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ABSTRACT

TOPIC-BASED INFLUENCE COMPUTATION IN
SOCIAL NETWORKS UNDER RESOURCE
CONSTRAINTS

Kaan Bingol
M.S. in Computer Engineering
Advisor: Assoc. Prof. Dr. Hakan Ferhatosmanoglu
June, 2015

As social networks are constantly changing and evolving, methods to analyze dynamic
social networks are becoming more important in understanding social trends. However,
due to the restrictions imposed by the social network service providers, the resources
available to fetch the entire contents of a social network are typically very limited. As
a result, analysis of dynamic social network data requires maintaining an approximate
copy of the social network for each time period, locally. We study the problem of
dynamic network and text fetching with limited probing capacities, for identifying and
maintaining influential users as the social network evolves. We propose an algorithm
to probe the relationships (required for global influence computation) as well as posts
(required for topic-based influence computation) of a limited number of users during
each probing period, based on the influence trends and activities of the users. We infer
the current network based on the newly probed user data and the recent version of the
network maintained locally. Additionally, we propose to use link prediction methods
to further increase accuracy of our network inference. We employ PageRank as the
metric for influence computation. We illustrate how the proposed solution maintains
accurate PageRank scores for computing global influence, and topic-sensitive weighted
PageRank scores for topic-based influence. The latter relies on a topic-based network
constructed via weights determined by semantic analysis of posts and their sharing
statistics. We evaluate the effectiveness of our algorithms by comparing them with the
true influence scores of the full and up-to-date version of the network, using data from
the micro-blogging service Twitter. Results show that our techniques significantly
outperform baseline methods (80% higher accuracy for network fetching and 77% for
text fetching) and are superior to state-of-the-art techniques from the literature (21%
higher accuracy).

Keywords: Evolving Social Networks, Data Probing, Network Inference.
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OZET

KAYNAK KISITLAMALARI ALTINDA SOSYAL
AGLAR UZERINDE KONU TABANLI ETKI
HESAPLAMASI

Kaan Bingol
Bilgisayar Miihendisligi, Yiiksek Lisans
Tez Danigsmani: Dog¢. Dr. Hakan Ferhatosmanoglu
Haziran, 2015

Sosyal aglar siirekli degisirken ve gelisirken, dinamik yapidaki bu aglarin analizi i¢in
gerekli metotlarin 6nemi de sosyal egilimleri anlamak acisindan artmaktadir. Fakat
sosyal ag servis saglayicilar1 tarafindan uygulanan kisitlamalar nedeniyle, bir sosyal
agin topolojik durumu ve paylasimlariyla birlikte tiim icerigini toplamak i¢in mev-
cut kaynaklar yetersiz kalmaktadir. Sonug¢ olarak, degisken sosyal ag verisinin anal-
izi; verinin yaklagik bir kopyasini yerel olarak muhafaza etmeyi ve zaman i¢inde
yenilemeyi gerektirir. Biz, sosyal ag gelistikce, ag iizerindeki etkili kisileri be-
lirlemek ve zaman igerisinde takip etmek adina; hem ag hem de metin verisinin
sinirhl kaynaklar altinda toplanmasi problemi iizerinde calistyoruz. Sinirli sayida
kullanicinin her zaman aralig1 i¢in iligkilerini (genel etki hesaplamasi icin gerek-
lidir) ve metin paylasimlarini (konu tabanl etki hesaplamasi i¢in gereklidir) toplamak
icin kullanicilarin etki egilimlerini ve eylemlerini gbz Oniinde bulunduran bir algo-
ritma Oneriyoruz. Yeni toplanmis kullanici verisini ve lokal olarak siirdiiriilen agin
en son versiyonunu temel alarak; giincel ag yapisimi cikarsiyoruz. Buna ek olarak,
ag cikarsama metodumuzun dogrulugunu daha da artirmak adina, baglanti 6nerme
algoritmalar1 kullaniyoruz. “PageRank puani” n1 genel etki hesaplamasi i¢in Olcii
olarak belirledik. Onerdigimiz ¢oziimlerin, genel etki icin ”PageRank skorlar1” n1 ve
konu tabanli etki icin paylasim metinlerinin anlamsal analizleri ile paylasim istatistik-
leri harmanlanarak ve belirlenen agirliklar kullanilarak olusturulan konu temelli aglar
tizerinden hesaplanan agirlikli ”PageRank skorlar1” n1, nasil yiiksek bir dogrulukla
yenileyerek siirdiirdiiiinii gosterdik. Algoritmalarimizin etkinligini 6l¢gmek adina
sonuclarimizi, bir mikroblog servisi olan “Twitter” iizerinden toplanan veriler ile
olusturan agin, tam ve en giincel hali iizerinden hesaplanan gercek etki skorlari
ile karsilastirdik. Elde edilen sonuglara gore; onerdigimiz teknikler temel referans
tekniklerini 6nemli bir 6l¢iide geri birakirken (ag ¢ekimi i¢in %80, metin ¢ekimi i¢in
%77 daha dogrudur), literatiirdeki en gelismis tekniklerden de daha iyi bir performans
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gostermistir (%21 daha dogrudur).

Anahtar sozciikler: Degisken Sosyal Aglar, Ag Ornekleme, Ag Cikarsama.
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Chapter 1

Introduction

Analysis of social networks have attracted significant research attention in recent years
due to the popularity of online social networks among users and the vast amount of
social network data publicly available for analysis. Applications of social network
analyses are abound, such as influential user detection, community detection, informa-

tion diffusion, network modeling, user recommendation, to name a few.

Influential user detection is a key social analysis used for opinion mining, targeted
advertising, churn prediction, and word-of-mouth marketing. Social networks are dy-
namic and constantly evolving via user interactions. Accordingly, the influence of
users within the network are also dynamic. Beyond the current influence of users,
tracking the influence trends provides greater insights for deeper analysis. By combin-
ing the patterns of the past with the current information, comprehensive analysis on
customers, marketing plans, and business models can be performed more accurately.
For example, forecasting future user influences can be used to detect ‘rising stars’, who

can be employed in upcoming on-line advertisement campaigns.



1.1 Contributions

We address the problem of identifying and tracking influential users in dynamic social
networks under real-world data acquisition resource limits. The current approaches
for influence analysis mostly assume that the graph structure is static, or even when
it is dynamic, the data is completely known and reside in a local database. However,
in many cases, analysts are third-party clients and do not own the data. They cannot
keep the data completely fresh as changes happen, since it is typically gathered from
a service provider with limitations on resources or even on the amount of data pro-
vided. Third-party data acquisition tools access the data via rate-limited APIs, which
constraint the fetching capacity of clients. These externally enforced limits prevent
the collection of entire up-to-date data within a predetermined period. To this end, we
present an effective solution to rate-limited fetching of evolving network relations and
user posts. Our system maintains a local, partially fresh copy of the data (e.g. relations,
status, tweets) and calculates influence scores based on inferred network and text data.
The proposed solution probes limited number of active users whose influence scores
are changing significantly within the network. By combining previous and the newly
probed network data, we are able to infer the current network accurately. The local
network copy is maintained while consuming resources within allowed limits, and at

the same time, influence values of the users are computed as accurately as possible.

While computing and maintaining influence scores, we consider both global and
topic-based influence. Active and influential users mostly affect the general opinion
with respect to their topics of authority. For instance, a company marketing sports
goods will be interested in locating users who have high influence in sports, rather
than the global community. While this leads us to include topic-based analyses for
our problem setting, general influence scores of users are still of interest as well. For
instance, a politician would prefer a broader audience and identify a list of globally
influential users to promote her cause. In our system, we utilize both global and topic-

centric networks and compute global as well as topic-based influences.

To demonstrate the effectiveness of our solutions, we use Twitter [1l]. Twitter is

a good fit for research on dynamic user influence detection due to its large user base



and highly dynamic user activity. One can collect two-way friendship relations as
well as one-way follow, re-tweet and favorite relations via publicly available Twitter
API. The APIs have well-defined resource limits 2], which motivates the need for our
probing algorithms. We calculate PageRank [3]] on the Twitter network as the influence
score for the users. To generate topic-based influence scores, we adapt the weighted
PageRank [4], and adjust the initial scores and transition probabilities based on topic
relevance scores of the users. The topic relevance scores are computed based on user

posts, using text mining techniques, as well as their re-tweet and favorite counts.

To further improve the accuracy of our network inference, we perform link predic-
tion using trends on user relationships. The proposed solution shows increased accu-
racy on Twitter data when compared with other methods from the literature. Estimated
network structure is shown to be very close to the actual up-to-date network, with re-
spect to influential users. The proposed solutions address not only the limitations of
data fetching via public APIs, but also local processing when the resources are limited

to fetch the entire data. We summarize our major contributions as follows:

e We estimate global and topic-based influence of users within a dynamic social
network. For topic-based influence estimation, we construct topic-based net-
works via semantic analyses of tweets and the use of re-tweet and favorite statis-

tics for the topic of interest.

e We propose efficient algorithms for collecting dynamic network and text data,
under limited resource availability. We leverage both latest known user influence
values, as well as the past user influence trends in our probing strategy. We

further improve our probing techniques by applying link predictions methods.

e We evaluate our proposed algorithms and compare results to several alterna-
tives from the literature. The experimental results for relationship fetching show
that the proposed algorithms perform 80% better than the baseline methods, and
21% better than the state-of-the-art method from the literature in terms of mean
squared error. For tweet fetching methods used for topic-based influence detec-
tion, our algorithms perform 77% better than the alternative baselines in terms

of the Jaccard similarity measure.



1.2 Outline

The rest of the chapters is organized as follows. Chapter [2| gives background mate-
rial on related work. Chapter (3| describes the resources constraint problem for data
collection. Chapter [ describes the overall system architecture and presents influence
estimation techniques. Chapter [5] explains algorithms and strategies proposed for the
network and text fetching problems. Chapter [6] discusses evaluation results obtained

from experiments run on real data. Chapter[7|concludes the thesis.



Chapter 2

Related Work

2.1 Social Networks and Influence

Increases in the popularity of social networks and the availability of public data acqui-
sition tools for them have put social networks on the spotlight of both academic and
industrial research. Influential user estimation problem is studied by many researchers
following a wide variety of different methodologies. Within this context, some stud-
ies introduce centrality measures in order to reflect influence of users. [5] introduces

several definitions:

e Degree centrality picks users who are located at the center of a network, in the

sense that they are connected with many other users.

e Betweenness centrality picks users who are located on the path between many
nonadjacent users. Since such users connect many users, they should have a

greater control within the network.

e Closeness or distance centrality picks users who are close to all users in net-
work. The concept of closeness is defined by short average distance. The idea
behind this measure is if a user interact with many others quickly, he should be

influential.



For viral marketing applications, [6] develops methods for computing network in-
fluence from collaborative filtering databases by using heuristics in a general descrip-
tive probabilistic model of influence propagation. [7] addresses a similar problem by
studying the linear threshold and independent cascade models, and [8] presents a sim-
ple greedy algorithm for maximizing the social influence in a general model, termed

the decreasing cascade model:

Cy,u

dy
number of edges that exist between node v and u, and d,, is the degree of user v.

e In the linear threshold model, they assign edge weights as ==, where ¢, ,, 1s the

o In the independent cascade model, a uniform probability p,(u) is assigned to

edges between users so that users v has chance of p,(u) to affect user w.

o In the decreasing cascade model, they assign probability p,(u, .S) where S de-
notes the set of user v’s neighbors that already tried to affect v and failed. It is
the success probability of node u given that u affects v after v’s affected neigh-
bors failed to affect. This model is a generalization of the independent cascade

model.

In more recently published work, [9] presents a novel methodology for selecting
users to maximize the influence spread. [[10] uses maximum influence in-arborescence
(MITA) based greedy algorithms, which significantly improve scalability. [11] com-
pares different types of influence measures and discusses the findings. [[12] applies
statistical tests in order to distinguish user influence from correlation, and [13] in-
vestigates conformity influence on social networks. [14] uses a greedy approach for
the influence maximization problem and proposes efficient degree discount heuristics.
[15] studies the determination of influence probabilities for edges by examining the
past behavior of users. [16}17] study the problem of finding rising stars in co-author

networks based on mutual influence and other features.



2.2 Topic-Based Influence

Recently, researchers have studied extracting textual information associated with so-
cial networks. [18] studies topic modeling in social networks and proposes a solution
for text mining on the network structure. [19] introduces the topic-based social influ-
ence problem. Their proposed model takes the result of any predefined topic modeling
of a social network and constructs a network representing topic-based influence prop-
agation. Distributed learning algorithms are used for this purpose, which leverage the
Map-Reduce concept, thus, their methodology scales well for networks with millions
of edges. [20] combines heterogeneous links and textual content for each user in order

to mine topic-based influence.

Another recent study [21]] uses a PageRank-like measure to find influential accounts
on Twitter. They extend PageRank by using topic-specific probabilities in their random
surfer model. Although their method is similar to ours, their influence measure utilizes
the number of posts made on a specific topic. However, this is an indirect measure that
cannot reliably capture influence. Therefore, we use topic distributions of user posts
along with their sharing statistics (retweets and mentions in Twitter), which provides
robust results, as it takes into account the real impact of posts. [22]] conducts empirical
study of different topic modeling strategies based on standard Latent Dirichlet Alloca-
tion (LDA) [23] the Author-Topic Model (AT model) [24]. [25] proposes joint proba-
bilistic models of influence and topics. Their methodology performs a topic sampling
over textual contents and tracks the topic snapshots over time. [26] uses re-tweets in
measuring popularity and proposes machine learning techniques to predict popularity
of the Twitter posts. [27, 28, 29] propose solutions for predicting popularity of online
content. [30] studies the topic-aware influence maximization problem. Within this
context, in this work we introduce a new method that combines topic-based analyses
of posts with their sharing popularity for the purpose of topic-based influential user

estimation.



2.3 Evolving Social Networks

Dynamic graph analysis has also attracted a lot of attention recently. In order to main-
tain dynamic networks, [31} 132} 33| 134} 35] propose algorithms for determining web
crawling schedules. [36] studies the microscopic evolution of social networks. [37]
studies incremental PageRank on evolving graphs. Researches also have investigated
probing strategies for analyzing evolving social networks. [38] proposes influence pro-
portional probing strategies for the computation of PageRank on evolving networks
and [39] uses a probing strategy to capture observed image of the network by max-
imizing a performance gap function. [40, 41] study sampling over social networks.
However, these studies only focus on current image of a network in their probing
strategies. In contrast, we propose a method which also considers evolution of the

probing metrics, so that the network could be probed more effectively.

2.4 Network Inference

In the context of network inference, [42] proposes representations for structural uncer-
tainty and use directed graphical models and probabilistic relational models for link
structure learning. However, their methodologies are not scalable. [43] 44, i45] use
time evolving graph models for social network estimation. They apply time-varying
dynamic Bayesian networks for modeling evolving network structures. [46] shows
that third-parties can reach a user’s information by searching a few friends. [47] devel-
ops a scalable algorithm to infer influence and diffusion network, assuming all users
influence their neighbors with equal probabilities in the network. [48] removes this
assumption and addresses the more general problem by formulating a maximum like-
lihood problem and guarantee the optimality of the solution. [49] proposes a linear
model for the evolution of diffusion over time and [S0] proposes the idea of diffusion
centrality. [51,152]] studies a different problem related to network inference. Different
from these works, we use friendship weighting method in order to infer link structures,

similar to 53,154}, 155]. However, we use friendship weights only to infer edges between



users. Moreover, one can also use more informative features such as content-based in-
fluential effects. [S6] studies diffusion of tweets throughout the Twitter network. This

kind of technique could also be used in order to estimate impact of posts.



Chapter 3

Problem Definition

Our goal is to determine and maintain top-m influential users in the network, under
a constrained probing setting. Among various methods to calculate a user’s influence
in the network, we have chosen PageRank based methods, since PageRank is well
understood and used widely in the literature for various network structures [21} 157]].
While computing influence, PageRank naturally considers the number of followers a
user has, but more importantly it considered the topological place of the user within
the network. Therefore, we assume that a user’s influence in the network corresponds
to its PageRank score. As a result, the top-m influential user determination problem

turns into identifying the top-m users with the highest PageRank scores.

PageRank score calculation requires having access to all the relationships present
between the users of the network. This means that we need to have the complete
network data to compute exact PageRank scores. Moreover, if the network is dynamic,
the calculation needs up-to-date network data for each time step in order to perform

accurate influence analysis.

Our system continuously collects social network data (relations, tweets, re-tweets,
etc.) via the publicly available Twitter API. Twitter enforces certain limitations on data
acquisition using the Twitter APIs. There are different limitations for different types

of data acquisition requests:

10



e Relations: 15 calls per 15 minutes, where each call is for retrieving a user’s
relations. Moreover, if the user has more than 5K followers, we need an extra
call for each additional 5/ followers. This means that we can update relations

with a maximum rate of 1 user per minute (R,.; = 1 user/min).

o Tweets: 180 calls per 15 minutes, where each call is for retrieving a user’s tweets.
Moreover, if the user has more than 3.2K tweets, we need an extra call for each
additional 3.2 K tweets. This means that we can update tweets with a maximum

rate of 12 users per minute (R;,; = 12 user/min).

Assuming that we update the network with a period of P days, we need the follow-

ing condition to hold, in order to be able to capture the entire network of relations:

Number of Users < R,.; - P - 1440 (3.1

For getting the recent tweets of the users in the network, we need:

Number of Users < Ry, - P - 1440 (3.2)

One can easily calculate that for a network as small as 250K users, we need 174
days to update the complete network in the best cas This analysis shows that the
rate limits hinder the timeliness of the data collection process, which in turn affects the
timeliness of the calculation process to find and track influential users in the network.
Furthermore, Twitter is a highly dynamic network that evolves at a fast rate, which
means that not refreshing the network frequently will result in significant degradation
in the accuracy of the influence scores. Current resource limits prohibit the system
to collect the network data in a reasonable period of time. Therefore, the evolving
network’s relationships and the tweet sets are not fully observable at every analysis

time step.

To overcome this limitation, we propose to determine a small subset of users during
each data collection period, whose information is to be updated. This data collection

process, which does not violate the rate limits of the API, is sufficient to maintain an

lAssuming all users have < 5K followers, so that they could be fetched with one call.

11



approximate network with a reasonable data collection period, while at the same time

providing good accuracy for the influence scores.

We apply the concept of probing for efficient fetching of the dynamic network and
the user tweet sets. We denote a network at time ¢ as G; = {V;, E,}, where V; is the
set of users and £y C V; x V, is the set of edges representing the follower relationship
within the network. In other words, (u,v) € E, means that the user u € V; is following
the user v € V;. Our model uses an evolving set of networks in time, represented as
{G, | 0 <t < T}. However, we assume that we have fully| observed the network
only at time ¢ = 0. G; where ¢ > 0, can only be observed partially by probing. At
each time period, we use an algorithm to determine a subset of k users and probe them
via API calls. We then update the existing local network with the new information
obtained from the probed users. In other words, we maintain a partially observed
network G, which is potentially different than the actual network G,. Larger k values
(0 < k < |V4]) bring the partial network G; closer to the actual network G;. However,
using large k values is not feasible due to rate limits outlined earlier. Our probing
strategy should select a relatively small number of users to probe, so that the data
collection process can be completed within the period P (as determined by Eq. [3.1)).
Furthermore, these probed users should bring the most value in terms of performing

accurate influence detection.

Dynamic Network Fetching Problem Definition: We assume that complete network
information is available only at time 0, i.e., G is known. The problem is defined as
determining a subset of users of size k at time ¢, denoted by U; C V, s.t. |U;| = k, by
analyzing the local graph GG;_,. The system will update the relationships of the users
included in this subset to construct the local network at time ¢, that is G}. Specifically,
this new network G is constructed by replacing the relationships of the users in G}_;
with the newly fetched relationships from the probing of the users in U;. We aim to
choose U, such that the influence scores of the estimated network G, will be as close as
possible to the true scores of the real network GG;. The final objective is to estimate the

PageRank scores PR! (t),Vv € G as accurately as possible, using partial knowledge

’The initial probing of the network can be accelerated via the use of multiple cooperating fetchers.
However, this is clearly not a sustainable and feasible approach for continued probing of the network,
as it requires large number of accounts, which are subject to bot detection and suspension.

12



about G;_1, that is G}_.

In order to track topic-specific influence scores of the users, we analyze their latest
tweets. One needs to collect predetermined amount of tweets for all of the users to
be able to compute exact influence scores. However, due to the rate limitations (as
determined in Eq.[3.2)), we cannot fetch all the tweets within the desired period. Instead
of retrieving tweets of every user, we determine a subset of users so that by collecting
tweets of this subset, the topic scores of the users will be as close to the true scores
as possible. We denote the tweet set at time ¢ as 7;. We again assume that we have
observed this set fully only at time 0, that is 7 is known. The other snapshots can only
be observed partially by probing. Le., we locally maintain partial tweet sets 7}, where
t>0.

Dynamic Tweet Fetching Problem Definition: Given the tweets T of all users in
the network at time 0, the problem is defined as determining a subset of users of size
k at time t, denoted by U; C V; s.t. |U;| = k, by analyzing the tweet set 7, _, and
local graph G_;. By collecting tweets of the users included in U;, we construct an
approximate tweet set 7} and update the topic-based network accordingly. The final
objective is to estimate the topic-based influence scores of the users in the network as
accurate as possible. Thus, the goal is to pick the subset U;, so as to maximize the

accuracy of the influence scores computed on the estimated topic-based network.

13



Chapter 4

Overall System Architecture

In this chapter, we briefly describe our system achitecture, depicted in Figure 4.1} and

the basic workflow of the system.
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Figure 4.1: Overall system architecture.



4.1 Social Network Data Collection

We use the Twitter network and tweets to analyze user influence. A Twitter network
is a directed, unweighted graph where the nodes represent users and the edges denote
follower relationships in Twitter. When a user u follows a user v, there is mutual in-
fluence between them, which has an effect on both users’ influence scores. In order to
construct our network, we first determine a small set of users called the core seeds. For
illustration, we started with some popular Turkish Twitter accounts including newspa-
pers, TV channels, politicians, sport teams, and celebrities. Second, we collect one-hop
relations of the core seeds and add the unique users to a set called the main seeds. We
iterate once more to collect one-hop relations of the main seeds with a filter to avoid
unrelated and inactive users. This filter has three conditions: @) a user must have at
least five followers, b) a user must have at least one tweet within the last three months,
and c) the tweet language of a user must be Turkish. As a result of this process, we
have determined our seed users set, which includes approximately 2.8 million unique
users. In the final step of the data collection phase, we acquire the relations of the seed
users to determine Gy, that is the social network graph at time 0. Furthermore, we

collect tweets of the seed users in order to construct 7j, that the tweet set at time 0.

We implemented the proposed methods using a distributed system with HBase and
HDFS serving as the database and file system backends. The system consists of six
main parts: a) local copy of the social network data on HDFS, b) data fetcher, c) dy-
namic prober, d) score estimator, ¢) semantic analyzer, and f) visualizer. Data fetcher
component, as the name implies, fetches the data (network relations and tweets) via
rate-limited Twitter APIs, periodically. Dynamic prober makes a dynamic probing
analysis, decides which users are going to be fetched and notifies data fetcher to bring
the information, accordingly. Score estimator calculates users’ influence and the re-
lated parameters of the proposed algorithms, which are essential parts of the probing
method. Semantic analyzer performs keyword extraction and calculates the related pa-
rameters for constructing topic-based networks. Finally, visualizer provides a graphi-

cal user interface for result analysis.
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Figure 4.2: Influence past of a user

4.2 Score Analysis

We calculate influence scores of users based on their relationships and the overall im-
pact of their tweets in the network. We analyze topic activities of the users from their
tweets and determine topic-sensitive user influence scores. Overall, we are using two
types of scores, namely global influence and topic-based influence, which can be in-

terpreted together for a more detailed analyses.

Global Influence Score. This score is a measure of the user’s overall influence within
the network. For this purpose we use the personalized PageRank algorithm. PageRank
value PR, (t) at time ¢ for a user v € G, directly corresponds to the global influence

score of it and will be used interchangeably throughout the thesis.

Figure [{.2] illustrates the evolving nature of the influence score by showing the
global and topic-based influence scores history of a user, which is selected by our
algorithm as one of the most important users that should be probed during the first col-
lection period. This is the official account of the president of the Republic of Turkey.
Besides the account’s high impact, we observe that its influence also varies signifi-
cantly over time, which further justifies the need to probe this account frequently. A
reason of the variation in influence score is that the time period shown in the figure

matches with the elections for the Presidency (10 August 2014). After becoming the
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new president, the account’s influence has further increased. During this period, it is
always selected as a top user to be probed by our proposed approach. This is intuitive,

as it is a popular account with a high change in the influence scores over time.

Topic-Based Influence Score. The system calculates topic-based influence scores rep-
resenting user activity and impact on a specific topic. We perform semantic analysis
on user tweets by taking re-tweets and favorite numbers into consideration as well.
A re-tweet (RT) is a re-posting of someone else’s tweet, which helps users quickly
share a tweet that they are influenced by or like. A favorite (FAV) is another feature
that represents influence relation between users, wherein one user can mark a tweet
by another user as a favorite. These two features are helpful to estimate influence of
an individual tweet. Since Twitter is a micro-blogging platform, users are generally
tweeting on specific topics. While many tweets are mostly conversational and reflect
self-information [58, 59], some are being used for information sharing, which is im-
portant in harvesting knowledge. RTs and FAVs are effective in separating relevant
and irrelevant tweets. Therefore, we use them in our topic weight analysis to estimate

influence value of a tweet on a specific topic.

Topic-based network construction process consists of three main phases: a) key-
word extraction on tweets, b) correlation of keywords with topic dictionaries, and

c) weight calculation.

In the first phase, keywords are extracted from the tweets by using information
retrieval techniques, including word stemming and stop word elimination. The output
from this phase is a keyword analyzed tweet corpus for each individual user and the
related histogram which captures the frequencies of the related keywords (/). These

corpora are further analyzed in the second phase.

We have created a keyword dictionary ();) for each topic (C}), in order to score
tweets against topics. As part of each dictionary, we have assigned normalized weights
to words, representing their topic relevance. In the second phase, using the weights
from the dictionaries and the users’ keyword histograms, we obtain the normalized

raw topic scores of users for each one of the topics.

In the third phase, we calculate a value called the RT-FAV total for each user, which
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is the summation of the number of re-tweets and favorites received by a user’s tweets.
We then scale the normalized raw topic score with the RT-FAV total for each user per
topic of interest. The final results are used as the in-edge weights of the users on each

topic, when forming the topic-based network.

Once the topic-based network construction is complete, we execute the weighted
PageRank [4] algorithm and the resulting PageRank values of users, denoted by

W PR,(t) at time ¢ for v € Gy, is assigned as their topic-based influence scores.

Due to the nature of the PageRank algorithm, some of the globally influential users
also turn out to be highly influential for most or all of the topics. These users have
a lot of followers and they are also followed by some of the influential accounts of
the specific topics, which cause them to score high for topic-based analysis as well.
Therefore, they can get high topic-based influence scores even if they do not actively
tweet about the topic itself. To eliminate this effect, we apply one more level of filtering
to remove these globally effective accounts from the topic-sensitive influence lists. In
particular, if the number of tweets a user posted that are related with the topic at hand
is less than a predefined percentage, e.g., %4 of the total number of tweets posted
by the user, then the user is discarded for that topic. This filtering process significantly

reduces the noise level in the analysis.

As a result, for each topic, we construct a weighted network in which an edge
((u, v)) represents the amount of topic-specific influence a user (v) has on a follower
user (u). Thus, the results of weighted PageRank algorithm gives us the overall topic-

influence scores on the network.

Figure {4.2] also shows the topic-based score history of the official account of the
president of the Republic of Turkey. According to our analysis, %80 of the account’s
topic activity is related to politics. Since it could not pass our applied activity filter on
other topic categories, the system only calculates its topic influence scores for politics.
We can see from the figure that the change on the topic-based scores are more dramatic
compared to the global scores. This is intuitive, as they are depending on users’ tweets

and sharing statistics. A user might be very active on some weeks about a specific

'Note that a tweet can be related to zero or more topics.
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topic so that his influence on the topic might increase dramatically. Likewise, when he
posts something important, he might get high sharing rates. On the other hand, when
he just posts regular things which are not shared via others, his influence on the topic

might decrease quickly.
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Chapter 5

Dynamic Data Fetching Methods

In this chapter, we introduce our algorithms for probing in dynamic social networks.
In order to efficiently determine a subset of vertices to probe, we develop heuristics for
both dynamic network fetching and dynamic tweet fetching problems given in Chap-

ter[3l

5.1 Analysis of PageRank Change

In this section, we give a theoretical analysis of how the changes in the network affect
the PageRank values of the vertices. PageRank value of a specific vertex v is given as

follows:

PR(u) 1 -«
P = 5.1
R(v) =« E By (0) +— (5.1
V(u,v)EEipn (v)

where P R(v) denotes the PageRank value, F;,(v) denotes the in-edge set, and F,,(v)

denotes the out-edge set for v.

Figure[5.1|shows an example network, which will be used to demonstrate the effects

of network changes on PageRank values.
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Figure 5.1: A sample graph for analysis.

Assume that an edge (u, v) is added due to the evolving nature of the network. Here,
we analyze the effect of this addition on the PageRank values of the out neighbors of

u. We see that the PageRank value of v is as follows per Equation [5.1}

PR(1) PR(u) 1 -«
V(i,v)eZEm(v) | Eout (7)] | Eout(w)| + 1 n
PR(u)
=PRW)+a——"—
( ) ’Eout(u)‘ + 1

PageRank values of out neighbors of w other than v, such as w, are impacted as

follows:

PR(i) PR(u) -«
B | 1Eom)] | T

PR(w) =« Z

V(i;w) € Ein (w)\(u,w)

ew B PR(37) PR(u) 11—«
PR™(w) =« Z +\Eout(u)\+1 -

Eou(i

V(z,w)GEm(w)\(%w) | t(ll)‘
PR(u)

| Eout (W)]-(| Eout (w)] + 1)

PR™(w) = PR(w) — «

These effects are the immediate responses on the vertices that are considered. These
residual PageRanks will ripple out to all the vertices in all the paths from v and w in
each iteration of the PageRank algorithm. But the effect will decease as the residuals
will be divided by the number of outgoing edges for each vertex visited. We will
analyze the effects of the first iteration of the algorithm to simplify the problem and

to get a general feel of the change in PageRank values. Considering expected value of
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Eout = E[|Eouw(u)|] as the average out-degree for vertices, the differential PageRanks

are given as follows:

VPR(v) = o LW (5.2)
Eout
VPR(w) = —api(? (5.3)
Eout

We can see from Equations [5.2] and [5.3] that we should select the vertices, say u,

with the following properties for accurate GG and PR, (t) estimations:

vertices with high PageRank values (PR(u));

vertices whose PageRank values change over time;

vertices with high out-degrees (E,:(u));

vertices whose out-degrees change over time.

PageRank, when computed until the values converge in steady state, considers both
incoming and outgoing edges. The parameters related to out-degree values are intrinsi-
cally taken into account when PageRank is computed. Hence, in our dynamic fetching
approach, we focus only on PageRank values and their changes to cover all the cases

listed above.

5.2 Dynamic Network Fetching using Influence Past

We aim to probe a subset, U;, update the edges incident on vertices in U; to form G},
and calculate PageRank values PR)(t), Vv € G;. In order to determine this subset,
we use a time series of past PageRank values for a vertex v, named the influence past
of v. Formally, we have IP, = [..., PR.(t — 2), PR, (t — 1)].
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In our strategy for determining U;, we consider the vertices whose PageRank values
change considerably over time. In order to quantify this change for a vertex v, we are

calculating the standard deviation of the time series [ P,, that is:

Change, = orp, = \/Var(PR.) (5.4)

Choosing the best vertices to probe can be performed by calculating a score that is a
linear combination of the PageRank value and the change in PageRank values, as given
in Equation [5.5] Here, v parameter balances the importance of the two aspects. We
assume that influence past that contains at least two data points is available for every

user, in order to calculate the score changes.

Score(v) = (1 — a)PR, (t — 1) + a Change, (5.5)

After the selection of the users with respect to the ranking of Score(v), we probe

their current relations and form Gj.

Round-Robin & Change Probing. Change Probing could cause the system to fo-
cus on a particular portion of the network and may discard the changes developing in
other parts. This is because the probing scores of some vertices will be stale and as a
result these vertices may consistently rank below the top-m, despite changes in their
real scores. This bias could end up accumulating errors in the influence scores of these
vertices and start to have an impact on the entire network. Therefore, we propose to
use Change Probing together with Round-Robin Probing, in which users are probed
in a random order with equal frequency. In this way, we aim to probe every vertex at
least once within a specific period P. Round-Robin Change algorithm probes some
portion of the network randomly and marks all probed users. Thus, any probed users
are not probed randomly again, until all users are probed at least once within P. In
this method, we control the balance between change vs. random selection by using a
parameter 5 € [0, 1]. In particular, we choose (3 k users to probe with Change Probing
and (1 — ) * k users with Round-Robin Probing.

Network Inference. Since we are able to fetch data only for a limited number of users,
there is a high probability that other users in the network have changed their connec-

tions as well. To take these possible changes into account, we have also incorporated
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link prediction into our solution, based on neighbor properties. Link prediction algo-
rithms assign a score to an edge (u, v) based on their neighbors, denoted as I, and T',,.
The basic idea behind these scores is that the two vertices u and v are more likely to
connect via an edge if I', and I',, are similar, which is intuitive. Considering social net-
works, two people are likely to be friends if they have a lot of common friends. There
are different scores used in the literature, including the common neighbors, Jaccard’s
coefficient, Adamic/Adar, and Resource Allocation Index (RA). We have adapted RA
as part of our approach since it is found more successful on a variety of experimental
studies on real life networks [60]. RA is founded on the resource allocation dynam-
ics of complex networks and gives more weight to common neighbors that have low

degree. For an edge (u, v) between any two vertices u and v, RA is defined as follows:

1
RAu v = P
’ Z degree(w)

where I, is the neighbors of v

(5.6)

The RA score, RA,, for the edge (u,v), is proportional to the probability of an
edge being formed between the vertices v and v in the future. Based on this, we
rank all the calculated RA scores. Since the edges in our network are not defined
probabilistically and are defined deterministically as existent or non-existent, we need
to determine how many of these scored edges should be selected. Therefore, we define
a growth rate, £, which is the average change in the number of edges (| E/|) between
snapshots of the network after excluding the changes due to U,. After calculating RA
scores for all possible new edges, we choose £/, edges with the highest scores. Using
this method, we add new connections to the current graph, to finally have the estimated
graph GG}. The pseudo code of the network inference based probing algorithm we use

to select k vertices to probe is given in Algorithm I}
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ALGORITHM 1: Algorithm for Dynamic Network
Fetching
Input: G,_,,IP, PR'(t—1),a, B € [0,1], k
Output: G}
// Fetch network
for allv € V; do
orp, = v/ Var(PR.)
Score(v) = (1 —a)PR,(t—1)+ a-orp,
end for
U; + 0
while |U;| < k- 5 do
v — argmazyey, , Score(v)
U+ U U {U}, Vi1« Viq \ {1)}
end while
while |U;| < k do
v 4— randomly choose from V;_;
U+ U U {U}, Vici + Viq \ {1}}
end while
Probe U, for relationships, Form G/
// Infer network B
Calculate RA,, ., V(u,v) € E =V, x V}
for E, times do
(u,v) <= argmazy vep, RAuw
E; + E U {(u,v)}
end for
Output G,
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ALGORITHM 2: Dynamic tweet fetch-
ing
via G-WG

Input: 77 |, TIPJ,
WPRY (t—1),c, B €[0,1], k
Output: th,
for all C; do
for all v € th;l do
orrip, = \/Var(T'PR))
Scorel (v) = (1 —
Q)WPR) (t—1)+a-o
end for
Ul <0
while [U7| < k- 8 do
v argmamvevtj_lscorej(v)

TIP}

Ui « U} U {v},
Vi < Vi \ {v}
end while
while [U7| < k do
v < randomly choose from
Vi
Ui « U} u{v},
Vi < Vi \ {v}
end while _
Probe U for tweets, Form T7'
Output thl
end for

ALGORITHM 3: Dynamic network and

tweet
fetching via WG-WG

Input: WG{I_I, Tt]il, TIPI,
WPRI'(t—1),a, 6 €[0,1], k
Output: thl, WG{'/
for all C; do
for all v € V;];l do
orip, = \/Var(TPR.)
Scorel (v) = (1 —
Q)WPR)(t—1)+a o
end for
Ul <0
while |U/| < k- 3 do
v 4 argmaxvevtj_lScorej (v)

TIP}

Uj « Ul U{o},
Vil < Vi {v}
end while
while [U7| < k do
v < randomly choose from
Vil
Uj < U U{o},
Vil < Vi \{v}
end while
Probe Utj for relationships, Form
wa?
Probe Utj for tweets, Form th ,
Output WaGd /, Tij /
end for
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5.2.1 Dynamic Tweet Fetching using Topic-Based Influence Past

Our dynamic tweet fetching solution makes use of the weighted PageRank values and
comprises of two two steps. First, we infer the evolving relationships of the network
using the methods explained earlier in the previous section. This way we can track
and estimate the changing relationships. Second, we select a subset of users to fetch
their tweet data. Specifically, we aim to probe a subset, U;, collect their tweets, and
update the edge weights for the users in Uy; all in order to form WG{/ for a given topic
C;. We then compute weighted PageRank values to find W PR/ (t),Yv € WG/ for
a given topic C;. To select the subset of users in U, we use a time series of the past
weighted PageRank values, named the topic-based influence past of v. Formally, we
have TIP, = [...,WPRJ (t — 2), WPRJ (t — 1)]. This is performed independently
for all topics of interest, {C}} .

In this process, there two different evolving components: a) relationships among
users (network) and b) topic-weights (tweets). Depending on an use-case, those two
components could be maintained together or independently from each other. There-
fore, we employ two different approaches in order to track the topic-based influence

scores of the network:

e Use the global network parameters for network fetching and the topic-sensitive
network parameters for tweet fetching. This is named as the G-W G method
(Figure [5.2)), where global G is used for network fetching, and topic-sensitive
WG, is used for tweet fetching.

e Use the topic-sensitive network parameters for both network and tweet fetching.
This is named as the W G-WW G method (Figure [5.3).

The first approach, G-W G, is useful for cases where globally influential users are
tracked, but with minimal additional resources, topic-based influential users are to be
determined as well. This might be the only viable option if the bandwidth is not enough
for selecting and updating the vertices separately for each topic, especially if the num-

ber of topics is high.
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Figure 5.2: G-WG method, probe the global network and probe the tweet sets for each
topic of interest.

Figure 5.3: WG-WG method, probe the networks and the tweet sets for each topic of
interest.
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For the second approach, WG-W G, we construct separate networks W GY for each
topic and evolve them separately. We update each network at the end of a probing
period, using the new tweets fetched to track the most influential vertices for each
topic C;. The high-level algorithms for the G-W G and WG-W G methods are given
in Algorithms 2] and 3] respectively.
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Chapter 6

Experiments and Results

In this chapter, we present the experimental setup and the results of our performance
evaluation for the proposed algorithms. We also present experiments analyzing the

sensitivity of the parameters used in the algorithms.

6.1 Data Sets

We have collected data using the public Twitter API, as described in Chapter[d] Twitter
API calls are restricted by rate limit windows. These windows represent 15 minute
intervals and the allowed number of calls within each window can vary with respect
to the call type. Our system makes two different calls, a) “GET followers/ids”, which
returns the followers list of the specified user, and b) “GET statuses/user_timeline”,
which returns the most recent Tweets of the specified user. For the first call type, we
are allowed to make 15 calls per rate limit window. Every call can return up to 5K
followers. For the users who have more than 5K followers, we have to make multiple
calls accordingly. For the second type, we are allowed to make 1804 calls per limit
window. Every call can return 3.2 tweets of the queried user. Details of the calls are

also presented in Chapter [3| with the accompanying analysis.

'With paging. Every page contains 200 tweets.
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We have collected the network between the end of August 2014 and the beginning of
January 2015, with a period of 15-20 days. As a result, we have obtained 11 snapshots
of the Turkish users’ network with progressing timestamps. We have collected the
relations of 2.8 million users, which amounts to a total of 310 million edges on average.
We took the first snapshot as the initial network to calculate the probing scores (see
Eq.[5.5) and the rest of the snapshots were used as ground truth for the evaluation of the
probing algorithms. For the topic-based influence estimation, we have also collected
the tweets of our seed users in the same period. We constructed a dataset formed of
11 snapshots containing 5.5 billio tweets in total. We take the first snapshot as the
initial tweet set as in the case of the relationship network analysis. From this data, we
have built up the topic weighted networks and calculated probing scores (see Eq.[5.5),

accordingly.

In our probe simulation module, we fetch the connections of the users we have
selected for probing, from the real network G; at time ¢. We then update these con-
nections (adding new ones and deleting old ones) on the previously observed network
G, attime t — 1, in order to obtain the estimated network G at time ¢. Finally, we
compare the influence estimation results from the observed network G, with the ones

from the real network (G;. Same procedure is also applied for the tweet sets.

In order to include extensive number of experiments in our evaluation, we focused
on the top 250K influential users and restricted the network on which the scores are

computed to the network formed by these users.

Figure [6.1] shows the in-edge distribution of the original and the pruned network.
Both follow a power-law distribution. Impact of the pruning process on the network
structure seems to be minimal and has not created any anomalies in the analysis. We
also pruned the tweet list according to the same top 250K influential users, which

reduced the total size of the tweet sets to 2000/

2This number includes re-tweets and duplicate tweets as well. In the collection phase, we are fetching
last 200 tweets of the users without checking whether or not they exist in the local tweet sets or they
are re-tweets. Because this possible checks also require extra API calls. However, re-tweets are not
considered in the analysis.
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Figure 6.1: In-edge distributions of the original network (on the left) and the pruned
network (on the right).

6.1.1 Evaluation of Dynamic Network Fetching

We have implemented several algorithms to compare the performance of the proposed

techniques. The details of the algorithms used are given below:

NoProbe and Random Probing. These are two baseline algorithms. NoProbe algo-
rithm assumes that the network does not change over time and uses the fully observed
network at time ¢ = 0 for all time points without performing any probing. It represents
the worst case scenario for the dynamic network fetching problem. The second base-
line algorithm is Random Probing algorithm which randomly chooses £ users to probe

with uniform probability.

MaxG. As described in [39], users are probed with a probability proportional to the
“performance gap”, which is defined as the predicted difference between the results
of the approximate solution and the real solution. Briefly, the method incrementally
probes users which will bring the largest difference in the results. The method assumes
that the influence of a specific user is related to the output of the degree discount heuris-
tic. Although their influence determination function is different than ours, we use the

MaxG algorithm for performance evaluation of our proposed algorithms.

Priority Probing. As described in [38], this algorithm chooses users to probe accord-
ing to a value proportional to their priorities. Priority of a node is defined as the value
of its PageRank score. For every iteration of the method, if a node is not probed, the
current PageRank value is added to its priority and if the node is probed, its priority is

reset to 0.
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Change Probing. This is our first proposed method, which chooses k users to probe
with value proportional to their scores, as computed by Eq.[5.5] The network is then
constructed via Alg.[I]

Round-Robin & Change Probing. This is our second proposed method, which
chooses [3-k users to probe with Change Probing and (1—/3)-k users with Round-Robin
Probing. When o = 0 in Eq. [5.5] for the Change Probing part, the method becomes
similar to [38]]. The difference is that Priority Probing increases the probe possibility
of a node by its PageRank value in every step if it is not probed, so that at some point

the probe possibility becomes 1.

We evaluate performance by comparing the quality of the influential users found
by each approach with that of the ideal case. For this purpose, we use two different

evaluation measures:

e Jaccard similarity between the correct and estimated top-m most influential users

lists.

e The mean squared error of the PageRank scores.

6.1.2 Evaluation of Dynamic Tweet Fetching

We evaluate the performance of the proposed tweet fetching technique with two base-
lines algorithms, namely NoProbe and Random Probing. The details of these baselines

and our proposed method are given below:

NoProbe. This algorithm assumes that the tweet set does not change over time and use
the fully observed tweet set at time ¢ = O for all time points without any probing. This

method represents the worst case scenario for the dynamic tweet fetching problem.

Random Probing. This algorithm randomly chooses k users to collect tweets with

uniform probability at each time step.

Round-Robin & Topic Change Proportional Probing. This is the algorithm we pro-
posed, which greedily chooses k users to collect tweets with value proportional to their

scores describe in Eq.[5.5] Differently from the network fetching method, scores are
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calculated by using W P R/ for the topic C}, instead of PR,

6.1.3 Experimental Results and Discussion

This section compares and discusses the performance of the proposed network and
tweet probing methods with the state-of-the-art and baseline methodologies using ex-
periments executed on real datasets. We also provide an empirical interpretation of the

calculated topic-based influence scores.

6.1.3.1 Experimental Setup

As indicated in Eqgs. and [3.2] given the resource limits permitted by the service
providers, one cannot probe a significant portion of the network. We have executed
our experiments with different probing capacities and used 0.001%, 0.01%, 0.1% and
1% of the network as the size of the probe set. For the analysis of the effect of the «
parameter used in Change Probing, we set: a) o = 0, meaning PageRank proportional
scores are used; b) a = (0.5, meaning equally weighted PageRank and influence past
scores are used; ¢) « = 1, meaning only influence past scores are used. For the Round-
Robin Change algorithm we tested the ratio parameter /5 with three values, which

control the random selection: 0.4, 0.6, and 0.8.

6.1.3.2 Change Probing Performance w.r.t.

Figure depicts the performance of Change Probing algorithm for the Jaccard sim-
ilarity measure. As expected, Change Probing algorithm significantly outperforms
NoProb algorithm. For the optimization of the o parameter, we test Change Probing

algorithm under three different o configurations:

e Using Average mean squared errors (MSE), oo = 0.5 setting performs 8% better

than o = 0 setting and 19% better than o = 1 setting. Overall, it performs 83%
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Figure 6.2: Performance of Change Probing.

better than NoProbing.

e Using the Jaccard distance measure, @ = 0.5 setting is 3% better than o = 0
setting and 5% better than o = 1 setting. In the overall case, « = 0.5 outper-
forms NoProbe by 43%. We also note that as the probing capacity increases,
performance of the Change Probing algorithm becomes less dependent on the

setting of a.

We also illustrate the change in error as the network evolves, in order to see how the
performance of different algorithms are affected as the seed network data ages. Fig-
ures and show the performance of Change Probing as a function of time for
the mean squared error (MSE) and Jaccard similarity metrics, respectively. We observe
that NoProb has an increasing error as time passes. Change Probing gives a more ro-
bust and stable performance with respect to time. This is mainly because as the number
of past influence points increases, the algorithm can estimate the influence variability
of the users more accurately, which compensates the deteriorating effect of aging of
the baseline network data. Since o = 0.5 outperforms the other cases, we use a = 0.5
configuration in the subsequent experiments with other algorithms. We also note that
y-axis contains relatively small values because the PageRank values are normalized.

We have assumed NoProb algorithm as the reference point for normalization.
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Figure 6.3: Performance of Change Probing as a function of time.

6.1.3.3 RR Change Probing Performance w.r.t.

Figure shows the performance results for the Round-Robin Change (RRCh) Prob-
ing algorithm under different round-robin ratios. We use the Change Probing algorithm

(with ao = 0.5 setting) as the baseline reference point.

We observe that the RRCh algorithm performs poorly for small probing capacities,
such as 0.001% and 0.01%. Randomness impacts the performance more with smaller
number of probed users, since we are not able to probe the influential users with great
influential power, thus lowering the performance. For MSE, = 0.8 configuration
performs 7% better than 3 = 0.6 and 12% better than 5 = 0.4. For the Jaccard
similarity measure, it is 2% better than 5 = 0.6 and 7% better than § = 0.4. Although,
it performs worse than Change Probing in the short term, it reaches the performance
of Change Probing in the long term, as show in in Figures and [6.5b] Moreover,
it guarantees the probing of every node within a time frame, preventing the system to
focus on only a limited section of the network and missing other regional changes that
might accumulate and start to affect the network in the global sense. We would have
seen this phenomenon more explicitly if the number of snapshots were larger, which
was the case in [39]. The results are slightly better when the ratio is set to 5 = 0.8.
Therefore, we choose to use this algorithm (with a = 0.5 and 5 = 0.8 configurations)

instead of Change Probing for the comparison with others in the following sections.
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Figure 6.4: Performance of Round-Robin Change Probing.

6.1.3.4 Comparison with the State-of-the-Art

Figure [6.6] compares the performance of RR Change method (with & = 0.5 and
B = 0.8 settings) against the baselines and the state-of-the-art methods from the lit-
erature. RR Change achieves better results for all performance measures used for
comparison in the thesis. It reduces MSE by 21% (see Figure when compared
to Priority Probing and 50% when compared to the MaxG method. Priority Probing
suffers especially for low probing capacity cases, since the priority of a user is set to 0
after probing. A probed user can regain its priority very late in the process, which pre-
vents it to track quick changes in the scores of the highly influential users. Therefore,
after probing an important user in terms of influence, that user is not being probed for
some time, even if the influence of the user is changing very fast. RR Change always
probes (3 portion of the users according to their influence impact and change over time,

so that the important users are in the probe set in each time step.

Overall, the proposed method gives 81% higher performance than the baseline algo-
rithms for the MSE measure. As seen in Figure[6.6b) RR Change shows better results
for the top-m set similarities as well. It is 5% better than Priority Probing and 11%
better than MaxG method on average. The performance difference is reaching up-to
18%. RR Change performs 35% better against baselines when Jaccard similarity is

considered on average. It is 40% better than the NoProbe and difference reaches up to
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Figure 6.5: Performance of Round-Robin Change Probing as a function of time.

55% for top-100 case. Since it also considers the change in the influence over time, it

is also able to preserve its accuracy while the performance of other methods degrade

over time (see Figures and [6.70).

6.1.3.5 Evaluation of the Network Inference Method

To assess the prediction quality of the link prediction algorithm, we plotted the his-
togram of the edges proposed by RA index that has really occurred in the real network.
This is shown in Figure [6.8] The histogram indicates the accuracy of the RA index
used for network inference. The edges that were determined by the prediction algo-
rithm as more likely to happen were found to be existent in the future network with
a higher probability. However, when we analyzed the incorrectly predicted edges, we
have observed that the algorithm predicts links between users who are unlikely to fol-
low each other in real life. For example, the algorithms predict an edge between two
pop stars since they have many common neighbors. However, they would not follow
each other because they are main competitors. Furthermore, some of these users not
willing to follow anybody at all. Link prediction algorithms typically do not consider
these facts in social networks. This indicates a weakness of the “mechanical” link
prediction algorithms on social networks. In addition to indexes which they use to cal-

culate similarities between users, they should also consider the tendency of the users
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Figure 6.6: Comparison of the probing strategies.

to make new connections. Therefore, we apply a filtering process in order to determine
users who are likely to follow somebody and we add the predicted edges only to those

selected users.

As a result, we improve the RR Change method by 3% for MSE and 2% for the set
similarities on average. Figure[6.9) compares the performance of our inference method
against the baselines, the state-of-the-art methods and the RR Change method. Espe-
cially, it increases the performance of RR Change for the lower capacities e.g., 0.001%
and 0.01%. In Figure we observed 7% improvement on the top-10 jaccard simi-
larities for 0.001% and 0.01% probing capacities.

6.1.3.6 Evaluation of the Topic Influence Estimation

We evaluated the influence of users with respect to four different topics: a) Politics,
b) Sport, c¢) Health, and d) Cultural and Art Activities. This section provides a qualita-
tive discussion about the accounts which were found to be influential by the proposed
methods. Table[6.1]shows the accuracy of topic relevance of the top-10 users found by

the system for the specific topics.

For the evaluation of the results, we performed a small survey containing 10 peo-

ple. We asked participants to evaluate the users with respect to their topic relevance
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Figure 6.8: Accuracy of the link prediction algorithm.

and their influence on the topic. In order to identify influence of a user, we asked par-
ticipants to mark one of the following categories: a) very influential (1), ») influential
(.5), ¢) not influential (0). We used the results of the survey to provide an evaluation of

the selected users for the Turkish Twitter network, on a per-topic basis.

For the topic Politics, the results are very accurate for top-10. We have observed
that the dictionaries constructed for each topic has a big impact on the results. For
example, we observe that the dictionary constructed for Politics topic contains many
keywords that are related only with politics without any ambiguity. These keywords

have increased the performance of the semantic analysis, which in turn increased the
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Figure 6.9: Performance of RR Change with inference.

Topics Topic Relevance
Politics 10 out of 10
Sport 8.5 out of 10
Health 4 out of 10
Culturql -afld Art 9 out of 10
Activities

Table 6.1: Estimated influential accounts.

accuracy of the topic-based network influence analysis. Top-10 list contains the presi-
dent of Turkish Republic (RT_Erdogan), the chairman of one of the opposition parties
(kilicdarogluk), and the mayor of the capital city (O6melihgokcek). It is fair to as-
sume that these users, who give political messages on their tweets and who have lots

of followers, should be in the top-10 influential list on Turkish Politics topic.

The influential accounts for the Sport topic were the biggest sport clubs of Turkey
(GalatasaraySK, Fenerbahce) and one of the highest rating sport channel (ntvspor).
Their tweets were mostly related about the sport competitions, news from clubs, etc.
They have a lot of followers who actively pay attention to what they tweet. Thus, they
achieve high RT and Fav statistics, which shows that they have a big impact on their

followers. It is very reasonable that they are top influential accounts on this topic.

As intuitively expected, the influential accounts for the Health topic are mostly

doctor associations and governmental authorities. One of the accounts is Republic
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of Turkey Ministry of Health (saglikbakanligi), which mainly tweets about hospitals,
doctors and health regulations. Its follower numbers can be considered as relatively
high and is followed by other influential accounts. Since its tweets have critical news
potential, it has considerable number of RTs about the health topic. The other two
are doctor associations (YYD._tr, istabip). They are followed by many doctors, which
also have some potential impact on the Health topic. In this topic, accurate relevance
ratio is relatively low because the constructed dictionary for this topic is not specific
enough, causing errors in semantic analyses that propagates to the latter phase of in-

fluence estimation.

The Cultural and Art Activities topic includes users which tweet about movies, art,
books, history, etc. The top-10 influential users are perfectly matched with the key-
words. CMYLMZ is very famous Turkish comedian, actor and producer. He also has
one of the highest follower numbers in the Turkish Twitter network. AtlasTarihDergi
is a history magazine tweeting mainly about historical events and information which
has considerable amount of followers and RTs. The third user (Siirler_sokakta) shares

street poems and mottos, and it’s posts receive many RTs and Favs.

6.1.3.7 Evaluation of Dynamic Tweet Fetching

We have used the same default parameter settings from the network fetching experi-

ments to evaluate our proposed tweet fetching methods.

Figure [6.10] shows the performance of the RR Change method for dynamic tweet
fetching. For the MSE measure, global network based G-W G method performs 78%
better, and topic network based W G-W G method performs 40% better than the base-
lines, on average, respectively. In Figure we see that as the probing capacities
increase, G-W G method achieves almost perfect similarity against the results obtained
using the original network, for the top-10 influential users. For the top-1000 influential
users experiment, it reaches close to 0.9 similarity. Together with W G-IW G method,
they quickly reach close to their top performance at around 1% capacity, except for

the top-10 case. For the latter, W G-W G method does not enjoy the quality increase
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Figure 6.10: Performance of Change Probing for dynamic tweet fetching.

that the G — WG method enjoys with increasing capacities. When we look at the Jac-
card similarity based results, G-W G achieves 77% better and W G-W G achieves 65%
better results than the baselines. Overall, the results show us that using the globally

maintained network is more advantageous.

Although G-W G method outperforms W G-W G method when we compare the top-
10 results for the two methods, they are similar in terms of the topic relevance of their
top influential users. Table shows the topic relevance ratios for the two methods.
Top-10 selected users are found to be related with the topics of interest and are popular

accounts in the topic area.

Topics Topic Relevance
Politics 10 out of 10 10 out of 10
Sport 8 out of 10 9 out of 10
Health 5 out of 10 4 out of 10
C”lf;‘(f;‘.i ;ZZA” 9 out of 10 9 out of 10
G — WG method | WG — WG method

Table 6.2: Top-10 topic relevance ratios for G-W G and W G-W G for dynamic tweet

fetching.
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Chapter 7

Conclusion

Restrictions applied by social network service providers limit the capabilities of evolv-
ing network analyses by third parties. Therefore, we have proposed algorithms to
dynamically fetch network and text data from public API’s under limited probing ca-
pacities. Our proposed solutions use the past influential trends of the users with their
current statuses in order to predict their changes for the next fetching periods. In par-
ticular, we observed that high influential users and changeable influential trends effect
the overall network structure the most. We leverage these two metrics across our algo-
rithms. Experimental results showed that also considering past trends in the probing
strategy increases the overall accuracy of observed networks compared to only using
current metrics. Furthermore, we improved our probing strategies by inferring possi-
ble relations between users via link prediction algorithms. Due to computational ease,
we choose weighting friendship based inference in our system among alternatives like
bayes classification, bayes on friendship links and collective inference. Moreover, our
inference method could be extended by applying more complex network evolution

models in order to increase the accuracy of estimation probabilities.

We have also developed models for estimating global and topic-based influence in
social networks. Our influence models consider the dynamic structure of the network

for the influence estimation. For global influence, we considered the topological place
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of users within the network. For topic-based influence, we further enhanced the tradi-
tional relation based graph model by assigning new features to relations. In particular,
we used topological place of users together with their topic analysis and sharing statis-
tics which helped us separating relevant and irrelevant contents of their posts. With this

way, we could be able to specialize our social network model for topics of interest.
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