢𝑡

𝑤𝑖𝑛

Figure 3.1: Soft-thresholding operation: wout,n = sign(win,n){max(|win,n−θi, 0|)}

It is possible to define a soft-threshold θi for each wavelet signal wi. Here,

a method of estimating soft-threshold values θi using a deterministic approach

based on linear algebra and orthogonal projections is presented.

3.1.2 Wavelet Signals Denoising with Projections onto `1-

balls

Let us first study the projection of wavelet signals w1,w2, . . . ,wL onto `1-balls,

which we will use to describe the projection onto the epigraph set of `1-norm cost

function. We will use the term vector and signal in an interchangeable manner

from now on. An `1-ball Ci, with size di is defined as follows:

Ci = {w ∈ RN :
∑
n

|w[n]| ≤ di}, (3.4)

where w[n] is the n-th component of the vector w, and di is the size of the `1-

ball. In other words, an `1-ball is the set of vectors characterized by the fact

that the sum of the magnitude of its components is lower than some specified

value. Geometrically, such an `1-ball is a diamond shaped region bounded by a

collection of hyperplanes as depicted in Figure 3.2. The orthogonal projection of
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a wavelet vector wi onto an `1-ball is mathematically defined as follows:

wpi = arg min ‖wi −w‖22 (3.5)

such that ‖wi‖ =
∑
n

|wi[n]| ≤ di,

where wi is the i-th wavelet signal, ‖.‖2 is the Euclidean norm, and ‖.‖1 is the `1

norm. The orthogonal projection operation onto an `1-ball is graphically shown

in Figure 3.2. When ‖wi‖1 ≤ di is satisfied, the wavelet signal is inside the ball,

the projection has no effect and wpl = wl. In general, it can be shown that the

orthogonal projection operation soft-thresholds each wavelet coefficient wi[n] as

follows:

wpi[n] = sign(wi[n]) max
{

(|wi[n]| − θi), 0
}
, (3.6)

where sign(wi[n]) is the sign of wi[n], and θi is a soft-thresholding constant whose

value is determined according to the size of the `1-ball, di [68]. Algorithm 1 is

an example of a method to solve the minimization problem (3.5) and thereby

provide the constant θi for a given di value [68].

𝐰𝒊

𝐰𝐩𝒊

𝐰𝒐

 𝐰𝐩𝒐

𝑑𝑖

−𝑑𝑖

𝐰𝐩𝒐

𝐰𝒍

 𝐰𝐩𝐨

Figure 3.2: Graphical illustration of projection onto an `1-ball with size di: Vec-
tors wpi and w̃po are orthogonal projections of wi and wo onto an `1-ball with
size di, respectively. The vector wl is inside the ball, ‖wl‖1 ≤ di, and projection
has no effect: wpl = wl

Projection of a wavelet signal onto an `1-ball reduces amplitudes of wavelet
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coefficients of the input vector and eliminates the small valued wavelet coeffi-

cients, which are less than the threshold θi. As a result, wavelet coefficients

which are probably due to noise, are removed by the projection operation. Pro-

jection operation onto an `1-ball retains the edges and sharp variation regions

of the original signal because wavelet signals have large amplitude valued co-

efficients corresponding to edges [51] and they are not significantly affected by

soft-thresholding. In standard wavelet denoising methods, the low-band signal

xL is not processed because xL is a low resolution version of the original signal

containing large amplitude coefficients almost for all n for most practical signals

and images.

Algorithm 1 Order (Klog(K)) algorithm implementing projection onto the `1-
ball with size di.

1: Inputs:

A vector wi = [wi[1], . . . , wi[K]] and a scalar di > 0

2: Initialize:

Sort |wi[n]| for n = 1, . . . ,K and obtain the rank ordered
sequence µ1 ≥ µ2 ≥, . . . ,≥ µK. The soft-threshold value, θi, is
given by

θi =
1

ρ

( ρ∑
n=1

µn − di
)

such that ρ = max
{
j ∈ {1, 2, . . . ,K} : µj −

1

j

( j∑
r=1

µr − di
)
> 0
}

3: Output:

wpi[n] = sign(wi[n])max
{
|wi[n]| − θi, 0

}
, n = 1, 2, . . . ,K

Let us consider Figure 3.2 once again and consider the vector wo. The vector

wpo is the orthogonal projection of wo onto one of the boundary hyperplanes of

the `1-ball:
K∑
n=1

sign(wo[n])w[n]− di = 0. (3.7)

The vector ŵpo in Figure 3.2 is the projected version of wpo back to the quadrant

of wo. It is also possible to use the vector ŵpo for denoising purposes. The

vertical entry of ŵpo is the same as w̃po, which is zero, but the horizontal entry

of ŵpo is larger in amplitude than the first entry of w̃po, which is the projection

vector in `1-ball. In general, zero valued entries of the w̃po and ŵpo are the same.

Therefore, significant coefficients of wavelet signals can be determined after two

orthogonal projections, and the rest of coefficients are zeroed out.
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In standard wavelet denoising, the noise variance now has to be estimated to

determine the soft-threshold value. Equivalently, the size of the `1-ball, di, has to

be estimated. Moreover, both standard wavelet denoising and the `1-ball based

denoising need to determine the number of wavelet decomposition levels.

The next step is the estimation of the size of the `1-ball, di. We estimate the

size of the `1-ball, di, by projecting wi onto the epigraph set of `1-norm cost

function which is an upside down pyramid in RN+1 as shown in Figure 3.3. An

upside down pyramid is constructed by a family of `1-balls or diamond shaped

regions with different sizes ranging from 0 to dmax,i =
∑

n |wi[n]|, whose value

is the `1-norm of wi. When we orthogonally project wi onto the upside down

pyramid, we not only estimate the size of the `1-ball, but also soft-threshold the

wavelet signal wi as discussed in the Section 3.1.3.

3.1.3 Estimation of Denoising Thresholds

The epigraph set of `1-norm cost function is an upside down pyramid shaped

region as shown in Figure 3.3. Each horizontal slice of the upside down pyramid

is an `1-ball. The smallest value of the `1-ball is 0, which is at the bottom of

the pyramid. The largest value of the `1-ball in the upside down pyramid is

dmax,i = ‖wi‖1, which is determined by the boundary of the `1-ball touching the

wavelet signal wi, i.e., the wavelet signal wi is on one of the boundary hyperplanes

of the `1-ball.

Orthogonal projection of wi onto an `1-ball with d = 0 produces an all-zero

result. Projection of wi onto an `1-ball with size dmax,i, does not change wi

because wi is on the boundary of the `1-ball. Therefore, for meaningful results,

the size of the `1-ball, di = zpi, must satisfy the inequality 0 < zpi < dmax,i, for

denoising. This condition can be expressed as follows:

‖wi‖1 =
K∑
k=1

|wi[k]| ≤ zpi, (3.8)

where K is the length of the wavelet vector w = [w[1],w[2], . . . ,w[K]]T ∈ RK .
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The condition (3.8) corresponds to the epigraph set C of the `1-norm cost function

in RK+1, which is graphically illustrated in Figure 3.3 for wi ∈ R2 [13, 66]. The

epigraph set C is defined in RN+1 as follows:

C = {wi = [wT
i , zpi]

T ∈ RK+1 : ‖wi‖1 ≤ zpi, zpi ≤ dmax,i}, (3.9)

which represents a family of `1-balls for 0 < zpi ≤ dmax,i in RK+1. In (3.9) there

are K + 1 variables: wi[1], . . . ,wi[K], and zpi. Since the space is now K + 1

dimensional, we increase the size of wavelet signals by one:

wi = [wT
i , 0]T = [wi[1], wi[2], . . . , wi[K], 0]T , (3.10)

where wi ∈ RK+1. The signal wi is the K + 1 dimensional version of vector

wi ∈ RK . From now on, we underline vectors in RK+1 to distinguish them from

K dimensional vectors.

The extended wavelet vector wi can be projected onto the epigraph set C to

determine the vector wpi = [wpi[1], . . . ,wpi[K], zpi]
T as graphically illustrated in

Figure 3.3. This projection is unique and is the closest vector on the epigraph

set to wi = [wT
i , 0]T . The baseline mathematical operation is an orthogonal

projection onto a hyperplane which is the face (boundary) of the epigraph set

C in the quadrant of the wi. The orthogonal projection wpi of wi is a denoised

version of wi because it is equivalent to the orthogonal projection of wi onto the

`1-ball with size zpi in RK , as graphically illustrated in Figure 3.3.

Orthogonal projection onto the epigraph set C can be computed in two steps.

In the first step, [wT
i , 0]T is projected onto the boundary hyperplane of the epi-

graph set which is defined as:

K∑
n=1

sign(wi[n]).wi[n]− zpi = 0, (3.11)

where the coefficients of the above hyperplane are determined according to the

signs of wi[n]. This hyperplane determines the boundary of the epigraph set C
facing the vector wi as shown in Figure 3.3. The projection vector wpi onto the

hyperplane (3.11) in RK+1 is determined using Equation (3.1), which is:

wpi[n] = wi[n]−
∑K

n=1 |wi[n]|
K + 1

sign(wi[n]) n = 1, 2, . . . , K, (3.12)
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where K+ 1 = ‖[sign(wi[1]), . . . , sign(wi[k]),−1]‖2 and the last component zpi of

wpi is given by

zpi =

∑K
n=1 sign(wi[n])wi[n]

K + 1
=

∑K
n=1 |wi[n]|
K + 1

. (3.13)

As mentioned earlier above, this orthogonal projection operation also determines

the size of the `1-ball, di = zpi, which can be verified using geometry.

In general, the projection vector wpi may or may not be the projection of wi

onto the epigraph set C. In Figures 3.2 and 3.3, it is. The `1-ball in Figure 3.2

can be interpreted as the projection of 3-D `1-ball onto 2-D plane (view from the

top). The issue comes from the fact that projecting onto the `1-ball has been

simplified to projecting onto a single hyperplane, which may not yield the desired

result in some specific geometrical configurations. For instance, in Figure 3.2,

the vector wpo is neither the orthogonal projection of wo onto the `1-ball, nor to

the epigraph set of the `1-ball, because wpo is not on the `1-ball. Such cases can

easily be spotted by checking the signs of the entries of the projection vectors. If

the signs of the entries wpi[n] of projection vector wpi are the same as wi[n] for

all n then the wpi is on the epigraph set C, otherwise wpi is not on the `1-ball. If

wpi is not on the `1-ball we can still project wi onto the `1-ball using Algorithm

1 or Duchi et al’s `1-ball projection algorithm [68] using the value of di = zpi

determined in Equation (3.13).

In summary, we have the following two steps: (i) project wi = [wT
i , 0]T onto

the boundary hyperplane of the epigraph set C and determine di using Equation

(3.13); (ii) if sign(wi[n]) = sign(wpi[n]) for all n, wpi is the projection vector;

otherwise, use di = zpi in Algorithm 1 to determine the final projection vector.

Since there are i = 1, 2, . . . , L wavelet signals, each wavelet signal wi should

be projected onto possibly distinct `1-balls with sizes di. Notice that di is not

the value of the soft-threshold, it is the size of the `1-ball. The value of the

soft-threshold is determined using Algorithm 1.

In practice, we may further simplify step (ii) in denoising applications. Our

goal is to zero out insignificant wavelet coefficients. Therefore, we compare signs

of entries of wpo and wo. We can zero out those entries whose signs change after
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Figure 3.3: Projection of wi[n] onto the epigraph set of `1-norm cost function:
C = {w :

∑K−1
n=0 |w[k]| ≤ zpi}, gray shaded region

the orthogonal projection. Therefore, step (ii) becomes

ŵpo[n] =

wpo[n], if sign(wpo[n]) = sign(wo[n])

0, otherwise.
(3.14)

This operation is also graphically illustrated in Figure 3.2. The vector wo is

projected onto the boundary hyperplane facing wo to obtain wpo, which then

projected back to the quadrant of wo to obtain the denoised version ŵpo. This

process can be iterated a couple of times to approach the orthogonal projection

vector w̃po as shown in Figure 3.2.

Stronger denoising of the input vector is simply a matter of selecting a zp value

smaller than zpi in Equation (3.13). A zp value closer to zero leads to a higher

threshold and forces more wavelet coefficients to be zero after the projection

operation.
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3.1.4 How to Determine the Number of Wavelet Decom-

position Levels

There are many ways to estimate the number of wavelet decomposition levels [1].

It is also possible to use the Fourier transform of the noisy signal to approximately

estimate the bandwidth of the signal. Once the bandwidth ω0 of the original

signal is approximately determined, it can be used to estimate the number of

wavelet transform levels and the bandwidth of the low-band signal xL. In an L-

level wavelet decomposition, the low-band signal xL approximately comes from

the [0, π
2L

] frequency band of the signal x. Therefore, π
2L

must be comparable to

ω0 so that the actual signal components are not soft-thresholded. Only wavelet

signals w1, . . . ,wL−1,wL, whose Fourier transforms approximately occupy the

bands [π
2
, π], . . . , [ π

2L−1 ,
π

2L−2 ], [ π
2L
, π
2L−1 ], respectively, should be soft-thresholded in

denoising. For example, consider the cusp signal defined in MATLAB. It is

possible to estimate an approximate frequency value ω0 for this signal. The

cusp signal is corrupted by additive zero-mean white Gaussian noise with σ =

20% of the maximum amplitude of the original signal as shown in Figure 3.8b.

The magnitude of the Fourier transform of the cusp signal is shown in Figure

3.4. For this signal, an L = 5 level wavelet decomposition is suitable because

the magnitude of the Fourier transform approaches the noise floor level at high

frequencies after ω0 ≈ π
46

as shown in Figure 3.4. Therefore, L = 5 ( π
25
> ω0) is

selected as the number of wavelet decomposition levels.

It is also possible to use a pyramidal structure for signal decomposition instead

of the wavelet transform. The noisy signal is low-pass filtered with cut-off fre-

quency π
8

for cusp signal and the output xlp[n] is subtracted from the noisy signal

x[n] to obtain the high-pass signal xhp[n] as shown in Figure 3.5. The signal is

projected onto the epigraph of `1-ball and xhd[n] is obtained. Projection onto

the Epigraph Set of `1-ball (PES-`1), described in the previous section, removes

the noise by soft-thresholding. The pyramidal signal decomposition approach is

similar to undecimated wavelet transform. The denoised signal xden[n] is recon-

structed by adding xhd[n] and xlp[n] as shown in Figure 3.5. It is possible to use
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Figure 3.4: Discrete-time Fourier transform magnitude of cusp signal corrupted
by noise. The wavelet decomposition level L is selected as 5 satisfying π

25
> ω0,

which is the approximate bandwidth of the signal.

different thresholds for different subbands as in wavelet transform, using a mul-

tistage pyramid as shown in Figure 3.5. In the first stage a low-pass filter with

cut-off π
2

can be used and xhp1[n] is projected onto the epigraph set of `1-ball

producing a threshold for the subband [π
2
, π]. In the second stage, another low-

pass filter with cut-off π
4

can be used and xhp[n] is projected onto the epigraph

set producing a threshold for [π
4
, π
2
], etc.

Figure 3.5: Pyramidal filtering based denoising. the high-pass filtered signal is
Projected onto the Epigraph Set of `1 (PES-`1).

The simulation results for PES-`1 algorithm with both pyramidal structure

and wavelet transform domain are compared to the well-known algorithms. This

simulation results are presented in Section 3.2.
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3.2 Simulation Results

Epigraph set based threshold selection is compared with wavelet denoising meth-

ods used in MATLAB [1, 2, 47]. The heavy sine signal shown in Figure 3.6a is

corrupted by a zero mean Gaussian noise with σ = 20% of the maximum am-

plitude of the original signal. The signal is restored using PES-`1 with pyramid

structure, PES-`1 with wavelet, MATLAB’s wavelet multivariate denoising algo-

rithm [1], MATLAB’s soft-thresholding denoising algorithm (for minimaxi and

rigrsure thresholds), and wavelet thresholding denoising method. The denoised

signals are shown in Figure 3.6c, 3.6d, 3.6e, 3.6f, 3.6g, and 3.6h with SNR val-

ues equal to 23.84, 23.79, 23.52, 23.71, 23.06 dB, and 21.38, respectively. The

original, noisy and denoised signals for piece-regular, and cusp signals are

also presented in Figures 3.7 and 3.8, respectively. In Figures 3.7b and 3.8b,

the original signal is corrupted by a zero mean Gaussian noise with σ = 10%

of the maximum amplitude of the original signal. On the average, the proposed

PES-`1 with pyramid and PES-`1 with wavelet method produce better thresholds

than the other soft-thresholding methods. In another example the cusp signal

is corrupted by a zero mean Gaussian noise with σ = 20% of the maximum

amplitude of the original signal as in Figure 3.10a. The denoising results for

this case is presented in Figure 3.10b. MATLAB codes of the denoising algo-

rithms and other simulation examples are available in the following web-page:

http://signal.ee.bilkent.edu.tr/1DDenoisingSoftware.html.

Extensive simulation results for other test signals in MATLAB are presented

in Tables 3.1, 3.2, and 3.3, for the cases with Gaussian noise with σ = 10,

20, and 30 % of maximum amplitude of original signal, respectively. These

results are obtained by averaging the SNR values after repeating the simu-

lations for 300 times. The SNR is calculated using the formula: SNR =

20 × log10(‖worig‖/‖worig − wrec‖). In this lecture note, it is shown that soft-

denoising threshold can be determined using basic linear algebra.
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(a) Original signal (b) Noisy signal

(c) PES-`1 with pyramid (d) PES-`1 with wavelet

Figure 3.6: (a) Original heavy sine signal, (b) signal corrupted with Gaussian
noise with σ = 20% of maximum amplitude of the original signal, and denoised
signal using (c) PES-`1-ball with pyramid; SNR = 23.84 dB and, (d) PES-`1-ball
with wavelet; SNR = 23.79 dB, (cont.)
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(e) Wavelet denoising in MATLAB [1] (f) Wavelet denoising minimaxi algorithm [2]

(g) Wavelet denoising rigrsure algorithm [3] (h) Wavelet denoising with T = 3σ̂ [2, 4]

Figure 3.6: (e) Wavelet denoising in Matlab; SNR = 23.52 dB [1], (f) Wavelet de-
noising minimaxi algorithm [2]; SNR = 23.71 dB, (g) Wavelet denoising rigrsure

algorithm [3]; SNR = 23.06 dB, (h) Wavelet denoising with T = 3σ̂ [2, 4]; SNR
= 21.38 dB.

55



(a) Original signal (b) Noisy signal

(c) PES-`1 with pyramid (d) PES-`1 with wavelet

Figure 3.7: (a) Original piece-regular signal, (b) signal corrupted with Gaus-
sian noise with σ = 10% of maximum amplitude of the original signal, and
denoised signal using (c) PES-`1-ball with pyramid; SNR = 23.84 dB and, (d)
PES-`1-ball with wavelet; SNR = 23.79 dB, (cont.)
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(e) Wavelet denoising in MATLAB [1] (f) Wavelet denoising minimaxi algorithm [2]

(g) Wavelet denoising rigrsure algorithm [3] (h) Wavelet denoising with T = 3σ̂ [2, 4]

Figure 3.7: (e) Wavelet denoising in Matlab; SNR = 23.52 dB [1], (f) Wavelet de-
noising minimaxi algorithm [2]; SNR = 23.71 dB, (g) Wavelet denoising rigrsure

algorithm [3]; SNR = 23.06 dB, (h) Wavelet denoising with T = 3σ̂ [2, 4]; SNR
= 21.38 dB.
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(a) Original signal (b) Noisy signal

(c) PES-`1 with pyramid (d) PES-`1 with wavelet

Figure 3.8: (a) Original cusp signal, (b) signal corrupted with Gaussian noise
with σ = 10% of maximum amplitude of the original signal, and denoised signal
using (c) PES-`1-ball with pyramid; SNR = 23.84 dB and, (d) PES-`1-ball with
wavelet; SNR = 23.79 dB, (cont.)
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(e) Wavelet denoising in MATLAB [1] (f) Wavelet denoising minimaxi algorithm [2]

(g) Wavelet denoising rigrsure algorithm [3] (h) Wavelet denoising with T = 3σ̂ [2, 4]

Figure 3.8: (e) Wavelet denoising in Matlab; SNR = 23.52 dB [1], (f) Wavelet de-
noising minimaxi algorithm [2]; SNR = 23.71 dB, (g) Wavelet denoising rigrsure

algorithm [3]; SNR = 23.06 dB, (h) Wavelet denoising with T = 3σ̂ [2, 4]; SNR
= 21.38 dB.
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(a) Signal 1 (b) Signal 2

(c) Blocks (d) Heavy sine

(e) Piece-regular (f) cusp

Figure 3.9: Signals which are used in the simulations.
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(a) Original and Noisy Signals
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(b) Original and Denoised Signals

Figure 3.10: (a) The cusp signal and its corrupted version with Gaussian noise
with σ = 20% of maximum amplitude of the original signal, (b) Original signal
(blue), denoised signal (green) using PES-`1-ball with pyramid; SNR = 28.26 dB
and, denoised signal (cyan) using PES-`1-ball with wavelet; SNR = 25.30 dB,
denoised signal (magenta) using MATLAB wavelet multivariate method; SNR =
25.08 dB [1], denoised signal (petroleum blue) using wavelet denoising rigrsure

algorithm [2]; SNR = 23.28 dB, denoised signal (red) using wavelet denoising
minimaxi algorithm [3]; SNR = 24.52 dB.
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Chapter 4

Deconvolution Using PESC and

its Applications on Medical

Image Processing

In image processing, the deconvolution refers to act of removing the effect of

blurring filter or point spread function (PSF) and enhance the quality of the

image. In this chapter a deconvolution algorithm based on PESC algorithm is

presented. The TV constraint is imposed to the estimated image at each step

of the iterative deconvolution algorithm in order to regularized the image and

remove noise from it. The PES-TV based deconvolution algorithm is described

in detail in the following sections. The simulation results are also presented at

the end of this chapter.

4.1 Deconvolution Using PESC

In this section, a new deconvolution method, based on the epigraph set of the

convex cost function is presented. It is possible to use TV, FV and `1-norm as

the convex cost function. Let the original signal or image be worig and its blurred
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and noisy version be z:

z = worig ∗ h + η, (4.1)

where h is the blurring matrix and η is the additive Gaussian noise. In this

approach we solve the following problems:

w? = argmin
w∈Cf
‖v −w‖2, (4.2)

where, v = [vT 0] and Cf is the epigraph set of TV or FV in RN+1. Here we

repeat Eq. 2.3, the TV function, which we used for an M ×M discrete image

w = [wi,j], 0 ≤ i, j ≤M − 1 ∈ RM×M :

TV (w) =
∑
i,j

(|wi+1,j − wi,j|+ |wi,j+1 − wi,j|). (4.3)

To estimate this problem we use POCS framework using the following sets:

Ci = {w ∈ RN+1|zi = (w ∗ h)[i]} i = 1, 2, ..., L, (4.4)

where L is the number of pixels and zi is the ith observation; and the epigraph

set:

Cf = {w ∈ RN+1|w = [wT y]T : y ≥ TV (w)}. (4.5)

Notice that the sets Ci are in RN and Cf is in RN+1. However, it is straightfor-

ward to extend Ci’s to RN+1 and they are still closed and convex sets in RN+1.

Let us describe the projection operation onto the set Cf = {TV (w) ≤ y}, briefly.

Notice that, this Cf is different from the set {‖v −w‖2 + λTV(w) ≤ y}. This

means that we select the nearest vector w? on the set Cf to v. This is graphically

illustrated in Figure 4.1 (repeated from Figure 2.1). During this orthogonal pro-

jection operations, we do not require any parameter adjustment as in [38]. The

proposed deconvolution algorithm consists of cyclical projections onto the sets Ci
and Cf .

Projection onto the sets are very easy to compute because they are hyper-

planes:

vr+1 = vr +
zi − (vr ∗ h)[i]

‖h‖2
hT , (4.6)

where vr is the rth iterate, vr+1 is the projection vector onto the hyperplane Ci.
This operation is illustrated graphically in Figure 4.2. In this figure, starting from
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Figure 4.1: Graphical representation of the minimization of Eq. (4.2), using
projections onto the supporting hyperplanes of Cf . In this problem the sets Cs
and Cf intersect because TV (w) = 0 for w = [0, 0, ..., 0]T or for a constant vector.

initial estimate v1, the projections converge to the intersection of the hyperplanes

after some iterations. The pseudo-code of the algorithm is described in Algorithm

2.

The sets Ci and Cf may or may not intersect in RN+1. If they intersect, iterates

converge to a solution in the intersection set. It is also possible to use hyperslabs,

Ci,h = {w|zi − εi ≤ (w ∗ h)[i] ≤ zi + εi}, instead of hyperplanes Ci in this

algorithm. In this case it is more likely that the closed and convex sets of the

proposed framework intersect.

67



𝐯1

𝐯2

𝐯3

𝐯4

𝐯5

𝐯

Figure 4.2: Graphical representation of the projections onto hyperplanes de-
scribed in (4.6).

Algorithm 2 The pseudo-code for the deconvolution with PESC based algorithm

Begin

z ∈ RN×N , h ∈ RNh×Nh , K ∈ Z+

v← z

for k = 1 to K

for x = 1 to N

for y = 1 to N

v(x − bNh/2c to x + bNh/2c, y − bNh/2c to y + bNh/2c) ← v(x −
bNh/2c to x+ bNh/2c, y − bNh/2c to y + bNh/2c) + z(x,y)−v∗h|x,y

‖h‖2 h

endfor

endfor

while ||w − v|| > ε

w← Project v onto Cf
w← Project w onto Cs

endwhile

endfor
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Implementation: The sub-gradient projections of vn are performed as in Eq.

4.6. Then after a loop of these projections are terminated, the PESC algorithm

will be applied to the output vn. The minimization operation described in Eq.

(4.2) can not be obtained in one step when the cost function is TV. The solution

is determined by performing successive orthogonal projections onto supporting

hyperplanes of the epigraph set Cf . In the first step, TV(v0) and the surface

normal at v1 = [vT0 TV(v0)] in RN+1 are calculated. In this way, the equation

of the supporting hyperplane at v1 is obtained. The vector v0 = [vT0 0] is

projected onto this hyperplane and w1 is obtained as our first estimate as shown

in Figure 2.1. In the second step, w1 is projected onto the set Cs by simply

making its last component zero. The TV of this vector and the surface normal,

and the supporting hyperplane are calculated as in the previous step. Next, v0 is

projected onto the new supporting hyperplane, and w2 is obtained. In Figure 2.1,

w2 is very close to the denoising solution w?. In general iterations continue until

‖wi −wi−1‖ ≤ ε, where ε is a prescribed number, or iterations can be stopped

after a certain number of iterations.

We calculate the distance between v0 and wi at each step of the iterative

algorithm described in the previous paragraph. The distance ‖v0 −wi‖
2 does

not always decrease for high i values. This happens around the optimal denoising

solution w?. Once we detect an increase in ‖v0 −wi‖
2, we perform a refinement

step to obtain the final solution of the denoising problem. In refinement step,

the supporting hyperplane at v2i−1 =
v2i−5+v2i−3

2
is used in the next iteration. A

typical convergence graph is shown in Figure 2.2 for the “note” image.

It is possible to obtain a smoother version of w? by simply projecting v inside

the set Cf instead of the boundary of Cf .

4.2 Simulation Results

The PESC algorithm is tested with standard images. The noise standard devia-

tion σ is chosen so that the averaged blurred signal to noise ratio BSNR reaches
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a target value:

BSNR = 10× log10(
‖z̃− E[z̃]‖2

Nσ2
η

), (4.7)

where z̃ is the blurred image without noise z̃ = worig ∗h, N is the whole number

of pixels, and σ is the additive noise’s standard deviation. In addition to the

visual results, the deblurring algorithm is compared in term of Improved Signal

to Noise Ratio (ISNR) as follows:

ISNR = 10× log10(
‖z−worig‖2

‖wrec −worig‖2
), (4.8)

which wrec is the reconstructed and deblurred image. The ISNR as a function of

iteration number for the experiment done over MRI image is given in Figure 4.3.
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Figure 4.3: ISNR as a function of the iteration number for MRI image.

Table 4.1 and 4.2 represent the ISNR and SNR values for five BSNR values

for PESC algorithm and FTL algorithm proposed by Vonesch etal [50]. Table 4.3

represents SNR and ISNR values for five different microscopic cancer cell images

for PESC and FTL algorithms for BSNR = 45. According to the these tables,

in almost all cases PESC based deconvolution algorithm performs better than

FTL [50] in sense of ISNR and SNR.
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(a) Original (b) Blurred

(c) PESC (d) FTL

Figure 4.4: Sample image used in our experiments (a) Original, (b) Blurred
(BSNR = 50), (c) Deblurred by PESC (SNR = 18.53 dB), (d) Deblurred by FTL
(SNR = 14.92 dB).
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(a) Original (b) Blurred

(c) PESC (d) FTL

Figure 4.5: Cancer cell image (a) Original, (b) Blurred (BSNR = 50), (c) De-
blurred by PESC (SNR = 40.58 dB), (d) Deblurred by FTL (SNR = 39.35 dB).
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In an example, in Figure 4.4 the original, blurred, and deblurred images for a

MRI image, for both algorithms are presented. In this image the original MRI

image is blurred using 9 × 9 Gaussian blurring matrix and is corrupted with

additive white Gaussian noise with such a variance to obtain BSNR = 50 value.

In another example in Figure 4.5 the results for cancer cell image is presented. The

original image is blurred with 9×9 uniform blurring matrix and is corrupted with

additive white Gaussian noise with such a variance to obtain BSNR = 50 value.

The blurred image, and the deblurred images for both algorithms are presented

in Figure 4.5. According to this figure, PESC algorithm performs better than

FTL not only in sense of SNR, but also the results for PESC are visually better

than FTL.

Table 4.3: ISNR and SNR results for PESC and FTL based deconvolution algo-
rithms for BSNR = 45.

Image PESC FTL

Cancer cell-1 9.71 42.40 8.23 40.91
Cancer cell-2 10.47 41.87 8.79 40.16
Cancer cell-3 10.55 40.86 8.93 39.22
Cancer cell-4 9.02 42.09 7.63 40.73
Cancer cell-5 9.23 42.81 7.86 41.43
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Chapter 5

Compressive Sensing Using

PESC

The aim in compressive sensing problems is to recover the image from a limited

number of samples taken from the original image such that the output image

includes as much information as possible. In this chapter, a compressive sensing

algorithm based on PESC algorithm is presented. This algorithm is illustrated in

detail in the following sections, including the extensive simulation results at the

end of the chapter.

5.1 Compressive Sensing Problem

In transform based signal and image coding, a given signal x is transformed

into another domain defined by the orthogonal transformation matrix ψ . The

transformation procedure is simply finding the inner product of the signal x with

the rows ψl of the transformation matrix ψ represented as follows:

sl = 〈x,ψl〉 l = 1, 2, ..., N, (5.1)

where x is a column vector of size N .
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The discrete-time signal can be reconstructed from its transform coefficients

sl, as follows:

x =
N∑
l=1

sl.ψl or x = ψT .s, (5.2)

where s is a vector containing the transform domain coefficients sl and ψT is the

inverse transform matrix.

The basic idea in digital waveform coding is that the signal should be approx-

imately reconstructed from only a few of its non-zero transform coefficients. In

most cases, including the JPEG image coding standard, the transform matrix

ψ is chosen in such a way that the new signal s is efficiently represented in the

transform domain with a small number of coefficients.

The CS theory introduced in [39,69–72] provides answers to the question of re-

constructing a signal from its compressed measurement vector v, which is defined

as follows:

v = φx = φ.ψT .s = θ.s, (5.3)

where φ is the M × N measurement matrix and M � N . Reconstruction of

the original signal x from its compressed measurements v cannot be achieved

by simple matrix inversion or inverse transformation techniques. To recover x,

an iterative method is used. This iterative method is illustrated in the following

section.

5.2 PESC Based Compressive Sensing Algo-

rithm

Instead of solving the CS problem using `0-norm and `1-norm minimization, other

methods were developed in the literature [73–75]. For example, in [73], a Bayesian

solution to the CS problem is obtained. One popular approach is to replace

`0-norm with `p-norm, where p ∈ (0, 1] or as a combination of two different

norms [8,53,74,75]. We use the epigraph of `1-norm cost function, the TV or any
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other convex cost function together with the measurement hyperplanes to solve

this problem. Let the epigraph set be

Cf = {s = [sTy]T : f(s) ≤ y} (5.4)

where f(s) can be the convex cost function representing the `1-norm or the TV

function, and the measurement hyperplane sets are defined as follows:

Ci = {sT .θi = vi}, i = 1, 2, ..., L, (5.5)

where θi is the ith row of the θ matrix and vi is the ith entry of the observation

vector v. All of the above sets are closed and convex sets. Therefore, it is

possible to device an iterative signal reconstruction algorithm in RN+1 by making

successive orthogonal projections onto the sets Cf and Ci, i = 1, 2, ..., L. The

crucial step of this algorithm providing regularization is the projection onto the

set Cf .

5.2.1 Projection onto the set Cf

Let so be a vector in RN and the corresponding augmented vector be so = [sTo 0] ∈
RN+1. The projection vector sp is obtained as follows:

sp =

[
sp

f(sp)

]
= argmin

s
‖s− so‖22 + f(s)2. (5.6)

The projection sp for an arbitrary vector so = [sTo,N so,N+1] ∈ RN+1 is given by

sp =

[
sp

f(sp)

]
= argmin

s
‖s− so,N‖22 + (so,N+1 − f(s))2, (5.7)

where so,N is a vector containing the first N component of so and so,N+1 is the

(N + 1)st component. To solve the minimization problem, the PESC algorithm is

used. Here, the convex cost function is TV function: f(s) = TV(s). In PES-TV

algorithm the aim is to minimize the distance between the observation image s0

and the epigraph set of the TV function. In other words, the aim is to find the

nearest s on the surface of the TV function to s0, as shown in Figure 5.1. This

process is defined in Chapter 2.
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Figure 5.1: Graphical representation of PES-TV algorithm.

5.2.2 CS Algorithm

In this case, we replace the level set Cs in Section 2.1 with the measurement

hyperplanes Ci, and the epigraph set is as follows:

Cf = {s | TV(s) ≤ ε}. (5.8)

The hyperplanes in general form an undetermined set of equations. As a result

their intersection

Cint =
⋂
i

Ci (5.9)

is highly unlikely to be an empty set. Individual C ′is may intersect with the

epigraph set Cf but the intersection of hyperplanes Cint may not intersect with

the epigraph set Cf . This scenario has not been studied in POCS theory to

the best of our knowledge [36, 40] but it is very similar to the scenario that we

discussed in Section 2.1. As we point out in Section 1.3, two nonintersecting

convex sets case studied by Gubin et.al [36]. Therefore, we expect that iterates
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oscillate between a vector in the intersection of hyperplanes Cint and a vector in

the epigraph set Cf . We conjecture that the iterates oscillate between the nearest

vectors in sets Cf and Cint similar to the case discussed in Section 2.1. Therefore,

we essentially obtain a solution to the following problem:

min||sf − s||2 such that sf ∈ Cf and s ∈ Cint. (5.10)

If the sets Cf and Cint intersect, the iterates converge to a vector in the intersection

set Cint ∩ Cf by Bregman’s POCS theorem.

The iterative algorithm consists of performing successive orthogonal projec-

tions onto hyperplanes corresponding to measurements vi = sT .θi for i =

1, 2, ..., L, followed by an orthogonal projection onto the epigraph set Cf . The

algorithm is described in Algorithm 3.

If the initial condition is chosen as s0 =

[
s0

0

]
then Eq. (5.6) is used to imple-

ment the projection onto the epigraph set. The algorithm is essentially similar to

the proximity operator based algorithms [76, 77]. However, f 2(s) is used instead

of f(s) as the regularizing term as shown in (5.6).

In our approach it is also possible to define a smoothing parameter in both

denoising and compressive sensing solutions as well. The epigraph set Cf can be

modified as follows:

Cf,α = {s : y ≥ αTV (s)}. (5.11)

The choice of the parameter α > 1 provides smoother solution than usual and

α < 1 relaxes the smoothing constraint. In this case, Eq. (5.6) becomes

sp =

[
sp

f(sp)

]
= argmin‖s− so‖22 + α2f(s)2. (5.12)

It is experimentally observed that α = 1 usually provides better denoising results

than the manually selected best λ values in standard TV denoising introduced

in [38].
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Algorithm 3 The pseudo-code for the compressive sensing with PESC based

algorithm
Input

s0 ∈ RN

for i = 1 to M,

for j = 0 to L, (L: number of measurements)

sj+1 = Project sj onto Ci,j
endfor

endfor

w = Project sL onto Cf , (sL ∈ RN+1)

if ||w − sL|| ≤ ε

Terminate

else

Go to first for

endif

5.3 Simulation Results

The PESC algorithm is tested with one-dimensional (1D) signals, and 29 two-

dimensional (2-D) images (24 images from Kodak database [60], and 5 standard

image processing images) in compressive sensing examples. In all the experiments,

the measurement matrices are chosen as zero mean Gaussian random matrices.

Consider the cusp and piecewise-smooth signals shown in Figure 5.2 and

5.3 (blue curves), respectively. These signals consist of 1024 samples. In the

DCT domain, both signals can be approximated in a sparse manner. In the first

set of experiments, the original signals are reconstructed with M = 204 and 717

measurements with SNR values of 45 and 58 dB for cusp signal and 22 and 42 dB

for piecewise-smooth signal, respectively. The reconstructed signals using the

TV cost functional based PESC algorithm are shown in Figures 5.2a, and 5.2b

for cusp signal, and in Figures 5.3a and 5.3b for the piecewise-smooth signal.
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PESC algorithm is compared with four well known CS reconstruction algo-

rithms from the literature; CoSamp [52], `1magic [69], Matching Pursuit (MP)

[51], and `p optimization based CS reconstruction [53] algorithms. Three different

values for p = 0.8, 1, and 1.7 are used in `p optimization based CS reconstruction

algorithm.

All CS reconstruction algorithms are implemented with different number of

measurements ranging from 10% to 80% of the total number of the samples of

the 1D signal. The main region of interest in these experiments is 20% − 60%

range. Reconstruction SNR versus the number of measurements are plotted for

the cusp and piecewise-smooth signals in Figure 5.6 and Figure 5.7, respectively.

To eliminate the effect of zero mean random Gaussian measurement matrices, the

experiments are repeated 10 times and averaged to obtain the plots. The PESC

algorithm performs better than other algorithms.

Both cusp and piecewise-smooth signals are compressible signals in DCT

domain. On the other hand, the impulsive signal shown in Figure 5.4 is not com-

pressible in DCT domain, but it is sparse in time domain. The random impulse

signal with 256 samples and 25 impulses in random sample indexes is recon-

structed with PESC algorithm from 60% of measurements. The reconstructed

signal is also shown in Figure 5.4. Obviously, the TV function is not suitable for

such signals. Smooth signal assumption of the TV cost function definitely fails

in this signal. The reconstructed signal is not perfect as shown in Figure 5.5,

because the random impulse signal contains isolated impulses. The SNR curve

due to the TV based PESC method is well below the other algorithms in Figure

5.5.

The epigraph of `1-norm should be used for this signal. When we use the

epigraph of `1-norm together with the mean value constraint set

Cµ = {x :
1

N

∑
n

x[n] = µ}, (5.13)

we obtain Figure 5.4. It is very easy to estimate the mean value of the signal

by using a compressive measurement with a random vector containing random

variables with a nonzero mean. We need Cµ because we have to rescale the signal
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after the projections onto the epigraph set of `1-norm. The signal is reconstructed

from 153 measurements in Figure 5.4.

Table 5.1: Comparison of the results for compressive sensing with Fowler’s algo-
rithm and the PESC Algorithm (20% of measurements)

Image Fowler Fowler PESC PESC
B=32 B=64 B=32 B=64

Kodak(ave.) 20.00 19.94 20.36 21.06
Mandrill 15.72 15.79 15.40 15.85

Lena 24.81 24.74 24.21 24.94
Barbara 18.49 19.66 17.28 17.59
Peppers 23.98 23.43 25.26 26.35
Goldhill 22.05 21.93 21.75 22.62

Average 20.17 20.11 20.43 21.13

Our second set of experiments consists of CS reconstruction with 2D signals.

Five well known images (Peppers, Mandrill, Lena, Barbara, Goldhill) from the

image processing literature and 24 images from the “Kodak True Color images”

database [63] are used in Tables 5.2, 5.1, and 5.3. These tables compare the SNR

values for compressive sensing with PESC and Fowler’s algorithm [78] for these

images with two block-sizes of 32× 32 and 64× 64 for both algorithms. Images

in Kodak dataset are 24 bit per pixel color images. All the color images are

transformed into YUV color space and the 8 bit per pixel luminance component

(Y channel) is used in our tests. Since all the images are natural images they are

all compressible in DCT domain.

Fowler’s algorithm is a block based compressed sensing algorithm therefore, we

also divided the images into blocks and reconstructed those blocks individually.

Random measurements, which are 20, 30, 40% of the total number of pixels in

images, are used in Tables 5.1, 5.2, and 5.3 on both the TV based PESC algorithm

and Fowler’s method, respectively. On average, for 30% of measurement and

for 64 × 64, and 32 × 32 blocks, we achieve approximately 1.24 dB, and 0.42

dB higher SNR respectively, compared to Fowler’s algorithm. In Figure 5.8, a

portion of “peppers” and “goldhill” images are presented. The CS results for
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Table 5.2: Comparison of the results for compressive sensing with Fowler’s algo-
rithm and the PESC Algorithm (30% of measurements)

Image Fowler Fowler PESC PESC
B=32 B=64 B=32 B=64

Kodak(ave.) 21.40 21.36 21.96 22.74
Mandrill 16.47 16.77 16.65 16.96

Lena 26.82 26.71 26.02 26.86
Barbara 20.05 20.40 18.21 18.62
Peppers 24.66 24.46 27.06 27.93
Goldhill 22.78 23.44 23.64 24.24

Average 21.53 21.53 22.02 22.77

Table 5.3: Comparison of the results for compressive sensing with Fowler’s algo-
rithm and the PESC Algorithm (40% of measurements)

Image Fowler Fowler PESC PESC
B=32 B=64 B=32 B=64

Kodak(ave.) 22.99 22.54 23.07 24.11
Mandrill 17.56 17.80 17.74 18.07

Lena 28.51 28.36 27.27 28.25
Barbara 21.34 22.12 19.00 19.62
Peppers 25.96 29.02 28.00 29.02
Goldhill 24.04 24.80 24.74 25.54

Average 23.08 22.77 23.15 24.11

30% measurements for PES-TV and Fowler’s algorithm, for “peppers” image

using 32 × 32 blocks are presented in Figure 5.9. The same case for “peppers”

image using 64× 64 blocks are presented in Figure 5.10. Similarly, the results for

“goldgill” image is shown in Figures 5.11 and 5.12. The SNR values in Tables 5.2,

5.1, and 5.3, and visual examples in Figures 5.9, 5.10, 5.11, and 5.12 indicates

the efficiency of PES-TV based compressive sensing algorithm.
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Figure 5.2: The reconstructed cusp signal for (a) 204 measurements (SNR = 45
dB), and (b) 717 measurements (SNR = 58 dB).
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Figure 5.3: The reconstructed piecewise-smooth signal for (a) 204 measure-
ments (SNR = 21.53 dB), and (b) 717 measurements (SNR = 42 dB).
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Figure 5.4: The original (?) and the reconstructed random impulses signal (o)
with N = 256 samples and has 25 impulses occurring in random indexes. Epigraph
of `1 norm is used. The signal is reconstructed from 30% of measurements
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Figure 5.5: The SNR results for reconstruction of random impulse signal with
different algorithms.
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Figure 5.7: The SNR results for reconstruction of piecewise-smooth signal with
different algorithms with N = 256 samples. PESC produces the best SNR curve
among all.
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(a) (b)

Figure 5.8: A portion of (a)“peppers” and (b)“goldhill” images.

(a) (b)

Figure 5.9: Results of CS experiments for “peppers” image in the case with 32×32
blocks, and using measurements as much as %30 of the samples by: (a) PESC
algorithm; with SNR = 27.06 dB, and (b) Fowler’s algorithm; with SNR = 24.66
dB.
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(a) (b)

Figure 5.10: Results of CS experiments for “peppers” image in the case with
64× 64 blocks, and using measurements as much as %30 of the samples by: (a)
PESC algorithm; with SNR = 27.93 dB, and (b) Fowler’s algorithm; with SNR
= 24.46 dB.

(a) (b)

Figure 5.11: Results of CS experiments for “goldhill” image in the case with
32× 32 blocks, and using measurements as much as %30 of the samples by: (a)
PESC algorithm; with SNR = 23.64 dB, and (b) Fowler’s algorithm; with SNR
= 22.78 dB.
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(a) (b)

Figure 5.12: Results of CS experiments for “goldhill” image in the case with
64× 64 blocks, and using measurements as much as %30 of the samples by: (a)
PESC algorithm; with SNR = 24.24 dB, and (b) Fowler’s algorithm; with SNR
= 23.44 dB.
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Chapter 6

Conclusion

In this thesis, new signal reconstruction and restoration methods using the epi-

graph set of a convex cost function is developed. The reconstructed signal is

obtained by making orthogonal projections onto the epigraph set of convex sets

representing the desired signal in RN+1. The PESC algorithm based denoising,

deconvolution, and compressive sensing algorithms are developed. It is shown

that, in all scenarios, PESC approach may not need the optimization of the reg-

ularization parameter as in standard TV based signal reconstruction methods.

Two different versions of the PESC algorithm are developed for denoising 1D

and 2D signals. For 2D signal denoising, PES-TV algorithm is developed. The

PES-TV denoising method is based on the epigraph of the TV function. Epigraph

sets of other convex cost functions can be also used in the new denoising approach.

The new algorithm does not need the optimization of the regularization parameter

as in standard TV denoising methods. Experimental results indicate that better

SNR and SSIM results are obtained compared to standard TV based denoising

in a large range of images. The proposed method can be incorporated into the so

called 3D denoising methods [79]. In 3D denoising methods similar image blocks

are grouped and shrinked according to the noise level. Since our method does

not need the noise variation, it will lead to more flexible 3D methods.
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Moreover, a novel algorithm for denoising images that are corrupted by im-

pulsive noise is presented. This algorithm is a two stage algorithm, which in

the first stage the PES-TV based denoising algorithm produces basic denoised

estimate for the second stage. Using this basic estimate, the second stage groups

the similar blocks of the noisy image and denoise these 3D arrays of the similar

blocks using collaborative 3D Wiener filtering. The PES-TV algorithm does not

require noise variance to denoise the image, then produces better basic estimate

for second stage in comparison with standard BM3D algorithm. Experimental re-

sults indicates that higher SNR and PSNR, and better visual results are obtained

using the proposed denoising method compared to other algorithms.

For 1D signals, the PES-`1 algorithm is proposed. It is shown that it is possible

to determine denoising soft-threshold using a deterministic approach based on

linear algebra and projection onto convex set constructed from the epigraph set

of `1-norm cost function. The main assumption is that the original signal is sparse

in wavelet domain or in some transform domain.

Orthogonal projection based denoising is computationally efficient because

projection onto a boundary hyperplane of an `1-ball or the epigraph set can

be implemented by performing only one division and K+1 additions and/or sub-

tractions, and sign computations. Once the size of the `1-ball using (3.12) and

(3.13) is determined, the orthogonal projection onto an `1-ball operation is an

Order(K) operation. Equations (3.12) and (3.13) only involve multiplications by

±1. However, it is not possible to incorporate any prior knowledge about the noise

probability density function or any other statistical information to the orthogonal

projection based denoising method. However, it produces good denoising results

under additive white Gaussian noise. Most of the denoising methods available in

MATLAB also assumes that the noise is additive, white Gaussian.

In this thesis, new deconvolution and compressive sensing methods based on

the epigraph of the TV function are also developed. The TV constraint is im-

posed to the image in each step of iterative reconstruction algorithm to regularize

the estimated image, reduce the convergence time, and enhance the image qual-

ity. The simulation results indicate the successful performance of the proposed
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algorithms.

The PESC algorithm is also used to solve some other problems as well. In [80],

a blind deconvolution algorithm is proposed. Two closed and convex sets for

blind deconvolution problem are proposed. Most blurring functions in microscopy

are symmetric with respect to the origin. Therefore, they do not modify the

phase of the Fourier transform (FT) of the original image. As a result blurred

image and the original image have the same FT phase. Therefore, the set of

images with a prescribed FT phase can be used as a constraint set in blind

deconvolution problems. Another convex set that can be used during the image

reconstruction process is the epigraph set of TV function. This set does not need

a prescribed upper bound on the total variation of the image. The upper bound is

automatically adjusted according to the current image of the restoration process.

Both of these two closed and convex sets can be used as a part of any blind

deconvolution algorithm.

In [81], a range resolution improvement method based on PESC based deconvo-

lution algorithm is proposed. Here instead of TV constraint, `1-norm constraint

is imposed. One of the main disadvantages of using commercial broadcasts in

a Passive Bistatic Radar (PBR) system is the range resolution. Using multiple

broadcast channels to improve the radar performance is offered as a solution to

this problem. However, it suffers from detection performance due to the side-

lobes that matched filter creates for using multiple channels. In this framework,

we introduced a deconvolution algorithm to suppress the side-lobes. The two-

dimensional matched filter output of a PBR is further analyzed as a deconvolution

problem. The deconvolution algorithm is based on making successive projections

onto the hyperplanes representing the time delay of a target. Resulting itera-

tive deconvolution algorithm is globally convergent because all constraint sets

are closed and convex.
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