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ABSTRACT

TOPIC-BASED INFLUENCE COMPUTATION IN
SOCIAL NETWORKS UNDER RESOURCE

CONSTRAINTS

Kaan Bingöl
M.S. in Computer Engineering

Advisor: Assoc. Prof. Dr. Hakan Ferhatosmanoğlu
June, 2015

As social networks are constantly changing and evolving, methods to analyze dynamic
social networks are becoming more important in understanding social trends. However,
due to the restrictions imposed by the social network service providers, the resources
available to fetch the entire contents of a social network are typically very limited. As
a result, analysis of dynamic social network data requires maintaining an approximate
copy of the social network for each time period, locally. We study the problem of
dynamic network and text fetching with limited probing capacities, for identifying and
maintaining influential users as the social network evolves. We propose an algorithm
to probe the relationships (required for global influence computation) as well as posts
(required for topic-based influence computation) of a limited number of users during
each probing period, based on the influence trends and activities of the users. We infer
the current network based on the newly probed user data and the recent version of the
network maintained locally. Additionally, we propose to use link prediction methods
to further increase accuracy of our network inference. We employ PageRank as the
metric for influence computation. We illustrate how the proposed solution maintains
accurate PageRank scores for computing global influence, and topic-sensitive weighted
PageRank scores for topic-based influence. The latter relies on a topic-based network
constructed via weights determined by semantic analysis of posts and their sharing
statistics. We evaluate the effectiveness of our algorithms by comparing them with the
true influence scores of the full and up-to-date version of the network, using data from
the micro-blogging service Twitter. Results show that our techniques significantly
outperform baseline methods (80% higher accuracy for network fetching and 77% for
text fetching) and are superior to state-of-the-art techniques from the literature (21%

higher accuracy).

Keywords: Evolving Social Networks, Data Probing, Network Inference.
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ÖZET

KAYNAK KISITLAMALARI ALTINDA SOSYAL
AĞLAR ÜZERİNDE KONU TABANLI ETKİ

HESAPLAMASI

Kaan Bingöl
Bilgisayar Mühendisliği, Yüksek Lisans

Tez Danışmanı: Doç. Dr. Hakan Ferhatosmanoğlu
Haziran, 2015

Sosyal ağlar sürekli değişirken ve gelişirken, dinamik yapıdaki bu ağların analizi için
gerekli metotların önemi de sosyal eğilimleri anlamak açısından artmaktadır. Fakat
sosyal ağ servis sağlayıcıları tarafından uygulanan kısıtlamalar nedeniyle, bir sosyal
ağın topolojik durumu ve paylaşımlarıyla birlikte tüm içeriğini toplamak için mev-
cut kaynaklar yetersiz kalmaktadır. Sonuç olarak, değişken sosyal ağ verisinin anal-
izi; verinin yaklaşık bir kopyasını yerel olarak muhafaza etmeyi ve zaman içinde
yenilemeyi gerektirir. Biz, sosyal ağ geliştikçe, ağ üzerindeki etkili kişileri be-
lirlemek ve zaman içerisinde takip etmek adına; hem ağ hem de metin verisinin
sınırlı kaynaklar altında toplanması problemi üzerinde çalışıyoruz. Sınırlı sayıda
kullanıcının her zaman aralığı için ilişkilerini (genel etki hesaplaması için gerek-
lidir) ve metin paylaşımlarını (konu tabanlı etki hesaplaması için gereklidir) toplamak
için kullanıcıların etki eğilimlerini ve eylemlerini göz önünde bulunduran bir algo-
ritma öneriyoruz. Yeni toplanmış kullanıcı verisini ve lokal olarak sürdürülen ağın
en son versiyonunu temel alarak; güncel ağ yapısını çıkarsıyoruz. Buna ek olarak,
ağ çıkarsama metodumuzun doğruluğunu daha da artırmak adına, bağlantı önerme
algoritmaları kullanıyoruz. ”PageRank puanı” nı genel etki hesaplaması için ölçü
olarak belirledik. Önerdiğimiz çözümlerin, genel etki için ”PageRank skorları” nı ve
konu tabanlı etki için paylaşım metinlerinin anlamsal analizleri ile paylaşım istatistik-
leri harmanlanarak ve belirlenen ağırlıklar kullanılarak oluşturulan konu temelli ağlar
üzerinden hesaplanan ağırlıklı ”PageRank skorları” nı, nasıl yüksek bir doğrulukla
yenileyerek sürdürdüğünü gösterdik. Algoritmalarımızın etkinliğini ölçmek adına
sonuçlarımızı, bir mikroblog servisi olan ”Twitter” üzerinden toplanan veriler ile
oluşturan ağın, tam ve en güncel hali üzerinden hesaplanan gerçek etki skorları
ile karşılaştırdık. Elde edilen sonuçlara göre; önerdiğimiz teknikler temel referans
tekniklerini önemli bir ölçüde geri bırakırken (ağ çekimi için %80, metin çekimi için
%77 daha doğrudur), literatürdeki en gelişmiş tekniklerden de daha iyi bir performans
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göstermiştir (%21 daha doğrudur).

Anahtar sözcükler: Değişken Sosyal Ağlar, Ağ Örnekleme, Ağ Çıkarsama.
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Chapter 1

Introduction

Analysis of social networks have attracted significant research attention in recent years

due to the popularity of online social networks among users and the vast amount of

social network data publicly available for analysis. Applications of social network

analyses are abound, such as influential user detection, community detection, informa-

tion diffusion, network modeling, user recommendation, to name a few.

Influential user detection is a key social analysis used for opinion mining, targeted

advertising, churn prediction, and word-of-mouth marketing. Social networks are dy-

namic and constantly evolving via user interactions. Accordingly, the influence of

users within the network are also dynamic. Beyond the current influence of users,

tracking the influence trends provides greater insights for deeper analysis. By combin-

ing the patterns of the past with the current information, comprehensive analysis on

customers, marketing plans, and business models can be performed more accurately.

For example, forecasting future user influences can be used to detect ‘rising stars’, who

can be employed in upcoming on-line advertisement campaigns.

1



1.1 Contributions

We address the problem of identifying and tracking influential users in dynamic social

networks under real-world data acquisition resource limits. The current approaches

for influence analysis mostly assume that the graph structure is static, or even when

it is dynamic, the data is completely known and reside in a local database. However,

in many cases, analysts are third-party clients and do not own the data. They cannot

keep the data completely fresh as changes happen, since it is typically gathered from

a service provider with limitations on resources or even on the amount of data pro-

vided. Third-party data acquisition tools access the data via rate-limited APIs, which

constraint the fetching capacity of clients. These externally enforced limits prevent

the collection of entire up-to-date data within a predetermined period. To this end, we

present an effective solution to rate-limited fetching of evolving network relations and

user posts. Our system maintains a local, partially fresh copy of the data (e.g. relations,

status, tweets) and calculates influence scores based on inferred network and text data.

The proposed solution probes limited number of active users whose influence scores

are changing significantly within the network. By combining previous and the newly

probed network data, we are able to infer the current network accurately. The local

network copy is maintained while consuming resources within allowed limits, and at

the same time, influence values of the users are computed as accurately as possible.

While computing and maintaining influence scores, we consider both global and

topic-based influence. Active and influential users mostly affect the general opinion

with respect to their topics of authority. For instance, a company marketing sports

goods will be interested in locating users who have high influence in sports, rather

than the global community. While this leads us to include topic-based analyses for

our problem setting, general influence scores of users are still of interest as well. For

instance, a politician would prefer a broader audience and identify a list of globally

influential users to promote her cause. In our system, we utilize both global and topic-

centric networks and compute global as well as topic-based influences.

To demonstrate the effectiveness of our solutions, we use Twitter [1]. Twitter is

a good fit for research on dynamic user influence detection due to its large user base
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and highly dynamic user activity. One can collect two-way friendship relations as

well as one-way follow, re-tweet and favorite relations via publicly available Twitter

API. The APIs have well-defined resource limits [2], which motivates the need for our

probing algorithms. We calculate PageRank [3] on the Twitter network as the influence

score for the users. To generate topic-based influence scores, we adapt the weighted

PageRank [4], and adjust the initial scores and transition probabilities based on topic

relevance scores of the users. The topic relevance scores are computed based on user

posts, using text mining techniques, as well as their re-tweet and favorite counts.

To further improve the accuracy of our network inference, we perform link predic-

tion using trends on user relationships. The proposed solution shows increased accu-

racy on Twitter data when compared with other methods from the literature. Estimated

network structure is shown to be very close to the actual up-to-date network, with re-

spect to influential users. The proposed solutions address not only the limitations of

data fetching via public APIs, but also local processing when the resources are limited

to fetch the entire data. We summarize our major contributions as follows:

• We estimate global and topic-based influence of users within a dynamic social

network. For topic-based influence estimation, we construct topic-based net-

works via semantic analyses of tweets and the use of re-tweet and favorite statis-

tics for the topic of interest.

• We propose efficient algorithms for collecting dynamic network and text data,

under limited resource availability. We leverage both latest known user influence

values, as well as the past user influence trends in our probing strategy. We

further improve our probing techniques by applying link predictions methods.

• We evaluate our proposed algorithms and compare results to several alterna-

tives from the literature. The experimental results for relationship fetching show

that the proposed algorithms perform 80% better than the baseline methods, and

21% better than the state-of-the-art method from the literature in terms of mean

squared error. For tweet fetching methods used for topic-based influence detec-

tion, our algorithms perform 77% better than the alternative baselines in terms

of the Jaccard similarity measure.
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1.2 Outline

The rest of the chapters is organized as follows. Chapter 2 gives background mate-

rial on related work. Chapter 3 describes the resources constraint problem for data

collection. Chapter 4 describes the overall system architecture and presents influence

estimation techniques. Chapter 5 explains algorithms and strategies proposed for the

network and text fetching problems. Chapter 6 discusses evaluation results obtained

from experiments run on real data. Chapter 7 concludes the thesis.
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Chapter 2

Related Work

2.1 Social Networks and Influence

Increases in the popularity of social networks and the availability of public data acqui-

sition tools for them have put social networks on the spotlight of both academic and

industrial research. Influential user estimation problem is studied by many researchers

following a wide variety of different methodologies. Within this context, some stud-

ies introduce centrality measures in order to reflect influence of users. [5] introduces

several definitions:

• Degree centrality picks users who are located at the center of a network, in the

sense that they are connected with many other users.

• Betweenness centrality picks users who are located on the path between many

nonadjacent users. Since such users connect many users, they should have a

greater control within the network.

• Closeness or distance centrality picks users who are close to all users in net-

work. The concept of closeness is defined by short average distance. The idea

behind this measure is if a user interact with many others quickly, he should be

influential.
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For viral marketing applications, [6] develops methods for computing network in-

fluence from collaborative filtering databases by using heuristics in a general descrip-

tive probabilistic model of influence propagation. [7] addresses a similar problem by

studying the linear threshold and independent cascade models, and [8] presents a sim-

ple greedy algorithm for maximizing the social influence in a general model, termed

the decreasing cascade model:

• In the linear threshold model, they assign edge weights as cv,u
dv

, where cv,u is the

number of edges that exist between node v and u, and dv is the degree of user v.

• In the independent cascade model, a uniform probability pv(u) is assigned to

edges between users so that users v has chance of pv(u) to affect user u.

• In the decreasing cascade model, they assign probability pv(u, S) where S de-

notes the set of user v’s neighbors that already tried to affect v and failed. It is

the success probability of node u given that u affects v after v’s affected neigh-

bors failed to affect. This model is a generalization of the independent cascade

model.

In more recently published work, [9] presents a novel methodology for selecting

users to maximize the influence spread. [10] uses maximum influence in-arborescence

(MIIA) based greedy algorithms, which significantly improve scalability. [11] com-

pares different types of influence measures and discusses the findings. [12] applies

statistical tests in order to distinguish user influence from correlation, and [13] in-

vestigates conformity influence on social networks. [14] uses a greedy approach for

the influence maximization problem and proposes efficient degree discount heuristics.

[15] studies the determination of influence probabilities for edges by examining the

past behavior of users. [16, 17] study the problem of finding rising stars in co-author

networks based on mutual influence and other features.
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2.2 Topic-Based Influence

Recently, researchers have studied extracting textual information associated with so-

cial networks. [18] studies topic modeling in social networks and proposes a solution

for text mining on the network structure. [19] introduces the topic-based social influ-

ence problem. Their proposed model takes the result of any predefined topic modeling

of a social network and constructs a network representing topic-based influence prop-

agation. Distributed learning algorithms are used for this purpose, which leverage the

Map-Reduce concept, thus, their methodology scales well for networks with millions

of edges. [20] combines heterogeneous links and textual content for each user in order

to mine topic-based influence.

Another recent study [21] uses a PageRank-like measure to find influential accounts

on Twitter. They extend PageRank by using topic-specific probabilities in their random

surfer model. Although their method is similar to ours, their influence measure utilizes

the number of posts made on a specific topic. However, this is an indirect measure that

cannot reliably capture influence. Therefore, we use topic distributions of user posts

along with their sharing statistics (retweets and mentions in Twitter), which provides

robust results, as it takes into account the real impact of posts. [22] conducts empirical

study of different topic modeling strategies based on standard Latent Dirichlet Alloca-

tion (LDA) [23] the Author-Topic Model (AT model) [24]. [25] proposes joint proba-

bilistic models of influence and topics. Their methodology performs a topic sampling

over textual contents and tracks the topic snapshots over time. [26] uses re-tweets in

measuring popularity and proposes machine learning techniques to predict popularity

of the Twitter posts. [27, 28, 29] propose solutions for predicting popularity of online

content. [30] studies the topic-aware influence maximization problem. Within this

context, in this work we introduce a new method that combines topic-based analyses

of posts with their sharing popularity for the purpose of topic-based influential user

estimation.
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2.3 Evolving Social Networks

Dynamic graph analysis has also attracted a lot of attention recently. In order to main-

tain dynamic networks, [31, 32, 33, 34, 35] propose algorithms for determining web

crawling schedules. [36] studies the microscopic evolution of social networks. [37]

studies incremental PageRank on evolving graphs. Researches also have investigated

probing strategies for analyzing evolving social networks. [38] proposes influence pro-

portional probing strategies for the computation of PageRank on evolving networks

and [39] uses a probing strategy to capture observed image of the network by max-

imizing a performance gap function. [40, 41] study sampling over social networks.

However, these studies only focus on current image of a network in their probing

strategies. In contrast, we propose a method which also considers evolution of the

probing metrics, so that the network could be probed more effectively.

2.4 Network Inference

In the context of network inference, [42] proposes representations for structural uncer-

tainty and use directed graphical models and probabilistic relational models for link

structure learning. However, their methodologies are not scalable. [43, 44, 45] use

time evolving graph models for social network estimation. They apply time-varying

dynamic Bayesian networks for modeling evolving network structures. [46] shows

that third-parties can reach a user’s information by searching a few friends. [47] devel-

ops a scalable algorithm to infer influence and diffusion network, assuming all users

influence their neighbors with equal probabilities in the network. [48] removes this

assumption and addresses the more general problem by formulating a maximum like-

lihood problem and guarantee the optimality of the solution. [49] proposes a linear

model for the evolution of diffusion over time and [50] proposes the idea of diffusion

centrality. [51, 52] studies a different problem related to network inference. Different

from these works, we use friendship weighting method in order to infer link structures,

similar to [53, 54, 55]. However, we use friendship weights only to infer edges between

8



users. Moreover, one can also use more informative features such as content-based in-

fluential effects. [56] studies diffusion of tweets throughout the Twitter network. This

kind of technique could also be used in order to estimate impact of posts.
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Chapter 3

Problem Definition

Our goal is to determine and maintain top-m influential users in the network, under

a constrained probing setting. Among various methods to calculate a user’s influence

in the network, we have chosen PageRank based methods, since PageRank is well

understood and used widely in the literature for various network structures [21, 57].

While computing influence, PageRank naturally considers the number of followers a

user has, but more importantly it considered the topological place of the user within

the network. Therefore, we assume that a user’s influence in the network corresponds

to its PageRank score. As a result, the top-m influential user determination problem

turns into identifying the top-m users with the highest PageRank scores.

PageRank score calculation requires having access to all the relationships present

between the users of the network. This means that we need to have the complete

network data to compute exact PageRank scores. Moreover, if the network is dynamic,

the calculation needs up-to-date network data for each time step in order to perform

accurate influence analysis.

Our system continuously collects social network data (relations, tweets, re-tweets,

etc.) via the publicly available Twitter API. Twitter enforces certain limitations on data

acquisition using the Twitter APIs. There are different limitations for different types

of data acquisition requests:

10



• Relations: 15 calls per 15 minutes, where each call is for retrieving a user’s

relations. Moreover, if the user has more than 5K followers, we need an extra

call for each additional 5K followers. This means that we can update relations

with a maximum rate of 1 user per minute (Rrel = 1 user/min).

• Tweets: 180 calls per 15 minutes, where each call is for retrieving a user’s tweets.

Moreover, if the user has more than 3.2K tweets, we need an extra call for each

additional 3.2K tweets. This means that we can update tweets with a maximum

rate of 12 users per minute (Rtwt = 12 user/min).

Assuming that we update the network with a period of P days, we need the follow-

ing condition to hold, in order to be able to capture the entire network of relations:

Number of Users ≤ Rrel · P · 1440 (3.1)

For getting the recent tweets of the users in the network, we need:

Number of Users ≤ Rtwt · P · 1440 (3.2)

One can easily calculate that for a network as small as 250K users, we need 174

days to update the complete network in the best case1. This analysis shows that the

rate limits hinder the timeliness of the data collection process, which in turn affects the

timeliness of the calculation process to find and track influential users in the network.

Furthermore, Twitter is a highly dynamic network that evolves at a fast rate, which

means that not refreshing the network frequently will result in significant degradation

in the accuracy of the influence scores. Current resource limits prohibit the system

to collect the network data in a reasonable period of time. Therefore, the evolving

network’s relationships and the tweet sets are not fully observable at every analysis

time step.

To overcome this limitation, we propose to determine a small subset of users during

each data collection period, whose information is to be updated. This data collection

process, which does not violate the rate limits of the API, is sufficient to maintain an
1Assuming all users have ≤ 5K followers, so that they could be fetched with one call.
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approximate network with a reasonable data collection period, while at the same time

providing good accuracy for the influence scores.

We apply the concept of probing for efficient fetching of the dynamic network and

the user tweet sets. We denote a network at time t as Gt = {Vt, Et}, where Vt is the

set of users and Et ⊂ Vt × Vt is the set of edges representing the follower relationship

within the network. In other words, (u, v) ∈ Et means that the user u ∈ Vt is following

the user v ∈ Vt. Our model uses an evolving set of networks in time, represented as

{Gt | 0 ≤ t ≤ T}. However, we assume that we have fully2 observed the network

only at time t = 0. Gt where t > 0, can only be observed partially by probing. At

each time period, we use an algorithm to determine a subset of k users and probe them

via API calls. We then update the existing local network with the new information

obtained from the probed users. In other words, we maintain a partially observed

network G′t, which is potentially different than the actual network Gt. Larger k values

(0 ≤ k ≤ |Vt|) bring the partial network G′t closer to the actual network Gt. However,

using large k values is not feasible due to rate limits outlined earlier. Our probing

strategy should select a relatively small number of users to probe, so that the data

collection process can be completed within the period P (as determined by Eq. 3.1).

Furthermore, these probed users should bring the most value in terms of performing

accurate influence detection.

Dynamic Network Fetching Problem Definition: We assume that complete network

information is available only at time 0, i.e., G0 is known. The problem is defined as

determining a subset of users of size k at time t, denoted by Ut ⊂ Vt s.t. |Ut| = k, by

analyzing the local graph G′t−1. The system will update the relationships of the users

included in this subset to construct the local network at time t, that is G′t. Specifically,

this new network G′t is constructed by replacing the relationships of the users in G′t−1

with the newly fetched relationships from the probing of the users in Ut. We aim to

choose Ut such that the influence scores of the estimated networkG′t will be as close as

possible to the true scores of the real network Gt. The final objective is to estimate the

PageRank scores PR′v(t),∀v ∈ Gt as accurately as possible, using partial knowledge

2The initial probing of the network can be accelerated via the use of multiple cooperating fetchers.
However, this is clearly not a sustainable and feasible approach for continued probing of the network,
as it requires large number of accounts, which are subject to bot detection and suspension.
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about Gt−1, that is G′t−1.

In order to track topic-specific influence scores of the users, we analyze their latest

tweets. One needs to collect predetermined amount of tweets for all of the users to

be able to compute exact influence scores. However, due to the rate limitations (as

determined in Eq. 3.2), we cannot fetch all the tweets within the desired period. Instead

of retrieving tweets of every user, we determine a subset of users so that by collecting

tweets of this subset, the topic scores of the users will be as close to the true scores

as possible. We denote the tweet set at time t as Tt. We again assume that we have

observed this set fully only at time 0, that is T0 is known. The other snapshots can only

be observed partially by probing. I.e., we locally maintain partial tweet sets T ′t , where

t > 0.

Dynamic Tweet Fetching Problem Definition: Given the tweets T0 of all users in

the network at time 0, the problem is defined as determining a subset of users of size

k at time t, denoted by Ut ⊂ Vt s.t. |Ut| = k, by analyzing the tweet set T ′t−1 and

local graph G′t−1. By collecting tweets of the users included in Ut, we construct an

approximate tweet set T ′t and update the topic-based network accordingly. The final

objective is to estimate the topic-based influence scores of the users in the network as

accurate as possible. Thus, the goal is to pick the subset Ut, so as to maximize the

accuracy of the influence scores computed on the estimated topic-based network.
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Chapter 4

Overall System Architecture

In this chapter, we briefly describe our system achitecture, depicted in Figure 4.1, and

the basic workflow of the system.

Figure 4.1: Overall system architecture.

14



4.1 Social Network Data Collection

We use the Twitter network and tweets to analyze user influence. A Twitter network

is a directed, unweighted graph where the nodes represent users and the edges denote

follower relationships in Twitter. When a user u follows a user v, there is mutual in-

fluence between them, which has an effect on both users’ influence scores. In order to

construct our network, we first determine a small set of users called the core seeds. For

illustration, we started with some popular Turkish Twitter accounts including newspa-

pers, TV channels, politicians, sport teams, and celebrities. Second, we collect one-hop

relations of the core seeds and add the unique users to a set called the main seeds. We

iterate once more to collect one-hop relations of the main seeds with a filter to avoid

unrelated and inactive users. This filter has three conditions: a) a user must have at

least five followers, b) a user must have at least one tweet within the last three months,

and c) the tweet language of a user must be Turkish. As a result of this process, we

have determined our seed users set, which includes approximately 2.8 million unique

users. In the final step of the data collection phase, we acquire the relations of the seed

users to determine G0, that is the social network graph at time 0. Furthermore, we

collect tweets of the seed users in order to construct T0, that the tweet set at time 0.

We implemented the proposed methods using a distributed system with HBase and

HDFS serving as the database and file system backends. The system consists of six

main parts: a) local copy of the social network data on HDFS, b) data fetcher, c) dy-

namic prober, d) score estimator, e) semantic analyzer, and f) visualizer. Data fetcher

component, as the name implies, fetches the data (network relations and tweets) via

rate-limited Twitter APIs, periodically. Dynamic prober makes a dynamic probing

analysis, decides which users are going to be fetched and notifies data fetcher to bring

the information, accordingly. Score estimator calculates users’ influence and the re-

lated parameters of the proposed algorithms, which are essential parts of the probing

method. Semantic analyzer performs keyword extraction and calculates the related pa-

rameters for constructing topic-based networks. Finally, visualizer provides a graphi-

cal user interface for result analysis.
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Figure 4.2: Influence past of a user

4.2 Score Analysis

We calculate influence scores of users based on their relationships and the overall im-

pact of their tweets in the network. We analyze topic activities of the users from their

tweets and determine topic-sensitive user influence scores. Overall, we are using two

types of scores, namely global influence and topic-based influence, which can be in-

terpreted together for a more detailed analyses.

Global Influence Score. This score is a measure of the user’s overall influence within

the network. For this purpose we use the personalized PageRank algorithm. PageRank

value PRv(t) at time t for a user v ∈ Gt directly corresponds to the global influence

score of it and will be used interchangeably throughout the thesis.

Figure 4.2 illustrates the evolving nature of the influence score by showing the

global and topic-based influence scores history of a user, which is selected by our

algorithm as one of the most important users that should be probed during the first col-

lection period. This is the official account of the president of the Republic of Turkey.

Besides the account’s high impact, we observe that its influence also varies signifi-

cantly over time, which further justifies the need to probe this account frequently. A

reason of the variation in influence score is that the time period shown in the figure

matches with the elections for the Presidency (10 August 2014). After becoming the
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new president, the account’s influence has further increased. During this period, it is

always selected as a top user to be probed by our proposed approach. This is intuitive,

as it is a popular account with a high change in the influence scores over time.

Topic-Based Influence Score. The system calculates topic-based influence scores rep-

resenting user activity and impact on a specific topic. We perform semantic analysis

on user tweets by taking re-tweets and favorite numbers into consideration as well.

A re-tweet (RT) is a re-posting of someone else’s tweet, which helps users quickly

share a tweet that they are influenced by or like. A favorite (FAV) is another feature

that represents influence relation between users, wherein one user can mark a tweet

by another user as a favorite. These two features are helpful to estimate influence of

an individual tweet. Since Twitter is a micro-blogging platform, users are generally

tweeting on specific topics. While many tweets are mostly conversational and reflect

self-information [58, 59], some are being used for information sharing, which is im-

portant in harvesting knowledge. RTs and FAVs are effective in separating relevant

and irrelevant tweets. Therefore, we use them in our topic weight analysis to estimate

influence value of a tweet on a specific topic.

Topic-based network construction process consists of three main phases: a) key-

word extraction on tweets, b) correlation of keywords with topic dictionaries, and

c) weight calculation.

In the first phase, keywords are extracted from the tweets by using information

retrieval techniques, including word stemming and stop word elimination. The output

from this phase is a keyword analyzed tweet corpus for each individual user and the

related histogram which captures the frequencies of the related keywords (K). These

corpora are further analyzed in the second phase.

We have created a keyword dictionary (Dj) for each topic (Cj), in order to score

tweets against topics. As part of each dictionary, we have assigned normalized weights

to words, representing their topic relevance. In the second phase, using the weights

from the dictionaries and the users’ keyword histograms, we obtain the normalized

raw topic scores of users for each one of the topics.

In the third phase, we calculate a value called the RT-FAV total for each user, which
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is the summation of the number of re-tweets and favorites received by a user’s tweets.

We then scale the normalized raw topic score with the RT-FAV total for each user per

topic of interest. The final results are used as the in-edge weights of the users on each

topic, when forming the topic-based network.

Once the topic-based network construction is complete, we execute the weighted

PageRank [4] algorithm and the resulting PageRank values of users, denoted by

WPRv(t) at time t for v ∈ Gt, is assigned as their topic-based influence scores.

Due to the nature of the PageRank algorithm, some of the globally influential users

also turn out to be highly influential for most or all of the topics. These users have

a lot of followers and they are also followed by some of the influential accounts of

the specific topics, which cause them to score high for topic-based analysis as well.

Therefore, they can get high topic-based influence scores even if they do not actively

tweet about the topic itself. To eliminate this effect, we apply one more level of filtering

to remove these globally effective accounts from the topic-sensitive influence lists. In

particular, if the number of tweets a user posted that are related with the topic at hand

is less than a predefined percentage, e.g., %401, of the total number of tweets posted

by the user, then the user is discarded for that topic. This filtering process significantly

reduces the noise level in the analysis.

As a result, for each topic, we construct a weighted network in which an edge

((u, v)) represents the amount of topic-specific influence a user (v) has on a follower

user (u). Thus, the results of weighted PageRank algorithm gives us the overall topic-

influence scores on the network.

Figure 4.2 also shows the topic-based score history of the official account of the

president of the Republic of Turkey. According to our analysis, %80 of the account’s

topic activity is related to politics. Since it could not pass our applied activity filter on

other topic categories, the system only calculates its topic influence scores for politics.

We can see from the figure that the change on the topic-based scores are more dramatic

compared to the global scores. This is intuitive, as they are depending on users’ tweets

and sharing statistics. A user might be very active on some weeks about a specific

1Note that a tweet can be related to zero or more topics.
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topic so that his influence on the topic might increase dramatically. Likewise, when he

posts something important, he might get high sharing rates. On the other hand, when

he just posts regular things which are not shared via others, his influence on the topic

might decrease quickly.
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Chapter 5

Dynamic Data Fetching Methods

In this chapter, we introduce our algorithms for probing in dynamic social networks.

In order to efficiently determine a subset of vertices to probe, we develop heuristics for

both dynamic network fetching and dynamic tweet fetching problems given in Chap-

ter 3.

5.1 Analysis of PageRank Change

In this section, we give a theoretical analysis of how the changes in the network affect

the PageRank values of the vertices. PageRank value of a specific vertex v is given as

follows:

PR(v) = α
∑

∀(u,v)∈Ein(v)

PR(u)

|Eout(u)|
+

1− α
n

, (5.1)

where PR(v) denotes the PageRank value, Ein(v) denotes the in-edge set, andEout(v)

denotes the out-edge set for v.

Figure 5.1 shows an example network, which will be used to demonstrate the effects

of network changes on PageRank values.
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Figure 5.1: A sample graph for analysis.

Assume that an edge (u, v) is added due to the evolving nature of the network. Here,

we analyze the effect of this addition on the PageRank values of the out neighbors of

u. We see that the PageRank value of v is as follows per Equation 5.1:

PRnew(v) = α

 ∑
∀(i,v)∈Ein(v)

PR(i)

|Eout(i)|
+

PR(u)

|Eout(u)|+ 1

 +
1− α
n

= PR(v) + α
PR(u)

|Eout(u)|+ 1

PageRank values of out neighbors of u other than v, such as w, are impacted as

follows:

PR(w) = α

 ∑
∀(i,w)∈Ein(w)\(u,w)

PR(i)

|Eout(i)|
+

PR(u)

|Eout(u)|

 +
1− α
n

PRnew(w) = α

 ∑
∀(i,w)∈Ein(w)\(u,w)

PR(i)

|Eout(i)|
+

PR(u)

|Eout(u)|+ 1

 +
1− α
n

PRnew(w) = PR(w)− α PR(u)

|Eout(u)|.(|Eout(u)|+ 1)

These effects are the immediate responses on the vertices that are considered. These

residual PageRanks will ripple out to all the vertices in all the paths from v and w in

each iteration of the PageRank algorithm. But the effect will decease as the residuals

will be divided by the number of outgoing edges for each vertex visited. We will

analyze the effects of the first iteration of the algorithm to simplify the problem and

to get a general feel of the change in PageRank values. Considering expected value of
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Eout = E[|Eout(u)|] as the average out-degree for vertices, the differential PageRanks

are given as follows:

∇PR(v) = α
PR(u)

Eout

(5.2)

∇PR(w) = −αPR(u)

Eout
2 (5.3)

We can see from Equations 5.2 and 5.3 that we should select the vertices, say u,

with the following properties for accurate G′t and PR′u(t) estimations:

• vertices with high PageRank values (PR(u));

• vertices whose PageRank values change over time;

• vertices with high out-degrees (Eout(u));

• vertices whose out-degrees change over time.

PageRank, when computed until the values converge in steady state, considers both

incoming and outgoing edges. The parameters related to out-degree values are intrinsi-

cally taken into account when PageRank is computed. Hence, in our dynamic fetching

approach, we focus only on PageRank values and their changes to cover all the cases

listed above.

5.2 Dynamic Network Fetching using Influence Past

We aim to probe a subset, Ut, update the edges incident on vertices in Ut to form G′t,

and calculate PageRank values PR′v(t), ∀v ∈ Gt. In order to determine this subset,

we use a time series of past PageRank values for a vertex v, named the influence past

of v. Formally, we have IPv = [. . . , PR′v(t− 2), PR′v(t− 1)].
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In our strategy for determining Ut, we consider the vertices whose PageRank values

change considerably over time. In order to quantify this change for a vertex v, we are

calculating the standard deviation of the time series IPv, that is:

Changev = σIPv =
√
V ar(PR′v) (5.4)

Choosing the best vertices to probe can be performed by calculating a score that is a

linear combination of the PageRank value and the change in PageRank values, as given

in Equation 5.5. Here, α parameter balances the importance of the two aspects. We

assume that influence past that contains at least two data points is available for every

user, in order to calculate the score changes.

Score(v) = (1− α)PR′v(t− 1) + αChangev (5.5)

After the selection of the users with respect to the ranking of Score(v), we probe

their current relations and form G′t.

Round-Robin & Change Probing. Change Probing could cause the system to fo-

cus on a particular portion of the network and may discard the changes developing in

other parts. This is because the probing scores of some vertices will be stale and as a

result these vertices may consistently rank below the top-m, despite changes in their

real scores. This bias could end up accumulating errors in the influence scores of these

vertices and start to have an impact on the entire network. Therefore, we propose to

use Change Probing together with Round-Robin Probing, in which users are probed

in a random order with equal frequency. In this way, we aim to probe every vertex at

least once within a specific period P . Round-Robin Change algorithm probes some

portion of the network randomly and marks all probed users. Thus, any probed users

are not probed randomly again, until all users are probed at least once within P . In

this method, we control the balance between change vs. random selection by using a

parameter β ∈ [0, 1]. In particular, we choose β∗k users to probe with Change Probing

and (1− β) ∗ k users with Round-Robin Probing.

Network Inference. Since we are able to fetch data only for a limited number of users,

there is a high probability that other users in the network have changed their connec-

tions as well. To take these possible changes into account, we have also incorporated
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link prediction into our solution, based on neighbor properties. Link prediction algo-

rithms assign a score to an edge (u, v) based on their neighbors, denoted as Γu and Γv.

The basic idea behind these scores is that the two vertices u and v are more likely to

connect via an edge if Γu and Γv are similar, which is intuitive. Considering social net-

works, two people are likely to be friends if they have a lot of common friends. There

are different scores used in the literature, including the common neighbors, Jaccard’s

coefficient, Adamic/Adar, and Resource Allocation Index (RA). We have adapted RA

as part of our approach since it is found more successful on a variety of experimental

studies on real life networks [60]. RA is founded on the resource allocation dynam-

ics of complex networks and gives more weight to common neighbors that have low

degree. For an edge (u, v) between any two vertices u and v, RA is defined as follows:

RAu,v =
∑

w∈Γu
⋂

Γv

1

degree(w)
,

where Γv is the neighbors of v

(5.6)

The RA score, RAu,v for the edge (u, v), is proportional to the probability of an

edge being formed between the vertices u and v in the future. Based on this, we

rank all the calculated RA scores. Since the edges in our network are not defined

probabilistically and are defined deterministically as existent or non-existent, we need

to determine how many of these scored edges should be selected. Therefore, we define

a growth rate, Eg, which is the average change in the number of edges (|E|) between

snapshots of the network after excluding the changes due to Ut. After calculating RA

scores for all possible new edges, we choose Eg edges with the highest scores. Using

this method, we add new connections to the current graph, to finally have the estimated

graph G′t. The pseudo code of the network inference based probing algorithm we use

to select k vertices to probe is given in Algorithm 1.
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ALGORITHM 1: Algorithm for Dynamic Network
Fetching
Input: G′t−1, IP , PR′(t− 1), α, β ∈ [0, 1], k
Output: G′t
// Fetch network
for all v ∈ Vt do
σIPv =

√
V ar(PR′v)

Score(v) = (1− α)PR′v(t− 1) + α · σIPv

end for
Ut ← ∅
while |Ut| ≤ k · β do
v ← argmaxv∈Vt−1Score(v)
Ut ← Ut ∪ {v}, Vt−1 ← Vt−1 \ {v}

end while
while |Ut| ≤ k do
v ← randomly choose from Vt−1

Ut ← Ut ∪ {v}, Vt−1 ← Vt−1 \ {v}
end while
Probe Ut for relationships, Form G′t
// Infer network
Calculate RAu,v, ∀(u, v) ∈ Ẽ = Vt × Vt
for Eg times do

(u, v)← argmax(u,v)∈Et
RAu,v

Et ← Et ∪ {(u, v)}
end for
Output G′t
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ALGORITHM 2: Dynamic tweet fetch-
ing
via G-WG

Input: T j′

t−1, TIP j ,
WPRj′(t− 1), α, β ∈ [0, 1], k
Output: T j′

t

for all Cj do
for all v ∈ V j

t−1 do
σTIPv =

√
V ar(TPR′v)

Scorej(v) = (1−
α)WPRj′

v (t− 1) + α · σ
TIP j

v

end for
U j
t ← ∅

while |U j
t | ≤ k · β do

v ← argmax
v∈V j

t−1
Scorej(v)

U j
t ← U j

t ∪ {v},
V j
t−1 ← V j

t−1 \ {v}
end while
while |U j

t | ≤ k do
v ← randomly choose from
V j
t−1

U j
t ← U j

t ∪ {v},
V j
t−1 ← V j

t−1 \ {v}
end while
Probe U j

t for tweets, Form T j′

t

Output T j′

t

end for

ALGORITHM 3: Dynamic network and
tweet
fetching via WG-WG

Input: WGj′

t−1, T j′

t−1, TIP j ,
WPRj′(t− 1), α, β ∈ [0, 1], k
Output: T j′

t ,WGj′

t

for all Cj do
for all v ∈ V j

t−1 do
σTIPv =

√
V ar(TPR′v)

Scorej(v) = (1−
α)WPRj′

v (t− 1) + α · σ
TIP j

v

end for
U j
t ← ∅

while |U j
t | ≤ k · β do

v ← argmax
v∈V j

t−1
Scorej(v)

U j
t ← U j

t ∪ {v},
V j
t−1 ← V j

t \ {v}
end while
while |U j

t | ≤ k do
v ← randomly choose from
V j
t−1

U j
t ← U j

t ∪ {v},
V j
t−1 ← V j

t−1 \ {v}
end while
Probe U j

t for relationships, Form
WGj′

t

Probe U j
t for tweets, Form T j′

t

Output WGj′

t , T j′

t

end for
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5.2.1 Dynamic Tweet Fetching using Topic-Based Influence Past

Our dynamic tweet fetching solution makes use of the weighted PageRank values and

comprises of two two steps. First, we infer the evolving relationships of the network

using the methods explained earlier in the previous section. This way we can track

and estimate the changing relationships. Second, we select a subset of users to fetch

their tweet data. Specifically, we aim to probe a subset, Ut, collect their tweets, and

update the edge weights for the users in Ut; all in order to form WGj′

t for a given topic

Cj . We then compute weighted PageRank values to find WPRj′
v (t),∀v ∈ WGj

t for

a given topic Cj . To select the subset of users in Ut, we use a time series of the past

weighted PageRank values, named the topic-based influence past of v. Formally, we

have TIPv = [. . . ,WPRj′
v (t − 2),WPRj′

vi
(t − 1)]. This is performed independently

for all topics of interest, {Cj} .

In this process, there two different evolving components: a) relationships among

users (network) and b) topic-weights (tweets). Depending on an use-case, those two

components could be maintained together or independently from each other. There-

fore, we employ two different approaches in order to track the topic-based influence

scores of the network:

• Use the global network parameters for network fetching and the topic-sensitive

network parameters for tweet fetching. This is named as the G-WG method

(Figure 5.2), where global Gt is used for network fetching, and topic-sensitive

WGt is used for tweet fetching.

• Use the topic-sensitive network parameters for both network and tweet fetching.

This is named as the WG-WG method (Figure 5.3).

The first approach, G-WG, is useful for cases where globally influential users are

tracked, but with minimal additional resources, topic-based influential users are to be

determined as well. This might be the only viable option if the bandwidth is not enough

for selecting and updating the vertices separately for each topic, especially if the num-

ber of topics is high.
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Figure 5.2: G-WG method, probe the global network and probe the tweet sets for each
topic of interest.

Figure 5.3: WG-WG method, probe the networks and the tweet sets for each topic of
interest.

For the second approach, WG-WG, we construct separate networks WGj for each

topic and evolve them separately. We update each network at the end of a probing

period, using the new tweets fetched to track the most influential vertices for each

topic Cj . The high-level algorithms for the G-WG and WG-WG methods are given

in Algorithms 2 and 3, respectively.

28



Chapter 6

Experiments and Results

In this chapter, we present the experimental setup and the results of our performance

evaluation for the proposed algorithms. We also present experiments analyzing the

sensitivity of the parameters used in the algorithms.

6.1 Data Sets

We have collected data using the public Twitter API, as described in Chapter 4. Twitter

API calls are restricted by rate limit windows. These windows represent 15 minute

intervals and the allowed number of calls within each window can vary with respect

to the call type. Our system makes two different calls, a) “GET followers/ids”, which

returns the followers list of the specified user, and b) “GET statuses/user timeline”,

which returns the most recent Tweets of the specified user. For the first call type, we

are allowed to make 15 calls per rate limit window. Every call can return up to 5K

followers. For the users who have more than 5K followers, we have to make multiple

calls accordingly. For the second type, we are allowed to make 1804 calls per limit

window. Every call can return 3.2K1 tweets of the queried user. Details of the calls are

also presented in Chapter 3 with the accompanying analysis.

1With paging. Every page contains 200 tweets.
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We have collected the network between the end of August 2014 and the beginning of

January 2015, with a period of 15-20 days. As a result, we have obtained 11 snapshots

of the Turkish users’ network with progressing timestamps. We have collected the

relations of 2.8 million users, which amounts to a total of 310 million edges on average.

We took the first snapshot as the initial network to calculate the probing scores (see

Eq. 5.5) and the rest of the snapshots were used as ground truth for the evaluation of the

probing algorithms. For the topic-based influence estimation, we have also collected

the tweets of our seed users in the same period. We constructed a dataset formed of

11 snapshots containing 5.5 billion2 tweets in total. We take the first snapshot as the

initial tweet set as in the case of the relationship network analysis. From this data, we

have built up the topic weighted networks and calculated probing scores (see Eq. 5.5),

accordingly.

In our probe simulation module, we fetch the connections of the users we have

selected for probing, from the real network Gt at time t. We then update these con-

nections (adding new ones and deleting old ones) on the previously observed network

G
′
t−1 at time t − 1, in order to obtain the estimated network G′t at time t. Finally, we

compare the influence estimation results from the observed network G′t with the ones

from the real network Gt. Same procedure is also applied for the tweet sets.

In order to include extensive number of experiments in our evaluation, we focused

on the top 250K influential users and restricted the network on which the scores are

computed to the network formed by these users.

Figure 6.1 shows the in-edge distribution of the original and the pruned network.

Both follow a power-law distribution. Impact of the pruning process on the network

structure seems to be minimal and has not created any anomalies in the analysis. We

also pruned the tweet list according to the same top 250K influential users, which

reduced the total size of the tweet sets to 200M .
2This number includes re-tweets and duplicate tweets as well. In the collection phase, we are fetching

last 200 tweets of the users without checking whether or not they exist in the local tweet sets or they
are re-tweets. Because this possible checks also require extra API calls. However, re-tweets are not
considered in the analysis.
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Figure 6.1: In-edge distributions of the original network (on the left) and the pruned
network (on the right).

6.1.1 Evaluation of Dynamic Network Fetching

We have implemented several algorithms to compare the performance of the proposed

techniques. The details of the algorithms used are given below:

NoProbe and Random Probing. These are two baseline algorithms. NoProbe algo-

rithm assumes that the network does not change over time and uses the fully observed

network at time t = 0 for all time points without performing any probing. It represents

the worst case scenario for the dynamic network fetching problem. The second base-

line algorithm is Random Probing algorithm which randomly chooses k users to probe

with uniform probability.

MaxG. As described in [39], users are probed with a probability proportional to the

“performance gap”, which is defined as the predicted difference between the results

of the approximate solution and the real solution. Briefly, the method incrementally

probes users which will bring the largest difference in the results. The method assumes

that the influence of a specific user is related to the output of the degree discount heuris-

tic. Although their influence determination function is different than ours, we use the

MaxG algorithm for performance evaluation of our proposed algorithms.

Priority Probing. As described in [38], this algorithm chooses users to probe accord-

ing to a value proportional to their priorities. Priority of a node is defined as the value

of its PageRank score. For every iteration of the method, if a node is not probed, the

current PageRank value is added to its priority and if the node is probed, its priority is

reset to 0.
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Change Probing. This is our first proposed method, which chooses k users to probe

with value proportional to their scores, as computed by Eq. 5.5. The network is then

constructed via Alg. 1.

Round-Robin & Change Probing. This is our second proposed method, which

chooses β·k users to probe with Change Probing and (1−β)·k users with Round-Robin

Probing. When α = 0 in Eq. 5.5 for the Change Probing part, the method becomes

similar to [38]. The difference is that Priority Probing increases the probe possibility

of a node by its PageRank value in every step if it is not probed, so that at some point

the probe possibility becomes 1.

We evaluate performance by comparing the quality of the influential users found

by each approach with that of the ideal case. For this purpose, we use two different

evaluation measures:

• Jaccard similarity between the correct and estimated top-mmost influential users

lists.

• The mean squared error of the PageRank scores.

6.1.2 Evaluation of Dynamic Tweet Fetching

We evaluate the performance of the proposed tweet fetching technique with two base-

lines algorithms, namely NoProbe and Random Probing. The details of these baselines

and our proposed method are given below:

NoProbe. This algorithm assumes that the tweet set does not change over time and use

the fully observed tweet set at time t = 0 for all time points without any probing. This

method represents the worst case scenario for the dynamic tweet fetching problem.

Random Probing. This algorithm randomly chooses k users to collect tweets with

uniform probability at each time step.

Round-Robin & Topic Change Proportional Probing. This is the algorithm we pro-

posed, which greedily chooses k users to collect tweets with value proportional to their

scores describe in Eq. 5.5. Differently from the network fetching method, scores are
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calculated by using WPRj
v for the topic Cj , instead of PRv.

6.1.3 Experimental Results and Discussion

This section compares and discusses the performance of the proposed network and

tweet probing methods with the state-of-the-art and baseline methodologies using ex-

periments executed on real datasets. We also provide an empirical interpretation of the

calculated topic-based influence scores.

6.1.3.1 Experimental Setup

As indicated in Eqs. 3.1 and 3.2, given the resource limits permitted by the service

providers, one cannot probe a significant portion of the network. We have executed

our experiments with different probing capacities and used 0.001%, 0.01%, 0.1% and

1% of the network as the size of the probe set. For the analysis of the effect of the α

parameter used in Change Probing, we set: a) α = 0, meaning PageRank proportional

scores are used; b) α = 0.5, meaning equally weighted PageRank and influence past

scores are used; c) α = 1, meaning only influence past scores are used. For the Round-

Robin Change algorithm we tested the ratio parameter β with three values, which

control the random selection: 0.4, 0.6, and 0.8.

6.1.3.2 Change Probing Performance w.r.t. α

Figure 6.2 depicts the performance of Change Probing algorithm for the Jaccard sim-

ilarity measure. As expected, Change Probing algorithm significantly outperforms

NoProb algorithm. For the optimization of the α parameter, we test Change Probing

algorithm under three different α configurations:

• Using Average mean squared errors (MSE), α = 0.5 setting performs 8% better

than α = 0 setting and 19% better than α = 1 setting. Overall, it performs 83%
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Figure 6.2: Performance of Change Probing.

better than NoProbing.

• Using the Jaccard distance measure, α = 0.5 setting is 3% better than α = 0

setting and 5% better than α = 1 setting. In the overall case, α = 0.5 outper-

forms NoProbe by 43%. We also note that as the probing capacity increases,

performance of the Change Probing algorithm becomes less dependent on the

setting of α.

We also illustrate the change in error as the network evolves, in order to see how the

performance of different algorithms are affected as the seed network data ages. Fig-

ures 6.3a and 6.3b show the performance of Change Probing as a function of time for

the mean squared error (MSE) and Jaccard similarity metrics, respectively. We observe

that NoProb has an increasing error as time passes. Change Probing gives a more ro-

bust and stable performance with respect to time. This is mainly because as the number

of past influence points increases, the algorithm can estimate the influence variability

of the users more accurately, which compensates the deteriorating effect of aging of

the baseline network data. Since α = 0.5 outperforms the other cases, we use α = 0.5

configuration in the subsequent experiments with other algorithms. We also note that

y-axis contains relatively small values because the PageRank values are normalized.

We have assumed NoProb algorithm as the reference point for normalization.
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Figure 6.3: Performance of Change Probing as a function of time.

6.1.3.3 RR Change Probing Performance w.r.t. β

Figure 6.4 shows the performance results for the Round-Robin Change (RRCh) Prob-

ing algorithm under different round-robin ratios. We use the Change Probing algorithm

(with α = 0.5 setting) as the baseline reference point.

We observe that the RRCh algorithm performs poorly for small probing capacities,

such as 0.001% and 0.01%. Randomness impacts the performance more with smaller

number of probed users, since we are not able to probe the influential users with great

influential power, thus lowering the performance. For MSE, β = 0.8 configuration

performs 7% better than β = 0.6 and 12% better than β = 0.4. For the Jaccard

similarity measure, it is 2% better than β = 0.6 and 7% better than β = 0.4. Although,

it performs worse than Change Probing in the short term, it reaches the performance

of Change Probing in the long term, as show in in Figures 6.5a and 6.5b. Moreover,

it guarantees the probing of every node within a time frame, preventing the system to

focus on only a limited section of the network and missing other regional changes that

might accumulate and start to affect the network in the global sense. We would have

seen this phenomenon more explicitly if the number of snapshots were larger, which

was the case in [39]. The results are slightly better when the ratio is set to β = 0.8.

Therefore, we choose to use this algorithm (with α = 0.5 and β = 0.8 configurations)

instead of Change Probing for the comparison with others in the following sections.

35



10-3 10-2 10-1 100

Probing Capacity (%)

1

2

3

4

5

6

7

8
M

S
E

1e 6

RRCh b=0.4
RRCh b=0.6
RRCh b=0.8
Ch a=0.5

(a) MSE

10-3 10-2 10-1 100
0.70

0.75

0.80

0.85

0.90

0.95

1.00

Ja
cc

a
rd

 S
im

ila
ri

ty

top 10

10-3 10-2 10-1 100

Probing Capacity (%)

0.70

0.75

0.80

0.85

0.90

0.95

1.00
top 100

RRCh b=0.4
RRCh b=0.6
RRCh b=0.8
Ch a=0.5

10-3 10-2 10-1 100

Probing Capacity (%)

0.70

0.75

0.80

0.85

0.90

0.95

1.00

Ja
cc

a
rd

 S
im

ila
ri

ty

top 1000

(b) Jaccard similarity

Figure 6.4: Performance of Round-Robin Change Probing.

6.1.3.4 Comparison with the State-of-the-Art

Figure 6.6 compares the performance of RR Change method (with α = 0.5 and

β = 0.8 settings) against the baselines and the state-of-the-art methods from the lit-

erature. RR Change achieves better results for all performance measures used for

comparison in the thesis. It reduces MSE by 21% (see Figure 6.6a) when compared

to Priority Probing and 50% when compared to the MaxG method. Priority Probing

suffers especially for low probing capacity cases, since the priority of a user is set to 0

after probing. A probed user can regain its priority very late in the process, which pre-

vents it to track quick changes in the scores of the highly influential users. Therefore,

after probing an important user in terms of influence, that user is not being probed for

some time, even if the influence of the user is changing very fast. RR Change always

probes β portion of the users according to their influence impact and change over time,

so that the important users are in the probe set in each time step.

Overall, the proposed method gives 81% higher performance than the baseline algo-

rithms for the MSE measure. As seen in Figure 6.6b, RR Change shows better results

for the top-m set similarities as well. It is 5% better than Priority Probing and 11%

better than MaxG method on average. The performance difference is reaching up-to

18%. RR Change performs 35% better against baselines when Jaccard similarity is

considered on average. It is 40% better than the NoProbe and difference reaches up to
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Figure 6.5: Performance of Round-Robin Change Probing as a function of time.

55% for top-100 case. Since it also considers the change in the influence over time, it

is also able to preserve its accuracy while the performance of other methods degrade

over time (see Figures 6.7a and 6.7b).

6.1.3.5 Evaluation of the Network Inference Method

To assess the prediction quality of the link prediction algorithm, we plotted the his-

togram of the edges proposed by RA index that has really occurred in the real network.

This is shown in Figure 6.8. The histogram indicates the accuracy of the RA index

used for network inference. The edges that were determined by the prediction algo-

rithm as more likely to happen were found to be existent in the future network with

a higher probability. However, when we analyzed the incorrectly predicted edges, we

have observed that the algorithm predicts links between users who are unlikely to fol-

low each other in real life. For example, the algorithms predict an edge between two

pop stars since they have many common neighbors. However, they would not follow

each other because they are main competitors. Furthermore, some of these users not

willing to follow anybody at all. Link prediction algorithms typically do not consider

these facts in social networks. This indicates a weakness of the “mechanical” link

prediction algorithms on social networks. In addition to indexes which they use to cal-

culate similarities between users, they should also consider the tendency of the users
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Figure 6.6: Comparison of the probing strategies.

to make new connections. Therefore, we apply a filtering process in order to determine

users who are likely to follow somebody and we add the predicted edges only to those

selected users.

As a result, we improve the RR Change method by 3% for MSE and 2% for the set

similarities on average. Figure 6.9 compares the performance of our inference method

against the baselines, the state-of-the-art methods and the RR Change method. Espe-

cially, it increases the performance of RR Change for the lower capacities e.g., 0.001%

and 0.01%. In Figure 6.9b, we observed 7% improvement on the top-10 jaccard simi-

larities for 0.001% and 0.01% probing capacities.

6.1.3.6 Evaluation of the Topic Influence Estimation

We evaluated the influence of users with respect to four different topics: a) Politics,

b) Sport, c) Health, and d) Cultural and Art Activities. This section provides a qualita-

tive discussion about the accounts which were found to be influential by the proposed

methods. Table 6.1 shows the accuracy of topic relevance of the top-10 users found by

the system for the specific topics.

For the evaluation of the results, we performed a small survey containing 10 peo-

ple. We asked participants to evaluate the users with respect to their topic relevance

38



1 2 3 4 5 6 7 8 9 10
Time Stamps

0.0

0.5

1.0

1.5

2.0

2.5

3.0
M

S
E

1e 5

NoProb
Random
MaxG
Priority
RRCh

(a) MSE over time

1 2 3 4 5 6 7 8 9 10
Time Stamps

0.55

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

Ja
cc

a
rd

 S
im

ila
ri

ty

NoProb
Random
MaxG
Priority
RRCh

(b) Jaccard similarity over time

Figure 6.7: Comparison of the Probing strategies with respect to time.

0-
0.

1

0.
1-

0.
2

0.
2-

0.
3

0.
3-

0.
4

0.
4-

0.
5

0.
5-

0.
6

0.
6-

0.
7

0.
7-

0.
8

0.
8-

0.
9

0.
9-

1

Probabilities

0

20

40

60

80

100

R
e
a
lly

 o
cc

u
rr

e
d
 (

%
)

Figure 6.8: Accuracy of the link prediction algorithm.

and their influence on the topic. In order to identify influence of a user, we asked par-

ticipants to mark one of the following categories: a) very influential (1), b) influential

(.5), c) not influential (0). We used the results of the survey to provide an evaluation of

the selected users for the Turkish Twitter network, on a per-topic basis.

For the topic Politics, the results are very accurate for top-10. We have observed

that the dictionaries constructed for each topic has a big impact on the results. For

example, we observe that the dictionary constructed for Politics topic contains many

keywords that are related only with politics without any ambiguity. These keywords

have increased the performance of the semantic analysis, which in turn increased the
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Figure 6.9: Performance of RR Change with inference.

Topics Topic Relevance
Politics 10 out of 10
Sport 8.5 out of 10

Health 4 out of 10
Cultural and Art

Activities 9 out of 10

Table 6.1: Estimated influential accounts.

accuracy of the topic-based network influence analysis. Top-10 list contains the presi-

dent of Turkish Republic (RT Erdogan), the chairman of one of the opposition parties

(kilicdarogluk), and the mayor of the capital city (06melihgokcek). It is fair to as-

sume that these users, who give political messages on their tweets and who have lots

of followers, should be in the top-10 influential list on Turkish Politics topic.

The influential accounts for the Sport topic were the biggest sport clubs of Turkey

(GalatasaraySK, Fenerbahce) and one of the highest rating sport channel (ntvspor).

Their tweets were mostly related about the sport competitions, news from clubs, etc.

They have a lot of followers who actively pay attention to what they tweet. Thus, they

achieve high RT and Fav statistics, which shows that they have a big impact on their

followers. It is very reasonable that they are top influential accounts on this topic.

As intuitively expected, the influential accounts for the Health topic are mostly

doctor associations and governmental authorities. One of the accounts is Republic
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of Turkey Ministry of Health (saglikbakanligi), which mainly tweets about hospitals,

doctors and health regulations. Its follower numbers can be considered as relatively

high and is followed by other influential accounts. Since its tweets have critical news

potential, it has considerable number of RTs about the health topic. The other two

are doctor associations (YYD tr, istabip). They are followed by many doctors, which

also have some potential impact on the Health topic. In this topic, accurate relevance

ratio is relatively low because the constructed dictionary for this topic is not specific

enough, causing errors in semantic analyses that propagates to the latter phase of in-

fluence estimation.

The Cultural and Art Activities topic includes users which tweet about movies, art,

books, history, etc. The top-10 influential users are perfectly matched with the key-

words. CMYLMZ is very famous Turkish comedian, actor and producer. He also has

one of the highest follower numbers in the Turkish Twitter network. AtlasTarihDergi

is a history magazine tweeting mainly about historical events and information which

has considerable amount of followers and RTs. The third user (Siirler sokakta) shares

street poems and mottos, and it’s posts receive many RTs and Favs.

6.1.3.7 Evaluation of Dynamic Tweet Fetching

We have used the same default parameter settings from the network fetching experi-

ments to evaluate our proposed tweet fetching methods.

Figure 6.10 shows the performance of the RR Change method for dynamic tweet

fetching. For the MSE measure, global network based G-WG method performs 78%

better, and topic network based WG-WG method performs 40% better than the base-

lines, on average, respectively. In Figure 6.10b, we see that as the probing capacities

increase,G-WGmethod achieves almost perfect similarity against the results obtained

using the original network, for the top-10 influential users. For the top-1000 influential

users experiment, it reaches close to 0.9 similarity. Together with WG-WG method,

they quickly reach close to their top performance at around 1% capacity, except for

the top-10 case. For the latter, WG-WG method does not enjoy the quality increase
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Figure 6.10: Performance of Change Probing for dynamic tweet fetching.

that the G−WG method enjoys with increasing capacities. When we look at the Jac-

card similarity based results, G-WG achieves 77% better and WG-WG achieves 65%

better results than the baselines. Overall, the results show us that using the globally

maintained network is more advantageous.

AlthoughG-WGmethod outperformsWG-WGmethod when we compare the top-

10 results for the two methods, they are similar in terms of the topic relevance of their

top influential users. Table 6.2 shows the topic relevance ratios for the two methods.

Top-10 selected users are found to be related with the topics of interest and are popular

accounts in the topic area.

Topics Topic Relevance
Politics 10 out of 10 10 out of 10
Sport 8 out of 10 9 out of 10

Health 5 out of 10 4 out of 10
Cultural and Art

Activities 9 out of 10 9 out of 10

G−WG method WG−WG method

Table 6.2: Top-10 topic relevance ratios for G-WG and WG-WG for dynamic tweet
fetching.
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Chapter 7

Conclusion

Restrictions applied by social network service providers limit the capabilities of evolv-

ing network analyses by third parties. Therefore, we have proposed algorithms to

dynamically fetch network and text data from public API’s under limited probing ca-

pacities. Our proposed solutions use the past influential trends of the users with their

current statuses in order to predict their changes for the next fetching periods. In par-

ticular, we observed that high influential users and changeable influential trends effect

the overall network structure the most. We leverage these two metrics across our algo-

rithms. Experimental results showed that also considering past trends in the probing

strategy increases the overall accuracy of observed networks compared to only using

current metrics. Furthermore, we improved our probing strategies by inferring possi-

ble relations between users via link prediction algorithms. Due to computational ease,

we choose weighting friendship based inference in our system among alternatives like

bayes classification, bayes on friendship links and collective inference. Moreover, our

inference method could be extended by applying more complex network evolution

models in order to increase the accuracy of estimation probabilities.

We have also developed models for estimating global and topic-based influence in

social networks. Our influence models consider the dynamic structure of the network

for the influence estimation. For global influence, we considered the topological place
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of users within the network. For topic-based influence, we further enhanced the tradi-

tional relation based graph model by assigning new features to relations. In particular,

we used topological place of users together with their topic analysis and sharing statis-

tics which helped us separating relevant and irrelevant contents of their posts. With this

way, we could be able to specialize our social network model for topics of interest.
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