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ABSTRACT

ROBUST COMPRESSIVE SENSING TECHNIQUES

Oğuzhan Teke

M.S. in Electrical and Electronics Engineering

Supervisor: Prof. Dr. Orhan Arıkan

July, 2014

Compressive Sensing theory details how a sparsely represented signal in a known

basis can be reconstructed from an underdetermined linear measurements. How-

ever, in reality there is a mismatch between the assumed and the actual dictio-

nary due to factors such as discretization of the parameter space defining basis

components, sampling jitter in A/D conversion, and model errors. Due to this

mismatch, a signal may not be sparse in the assumed basis, which causes signifi-

cant performance degradation in sparse reconstruction algorithms. To eliminate

the mismatch problem, this thesis presents two novel robust algorithm and an

adaptive discretization framework that can obtain successful sparse representa-

tions. In the proposed techniques, the selected dictionary atoms are perturbed

towards directions to decrease the orthogonal residual norm. The first algo-

rithm named as Parameter Perturbed Orthogonal Matching Pursuit (PPOMP)

targets the off-grid problem and the parameters of the selected dictionary atoms

are perturbed. The second algorithm named as Perturbed Orthogonal Matching

Pursuit (POMP) targets the unstructured basis mismatch problem and performs

controlled rotation based perturbation of selected dictionary atoms. Based on de-

tailed mathematical analysis, conditions for successful reconstruction are derived.

Simulations show that robust results with much smaller reconstruction errors in

the case of both parametric and unstructured basis mismatch problem can be

obtained as compared to standard sparse reconstruction techniques. Different

from the proposed perturbation approaches, the proposed adaptive framework

discretizes the continuous parameter space depending on the estimated sparsity

level. Once a provisional solution is obtained with a sparse solver, the framework

recursively splits the problem into sparser sub-problems so that each sub-problem

is exposed to less severe off-grid problem. In the presented recursive framework,

any sparse reconstruction technique can be used. As illustrated over commonly

used applications, the error in the estimated parameters of sparse signal compo-

nents almost achieve the Cramér-Rao lower bound in the proposed framework.
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ÖZET

GÜRBÜZ SIKIŞTIRILMIŞ ALGILAMA TEKNİKLERİ

Oğuzhan Teke

Elektrik ve Elektronik Mühendisliği, Yüksek Lisans

Tez Yöneticisi: Prof. Dr. Orhan Arıkan

Temmuz, 2014

Sıkıştırılmış Algılama teorisi, eksik belirtilmiş doğrusal gözlemlerden, bilinen bir

tabanda seyrek olan bir sinyalin nasıl geri çatılacağını inceler. Fakat gerçekte,

parametre uzayının seyrekleştirilmesi, analog-sayısal çeviricilerdeki örnekleme

sapması veya modelleme hatası gibi sebepler yüzünden varsayılan ile asıl ta-

ban arasında uyumsuzluk vardır. Bu uyumsuzluk sebebiyle verilen bir sinyal

varsayılan tabanda seyrek olmayabilir. Bu da geri çatım yöntemlerinin başarımını

ciddi bir şekilde düşürür. Bu tezde, taban uyumsuzluğu problemini ortadan

kaldırmak için, başarılı seyrek ifadeler elde edebilen özgün iki gürbüz algo-

ritma ve bir değişken seyrekleştirme yapısı sunulmuştur. Önerilen tekniklerde

seçilmiş taban öğeleri, dik kalan vektörünü azaltacak şekilde uyarlanmışlardır.

Parametre Uyarlamalı Dikey Eşleyen Takip (PPOMP) isimli ilk algoritma ızgara-

dışılık probleminin çözümünü hedefler ve seçilmiş taban öğelerinin parametrelerini

uyarlar. Uyarlamalı Dikey Eşleyen Takip (POMP) isimli önerilen ikinci algoritma

ise yapısal olmayan taban uyumsuzluğu problemini hedefler ve seçilmiş taban

öğelerine döndürme tabanlı kontrollü bir uyarlama uygular. Detaylı matematik-

sel analizlere dayanılarak başarılı geri çatım için şartlar türetilmiştir. Benzetim

çalışmaları, standart yöntemlere kıyasla hem yapısal hem de yapısal olmayan ta-

ban uyumsuzluğu problemlerinde gürbüz bir şekilde çok küçük geri çatım hataları

elde edilebildiğini göstermiştir. Önerilen uyarlama tekniklerinden farklı olarak,

önerilen değişken yapı, kestirilen seyreklik seviyesine bağlı bir şekilde sürekli

parametre uzayını ayrıklaştırır. Herhangi bir seyrek çözücü ile öncül bir çözüm

elde edildikten sonra yapı, özyineli bir şekilde ana problemi daha seyrek alt

problemlere ayırır. Bu sayade her alt problem daha az etkili bir ızgara dışılık

problemine maruz kalır. Önerilen özyineli yapıda herhangi bir seyrek geriçatım

tekniği kullanılabilir. Yaygın bir şekilde kullanılan sıkıştırılmış algılama uygula-

malarında gösterildiği üzere, önerilen yapıda kestirilen parametre hatası hemen

hemen Cramér-Rao alt sınırına ulaşmıştır.

v



vi
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Chapter 1

Introduction

Sparse signal representations and the compressive sensing (CS) theory [1, 2] has

received considerable attention in recent years in many research communities. In

particular, CS changed the way data is acquired by significantly reducing the

number of data samples. As a new technique with a significant promise, CS has

been applied to a wide range of important applications, such as computational

photography [3], medical imaging [4], radar [5, 6], and sensor networks [7].

Compressive sensing states that a sparse signal in some known basis can be

efficiently acquired using a small set of nonadaptive and linear measurements.

Consider an N dimensional signal s that has a K-sparse representation in a

transform domain Ψ, as s = Ψx and ‖x‖0 = K. Given linear measurements in

the form y = Φs, by using compressive sensing techniques, the sparse signal x,

hence s, can be recovered exactly with very high probability from O(K logN)

measurements by solving a convex `1 optimization problem of the following form:

min ‖x‖1, subject to y = ΦΨx, (1.1)

which can be solved efficiently using linear programming. Stable reconstruction

methods for noisy measurements or compressible signals based on `1 minimization

have been developed [8–10] for the known basis case. Suboptimal greedy algo-

rithms have also been used in many applications. Matching pursuit (MP) [11],
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orthogonal matching pursuit (OMP) [12], compressive sampling matching pursuit

(CoSaMP) [13], iterative hard/soft thresholding (IHT) [14] are among the most

commonly used greedy algorithms. Apart from greedy algorithms, approximate

message passing (AMP) uses the idea of belief propagation to achieve high recon-

struction performance with low complexity [15]. If the sparse signal s has a struc-

ture, such as a wavelet tree, techniques proposed in [16] can exploit those models

for better reconstruction. The study in [17] assumes a Markov-tree structure in

the sparse coefficients and adapts the AMP algorithm in a Bayesian framework.

Commonly used sparse reconstruction techniques assume that the basis Ψ is

exactly known and the signal is sparse in that basis. However, in some applica-

tions there is a mismatch between the assumed basis and the actual but unknown

one. For example in applications like target localization [18], radar [19, 20], time

delay and doppler estimation, beamforming [21, 22] or shape detection [23], the

sparsity of the signal is in a continuous parameter space and the sparsity basis Ψ

is constructed through discritization or griding of these parameter spaces. In gen-

eral, a signal will not be sparse in such a dictionary created through discritization,

since no matter how fine the grid dimensions are, the signal parameters may not,

and generally do not, lie in the center of the used grid cells. As a simple example;

consider a general signal which is sparse in the continuous frequency domain.

This signal may not be sparse in the DFT basis defined by the frequency grid.

A continuous frequency parameter lying between two successive DFT grid cells

will affect not the only the closest two cells, but the whole grid with amplitude

decaying with 1/T , where T is the sampling time interval. This off-grid phenom-

ena violates the sparsity assumption, resulting in a decrease in reconstruction

performance. In addition to these structured perturbations, random time jitter

in A/D conversion, modeling errors in construction of the dictionary Ψ create

perturbations on the dictionary columns. Hence, in general, the signal x will be

sparse in an unknown basis Ψ̂ = Ψ + P where Ψ is the adopted basis and P is

the unknown perturbation matrix. Since the classical CS theory evolves around

the solution to the overdetermined system in the form of y = ΦΨx, developed

sparse solvers are not robust to this type of errors. Under such a basis mismatch

problem, classical techniques suffer from a significant degradation in the recovery

2



performance.

In the literature, the effect of this basis mismatch has been observed and

analyzed in some applications such as radar [19, 24] and beamforming [25]. In

problems due to parameter space discritization, a simplistic approach is to use

multi-resolution refinement and decrease the grid size. Decreasing the grid size

is not a direct solution to the basis mismatch problem, because it increases the

coherence between dictionary columns, which in turn result in violation of the

restricted isometry property (RIP) [26] and increase in the computational com-

plexity of the reconstruction. In [27–29] the effect of the basis mismatch problem

on the reconstruction performance of CS has been analyzed and the resultant per-

formance degradation levels and analytical `2 norm error bounds due to the basis

mismatch have been investigated. However, these works do not offer a systematic

approach for sparse reconstruction under random perturbation models. In [30],

the dictionary is extended to several dictionaries and solution is pursued not in

a single orthogonal basis, but in a set of bases using a tree structure, assuming

that the given signal is sparse in at least one of the basis. However, this strategy

does not provide solutions if the signal is not-sparse in the extended dictionary.

In the continuous basis pursuit approach (CBP) [31], perturbations are assumed

to be continuously shifted features of the functions on which the sparse solution

is searched for, and `1 based minimization is proposed. In [32], `1 minimization

based algorithms are proposed for linear structured perturbations on the sensing

matrix. In [33] a total least square (TLS) solution is proposed for the problem,

in which an optimization over all signals x, perturbation matrix P and error

vector spaces should be solved. To reduce complexity, suboptimal optimization

techniques have been pursued in [33].

To overcome the basis mismatch problem, this thesis introduces two novel

perturbed sparse recovery algorithms. The first one primarily focuses on recon-

struction of sparse parameter scenes and proposes a novel parameter perturbation

based sparse reconstruction technique to provide robust reconstructions in the off-

grid case. The proposed technique is an iterative algorithm that works with a

selected set of dictionary vectors that can be obtained via one of sparse greedy

3



techniques such as MP, OMP, IHT, CoSaMP. The parameters of the selected dic-

tionary atoms are iteratively adapted within their grids towards directions that

decreases the residual norm. The proposed technique presently is used within the

general OMP framework hence named as Parameter Perturbed OMP (PPOMP).

As demonstrated in the reconstruction of sparse delay-Doppler radar scenes, the

proposed method is successful in recovering the targets with arbitrary positions.

Compared to conventional CS reconstruction techniques like OMP or `1 mini-

mization, proposed PPOMP technique achieves lower reconstruction errors for

a general delay-Doppler scene in all the conducted performance tests. The gen-

eral idea of proposed parameter perturbation can also be applied to other areas

where discrete parameters are selected from continuous parameter spaces such as

frequency or angle of arrival estimation problems.

The second proposed technique mainly focuses on unstructured basis mis-

match problem which is observed under the random time jitter in A/D conversion

and modeling error. To overcome this type of mismatch, a novel Perturbed OMP

(POMP) algorithm is presented. In the standard OMP algorithm [12] the column

vector that has the largest correlation with the current residual is selected and

the new residual is calculated by projecting the measurements onto the subspace

defined by the span of all selected columns. This procedure is repeated until the

termination criteria is met. In the proposed POMP algorithm, controlled per-

turbation mechanism is applied on the selected columns. The selected column

vectors are perturbed in directions that decrease the orthogonal residual at each

iteration. Proven limits on perturbations are obtained. Relative to the regular

OMP, under the perturbation scheme, POMP is able to produce sparser solu-

tions. The proposed technique is simulated on a frequency estimation problem

under sampling time jitter. Due to its optimal but simple perturbation scheme,

the proposed method is fast, simple to implement and successful in recovering

sparse signals under random basis perturbations.

The rest of the thesis also focuses on the off-grid problem. The proposed re-

cursive CS framework addressed the off-grid problem by developing an adaptive

discretization scheme so that a regular solver such as OMP and CoSaMP can re-

cover a sparse signal without observing an off-grid problem. The relation between
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the discretization limit and the sparsity level plays a key role in the proposed re-

cursive reconstruction framework. In the proposed approach, the observation is

represented as a superposition of c components: y = y1 + y2 + . . . + yc with

sparsities K1, K2, . . . , Kc, respectively. If yi and Ki, where Ki is significantly

less than K, are given, continuous signal space can be discretized denser. Thus

estimates for Ki-sparse signals would have less off-grid resulted degradation. The

use of adaptive reconstruction grids whose density depends on the sparsity level is

the main difference between the proposed reconstruction technique and the E-M

based approaches. A powerful aspect of this approach is that the main problem

and the sub-problems are equivalent to each other in the structural sense: they all

take an observation vector and a sparsity level as inputs and produce estimates

of the parameters as outputs. Therefore, each sub-problem can be partitioned

further into sparser problems and solved with denser discretization. Due to self-

similar structure of the partitioning, a recursive algorithm that discretizes the

space adaptively is presented. The proposed approach is fast, suitable for paral-

lel computing and provides powerful estimation results by achieving Cramér-Rao

bound.

1.1 Contribution and Organization

The thesis starts with an introduction to compressive sensing. Well known recon-

struction algorithms are summarized and their performances are illustrated over

well known applications. In the exposition of ideas, many of the technical details

are avoided and directed to key references on the subject.

Following the introduction to CS, Chapter 3 details the shortcomings of the

CS reconstruction algorithms in the continuous signal spaces. Afterwards, as so-

lutions to these shortcomings, novel Parameter Perturbed Orthogonal Matching

Pursuit (PPOMP) and Perturbed Orthogonal Matching Pursuit (POMP) algo-

rithms are introduced. Theoretical investigations and simulated reconstruction

performances of these novel algorithms are also provided in this chapter.
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Chapter 4 discusses the relation between the sparsity and the discretization of

the continuous space and treats the CS problem as an estimation problem rather

than a detection problem. For highly improved reconstructions, a novel recursive

framework, in which the continuous parameter space is adaptively discretized, is

introduced. Simulations of CRLB achieving performance of the proposed tech-

niques is also presented there.

Lipschitz continuity of the cost function in delay-Doppler formulation, detailed

proof of a theorem related to the POMP algorithm and the CRLB analysis for

single frequency estimation under random sampling are provided in the appendix.

1.2 Notation

Thorough out the thesis, several norms are utilized. For vectors, mostly `p norm,

which is indicated as ‖ · ‖p, is used. In order to prevent any ambiguity, Euclidean

norms are also stated explicitly as ‖ · ‖2. Even though `p norm is not defined for

p = 0, we use ‖ · ‖0 “norm” to denote the number of non-zero elements in the

given vector. For matrices, ‖ · ‖2 is defined as the spectral norm, ‖ · ‖? is defined

as the nuclear norm and tr(·) denotes the trace of the argument.

AT denotes the transpose of the matrix A. AH denotes the hermitian of the

matrix A. Superscript A† is the Moore-Penrose pseudo-inverse of A.

For A, PA denotes the projection matrix onto the column space of A and

P⊥A denotes the projection to the perpendicular space of the column space of A.

The operator “◦” denotes the Hadamard product, or entrywise product. For

two matricesA,B ∈ CM×N , their Hadamard product is denoted asM = A◦B ∈
CM×N with elements given by M (l, k) = A(l, k) ·B(l, k).
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Chapter 2

Compressive Sensing

In this chapter, a summary of the well-established CS theory is presented. Basic

insights and heuristics behind the idea of the transform domain representation

and compressed measurements is provided. For more comprehensive and mathe-

matical introduction, the reader may refer to [34,35]. Also, highly extensive and

well categorized publication lists on the theory of CS and its applications can be

found in [36].

2.1 Transform Domain Representation

Suppose N dimensional signal s has a representation in a transform domain as

follows:

s = Ψx, (2.1)

where Ψ ∈ CN×N is a non-singular, and generally orthonormal, transformation

matrix and x is the representation of the non-sparse signal s in the transform

domain. Since the basis Ψ is non-singular, representation of the sampled signal

s in this basis can be obtained as:

x = Ψ−1 s. (2.2)
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As a simple example, consider a time-sampled signal s ∈ <256. Visual repre-

sentation of such a signal is shown in Fig. 2.1. In the time domain, the signal is
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Figure 2.1: Time-sampled signal s.

dense, i.e. ‖s‖0 = N meaning that all the elements are non-zero. However, if the

representation basis Ψ is selected as Inverse Discrete Cosine Transform (IDCT)

matrix, it is possible to achieve a sparse decomposition. IDCT is defined as:

Ψl,k =


1√
N
, if k = 1, 1 ≤ l ≤ N,

√
2√
N

cos

(
π (2l − 1) (k − 1)

2N

)
, if 2 ≤ k ≤ N, 1 ≤ l ≤ N,

(2.3)

where Ψl,k is the (l, k)th element of the matrix Ψ. Visual representation of this

orthonormal basis is shown in Fig. 2.2(a) for N = 256. Resulting transform

domain representation of s, computed with (2.2), is shown in Fig. 2.2(b).

Most important property of the transform domain signal x is its sparse be-

havior. Since ‖x‖0 = 6, dense signal s of length 256 can be represented only

by 6 coefficients. Therefore, it is significantly more efficient to process s in the

representation domain. Furthermore, such a sparsifying transform also provides

a way of compressing the sampled data sequence. In the illustrated case, sampled

data of length 256 is compressed down to 6 coefficients. Taking the corresponding

indexes of the coefficients into account, this reduction in the required number of

coefficient is equivalent to lossless compression of rate 95.3%.
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Figure 2.2: (a) IDCT matrix Ψ with size N = 256, (b) sparse representation of
the signal s in the domain defined in (2.3).

2.2 Basic Idea

Even though transform domain representation enables us to compress and process

a signal very efficiently, there is no improvement for the sampling process since it

is a necessity to acquire full set of N samples in the first place. Then the regular

process is to compress the samples of length N to few coefficients of length K.

The drawback of this classical sample & compress approach is to acquire too many

samples in order to compress them using a sparse representation. To alleviate this

drawback, Compressive Sensing (CS) offers a new sampling paradigm in which the

transform domain representation (compressed version) of the signal is observed

rather than the signal itself, as the name “Compressive Sensing” suggests.

Basically, the CS states that a signal with a sparse representation in some

known basis can be efficiently acquired using a small set of nonadaptive and

linear measurements. For this purpose, let Φ ∈ CM×N be a sensing matrix, where

the effective number of samples M is smaller than the signal length N . Instead

of observing the signal s directly, it is sampled through the sensing matrix as

follows:

y = Φ s, (2.4)
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or, with the transform domain representation of s, it can also be stated as:

y = Φ Ψx. (2.5)

In the following, the sensing matrix Φ and the basis Ψ will be combined into a

dictionary A ∈ CM×N as A = ΦΨ for the simplicity. Hence in the combined

model, the measurements will be related to the sparse vector as:

y = Ax. (2.6)

Having M < N , the main problem with the model in (2.6) is that y does not

have a unique representation in the domain of A. In fact, assuming rank(A) =

M , set of all solutions for a given y forms a N −M dimensional manifold in the

N dimensional solution space. Most importantly, hardly any of these possible

solutions are sparse! However, it is known that s has a sparse decomposition

in the basis Ψ and the same representation vector x is also a valid solution for

compressed measurements y. Therefore, the main purpose in CS theory is to find

the most sparse vector that explains the measurements, which can be cast as the

following optimization problem:

min
x
‖x‖0 s.t. ‖y −Ax‖2 = 0. (2.7)

In most of the systems, an additive and independent, generally Gaussian,

noise is present in the sampling process. Hence, in a more realistic scenario the

compressed measurement vector can be represented as:

y = Ax+ n, (2.8)

where n stands for the additive noise term with known statistical behavior. Since

the compressed measurements cannot be stated as a sparse linear combination of

the columns of A under the noisy setting, more general optimization problem of
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finding the sparse solution can be stated as:

min
x
‖x‖0 s.t. ‖y −Ax‖2 ≤ ε. (2.9)

where ε is the expected residual for the given noise statistics.

Given the compressed measurement vector y, solution to problem in (2.9)

reveals the desired sparse representation. However, due to discontinuous char-

acteristics of the `0 norm, solution is not computationally efficient and requires

a combinatoric search over all possible sparse representations. Assume that the

signal in Fig. 2.1 is acquired through a sensing matrix Φ under an additive noise

with known statistics. If the best 6-sparse representation of the measurements is

searched for, one should check every sub-matrix consisting of 6 different columns

of A to ensure that resulting residual from the projection of y onto the column

space of the sub-matrix is below the set noise level ε. Although total number of

such sub-matrices is finite and solution can be obtained in a finite amount of time,

even in this moderate size example there are total of
(

256
6

)
such sub-matrices. As

a result, the best 6-sparse representation of the signal in Fig. 2.1 can be found

via solving total of approximately 3.7× 1011 projections, which can be stated as

least-squares problems. Considering that MATLAB running on a regular desktop

computer can solve a such least-squares problem in approximately 10−5 seconds,

total required computation time is around 40 days! If the signal had a 7-sparse

representation this computation time would jump to 4 years!

2.3 Sparse Reconstruction Algorithms

Even though sparse approximation is a well-defined problem in (2.9), the optimal

solution requires an exponentially complex exhaustive search due to discontinuous

characteristics of the sparsity measure, `0 norm. In the following sub-sections,

several algorithms are introduced, which can approximate the optimal solution.
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2.3.1 Convex Relaxation

Basic idea in the convex relaxation approach is to replace the problematic `0

norm with a more tractable sparsity measure. One straightforward approach is

to use `2 norm. However, with the use of `2 norm, (2.7) reduces to the standard

least-squares problem. Even though the solution is straightforward, it is not

sparse.

The most well-recognized convex relaxation is to replace the `0 with the `1

norm. Thus, the problem is stated as:

min
x
‖x‖1 s.t. ‖y −Ax‖2 = 0. (2.10)

Main advantage of this form is that this problem can be converted to the

following standard linear programming [37]:

min 1Tu s.t. Wu = 0, u ≥ 0, (2.11)

with W = [A, −A] and x ∈ <2M . The important thing about linear programing

is that it can be solved numerically in a polynomial time. Results reported

in the key papers [8–10] have shown that sparse representation of the signal

can be revealed with the solution of the problem in (2.10), which motivated

the compressive sensing society to concentrate on the `1 solution, hence convex

optimization techniques in general. A willing reader may refer to [35] for detailed

analysis and solution techniques of the `1 problem in (2.10). Comprehensive

introduction to convex optimization techniques can also be found in [38,39].

2.3.2 Greedy Pursuits

Unlike the convex optimization approaches, greedy techniques iteratively search

for the optimal support of the sparse signal. Then the corresponding coeffi-

cients are found from a projection of the compressed measurement to the selected

support. In the following, well-known Orthogonal Matching Pursuit(OMP) and
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Compressive Sampling Matching Pursuit(CoSaMP) are detailed. Even though

they are both greedy techniques, OMP tries to find a sparsest representation

with a residual smaller than a preset level ε, whereas CoSaMP tries to find the

best K-sparse representation of the compressed measurements for a given K.

2.3.2.1 Orthogonal Matching Pursuit (OMP)

Solution to the sparse representation problem of (2.9) requires a search over all

possible sub-matrices of the dictionary A for the global optimality. Given a com-

pressed observation vector y, the optimal brute-force solution first considers all

possible 1-sparse representations and checks that residual error is below the given

threshold ε. If all of 1-sparse representations fails to produce a sufficiently small

error, then the optimal solution searches over all possible 2-sparse representa-

tions. Proceeding with the same rationale, the optimal solution searches for all

possible K-sparse representations until the resulting error is sufficiently small.

Orthogonal Matching Pursuit (OMP), on the other hand, gives up the desire

for global optimality and makes series of locally optimal decisions. OMP starts

with a search for the best 1-sparse representation. However in the next turn,

instead of looking for all 2-sparse representations, OMP keeps the previously se-

lected representation vector and searches for the optimal second vector. In the

next turn, it keeps the previously selected 2 representation vectors and searches

for the optimal third vector. Proceeding with the same idea, OMP adds a lo-

cally optimum support vector in each iteration. Even though this strategy does

not guarantee the global optimality, OMP algorithm can produce a solution in a

couple of iterations lasting a fraction of a second. More importantly, total com-

putational complexity scales linearly with K contrary to the exponential growth

in the optimal search.

More formally, kth iteration of this type of greedy pursuit starts with an

current solution set Sk−1 and a residual to fit y⊥,k−1. The main step of OMP is
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to find the most suitable basis vector as a solution to the following problem:

j∗ = arg max
1≤j≤N

∣∣aHj y⊥,k−1

∣∣
‖aj‖2

2

. (2.12)

The problem in (2.12) is a simple search over the dictionary to find the vector

that has the highest normalized inner product with the current residual y⊥,k−1.

After the search step, let j∗ denote the column of A so that it has the highest

correlation among all. After updating the solution set as Sk =
[
Sk−1 aj∗

]
, the

following phase is to compute the new residual as a solution of the following

optimization:

min
x

∥∥∥y − Sk x∥∥∥
2
, (2.13)

which is a simple least-squares problem with the following residual:

y⊥,k = y − Sk S†k y, (2.14)

where S†k is the pseudo-inverse of Sk. If the norm of the residual y⊥,k is not

below the pre-specified threshold level ε, OMP starts the (k+ 1)th iteration with

Sk and y⊥,k and goes through the same steps. The steps of the OMP algorithm

are detailed as a pseudo-code in Table 2.1.

Table 2.1: Orthogonal Matching Pursuit(OMP) Algorithm

Inputs:
(
y, A, ε

)
Initialization: y⊥ = y, S0 = {}, e = ‖y⊥‖2, k = 1

Keep iterating until e < ε
j∗ = arg max

1≤j≤N
|aHj y⊥| / ‖aj‖2

2

Sk =
[
Sk−1 aj∗

]
α = S†k y
y⊥ = y − Sk α
e = ‖y⊥‖2

k = k + 1

Output:
(
α, Sk

)
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The most important property of OMP is that the residual has always zero

inner product with the selected basis vectors. In the (k + 1)th iteration, the

inner-product between the residual and the previously selected k vectors can be

written as:

SHk y⊥,k = SHk

(
y − Sk S†k y

)
= SHk y − SHk Sk S

†
k y

= SHk y − SHk Sk
(
SHk Sk

)−1

SHk y

= 0, (2.15)

hence aHj y⊥,k = 0 if aj is contained in Sk. Therefore as the name Orthogo-

nal Matching Pursuit suggests, the residual which is orthogonal to the selected

columns is tried to match maximally to a column of the dictionary A at each

iteration of the algorithm.

2.3.2.2 Compressive Sampling Matching Pursuit(CoSaMP)

CoSaMP [13] tries to fit the best K-sparse representation independent of the

resulting residual error. From this perspective, CoSaMP initialized with K is

similar to first K step of OMP iterations.

In the lth iteration, CoSaMP starts with a current solution set SK and a

residual y⊥,l−1. Similar to the search step of OMP, CoSaMP also computes the

normalized inner products between the residual and the each dictionary columns

as |aHj y⊥,l−1|/‖a‖2
2 for 1 ≤ j ≤ N . Unlike the OMP searching for the maximum

correlation, CoSaMP selects 2K dictionary vectors with the largest normalized

inner products. Let U 2K denote the set of such 2K column vectors of A. The

next step is to merge SK and U 2K into a new set denoted by T . Notice that

size of the merged set T is between 2K and 3K depending on the length of the

intersection of SK and U 2K . In this phase, CoSaMP finds a solution on the

merged support T with the following optimization problem:

arg min
x

∥∥∥y − T x∥∥∥
2
, (2.16)
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which has the following solution:

α = T † x, (2.17)

where α is the vector containing the coefficients, weights, of the corresponding

columns. Since α contains more than 2K coefficients, next step of the algorithm

is to prune the coefficient set by eliminating all but the largest K. Let α′ be the

set of largest K coefficients in α and T ′ be their corresponding column vectors.

Then, the residual from the current K-sparse estimation is computed as:

y⊥,l = y − T ′α′. (2.18)

The algorithm repeats this procedure until some termination criteria is met.

Table 2.2: Compressive Sampling Matching Pursuit(CoSaMP) Algorithm

Inputs:
(
y, A, K

)
Initialization: y⊥ = y, SK = {}, l = 1

Keep until convergence
U 2K = max2K |aHj y⊥| / ‖aj‖2

2

T = SK ∪U 2K

α = T † y
α′ ← α, T ′ ← T
SK = T ′

y⊥ = y − T ′ α′
l = l + 1

Output:
(
α′, SK

)
Steps of the CoSaMP algorithm is presented as a pseudo-code in Table 2.2. Unlike

the OMP where a selected vector cannot be dropped in future iterations, the

main feature of CoSaMP is that the solution support is allowed to change at each

iteration. With this property, CoSaMP is able to correct previously made errors

in the estimated support, whereas OMP cannot remove a vector from the solution

set even if it does not belong to the actual support.
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2.4 Recovery Guarantees

Even though the basis Ψ ∈ CN×N is non-singular, due to sensing matrix decreas-

ing the effective number of samples, the resulting dictionary A ∈ CM×N has a

non-empty null space. Assume that a signal y has a sparse decomposition as

y = Ax with ‖x‖0 = K. Let u be a vector from the null space as 0 = Au.

Hence, the following is also valid y = A (x + u). Since u is a dense vector with

‖u‖0 = N , the following relation holds true: N − K ≤ ‖x + u‖0 ≤ N . In or-

der to guarantee the uniqueness of the sparse representation vector x, we need

K < N −K so that, ‖x + u‖0 > K is always true and there is no other K, or

less, sparse representation. Hence, having K < N/2 guarantees the uniqueness

of the K-sparse representation.

Even though aK-sparse representation of a signal y is guaranteed to be unique

when K < N/2, this does not necessarily mean that a sparse solver can reveal

the correct sparse representation. Fortunately, CS theory provides set of recovery

guarantees for different sparse solvers, most of which depends on a measure that

is related to the coherence of A.

One of the well-known coherence measures is the Restricted Isometry Property

(RIP), which is defined as the smallest δK that satisfies the following for all x

and for all sub-matrix AK of A:

(1− δK) ‖x‖2
2 ≤ ‖AK x‖2

2 ≤ (1 + δK) ‖x‖2
2. (2.19)

If there is a such δK , then A said to satisfy the K-RIP with constant δK . Given

a sub-matrix AK of A, its corresponding δ can be computed as:

δ = max{ λmax(AH
KAK)− 1, 1− λmin(AH

KAK) }, (2.20)

where λmin and λmax denote the minimum and maximum eigenvalues of the ar-

gument, respectively. In order to find δK , pass over all possible sub-matrices and

computation of (2.20), which has an exponential complexity, is required. NP-

hardness of the computation of δK is also shown in [40]. Yet, RIP is used widely
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in the CS theory to analyze the recovery abilities of sparse solvers. In [41], OMP

is guaranteed to recover a K-sparse signal in the form of y = Ax, if A satisfies

RIP with δK+1 ≤ 1
3
√
K

and this bound is improved further in [42]. In [13] it is

shown that CoSaMP will result in a bounded recovery error of K-sparse signal

if the dictionary satisfies δ2K < c for some constant c. Some recovery guarantees

for `1 optimization is also provided in [8].

Another commonly used coherence measure is the mutual coherence of the

dictionary that is defined as:

µ(A) = max
i 6=j

|aHi aj|
‖ai‖2 ‖aj‖2

, (2.21)

which is the maximum normalized inner product between two arbitrary columns

of the dictionary A. If µ(A) = 1, then the dictionary includes two columns which

coincide with each other and if µ(A) = 0, then the dictionary is orthogonal.

In [43], OMP is shown to recover a K-sparse signal if the dictionary A satisfies

µ(A) ≤ 1
2K−1

.

The basic insight about these coherence-based guarantees is that if the

columns of the dictionary A become similar to each other, they became indis-

tinguishable under the linear combination. Since the observation y is a linear

combination of some columns of A, the corresponding columns are required to be

as incoherent as possible for a guaranteed recovery. However, the main problem

with these guarantees is that they are too pessimistic and try to cover any K-

sparse signal, including the worst case combinations. Hence, those guarantees do

not express the actual capabilities of sparse solvers. As simulated in the following

section, OMP is able to recover up to K = 6 sparse signals in the given dictio-

nary A, whereas mutual coherence based condition guarantees only recovery of

a 1-sparse signal since µ(A) = 0.53.
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2.5 Simulated Recovery Performances

In this section, performance of the recovery algorithms given in Section 2.3 are

simulated. IDCT matrix defined in (2.3) is used as the sparsifying basis. Sensing

matrix is constructed by randomly selecting M = 50 rows of the N × N iden-

tity matrix. Sensing matrix selected with this scheme corresponds to randomly

selecting M elements from the signal of interest s. The constructed sensing ma-

trix, which is used in the following simulations, is given in Fig. 2.3(a), and the

resulting dictionary A = ΦΨ is also shown in Fig. 2.3(b).
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Figure 2.3: (a) Sensing matrix Φ ∈ <M×N constructed by randomly decimating
the rows of an identity matrix, (b) combined dictionary A = ΦΨ where Ψ is the
IDCT matrix defined in (2.3).

In the simulations, a sparse vector x ∈ <N is generated randomly with sparsity

level changing from 1 to 20. The measurement noise is i.i.d. Gaussian noise with

standard deviation σ = 0.001. The resulting compressed observation vector y is

constructed as (2.8). The expected residual level ε is selected as ε = 1.2σ
√
M ,

where factor of 1.2 is used to relax the noise level. The vector y and ε is given

to solvers and the resulting solutions are compared to the actual solution. This

procedure is repeated 100 times to obtain an average recovery performance.
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Figure 2.4: Average sparse reconstruction performance of OMP, CoSaMP and `1

optimization, (a) recovery error, (b) found sparsity, (c) solution time.

Fig. 2.4 shows the recovery performances of OMP, CoSaMP and `1 optimiza-

tion at different sparsity levels. Fig. 2.4(a) shows the average error of recovery

defined as ‖x∗ − x‖2/‖x‖2, where x∗ denotes the recovered sparse solution, Fig.

2.4(b) shows the average sparsity of the recovered solutions and Fig. 2.4(c) shows

the average time of computation . All algorithms are implemented in MATLAB

running on a desktop computer.

Depending on the error levels, sparsity axes can be divided into two: the region

where the solutions are correct and the region where solutions are in significant

error. This point at which performance changes dramatically is called as threshold

sparsity level of the algorithm. When this analysis is extended to different number
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of measurements, the phase transition of the algorithms is characterized. Such

analysis for OMP can be found in Section 3.3.3.3 in Fig. 3.16 and 3.17.

OMP, being the fastest among all three techniques, has the smallest solvable

sparsity level of K = 6. Even though `1 optimization can solve signals with spar-

sity up to K = 9, this increase in performance comes with a cost of 3 orders of

magnitude more computation time. CoSaMP, on the other hand, performs better

than OMP with a very similar computation time. However, main disadvantage

of CoSaMP is its requirement to know the actual sparsity level. Having favor-

able reconstruction performance with significantly lower computation time makes

OMP a powerful sparse solver.

21



Chapter 3

Continuous Signal Spaces and

Perturbation Techniques

3.1 Discretization of Continuous Space: Off-

Grid Problem

3.1.1 Continuous Parameter Spaces

In many practical systems, a signal of interest can be represented as a linear

combination of several different signal sources. More precisely, assuming that

there are K components, such a signal is written as:

y(t) =
K∑
i=1

αTi ψ(θTi , t) + n(t), (3.1)

where ψ(θTi) and αTi denotes the signal source and the effect of the source,

respectively, for the ith component. The measurement noise with known statistical

properties is represented with the term n(t).

Although the relation in (3.1) is valid for continuous time domain, in order

to process the observations digitally, signal of interest should be sampled. For
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this purpose let t ∈ <M be the vector holding the sampling times. In general,

the vector t is constructed with equally distant points in order to get uniform

samples. However for the rest of this thesis, no such condition will be imposed on

the sampling instances and most of the time random sampling will be assumed.

When the continuous-time relation in (3.1) is sampled with the given sampling

time vector t, the resulting discrete-time relation is expressed as:

y =
K∑
i=1

αTi ψ(θTi ; t) + n, (3.2)

where y ∈ CM denotes the samples of the signal of interest, n ∈ CM denotes the

sampled noise sequence and ψ(θTi ; t) ∈ CM denotes the sampled signal source

with parameter θTi .

The main purpose in inverse problems is to identify the different components

from their linear measurements. For a given set of measurements y, assuming

a linear relation as in (3.2), the inverse problem can be written as the following

minimization problem:

arg min
αi,θi

∥∥∥∥∥y −
K∑
i=1

αiψ(θi; t)

∥∥∥∥∥
2

s.t. θi ∈ P , (3.3)

where P denotes the continuous domain of parameter of interest.

3.1.2 Use of Compressive Sensing Algorithms

In many signal processing applications, the signal of interest consists of linear

combination of smaller number of sources, compared to the size of the measure-

ments. This point rises the applicability of sparse signal processing techniques

for the solution of the inverse problem in (3.3). As discussed in Chapter 2, Com-

pressive Sensing theory provides a set of algorithms to recover a sparse signal x

from the set of measurements in the form of y = Ax+ n.
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The use of CS techniques for (3.3) is not straightforward due to the differ-

ent constructions of the inverse problem in (3.3) and the sparse reconstruction

problem in (2.9). CS techniques operate on a dictionary A and the main goal is

to find a best sparse representation, which means selecting the best sub-matrix

of A. Even though the optimal solution for such a problem is overwhelmingly

difficult, it is still a search problem in a finite-size solution set. On the other

hand, the inverse problem in (3.3) operates on a continuous parameter space,

hence more difficult to solve in general. From another point of view, the sparse

recovery in classical CS theory can be thought of as a detection problem whereas

the problem in (3.3) is an estimation problem.

In order to use sparse solvers for (3.3), construction of a dictionary is re-

quired. For this purpose, one can choose N different parameter points from the

continuous domain P creating a set of parameters as B = {θ1,θ2, . . . ,θN}. In

the discretization process there is no assumption on the griding scheme. Even

though general practice is to discretize the basis with equal spacing as in Fig.

3.1(a), arbitrary selection of parameters as in Fig. 3.1(b) is also an acceptable

practice.

(a) (b)

Figure 3.1: Discretization of the continuous parameter domain P with (a) uni-
form, (b) arbitrary griding.

Given the discrete parameter points, required dictionaryA can be constructed
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as a collection of the signal sources evaluated at the discrete parameter points.

Hence, ith column of the dictionary, denoted as ai, is found as:

ai = ψ(θi; t), (3.4)

where t denotes the vector of sampling times. Repeating (3.4) for each discrete

point, the required dictionary can be constructed as:

A =
[
a1 a2 . . . aN

]
∈ CM×N . (3.5)

With the construction of the dictionary as in (3.5), the linear continuous-

parameter relation in (3.2) can be converted to the standard CS formulation as:

y = Ax+ n, (3.6)

where x is the vector holding the weight coefficients of the signal sources, that

is ith element of x is αTi if θi = θTi . Since there are N discrete parameter

points, x is of length N , i.e. x ∈ CN , however, the model in (3.2) includes only

K components, i.e. ‖x‖0 = K. Having K < M < N , the relation in (3.6) is

identical to one in (2.8), hence any sparse recovery algorithm studied in CS theory

can be utilized to solve it.

3.1.3 The Off-Grid Problem

Even though the discretization of the parameter space provides a way of convert-

ing the continuous-domain problem into the regular CS formulation, the model in

(3.6) can be substituted for the actual relation in (3.2) under a very fundamental

assumption: the actual parameters, θTi , of the relation must coincide with one of

the selected discrete points θi. Unless this assumption of parameters being “on-

grid” holds true, model in (3.6) is a mere approximation to the main problem in

(3.2).

Since the actual parameters of the system can be located at any point in
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the continuous domain, they typically do not coincide with the selected grid

points θi. If the actual parameters are assumed to be located randomly in the

continuous space, then on-grid assumption holds true with probability zero. Since

this requirement of being “on-grid” cannot be satisfied, its well-known effects are

named as the “off-grid problem”.
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Figure 3.2: (a) A signal composed with off-grid parameters, (b) its corresponding
solution in the IDCT domain defined in (2.3) with OMP.

The root cause of the off-grid problem is that a signal with a sparse decompo-

sition in a continuous parameter domain may not have a sparse decomposition in

the discretized domain. Let us demonstrate this problem on the IDCT basis given

in (2.3) with the sensing matrix given in Fig. 2.3(a). Except for the first column,

dictionary A can be thought of as a collection of cosines with the following form:

ak =

√
2

N
cos
(
2π fk t

)
, (3.7)

where ak denotes the kth column of A, fk = (k−1)/2 and t ∈ <50 is the sampling

times in the range [0, 1]. From this perspective, the signal in Fig. 2.1 is a linear

combination of cosines at frequencies 9.5, 40, 50, 63, 94.5, 114.5 all in Hertz, all

of which are on-grid. If the component at 40Hz was at 40.2Hz, which is off the

chosen grid, the signal sensed through Φ and the resulting sparse recovery by

OMP are provided in Fig. 3.2. Even though the decimated time domain signal
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in Fig. 3.2(a) has a 6-sparse representation in the continuous frequency domain,

sparsity cannot be revealed in the provided reconstruction.

Due to the need for discretization, applications including target localization

[18], radar [19, 20], time delay and Doppler estimation, beamforming [21, 22] or

shape detection [23] are all subject to off-grid problems in the compressive sensing

framework. In the literature, the effect of this basis mismatch has been observed

and analyzed in some applications such as radar [19,24] and beamforming [25].

In problems due to parameter space discretization, a simplistic approach is

to use multi-resolution refinement and decrease the grid size. As long as there

is a set of finite number of discrete parameters, decreasing the grid size is not a

direct solution to the off-grid problem. Also it increases the coherence between

dictionary columns, violating the Restricted Isometry Property (RIP) [26] and

other coherency depended recovery guarantees.

3.2 Parametric Perturbations

In this section of the thesis, a novel solution technique to the forenamed off-grid

problem is presented. Proposed algorithm is based on the OMP and it employs

controlled perturbations on the selected parameters, hence columns, so that better

fit to the observation signal is achieved [44]. The algorithm is simulated on

delay-Doppler radar formulation and successful sparse recovery performances are

observed. This study is also presented in [45].

3.2.1 PPOMP Algorithm

The main purpose of the presented PPOMP algorithm is to find a solution to the

inverse problem in (3.3) under the compressive sensing framework. Therefore, it

requires a dictionary A constructed via discretization of the continuous param-

eter space. Main perturbation stage uses a gradient-descend based optimization

technique to find the best perturbations/updates for the selected support set.
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Sparse representation of a signal of interest in a dictionary requires identifica-

tion of parameter points at which the signal sources are present. This is equivalent

to the identification of the support set of the signal among the columns of given

dictionary A. For this purpose OMP is utilized for the estimate of the support

set. Interested reader may refer to Section 2.3.2.1 for the details of OMP.

Note that at the kth iteration of the OMP algorithm, the measured signal can

be represented in a k-sparse manner as a linear combination of the k support

vectors as:

y = y⊥ +
k∑
i=1

αi a(θi), (3.8)

where y⊥ is the orthogonal residual of y within the span of the k chosen support

vectors a(θi), i = 1, . . . , k and a(θi) is a column of dictionary A with grid

parameters θi. Hence at each iteration of OMP, the vectors in the support set,

their coefficients αi, and the orthogonal residual, y⊥, are obtained.

In general, a signal source with parameter θTi may not be located at a grid

node but is positioned within a grid area with an unknown perturbation from the

closest grid node as:

θTi = θi + δθi, (3.9)

where θi is the nearest grid node parameters, |δθi| < ∆θ/2 with ∆θ defining

the grid dimensions. If there were no noise, the measurement vector y would be

in the span of a(θTi), but not in the span of a(θi). Our goal is to perturb the

selected grid parameters, hence the corresponding column vectors in A, so that a

better fit to the measurements can be accomplished. This goal can be formulated

as the following optimization problem:

arg min
αi, δθi

∥∥∥∥y − k∑
i=1

αi a(θi + δθi)

∥∥∥∥
2

s.t. |δθi| < ∆θ/2. (3.10)

Solution of the problem in (3.10) provides the perturbation parameters δθi

and the representation coefficients αi for the selected set of k column vectors.

Assume that there exist a solver for the problem, namely S(·), which takes
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the measurement vector y and the initial grid points, then returns the solution

of the problem in (3.10). In an abstract sense, this solver can be written as:(
α , [δθ1 . . . δθk]

)
= S

(
y , [θ1 . . . θk]

)
. (3.11)

Note that solver S(·) is not dependent on the OMP technique itself. Therefore, it

is possible to integrate S(·) into any algorithm that provides a suitable estimation

of the grid points. In this study OMP is preferred due to its simplicity. When such

a solver is utilized within the OMP iterations, an “ideal” parameter perturbed

OMP (I-PPOMP) procedure, which is provided in Table 3.1, can be implemented.

Table 3.1: Ideal Parameter Perturbed-OMP (I-PPOMP) Algorithm

Inputs:
(
y, A, ε

)
Initialization: y⊥,0 = y, T 0 = {}, e = ‖y⊥,0‖2, k = 1
Keep iterating until e < ε

j∗ = arg max
1≤j≤N

|a(θj)
H y⊥,k−1| / ‖a(θj)‖2

T k = T k−1

⋃
{θj∗}(

α , [δθ1 . . . δθk]
)

= S
(
y , T k

)
y⊥,k = y −

k∑
i=1

αi a(θi + δθi)

e = ‖y⊥,k‖2

k = k + 1

Output:
(
α , [δθ1 . . . δθk] , T k

)
Since the optimization problem defined in (3.10) is non-convex, it may not

be possible to obtain an ideal solver as specified in (3.11). Hence we propose

to use a gradient descent optimization of the cost function in (3.10). Therefore

starting from the grid nodes, selected parameters will be gradually perturbed

until a convergence criteria is met. To simplify the iterations further αi’s and

δθi’s will be sequentially updated in the following way.
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First initialize θi,1 = θi, i = 1, . . . , k, to grid centers and obtain an initial

representation coefficient vector α1 as:

α1 = arg min
α

∥∥∥∥y − k∑
i=1

αi a(θi,1)

∥∥∥∥
2

. (3.12)

Starting from l = 1, until convergence, perform updates:

θi,l+1 = θi,l + δθi,l,

where l represents the perturbation index, i represents the target index and

[
δθ1,l . . . δθk,l

]
= arg min

δθi:|δθi|≤∆θ/2

∥∥∥∥y − k∑
i=1

αi,l a(θi,l + δθi)

∥∥∥∥
2

, (3.13a)

αl = arg min
α

∥∥∥∥y − k∑
i=1

αi a(θi,l)

∥∥∥∥
2

. (3.13b)

The problem defined in (3.13b) is a standard least squares formulation, how-

ever obtaining solution to the constrained nonlinear optimization problem in

(3.13a) is not practical for many applications. Linearization of the cost function

in (3.13a) around θi,l significantly reduces the complexity of the optimization. For

this purpose, a(θi,l + δθi) can be approximated by using the first order Taylor

series as:

a(θi,l + δθi) ≈ a(θi,l) +∇θ a(θi,l) δθi. (3.14)

where ∇θ a(θi,l) ∈ CM×p is the Jacobian of a(θi,l) with respect to parameter

vector θ and p is the number of parameters, i.e. θ ∈ <p×1.

By using (3.14), and ignoring the constraints on the perturbations, problem

in (3.13a) can be re-written as:

[
δθ1,l . . . δθk,l

]
= arg min

u

∥∥∥∥rl −Bl u

∥∥∥∥
2

, (3.15)

where rl = y −
k∑
i=1

αi,l a(θi,l) is the orthogonal residual from the least squares
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in (3.13b), Bl ∈ CM×pk is the matrix holding the weighted Jacobians at the

linearization point and is defined as:

Bl =

[
α1,l ∇θ a(θ1,l) D, α2,l ∇θ a(θ2,l) D, . . . αk,l ∇θ a(θk,l) D

]
, (3.16)

and u = [δθ1
T , δθ2

T , . . . δθk
T ]T ∈ Rpk×1 is the dummy vector variable containing

updates in the lth iteration on the corresponding parameters. Each Jacobian inBl

is scaled with a diagonal matrixD, with corresponding grid size of each parameter

on the diagonal, so that corresponding updates become unitless. Notice that Bl

is different in each iteration since the linearization points θi,l are updated. A new

linearization is made at each updated parameter point.

Due to errors in linearization, direct solution of (3.15) will not produce the

desired parameter perturbations. Instead we adapt a gradient descent type al-

gorithm to solve (3.15) and take a small step in the direction that decreases

the norm the most, i.e., direction of negative gradient. Then the new pa-

rameter point will be used in the next iteration and so on until the conver-

gence. Let J(u) = ‖rl − Bl u‖2
2 and negative of the gradient of J will be

−∇uJ(u) = 2BH
l (rl − Blu). Since we have intention of taking a small step

from the linearization point, we need the gradient of J(u) at u = 0. Therefore,

−∇uJ(u)|u=0 = 2BH
l rl. Remember that both Bl and rl are complex valued

whereas perturbations need to be real. When solution is forced to be real, step

direction is found to be as Re{−∇uJ(u)|u=0} = Re{2BH
l rl}. With this impor-

tant modification, alternating gradient descend solution of the main problem in

(3.10) can be written as;

αl =
[
a(θ1,l) a(θ2,l) . . . a(θk,l)

]†
y, (3.17a)

θi,l+1 = θi,l +D Λ(µi,l) Re{BH
l rl}, (3.17b)

where µi,l is the step size and Λ(·) is a diagonal matrix with the specified vector

on the diagonals. To keep the updated points within the grid, the algorithm

will also check that the total perturbations will not exceed the grid size. (3.17)

defines the main update iterations of the proposed gradient based perturbation

solver (GS) - Ŝ(·) for (3.10) which is summarized in Table 3.2. Notice that,
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when S(·) in Table 3.1 is replaced with the Ŝ(·), proposed PPOMP algorithm is

obtained.

For the gradient based parameter perturbation solver in Table 3.2, one could

make several selections for the stopping criteria and the step size µ. It is possible

to monitor the residual, rl, during the iterations, and terminate the solver in the

lth iteration if the residual norm ‖rl‖2, or amount of decrease ‖rl‖2 − ‖rl−1‖2,

or rate of decrease ‖rl‖2/‖rl−1‖2 is below a certain threshold. It is also possible

to observe the parameters θi,l and terminate the iterations when |θi,l − θi,l−1| is

below a certain threshold. Also iterations can be terminated, when norm of the

gradient ‖BH
l rl‖2 is smaller than a given threshold value or when a maximum

iteration count is reached. Several metrics can also be used in conjunction with

the stopping criteria. In the presented results, the iterations were terminated

when the rate of decrease of the residual is less than a certain threshold.

Table 3.2: Proposed Solver Ŝ(·)

Inputs: ({θ1,θ2, . . . ,θk},y, µ)

Initialize: l = 0, θi,0 = θi for 1 ≤ i ≤ k

Until stopping condition met,

Al =
[
a(θ1,l) a(θ2,l) . . . a(θk,l)

]
,

αl = A†l y,
rl = y −Alαl,

Bl =

[
α1,l ∇θ a(θ1,l) D, . . . αk,l ∇θ a(θk,l) D

]
,[

g1,l, . . . , gk,l
]

= Re{rHl Bl},

For all i, 1 ≤ i ≤ k,
θi,l+1 = θi,l +D Λ(µi,l) g

T
i,l,

Check if θi,l+1 is within grid
δθi = θi,l+1 − θi,0,

l = l + 1,

Output: (αl,{δθ1, δθ2, . . . , δθk})
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For the selection of step size µ there are several possibilities. It is possible

to use a fixed step size µ, that is µi,l = µ. If µ is small enough, after sufficient

number of iterations convergence can be achieved. A more efficient approach is

to use step sizes with constant rate of decrease, that is µi,l = γ µi,l−1 where γ is

fixed and 0 < γ < 1. If the gradient of a function is Lipschitz continuous with a

constant L, gradient descent steps converges to a local optima by using constant

step size that satisfies µ < 2/L [38, 39]. In addition, line search techniques can

also be used to select locally optimal step sizes that guarantees convergence with

at least linear convergence rates [39].

The additional computational complexity of PPOMP algorithm compared to

OMP is the calculation of the gradient directions, and this requires a matrix

vector multiplication which can be performed significantly faster than solving

constrained nonlinear problem in (3.13a).

3.2.2 Compressive Delay-Doppler Radar

Coherent radar systems transmit a sequence of pulses with known phases and

processes the received echoes to perform clutter suppression and detection at

each angle of interest. Excellent references on the operation of radar receivers are

available in the literature [46, 47]. In this application, a classical pulse doppler

radar with a co-located receiver and a transmitter is considered. Although it is

not investigated in here, MIMO radar systems can also be considered within CS

framework [22,48]. Let radar transmits s(t), a coherent train of Np pulses:

s(t) =

Np−1∑
i=0

p
(
t− i TPRI

)
ej2πfct, (3.18)

where, p(t) is the individual pulse waveform, TPRI is the uniform pulse repetition

interval and fc is the radar carrier frequency. Assuming K dominant targets with

delays of τTm and Doppler shifts of νTm , 1 ≤ m ≤ K, the received signal following

33



the baseband down-conversion can be expressed as:

y(t) =
K∑
m=1

αm s(t− τTm) ej2πνTm t + n(t), (3.19)

where αm is the complex reflectivity of the individual targets and n(t) is the

measurement noise. The above relation between the received signal and target

parameters are expressed in terms of the measurable quantities of delay and

Doppler. These parameters are related to the range and radial velocity of the

mth target as:

τTm =
2Rm

c
, νTm =

2fc
c
vm, (3.20)

whereRm is the range and vm is the radial velocity of themth target. At this point,

the common practice is to employ matched filtering to individual uniformly spaced

samples of pulse returns and use FFT across the delay aligned matched filter

outputs. This way the returns are compressed in time and frequency sequentially

[47].

In compressive sensing formulation, a sampled version of the measurement

relation given in (3.19) is adapted to a linear matrix-vector relationship in delay-

Doppler domain. For this purpose 2 dimensional delay-Doppler domain which lies

in the product space [τo, τf ] × [νo, νf ] must be discretized where initial and final

values of τ0 and τf are determined by the range and ν0 and νf are determined

by the velocity of the potential targets. Discretization generates a finite set of

N target points B = {θ1,θ2, . . . ,θN}, where each θj representing a grid node of

(τj, νj), hence length of the parameter vector p = 2. For each grid node θj the

data model can be calculated from (3.19) as:

ψj = s(t− τj) ◦ ej2πνjt. (3.21)

where t ∈ <Nt×1 is the vector holding the time samples and operator “◦” corre-

sponds to Hadamard product. Nt is the number of time samples.

Repeating (3.21) at each θj = (τj, νj) generates the dictionary Ψ where the

jth column of Ψ is ψj. The size of the dictionary Ψ becomes Nt×N . If the true
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target parameters (τTm , νTm) falls exactly on the grid points (τj, νj) then a linear

system of equations can be formed as:

ys = Ψx+ n, (3.22)

where ys is the sampled measurement vector and x is a reflectivity vector defining

the delay-Doppler space, i.e., if there is a target at θj, the value of the jth element

of x should be αj, otherwise zero. If there are K targets in the scene then the

vector x should be a K sparse vector, that is ‖x‖0 = K.

In the CS formulation, a very small fraction of the samples obtained at the

Nyquist rate carry enough information to represent a sparse signal. Thus a sub-

Nyquist sampling can be done and a random subset of M measurements at ran-

dom times ts can be measured in CS. In general these new measurements can be

represented as y = Φys where Φ is an M × Nt, M < Nt measurement matrix

constructed by randomly selecting M rows of an Nt × Nt identity matrix. The

general linear relation is then:

y = ΦΨx+ n = Ax+ n. (3.23)

When the sub-sampling is integrated into the data model, basis atom corre-

sponding to parameter θj = (τj, νj) can be written in a compact form as:

a(θj) = s(t− τj) ◦ ej2πνjt, (3.24)

where t ∈ <M×1 is the vector holding the random time samples. Hence, the

required gradient computations and the Jacobian simplify further as:

∂ a(θ)

∂ τ

∣∣∣
θ=θj

= ej2πνjt ◦ d

dτ
s(t− τ)

∣∣∣
τ=τj

= −ej2πνjt ◦ d s(t)
d t

∣∣∣
t=t−τj

∂ a(θ)

∂ ν

∣∣∣
θ=θj

= j2πt ◦ a(θj) (3.25)

∇θ a(θj) =

[
∂ a(θ)

∂ τ

∣∣∣
θ=θj

∂ a(θ)

∂ ν

∣∣∣
θ=θj

]
. (3.26)
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Note that for pre-computed and stored ds(t)/dt values, calculation of these par-

tial derivatives require only component-wise multiplication of vectors that has

M multiplications each. Hence Jacobian can be computed very efficiently. For

such construction of the Jacobian, the required diagonal normalization matrix D

should be selected as:

D =

(
∆τ 0

0 ∆ν

)
, (3.27)

where ∆τ and ∆ν are the Rayleigh resolution spacing in delay and Doppler,

respectively.

As shown in Appendix A.1, for a delay-Doppler radar with a linear chirp

signal, normalized form of the non-linear objective function in (3.13a) is Lipschitz

continuous with L = 10 π2, therefore gradient descent stage of the proposed

algorithm is guaranteed to converge to a local minima. In the presented results,

step size is selected as µi,l = zγi,l, where z is a pre-selected value of z = 0.01. For

the ith point, γi,l is the ratio of the norm of the gradient in the lth iteration to the

maximum observed norm of the gradient through the perturbation iterations. As

a result, γi,l ≤ 1 and decreases as the norm of the gradient decreases. With this

selection, smaller steps are taken as the gradient decreases when approaching a

local minima. Notice that µi,l ≤ 0.01 < 2/L ≈ 0.02, thus our selection of the step

size is guaranteed to converge to a local minima.

3.2.2.1 Simulations

In the simulations, a classical single receiver-single transmitter pulsed-Doppler

radar transmitting a linear chirp signal p(t) with bandwidth of B = 1.5MHz

and pulse width of Tp = 20µs is considered. In the coherent processing, a pulse

train of Np = 8 pulses are used with TPRI = 50µs. The delay and Doppler space

is chosen as the maximum unambiguous ranges of [Tp, TPRI − Tp] in delay and

[−1/(2TPRI), 1/(2TPRI)] in Doppler. To create the forward linear model the

space is discretized to grids with Rayleigh resolution spacing in both parameter

axis which is ∆ν = 1/(NpTPRI) in Doppler and ∆τ = 1/(2B) in delay. For the

simulated case this discretization creates a total of N = 279 grid nodes. Sparse
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target scene is modeled as K = 9 point reflectors that are generated with delay

and Doppler parameters randomly selected from the defined continuous delay-

Doppler space where none of them exactly coincides with the chosen grid nodes.

The complex reflectivity of the parameters are selected randomly with magnitudes

selected from a normal distribution of N(5, 1) and phases selected uniformly from

[0, 2π]. For M = 2N/3 = 186 randomly spaced time samples in [0, NpTPRI ], the

received signal is computed using (3.19). If the samples are taken at the Nyquist

rate, total number of samples is (NpTPRI)(2B) = 1200. Therefore M corresponds

to only 15% of the Nyquist rate samples. Measurement noise corresponding to

an SNR of 27.3dB is added to the computed time samples. Here SNR is defined

as 20 log10(‖y0‖2/‖σn‖2) where σn is the noise component in the measurements.

(a) (b)

(c)

Figure 3.3: (a) True delay-Doppler space reflectivity with K = 9 off the grid
targets. Reconstruction results with (b) PPOMP, (c) OMP.
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The actual target reflectivity and its reconstruction by the proposed PPOMP

technique are shown in Figure 3.3(a) and (b), respectively. It can be seen that

even for off-grid targets, PPOMP could provide accurate reconstruction of the

sparse target scene. Note that PPOMP result is obtained in the absence of prior

information about the target sparsity level. OMP technique using the same mea-

surements and the same termination criteria with PPOMP generated the result

shown in Fig. 3.3(c). Due to presence of off grid targets, OMP generates large

number of significant peaks resulting in excessively many false target detections

even at high level of detection threshold.

Figure 3.4: Actual and reconstructed target positions in the delay-Doppler do-
main. Circles (‘o’) correspond to the actual target parameters where plus signs
(‘+’) correspond to the reconstructed target parameters by the proposed PPOMP
technique.

Figure 3.4 shows the same simulation result as a 2D image with underlying

grids and their centers. It can be seen that PPOMP could find all the target

parameters very close to their actual values. Figure 3.5(a) shows the gradient

based steps taken for one of the targets starting from the grid center. It can

be seen that with decreasing step sizes the algorithm converges to the actual

target parameters. Similarly, 3.5(b) shows gradient steps taken for two closely

spaced targets. Note that the separation of these two targets is closer than a grid

size corresponding to the classical Rayleigh resolution limit both in delay and

Doppler axis. While a matched filter won’t be able to resolve these two targets,

the proposed PPOMP technique could detect and identify their actual parameters
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accurately. This shows the high resolution capability of the proposed PPOMP

technique, which is an attribute of other sparse signal reconstruction techniques

as well [49, 50]. Here this phenomenon is also observed for off-grid targets.

(a) (b)

Figure 3.5: Gradient based steps taken within the PPOMP algorithm at (a) one
of the target grids , with (b) two targets grids where the two target parameters
are closer than a grid size in both τ and ν. Grid node corresponds to a discritized
point as in (3.21) and Target Point corresponds to the actual off-grid target point.

3.2.2.2 How to Measure the Error?

One of the important problems of standard CS based reconstruction techniques

is that in the presence of off-grid targets, they tend to generate non-sparse recon-

structions. In such a case, the reconstruction error should be carefully defined.

One approach would be to match the closest points in the correct scene and the

reconstructed one, then compute the parameter error between them. However,

when sparsity levels do not match, this error criterion is not appropriate. Hence

it is a necessity to find a suitable metric in order to compare the parameter es-

timation performance of the sparse reconstruction techniques. Here, we propose

to use Kullback-Leibler Divergence (KLD) between the actual and reconstructed
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target scenes, which is defined as follows:

D(p||q) ,
∫ ∞
−∞

p(x) ln
(p(x)

q(x)

)
dx, (3.28)

where p(x) and q(x) are probability density functions of the corresponding scenes.

Even though a given target scene has no probabilistic behavior, we can consider it

as a 2-Dimensional Gaussian Mixture Model(GMM), where each mixture element

has the following covariance matrix:

C =

(
∆τ

2 0

0 ∆ν
2

)
, (3.29)

where ∆τ and ∆ν are the resolutions of delay-Doppler grid. Hence, if a scene

has K targets with parameters τTi and νTi ; reflection coefficients with αi for

i = 1, . . . , K, then we define its corresponding GMM as:

p(x) =
K∑
i=1

α′i

2π |C| 12
exp

(
− 1

2
(x− µi)T C−1 (x− µi)

)
, (3.30)

where α′i are the normalized coefficients such that α′i = |αi|/
∑

j |αj| and µi are

the corresponding delay-Doppler parameters such that µi = [τTi νTi ]
T . Using the

definition as in (3.30), p(x) becomes a valid pdf, hence KLD defined in (3.28)

can be used.

For a single Gaussian, a closed form of the KLD is available in terms of defining

parameters. However, for GMM, there is no closed form solution of the integral

in (3.28). An efficient approximation can be obtained by using Monte Carlo

techniques since KLD defined in (3.28) can also be considered as an integral to

compute the expectation of ln
(
p(x)
q(x)

)
under the distribution of p(x). Therefore,

it can be written as:

D(p||q) ,
∫ ∞
−∞

p(x) ln
(p(x)

q(x)

)
dx = Ep(x)

[
ln
(p(x)

q(x)

)]
. (3.31)

Sample mean can be used to approximate the actual value of the expectation
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relying on the law of large numbers as:

D(p||q) ' 1

Z

Z∑
j=1

ln
(p(xj)
q(xj)

)
, (3.32)

where each xj is drawn independently and identically from p(x) as defined in

(3.30). In the following simulations, each KLD is approximated by using Z = 106

samples.

3.2.2.3 Average Performance

First, we would like to define an oracle estimator that would be the lower bound

for the reconstruction performance of the tested algorithms. We assume that

oracle estimator exactly knows the off-grid target parameters and hence the oracle

estimation of the coefficients is given as a Least-Squares(LS) solution as:

x̂ =
[
a(τT1 , νT1) a(τT2 , νT2) . . . a(τTK , νTK )

]†
y. (3.33)

We also define a “grid-oracle” solution, which is the LS solution not on the actual

parameter points, but on the grid points closest to the actual off-grid ones. This

provides the lower bound for the unperturbed techniques.

To illustrate the performance of the proposed GS algorithm defined in Table

3.2, reconstructions are compared with the oracle solution , grid-oracle solution

and AA-P-BPDN algorithm proposed in [32] while actual sparsity is changing

from 1 to 10 at a fixed SNR of 27.3dB and measurement number of M = 186.

In this simulation all techniques are given the grid points closest to the actual

ones, basically to measure how well the proposed perturbation technique and

alternatives can estimate the actual parameters given the correct grid points

compared to oracle performances. For a fair comparison, AA-P-BPDN is modified

and `1 reconstruction in the iterations is replaced with the LS solution on the

given grid location. Iterations in AA-P-BPDN is terminated when normalized

norm of the difference between the solutions in two consecutive iterations are

smaller than 10−2. It is expected that both algorithms will be better than the
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grid-oracle due to their perturbation mechanism, yet oracle solution will still be

the lower bound.

For the error metric, KLD as defined in (3.32) is used. Since KLD is not

symmetric, we consider the difference between two radar scenes, namely p and

q, as d(p, q) = D(p||q) + D(q||p). For the average reconstruction performance,

simulations were repeated 300 times at each sparsity level with independent delay-

Doppler domain target scenes. The average of base-10 logarithm of the d(p, q)

distances is provided in Figure 3.6(a). It can be observed that as the sparsity

level increases, reconstruction performance decreases. However, performance of

the proposed gradient solver follows the oracle performance closely with similar

performance gap for sparsity ranging from 3 to 10. AA-P-BPDN, on the other

hand, has a better performance than the grid-oracle solution but significantly

inferior than the proposed gradient solver and the oracle solution. This is partly

because AA-P-BPDN linearizes the basis functions only on the grid points and

the accuracy of its approximation decreases for larger perturbations. However,

GS updates its approximation at each iteration with a gradient descent update

which converges to a local minima.

(a) (b)

Figure 3.6: Mean of the KLD metric for tested techniques in comparison with
the oracle result at different (a) sparsity levels, (b) SNR levels.

To investigate the effect of noise level, different SNR levels in the range of
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−15dB to 50dB are tested for a fixed sparsity level of K = 5 and number of

samples M = 186. Figure 3.6(b) shows the average KLD in the logarithmic scale

for the tested algorithms. It can be observed that oracle KLD decreases linearly

with increasing SNR. Proposed GS closely follows oracle performance with a

small performance gap until an SNR up to 35dB and levels of after that due to

termination of the iterations. Although AA-P-BPDN has a better performance

than grid oracle, it performs worse than proposed GS for all SNR levels. Results

presented in Figure 3.6 show that if the closest grid locations are given to the

proposed perturbation procedure, a close performance to the oracle solution can

be obtained. Now we would like to test the total PPOMP algorithm when the

perturbation is done on the grid locations selected by OMP.

In the following simulations, performance of the proposed PPOMP algorithm

is compared to AA-P-BPDN, standard OMP, `1 reconstruction and the oracle

solution for varying sparsity, measurement number and SNR levels. At each test

case 50 independent random trails are performed. Noise fit level for all suitable

techniques is set to be ε = 1.3 ‖σn‖2/‖y‖2.

Figure 3.7: Mean of the KLD metric for tested techniques in comparison with
the oracle result at varying sparsity levels.

Figure 3.7 shows the mean of logarithm base-10 of KLD metric for varying

sparsity levels. PPOMP is closer to the oracle performance, whereas other tech-

niques are significantly inferior compared to the proposed PPOMP technique.

When compared to the small gap between the gradient solver and the oracle

performance in Figure 3.6, gap between PPOMP and oracle solution in Figure
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Figure 3.8: Mean of the KLD metric for tested techniques in comparison with
the oracle result at varying number of measurements.

3.7 is larger. This is because OMP iterations within the PPOMP technique are

not always able to provide correct grid points. This performance gap is more

apparent in the less sparse region since OMP iterations are more prone to fail

in that range. The same case is also valid for the AA-P-BPDN; AA-P-BPDN is

inferior to its oracle counter-part. It is important to notice that since PPOMP

and AA-P-BPDN have perturbation mechanism, both are superior to the classical

unperturbed techniques.

Figure 3.8 shows a similar comparison for a range of number of measurements.

It can be seen that after a minimum required number of measurements which

seems to be around 100 for this case, performance of PPOMP do not increase

with the increase in number of measurements. Even if there is performance gap

between the PPOMP and the oracle solution, PPOMP is significantly superior

to the other compared techniques.

Figure 3.9 shows the mean of logarithm base-10 of KLD for a range of SNR

levels. While PPOMP performs closer to oracle for high SNR, its performance

degrades and becomes similar to OMP or `1 for lower SNR regime. Even though

the proposed GS is able to follow the oracle performance for varying SNR as in

Figure 3.6(b), PPOMP performs worse in low SNR regime since OMP is not able

to provide the correct grid points to the gradient solver in that regime. As a

result, we observe a degraded performance in the overall PPOMP algorithm. At
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Figure 3.9: Mean of the KLD metric for tested techniques in comparison with
the oracle result at varying SNR levels.

lower SNR, impressions due to off-grid error are washed out by noise, hence results

of all the investigated techniques are at about the same level of performance. For

the investigated application whose results are shown in Figure 3.9, the benefit of

using the proposed technique becomes noticeable beyond SNR of 10dB, which is

commonly encountered in practice. Also notice that in the analysis, AA-P-BPDN

performs better than both OMP and `1 minimization due to its perturbation

scheme. However, the performance gap between AA-P-BPDN and PPOMP is

significant for high SNR.

In addition to the higher performance of PPOMP, it is also less computation-

ally complex compared to AA-P-BPDN. Since in each iteration of AA-P-BPDN,

one `1 optimization and one constraint least-squares problems are are solved, the

computational complexity is significantly higher than the proposed PPOMP tech-

nique. The reported simulations performed on a workstation with Intel E5450

processor using CVX toolbox [39]. While AA-P-BPDN takes approximately 360

seconds in average for a single reconstruction, PPOMP converges in approxi-

mately 37 seconds in average for the same test problem of K = 5, M = 186,

SNR = 27.3dB.
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3.3 General Perturbations

Section 3.1 discusses sparse representation in a continuous parameter spaces and

the off-grid problem introduced in the process of discretization of the continuous

space. A novel solution to this type of problem is also presented in Secion 3.2.

It is important to notice that the off-grid problem is a type of the more general

basis mismatch problem. In addition to these structured perturbations, random

time jitter in A/D conversion, modeling errors in construction of the dictionary

A create perturbations on the dictionary columns. Hence, in general, the signal y

will be sparse in an unknown basis Â = A+P where A is the adopted dictionary

and P is the unknown perturbation matrix.

In this section, a novel Perturbed Orthogonal Matching Pursuit (POMP) al-

gorithm, that recovers unstructured perturbations, is presented. In the proposed

POMP algorithm, controlled perturbation mechanism is applied on the selected

columns. The selected column vectors are perturbed in directions that decrease

the orthogonal residual at each iteration. Proven limits on perturbations are

obtained. The proposed method is fast, simple to implement and successful in

recovering sparse signals under random basis perturbations. A preliminary form

of this approach has been presented in [51] and full version is published in [52].

3.3.1 Perturbation by Rotation

WhenA is not known precisely, y may not be sparse in the assumedA. However,

sparsity of the signal can be revealed under a certain perturbation, δA, on the

given A. In this case, the `0 problem can be recast as,

min ‖x‖0 s.t. min
δA∈∆

∥∥y − (A+ δA)x
∥∥

2
< ε, (3.34)

where ∆ is some bounded perturbation space. This problem can be viewed as

a generalized version of the problem given in [31], in which δA is considered as

a Taylor series or polar approximation of A and ∆ is the sufficient limits, also

relaxing `0 with `1. The solution to this general `0 problem is also combinatoric
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in nature, and infeasible in practice.

To reduce the complexity of the `0 problem of (3.34), sub-optimal greedy

techniques can be developed as well. In these greedy approaches, the support set

of the reconstruction is iteratively increased until the constraints are satisfied.

Assuming that at iteration k, the support set contains k columns of A, which we

will call as Sk = {s1, s2, . . . , sk} for simplicity. At the (k + 1)th iteration, new

vector sk+1 is obtained from the solution of the following optimization problem:

sk+1 = arg max
u∈S′k

{
max

δSk, δu

∥∥∥P (
[Sk u]+[δSk δu]

) y∥∥∥
2
s.t. [δSk δu] ∈ ∆

}
, (3.35)

where matrix P is the projection operator to the column space of perturbed

[s1, . . . , sk, u] and S′k = A \ Sk is the set of all basis vectors that are not

contained in Sk.

For each u ∈ S′k, this perturbation problem can be solved by using the tech-

nique given in [53]. However, due to its associated gradient descent based iter-

ations, the complexity of solution is still a practical limitation for large N . In

this work, we propose a simpler non-iterative perturbation for each si ∈ Sk, to

maximize the projection under bounded perturbations. At any iteration k, the

measurement y can be decomposed as:

y = y⊥ + y//, (3.36)

where y// is the projection of y onto the span of vectors in Sk and y⊥ is the

orthogonal residual. Since vectors in Sk are linearly independent, this projection

can be uniquely expressed as:

y// =
k∑
i=1

αi si, (3.37)

where αi is the weight of the corresponding ith column vector. In the proposed

approach, as shown in Fig. 3.10, the si’s will be perturbed by rotating them
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towards to ŷ⊥ by an angle φi, where ŷ⊥ = y⊥/‖y⊥‖2 is the normalized residual:

si,p(φi) = si cos(φi) + ŷ⊥ sgn(αi) sin(φi). (3.38)

φiφiφiφiφi

si

si,p

y//

y⊥

y⊥,p

y

y//,p

Figure 3.10: One dimensional example for perturbed and unperturbed column
vectors. As the basis vector rotates, residual decreases.

Since both si and ŷ⊥ have unit norms and they are orthogonal to each other,

si,p, which is the perturbed version of si, has also unit norm. If the angle of

rotation, or equivalently, the allowed amount of perturbation on si is large enough,

then si,p can be aligned with y and there will be no residual left in the perturbed

basis. If the si’s are rotated more than adequate, si,p’s can overlap with each

other. When more than one vector span the overlapping region, uniqueness of

the projection is lost. In order to avoid such overlaps, rotation of si should be

limited to the half of the minimum angle between si and other sj for j 6= i. More

precisely, the maximum perturbation angle, φmax, for a vector ai should satisfy:

cos(2φmax) ≤ µ(A), (3.39)

where µ(A) is the mutual coherence of A defined in (2.21) and φmax =

cos−1
(
µ(A)

)
/2. This case is illustrated in Fig. 3.11, where the maximum al-

lowed perturbation of a vector is such that the cones around the columns of A do

not overlap with each other. Perturbations beyond this limit generate switch-over

between the chosen set of vectors and cause non-unique projection. Therefore, at

each step of the proposed approach, only perturbations satisfying this limit will

be considered.
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φj,max

φi,max

ai

aj

Figure 3.11: Each unit column of A has a maximum perturbation angle so that
the perturbed vectors do not overlap with each other.

The approach of perturbations embedded in the iterations of Orthogonal

Matching Pursuit(OMP) provides a practical technique for sparse reconstruc-

tion when basis mismatch is present. In the following discussion, we will provide

a detailed theoretical investigation of this approach that will be referred to as

Perturbed-OMP, or POMP in short.

3.3.2 Theoretical Investigation and POMP Algorithm

One immediate question is the optimality of the proposed perturbation scheme,

which is answered by the following theorem:

Theorem 1. Given any perturbation angle satisfying, 0 ≤ φi ≤ π
2
, as long

as
k∑
i=1

|αi| tan(φi) ≤ ‖y⊥‖2 is satisfied, optimal perturbation direction for si is

ŷ⊥ sgn(αi).

Proof. Perturbations according to arbitrary directions ui with ‖ui‖2 = 1 can be

written as:

si,p(φi) = si cos(φi) + ui sin(φi). (3.40)
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therefore, si can be written as:

si = si,p(φi) sec(φi)− ui tan(φi). (3.41)

Replacing this decomposition of si in terms of si,p and y⊥ in Eq. 3.37, measure-

ments can be written as:

y = y⊥ +
k∑
i=1

αi

(
si,p(φi) sec(φi)− ui tan(φi)

)
, (3.42)

which can be regrouped to obtain:

y =
k∑
i=1

αi si,p(φi) sec(φi) + y⊥ −
k∑
i=1

ui αi tan(φi). (3.43)

First part of (3.43) is in the span of the perturbed basis. In order to achieve

the minimum residual, norm of the remaining terms should be minimized. Hence

optimal perturbation directions can be found as the solution of the following

problem:

min
ui

∥∥∥∥∥y⊥ −
k∑
i=1

ui αi tan(φi)

∥∥∥∥∥
2

2

s.t. ‖ui‖2 = 1, (3.44)

which has a unique global minimum at ui =
y⊥
‖y⊥‖2

sgn(αi tan(φi)) if

k∑
i=1

|αi| tan(φi) ≤ ‖y⊥‖2 is satisfied. Since tan(φi) is positive for φi of interest,

optimal rotation directions can be written as:

ui =
y⊥
‖y⊥‖2

sgn(αi). (3.45)

With the optimal selection of the perturbation directions, following theorem

guarantees the decrease in the residual after the perturbation stage.
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Theorem 2. For the largest perturbation angle satisfying φi < φmax <
π
2

and
k∑
i=1

|αi| tan(φi) ≤ ‖y⊥‖2, the perturbed support vectors si,p defined in Eq. 3.38,

has an orthogonal residual y⊥,p whose `2 norm is upper bounded as: ‖y⊥,p‖2 ≤

‖y⊥‖2

(
1− 1∥∥y⊥∥∥2

k∑
i=1

|αi| tan(φi)

)
.

Proof. From (3.38), similar to (3.41) and (3.42), observation vector can be de-

composed as:

y = y⊥

(
1− 1∥∥y⊥∥∥2

k∑
i=1

|αi| tan(φi)

)
+

k∑
i=1

αi si,p(φi) sec(φi). (3.46)

In this decomposition of y, the second term is in the span of the perturbed vectors

si,p. Therefore, the orthogonal decomposition of y in the perturbed basis is:

y = y⊥,p + y//,p, (3.47)

where y//,p is the projection of y onto the span of the perturbed basis vectors,

and y⊥,p is the corresponding residual. Thus,

y⊥,p = P [si,p,...,sk,p] y⊥

(
1− 1∥∥y⊥∥∥2

k∑
i=1

|αi| tan(φi)

)
. (3.48)

Since, the `2 norm of the projection operation is less than one, we have:

‖y⊥,p‖2 ≤
∥∥∥∥y⊥(1− 1∥∥y⊥∥∥2

k∑
i=1

|αi| tan(φi)

)∥∥∥∥
2

= ‖y⊥‖2

∣∣∣∣1− 1∥∥y⊥∥∥2

k∑
i=1

|αi| tan(φi)

∣∣∣∣. (3.49)

From the hypothesis,
k∑
i=1

|αi| tan(φi) ≤ ‖y⊥‖2, thus we obtain the desired upper

bound:

‖y⊥,p‖2 ≤ ‖y⊥‖2

(
1− 1∥∥y⊥∥∥2

k∑
i=1

|αi| tan(φi)

)
, q.e.d. (3.50)
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The proof of Theorem 2 also reveals the following fact:

Corollary 1. The upper bound derived in Theorem 2 is monotonically de-

creasing as a function of φi as long as the condition
k∑
i=1

|αi| tan(φi) ≤ ‖y⊥‖2

is satisfied.

Proof. In Theorem 2, it is shown that:

‖y⊥,p‖2 ≤ ‖y⊥‖2

(
1− 1∥∥y⊥∥∥2

k∑
i=1

|αi| tan(φi)

)
.

As long as
k∑
i=1

|αi| tan(φi) ≤ ‖y⊥‖2, the right hand side is a valid non-negative

upper bound for ‖y⊥,p‖2, and is a continuous function of all φi < φi,max, 1 ≤ i ≤ k,

with partial derivatives:

−|αi|
1 + tan2(φi)

< 0, 1 ≤ i ≤ k, (3.51)

which are all strictly negative for |αi| 6= 0. Thus, the upper bound decreases

monotonically as a function of φi, 1 ≤ i ≤ k, q.e.d.

The first implication of Corollary 1 is that once a candidate support set is

available and
k∑
i=1

|αi| tan(φi) ≤ ‖y⊥‖2, rather than searching for a perturbation

that minimizes ‖y⊥,p‖2, one can minimize its upper bound simply by perturbing

each vector in the support up to its allowed limit.

The second implication of Corollary 1 is that if the perturbation angles are

increased, i.e., more freedom for the adjustment of the basis exists, the derived
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upper bound decreases. Therefore, for a certain amount of perturbation, this

raises the possibility of driving the upper bound to zero.

Corollary 2. Let φi = φ∗ , 1 ≤ i ≤ k. Then if φ∗ = tan−1

(
‖y⊥‖2

‖α‖1

)
,

perturbation of the support vectors up to φ∗, results in ‖y⊥,p‖2 = 0, yielding

a k-sparse reconstruction with no residual error.

Proof. Simply replace tan(φi) = tan(φ∗) =
‖y⊥‖2∑k
i=1 |αi|

in the upper bound given

in the Eq. 3.50 to get:

0 ≤ ‖y⊥,p‖2 ≤ ‖y⊥‖2

(
1− 1∥∥y⊥∥∥2

k∑
i=1

|αi| tan(φ∗)

)
= 0, q.e.d. (3.52)

It is important to note that Theorem 2 and Corollaries 1 and 2 are valid for any

set of linearly independent k vectors from the columns of A. Even though chosen

subset Sk does not include any component from the correct support, this theorem

guarantees that by using perturbation, the residual can be decreased. If Sk is

the correct support, or some subset of the correct support, then y∗ = SkSk
†y

becomes a good approximation of y. In this case, ‖y−y∗‖2 becomes smaller and

hence φ∗, the angle of perturbation at which the upper bound becomes zero, is a

smaller angle.

Proposition 1. A perturbed set of support vectors {si,p(φ), 1 ≤ i ≤ k} will

have ‖y⊥,p‖2 = 0 if and only if the upper bound in Eq. 3.50 is zero.

Proof. Using perturbations up to φ∗, the residual will be zero; hence we can

expand y as:
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y =
k∑
i=1

βi si,p(φ
∗). (3.53)

Assume there is another angle φ̃ < φ∗ resulting also a zero residual. Hence, we

can expand y as:

y =
k∑
i=1

γi si,p(φ̃). (3.54)

If we subtract Eq. 3.53 from Eq.3.54 term by term, we get the following:

0 =
k∑
i=1

(
βi si,p(φ

∗) − γi si,p(φ̃)

)
, (3.55)

=
k∑
i=1

((
βi cos(φ∗)− γi cos(φ̃)

)
si +

(
βi sin(φ∗)− γi sin(φ̃)

)
ŷ⊥ sgn(αi)

)
.

Since si and ŷ⊥ are orthogonal to each other, βi sin(φ∗) = γi sin(φ̃) and

βi cos(φ∗) = γi cos(φ̃). If we divide both equations term by term, we get

tan(φ∗) = tan(φ̃). Since we only consider acute angles, φ∗ = φ̃, which contradicts

the assumption. Hence, the perturbation angle which results upper bound in Eq.

3.50 to be zero is unique, q.e.d.

Although in the proposed perturbation approach norm of the residual can

be made zero for large enough perturbation angles, a relaxed constrained opti-

mization problem, where ‖y⊥,p‖2 < ε, is more appropriate when there is noise

in y. Under this relaxation, more sparse reconstructions can also be obtained.

In Fig. 3.12 as an illustrative case, the error residual is shown as a function of

perturbation angle. It is seen that the constraint line ‖y⊥,p‖ = ε intersects with

the error norm curve at φ∗ε , which is the first intersecting angle smaller than φ∗.

54



0 10 20 30 40
0

0.2

0.4

0.6

0.8

1

Perturbation Angle

N
or

m
al

iz
ed

 R
es

id
ua

l N
or

m

 

 
Upper Bound
‖y⊥ ,p‖2

‖y⊥‖2
ǫ

Figure 3.12: Upper bound and ‖y⊥,p‖2/‖y⊥‖2 as a function of φ.

The following theorem provides an estimate for φ∗ by using the intersection of

‖y⊥,p‖2 = ε with the upper bound in Eq. 3.50.

Theorem 3. If the perturbation angles of support vectors in Sk are all chosen

as φ∗ε = tan−1

(
‖y⊥‖2 − ε
‖α‖1

)
, where y = y⊥ +

k∑
i=1

αi si, then ‖y⊥,p‖2 ≤ ε.

Proof. If φi in Eq. 3.50 is replaced with φ∗ε , then the upper bound becomes:

‖y⊥,p‖2 ≤ ‖y⊥‖2

(
1− 1∥∥y⊥∥∥2

k∑
i=1

|αi| tan(φ∗ε)

)
= ‖y⊥‖2

(
1− ‖α‖1

‖y⊥‖2

(
1− ε/‖y⊥‖2

)
‖y⊥‖2

‖α‖1

)
= ‖y⊥‖2

ε

‖y⊥‖2

= ε, q.e.d. (3.56)

Note that for small enough ε, the residual error of projection onto the per-

turbed support vectors, i.e., ‖y⊥,p‖2, the above bound will also be tight and

‖y⊥,p‖ will be close to ε. Therefore, for the kth iteration of the proposed POMP

approach, there are three limits on the perturbation angles: first, φmax, which

is the limit predefined by the coherence of A as defined in Eq. 3.39; second φ∗ε ,
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beyond which the residual error norm is lower than ε; and third φ′, the user-

defined limit. A user may want a solution with larger or smaller perturbations

and, therefore may want φi ≤ φ′i. Hence, the allowable perturbation angle φi for

the ith support vector should be

φi = min{φmax, φ∗ε , φ′i}. (3.57)

In general, φmax is a larger angle compared to other two. In the early phases of

POMP, where the number of chosen support vectors are lower than actual sparsity

level, φ∗ε is expected to be larger than the allowed perturbation, φ′. Therefore, in

the early phases of the iterations, the residual error norm of the perturbed support

vectors is typically larger than the termination criterion ε. Yet, it is expected that

as new columns are added to the current support during the iterations, φ∗ε will

decrease and will be less than φ′ eventually. Once φi = min{φmax, φ∗ε , φ′i} = φ∗ε ,

iterations will stop, since after the perturbation the residual will have a norm less

than ε. The following theorem, whose proof is provided in the Appendix A.2,

states this expectation formally.

Theorem 4. Let Sk be the support estimation in the kth iteration and φ∗k be

the required perturbation angle as derived in Corollary 2 and let sk+1 be the

basis vector chosen in the (k + 1)th iteration. If ‖S†ksk+1‖1 ≤ 1 + γ, then,

φ∗k+1 < φ∗k, where γ > 0.

Since A ∈ <M×N is full rank, iterations stop when k reaches M without any

perturbation in the worst case. Therefore, φ∗M is zero. According to Theorem 4,

when the required condition is satisfied, φ∗k produces a monotonically decreasing

sequence throughout the iterations. Since we know that φ∗M = 0, there exists

a K ≤ M such that φ∗K ≤ φ′ due to monotonicity of the angles. Therefore,

Theorem 4 indirectly guarantees the termination of iterations.

It is important to note that Tropp’s Exact Recovery Condition for OMP

[43], which simply states that if ‖S†kai‖1 ≤ 1 for all un-selected basis vectors,

OMP will select one of the correct support vectors in the next iteration, is a

stricter version of Theorem 4. Hence, we can safely guarantee that maximum
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required angle, φ∗ε , will always decrease throughout the iterations as long as OMP

is guaranteed to provide exact reconstruction. This point will be revisited with

numerical simulations in Section 3.3.3.

Table 3.3: Perturbed-OMP (POMP) Algorithm

Inputs: (y, A, ε, φ′)

Initialization: y⊥,0 = y, S0 = {}, e = ‖y⊥,0‖2, k = 1
Keep iterating until e < ε

Orthogonal Pursuit:
U k = A \ Sk−1

j∗ = arg max
j
|uTj y⊥,k−1|

Sk = Sk−1

⋃
{uj∗}

xk = S†k y
y⊥,k = y − Sk xk

Perturbation Procedure:
If ‖y⊥,k‖2 > ε
ŷ⊥,k = y⊥,k/‖y⊥,k‖2

φ∗k = tan−1

(‖y⊥,k‖2 − ε
‖xk‖1

)
φk = min(φ′, φ∗k),
For i = 1 to k;
si,p = si cos(φki ) + ŷ⊥,k sgn(xk,i) sin(φki )

Sk,p = {si,p, 1 ≤ i ≤ k}
y⊥,k = (I − Sk,p Sk,p†)y
e = ‖y⊥,k‖2

Return with k = k + 1.

Output: x∗ = Sk,p
†y

The steps of the proposed Perturbed Orthogonal Matching Pursuit (POMP)

algorithm is detailed in Table 3.3. Starting with a set of unit norm vectors, in

the kth iteration, POMP searches over the dictionary to find the vector providing

the largest absolute inner product with the residual. After the selection of the

new vector, POMP computes the projection of the measurement, y, onto the new

larger support and finds the residual. OMP continues with the next iteration here.
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However, POMP proceeds with the perturbation. Given ε and φ′, φ is computed

according to Eq. 3.57. It is assumed that user provides an angle, φ′, less than

the mutual coherence of the basis, φ′ ≤ cos−1
(
µ(A)

)
/2, otherwise perturbations

are limited by the basis itself. After that POMP starts to perturb each vector

in the current support as given in Eq. 3.38. Then, the measurement vector, y,

is projected onto the perturbed support and the new residual is found. If the

norm of the residual is less than ε, iterations are terminated, otherwise POMP

continues with the next iteration.

One important characteristic of POMP is the promise of the sparser solutions.

This property can be revealed as follows. Assume that POMP has produced

a K-sparse solution. Iterations can be terminated due to two reasons. If the

observation y is already sparse in A, then at the Kth iteration we get ‖y⊥‖2 ≤ ε.

Since OMP and POMP have the same selection criteria, OMP also chooses the

very same SK and obtains the same K sparse solution. However, if y is not

sparse in A, POMP obtains the K sparse solution using the perturbation. Since

‖y⊥,p‖2 ≤ ε but ‖y⊥‖2 > ε, OMP iterates at least one more time resulting a

denser solution. Therefore, for any observation y, OMP produces denser, or

equally sparse at best, solutions than POMP.

OMP is preferred in many applications due to its computational efficiency. In

the perturbation stage of the proposed algorithm, the inverse tangent operation

can be well approximated by using tables and low order power series expansion,

therefore the computational order is determined by the least-squares solution on

the perturbed basis, which has a complexity of O(k2M) in the kth iteration, which

is the same as the standard OMP algorithm. If the algorithm terminates in the

Kth iteration, overall complexity becomes O(K3M) for both POMP and OMP.

In the worst case, algorithm will terminate eventually in the M th iteration, which

results in complexity of O(M4).
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3.3.3 Performance of POMP

In this section, performance of POMP algorithm will be investigated and com-

pared with alternative techniques under random basis mismatch. For this pur-

pose, sparse reconstruction of sinusoids from their time samples will be considered.

In this example, following dictionary vectors are used:

ai = cos(2πfit) 1 ≤ i ≤ N, (3.58)

where fi is the frequency of the ith dictionary vector and t is the vector of time

samples at which the signal is sampled. However, in practice, due to time jitter

in the sampling, the observed signal y is not sampled at the nominal sampling

times, resulting in a dictionary mismatch:

y =
K∑
i=1

xi cos
(
2πfi(t+ tj)

)
=

K∑
i=1

xi ãi, (3.59)

where tj can be modeled as a vector of independent and uniformly distributed

random variables in the range of [−δT/2, δT/2] where δT represents the level of

jitter. The overall effect of time-jitter can be considered as a random perturbation

on the dictionary A = [a1, . . . ,aN ]. In this more realistic scenario, y is typically

non-sparse in the assumed dictionary A.

To compare the overall performance in the above described set of simulations,

the following metrics are used: the normalized signal reconstruction error, ‖x−
x∗‖2/‖x‖2; the level of sparsity, ‖x∗‖0; the distance between signal supports,

1− |S∗ ∩ S|
max{|S∗|, |S|}

; and the normalized residual norm, ‖y−S∗ x∗‖2/‖y‖2, where

(x,S) is the correct signal and its support, and (x∗,S∗) is the obtained solution

and its corresponding support [34].

3.3.3.1 Recovery from Time-Jittered Samples

In the first simulation, the dictionary is constructed by using frequencies fi =

i · δf + 100 Hz for 1 ≤ i ≤ 200 and frequency separation of δf = 1Hz. The
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sampling time vector t is created over the [0, 1] second interval with randomly

chosen M = 180 time samples. A 25-sparse signal x is randomly generated with

non-zero coefficients selected uniformly random from the range [−10,−1]∪ [1, 10].

Observations, y, are generated with time jitter of δT = 8.3µsec. The same

termination criteria of ε = 10−3 is used for all compared techniques.

To select a proper maximum perturbation angle for POMP, the expected value

of the perturbation angles are calculated. Based on the following, the normalized

inner products of ai and ãi:

cos(φi) =
aTi ãi

‖ai‖2 ‖ãi‖2

=

M∑
k=1

0.5 cos
(
2 π fi (2tk + tjk)

)
+ 0.5 cos

(
2π fi t

j
k

)
M ai,RMS ãi,RMS

.

Since the sampling jitter is modeled as an i.i.d. sequence, E
{ 1

M

M∑
k=1

0.5 cos
(
2π fi (2tk+

tjk)
)}
' 0 and E

{
ai,RMS

}
' E

{
ãi,RMS

}
'
√

0.5 for large M . Therefore, the ex-

pected value of the cosine of the perturbation angles can be approximated as:

E

{
cos(φi)

}
'
E

{
0.5 cos(2πfit

j
k)

}
√

0.5
√

0.5
= E

{
cos(2πfit

j
k)

}
. (3.60)

Using the small angle approximation of cosines, Eq. 3.60 can be further simplified

as:

E

{
cos(φi)

}
' E

{
1− 2π2 f 2

i t
j
k

2
}

= 1− 2 π2 f 2
i σ

2
j ,

where σ2
j is the jitter variance. Since jitter is assumed to be uniform in the interval

[−δT/2, δT/2], σ2
j = δT 2/12. Finally, using a small angle approximation for φi,

we obtain,

E
{
φi
}
≈ 60◦

√
3 fi δT. (3.61)

Therefore, in the implementation of POMP, the allowed perturbation angles are
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selected according to Eq. 3.61 for each column, respectively. For the ith column

of A that corresponds to fi = i + 100 Hz, the maximum perturbation angle is

φi = (i+ 100) · 8.63◦ · 10−4.

Figure 3.13: A realization of the reconstruction problem under time-jitter where
OMP drastically fails and produces 167-sparse solution.

Figure 3.14: ‖S†k sk+1‖1 and its bound (1 + γ) as a function of iterations. Even
though ERC is not satisfied for k > 16, condition in Theorem 4 is satisfied due
to large value of γ, ensuring the decrease of maximum perturbation angle during
the iterations.

Figure 3.13 shows actual and reconstructed signal coefficients for OMP and

POMP techniques for a random realization of jitter. In this specific case, while

POMP correctly reconstructs the sparse signal coefficients, OMP generates a

highly non-sparse signal. For this realization, Figure 3.14 shows ‖S†k sk+1‖1,

the Tropp’s Exact Recovery Condition (ERC) [43] and the proposed bound of

Theorem 4. Even though ERC is not satisfied for k > 16, the proposed conditions
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of Theorem 4 are satisfied for this case. Therefore, this example shows that,

the guarantees given by Theorem 4 provide a larger regime in which POMP is

successful.

3.3.3.2 Simulated Performance and Theoretical Guarantees

In this section of the simulations, we will investigate performance of POMP when

the condition of the Theorem 4 is not satisfied. For this purpose, we conduct a

large set of Monte-Carlo simulations in excess of 106 trials in which the sparsity

level K and number of measurement M are swept from 2 to 85 and K to 200,

respectively. For each (K,M) pair, 100 cases are simulated. In each of these

simulations, cases where the perturbation angle decrease, i.e. φ∗k+1 ≤ φ∗k, are

identified as event E1, and the sufficiency condition of Theorem 4 is satisfied,

i.e. ‖Sk† sk+1‖1 ≤ 1 + γ, are identified as E2. Out of all the runs at each

sparsity level, the cases where only E1 is valid and both E1 and E2 are valid are

counted separately. In Figure 3.15, the statistics of the cases are shown for all

the experiments conducted.

Figure 3.15: Empirical probabilities of E1 is valid and (E1, E2) is jointly valid.

It can be observed that for K ≤ 10, the case E2 is satisfied with empirical

probability of 1, and as sparsity level increases, the probability of the case E2 be-

ing satisfied decreases. The maximum perturbation angle decreases consistently

when the case E2 is satisfied. Note that, Theorem 4 is only a sufficiency condition
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and in the simulated scenario for K ≥ 10 its requirements are not guaranteed

to met. Nevertheless, in all the simulations conducted, it is observed that the

perturbation angle decreases.

3.3.3.3 Average Reconstruction Performance

In Figures 3.16 and 3.17, the average performance results obtained for OMP and

POMP are shown. Figure 3.16 shows the normalized reconstruction error for

both OMP and POMP in dB, while the corresponding support distances can

be seen in Figure 3.17. For the same number of measurements and range of

sparsity levels, it can be observed from Figure 3.16 that both OMP and POMP

have similar phase transition curves; however POMP produces significantly lower

reconstruction errors. In Figure 3.17, it can be seen that POMP provides more

reliable supports as well.

(a) (b)

Figure 3.16: Sparse signal reconstruction average error is in dB,
20 log10

(‖x∗−x‖2
‖x‖2

)
as a function of measurement number and sparsity, (a) POMP,

(b) OMP.

Instead of using perturbation procedure, one can try to use OMP in a finely

discretized frequency domain. This way, the required perturbations on the dic-

tionary vectors can be reduced. However, increasing the density of the basis also

increases the coherence of the dictionary which adversely affects performance of
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(a) (b)

Figure 3.17: Average distances between actual and obtained supports, 1 −
|S∗ ∩ S|

max{|S∗|, |S|}
as a function of measurement number and sparsity, (a) POMP,

(b) OMP.

the CS techniques. In the simulated scenario, the effect of increasing frequency

density in the dictionary is shown in Figure 3.18. In this case number of measure-

ments is kept constant at M = 180, however the size of the dictionary is increased

as N = 199/δf + 1. The frequency range of [101, 300]Hz is considered in the sim-

ulations. Random time samples are chosen in [0, 1/δf ] time interval with a jitter

of δT = 8.3µsec time jitter. Compared to δf = 1, when log10(δf ) = −3 is used,

this corresponds to approximately 1000 times denser sampled frequency dictio-

nary with N = 199001. Sparsity of the signal is kept constant at K = 10, and the

SNR of the observed signal is kept at 60dB to better observe the effect of using

a denser dictionary in the reconstructions. As seen in the Figure 3.18(a), using

a denser basis can decrease the reconstruction error up to approximately −50

dB for OMP. However, beyond this point, OMP reaches an error floor. Also, as

seen from Figure 3.18(b), obtained sparsity is reduced significantly. On the other

hand, reconstruction performance of POMP is almost independent from the den-

sity of the dictionary. For all tested cases of N , POMP has a reconstruction error

below −60 dB and yields a 10 sparse solution, that matches the actual sparsity.

Note that using a denser basis significantly increases the mutual correlation of the

dictionary vectors as well as the required number of inner-products. Therefore,
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rather than using OMP over a larger and denser dictionary, it is advisable to use

POMP over a moderate size dictionary. Note that if the frequencies of the signal

components were known precisely, the linearization based techniques proposed

in [32,33,54] could have been used for the estimation of the jitter in the sampling

times.

(a) (b)

Figure 3.18: Reconstruction performance with respect to density of the complex
exponentials. (a) Sparse signal reconstruction error in dB, (b) Obtained sparsity
level for POMP and OMP algorithms.

In this part of the simulations, we compare POMP with OMP, CoSaMP, Basis

Pursuit, and Sparse Total Least Squares (S-TLS) [33] algorithms. Since POMP

is based on OMP iterations, they have similar phase transition characteristics

as given in Figure 3.16. Hence, in the following simulations, we will stay in the

K/M regime in which OMP works successfully.

Unlike OMP and POMP, CoSaMP requires the correct sparsity level of the

signal. Since, such information is not available in general, CoSaMP reconstruc-

tions obtained at all sparsity levels starting from K = 1 until the residual error

is below the specified ε level.

Basis Pursuit (BP) which is also known as `1 reconstruction is implemented
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using the convex optimization toolbox CVX. To induce sparsity, hard threshold-

ing is applied to BP reconstruction results. Let x̂ = [x̂Tl x̂
T
l′ ]
T be the BP recon-

struction sorted in the absolute sense and x̂Tl be the vector containing l largest

coefficients. Then, in the reported results here, the threshold, τ , is selected as

τ = x̂(l) such that ‖x̂l‖2 ≥ (1− 10−6)‖x̂‖2.

In [33], two algorithms have been proposed for S-TLS; one finds the global

optimum with highly demanding computational cost, and the other one is com-

putationally more efficient but only guaranteed to converge to a local minima.

Here, this more efficient technique which is called as coordinate descend (CD)

based S-TLS is used for comparison. Since S-TLS has an iterative structure, the

stopping criteria is important. To obtain a consistent comparison of algorithms,

S-TLS is terminated when the residual error is below the specified ε at the end of

an iteration. Rather than an all-zero vector, iterations are started with the solu-

tion of the obtained BP reconstruction to achieve faster convergence for S-TLS.

In the following results, STLS-1 corresponds to λ = 10−1 and STLS-2 corresponds

to λ = 10−2, where λ is the sparsity-tuning parameter of the CD based S-TLS

algorithm.

Figure 3.19: Obtained sparsity of the reconstructed signal as a function of actual
sparsity.

For all the techniques compared, Figure 3.19 and 3.20 shows the obtained spar-

sity levels and support distances as a function of sparsity, respectively. POMP

and S-TLS, being perturbation based techniques, can achieve the correct sparsity

level for smaller K. As the actual sparsity increases, S-TLS fails to obtain the
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correct sparsity, whereas POMP successfully finds the support up to K = 30.

Techniques that do not employ dictionary perturbation provided results that are

significantly inferior than POMP and S-TLS at all sparsity levels. The perfor-

mance of these techniques saturates and produce solutions at about the same

sparsity, irrespective of the actual sparsity level. Since the observed signal is not

sparse in the assumed dictionary A with rank(A) = M = 180, OMP goes up

to two-third of the rank whereas CoSaMP uses approximately 90% of the rank.

On the other hand, POMP obtains the correct sparsity level and the support as

shown in Figure 3.20. S-TLS gradually produces higher support distances due

to denser solutions obtained in less sparse signals. Since techniques that do not

employ perturbation has a saturated sparsity estimate, max{|S∗|, |S|} = |S∗|,
and |S∗ ∩ S| increases gradually as |S| increases. Therefore, their distance met-

ric produces smaller values. However, this situation should not be considered as

performance improvement for less sparse signals. It is because they simply fail to

recover the correct support at all tested sparsity levels.

Figure 3.20: Distances between actual and obtained supports as a function of
actual sparsity.

Figure 3.21 shows the average normalized reconstruction error in dB as a

function of true sparsity for each of the compared reconstruction techniques. As

expected, BP performs better than OMP. However, even though S-TLS employs

perturbation, it has very similar performance to BP. POMP, on the other hand,

has a significantly lower, -20dB, signal reconstruction error as compared to S-TLS

and BP. CoSaMP has the worst performance among all the compared techniques
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with significantly higher reconstruction errors.

Figure 3.21: Signal reconstruction error in dB as a function of actual sparsity.

3.3.3.4 Reconstruction and Noise-to-Perturbation Ratio

In the above simulations, termination criteria of all algorithms are determined

by the residual norm level ε. We assume that observation y has the form of

y = Ax+ n = y0 + n. If we write the residual as,

‖Ax− y‖2 = ‖Ax− y0 − n‖2 ' E
{
‖n‖2

}
, (3.62)

hence ‖Ax − y‖2/‖Ax‖2 ' 1/SNR if noise variance is small. Therefore, ε =

1/SNR can be chosen. More specifically, if the noise has a variance σ2, then

ε = σ
√
M/‖y0‖2. Since the signals are error free in previous simulations, ε =

10−3 is chosen. However, if the signal comes from a perturbed dictionary, then

y = (A+ δA)x+ n, hence,

‖Ax− y‖2 = ‖Ax−Ax− δAx− n‖2

'
√
E
{
‖n‖2

2

}
+ E

{
‖δAx‖2

2

}
, (3.63)

where noise and perturbations are assumed to be independent. It is appropriate

to define

SPR = ‖Ax‖2/‖δAx‖2, (3.64)
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as the Signal-to-Perturbation Ratio (SPR). Therefore according to Eq. 3.63,

‖Ax− y‖2/‖y‖2 '
√

1/SNR + 1/SPR. In our framework, ‖aTi,p ai‖2 = cos(φi),

since ‖ai,p‖2 = ‖ai‖2 = 1. Using simple geometry, the perturbation amount

can be written as ‖ai,p − ai‖2 = 2 sin(φi/2). Hence, the perturbation amount is

E{‖δAx‖2} ' ‖y‖2×E{φ}, where E{φ} = 2 sin(60◦
√

3E{f} δT/2). Therefore,

SPRdB = 20 log
(
‖y‖2/(E{φ} ‖y‖2)

)
= 20 log(1/E{φ}). If the perturbations are

small, it can be approximated as:

SPRdB = −20 log
(
π E{f}/

√
3
)
− 20 log

(
δT
)
. (3.65)

In the following simulations, we aim to analyze the SNR and SPR regions in

which POMP and compared techniques can successfully work. For this purpose

sparsity is fixed at K = 10 and average reconstruction performance is found for

varying SNR and SPR levels.

Figure 3.22: Signal reconstruction error in dB for fixed SPRdB = 40dB and
varying SNR from 20dB to 60dB.

In Figure 3.22, the perturbation level is kept constant at SPRdB = 40dB,

which corresponds to δT = 25µsec according to Eq. 3.65, and the SNR is

varied from 20dB to 60dB. In Figure 3.23, we keep the noise level constant at

SNRdB = 50dB and the SPRdB is varied from 30dB to 70dB. In both figures, the

reconstruction performances are shown as a function of the Noise-to-Perturbation

Ratio (NPR) defined as NPRdB = SPRdB−SNRdB. It is clear that two distinct

performance regions are determined by the sign of NPRdB.
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Figure 3.23: Signal reconstruction error in dB for fixed SNRdB = 50dB and
varying SPR from 30dB to 70dB.

As shown in Figure 3.22, although POMP has the lowest reconstruction error,

all compared techniques have acceptable performances for positive NPRdB. In

that regime, noise power dominates the perturbation on the dictionary. Since the

perturbations are relatively insignificant, OMP and CoSaMP can achieve similar

results to POMP. However, when NPRdB is negative, the perturbation on the

dictionary is more dominant than the noise level. OMP, BP and CoSaMP have

no mechanism to handle these perturbations, hence they treat the perturbations

as additional noise. However, in this case it is highly improbable to decrease

the residual error to the actual noise level. Thus, they saturate and produce

reconstructions with larger errors. On the other hand, even if perturbations

dominate the noise, POMP can handle perturbations and produces reconstruction

with significantly lower errors. Figure 3.23 displays similar results, where SNR

is fixed and SPR is varied. For high NPR regime, all algorithms result in similar

errors, whereas for low NPR, only POMP produces acceptable reconstructions.

Higher perturbation causes larger reconstruction errors in POMP. However, it is

much more robust to dictionary mismatch than the compared techniques.
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Chapter 4

Recursive Compressive Sensing

Framework

The classical use of CS techniques starts with a set of N column vectors, that

are generally constructed with computation of the signal source at some discrete

parameter as in (3.4). Thus, length of the sparse signal x is fixed to N . Therefore,

number of samples is considered as a free parameter. The proven reconstruction

criteria of sparse solvers are between the number of measurements and the sparsity

level: sparser signals require fewer number of measurements.

Unlike the classical approach, in practical problems analysis starts with a given

set of observations y, hence M is fixed. As discussed in Section 3.1, discretization

is a required step to convert the problem into CS formulation. Since the resolution

of the discretization determines the length of the sparse signal, N becomes a

design parameter. Since less sparse signals require lower correlation in the basis

[41, 43], the minimum resolution limit is dictated by M and sparsity level K.

Therefore, for less sparse signals there will be fewer components in the signal

dictionary. Thus, the off-grid problem becomes more severe when the signal is

less sparse.

In this chapter of the thesis, a novel recursive framework for CS applications,

in which the continuous parameter space is adaptively discretized, is presented. In

71



the presented recursive framework any CS reconstruction technique can be used.

As illustrated over commonly used CS applications, the estimated parameters of

the sparse signal components almost achieve the Cramer-Rao lower bound. A

preliminary form of this approach has been presented in [55] and full version is

in [56].

4.1 Adaptive Discretization

As discussed in Section 3.1, a sampled data vector with a sparse representation

in a continuous parameter space can be written as:

y =
K∑
i=1

αi ψ(θTi ; t) + n s.t. θTi ∈ P . (4.1)

This form can be reduced to commonly used compressive sensing setup by dis-

cretizing the continuous and bounded parameter space, P . For a more abstract

formulation that will be useful in the presentation of the proposed approach,

let d(·, ·) be a functional that takes the continuous space P and a discretization

interval λθ and returns a set of discrete parameter points:

{θ1,θ2, . . . ,θN} = d(P , λθ). (4.2)

This discretization provides N grid points, θi ∈ P , for 1 ≤ i ≤ N . For each

θi, the M -dimensional corresponding signal atom is computed using the given

sampling times as:

ai = ψ(θi; t). (4.3)

By using (4.3) for each θi, M ×N dimensional sensing matrix is constructed as

A = [a1, a2, . . . ,aN ]. Note that the dictionary composed with the discretization

of the parameter space has to guarantee the reconstruction of an arbitrary K-

sparse signal in the column space ofA. Each CS technique has its own guarantees

for the recovery. For simplicity in the development, we will assume that OMP is

used as the sparse solver. For an alternative CS reconstruction technique, it is
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straightforward to make proper changes in the following development.

Recovery guarantees of OMP has been discussed in the literature. In [43],

a sufficient condition for the recovery of a K-sparse signal in terms of mutual

coherence is provided as:

µ(A) ≤ 1

2K − 1
, (4.4)

where µ(A) is defined in (2.21). Notice that mutual coherence is a functional

of the basis vectors defined in (4.3), hence it has to be computed accordingly.

To illustrate the effect of sufficient recovery condition on the discretization of

the continuous parameter space, we will concentrate on the frequency estimation

problem, hence complex exponentials with the following structure will be used as

the basis functions:

ψ(θ; t) = e−j2πft. (4.5)

Let the discretization interval between two adjacent discrete parameter points

be λf , hence fl+k − fl = k λf . In this case, normalized inner product of basis

vectors corresponding two grid points can be computed as:

|aHk al|
‖ak‖2 ‖al‖2

=
|a(fk; t)

Ha(fl; t) |
‖a(fk; t)‖2 ‖a(fl; t)‖2

=
1

M

∣∣∣∣∣
M∑
i=1

ej2π(k−l)λf ti

∣∣∣∣∣
≈

∣∣∣ sinc
(

(k − l)λf T
)∣∣∣, (4.6)

which is a close approximation when the sampling instants have uniform distri-

bution in [0, T ]. Since | sinc(x)| ≥ | sinc(nx)| holds true for all non-zero real x

and non-zero integer n, mutual coherence of the dictionary is found as:

µ(A) = max
k 6=l

∣∣∣ sinc
(

(k − l)λf T
)∣∣∣ = | sinc(λf T ) |. (4.7)

In order to guarantee that OMP will recover a K-sparse solution, the dis-

cretization interval λf has to satisfy the condition given in (4.4) resulting in the

following inequality:

µ(A) = | sinc(λf T ) | ≤ 1

2K − 1
. (4.8)
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Assuming 0 ≤ λfT ≤ 1, we can safely take the inverse of the sinc function. Thus

the finest possible discretization interval is:

λf (K) =
1

T
sinc−1

(
1

2K − 1

)
. (4.9)

Since sinc−1(x) is a monotonic decreasing function for 0 ≤ x ≤ 1, for larger K

values λf (K) becomes larger as well. This implies that for less sparse signals, we

have to use a coarser discretization in the continuous parameter space resulting

in more severe performance degradation due to off-grid problem.

In the two dimensional case, if the resolutions in both dimensions are denoted

as λf1 and λf2 , then (4.8) can be written as:

µ(A) = sinc(λf1 T ) sinc(λf2 T ) ≤ 1

2K − 1
. (4.10)

In the more general sense, if the basis functions are p-dimensional and consist

of set of separable parameters θi, . . . , θp in the form as:

a(θ; [tk1 tk2 . . . tkp ]) =

p∏
i=1

ai(θi; tki), (4.11)

and the correlation depends only on the difference between the corresponding

parameters, i.e. a∗i (θ
1
i ; tki) ai(θ

2
i ; tki) = fi(θ

1
i −θ2

i ; tki), then the mutual coherence

of the basis can expressed as:

µ(A) =

p∏
i=1

µi(λθi), (4.12)

where µi(·) is the function that relates the resolution of the ith parameter to the

corresponding correlation. If there are more than one parameters in the signal

atoms, the required resolution in the corresponding parameters that satisfies the

reconstruction with OMP is not unique. In 2D case, set of all allowed resolutions

for a given sparsity level lies on a curve. Fig. 4.1 shows this resolution curves for

several sparsity levels. In general, if the basis functions can be represented as in
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(4.11), set of allowed minimum discretization intervals form a p− 1 dimensional

manifold.
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Figure 4.1: Necessary discretization interval curves that guarantees the recovery
of the sparse signal in the two dimensional spectrum estimation problem.

Typically, in the discretization of 2D continuous Fourier space, equal spacing

is used in both dimensions. Then, corresponding mutual correlation becomes

µ(A) = sinc2(λf T ). Fig. 4.2 shows the feasible set of discretization intervals for

1D and 2D Fourier spaces.
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Figure 4.2: Lower bound of feasible discretization interval with respect to sparsity
level that guarantees the recovery of the sparse signal for 1D and 2D Fourier
spaces.

The interval defined in (4.9) is the finest discretization that guarantees the
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recovery of K-sparse signal with OMP as the solver. Therefore, the continuous

model in (4.1) has to be discretized accordingly. As expected, the discretization

interval is an increasing function of K. Also, we observe that the discretization

interval is always less than 1/T . It is known that if a system with classical sam-

pling procedure takes samples in the [0, T ] time range, its frequency resolution is

1/T . Having a resolution smaller than 1/T in the least sparse case is consistent

with this fact. Finally, we observe that the allowed interval for 1-sparse case

is 0. In other words, for 1-sparse signals discretization interval can be set arbi-

trarily small, yet the recovery is still guaranteed. This last fact will provide the

foundation of the proposed recursive approach presented in the following section.

It is important to note that (4.9) provides the allowed minimum interval for

the frequency estimation problem when OMP is used as the sparse solver. The

allowed interval for another solver or basis function may differ. In a more general

and abstract sense, the required resolution can be represented as follows:

λθ = f(M,K). (4.13)

Here the function f(·, ·) can be computed analytically or numerically depending

on the recovery condition imposed by the solver of choice on the basis functions.

However, the observation based on the OMP case are valid for some other solvers.

4.2 Proposed Recursive Compressive Sensing

Framework

For the model given in (4.1), for a given measurement vector y ∈ CM and a

provisional estimate of the sparsity level K, compressive sensing solver can be

written in the following abstract form:

[α∗,θ∗] = S(y, K,P), (4.14)
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where θ∗ is the estimated parameter values, α∗ are the corresponding representa-

tion coefficients and P is the bounded and continuous parameter space. A sensing

matrix is required in order to utilize CS reconstruction techniques in the solver

in (4.14). At this step first thing is to determine the finest resolution dictated by

(4.13). Then the parameter space P is discretized accordingly and the sensing

matrix A is constructed using (4.3). In this way, we can define the problem as

y = Ax+n and solve for the K-sparse reconstruction of the signal for a selected

sparse solver of choice yielding α∗ and θ∗. Using [α∗, θ∗], the observation vector

can be represented as:

y =
K∑
i=1

α∗i ψ(θ∗i ; t) + n, (4.15)

where n corresponds to the fit error of the sparse solver. The important thing

to notice is that the matrix-vector model is an approximate relationship due to

discretization of the parameter space. However, if the problem is highly sparse,

this approximate relationship has a relatively high accuracy since the allowed

discretization interval in (4.13) is a decreasing function of the sparsity. Therefore

our main purpose is to split the K-sparse problem into set of smaller problems

with higher sparsity. For this purpose, assume that we divide the problem into c

partitions as follows:

y =

K1∑
i=1

α∗1,i a(θ∗1,i; t) + . . .+
Kc∑
i=1

α∗p,i a(θ∗p,i; t) + n, (4.16)

where
∑c

j=1Kj = K,
⋃
j,i α

∗
j,i = α∗ and

⋃
j,i θ
∗
j,i = θ∗. This process also partitions

the given parameter space P into disjoint sets such that P =
⋃
j Pj and Pj ∩

Pk = ∅ if j 6= k with θ∗j,i ∈ Pj. E-M framework provides an effective solution

for the partitioned problem [57, 58]. Assuming the estimates of the last c − 1

partitions’ parameters are precise enough, we can construct the observation vector

corresponding to those partitions and then find the partial observation vector

corresponding to the first partition. This is the E-step of the framework. The M-

step is to solve the problem with partial observation vector in its corresponding

domain.

In general, in the E-step for an arbitrary lth partition, the corresponding
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partial observation vector is written as:

yl = y −
c∑
j=1
j 6=l

Kj∑
i=1

α∗j,i a(θ∗j,i; t). (4.17)

In the M-step, in order to estimate parameters with higher accuracy, we solve

the sparse reconstruction problem of observation vector yl with sparsity estima-

tion Kl in the domain Pl. Therefore, M-step of the framework is written as the

solution of the following problem,

[α∗l ,θ
∗
l ] = S(yl, Kl,Pl). (4.18)

Iteratively solving (4.17) and (4.18) from l = 1 to l = c realizes one pass of the EM

approach. The most important thing to notice is the transformation of (4.14) to

(4.18) under the EM framework. The problems are identical to each other in the

structural sense: both take an observation vector, provisional sparsity level and a

parameter space to operate on. Thus, the approach used in the solution of (4.14)

can also be applied to (4.18). Successively applying the very same approach

to each sub-problem, the main problem splits itself into smaller, and sparser,

sub-problems with denser discretization of the parameter space in a recursive

manner. The remarkable advantage of this approach lies in the reduction of the

sparsity levels in the sub-problems. In the fragmentation from (4.14) to (4.18),

the immediate observation is that Kl < K for all 1 ≤ l ≤ c provided that c > 1.

Due to decreasing characteristics of (4.13), finer discretization of corresponding

parameter spaces can be performed in the sub-problems, which improves the

accuracy of the parameter estimations.

The proposed EM based recursive solution approach is summarized in Table

4.1. Some of the steps are not defined precisely so that the framework can be

utilized in a wide range of problems with different characteristics specific to im-

plementation of those steps. In the following sub-sections, we will elaborate on

the individual steps for clarity.
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Table 4.1: EM Based Recursive Algorithm

Signature: [α̂, θ̂] = S(y, K,P)

1) λθ = f(M,K), find the required resolution,

2) {θ1, . . . ,θN} = d(P , λθ), discretization,

3) A = [ψ(θ1; t) . . . ψ(θN ; t)], basis matrix,

4) [α,θ] = SparseSolver(y,A, K), a solution,

5) While [α,θ] is not a satisfactory solution,

5.1)
{(
α1,θ1,P1

)
, . . . ,

(
αc,θc,Pc

)}
= Partition(α,θ,P),

5.2) For each partition l from 1 to c

5.2.1) yl = y −
c∑
j=1
j 6=l

Kj∑
i=1

αj,i ψ(θj,i; t)

5.2.2) [αl, θl] = S(yl, Kl,Pl)

5.3) α =
⋃
j,i αj,i, θ =

⋃
j,i θj,i, combine,

6) α̂ = α and θ̂ = θ, finalize the solution.

4.2.1 Base Case of the Recursion

Separation of the problem will be terminated in a finite amount of recursive calls

since the sparsity of the main problem K is finite. The most interesting case,

which is also the base case of the recursion, happens when the sparsity of that

partition reduces to one. Amenity of this case is the result of the following fact

λθ(1) = 0. When an instance of (4.14) is initialized with K = 1, the solver is

allowed to discretize the parameter space arbitrarily dense. However in the noisy

setting, partition size is lower-bounded by the Cramér-Rao lower bound (CRLB)

which is the universal lower bound for the non-random parameter estimation.

This case will be illustrated on the frequency estimation problem using basis
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functions given in (4.5). In this model, observations are in the following structure

in the 1-sparse case:

y = α ejφ ejωt + n, (4.19)

where α, φ and ω are the unknown amplitude, phase and angular frequency,

respectively; n is a zero mean circularly symmetric i.i.d. complex Gaussian noise

with variance σ2, and t is the vector of sampling times.

In the frequency estimation problem, 1-sparse case is similar to the single tone

frequency estimation problem. In the regular sampling, this is a well studied

problem [59]. However, to best of our knowledge there is no reported study on

the CRLB of the single tone frequency estimation under random sampling.

In (4.19), important difference from the regular sampling is that time sam-

pling is also random. Therefore, expectation of the Fisher information matrix

over the distribution of the sampling times should be obtained. As derived in

Appendix A.3, the CRLB for the single tone frequency estimation under the

random sampling are:

var(α̂) ≥ σ2

M
,

var(φ̂) ≥ (σ/α)2

M

E[t2i ]

var(ti)
, (4.20)

var(ω̂) ≥ (σ/α)2

M

1

var(ti)
,

where var(ti) is the variance and E[t2i ] is the second order moment of the ran-

dom time samples. When sampling times are generated from an i.i.d. uniform

distribution in the [0, T ] range, CRLB of the frequency estimation becomes:

var(ω̂) ≥ Ju =
(σ/α)2

M

12

T 2
, (4.21)

which is asymptotically equivalent to the CRLB in the regular sampling case

[59]. The difference of the random sampling is the dependency of CRLB on the

variance of the sampling distribution. Even though uniform distribution results in

asymptotically equivalent CRLB of the regular sampling, it is possible to choose
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a distribution with larger variance to reduce the corresponding CRLB below the

CRLB corresponding to the uniform sampling. For instance, Bernoulli random

variable having values at 0 and T with equal probabilities has a variance of T 2/4,

hence achieve one-third of the CRLB of the regular sampling!

If we use an unbiased estimator of the parameters, square-root of the CRLB

can be thought as the finest partition size that the estimator can achieve under the

assumed noise statistics. Even though (4.13) allows arbitrarily dense discretiza-

tion in the 1-sparse case, resolution smaller than square-root of the CRLB will

not provide any further improvement in the estimation performance. Therefore,

treatment to this important case is to re-define (4.9) for K = 1 as follows:

λf (1) := γ

√
Ju

2π
= γ

√
3

π

1

T
√
M

σ

α
, (4.22)

where 2π is result of the conversion to ordinary from angular frequency and γ is

a fraction to absorb the discretization effect in the estimation.

It has been shown for the regular sampling case that spectrum estimation is

the ML estimate of the frequency, [59], which is defined as:

f̂ = arg max
f

∣∣yH a(f ; t)
∣∣. (4.23)

The significance of the spectrum estimation is its equivalence to the search step

of the OMP algorithm. In the 1-sparse case, if the given parameter space is

discretized according to analyzed CRLB limit in (4.22) and OMP is used for the

sparse solver, resulting solution will be the ML estimate of the frequency.

4.2.2 Sparse Solver

The proposed framework can be used with any sparse solver of choice. However,

algorithms with low complexity is preferable since the proposed framework recur-

sively initiates several instances of the same problem. More importantly, selected

sparse solver is expected to be a minimum variance unbiased estimator (MVUE)
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of the parameters for a sparsity level so that the proposed framework achieves

the Cramér-Rao lower bound in the estimation variance.

4.2.3 Satisfactory Solution

In order to be able to complete the recursive calls in an appropriate amount

of time, a termination criterion should be defined. One straightforward way is

to compute the residual error. Given the provisional solution set (α,θ), the

corresponding estimate for the observation vector is computed as:

y∗ =
K∑
i=1

αi ψ(θi; t). (4.24)

Using a predefined threshold ε1, the provisional solution can be qualified as satis-

factory if ‖y−y∗‖2 ≤ ε1. Another approach is to monitor the residual norm and

terminate the iterations when rate of decrease in the residual is below a certain

threshold ε2, ‖y∗q−1‖2/‖y∗q‖2 ≤ ε2, where q is the index of iterations. Apart from

the residual, iterations may be terminated when the changes in the solution set is

lower than a certain threshold. Also, total number of iterations can be bounded.

For a robust behavior, some of the discussed metrics can be used in conjunction.

4.2.4 Partitioning

Splitting the problem into self-similar sub-problems requires a partitioning op-

eration on the provisional solution set. Partitioning can be considered as the

well-studied problem of clustering [60] in the machine learning theory. In the

proposed framework a specific clustering algorithm can be implemented to par-

tition the original problem into sub-problems. However, to reduce the required

computational load, we propose to use simple partitioning structures that will be

elaborated in the following section.
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4.3 Recursion on a Binary Tree

Clustering is an important problem in the proposed framework since it is the

initial phase of the EM iterations and will be successively called in each iteration

and recursive calls. By selecting fixed c = 2, we split the main problem into two

distinct parts in each recursive call. Hence, the sub-problems and their relations

with the main problem can be represented with a binary tree. However, structure

of the tree will depend on partitioning technique. In the following, two different

approaches with their implementation and complexity analysis are provided.

4.3.1 Partitioning on an Unbalanced Tree

4.3.1.1 Structure

In the unbalanced tree approach, the provisional solution is partitioned as “the

most dominant component” and “the rest”. Thus in each recursive call, problem

will be split into two sub-problems with sparsity 1 and K − 1. This partitioning

approach will generate a solution tree similar to the one in Fig. 4.3(a).

(a) (b) (c)

Figure 4.3: A sample solution path in the (a) unbalanced binary tree with K = 5,
(b) balanced and symmetric binary tree with K = 24, (c) balanced binary tree
with K = 13.

Without loss of generality, under proper permutation of the indices, for (4.15)

we can assume |α∗1| ≥ |α∗2| ≥ . . . ≥ |α∗K |, hence the parameter space corresponding
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to the dominant component can be written as:

P1 = Br(θ∗1) ⊂ P , (4.25)

where Br(θ∗1) corresponds to a ball center θ∗1 and radius r. If r < |λθ(K)|, it

is only necessary to find a 1-sparse solution in the domain P1. Therefore, the

observation vector corresponding to this partition is written as:

y1 = y −
K∑
i=2

α∗i ψ(θ∗i ; t). (4.26)

With the construction of the parameter space and the observation vector, an

improved estimate for the dominant parameter is obtained as the solution of the

following problem with the same form:

[α∗1,θ
∗
1] = S(y1, 1,P1). (4.27)

When an estimate for the dominant component is obtained, the parameter

space and the corresponding observation vector for the remaining components

are constructed as:

P ′1 = P \ P1,

y′1 = y − α∗1 ψ(θ∗1; t). (4.28)

Then, a refinement for the remaining parameters is obtained as the solution

of the following problem:

[α∗2, . . . , α
∗
K ,θ

∗
2, . . . ,θ

∗
K ] = S(y′1, K − 1,P ′1). (4.29)

When the radius of the neighborhood defined in (4.25) is selected as r ≥
|λθ(K)|, components with parameters other than θ∗1 may also fall into the neigh-

borhood. If we assume that K0 of the components are in Br(θ∗1), then the main

problem is split into sub-problems with sparsity K0 and K − K0, which is also
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expected to generate an unbalanced solution tree.

4.3.1.2 Complexity

When a problem in the form of (4.14) is initiated, the proposed algorithm first

solves a K-sparse problem. Then, K parameters are partitioned and 1-sparse and

K − 1-sparse problems are solved. Partitioning and re-solving is repeated during

the E-M iterations. As a result, in the solution of (4.14) total computational cost

can be written as:

C(K) = S(K) +
[
P (K) + C(1) + C(K − 1)

]
γ(K), (4.30)

where C(K), S(K), P (K) are the computational costs of the solution of K-sparse

problem in the proposed framework, solution of K-sparse problem with the sparse

solver and partitioning of K parameters, respectively. Since partitioning and

solving sub-problems are repeated, γ(K) denotes the required number of E-M

iterations. When the recursive relation in (4.30) is expanded, cost of K-sparse

problem can be found as:

C(K) =
K−2∑
i=0

[S(K − i)
γ(K − i)

+ P (K − i) + C(1)
] i∏
j=0

γ(K − j) + C(1)
K−2∏
i=0

γ(K − i),

(4.31)

which can be simplified as:

C(K) ∝ K

K∏
i=2

γ(i). (4.32)

When the E-M iterations are assumed to be constant for all sub-problems, γ(i) =

γ, overall complexity is found as C(K) ∝ K γK , which is exponential in K.
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4.3.1.3 Demonstration of a Solution

In this section, solution of a problem will be demonstrated for a better un-

derstanding of the steps of the proposed structure. Assume that we are given

an observation vector which has a 4-sparse representation in the 2-dimensional

frequency domain. Therefore, the intervals provided in Fig. 4.2 will be used

in the discretization. We will assume that the parameters lie in the domain

P = [100 110]× [100 110].

In the first step, the proposed framework discretizes the basis with λf =

0.693 due to value of sinc−1(
√

1/7). Then, OMP algorithm provides a set of

estimates using the discretized domain. The first line of Fig. 4.4 shows the actual

parameters and the ones estimated by OMP. Due to off-grid problem, inaccuracy

in the estimation causes large residual error. Since the solution is not considered

as satisfactory, algorithm proceeds to E-M iterations in step 5 of Table 4.1.

In step 5.1 of the framework, partitioning algorithm splits the problem. Since

unbalanced binary tree is considered, the component with the highest energy is

separated as the first partition. Observation vector is computed with (4.26). In

the example given in Fig. 4.4, the most dominant component lies in the domain

P1 = [100.4 101.2] × [100.4 101.2], hence it is considered as the domain of the

1-sparse problem. Since K = 1 is the base case of the recursion, given domain is

discretized by the CRLB limit dictated by the assumed noise statistics. Notice

that, the CRLB limit here is different than (4.22) since the problem here is 2

dimensional frequency estimation. This procedure on the dominant parameter

increases the accuracy of the estimation as given on the left of the second line in

Fig. 4.4.

After the termination of the 1-sparse sub-problem, main problem starts it-

eration in the other partition. Notice that in step 5.2.1, the algorithm uses the

recently updated parameters of the first part. It is important to notice that

1-sparse and 3-sparse sub-problems do not run in parallel, each sub-problem is

initialized successively one after another.
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Figure 4.4: Steps of the solution to a sample 4-sparse problem with unbalanced
tree partitioning.

In step 5.2.2 another instance of the same algorithm is initialized with K = 3,

hence λf = sinc−1(
√

1/5) = 0.642 is used for the discretization. Domain of the

problem is defined as the remaining from the first part P ′1 = P \ P1 and the

observation vector is computed according to (4.28). As the main problem, this

sub-problem partitions itself in a recursive manner.

When the 3-sparse sub-problem is terminated, the main problem proceeds

to step 5.3 and merges the solution produced by the 1-sparse and 3-sparse sub-

problems. Compared to the initial solution, one pass of the algorithm results

in increased accuracy in the solution parameter. The natural progression is to

repeat this procedure for more improved estimates. With this purpose, the main

problem returns to step 5 to check necessity of another pass. If the current

set of estimates results in a residual lower than a certain threshold, algorithm

terminates; if not, it follows the same steps until one of the termination criteria

is met.
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4.3.2 Partitioning on a Balanced Tree

4.3.2.1 Structure

In the balanced tree approach, the provisional solution will be split into two parts

with equal number of non-zero elements. Recursively repeating this approach,

the main problem will be split into all the way down to 1-sparse problems. This

partitioning approach will generate a solution tree similar to the one in Fig. 4.3(b)

assuming that sparsity level K = 2n for some integer n. If the sparsity level is not

a power of 2, problem will be split into two problems with approximately equal

sparsities. Even though the resulting solution tree will not be symmetric, it will

be similar to one in Fig. 4.3(c).

Required partitioning of the domain can be obtained as the solution of the

following optimization problem:

min
P1

∣∣∣∣∣K/2−
K∑
i=1

1P1(θ
∗
i )

∣∣∣∣∣, (4.33)

where 1P(θ) denotes the indicator function: its value is 1 if θ ∈ P , 0 otherwise.

Since P1 is a continuous subset of P , there are infinitely many solutions to the

problem in (4.33). It is possible to introduce constraints on the set, or on the

parameters, to decrease the number of possible solutions while having partitions

with the desired properties. One admissible constraint is to force the partitions

to have approximately equal energies. By this way main problem is partitioned

equally not only sparsity-wise but also energy-wise. It is also possible to force the

domains to be connected or even convex for more reasonable partitions. With

such requirements, the problem in (4.33) can be constraint as:

min
P1

∣∣∣∣∣K/2−
K∑
i=1

1P1(θ
∗
i )

∣∣∣∣∣ s.t.

∣∣∣∣∣∑
i∈S1

(α∗i )
2 −

∑
i/∈S1

(α∗i )
2

∣∣∣∣∣ ≤ ε, P1 is connected,

(4.34)

where S1 is the set of indices of the parameters in the domain P1, i.e. i ∈ S1 if

θ∗i ∈ P1. Even though solution to (4.34) is still not unique due to continuity of
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P1, it provides more useful partitions.

Solution to (4.34) is not trivial in general. It is a necessity to use a suitable

technique depending on the basis functions and problem model. One can also

define a different optimization problem that satisfies the needs of the model.

In the frequency estimation problem, (4.5), the domain P is an interval con-

stituting the bandwidth of interest, i.e. P = [fmin fmax]. Our purpose is to

select a cut frequency fc such that P is split into two, i.e. P1 = [fmin fc] and

P ′1 = [fc fmax]. We can solve for the following problem to obtain a cut frequency:

min
fc

∣∣∣∣∣‖α∗‖2
2

2
−

∑
i s.t. f∗i <fc

(α∗i )
2

∣∣∣∣∣, (4.35)

which splits the domain into two energy-wise approximately equal parts. When

coefficients, αi, are assumed to be distributed i.i.d., solution to (4.35) also splits

the domain into two sparsity-wise approximately equal parts. Since there are

only K frequencies in the provisional solution, (4.35) can be solved very efficiently

with a single pass over K parameters. When fc is obtained, P1 hence S1 can be

constructed. Therefore, the observation vector corresponding to first partition is

written as:

y1 = y −
∑
i/∈S1

α∗i ψ(θ∗i ; t). (4.36)

and the following problem is solved to obtain improved estimates of the parame-

ters in domain P1,

[α∗1, . . . , α
∗
K1
,θ∗1, . . . ,θ

∗
K1

] = S(y1, K1,P1), (4.37)

where K1 = |S1| is the number of frequencies in P1. When the solution for the first

half is obtained, observation vector corresponding to second half is constructed

as:

y′1 = y −
∑
i∈S1

α∗i ψ(θ∗i ; t). (4.38)
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and the following problem is solved to obtain improved estimates of the parame-

ters in domain P ′1,

[α∗K1+1, . . . , α
∗
K ,θ

∗
K1+1, . . . ,θ

∗
K ] = S(y′1, K −K1,P ′1). (4.39)

As in the unbalanced tree partitioning, these iterations are recursively re-

peated until at least one of the termination criteria is met.

4.3.2.2 Complexity

After the solution to initial K-sparse problem, balanced partitioning approach

will split the parameters into two K/2-sparse problems and the algorithm is

recursively applied on the newly obtained partitions. Assuming K = 2n, total

computational cost of the solution of K-sparse problem can be written similar to

(4.30) as:

C(2n) = S(2n) +
[
P (2n) + C(2n−1) + C(2n−1)

]
γ(2n). (4.40)

When the recursive relation in (4.40) expanded, cost of K-sparse problem is found

as:

C(2n) =
n−1∑
i=0

[
2i
S(2n−i)

γ(2n−i)
+ P (2n−i)

] i∏
j=0

γ(2n−j) + 2nC(1)
n−1∏
i=0

γ(2n−j), (4.41)

which can be simplified as:

C(2n) ∝ n 2n−1

n∏
i=2

γ(2i). (4.42)

When E-M iterations are assumed to be constant for all sub-problems, γ(i) = γ,

overall complexity is found as C(K) ∝ K log(K). Therefore, at the expense of

the high-cost partitioning in the balanced tree approach, the exponential com-

plexity in the unbalanced case reduces to K log(K) in terms of K. This result is

also validated experimentally in Section 4.4.
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4.4 Simulations

In this section, performance of the proposed framework is investigated in sparse

spectral estimation. The observation vector with K-sparse components is con-

structed as:

y =
K∑
i=1

αi e
jφi ej2πfit + n, (4.43)

where t ∈ <M is constructed by selecting time samples uniformly from [0, T ]

range with T = 1 s. φi’s are selected uniformly in [0, 2π] range and αi = 1 for

1 ≤ i ≤ K. The frequency of the components, fi, are selected uniformly random

in [100, 300] Hz range; n ∈ CM is a circularly symmetric i.i.d. complex Gaussian

noise with zero mean and standard deviation σ. In the following, α/σ will be

considered as a measure of Signal-to-Noise Ratio (SNR).

To illustrate the performance gain in the proposed framework, OMP and

CoSaMP are compared to their recursive counterparts in the proposed framework.

Information about the true sparsity level is available to CoSaMP, and OMP is

also terminated at the true sparsity level for a fair comparison. Even though

OMP with a fine grid has been reported with a limited performance gain [52], the

results of OMP with a dense grid is also provided for the comparison purposes.

Together with the standard deviations of the error in the estimated parameters,

the CRLB’s given in (4.20) are presented for comparison purpose.

In the first set of simulations, the sparsity level is fixed to K = 5 and M = 100

random samples are used, which corresponds to one quarter of the Nyquist rate

samples. An observation vector with randomly selected frequencies is gener-

ated according to (4.43) and noise with SNR ranging from −20 dB to 50 dB is

added. Fig. 4.5 provides the standard deviation of the errors with respect to

the simulated SNR levels. Regular solvers and their recursive counterparts have

a transition around 0 dB, which corresponds to the case of α < σ, regular and

their recursive counterparts behave similarly with a significant deviation from

the CRLB. When SNR is higher than 0 dB, there is a little improvement in the

regular solvers. Due to the off-grid problem, solvers do not provide significant

improvements even at high SNR. For OMP, a denser grid brings a reduction in
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Figure 4.5: Standard deviation of the error in the solution of (a) frequency, (b)
magnitude, (c) phase of the components with respect to various levels of noise at
K = 5, M = 100.

the error variance. Yet, the improved estimation performance is still far from the

CRLB. Though recursive counterparts have a similar break point, their solution

accuracy is significantly better at higher SNR with the use of dense grid. Their

solution error scales down with the noise variance achieving the CRLB for SNR’s

greater than 10 dB.

In the second set of simulations, sparsity level of the signal is varied from 1

to 8 while keeping SNR at 40 dB and number of measurement at M = 100. Fig.

4.6 provides the standard deviation of the errors with respect to the simulated

sparsity levels. One immediate observation is that error variance increases with
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the number of components. For sparsity K > 1, dense grid again provides a

limited increase in the estimation performance for OMP. However when there is

only one component, OMP with a dense grid is equivalent to spectrum estimation

given in (4.23) which is the ML estimate of the parameters and achieves the lower

bound. This fact is also observed in Fig. 4.6. Most importantly the recursive

solvers provide significantly better estimates then their non-recursive counterparts

and achieves the CRLB.
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Figure 4.6: Standard deviation of the error in the solution of (a) frequency, (b)
magnitude, (c) phase of the components with respect to various levels of sparsity
at M = 100, SNR = 40 dB.

In another set of simulations, number of measurements is varied from 10 to 100

while keeping SNR at 40 dB and sparsity atK = 5. Fig. 4.7 provides the standard
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deviation of the errors with respect to the simulated number of measurements.

For the simulated case here, the Nyquist rate sampling would require 400 samples

since the bandwidth is chosen as 200Hz and time interval of samples is T = 1

s. As in the noise level analysis, regular solvers and their recursive counterparts

have similar break points which is around 10− 12% of the Nyquist rate samples,

i.e. M ≈ 45. If fewer number of samples are used, both regular solvers and their

recursive counterparts results in large error variances. Even though increase in

the number of measurements have little impact on the regular solvers due to

the off-grid problem, performance of their recursive counterparts achieves the

Cramér-Rao lower bound.
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Figure 4.7: Standard deviation of the error in the solution of (a) frequency,
(b) magnitude, (c) phase of the components with respect to various number of
measurements at K = 5, SNR = 40 dB.
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Important aspect of the proposed recursive framework is its sparse solver ori-

ented design. Discretization interval that allows a solution for K-sparse problems

depends heavily on the selected sparse solver. The conditions developed for the

solvers are generally pessimistic since they cover the worst case scenarios and

give guarantees on recovery of any K-sparse signal. However, most of the typi-

cal scenarios are well-behaved compared to the worst case. With this optimistic

approach, it is possible to relax the guarantees and use denser discretization,

allowing more coherence, than the dictated one. Since each solver has a differ-

ent reaction to the violated recovery guarantees, we conduct the following set of

experiments for better characterization of the recovery limits with respect to dis-

cretization. Fig. 4.8 shows the reconstruction errors of OMP and CoSaMP for 2

and 3 times denser discretization together with the dictated one in the proposed

framework. Having similar support selection metric, CoSaMP is able to operate

on the grid designed for OMP. However, since CoSaMP selects a group of support

vectors in each iteration, it is very sensitive to higher grid density. On the other

hand, since OMP selects a single vector in each iteration, it is robust to denser

discretization of the space as long as it is guaranteed that the main problem splits

itself all the way down to 1-sparse sub-problems.
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Figure 4.8: Effect of the improper selection of the discretization interval. CoSaMP
can operate on the grid designed for OMP, however it is very sensitive to higher
grid density.

Finally, complexity analyses provided in (4.32) and (4.42) are validated ex-

perimentally. Fig. 4.9 shows the run time of the proposed framework with OMP.

95



Unoptimized implementation of the algorithms are simulated in MATLAB run-

ning on a regular desktop computer. As found analytically, recursion on the

unbalanced binary tree has an exponential complexity in terms of the sparsity,

whereas balanced binary tree has a complexity almost linear in sparsity.
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Figure 4.9: Experimental validation and comparison of the complexity analyzes
in (4.32) and (4.42). Results are obtained with unoptimized implementations on
MATLAB.

When performance-complexity trade-off is considered, CRLB achieving per-

formance of the proposed framework comes with an expense of a higher complex-

ity. Compared to Fig. 4.6 (a), recursive framework decreases the error standard

deviation approximately 3 orders of magnitude while requiring 3 orders of mag-

nitude more time. However, gap between the simulated run time is a result of

the modular and brute-force implementation of the algorithm. More optimized

implementations have the potential to reduce the run time significantly resulting

in high performance/complexity gain.

Due to sequential solutions in sub-problems, current form of the algorithm is

not suitable for parallelization. However, it is possible to solve each sub-problem

independently from each other. Even though this approach is sub-optimal and

may take more iterations to converge, independent solutions can run on different

processors resulting in savings on the computational time. Although not reported

here, preliminary investigations indicate that CRLB is also achievable with a

small gap under independent updates.
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Chapter 5

Conclusion

Compressive sensing reconstruction techniques suffer from significant perfor-

mance degradation when there is a mismatch between the actual and the chosen

signal dictionaries. Such mismatch generally occurs in practice due to modeling

errors, parameter space discritization or simply by sampling jitter. In general,

this mismatch problem cannot be solved using denser basis. Also, density of the

basis adversely affects the algorithms due to high correlation. In this thesis, novel

perturbed greedy reconstruction techniques are proposed for the case of signal re-

construction in the presence of structured and unstructured perturbations in the

signal dictionary. Proposed the first technique, named as Parameter Perturbed

OMP (PPOMP), adapts the signal dictionary to the actual measurements by

performing perturbations of the parameters governing the signal dictionary. To

quantify the performance, Kullback-Leibler Divergence is proposed as the error

metric for off-grid target reconstruction performance. The performance of the

proposed algorithm is investigated on a delay-Doppler radar formulation that im-

plies the off-grid problem. Compared to the tested techniques, proposed method

provides significantly higher performance for a wide range of sparsity and SNR

levels. Proposed the second technique, named as Perturbed OMP (POMP), per-

forms controlled rotation based perturbations of selected support vectors. Limits

on the required perturbation for exact fit to observation signal at any sparsity is
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found. Also, for a given acceptable residual level, limits on the required perturba-

tion are also provided. A sufficiency condition that assures monotonic decrease

on the required perturbations as a function of sparsity is given. The perfor-

mance of the proposed algorithm is investigated on a time jitter example that

causes a unstructured dictionary mismatch. As an extension to SNR, Signal-to-

Perturbation (SPR) and Noise-to-Perturbation (NPR) are used for better charac-

terization of the performance limits of POMP. Results show that, in comparison

with well known CS reconstruction techniques, POMP provides efficient recon-

structions with significantly lower error in a wide range of sparsity levels. Unlike

the proposed perturbed techniques, this thesis also introduces a novel recursive

framework. The proposed framework partitions the main problem into smaller

sub-problems and discretizes the given continuous parameter space adaptively de-

pending on the sparsity of the problem in order to guarantee the reconstruction

with the specified sparse solver. The Cramér-Rao lower bound for the random

sampling case is investigated in order to find the finest discretization. Theoret-

ical complexity analyzes for different partitioning approaches are provided. The

performance of the proposed framework is investigated in sparse spectral estima-

tion problem. Results show that, in comparison with the direct usage, in the

proposed framework regular solvers can result significantly lower error variances

achieving the CRLB. Due to its modular structure, the proposed framework is

customizable and accepts any sparse solver. Also, its parallelizable form allows

high performance/complexity gains in multi-processors system.
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Appendix A

Proofs

A.1 Lipschitz Continuity of the Delay-Doppler

Objective Function

After the linearization of (3.13a), normalized cost function becomes J(u) = ‖rl−
Blu‖2

2/‖y‖2
2 and its gradient is ∇J(u) = −(2/‖y‖2

2)BH
l (rl −Blu). Therefore,

‖∇J(u1)−∇J(u2)‖2

‖u1 − u2‖2

≤ 2

‖y‖2
2

‖BH
l Bl‖2

≤ 2

‖y‖2
2

‖BH
l Bl‖∗ =

2

‖y‖2
2

tr(BH
l Bl). (A.1)

Furthermore, we can expand the trace as:

tr(BH
l Bl) =

k∑
i=1

∥∥∥∆ταi,l
∂a

∂τi,l

∥∥∥2

2
+

k∑
i=1

∥∥∥∆ναi,l
∂a

∂νi,l

∥∥∥2

2

=
k∑
i=1

|αi,l|2
(

∆2
τ

∥∥∥ ∂a
∂τi,l

∥∥∥2

2
+ ∆2

ν

∥∥∥ ∂a
∂νi,l

∥∥∥2

2

)
. (A.2)

Depending on the definition of the basis function in (3.21), the ith index of a(τ, ν)

is a(ti; τ, ν) = s(ti − τ) ej2πνti where ti is the ith time sample and s(t) = ejf(t) is

the radar waveform. Hence, a(ti; τ, ν) = ej(2πνti+f(ti−τ)) and norm of the partial
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derivative of a(ti; τ, ν) with respect to τ can be written as:

∣∣∣∂a(ti; τ, ν)

∂τ

∣∣∣ = | − jf ′(ti − τ) ej(2πνti+f(ti−τ))| = |f ′(ti − τ)|. (A.3)

For linear chirp signals, f(t) = πβ(t − Tp/2)2, and f ′(t) = 2πβ(t − Tp/2). Since

pulse duration is 0 ≤ t ≤ Tp, we have |f ′(t)| ≤ πβTp. Therefore, norm of the

partial derivative can be bounded as:∣∣∣∂a(ti; τ, ν)

∂τ

∣∣∣ = |f ′(ti − τ)| ≤ πβTp. (A.4)

Using (A.4), ‖∂a/∂τ‖2
2 can be bounded as:∥∥∥∥∥∂a∂τ

∥∥∥∥∥
2

2

=
M∑
i=1

∣∣∣∂a(ti; τ, ν)

∂τ

∣∣∣2 ≤Mπ2β2T 2
p = Mπ2∆−2

τ (A.5)

where the last part follows with the selection of β = 2B/Tp, and ∆τ = 1/(2B)

is the Rayleigh resolution spacing. Similarly, norm of the partial derivative of

a(ti; τ, ν) with respect to ν can be written as:

∣∣∣∂a(ti; τ, ν)

∂ν

∣∣∣ = | − j2πti ej(2πνti+f(ti−τ))| = |2πti|. (A.6)

Since time samples are taken from [0, NpTPRI ] range, we have |2πti| ≤ 2πNpTPRI .

Norm of the partial derivative can be bounded as:∣∣∣∂a(ti; τ, ν)

∂ν

∣∣∣ = |2πti| ≤ 2πNpTPRI . (A.7)

Using (A.7), ‖∂a/∂ν‖2
2 can be bounded as:∥∥∥∥∥∂a∂ν

∥∥∥∥∥
2

2

=
M∑
i=1

∣∣∣∂a(ti; τ, ν)

∂ν

∣∣∣2 ≤M4 π2N2
p T

2
PRI = M4π2∆−2

ν (A.8)
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where ∆ν = 1/(NpTPRI) is the Rayleigh resolution spacing. Combining (A.2),

(A.5) and (A.8), tr(BH
l Bl) can be upper bounded as:

tr(BH
l Bl) ≤

k∑
i=1

|α1,l|2(Mπ2 + 4Mπ2) = 5π2M‖αl‖2
2. (A.9)

Notice that αl is the coefficients of the projection of y onto the estimated pa-

rameters. Since ‖a(τ, ν)‖2
2 = M , we have M‖αl‖2

2 ≈ ‖y‖2
2. Using (A.9), (A.1)

can be upper bounded as:

‖∇J(u1)−∇J(u2)‖2

‖u1 − u2‖2

≤ 10π2 = L. (A.10)
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A.2 Proof of Theorem 4

Let Sk = [s1, s2, . . . , sk] be the matrix whose columns correspond to the current

estimate for the support of x. Since Sk is full rank, we can defineM k = (STkSk)
−1

and S†k = M kS
T
k . The following equations provide recursive relations for M k+1

and S†k+1:

M k+1 =

(
M k + d(S†ksk+1)(S†ksk+1)T −d(S†ksk+1)

−d(S†ksk+1)T d

)
, (A.11)

S†k+1 = M k+1S
T
k+1 =

(
S†k − d S

†
k sk+1 s

T
k+1,r

d sTk+1,r

)
, (A.12)

where d = 1/‖sk+1,r‖2
2 and sk+1,r = sk+1 − SkS†ksk+1. Since the `1 norm of a

partitioned vector is the sum of the `1 norms of each partition:

‖S†k+1y‖1 = ‖S†ky − d S
†
k sk+1 s

T
k+1,ry‖1 + ‖d sTk+1,ry‖1, (A.13)

which can be written as:

‖S†k+1y‖1 = ‖S†k(y − u)‖1 + |λ|, (A.14)

where λ = d sTk+1,ry and u = λ sk+1.

To have φ∗k+1 ≤ φ∗k, we need the following inequality to hold true:

‖α(k)‖1

‖α(k+1)‖1

≤ ‖y(k)
⊥ ‖2

‖y(k+1)
⊥ ‖2

= β. (A.15)

Using the triangle inequality on Eq. A.14, the following bound can be ob-

tained,

|λ| − ‖S†ku‖1 ≤ ‖S†k+1y‖1 − ‖S†ky‖1. (A.16)
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Since ‖S†ku‖1 = ‖S†kλ sk+1‖1 = |λ| ‖S†ksk+1‖1, Eq. A.16 becomes:

|λ| (1− ‖S†ksk+1‖1) ≤ ‖S†k+1y‖1 − ‖S†ky‖1. (A.17)

By adding (β − 1)‖S†k+1y‖1 to both sides of Eq. A.17, we obtain:

(β − 1)‖S†k+1y‖1 + |λ| (1− ‖S†ksk+1‖1) ≤ β‖S†k+1y‖1 − ‖S†ky‖1. (A.18)

The desired condition on angle decrease requires β‖S†k+1y‖1 ≥ ‖S†ky‖1, which

is always achieved if:

0 ≤ (β − 1)‖S†k+1y‖1 + |λ| (1− ‖S†ksk+1‖1), (A.19)

or equivalently:

‖S†ksk+1‖1 ≤ 1 +
(β − 1)‖α(k+1)‖1

|λ|
. (A.20)

Therefore, by using Eq. A.15, Eq. A.20 and definition of λ, the non-negative

constant γ in the statement of Theorem 4 can be obtained as:

γ =

( ∥∥y(k)
⊥
∥∥

2∥∥y(k+1)
⊥

∥∥
2

− 1

)∥∥α(k+1)
∥∥

1

∥∥sk+1 − SkSk†sk+1

∥∥2

2∣∣sTk+1 y
(k)
⊥
∣∣ , q.e.d. (A.21)
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A.3 Derivation of CRLB for Single Frequency

Estimation

For sampling times t ∈ <M , observations of a single frequency tone in noise can

be written as:

yi = α ejφ ej ω ti + ni, (A.22)

= α cos(ω ti + φ) + wi + j
(
α sin(ω ti + φ) + ui

)
where wi and ui are i.i.d. Gaussian noise with zero mean and variance σ2. Since

the noise is circularly symmetric, real and imaginary parts of the observations

are independent. Therefore we can write the combined observation vector as:

y =



α cos(ω t1 + φ)
...

α cos(ω tM + φ)

α sin(ω t1 + φ)
...

α sin(ω tM + φ)


︸ ︷︷ ︸

µ(α,φ,ω)

+



w1

...

wM

u1

...

uM


︸ ︷︷ ︸
z

= µ(α, φ, ω) + z, (A.23)

where each zi is an i.i.d. Gaussian noise with zero mean and variance σ2. There-

fore, y is an i.i.d. Gaussian with mean µ(α, φ, ω) and variance σ2. Since co-

variance matrix is independent from the parameters and diagonal with constant

elements, the Fisher information matrix is written as:

I =
1

σ2


∂µT

∂α

∂µ
∂α

∂µT

∂α

∂µ
∂φ

∂µT

∂α

∂µ
∂ω

∂µT

∂φ

∂µ
∂α

∂µT

∂φ

∂µ
∂φ

∂µT

∂φ

∂µ
∂ω

∂µT

∂ω

∂µ
∂α

∂µT

∂ω

∂µ
∂φ

∂µT

∂ω

∂µ
∂ω

 . (A.24)

Explicitly computing each element:

∂µT

∂α

∂µ

∂α
= M,

∂µT

∂α

∂µ

∂φ
=
∂µT

∂α

∂µ

∂ω
= 0.
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∂µT

∂φ

∂µ

∂φ
= α2M,

∂µT

∂φ

∂µ

∂ω
= α2

M∑
i=1

ti,
∂µT

∂ω

∂µ

∂ω
= α2

M∑
i=1

t2i

Assuming sampling times are taken from an i.i.d. random variables:

E[I] =
Mα2

σ2


1/α2 0 0

0 1 E[ti]

0 E[ti] E[t2i ]

 .

Then the inverse of the expected Fisher information matrix, hence the corre-

sponding CRLB are as follows:

(
E[I]

)−1
=

(σ/α)2

M


α2 0 0

0 E[t2i ]/var(ti) −E[ti]/var(ti)

0 −E[ti]/var(ti) 1/var(ti)

 .
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