
QUANTUM PROPERTIES OF MULTIPOLE
RADIATION

a thesis

submitted to the department of physics

and the institute of engineering and science

of bilkent university

in partial fulfillment of the requirements

for the degree of

master of science

By
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Abstract

QUANTUM PROPERTIES OF MULTIPOLE

RADIATION

Öney Orhunç Soykal

M. S. in Physics

Supervisor: Prof. Alexander Shumovsky

July 2002

In this study, multipole expansion of quantum electromagnetic radiation is

constructed and quantized by canonical transformation with increasing demand

of some modern research areas of physics such as entanglement of the orbital

angular momentum states, novel experiments with trapped atoms, and the atomic

and molecular transitions with given angular momentum.

Also, the SU(2) invariance of quantum field and the rotational symmetry of

vacuum noise of polarization with respect to source location are proved.

It is shown that, at any point we can construct a proper frame in which

the description of polarization is reduced to a conventional (2 × 2) polarization

matrix. And peculiarities of electric and magnetic-type zero-point oscillations

were examined, and as a result it is shown that the monochromatic zero-

point oscillations of all types and modes, have constant level in the volume of

quantization.

Finally, the complete local representation of photon operators, which

correspond to the states of photons with given projection of angular momentum

at any point, is constructed for the possible utility of near-field optics.
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Özet

ÇOK KUTUPLU IŞINIMIN KUVANTUM

ÖZELLİKLERİ

Öney Orhunç Soykal

Fizik Yüksek Lisans

Tez Yöneticisi: Prof. Alexander Shumovsky

Temmuz 2002

Bu çalışmada, fiziǧin, yörüngesel açısal momentum hallerinin dolaşıklıǧı,

tuzaǧa düşürülmüş atomlarla yapılan son deneyler ve belirli açısal momentum-

larda atomik, moleküler geçişler gibi bazı modern araştırma alanlarına paralel

gelişim içinde, kuantum elektromanyetik ışınımın çok kutuplu formülasyonu

oluşturulmuş ve kuvantize edilmiştir.

Ayrıca, kaynak konumuna baǧlı olarak kuvantum alanının SU(2) ve polariza-

syon vakum gürültüsünün rotasyonal simetri deǧişmezlikleri gösterilmiştir.

Herhangi bir noktada polarizasyonun uygun bir referans sistemi seçimi ile

geleneksel (2 × 2) polarizasyon matrisine dönüştüǧü gösterilmiştir. Elektrik ve

manyetik sıfır noktası osilasyonlarının tuhaflıkları incelenmiş ve sonuç olarak

bütün modlar ve çeşitler için, kuvantize edilen hacim içinde, monokrom sıfır

noktası osilasyonlarının sabit bir seviyesi olduǧu gösterilmistir.

Son olarak da, yakın-alan optiǧinin yararına olacaǧına inanılan, herhangi bir

noktada verilen açısal momentuma sahip foton hallerine karşılık gelen, fotonların

lokal betimlemesi oluşturulmuştur.
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Chapter 1

Introduction

Conventional picture of quantum electromagnetic radiation is based on the use

of expansion of the so-called free electromagnetic field over plane waves. At the

same time, it is well known that this representation is not in a class by itself.1 For

example, the quantization in terms of spherical and cylindrical waves of photons

can also be considered.1–4

There is a number of principle reasons to consider the representation of

multipole photons based on the expansion of electromagnetic field over the

spherical waves. First, the atomic and molecular transitions between the states

with given angular momentum and projection of the angular momentum emit

just the multipole photons.5 In the second place, in many modern experiments

with trapped atoms, the interatomic distances correspond to the intermediate

or even near zone,6,7 which requires the use of spherical rather than plane wave

expansion for photons. Besides that, the problem of entanglement of the orbital

angular momentum states8 also implies the use of the representation of multipole

photons.

There is no principle difference between the expansions over plane and

spherical waves within the classical domain because both procedures are based on

the use of the complete orthonormal set of functions of space and time.9 However,

according to one of the basic concepts of quantum mechanics has been introduced

by Wigner,11 the general properties of an arbitrary quantum mechanical system

1



CHAPTER 1. INTRODUCTION 2

are defined by the group of dynamical symmetry of the corresponding Hilbert

space. From this point of view, the representations of plane and spherical photons

are different in quantum domain. The former corresponds to the translational

symmetry caused by the solutions of the homogeneous wave equation in a cube

with the periodical boundary conditions, while the latter obeys the rotational

symmetry with respect to the origin, which corresponds to the source location

from the physical point of view. The translational symmetry corresponds to the

states of photons with given linear momentum, while the rotational symmetry

specifies the states with given angular momentum. Thus, the two representations

correspond to the observables that cannot be measured at once, in spite of

equivalence of classical expansions.

It is possible to say that the representation of multipole photons takes into

account the real geometry of physical space provided by the presence of a local

source at the origin. In turn, the representation of plane photons completely

ignores the existence of a source.

In the case of plane waves of photons, an arbitrary state of the field is

specified by a given energy (wave number k), direction of propagation (~k/k),

and polarization µ, which can take only two values. In turn, the spherical waves

of photons are described by the states with given energy, parity (the type of the

multipole radiation λ = E,M either electric or magnetic), angular momentum

(` ≥ 1), and projection of the angular momentum on the quantization axis

(m = −`, · · · , `).1,2 Let us stress that, in contrast to the plane photons, the

polarization of the multipole photons is not a global property of the field but

changes from point to point.12,13 The reason is that the polarization is defined to

be a given spin state of photons,3 while the quantum multipole field is specified

by the total angular momentum which contains the orbital part in addition to

the spin. Some properties of quantum multipole radiation have been considered

recently in a number of papers.14–16

In chapter II, some basic properties of quantum multipole field will be

discussed with brief summaries of classical and quantum electromagnetic field. In

particular, the SU(2) invariance of the operator vector potential will be proven.
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In chapter III, the definition of polarization of quantum multipole radiation

will be given by defining polarization matrix and corresponding Stokes parame-

ters. Since the polarization is not a global characteristics of multipole field, the

definition depends on the choice of the reference frame. In particular, in the

”laboratory frame” connected with the source location, the three independent

polarizations of multipole field should be considered. A more habitual picture of

only two polarizations can also be constructed through the use of a certain local

frame.

In chapter IV, the vacuum polarization matrix will be constructed by the aid of

Weyl-Heisenberg algebra. Because of the invariance of operator vector potential

under rotation proven in previous chapter, the local unitary transformation can

be obtained. Also zero-point oscillations and quantum noise near source will be

indicated.

Then, in chapter V, the problem of photon localization in terms of the local

photon operators with given polarization will be examined and corresponding

bare Stokes operators will be compared with the classical plane wave case.

Finally, in chapter VI, the obtained results will be discussed.



Chapter 2

Properties of Quantum Multipole

Radiation

The central role of light in marking the frontiers of physics continues on into the

twentieth century with the ultraviolet catastrophe associated with black-body

radiation on the one hand and the photoelectric effect on the other. Indeed, it

was here that the era of quantum mechanics was initiated Planck’s introduction

of the quantum of action that was necessary to explain the black-body radiation

spectrum. However, it was left to Dirac to combine the wave and particle

nature of light, so that the radiation field is capable of explaining all interference

phenomena and shows the excitation of a specific atom located along a wave front

absorbing one photon energy. Each mode of radiation field is associated with a

quantized simple harmonic oscillator, this is the essence of quantum theory of

radiation.

In this chapter, with the objective of quantizing the electromagnetic field in

free space, it is convenient to begin with the classical description of the field based

on Maxwell’s equations in terms of vector potential. Then multipole expansion of

electromagnetic field can be described in terms of spherical harmonics. Finally,

one can use the quantum picture of electromagnetic field and second quantization

becomes applicable as changing the complex field amplitudes with creation and

annihilation operators by canonical transformation.

4



CHAPTER 2. PROPERTIES OF QUANTUM MULTIPOLE RADIATION 5

2.1 Classical Electromagnetic Field

An arbitrary classical free electromagnetic field is described by the vector

potential A(~r), which obeys the wave equation9,10

∇2 ~A− 1

c2

∂2 ~A
∂t2

= 0 (2.1)

and Coulomb gauge condition

~∇ · ~A = 0 (2.2)

Then the field strengths are defined as follows:

~E = −1

c

∂ ~A
∂t

, ~B = ~∇×A (2.3)

Eq. 2.1 can be solved by seperation of variables10

~A(~r, t) =
∑

`

q`(t)~u`(~r) (2.4)

Employing into Eq. 2.1 then yields the homogeneous Helmholtz wave equations

of the form

d2q`

dt2
+ ω2

` q` = 0

∇2~u` +
ω2

`

c2
~u` = 0 (2.5)

where ω` are some constants. arising from the seperation of variables.10 Solution

of the first equation in 2.5 gives the harmonic time dependence q` = exp(±iω`t).

Because of the harmonic time dependence in Eq. 2.4, it is customary to represent

the vector potential in terms of the positive and negative frequency parts:

~A(~r) = ~A(~r) + ~A∗(~r) (2.6)

where ~A ∼ exp(−iωt). The energy density of the field is

W (~r) =
1

16π
[~E∗(~r) · ~E(~r) + ~B∗(~r) · ~B(~r)] (2.7)
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In turn, the flux of the energy is given by the real part of the complex Poynting

vector

~S(~r) =
1

8π
~E(~r)× ~B∗(~r) (2.8)

where, according to Eq. 2.3, we obtain

~E(~r) = −ik ~A(~r), ~B(~r) = ~∇× ~A(~r)

The angular momentum density of the field has the form

~M(~r) =
1

4πc
~r × [~E(~r)× ~B(~r)] (2.9)

One possible solution of the second equation in 2.5, corresponding to the plane

waves, traveling along the z-axis and having the same amplitude and phase

everywhere, has the form9,10

~u`(~r) =
∑

`

∑
σ=x,y

~e`σe
i~k`·~ra`σ + c.c. (2.10)

where c.c. denotes the complex conjugate of first part. Here a`σ are the complex

field amplitudes, ~ex,y are the unit vectors of polarization which, due to the

Coulomb gauge condition 2.2, obey the relation

∀` ~ex,y · ~k` = 0 (2.11)

and k2
` = ∇2

`/c
2. Employing Eqs. 2.3,2.6, and 2.10 then gives the following

symmetry relations

Ex(~r) = i
∑

k

kAkx(~r) = By(~r)

Ey(~r) = i
∑

k

kAky(~r) = Bx(~r) (2.12)

To simplify the notations, we omit the index ` here. According to Eq. 2.10, we

have

A(~r) =
∑

k

γk

∑
σ=x,y

~ekσe
i~k·~rakσe

−iωt (2.13)

where γk is the normalization factor. Another possible solution of the

homogeneous Helmholtz wave equation 2.5 convenient for electromagnetic

boundary-value problems possessing spherical properties is provided by the

spherical waves.10,23
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2.2 Multipole Expansion

For the time dependence e−iωt the Maxwell equations in a source-free region of

empty space may be written

~∇× ~E = ik ~H, ~∇× ~H = −ik ~E

~∇ · ~E = 0, ~∇ · ~H = 0
(2.14)

where k = ω/c. If ~E is eliminated by combining the two curl equations, we obtain

for ~H,

(∇2 + k2) ~H = 0, ~∇ · ~H = 0 (2.15)

with ~E given by

~E =
i

k
~∇× ~H (2.16)

Alternatively, ~H can be eliminated to yield

(∇2 + k2) ~E = 0, ~∇ · ~E = 0 (2.17)

with ~H given by

~H = − i

k
~∇× ~E (2.18)

Either Eqs. 2.15, 2.16 or 2.17, 2.18 is a set of three equations that is equivalent

to the Maxwell equations 2.14.From these equations it is clear that each Cartesian

component of ~E and ~H satisfies the Helmholtz wave equation

(∇2 + k2)ψ(~x, ω) = 0. (2.19)

Hence each such component can be written as an expansion of the general form

in spherical coordinates as

ψ(~x) =
∑

l,m

[A
(1)
lmh

(1)
lm(kr) + A

(2)
lmh

(2)
lm(kr)]Ylm(θ, φ). (2.20)

There remains the problem of orchestrating the different components in order to

satisfy ~∇· ~H = 0 and ~∇· ~E = 0 and to give a pure multipole field of order (l, m).
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However, a different and somewhat easier path was suggested by Bouwkamp and

Casimir.27 Consider the scalar quantity ~r · ~A, where ~A is a well-behaved vector

field. It is straightforward to verify that the Laplacian operator acting on this

scalar gives

∇2(~r · ~A) = ~r · (∇2 ~A) + 2~∇ · ~A (2.21)

From Eqs. 2.15, 2.16 and Eqs. 2.17, 2.18, it is evident that the scalars, ~r · ~E and

~r · ~H, both satisfy the Helmholtz wave equation:

(∇2 + k2)(~r · ~E) = 0, (∇2 + k2)(~r · ~H) = 0 (2.22)

The general solution for ~r · ~E is given by Eq. 2.20, and similarly for ~r · ~H.

Now A magnetic multipole field of order (l,m) can be defined by the

conditions,

~r · ~HMlm =
l(l + 1)

k
gl(kr)Ylm(θ, φ)

~r · ~EMlm = 0 (2.23)

where

gl(kr) = A
(1)
l h

(1)
l (kr) + A

(2)
l h

(2)
l (kr) (2.24)

The presence of the factor l(l +1)/k is for normalization wonders. Using the curl

equation 2.18 one can relate ~r · ~H to the electric field:

k ~r · ~H =
1

i
~r · (~∇× ~E) =

1

i
(~r × ~∇) · ~E = ~L · ~E (2.25)

where ~L is given by ~L = −i(~r × ~∇). With ~r · ~H given by Eq. 2.23, the electric

field of the magnetic multipole must satisfy

~L · ~EElm(r, θ, φ) = l(l + 1)gl(kr)Ylm(θ, φ) (2.26)

and ~r · ~EMlm = 0. To determine the purely transverse electric field from Eq. 2.26,

note that the operator ~L acts only on angular variables (θ, phi), which means
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that the radial dependence of EMlm must be given by gl(kr). On the other hand,

the operator ~L acting on Ylm transforms the m value according to

L+Ylm =
√

(l −m)(l + m + 1)Yl,m+1

L−Ylm =
√

(l + m)(l −m + 1)Yl,m−1

LzYlm = mYlm

however, does not change the l value. Thus the components of EMlm can be

at most linear combinations of Ylm’s with different m values and a common l,

equal to the l value on the right-hand side of Eq. 2.26. Therefore all shows that

for ~L · ~EMlm to yield a single Ylm, the components of EMlm must be prepared

before-hand to compensate for whatever raising or lowering of m values is done

by ~L.Thus, in the term L−E+, for example, it must be that E+ is proportional

to L+Ylm. What this amounts to is that the electric field should be

~EMlm = gl(kr)~LYlm(θ, φ)

~HMlm = − i

k
~∇× ~EMlm (2.27)

Equation 2.27 specifies the electromagnetic fields of a magnetic multipole of order

(l, m). Because the electric field (Eq. 2.27) is transverse to the radius vector,

these multipole fields are sometimes called transverse electric(TE) rather than

magnetic.

The fields of an electric or transverse magnetic(TM) multipole of order (l, m)

are specified similarly by the conditions,

~r · ~EElm = − l(l + 1)

k
fl(kr)Ylm(θ, φ)

~r · ~HElm = 0 (2.28)

Then the electric multipole fields are

~HElm = fl(kr)~LYlm(θ, φ)

~EElm =
i

k
~∇× ~HElm (2.29)

The radial function fl(kr) is defined with an expression like (24).
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The fields in Eq. 2.27 and Eq. 2.29 are in form of spherical wave expansion.

These two sets of multipole fields can be shown to form a complete set of vector

solutions to the Maxwell equations in a source-free region. Since the vector

spherical harmonic, ~LYlm, plays an important role, it is convenient to introduce

the normalized form,

~Xlm(θ, φ) =
1

l(l + 1)
~LYlm(θ, φ) (2.30)

which is defined to be identically zero for l = 0. Spherically symmetric solutions

to the source-free Maxwell’s equations exist only in the static limit k → 0. It has

the following orthogonality properties,
∫

~X∗
l′m′ · ~XlmdΩ = δll′δmm′ (2.31)

and
∫

~X∗
l′m′ · (~r × ~Xlm)dΩ = 0 (2.32)

for all l, l′,m,m′.

2.3 Quantum EM Field and Mode Functions

The canonical quantization of the field has introduced by Dirac23,28,29 is provided

by the substitution of the photon operators, forming a representation of the

Weyl-Heisenberg algebra, into the expression for the vector potential instead of

the complex field amplitudes. For positive-frequency part of the vector potential

in the case of plane waves (Eq. 2.13), the following operator can be constructed

A(~r) =
∑

k

∑
σ=x,y

√
2πh̄c

kV
~ekσe

i~k·~rakσ (2.33)

where V is the volume of quantization, which is assumed to be a sufficiently large

cubic box with periodical boundary conditions. The harmonic time dependence is

included in the photon operators that obey the following commutation relations

[akσ, a
+
k′σ′ ] = δkk′δσσ′ (2.34)
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Because of the translational symmetry along the z-direction, the plane waves of

photons, described by Eq. 2.33 and Eq. 2.34, correspond to the states of the

radiation field with given linear momentum

~P =
∑

kσ

h̄~ka+
kσakσ (2.35)

where ~k = k~ez.

The multipole electromagnetic field can be quantized in much the same way as

plane waves.1 Let us denote by ~E(~r) the operator of the positive-frequency part

of electric field strength defined at the point ~r and by ~B(~r) that of magnetic

induction. In the case of a monochromatic quantum multipole field, these

operators are represented by the following expansions1,2,4,9

~E(~r) =
∑

λ,`,m

~Eλ`m(~r)aλ`m,

~B(~r) =
∑

λ,`,m

~Bλ`m(~r)aλ`m. (2.36)

Here aλ`m is the annihilation operator of multipole photon obeying the

commutation relations

[aλkjm, a+
λ′k′j′m′ ] = δλλ′δkk′δjj′δmm′ (2.37)

As usually, the harmonic time dependence is included into the definition of the

photon operator. The mode functions in Eq. 2.36 have the following form1,9,10

~EE`m(~r) =
i

k
~∇× fE`(kr) ~X`m(θ, φ),

~EM`m(~r) = fM`(kr) ~X`m(θ, φ), (2.38)

where ~X`m denotes the vector spherical harmonics

~X`m(θ, φ) =
−i√

`(` + 1)
(~r × ~∇)Y`m(θ, φ) (2.39)

while the radial dependence fλ`(r) is defined differently depending on the

boundary conditions.10 In the standard case of quantization of electromagnetic

waves in a spherical cavity,1 we have

fλ`(x) = γλ`j`(x) = γλ

√
π

2x
J`+1/2(x).
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Here j`(x) is the spherical Bessel function and

γE` =

√
2πh̄c

kV (2` + 1)
, γM` = γM =

√
2` + 1γE`.

Here V is the volume of quantization. The mode functions specifying the

magnetic induction in Eq. 2.36 can be determined through the use of the

symmetry relations

~BE`m(~r) = − ~EM`m(~r), ~BM`m(~r) = ~EE`m(~r).

The above expressions can be obtained from the following operator vector

potential

~Aλ(~r) =
1∑

µ=−1

(−1)µ~ε−µ

∑

`,m

Vλ`mµ(~r)aλ`m (2.40)

through the use of relations

~Eλ(~r) = −1

c

∂

∂t
~Aλ(~r), ~Bλ(~r) = ~∇× ~Aλ(~r).

Here the unit vectors

~ε± = ∓~εx ± i~εy√
2

, ~ε0 = ~εz

form the so-called helicity basis,2

VE`mµ(~r) = γE`{
√

`f`+1(r)〈1, ` + 1, µ, m− µ|`m〉Y`+1,m−µ(θ, φ)

−
√

` + 1f`−1(r)〈1, `− 1,m− µ|`m〉Y`−1.m−µ(θ, φ)}
VM`mµ(~r) = γM`f`(r)〈1, `, µ,m− µ|`m〉Y`,m−µ(θ, φ), (2.41)

and 〈· · · | · · ·〉 denotes the Clebsch-Gordon coefficients describing the addition of

spin and orbital parts of the total angular momentum.

By definition, the mode functions in Eq. 2.41 obey the homogeneous

Helmholtz equation

∇2~Vλ`m + ω2~Vλ`m = 0,

~Vλ`m(~r) ≡ ∑
µ

(−1)µ~ε−µVλ`mµ(~r).
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In fact, ~Vλ`m(~r) can be considered as a function from the Euclidean three-

dimensional space E into the Hilbert space H of complex linear functions on

E. The operator ~Aλ(~r) (Eq. 2.40) satisfies the same wave equation but assumes

values in the Hilbert space H⊗H, where the second factor H comes from the spin

states of a photon. In view of the Helmholtz equation, ~Vλ`m(~r) can be treated

as the wave function of a multipole photon.10 For an arbitrary number n of the

photons, the spin part of the Hilbert space is represented by the symmetric power

SnH, corresponding to the Bose-Einstein statistics of photons, so that the wave

function of n-photon state is the function of the type of ~Vλ`m(~r) defined in the

space H⊗ SnH.

2.4 SU(2) Invariance

Let us now prove that the operator ~Aλ(~r) (Eq. 2.40) is invariant with respect to

the SU(2) group.

Let ϕ ∈ SU(2) be an arbitrary transformation belonging to the SU(2) group.

Taking into account the definition of the mode functions (Eq. 2.41), consider an

auxiliary operator

~Aλ`(~r) =
∑
µ,m

Y1µ(~r)Y`m(~r)~εµ ⊗ aλ`m, (2.42)

where the argument of spherical harmonics shows the direction in the three-

dimensional space E and undoubtedly is independent of the distance r. It is

easily seen that

~Aλ`(ϕ~r) =
∑
µ,m

Y1µ(ϕ~r)Y`m(ϕ~r)~εµ ⊗ aλ`m

=
∑

µ,µ′

∑

m,m′
Y1µ′(~r)ϕµµ′Y`m′(~r)~εµ ⊗ ϕmm′aλ`m

=
∑

µ,µ′

∑

m,m′
Y1µ′(~r)Y`m′(~r)[ϕµµ′~εµ]⊗ [ϕaλ`m]

=
∑

µµ′
Y1µ′(~r)Y`m′(~r)[ϕ~εµ′ ]⊗ [ϕaλ`m]

= ϕ ~Aλ`(~r).
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Thus, the auxiliary operator ~Aλ`(~r) (Eq. 2.42) is invariant with respect to the

SU(2) group.

Since the spherical harmonics form a basis of an irreducible representation

M` of the SU(2) group, the product Y1µY`m in Eq. 2.42 form a basis of

M1 ⊗M` = M`−1 ⊕M` ⊕M`+1.

In view of Eq. 2.41, the operator vector potential of Eq. 2.40 is defined just

in M`−1 ⊕ M` ⊕ M`+1. Let (Y1µY`m)s, where s = `, ` ± 1, be the component

(projection) of Y1µY`m in Ms. Then

~Aλ`(~r) =
∑
µ,m

(Y1µY`m)s~ε⊗ aλ`m

is also invariant with respect to the SU(2) group. Since the transformations

ϕ ∈ SU(2) does not affect the radial dependence in Eq. 2.40, this implies the

SU(2) invariance of the operator vector potential as well.

The property of the SU(2) invariance of the operator vector potential ~Aλ(~r)

will be used in chapter IV in order to describe the vacuum properties of multipole

field.



Chapter 3

Polarization of Multipole

Photons

The states of polarization can be characterized by complex numbers, be it a

trigonometric representation, Jones’ representation or, a complex representation.

Those representations only referred to the amplitudes of the components of the

field. The problem is that only intensities are directly measurable in optics.

However, in the Stokes parameters representation, the states of polarization resort

to values stemmed from the intensities of the components of the field or from a

combination of these intensities. Thus, this representation only yields to real

numbers.

The polarization properties of electromagnetic waves, and of light in

particular, are observed experimentally by passing the light to be investigated

through various bodies and then observing the intensity of the transmitted light.

From mathematical point of view this means that the polarization properties of

light are obtained from the time averaged values of certain quadratic functions

of its field.

15
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3.1 Polarization Matrix

The polarization is known to be the measure of spatial anisotropy of the

electromagnetic field oscillations.17–19 The quantitative definition requires the

measurement of all possible bilinear forms in complex field strengths, which form

either the polarization matrix or the set of Stokes parameters.18 Within the

quantum picture, the complex field strengths are replaced by the corresponding

operators.20 These bilinear forms give the complete information about the

contribution of spatial components of the field into the total intensity and about

the phase differences between the components.

In general, the electromagnetic field is specified by the field-strength tensor9

Fαβ = ∂αAβ − ∂βAα, (3.1)

where ∂α = (∂/∂ct,−~∇) and Aα = (Φ, ~A) is the 4-vector potential. Assume

that the elements of Eq. 3.1 are obtained from the positive-frequency part of

the operator vector potential (2.40). Then, the general bilinear form in the field

strengths is provided by (4× 4) Hermitian matrix

R(~r) = F+(~r)F (~r), (3.2)

which is similar, in a sense, to the Ricci tensor considered in the theory of

relativity.21

Properties of electromagnetic field is completely described by Maxwell

equations whether it is treated as a completely classical or quantum object.

Since the field-strength tensor F µν which is a second rank antisymmetric tensor

is constructed by the components of Electric and Magnetic field variables it

includes all the physical information. Taking this into account one can define

a construction similar to Ricci tensor directly from the field-strength tensor as

R = F †F =


 W ~S

~S? 2P



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where

F µν =




0 −Ex −Ey −Ez

Ex 0 −Bz By

Ey Bz 0 −Bx

Ez −By Bx 0




.

Although Maxwell Stress Tensor is a Lorentz invariant object, constructed by

another combination of field strength tensor, the new Ricci Tensor is not. This

is expected because the polarization matrix which is a sub-matrix of Ricci tensor

is a local object. In other words polarization is measured at a definite point in

space where the source of the field is located at another point.

It can be easily seen that the time-time component of Eq. 3.2 coincides with

the energy density, while the time-space components give the linear momentum

density (Poynting vector). In turn, the space-space (3× 3) submatrix in Eq. 3.2

specifies the polarization properties of the field.13 This submatrix is additive with

respect to the contributions, coming from the electric and magnetic fields:

P (~r) = PE(~r) + PB(~r) =




E∗
+E+ E∗

+E0 E∗
+E−

E∗
0E+ E∗

0E0 E∗
0E−

E∗
−E+ E∗

−E0 E∗
−E−


 +




B∗
+B+ B∗

0B+ B∗
−B+

B∗
+B0 B∗

0B0 B∗
−B0

B∗
+B− B∗

0B− B∗
−B−


 . (3.3)

This expression is written in the helicity basis. The first term here coincides

with the polarization matrix of the electric-type multipole radiation has been

defined in.12 In turn, the second term in Eq. 3.3 represents a generalization of the

polarization matrix of magnetic-type multipole radiation has been introduced by

Wolf22 (also see discussion in23). It is seen that the diagonal terms in Pλ determine

the contributions of different spatial components into the intensity, while the off-

diagonal elements specify the phase difference between the components. Since the

base vectors ~εµ in Eq. 2.40 can be interpreted as the unit vectors of polarization,

the components with µ = ±1 correspond to the circular polarization with either
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positive or negative helicity. In turn, the component µ = 0 corresponds to the

linear polarization along z-direction. Such a component always exists in the

multipole radiation,2,9 while vanishes in the case of plane waves.

The quantum counterpart of Eq. 3.3 is provided by the substitution of

corresponding operators instead of the field strengths.13

Let us now stress that, in contrast to the stress tensor of electromagnetic

field, the tensor Eq. 3.2 and the general polarization matrix Eq. 3.3 do not

manifest the Lorentz invariance. This means that the polarization of multipole

radiation depends on the choice of the reference frame, in which the polarization

measurement is carried out. It should be emphasized that the plane waves are

usually considered in a certain reference frame such that the z-axis coincides

with the direction of propagation provided by the direction of Poynting vector.

In this special case, E0(~r) = B0(~r) = 0 for all ~r and Eq. 3.3 is reduced to the

conventional (2× 2) polarization matrix of plane waves.

As a particular example of some considerable interest, we now investigate the

polarization properties of electric-type multipole radiation. In this case, the first

term in the general polarization matrix in Eq. 3.3 determined in the ”laboratory

frame” with the origin in the source location contains all nine elements, while

the second term contains only four ”transversal terms” because BM`0(~r) = 0

everywhere. Hence, the spatial anisotropy of the electric-type radiation is

completely specified by the electric-field strength. Taking into account the

relation ~E(~r) = ikA(~r), we can represent the first term in Eq. 3.3 as follows

PE(~r) = k2||A+
Eµ(~r)AEµ′(~r)||, (3.4)

where A(~r) is the operator vector potential of Eq. 2.40. This Eq. 3.4 defines

the operator polarization matrix of the electric-type multipole radiation with the

elements

PEµµ′(~r) = k2
∑

`,`′

∑

m,m′
V ∗

E`mµ(~r)VE`′m′µ′(~r)a
+
E`maE`′m′ . (3.5)

Assume now that the source generates the photons with given ` and m by a given
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atomic transition in a certain state, e.g. in the coherent state |α`m〉 such that

aE`′m′|α`m〉 =





α`m, if `′ = ` and m′ = m

0 otherwise
(3.6)

Then, the polarization matrix obtained from Eq. 3.5 by averaging over the

coherent state under consideration takes the form

〈PEµµ′(~r)〉 = k2|α`m|2V ∗
E`mµ(~r)VE`mµ′(~r). (3.7)

Thus, the phase difference between the components with different polarization is

completely defined by the geometrical phase

φµµ′(~r) = arg[VE`mµ′(~r)]− arg[VE`mµ(~r)], (3.8)

that depends on the point of measurement ~r.

Consider now the quantum uncertainty of the polarization measurement

provided by the variance

〈(∆PEµµ′(~r))
2〉 ≡ 〈(PEµµ′(~r))

2〉 − 〈PEµµ′(~r)〉2

= 〈PEµµ′(~r)〉 ×

 ∑

`′,m′
V ∗

E`′m′µ(~r)VE`′m′µ′(~r)


 . (3.9)

It is seen that the right-hand side of Eq. 3.9 consists of the product of the

mean polarization (Eq. 3.7) and of a ”geometrical” factor, which involves the

contribution coming from all multipole terms although the ”non-radiative” terms

with `′ 6= `, m′ 6= m do not contribute into the polarization in Eq. 3.7. It will

be shown in the next section that this geometrical factor corresponds to the

zero-point oscillations of multipole polarization. Thus, the quantum noise of

a polarization measurements performed for a given mode of the radiation field

depends on the vacuum noise of polarization of all possible modes.

3.2 Stokes Parameters

The polarization tensor Pαβ, as an every arbitrary tensor, can be split into two

parts: a symmetric and an antisymmetric part. Of these, the first

Sαβ =
1

2
(Pαβ + Pβα)
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is real because of the hermiticity of Pα,β. The antisymmetric part is pure

imaginary. Like any antisymmetric tensor of rank equal to the number of

dimensions, it reduces to a pseudoscalar.

1

2
(Pαβ − Pβα) = − i

2
eαβA

where A is a real pseudoscalar, eαβ is the unit antisymmetric tensor (with

components e12 = −e21 = 1). Thus the polarization tensor has the form:

Pαβ = Sαβ − i

2
eαβA, Sαβ = Sβα,

it reduces to one real symmetric tensor and one pseudoscalar.

For a circularly polarized wave, the vector ~E0 = const, where

E02 = ±iE01.

It is clear that while A = ±1, Sαβ = 1
2
δαβ. On the other hand, for a linearly

polarized wave the constant vector ~E0 can be chosen as real, so that A = 0.

In the general case the quantity A is called the degree of circular polarization;

it runs through values from +1 and -1, where the limiting values correspond to

right- and left-circularly polarized wave, respectively.

The real symmetric tensor Sαβ, like any symmetric tensor, can be brought to

principal axes, with different principal values which are denoted by λ1 and λ2.

The directions of the principal axes are mutually perpendicular. Denoting the

unit vectors along these directions by ~n1 and ~n2, Sαβ can be written in the form

Sαβ = λ1~n
1
α~n

1
β + λ2~n

2
α~n

2
β, λ1 + λ2 = 1. (3.10)

The quantities λ1 and λ2 are positive and have values from 0 to 1.

Suppose that A = 0, so that Pαβ = Sαβ. Each of the two terms in Eq. 3.10 has

the form of a product of two components of a constant vector (
√

λ1~n
1or
√

λ2~n
2).

Physically each of the terms corresponds to linearly polarized light. Moreover,

there is no term in Eq. 3.10 containing products of components of the two waves.

This means that the two parts can be regarded as physically independent of one

another, or, called incoherent.
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Therefore, in the case of A = 0, the partially polarized light can be represented

as a superposition of two incoherent waves (with intensities proportional λ1 and

λ2), linearly polarized along mutually perpendicular directions. In the general

case of a complex tensor Pαβ, the light can be represented as a superposition of

two incoherent elliptically polarized waves, whose polarization ellipses are similar

and mutually perpendicular.

Let φ be the angle between the y-axis(1) and the unit vector ~n1, then

~n1 = (cos φ, sin φ), ~n2 = (− sin φ, cos φ).

Introducing the quantity l = λ1 − λ2, we write the components of the tensor

(Eq. 3.10) in the following form:

Sαβ =
1

2


 1 + l cos 2φ l sin 2φ

l sin 2φ 1− l cos 2φ


 .

Thus, for an arbitrary choice of axes y and z, the polarization properties of

the wave can be characterized by three real parameters: A (the degree of circular

polarization), l (the degree of maximum linear polarization), φ (the angle between

the direction ~n1 of maximum polarization and the y axis).

In place of these parameters another set of three parameters can be chosen

s1 = l sin 2φ, s2 = A, s3 = l cos 2φ

which are called the Stokes parameters. The polarization tensor is expressed in

terms of them as

Pαβ =
1

2


 1 + s3 s1 − is2

s1 + is2 1− s3




All three parameters have values from -1 to +1. The parameter s3 defines

the linear polarization along the y and z axes; the value s3 = 1 corresponds

to complete linear polarization along the y axis, and s3 = −1 to complete

polarization along the z axis. Also s1 characterizes the linear polarization along

directions making an angle of π/4 with the y axis.And the fourth parameter is

directly pointing itself

s0 =
√

s2
1 + s2

2 + s2
3
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which is sometimes called as degree of polarization. Therefore, for a given degree

of polarization, different types of polarization are possible.They form a sort of

vector of fixed length. Note that the quantities s2 = A and
√

s2
1 + s2

3 − l are

invariant under Lorentz transformations. This is almost obvious from the very

meaning of these parameters as degrees of circular and linear polarization.

With the light of above definition, the polarization can also be described

by the set of Stokes parameters or, in quantum case, by the Hermitian Stokes

operators,14,20 which can be directly measured.17 In principle, they can be chosen

differently. To establish contact with previous results,14,16 the nine local Stokes

operators of the electric-type multipole radiation can be chosen as follows:

s0(~r) =
∑
µ

k2A+
EµAEµ,

s1(~r) = −2k2(A+
E+AE0 + A+

E0AE− + A+
E−AE+ + H.c.),

s2(~r) =
2k2

i
(A+

E+AE0 + A+
E0AE− + A+

E−AE+ −H.c.),

s3(~r) = k2(A+
E−AE− − A+

E+AE+),

s4(~r) = k2(A+
E+AE+ + A+

E−AE− − 2A+
E0AE0),

s5(~r) = −2k2(A+
E+AE− + H.c.),

s6(~r) =
2k2

i
(A+

E+AE− −H.c.),

s7(~r) = −2k2(A+
E0AE+ + H.c.),

s8(~r) =
2k2

i
(A+

E0AE+ −H.c.). (3.11)

The bare operator form of the Stokes operators (Eq. 3.11), corresponding to the

electric dipole radiation at r → 0, was considered in.14,16 It was shown that these

bare operators are connected with the representation of the SU(3) subalgebra in

the Weyl-Heisenberg algebra of multipole photons.

Here the operator s0(~r) defines the electric field contribution into the

energy density in the point ~r. The operators s1,2,5,6,7,8 give the phase

information concerning the phase differences between the components with

different polarization measured in the laboratory frame. In turn, the operator

s3(~r) gives the preponderance of negative helicity over positive helicity, while
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the operator s4(~r) gives the preponderance of transversal polarization over linear

polarization.

The measured Stokes parameters are obtained from Eq. 3.11 by averaging

over a given state of the radiation field. Let us stress that the quantum noise of

the measurement of Stokes operators in Eq. 3.11 again contains contribution of

all multipoles even if the radiation field is in a state with given ` and m.

3.3 Local Polarization Matrix

We now show that the choice of a certain local frame enables us to fairly

simplify the analysis of polarization of multipole radiation. We note that the

field strengths are always orthogonal to the Poynting vector

~S(~r) =
1

8π
[ ~E+(~r) + ~E(~r)]× [ ~B+(~r) + ~B(~r)].

Neglecting the fast oscillating terms, we can restrict our consideration by the

Hermitian vector

~S(~r) =
1

8π
[ ~E+ × ~B + ~E × ~B+]. (3.12)

By construction, the above operator Poynting vector can have any direction.

It is easily seen that, in the helicity basis defining the laboratory frame, the

components of Eq. 3.12 has the following form

S+(~r) =
i

8π
[−E+

−(~r)B0(~r) + E+
0 (~r)B−(~r)− E−(~r)B+

0 (~r) + E0(~r)B
+
−(~r)],

S−(~r) =
i

8π
[E+

+(~r)B0(~r)− E+
0 (~r)B+(~r) + E+(~r)B+

0 (~r)− E0(~r)B
+
+(~r)],

S0(~r) =
i

8π
[E+

−(~r)B+(~r)− E+
+(~r)B−(~r) + E−(~r)B+

+(~r)− E+(~r)B+
−(~r)].

Let us now prepare the local frame by the shift of the origin to the point ~r and

by successive rotation of the axes to put z′-direction along ~S(~r). It is clear that

only two polarizations would exist in this local frame.

The above local transformation of the reference frame can be expressed in

terms of a proper rotation of the base vectors

U(~r)[{~ε}] = [{~ε′}(~r)], (3.13)
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where [{~ε}] denotes the column built from the base vectors forming the laboratory

frame in the helicity basis and the matrix

U(~r) =




1+cos θS

2
e−iφS 1−cos θS

2
eiφS sin θS√

2
1−cos θS

2
e−iφS 1+cos θS

2
eiφS − sin θS√

2

− sin θS√
2

e−iφS sin θS√
2

eiφS cos θS


 (3.14)

specifies the unitary transformation. Here the position-dependent angles θS(~r)

and φs(~r) specify the direction of ~S(~r) with respect to the laboratory frame. It

is easy now to check that Eq. 3.14 transforms the polarization matrix (Eq. 3.4)

of the electric-type radiation into the reduced (2× 2) local polarization matrix

P̃E(~r) = U(~r)PE(~r)U+(~r), (3.15)

where

P̃E(~r) = k2




Ã+
E+ÃE+ 0 Ã+

E+ÃE−

0 0 0

Ã+
E−ÃE+ 0 Ã+

E−ÃE−


 (3.16)

and

Ã+
Eµ(~r) =

∑

µ′
Uµµ′(~r)A

+
Eµ′(~r).

This means that, if the polarization measurement is performed in the laboratory

frame, the three polarizations described by the operator polarization matrix

(Eq. 3.4) should be taken unto account. In other words, the polarization of

multipole radiation in the laboratory frame is defined by the measurement of

the nine Hermitian Stokes operators (Eq. 3.11). At the same time, it is always

possible to chose a proper local frame in which the operator polarization matrix is

reduced to Eq. 3.16 and the set of corresponding Stokes operators is also reduced

to the set of only four operators as in conventional picture of plane waves.



Chapter 4

Vacuum Properties of Multipole

Field

An interesting result of the quantization of radiation is the fluctuations associated

with the zero-point energy or the so-called vacuum fluctuations. These

fluctuations have no classical analog and are responsible for many interesting

phenomena in quantum optics. In a semiclassical theory of atom-field interaction,

only the atom is quantized and the field is defined classically. And it is

capable to explain many of the phenomena which observed in modern optics.

The quantization of the radiation field is needed to explain the effects such as

spontaneous emission, the Lamb shift, the laser linewidth, the Casimir effect,

and the full photon statistics of the laser. In fact, each of these effects can

be understood from the point of view of vacuum fluctuations perturbing the

atoms. However, beyond these reasons to quantize the radiation field, there are

other strong reasons and logical arguments for quantizing the radiation field. For

instance, the problem of quantum beat phenomena provides us with a simple

example in which the results of self-consistent fully quantized calculation differ

qualitatively from those obtained via a semiclassical theory with or without

vacuum fluctuations.

25
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4.1 Vacuum Polarization Matrix

Following,15 consider now the zero-point oscillations of the multipole field.

To avoid the infinite value of the zero-point energy density, consider the

monochromatic field. Then

W (~r) =
1

8π
〈0| ~E(~r) · ~E+(~r) + ~B(~r) · ~B+(~r)|0〉 =

k2

8π

∑

λ=E,M

∑
µ

∑

`,m

|Vλ`mµ(~r)|2.(4.1)

Because of the definition of mode functions in Eq. 2.41, the zero-point energy

density (Eq. 4.1) manifests a certain spatial inhomogeneity in contrast to the

plane waves, that always have homogeneous zero-point energy described by the

expression

W̃ =
h̄kc

V
, (4.2)

where V is the volume of quantization.

In fact, the zero-point oscillations are concentrated in a certain vicinity of the

origin (source location). To show this, consider the polarization matrix (Eq. 3.4),

corresponding to the electric-type radiation. It is clear that the elements of

Eq. 3.4 are the normal ordered quadratic forms in the photon operators. Besides

Eq. 3.4, one can define the anti-normal ordered polarization matrix

P
(an)
E (~r) = k2||AEµ′(~r)A

+
Eµ(~r)||.

In view of the commutation relations in Eq. 2.37, the difference

P
(0)
E (~r) ≡ P

(an)
E (~r)− PE(~r) = k2||[AEµ′(~r), A

+
Eµ(~r)]||

= k2
∑

`,m

V ∗
E`mµ(~r)VE`mµ′(~r) (4.3)

is the (3 × 3) Hermitian matrix with c-number elements. By construction, this

matrix defines the zero-point oscillations of polarization in an arbitrary point ~r.24

It is seen that the trace of Eq. 4.3 coincides, apart from an unimportant factor,

with zero-point energy (Eq. 4.1).
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Because of the rotational invariance of the multipole field has been proved in

chapter II, the elements of Eq. 4.3 should be independent of the direction. In

other words,

P
(0)
E (~r) = P

(0)
E (r).

The radial dependence here can be determined as follows. Consider the ”north-

pole” direction (θ = 0). Then

∀φ Y`,m−µ(0, φ) =

√
2` + 1

4π
δmµ.

Since |µ| ≤ 1, the multipole states with |m| ≥ 2 does not contribute into the

zero-point oscillations of polarization. By direct calculations, it is straightforward

matter to arrive at conclusion that the vacuum polarization matrix (Eq. 4.3) in

the ”north-pole” direction is has the diagonal form:

P
(0)
E (r, 0, 0) = k2||∑

`≥1

|VE`µµ(r, 0, 0)|2δµµ′|| =




PT (r) 0 0

0 PL(r) 0

0 0 PT (r)


 . (4.4)

Because of the invariance of ~A(~r) under rotation proven in section II, there is a

local unitary transformation

U(~r)P
(0)
E (r)U+(~r) = P(0)

E (r, 0, 0), (4.5)

transforming Eq. 4.3 into Eq. 4.4.

4.2 Zero-Point Oscillations

The diagonal elements of Eq. 4.4 can be interpreted as follows. The elements

PT (r) = k2
∑

`≥1

|VE`±±(r, 0, 0)|2

describes the transversal with respect to ~r zero-point oscillations of the electric-

field contribution into the energy density (to within an unimportant factor),
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connected with the circular polarization of either helicity. In turn, the element

PL(r) = k2
∑

`≥1

|VE`00(r, 0, 0)|2

gives contribution into the zero-point oscillations of the energy density coming

from the longitudinal (radial) linear polarization. Because of invariance of trace,

we get

WE(~r) = WE(r) ∼ 1

8π
[2PT (r) + PL(r)]. (4.6)

Taking into account the explicit form of the mode functions (Eq. 2.41),

properties of the Clebsch-Gordon coefficients,25 and spherical harmonics, it is

straightforward to show that

PT (r) ∼ ∑

`≥1

1

4(2` + 1)
|`j`+1(r)− (` + 1)j`−1(r)|2,

PL(r) ∼ ∑

`≥1

`(` + 1)

2(2` + 1)
|j`+1(r) + j`−1(r)|2.

Thus, the radial dependence of the zero-point oscillations of the energy density

(Eq. 4.6) has the form

WE(r) ∼ 1

32r

∑

`≥1

{
`[J`+3/2(kr)]2 + (` + 1)[J`−1/2(kr)]2

}

=
1

32r



[J1/2(kr)]2 +

∑

`≥1

(2`− 1)[J`−1/2(kr)]2



 .

For very large distances compared to the wavelength, kr À 1, employing the fact

that

J1/2(kr) =

√
2

π

sin(kr)√
kr

and Lommele’s formula26

∑

`≥0

(` + 1/2)[J`+1/2(kr)]2 =
kr

π
,
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Figure 4.1: Electric-type contributions to zero-point oscillations of energy density
for all values of ` in the limit kr À 1, which means very large distances from
source compared to wavelength.

then gives

WE(r) ∼ k

16π

[
1 +

sin2(kr)

(kr)2

]
. (4.7)

The radial behavior of Eq. 4.7, shown in Fig. 4.1, manifests the concentration of

zero-point oscillations in a certain vicinity of the origin.

The same transformation is valid for the magnetic-type field as

U(~r)P
(0)
M (r)U+(~r) = P(0)

M (r, 0, 0) (4.8)

Again the diagonal elements of Eq. 4.8 gives the same relations depends on mode

functions, however now the definitions of mode functions for magnetic-type field

is different in Eq. 2.41.

PT (r) = k2
∑

`≥1

|VM`±±(r, 0, 0)|2,

PL(r) = k2
∑

`≥1

|VM`00(r, 0, 0)|2
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Figure 4.2: Magnetic-type contributions to zero-point oscillations of energy
density for all values of ` in the limit kr À 1, which means very large distances
from source compared to wavelength.

where PT defines the transversal zero-point oscillations of the magnetic-field

contribution into the energy density, corresponds to the circular polarization.

Moreover, PL describes the longitudinal linear polarization of zero-point

oscillations of the energy density. Again by using the same invariance property of

trace, WM can be defined as follows in terms of PT and PL diagonal components.

WM(~r) = WM(r) ∼ 1

8π
[2PT (r) + PL(r)] (4.9)

Taking into account the explicit forms of mode functions of magnetic-type

field in Eq. 4.9, PL appears to be zero for all values of ` and PT is found to be

PT (r) ∼ ∑

`≥1

k(2` + 1)

4
j2
` (kr). (4.10)

Thus the radial dependence of zero-point oscillations of energy density for
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magnetic-type field is

WB(r) ∼ k

16π

∑

`≥1

(2` + 1)j2
` (kr). (4.11)

For kr À 1, using the asymptotic form of Bessel function and Lommele’s formula

yields to

WB(r) ∼ k

16π

[
1− sin kr2

kr2

]
. (4.12)

The radial behavior is plotted in Fig. 4.2, indicating the zero-point energy

oscillations in the vicinity of origin.
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Figure 4.3: Each type of zero-point oscillations of energy density for all values
of ` in the limit kr À 1 shown separately, where their sum yields to a constant
energy for all kr values.

Because of the symmetry relations between the magnetic and electric field

strengths, similar results were obtained in magnetic-type field as well. Moreover,

total energy density is the sum of the both results in Eq. 4.7 and Eq. 4.12, which

is giving a constant energy density for all values of kr(Fig. 4.3). This is not a
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surprising result, in the case of large distances compared to wavelength, because

it’s just a limit case pointing to plane wave representation of radiation.
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Figure 4.4: Zero-point energy density, which is the sum of WE and WB for all
values of ` in the limit kr À 1.



Chapter 5

Local Representation of Photons

5.1 Electric Dipole Radiation

To clarify the structure of PEµµ′ and establish a contact with our results, consider

the bare operator form of PEµµ′ in Eq. 3.5 in the case of the electric dipole

radiation in a spherical cavity. The bare operator structure is provided by

the limit kr → 0 in the mode functions (Eq. 2.41) which corresponds to the

consideration of the polarization directly near the source. Taking into account

the explicit form of spherical Bessel functions

j0(kr) =
sin(kr)

kr

j2(kr) =
3− (kr)2

sin(kr)
− 3 cos(kr)

(kr)2

and assuming atom the atom is the point-like object(in fact, very small with

respect to the wavelength of radiationfield), we get

lim
kr→0

j0(kr) = 1, lim
kr→0

j2(kr) = 0

Using the properties of Glebsch-Gordon coefficients25 and spherical harmonics,

the mode functions (Eq. 2.41) in this limit takes the form VE`µ(0) ∼ −δmµ , which

are inserted in Eq. 2.40. Then operator vector potential becomes

~AE`(0) = −
1∑

m=−1

(−1)µ~χ−µaE1mδmµ (5.1)

33
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This means that the electric dipole transition | 1,m〉 → | 0, 0〉 creates a photon

with spin state (polarization) µ = m. Then the bare operator structure is

PEmm′ = γE1a
+
E1maE1m′ (5.2)

where γE1 is an unimportant normalization factor.

The set of Stokes operators can be obtained by canonical quantization of

Eq. 3.11. On the other hand, the Stokes operators should, by definition, represent

the complete set of independent Hermitian bilinear forms in the photon operators

of creation and annihilation. It is clear that such a set is represented by the

generators of the SU(3) subalgebra in the Weyl-Heisenberg algebra of electric

dipole radiation. The nine generators have the form14

(a+
+a+ − a+

0 a0) (a+
0 a0 − a+

−a−) (a+
−a− − a+

+a+)
1
2
(a+

+a0 + a+
0 a+) 1

2
(a+

0 a− + a+
−a0)

1
2
(a+
−a+ + a+

+a−)
1
2i

(a+
+a0 − a+

0 a−) 1
2i

(a+
0 a− − a+

−a0)
1
2i

(a+
−a+ − a+

+a−)

(5.3)

and only eight of them are independent. To get the set of the Stokes operators,

we have to use the generators in Eq. 5.3 or independent linear combinations of

this generators together with the operator

S0 =
1∑

m=−1

a+
mam (5.4)

describing the total number of multipole photons. Therefore the rest of the set

of Stokes operators as follows14

S1 = (εrad + ε+
rad)

S2 = i(ε+
rad − εrad)

S3 = a+
+a+ − a+

−a−

S4 = a+
+a+ + a+

−a− − 2a+
0 a0

S5 = (a+
+a0 + a+

0 a+)

S6 = a(a+
0 a+ − a+

+a0)

S7 = (a+
0 a− + a+

−a0)

S8 = i(a+a0 − a+
0 a0)

(5.5)

where εrad = a+
+a0 + a+

0 a− + a+
−a+.
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5.2 Local Photon Operator

Appropriate choice of the reference frame leads to the reduced (2 × 2) local

polarization matrix (Eq. 3.16). The use of the unitary transformation allows the

operator polarization matrix to be cast into the form of Eq. 4.5

PE(r, 0, 0) = U(~r)P̃E(r)U+(~r) (5.6)

where

PEµµ′(~r) = k2A+
Eµ(~r)AEµ′(~r) (5.7)

and if Ũ(~r) is defined by U(~r)U(~r) then gives

AE`µ(~r) =
1∑

µ′=−1

Ũ∗µµ′(~r)
∑̀

m=−`

VE`mµ′(~r)aE`m (5.8)

In view of Weyl-Heisenberg commutation relations (Eq. 2.37), the operators

Eq. 5.8 obey the following relation

[AE`µ(~r),A+
E`′µ′(~r)] = δEE′δ``′δµµ′ × PT (r), µ = ±1 (5.9)

Pµ=± ≡ PT is the transversal element of the diagonal vacuum polarization matrix

(Eq. 4.4). As mentioned in section II, it is not surprising that PL(~r) does not

reveal, because of the local transformation of the reference frame (Eq. 3.16).

The only difference between the Eq. 5.9 and commutation relations in Eq. 2.37

is the presence of position-dependent factor in the PT (~r). It seems to be quite

tempting to introduce the normalized local operators

bE`µ(~r) =
AE`µ(~r)√

Pµ(~r)
(5.10)

where µ = ±1, hence instead of three, only two normalized local operators

obtained which obey the standard Weyl-Heisenberg commutation relations

[bλ`µ(~r), b+
λ′`′µ′(~r)] = δλλ′δ``′δµµ′ (5.11)

at any point ~r , where λ is the type of radiation either electric or magnetic.
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Due to the form of the operator polarization matrix in Eq. 3.5 and

corresponding Stokes operators, the polarization, defined to be the spin state

of photons,2,3 is not a global property of the quantum multipole radiation. Any

atomic transition emitting photons with given quantum number m, which yields

the polarization of all two types depending on the distance from the atom. The

forms of AE`µ(~r) in Eq. 5.8 and bλ`µ(~r) in Eq. 5.10 just point how the photons

with different m contribute into the polarization at an arbitrary point ~r. Using

the operators in Eq. 5.8, the local bare operator representation of the polarization

matrix can be constructed as follows

PEµµ′(~r) = b+
E`µ(~r)bE`µ′(~r) (5.12)

as well as Stokes operators

S0(~r) = b+
−(~r)b−(~r) + b+

+(~r)b+(~r)

S1(~r) = b+
−(~r)b+(~r) + b+

+(~r)b−(~r)

S2(~r) = −i(b+
−(~r)b+(~r)− b+

+(~r)b−(~r))

S3(~r) = b+
+(~r)b+(~r)− b+

−(~r)b−(~r)

(5.13)

By choosing a proper local frame, the set of corresponding Stokes operators is

also reduced to the set of only four operators as in the case of plane waves, where

only two spin states are allowed.

There is a very important difference between the representations of Stokes

operators in Eq. 5.5 and Eq. 5.13. If the former is valid only for the electric

dipole radiation (at r → 0), then the latter describes an arbitrary multipole

radiation with any λ and ` . The similarity in the operator structure is caused by

the same number of degrees of freedom defining the representation of the SU(2)

subalgebra in the Weyl-Heisenberg algebra.



Chapter 6

Conclusion

The quantum multipole radiation is emitted from the atomic transitions between

the states with given angular momenta. The states of spherical (multipole)

photons are specified by given angular momentum and its projection as the

spin state is changed in space-time. However, the plane wave representation

of photons is specified by a given linear momentum and polarization everywhere.

This difference reflects the boundary conditions used in the canonical quantization

of the free electromagnetic radiation.

Results in all chapters can be summarized as follows:

• It is proved that the quantum field obeys the SU(2) invariance. As

a consequence, the vacuum noise of polarization has rotation symmetry with

respect to the origin (source location).[Chap. II]

• It is known that, the polarization of multipole radiation in the laboratory

reference frame is described by the (3× 3) Hermitian polarization matrix, or by

corresponding set of nine Stokes parameters. It is shown that, at any point we

can construct a proper frame in which the description of polarization is reduced

to a conventional (2× 2) polarization matrix. This proper frame moves together

with the photon, therefore is not convenient for the interpretation of standard

measurement.[Chap. III]

• The polarization of multipole radiation manifests the zero-point oscillations,

reflecting the vacuum properties of the space. The peculiarities of electric and

37
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magnetic-type zero-point oscillations of energy density were examined.

In particular, it is shown that the monochromatic zero-point oscillations at

all types and modes, have a constant level in the volume of quantization.[Chap.

IV]

• The special properties of polarization of multipole radiation can be used

to construct the local representation of photon operators. These operators

correspond to the states of photons with given projection of angular momentum

of any spin at any given point. This representation can be useful in the quantum

near-field optics. The local representation of multipole photons is compatible

with the Mandel operational definition of photon localization.30[Chap. V]
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