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ABSTRACT

NOVEL SOLUTIONS TO CLASSICAL SIGNAL
PROCESSING PROBLEMS IN OPTIMIZATION

FRAMEWORK

Yaşar Kemal Alp

Ph.D. in Electrical and Electronics Engineering

Supervisor: Prof. Dr. Orhan Arıkan

June, 2014

Novel approaches for three classical signal processing problems in optimization

framework are proposed to provide further flexibility and performance improve-

ment. In the first part, a new technique, which uses Hermite-Gaussian (HG) func-

tions, is developed for analysis of signals, whose components have non-overlapping

compact time-frequency supports. Once the support of each signal component

is properly transformed, HG functions provide optimal representations. Con-

ducted experiments show that proposed method provides reliable identification

and extraction of signal components even under severe noise cases. In the sec-

ond part, three different approaches are proposed for designing a set of orthogonal

pulse shapes for ultra-wideband communication systems with wideband antennas.

Each pulse shape is modelled as a linear combination of time shifted and scaled

HG functions. By solving the constructed optimization problems, high energy

pulse shapes, which maintain orthogonality at the receiver with desired time-

frequency characteristics are obtained. Moreover, by showing that, derivatives

of HG functions can be represented as a linear combination of HGs, a simple

optimal correlating receiver structure is proposed. In the third part, two dif-

ferent methods for phase-only control of array antennas based on semidefinite

modelling are proposed. First, antenna pattern design problem is formulated as

a non-convex quadratically constraint quadratic problem (QCQP). Then, by re-

laxing the QCQP formulation, a convex semidefinite problem (SDP) is obtained.

For moderate size arrays, a novel iterative rank refinement algorithm is proposed

to achieve a rank-1 solution for the obtained SDP, which is the solution to the

original QCQP formulation. For large arrays an alternating direction method of

multipliers (ADMM) based solution is developed. Conducted experiments show

that both methods provide effective phase settings, which generate beam patterns

under highly flexible constraints.
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ÖZET

BİLİNEN SİNYAL İŞLEME PROBLEMLERİNE

ENİYİLEME ÇERÇEVESİNDE YENİ ÇÖZÜMLER

Yaşar Kemal Alp

Elektrik-Elektronik Mühendisliği, Doktora

Tez Yöneticisi: Prof. Dr. Orhan Arıkan

Haziran, 2014

Bilinen üç sinyal işleme problemine, daha esnek ve daha başarılı çözümler

elde etmek için eniyileme çerçevesinde yeni çözüm yöntemleri önerilmiştir. İlk

kısımda, zaman-frekans destek bölgeleri örtüşmeyen bileşenlerden oluşan sinyal-

lerin analizi için Hermit-Gauss (HG) fonksiyonlarını kullanan yeni bir yöntem

geliştirilmiştir. HG fonksiyonları, uygun zaman-frekans dönüşümleri uygulanan

sinyal bileşenlerini eniyi şekilde temsil edebilmektedir. Yapılan deneylerde,

önerilen yöntemin çok yüksek gürültü seviyelerinde dahi sinyal bileşenlerinin

tespitinin ve kestiriminin yüksek başarım ile yapabildiği gözlemlenmiştir. İkinci

kısımda, geniş bantlı antenlere sahip çok geniş bantlı iletişim sistemleri için bir-

birine dik elemanlardan oluşan darbe kümesi tasarımı için üç farklı yaklaşım

önerilmiştir. Herbir darbe zamanda kaydırılmış ve ölçeklendirilmiş HG fonksiy-

onlarının doğrusal kombinasyonu olarak modellenmiştir. Oluşturulan eniyileme

problemlerini çözerek almaç tarafında diklik koşulunu sağlayan ve istenilen

zaman-frekans niteliklerine sahip yüksek enerjili darbe şekilleri elde edilmiştir.

Ayrıca, HG fonksyionlarının türevlerinin yine HG fonksiyonlarının doğrusal

kombinasyonu olarak ifade edilebildiği gösterilerek, çok basit yapıda olan op-

timum bağdaştırmalı almaç yapısı önerilmiştir. Üçüncü kısımda ise faz dizili

antenlerin optimum kontrolü için yarıkesin modelleme tabanlı iki farklı yöntem

önerilmiştir. İlk olarak, anten örüntüsü tasarlama problemi dışbükey olmayan

karesel kısıtlamalı karesel problem (KKKP) olarak modellenmiştir. Daha sonra,

oluşturulan KKKP gevşetilerek dışbükey olan yarıkesin problem (YKP) elde

edilmiştir. Orta büyüklükteki dizi antenler için, elde edilen YKP’ye kerte-1 olan

bir çözüm bulmak için döngüsel kerte arıtım yöntemi geliştirilmiştir. Daha büyük

dizi antenler içinse yön değiştirmeli çarpanlar tabanlı yeni bir yöntem önerilmiştir.

Yapılan deneylerde, önerilen her iki yöntem ile istenilen özelliklere sahip hüzme

örüntülerini oluşturan faz değerlerinin kestirilebildiği gözlemlenmiştir.
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zaman-frekans analizi, çok geniş bantlı iletişim, eniyileme problemi, bağdaştırmalı
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Chapter 1

Introduction

Many signal processing problems can be cast as an optimization problem of the

form

min
x

f0(x)

s.t. fk(x) ≤ bk k = 1, .., K, (1.1)

where x ∈ Rn is the vector of variables, f0 : R
n → R is the objective function and

fk : Rn → R, k = 1, .., K, are the constraint functions. Typically, constructed

problems are non-convex and extremely difficult to solve. For such cases, there are

algorithms, which provide locally optimum solutions. When the objective func-

tion and constraints are convex with appropriate forms, the optimization problem

can be solved to obtain its global optimizer efficiently by deploying available con-

vex solvers. With the development of the high precision, fast convex solvers,

modelling the physical problem in a convex optimization framework has become

an active research area. In this thesis, optimization based novel approaches are

utilized for solving signal processing problems from different areas.

In the first part of the thesis, decomposition of a signal into its components,

which have compact time-frequency supports (TFS), is discussed. In radar,

sonar, seismic, acoustic, speech and biomedical signal processing applications,

the acquired data contains single or multiple components with compact TFSs

[1, 2, 3, 4, 5, 6]. Estimation of each component from the noisy measurement is an
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important application of time-frequency analysis [7]. Although there are wavelet

and chirplet based techniques for decomposition of signals into its components

having generalized time-bandwidth products of around 1, they are not well suited

for analysis of signals, whose components have larger TFSs. For analysis of such

signals, we are proposing a new technique based on adaptive Hermite-Gaussian

(HG) expansion [8, 9, 10].

The proposed technique makes use of adaptive HG basis expansion to esti-

mate individual signal components. HG functions share many desired properties.

They form an orthonormal basis for the space of finite energy signals, which are

piecewise smooth in every finite interval [11]. They also provide the highest en-

ergy concentration inside the circular TFS around the origin in the time-frequency

plane. Hence, HG basis provides the optimal representation for the signal compo-

nents, which have circular TFSs around the origin. However, this representation

is no longer optimal for signals having non-circular TFSs positioned away from

the origin. For such signal components, we propose an adaptive pre-processing

stage, where TFS of the signal component is transformed to a circular one centred

around the origin so that it can be efficiently represented by HGs. The expansion

order is estimated by a noise penalized cost function. Then, the desired signal

component estimate is obtained by back transforming the identified signal compo-

nent. For signals with multiple components that do not have overlapping TFSs,

an EM based iterative procedure is proposed for joint analysis and expansion of

individual signal components in HG basis.

In the second part of the thesis, design of orthogonal pulse shapes for ultra-

wideband (UWB) communications is investigated. Ultra-wideband (UWB) tech-

nology has attracted great attention for designing systems for short range, high

data rate communications [12, 13, 14, 15]. Since these systems use extremely

short pulse durations, they occupy a very broad spectrum and interfere with

existing systems in the same area. To impose restrictions on the spectrum of

these systems, U.S. Federal Commission of Communications (FCC) has released

the spectral mask [16]. Although the spectral mask constraints the transmission

power of the UWB system, to maximize the received power at the receiver side,

high energy pulse shapes, which fully utilize the spectral mask, should be used.
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Also by using multiple pulse shapes, which are orthogonal to each other, channel

utilization can be improved.

Many methods have been reported for designing multiple orthogonal wave-

forms for UWB communications [17, 18, 19, 20, 21]. These methods use the

designed pulse shapes as correlators at the receiver. However, high-efficiency

antennas are typically resistive-capacitive devices which often behave as differen-

tiators [22, 23]. Hence the received signals are not orthogonal. In [24], a pulse

shape design method, which preserves the orthogonality of the pulse shapes at the

receiver in case of differentiating antennas, is proposed. However, in this method

no spectral mask constraints are utilized. In [25], a simplified suboptimal struc-

ture for non-matched correlation detection is proposed, where the received pulses

are correlated with the locally generated signals, which are different than the

received pulse shapes. Although the generated pulses are adapted the spectral

mask, the receiver structure is not optimal.

To design high energy pulse shapes, which preserve orthogonality at the re-

ceiver, while satisfying the spectral mask constraints during the propagation, we

propose three different approaches within the optimization framework [26, 27].

We model each pulse shape as a linear combination of time-shifted and scaled

HG functions. The transmitting and receiving antennas are modelled as differ-

entiators with a certain gain. Although three different optimization problems

are constructed, all of them use the following design criteria: 1) Energy of the

received pulse shapes in their effective passband should be maximized to improve

the detection performance at the receiver side; 2) Designed pulse shapes should

satisfy the spectral mask constraints during the propagation; 3) Duration of the

pulse shapes should be smaller than the given pulse duration at the transmitter;

4) All the pulse shapes should be orthogonal at the receiver. By showing that

any HG function can be represented as a superposition of the HGs, an optimal

correlating receiver structure with a simple form is proposed.

In the final part of the thesis, phase-only control of array antennas is discussed.

Array antennas are used in many applications such as radar [28], sonar [29],

communications [30], radio astronomy [31], seismology and tomography [32]. By
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controlling the amplitude level and phase of the signal at each element, the beam

pattern of the array can be steered to different directions, sidelobe levels can be

suppressed, mainlobe beam width can be reduced [33]. However, due to cost

constraints and hardware limitations, many systems do not have an individual

amplitude controller for each element. Hence, optimal control of array beam

pattern by varying only the element phases is desired.

Phase-only control of antenna arrays is a widely investigated area in array

signal processing. Adaptive sidelobe nulling based on the autocorrelation func-

tion of the received signal is proposed in [34, 35]. However, proposed method can

not be used for the transmit antenna case. A phase perturbation based method,

where the non-linear phase-only nulling problem is linearised by assuming that

the phase perturbations are small, is proposed in [36]. Since the phase pertur-

bations are assumed to be small, there would be severe problems in hardware

implementations. In [37, 38, 39], particle swarm optimization and genetic algo-

rithm are used to minimize a certain cost function of element phases. However,

since the cost function is non-convex, the optimality of the provided solution is

not guaranteed.

For phase-only control of array pattern, we define two specific problems: 1)

Phase-only beam synthesis for moderate size arrays; 2) Phase-only sidelobe sup-

pression for large arrays. In the first problem, element phases, which satisfy the

given constraints limiting the sidelobe and mainlobe power, are to be estimated.

In the second problem, element phases, which minimize the total radiation power

at given radiation directions while satisfying the desired mainlobe power level, are

to be estimated. Unlike the previously proposed approaches in the literature, a

convex programming based method is proposed for both of the problems. First a

non-convex, quadratically constrained quadratic problem (QCQP) is constructed

to model the physical problem. Then, by relaxing the constructed QCQP, a

convex semidefinite problem (SDP) is obtained, for which the global optimum

solution can be obtained efficiently. Although the resulting SDP is convex, its

optimal solution is almost never a rank-1 matrix. For the first problem, to achieve

a rank-1 solution, we propose a novel iterative rank refinement algorithm, where

in each step an SDP with additional convex constraints are solved [40]. We show
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that, after a few iterations, the optimal solution of the constructed SDP has very

fast decaying singular values, converging to a rank-1 solution. This algorithm is

also used for the FIR filter design problem in [41, 42]. Although the proposed

method can be utilized for solving the later problem for moderate size arrays, it

is not appropriate for large arrays. Hence, we propose an alternating direction

method of multipliers (ADMM) based solution for this problem [43, 44]. By uti-

lizing ADMM, the constructed SDP is divided into smaller subproblems whose

solutions are either analytically known or easy to compute. It is demonstrated

on practically significant applications that, by using the proposed ADMM based

method, phase values for generating desired beam characteristics for large arrays

having more than 500 elements can be obtained.
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Chapter 2

Support Adaptive

Hermite-Gaussian Expansions: A

New Tool For Time-Frequency

Analysis of Compact Support

Signals

2.1 Introduction

Hermite-Gaussian (HG) functions constitute a natural basis for signals with com-

pact time-frequency supports (TFSs). They have found applications in various

fields of signal processing. In image processing, Hermite Transform has been

proposed for capturing local information [45]. Another image processing applica-

tion is given in [46] for rotation of images. Also, in [47], HG functions are used

for reconstruction of video frames. In telecommunications, highly localized pulse

shapes both in time and frequency domains can be generated by using linear com-

binations of the HG functions [48]. As part of biomedical applications, represen-

tation of EEG and ECG signals in terms of HGs also have been proposed [49, 50].
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In [51], HG functions are used for characterization of the origins of vibrations in

swallowing accelerometry signals. An electromagnetics application is reported in

[52], where the time domain response of a three dimensional conducting object

excited by a compact TFS function is modeled by using HG expansions to obtain

a an efficient extrapolator based on this expansion. Another electromagnectics

application reported in [53], where a new method for evaluating distortion in

multiple waveform sets in UWB communications has been proposed. Finally, as

signal processing applications, HG functions are used for designing high resolu-

tion, multi-window time-frequency representation, where different order HGs are

employed to realize multiple windows, and non-stationary spectrum estimation

[54, 55, 56, 57].

Single or multi-component signals with compact TFSs are frequently encoun-

tered in radar, sonar, seismic, acoustic, speech and biomedical signal processing

applications [1, 2, 3, 4, 5, 6]. Decomposition of such a signal into its components

is an important application of time-frequency analysis [7]. For signals whose

components have generalized time-bandwidth products of around 1, wavelet and

chirplet based signal analysis techniques have been developed [58, 59, 60].

In this work, we are proposing a new signal analysis technique for signals

whose components may have larger time-bandwidth products. Such signals are

commonly employed in electronic warfare, including radar and sonar applica-

tions, because of their high resolution properties. Furthermore, biomedical sig-

nals including EEG and ECG have complicated time-frequency structures that

significantly benefits from the proposed approach. The proposed signal analysis

technique makes use of adaptive HG basis expansion to estimate individual signal

components. It is a well known fact that HG functions form an orthonormal basis

for the space of finite energy signals which are piecewise smooth in every finite

interval [11]. What makes HGs special among other types of basis functions is

their optimal localization properties in both time and frequency domains. For any

circular TFS around the origin, HGs provide the highest energy concentration in-

side that region [61, 62, 63]. Therefore, if a signal component has a circular TFS

around the origin, its representation by using the HG basis provides the optimal

representation for a given representation order. However, if the signal component
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has a non-circular TFS positioned away from the origin, its HG representation is

no longer optimal. Here, we propose an adaptive pre-processing stage where TFS

of the signal component is transformed to a circular one centred around the origin

so that it can be efficiently represented by HGs. The expansion order is estimated

by a noise penalized cost function. Then, the desired representation is obtained

by back transforming the identified signal component. For signals with multiple

components that do not have overlapping TFSs, an EM based iterative procedure

is proposed for joint analysis and expansion of individual signal components in

HG basis.

The outline of this chapter is as follows. In Section 2.2, we give a brief review

of HG functions and emphasize their fundamental properties. In Section 2.3,

the proposed pre-processing stage is introduced. EM based iterative component

estimation for analysis of multi-component signals and determination of optimal

expansion orders are explained in Section 2.4. Results on synthetic and real

signals are provided in Section 2.5. Conclusions are given in Section 2.6.

2.2 Review of Hermite-Gaussian Functions

HG functions form a family of solutions to the following non-linear differential

equation:

f ′′(t) + 4π2

(

2n+ 1

2π
− t2

)

f(t) = 0. (2.1)

The nth order HG function hn(t) is related to the nth order Hermite polynomial

Hn(t) as

hn(t) =
21/4√
2nn!

Hn(
√
2πt)e−πt2 , (2.2)

where, with the initialization of H0(t) = 1 and H1(t) = 2t, Hn(t) can be recur-

sively obtained as

Hn+1(t) = 2tHn(t)− 2nHn−1(t). (2.3)

Therefore, HG functions can also be computed recursively. A detailed discus-

sion on HG functions and Hermite polynomials are available in [64] and [65],

respectively. HG functions, of which the first four are shown in Fig.2.1, form
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Figure 2.1: The first four HG functions: (a) h0(t); (b) h1(t); (c) h2(t); (d) h3(t).

an orthonormal basis for the space of finite energy signals which are piecewise

smooth in every finite [−τ, τ ] interval [11]. Hence, if s(t) is in this space, it can

be represented as

s(t) =

∞
∑

n=0

αnhn(t), (2.4)

where the expansion coefficients are1 :

αn =

∫

hn(t)s(t)dt. (2.5)

Furthermore, HG functions are eigenvectors of the Fourier transformation [66]:

Fhn(t) = λnhn(t), (2.6)

where F is the Fourier transform operator defined as

Fs(t) =
∫

s(t)e−j2πftdt, (2.7)

and λn = e−j π
2
n is its nth eigenvalue. Similarly, the fractional Fourier transform2

(FrFT) of order −2 ≤ a < 2, also admits the HG functions as its eigenfunctions

1All the integrals in this chapter are computed from −∞ to ∞ unless otherwise is stated.
2Definition of fractional Fourier transform is provided in Appendix-A.
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Figure 2.2: Wigner-Ville distribution of (a) h0(t); (b) h5(t); (c) h15(t); (d) h45(t).

[67]:

Fahn(t) = e−j π
2
anhn(t), (2.8)

where Fa is the FrFT operator of order a. Hence, FrFT of s(t) can be obtained

as:

Fas(t) =

∞
∑

n=0

αne
−j π

2
anhn(t). (2.9)

As seen from equation (2.8), the FrFT simply scales HGs. Thus, HG functions

have circular support in the time-frequency plane. To demonstrate this fact, in

Fig.2.2, Wigner-Ville distribution3 of h0(t), h5(t), h15(t) and h45(t) are shown.

3Definition of Wigner-Ville distribution is provided in Appendix-A.
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2.3 Support Adaptive Hermite-Gaussian Ex-

pansion

A piecewise smooth signal s(t) can be approximated by using the following Lth

order HG expansion:

s̃(L)(t) =

L
∑

n=0

αnhn(t), (2.10)

with its corresponding normalized approximation error:

e(L) =

∫

|s(t)− s̃(L)(t)|2dt
∫

|s(t)|2dt , (2.11)

where αn are obtained as in (2.5). Since the basis functions are orthonormal, in

the absence of noise, by increasing the expansion order L, the approximation er-

ror can be decreased. However, for noisy s(t), to avoid noise fitting the expansion

order should not be increased indefinitely. Thus, in the noisy case, a low order

representation with a reasonably small approximation error is desired. If s(t) has

circular TFS centred at the origin of the time-frequency plane, HG basis provides

the optimal representation in the sense that the fewest of number of basis func-

tions are required for its representation [61, 62, 63]. If s(t) has a non-circular

TFS away from the origin, high number of HGs would be used and most of them

will have their support largely dominated by noise or other signal components

that might be present, rather than the signal component. This fact is demon-

strated in Figs.2.3 and 2.4. In Fig.2.3, synthetically generated noisy observations

of non-circular support (a) and circular support (b) signals are shown together

with their spectrograms4 provided in (c) and (d), respectively. In Fig.2.4, the

actual noise-free signal components and their respective HG approximations are

shown. Even at this low SNR, the signal with circular TFS is successfully ap-

proximated by HG functions. However, in the case of non-circular support, the

representation has significant noise artifacts. Since in practice, TFSs of signal

components are not necessarily circular nor centred at the origin, HG represen-

tation of them do not provide desirable results. To overcome this problem, we

propose a pre-processing stage which transforms the TFS of the signal component

4Definition of spectrogram is provided in Appendix-A.
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to a circular one centred around the origin. This transformation is achieved by

applying sequentially three time-frequency operations: 1) time-frequency trans-

lation, 2) instantaneous-frequency shifting and 3) scaling. Then, the transformed

signal component is represented by HG basis. Finally, obtained representation

is transformed back to the original support of the component by applying the

corresponding inverse operations as a post-processing stage. In the proceeding

subsections, first, proposed operations operating on a mono-component, noise

free signal s(t) will be presented. Then, how to apply these operations on noisy

observations of multi-component signals will be detailed.
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2.3.1 Time-Frequency Translation Operation

As a first step of support transformation, as in [5], time and frequency centers of

a mono-component signal s(t) are obtained by using

tc =

∫

t|s(t)|2dt
∫

|s(t)|2dt , (2.12)

fc =

∫

f |S(f)|2df
∫

|s(t)|2dt , (2.13)

where S(f) is the Fourier transform of s(t). Then, the signal is translated in the

time-frequency plane so that its time-frequency center is at the origin:

sc(t) = s(t+ tc)e
−j2πfct. (2.14)

2.3.2 Instantaneous Frequency Shifting Operation

To represent sc(t) with fewest number of HG functions, its TFS should fit into

a circular region centered at the origin in the time-frequency plane. This means

that, the generalized time-bandwidth product (GTBP) of the translated signal

sc(t) should be minimized [58]. GTBP of sc(t) can be minimized by shifting its

instantaneous frequency (IF) to the dc level for all time instants. IF of sc(t) can

be computed as

fc(t) =

∫

fWsc(t, f)df
∫

Wsct, f)df
, (2.15)

where Wsc(t, f) is the Wigner-Ville distribution of sc(t) [68]. Note that since

sc(t) is mono-component and noise free, computed fc(t) is the true instantaneous

frequency of sc(t). Then, IF shifting operation is applied to sc(t) as:

sφ(t) = sc(t)e
−j2πφc(t), (2.16)

where φc(t) is the instantaneous phase of sc(t) defined as the cumulative IF func-

tion [68]:

φc(t) =

∫ t

−∞
fc(τ)dτ. (2.17)
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2.3.3 Scaling Operation

Once time-frequency translation and IF shifting operations are applied to s(t),

it should be scaled by a proper scaling factor so that its effective duration and

bandwidth are equalized. Effective duration and bandwidth of sφ(t) are defined

as [68]:

Dφ =

[
∫

(t− tφ)
2|sφ(t)|2dt

∫

|sφ(t)|2dt

]1/2

, (2.18)

Bφ =

[
∫

(f − fφ)
2|Sφ(f)|2df

∫

|sφ(t)|2dt

]1/2

, (2.19)

where Sφ(f) is the Fourier transform of sφ(t), tφ and fφ are, respectively, time

and frequency centers of the sφ(t) given by

tφ =

∫

t|sφ(t)|2dt
∫

|sφ(t)|2dt
, (2.20)

fφ =

∫

f |Sφ(f)|2df
∫

|sφ(t)|2dt
. (2.21)

Effective duration and bandwidth of sφ(tν) are equalized by choosing the scaling

factor ν as:

ν =
√

Dφ/Bφ . (2.22)

Following this scaling, effective duration and bandwidth of sφ(tν) are both equal

to
√

DφBφ. After applying the scaling operation, we get:

ss(t) = s(tν + tc)e
−j2πφ(tν+tc). (2.23)

The effect of the proposed time-frequency operations on the TFS of a mono-

component signal is demonstrated in Fig.2.5. In (a), TFS of the signal is shown.

Here, the radius R effectively determines expansion order for the signal achiev-

ing a reasonably small approximation error. After applying (b) time-frequency

translation, (c) IF shifting and (d) scaling operations, TFS of the resulting signal

fits into a circular region with a smaller area centred around the origin of the

time-frequency plane. Since R′ is smaller than R, the signal can be represented
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with significantly less number of basis functions than its original version. Once

these transforms are applied to s(t) as the pre-processing stage, resulting signal

ss(t) is approximated by an Lth order expansion:

s̃s(t) =
L
∑

n=0

αnhn(t), (2.24)

where αn =
∫

hn(t)ss(t)dt. Inverse operations are applied to this approximation

to obtain an estimate of the original signal s(t):

s̃(t) = s̃s(
t− tc
ν

)ej2πφ(t). (2.25)

In Fig.2.6, block diagram of the proposed support adaptive HG expansion for

a mono-component signal s(t) is shown in a compact form. First, pre-processing

stage is applied to s(t) to transform its TFS to a circular region centered around

the origin. The input p denotes the parameter vector consisting of the required

parameters for the pre-processing stage, i.e., p = {tc, f(t), v}. Another impor-

tant input parameter of the mono-component signal analysis is the representation

order L, which will be discussed in detail in Section 2.4. For a reasonable ap-

proximation error, L is chosen according to the area of the effective TFS of ss(t).

Since ss(t) has compact circular TFS, time-bandwidth product of ss(t) is a good

measure for its TFS [58]. The HG basis expansion in (2.24) essentially performs

a representation of ss(t) by using L+ 1 basis functions where L+ 1, the degrees

of freedom in the representation, is approximately same as the time-bandwidth

product of ss(t). Given p and L, ss(t) is approximated by s̃s(t) as in (2.24).

Then, inverse operations are applied to transform back the support of the ob-

tained signal estimate s̃s(t) to its original location.

To demonstrate the performance of the proposed time-frequency transforms,

a synthetic mono-component, noise free signal whose real part is shown in

Fig.2.7(a), was generated. The spectrogram of the signal before and after the

pre-processing stage are also provided in (b) and (c), respectively. Note that,

the proposed time-frequency operations successfully translate the TFS of the

signal to a circular region around the origin. In Fig.2.8, we compare the normal-

ized approximation error defined in (2.11) as a function of approximation order
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Figure 2.5: Illustration of the proposed pre-processing stage: (a) TFS of the
signal; (b) After time-frequency translation; (c) After instantaneous frequency
shifting; (d) After scaling. R and R′ denote the radius of the smallest circle,
which encloses the signal support.
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Figure 2.6: Support adaptive HG expansion for mono-component signals.
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Figure 2.7: (a) Synthetically generated signal. Its spectrogram (b) before and
(c) after the pre-processing stage. While computing the spectrogram, a Gaussian
window with standard deviation 1/

√
2π sec was used.

L, (i) when no operations is applied to the signal (marked with squares), (ii)

when only time-frequency translation is applied (marked with stars) and (iii)

when all the proposed operations are applied (marked with circles). Note that in

Fig.2.8 approximation order 0 corresponds to the HG representation by using a

single HG function of order 0. Therefore, depending on the effectiveness of the

pre-processing, the resultant error of the representation even with a single HG

function makes a difference. As illustrated, proposed pre-processing stage signif-

icantly decreases the required number of HG functions to achieve a reasonably

small approximation error. In Fig.2.9, the original signal and its order-10 HG

approximation after applying the proposed pre-processing stage are shown for a

normalized approximation error of -25dB. Note that the same level of approxi-

mation error would be achieved by using more than 70 basis functions when no

pre-processing is performed and more than 35 basis functions when only time-

frequency translation is applied.
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2.4 Iterative Component Estimation for Analy-

sis of Multi-Component Signals

In this section, we discuss the analysis of multi-component signals by using the

proposed method. Consider the multi-component signal in noise:

x(t) = s1(t) + s2(t) + ... + sK(t) + n(t) , (2.26)

where sk(t), k = 1, .., K are signal components with non-overlapping compact

TFSs and n(t) is the additive observation noise with variance σ2, which is as-

sumed to have circularly symmetric white Gaussian distribution. For this multi-

component signal, the proposed mono-component analysis technique can not be

applied directly to obtain reliable estimates of the pre-processing stage parameters

{tc, f(t), v}. For estimating each component, the parameters belonging to that

particular component should be estimated from the available observation x(t),

separately. For this purpose, we propose an EM like iterative, fully automated

component estimation technique.

The pre-processing stage parameters for the kth signal component sk(t) can

be estimated from its spectrogram. Since the signal components are assumed to

have non-overlapping TFSs, the spectrogram of sk(t) can be estimated by run-

ning a segmentation algorithm on the spectrogram of x(t). At the initialization

step i = 0 of the proposed iterative technique, the spectrogram of the available

observation |X(t, f)|2 is computed, where X(t, f) denotes the short time Fourier

transform5 (STFT) of x(t). While computing the spectrogram, a Gaussian win-

dow with a valid variance which resolves all the signal components in the resulting

time-frequency distribution is used. This variance can be chosen by observing the

time and frequency support of x(t). Let Tx and Bx denote the observed time and

frequency support of x(t), respectively. The standard deviation of the Gaussian

window for time-bandwidth product optimal STFT is given by
√
Tx/
√
2πBx [58].

Then, we use a segmentation algorithm to obtain the initial TFSs of individual

signal components. For this purpose, Chan-Vese active contours can be utilized

5Definiton of short time Fourier transform is provided in Appendix-A.
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[69]. In this segmentation technique, by minimizing an appropriately chosen en-

ergy functional, intensity images are segmented with enclosing contours. Ideally,

this energy functional is minimized when the active contours are settled on the

boundary of the regions. However, to improve the performance, in [69], authors

proposed a variety of user defined stopping criteria for different types of images.

In our case, the active contour iterations are terminated when the average in-

tensity along a current contour is larger than a threshold which is chosen as

pi1 = λi|X(t̄, f̄)|2 + (1− λi)σ2/Fs, where, σ
2 is the noise variance, Fs is the sam-

pling frequency, |X(t̄, f̄)|2 is the maximum value of |X(t, f)|2 and 0 < λi < 1 is

the parameter controlling the threshold level at iteration i. Here the choice of λi

is critical, since a very low λi may yield a single TFS by combining TFSs of all

the components (occurs more often when the TFSs of the components are close

to each other), on the other hand, a very large λi may force the segmentation

algorithm to miss the TFSs of low amplitude components. After choosing an

appropriate λi, the segmentation algorithm returns what will be called as ini-

tial time-frequency masks Mk(t, f), k = 1, 2, .., K for each component. Then,

T̃k(t, f) = X(t, f)Mk(t, f) serves as an initial estimate for the STFT of sk(t).

Time-frequency translation parameters of the kth component can be estimated

from T̃k(t, f) by using:

t̃kc =

∫ ∫

t|T̃k(t, f)|2dtdf
∫ ∫

|T̃k(t, f)|2dtdf
, (2.27)

f̃k
c =

∫ ∫

f |T̃k(t, f)|2dtdf
∫ ∫

|T̃k(t, f)|2dtdf
. (2.28)

Similarly, IF of sk(t) can be estimated by:

f̃k(t) =

∫

f |T̃k(t, f)|2df
∫

|T̃k(t, f)|2df
. (2.29)

Once these parameters are estimated, time-frequency translation and IF shifting

are applied to the available observation:

xk
φ(t) = x(t + tkc )e

−j2πφk(t+tkc )

= sφ,k(t) +

K
∑

h=1
h 6=k

sh(t+ tkc )e
−j2πφk(t+tkc ) + nk

φ(t), (2.30)
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where nk
φ(t) is the resulting noise process and sφ,k(t) = sk(t+ tkc )e

−j2πφk(t+tkc ). To

obtain the scaling factor, STFT of the translated and IF shifted signal component

sφ,k(t) should be estimated. Let Xk
φ(t, f) denote the STFT of xk

φ(t). To obtain an

estimate of STFT of sφ,k(t), one more segmentation is used on |Xk
φ(t, f)|2 provid-

ing more accurate mask Mφ,k(t, f) around the origin by using the segmentation

threshold pi2,k = λi|Xk
φ(t̄, f̄)|2 + (1 − λi)σ

2

Fs
, where |Xk

φ(t̄, f̄)|2 is the maximum

value of |Xk
φ(t, f)|2. By using Mφ,k(t, f), STFT of sφ,k(t) can be estimated by

T̃φ,k(t, f) = Xk
φ(t, f)Mφ,k(t, f). Then, effective duration and bandwidth of sφ,k(t)

are obtained from T̃φ,k(t, f) by using

d̃kφ =

[

∫ ∫

(t− µ̃k
t )

2|T̃φ,k(t, f)|2dtdf
∫ ∫

|T̃φ,k(t, f)|2dtdf

]1/2

, (2.31)

b̃φ,k =

[

∫ ∫

(f − µ̃k
f)

2|T̃φ,k(t, f)|2dtdf
∫ ∫

|T̃φ,k(t, f)|2dtdf

]1/2

, (2.32)

where µ̃k
t and µ̃k

f are estimates of time and frequency averages:

µ̃k
t =

∫ ∫

t|T̃φ,k(t, f)|2dtdf
∫ ∫

|T̃φ,k(t, f)|2dtdf
, (2.33)

µ̃k
f =

∫ ∫

f |T̃φ,k(t, f)|2dtdf
∫ ∫

|T̃φ,k(t, f)|2dtdf
. (2.34)

Since STFT uses a window function, effective duration and bandwidth that are

computed over the STFT of the signal are related with the effective duration and

bandwidth of the STFT window function through the following equation [68]:

dkφ =
√

(Dk
φ)

2 +D2
g , (2.35)

bkφ =
√

(Bk
φ)

2 +B2
g . (2.36)

Here, Dk
φ and Dg are the true effective durations of skφ(t) and the STFT window

function g(t), respectively, computed using (2.18). Bk
φ and Bg are the correspond-

ing bandwidths computed using (2.19). dkφ and bkφ are the effective durations and

bandwidths of sφ,k(t) computed over its STFT, Tφ,k(t, f), using (2.31),(2.32).

Then the scaling factor can be estimated as

ν̃k =

√

√

√

√

(d̃kφ)
2 −D2

g

(b̃kφ)
2 − B2

g

. (2.37)
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As T̃φ,k(t, f) approaches the true STFT of sφ,k(t), the estimate in (2.37) ap-

proaches the true scaling parameters
√

[dkφ)
2 −D2

g ]/[(b
k
φ)

2 − B2
g ]. After estimat-

ing all the transform parameters for all components {tkc , fk(t), vk, k = 1, 2, .., K}
at the initialization step i = 0 of the algorithm, the pre-processing stage is applied

to the available observation x(t) for each component:

xk
s(t) = x(tνk + tkc )e

−j2πφk(tνk+tkc )

= ss,k(t) +

K
∑

h=1
h 6=k

sh(tν
k + tkc )e

−j2πφk(tνk+tkc ) + nk
s(t), (2.38)

where nk
s(t) is the resulting noise process and ss,k(t) = sk(tν

k + tkc )e
−j2πφk(tνk+tkc ).

Note that, after the pre-processing operations, nk
s(t) is still circularly symmetric

Gaussian noise. Then, for estimating each component, its corresponding trans-

formed observation xk
s(t) is expanded in the HG basis. The expansion coefficients

are computed by αn,k =
∫

hn(t)x
k
s(t)dt and initial estimate of each signal compo-

nent is computed:

s̃ik(t) =

Lk
∑

n=0

αn,khn(
t− tkc
νk

)ej2πφ
k(t). (2.39)

At this point, assume that the optimal expansion orders Lk, k = 1, 2, .., K are

known. At the end of this section, determination of optimal expansion orders

will be explained.

Then, we start the EM iterations to further refine the component estimates.

This time, for estimating the transform parameters of the kth component, com-

plete information for each component is obtained by the using the following sig-

nals: xi+1
k (t) = x(t)−

∑

p 6=k s̃
i
p(t) ∀k = 1, 2, .., K is used. The idea is that during

the iterations xi+1
k (t) gets closer to a mono-component signal and hence more

reliable estimates for the kth component parameters can be obtained. The seg-

mentation algorithm is run over the spectrogram of xi+1
k (t) with a lower threshold

parameter λi+1 = λic, where 0 < c < 1, which is typically chosen as c = 0.8,

and the transform parameters of the kth component are reestimated from the

returned TFS. This parameter estimation process is repeated for all the compo-

nents before the next EM iteration. The iterations are stopped when the average

normalized change in signal estimates between two consecutive EM iterations
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1
K

∑K
k=1 ‖s̃i+1

k (t)− s̃ik(t)‖2/‖s̃i+1
k (t)‖2 is lower than a certain threshold q, which is

typically chosen as 0.01.

While running the above iterative method, to obtain a reliable estimate of each

component, at each iteration, the expansion orders should be chosen optimally.

To simplify the notation, we will drop the superscript i, which indicates the

iteration number. Since the available observation includes multiple components,

the optimal approximation orders L̂ = [L̂1, L̂2, .., L̂K ] should be determined jointly

so that the identified supports for the components do not have significant overlaps.

To determine the optimal approximation orders L̂, the expected value of the total

approximation error energy E{
∫

|s(t)−
∑K

k=1 s̃k(t)|2dt} should be minimized over

L. Here, s(t) =
∑K

k=1 sk(t) and s̃k(t) is the order-Lk HG approximation of sk(t)

given in (2.39). To simplify the presentation, we will consider discrete observation

case where the bold characters denote the vector of samples of the corresponding

continuous time signal. The optimal approximation orders can be estimated by

minimizing the following cost function:

J(L) = E

{

‖s−
K
∑

k=1

s̃k‖2
}

, (2.40)

where s̃k =
∑Lk

n=0 αn,kgn,k and representation coefficients αn,k are obtained as

αn,k = hH
n x

k
s with xk

s being the available observation signal obtained after the

pre-processing stage applied for the kth component given in (2.38). Here, gn,k

is the post-processed HG function of order n for the kth component, specifically,

gn,k(t) = hn(
t−tkc
νk

)ej2πφ
k(t), where hn’s are orthonormalized. Then, the cost func-

tion in (2.40) can be expanded as

J(L) = E

{

sHs− 2Re

{

K
∑

k=1

sH s̃k

}

+

K
∑

k=1

K
∑

l=1

s̃Hk s̃l

}

= −2Re

{

K
∑

k=1

E
{

sH s̃k
}

}

K
∑

k=1

E
{

s̃Hk s̃k
}

+

+

K
∑

k=1

K
∑

l 6=k

E
{

s̃Hk s̃l
}

, (2.41)

where E{sHs} term is dropped because it is not a function of L. The first term
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in (2.41) can be simplified as:

Re

{

K
∑

k=1

E
{

sH s̃k
}

}

= Re

{

K
∑

k=1

E

{

sH
Lk
∑

n=0

αn,kgn,k

}}

= Re

{

K
∑

k=1

Lk
∑

n=0

E {αn,k} sHgn,k

}

= Re

{

K
∑

k=1

Lk
∑

n=0

E
{

hH
n x

k
s

}

sHgn,k

}

= Re

{

K
∑

k=1

Lk
∑

n=0

E
{

hH
n (s

k
s + nk

s)
}

sHgn,k

}

. (2.42)

Since nk
s is zero mean,

Re

{

K
∑

k=1

E
{

sH s̃k
}

}

= Re

{

K
∑

k=1

Lk
∑

n=0

hH
n s

k
ss

Hgn,k

}

= Re

{

K
∑

k=1

Lk
∑

n=0

βn,kβ
∗
n,kν

k

}

=
K
∑

k=1

Lk
∑

n=0

νk|βn,k|2. (2.43)

Here, sks and nk
s are the sum of the signal components and noise after the pre-

processing stage applied for the kth component in (2.38) respectively, i.e., sks(t) =

s(tνk + tkc )e
−j2πφk(tνk+tkc ), and nk

s(t) = xk
s(t) − sks(t). The coefficient βn,k is the

projection of sks(t) on the nth HG function, i.e., βn,k = hH
n s

k
s , and sHgn,k =

β∗
n,k since

∫

hn(t)
∗ss(t)dt = 1

νk

∫

gn,k(t)
∗s(t)dt. Note that pre-processing stage

doesn’t change the statistical properties of the noise process, which is assumed to

have a circularly symmetric white Gaussian distribution with variance σ2. The

expectation in the second term in (2.41) can be computed as:

K
∑

k=1

E
{

s̃Hk s̃k
}

=
K
∑

k=1

E







(

Lk
∑

n=0

αn,kgn,k

)H ( Lk
∑

m=0

αm,kgm,k

)







. (2.44)
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Since gH
n,kgm,k = νkδ(m− n), it reduces to

K
∑

k=1

E
{

s̃Hk s̃k
}

=

K
∑

k=1

E

{

Lk
∑

n=0

νk|αn,k|2
}

=
K
∑

k=1

Lk
∑

n=0

νkE
{

hH
n x

k
sx

k
s

H
hn

}

=

K
∑

k=1

Lk
∑

n=0

νkhH
n E

{

(sks + nk
s)(s

k
s + nk

s)
H
}

hn. (2.45)

Since nk
s is circularly symmetric white Gaussian noise,

K
∑

k=1

E
{

s̃Hk s̃k
}

=

K
∑

k=1

Lk
∑

n=0

νkhH
n [s

k
ss

k
s

H
+ σ2I]hn

=
K
∑

k=1

Lk
∑

n=0

νk|βn,k|2 +
K
∑

k=1

νk(Lk + 1)σ2, (2.46)

where I is the identity matrix. Finally, the expectation in the third term in (2.41)

can be computed as:

K
∑

k=1

K
∑

l 6=k

E
{

s̃Hk s̃l
}

=

K
∑

k=1

K
∑

l 6=k

E

{(

Lk
∑

n=0

α∗
n,kg

H
n,k

)(

Ll
∑

m=0

αm,lgm,l

)}

=
K
∑

k=1

K
∑

l 6=k

Lk
∑

n=0

Ll
∑

m=0

E
{

α∗
n,kαm,l

}

ξn,ln,k, (2.47)

where ξm,l
n,k = gH

n,kgm,l. Then,

K
∑

k=1

K
∑

l 6=k

E
{

s̃Hk s̃l
}

=
K
∑

k=1

K
∑

l 6=k

Lk
∑

n=0

Ll
∑

m=0

E
{

hH
mx

l
sx

k
s

H
hn

}

ξm,l
n,k

=

K
∑

k=1

K
∑

l 6=k

Lk
∑

n=0

Ll
∑

m=0

hH
mE

{

(

sls + nl
s

) (

sks + nk
s

)H
}

hnξ
m,l
n,k

=

K
∑

k=1

K
∑

l 6=k

Lk
∑

n=0

Ll
∑

m=0

hH
m

(

slss
k
s

H
+ σ2I

)

hnξ
m,l
n,k . (2.48)
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Since hH
mhn = δ(m− n),

K
∑

k=1

K
∑

l 6=k

E
{

s̃Hk s̃l
}

=
K
∑

k=1

K
∑

l 6=k

Lk
∑

n=0

Ll
∑

m=0

βm,lβ
∗
n,kξ

m,l
n,k

+ σ2

K
∑

k=1

K
∑

l 6=k

min{Lk,Ll}
∑

n=0

ξn,ln,k. (2.49)

Then the equation in (2.40) reduces to the following form:

J(L) =−
K
∑

k=1

Lk
∑

n=0

νk|βn,k|2 +
K
∑

k=1

νk(Lk + 1)σ2

+

K
∑

k=1

K
∑

l 6=k

Lk
∑

n=0

Ll
∑

m=0

βm,lβ
∗
n,kξ

m,l
n,k

+ σ2
K
∑

k=1

K
∑

l 6=k

min{Lk,Ll}
∑

n=0

ξn,ln,k. (2.50)

However, since we do not have access to the noise free signal s(t), βn,k can not

be computed directly. However, as detailed in the next derivation, |βn,k|2 ≈
|αn,k|2 − σ2. This is because E{|αn,k|2} = |βn,k|2 + σ2.

E{|αn,k|2} = E
{

hH
n x

k
sx

k
s

H
hn

}

= hH
n E

{

xk
sx

k
s

H
}

hn

= hH
n E

{

(

sks + nk
s

) (

sks + nk
s

)H
}

hn

= hH
n

(

skss
k
s

H
+ σ2I

)

hn

= |βn,k|2 + σ2, (2.51)

By using this approximation, the following computable cost function, which is to

be minimized, is used in the proposed approach here.

Ĵ(L) = −
K
∑

k=1

Lk
∑

n=0

νk|αn,k|2 + 2
K
∑

k=1

νk(Lk + 1)σ2

+

K
∑

k=1

K
∑

l 6=k

Lk
∑

n=0

Ll
∑

m=0

α∗
n,kαm,lξ

m,l
n,k . (2.52)
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In the above cost function, while the second term controls the effect of noise,

third term controls the cross correlation between the signal estimates. For mono-

component case K = 1, the cost function in (2.52) reduces to

Ĵ(L)K=1 = −
L
∑

n=0

ν1|αn,1|2 + 2ν1(L+ 1)σ2. (2.53)

To simulate the performance of the expansion order estimator for mono-

component signals given in (2.53), we generated ten thousand different realiza-

tions of a noisy synthetic signal of the form x(t) =
∑L̄

n=0 αnhn(t) + n(t). In

each realization, the HG coefficients αn, n = 0, .., L̄ were chosen from a normal

distribution and the noise samples n(t) were generated from a zero mean Gaus-

sian distribution, whose variance was set according to the given SNR value. For

different representation orders L̄ (ranging from 0 to 100), and different SNR val-

ues (ranging from -10dB to 10dB), we calculated the sample mean and sample

standard deviation of the absolute error between the actual representation order

L̄ and its estimate L̃, i.e. |L̄ − L̃|. In Fig.2.10(a) and (b), these two statistical

measures are plotted as a function of L̄ for different SNR values. As observed

from this plot, even for a complicated signal that is composed of as many as 100

HGs and under very low SNR values such as −10dB, the average absolute error

in expansion order estimation is only around 3.5 with standard deviation of 5.5.

Having discussed choosing the expansion orders optimally, the fully automated

iterative method for signal component estimation is summarized in Algorithm-1.

When the signal components have overlapping TFSs, decomposing the obser-

vation signal into its components is a harder problem. Although the proposed

approach is designed for analysis of signals whose time-frequency components do

not have significant overlaps in the time-frequency domain, some insights for the

overlapping case will be provided. Consider a signal s(t), which have two com-

ponents with overlapping TFSs s(t) = s1(t) + s2(t), as demonstrated in Fig.2.11.

In the figure, S1 and S2 denote the effective TFS of s1(t) and s2(t), respectively.

Sint is the effective support of the overlap region. Let S[.] be an operator which

returns the effective support of the given signal, i.e., S[sk(t)] = Sk, k = 1, 2, and

H0 denote the effective support of HG function of order-0, i.e., S[h0(t)] = H0. The

following two theorems explain the uniqueness of the decomposition of s(t) into

28



10 20 30 40 50 60 70 80 90 100
0

0.5

1

1.5

2

2.5

3

3.5

E
{
|L̄

−
L̃
|}

 

 

10 20 30 40 50 60 70 80 90 100
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

Actual Expansion Order: L̄

s
t
d
{
|L̄

−
L̃
|}

 

 

SNR=−10dB

SNR=−5dB

SNR=0dB

SNR=5dB

SNR=10dB

SNR=−10dB

SNR=−5dB

SNR=0dB

SNR=5dB

SNR=10dB

a)

b)
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tation order L̄, its estimate L̃ and (b) its standard deviation as a function of L̄
for different SNR values.
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Algorithm 1 Component extraction based on iterative parameter estimation

1: Input
2: A noisy observation x(t) composed of compact support signal components

sk(t), k = 1, 2, ..
3: Output
4: En estimate of each signal component s̃k(t), k = 1, 2, ..
5: Initialization
6: i← 0
7: Set segmentation threshold parameter λi

8: Set segmentation threshold pi1 = λi|X(t̄, f̄)|2 + (1− λi)σ
2

Fs

9: Estimate tkc , f
k(t) ∀k = 1, 2, .., K by segmenting |X(t, f)|2 with the segmen-

tation threshold pi1
10: Compute xk

φ(t) ∀k = 1, 2, .., K by using tkc , f
k(t)

11: Set segmentation threshold pi2,k = λi|Xk
φ(t̄, f̄)|2 + (1− λi)σ

2

Fs
∀k = 1, 2, .., K

12: Estimate vk ∀k = 1, 2, .., K by segmenting |Xk
φ(t, f)|2 with the segmentation

threshold pi2,k
13: Form xk

s(t) ∀k = 1, 2, .., K
14: Compute αn,k, ξ

m,l
n,k ∀k, l = 1, 2, .., K, ∀n,m = 1, 2, ..

15: Solve (2.52) using {αn,k, ξ
m,l
n,k , ν

k, ∀k, l = 1, 2, .., K, ∀n,m = 1, 2, ..}
16: Compute s̃ik(t), ∀k = 1, 2, .., K
17: qi = 1
18: EM Iterations
19: while qi > q do
20: i← i+ 1
21: λi = cλi−1

22: for k = 1 to K do
23: xi

k(t)← x(t)−
∑

p 6=k s̃
i−1
p (t)

24: Set segmentation threshold pi1 = λi|Xk(t̄, f̄)|2 + (1− λi)σ
2

Fs

25: Estimate tkc , f
k(t) by segmenting |Xk(t, f)|2 with the segmentation

threshold pi1
26: Compute xk

φ(t) by using tkc , f
k(t)

27: Set segmentation threshold pi2 = λi|Xk
φ(t̄, f̄)|2 + (1− λi)σ

2

Fs

28: Estimate vk by segmenting |Xk
φ(t, f)|2 with the segmentation threshold

pi2
29: end for
30: Form xk

s (t) ∀k = 1, 2, .., K
31: Compute αn,k, ξ

m,l
n,k ∀k, l = 1, 2, .., K, ∀n,m = 1, 2, ..

32: Solve (2.52) using {αn,k, ξ
m,l
n,k , ν

k, ∀k, l = 1, 2, .., K, ∀n,m = 1, 2, ..}
33: Compute s̃ik(t), ∀k = 1, 2, .., K
34: qi = 1

K

∑K
k=1 ‖s̃ik(t)− s̃i−1

k (t)‖2/‖s̃ik(t)‖2
35: end while
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Figure 2.11: Demonstration of a multi-component signal whose components have
overlapping TFSs. S1 and S2 are the effective TFSs of the signal components.
Sint is the effective overlapping region. H0 denotes the effective TFS of the HG
function of order 0.

s1(t) and s2(t) according to the area of the effective intersection region between

the component supports.

Theorem 1. If the intersection region Sint allows covering an ellipse of area

larger than or equal to the area of H0, the decomposition s(t) = s̃1(t)+ s̃2(t) such

that S[s̃1(t)] = S1 and S[s̃1(t)] = S2 is non-unique.

Proof. Since area of Sint is larger than H0, there exist a signal sint(t) with a

sufficiently small energy such that S[sint(t)] ⊆ Sint. The decomposition can be

rewritten as

s(t) =s̃1(t) + s̃2(t)

=s̃1(t) + s̃2(t) + sint(t)− sint(t)

=s̃1(t) + sint(t) + s̃2(t)− sint(t) (2.54)

Since S[s̃1(t) + sint(t)] = S1 and S[s̃2(t) − sint(t)] = S2, s(t) = [s̃1(t) + sint(t)] +

[s̃2(t)− sint(t)] is another decomposition of s(t). Hence, the decomposition is
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non-unique.

Theorem 2. If the intersection region Sint doesn’t allow covering an ellipse of

area larger than or equal to the area of H0, the decomposition s(t) = s̃1(t) + s̃2(t)

such that S[s̃1(t)] = S1 and S[s̃2(t)] = S2 is unique.

Proof. Assume that there exists non-unique decompositions s(t) = s̃1(t) + s̃2(t)

and s(t) = ŝ1(t) + ŝ2(t). Then,

0 =s̃1(t) + s̃2(t)− ŝ1(t)− ŝ2(t)

=[s̃1(t)− ŝ1(t)] + [s̃2(t)− ŝ2(t)]

=e1(t) + e2(t) (2.55)

where e1(t) = s̃1(t) − ŝ1(t) and e2(t) = s̃2(t) − ŝ2(t). Since e1(t) + e2(t) = 0,

then S[e1(t)] = S[e2(t)]. Therefore, S[e1(t)] ⊂ Sint and S[e2(t)] ⊂ Sint. This

is a contradiction since it is already assumed that area of Sint is smaller than

H0 and there exists no signal whose effective TFS is equal to Sint. Hence the

decomposition is unique.

In Theorem-1, it is proven that, if the overlapped region between two sig-

nal components has an area of larger than or equal to the effective support of

a Gaussian atom (HG function of order 0), then the unique separation of these

two components is not possible. Therefore, there exist no time-frequency analysis

tools that can uniquely decompose overlapping components whenever their over-

lapped region is sufficiently large. Theorem-2 provides a positive result for the

analysis of overlapping signal components. It states that if the overlapped area

doesn’t allow fitting a Gaussian atom, then the decomposition becomes unique.

To extend the proposed approach to the case of overlapping signal components

as described in Theorem-2, the proposed approach can be modified such that HG

fitting is performed in the non-overlapping parts of the signal components after

the pre-processing stage. However this extension of the proposed approach is left

as a future work on the subject.

In the next section, analysis results on both simulated and real signals will be

provided.
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Figure 2.12: (a) Synthetically generated noisy observation of a mono-component,
compact TFS signal. SNR is 0dB. Its spectrogram (b) before and (c) after pre-
processing stage. R and R′ represents the radius of the smallest circle that en-
closes the signal support. While computing the spectrograms, a Gaussian window
with standard deviation σ = 1/

√
2π sec was used.

2.5 Analysis of Results on Simulated and Real

Signals

To demonstrate the performance of the proposed method, we conducted exper-

iments on synthetically generated mono- and multi-component signals. For the

mono-component case, the noisy observation of a compact support signal of the

form:

s(t) = w(t; t1, t2)a(t)e
−j2π(αt2+βt+γ) (2.56)

was generated. Here a(t) is low-pass filtered circularly symmetric white noise,

{α, β, γ} are IF parameters imposing linear frequency modulation to the signal.

As shown in Fig.2.12, w(t) is the time-window:
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w(t; t1, t2) =



















e−(t−t1)2/κ2

if t < t1,

1 if t1 ≤ t ≤ t2,

e−(t−t2)2/κ2

if t > t2,

(2.57)

forcing the signal to have a compact TFS. The noise variance was chosen such that

the SNR was set to 0dB, which is defined as SNR = 10 log ‖s‖2/(Nsσ
2) where

Ns is the number of available samples along the signal support and σ2 is the

noise variance. The spectrograms of the available signal before and after the pre-

processing stage are also provided in Fig.2.12(b) and (c), respectively. In a fully

automated fashion, all the required parameters are estimated using signal support

returned by the segmentation algorithm. In Fig.2.13, approximation error as a

function of expansion order is plotted. As seen from this figure, if HG projections

are directly applied to the signal without applying the proposed pre-processing

technique (marked with squares), approximation error remains above −10dB. If
only time-frequency translation is applied (marked with stars), the lowest ap-

proximation error achieved is around −13dB and corresponding approximation

order is 35. If full scale pre-processing is applied (marked with circles), the lowest

approximation error achieved is around −16dB and the corresponding expansion
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Figure 2.14: (a) Sym8 wavelet and (b) its corresponding scaling function.
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Figure 2.15: Original signal (solid-black), its approximation by proposed method
(dashed-blue) and wavelet soft-thresholding technique (dashed-doted-red).

order is only 7. For this synthetic signal, we compared the performance of the pro-

posed method with the powerful wavelet soft-thresholding technique [70]. First,

discrete wavelet transform is applied to the available observation and wavelet

coefficients ξk, k = 0, .., N ,(N is the number of available samples) were obtained.

We used the Daubechies’ compactly supported, nearly linear phase wavelet sym8

with 9 vanishing moments [71]. The sym8 wavelet and its scaling function are

shown in Fig.2.14. Then, soft thresholding is applied to the wavelet coefficients

ξ̂k as:

ξ̂k = sgn(ξk)(|ξk| − ǫ̂)+ (2.58)

where (.)+ is the non-negative part of its argument and the denoised signal was

reconstructed by applying the inverse wavelet transform to the new coefficients.

The threshold ǫ̂ was estimated according to the Stein’s unbiased estimate of risk
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Figure 2.16: Spectrogram of the synthetic test signals with (a) triangular, (b)
constant, (c) sinusoidal and (d) quadratic instantaneous frequencies.

[72]:

ǫ̂ = argmin
0≤ǫ≤

√
2 logN

[

N − 2{k : |ξk ≤ ǫ|}+
N
∑

k=1

min(|ξk|, ǫ)
]

(2.59)

In Fig.2.15, the original signal component (solid-black), its approximation by

the proposed method (dashed-blue) and the wavelet soft-thresholding technique

(dashed-dotted-red) are plotted. For the proposed method, the optimal expan-

sion order is estimated by using (2.53) to be 5, which is consistent with Fig.2.13.

While the proposed method achieves an approximation error of −15.2dB, the
approximation error of the wavelet shrinkage technique remains around −6.8dB.
As observed from this figure, although the available observations are significantly

noisy, the proposed technique provides accurate estimates for the signal compo-

nent.

To provide more comparison results of the proposed method with wavelet

soft-thresholding technique, four more synthetic signals with triangular, constant,

sinusoidal and quadratic instantaneous frequencies were generated. Spectrogram

of each test signal is shown in Fig.2.16. For different SNR values, approximation

errors of both methods are reported in Table-2.1. Proposed method achieved a
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Trian. Cons. Sin. Quad.
SNR=0dB Prop. Meth. -13.6 -14.9 -14.6 -12.8
SNR=0dB W. S. Thres. -9.1 -10.5 -7.9 -9.8
SNR=5dB Prop. Meth. -17.6 -19.4 -15.6 -15.8
SNR=5dB W. S. Thres. -9.8 -12.8 -9 -11.6

Table 2.1: Approximation errors of the proposed method (Prop. Meth) and
wavelet soft-thresholding (W. S. Thres.) for the test signals with triangular
(Trian.), constant (Cons.), sinusoidal (Sin.) and quadratic (Quad) instantaneous
frequencies shown in Fig.2.16, for different SNR values.

significantly lower approximation error for each test case.

For the multi-component scenario, a three-component signal is used. In this

case, linear frequency modulation was imposed on the first and the second com-

ponents and quadratic frequency modulation was imposed on the third compo-

nent. The noisy signal and its spectrogram are shown in Fig.2.17(a) and (b),

respectively. Since TFSs of the components are close to each other in the time-

frequency plane, projecting the observation signal on even the time-frequency

translated HGs can not yield reliable component estimates. As demonstrated in

Fig.2.17(b), for each component, there is some energy leaked from the others in

the region defined by the smallest circle that encloses the support of that par-

ticular component. After applying the pre-processing stage to the observation

signal given in Fig.2.17 for each component separately, the spectrogram of the

resulting signals are shown in Fig.2.18. Note that the radii of the smallest circles

that enclose the TFSs of the components in the resulting signal R′
1, R

′
3, R

′
3 are

considerably smaller compared to R1, R2, R3 shown in Fig.2.17, decreasing the

required number of HGs in the representation of the signal and hence decreasing

the amount of noise fitting in the representation.

To demonstrate the performance of the proposed method on multi-component

signals, synthetic signal shown in Fig.2.17 was used. For approximating each com-

ponent Algorithm-1 was deployed. After 15 iterations, Algorithm-1 terminated.

In Fig.2.19(a,c,e), estimated components and the actual ones at the end of the

first iteration of Algorithm-1 are shown. Especially, for the low amplitude compo-

nents (a) and (c), approximation error is high. In (b,d,f), results at the end of the
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Figure 2.17: (a) Synthetically generated noisy observation of a 3-component sig-
nal and (b) its spectrogram. SNR is 0dB. R1, R2, R3 represent the radius of the
smallest circle that encloses the support of the first, second and third compo-
nent, respectively. While computing the spectrogram, a Gaussian window with
standard deviation σ = 1/

√
2π sec was used.

last iteration are given. The approximation errors of the first iteration are highly

reduced. Since all the signal components are detected by running Chan-Vese seg-

mentation algorithm on the spectrogram of the available observation and all re-

quired parameters are estimated from the detected component supports, proposed

method is a fully automated procedure. The effect of the incorporated segmenta-

tion technique is also investigated in the multi-component signal given in Fig.2.17.

For the three components p1(t), p2(t), p3(t) in this signal, proposed method is

utilized by using both Chan-Vese and Watershed segmentation [73] techniques.

For each component two different estimates are obtained p̃cvk (t), p̃wk (t), k = 1, 2, 3,
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Figure 2.18: Spectrogram of the signal shown in Fig.2.17 after applying pre-
processing stage by using the parameters of the (a) first, (b) second and (c) third
component. R′
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′
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′
3 represent the radius of the smallest circle that encloses

the support of the first, second and third component after the corresponding
transformation. While computing the spectrograms, a Gaussian window with
standard deviation σ = 1/

√
2π sec was used.
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Figure 2.19: Actual (solid) and estimated (dashed) components at the end of the
(a,c,e) 1th and (b,d,f) 15th iteration of Algorithm-1.

where the superscript cv and w denote the estimates based on Chan-Vese and

Watershed segmentation techniques, respectively. The corresponding normalized

approximation errors ecvk = 10 log
(

‖pk(t)−p̃cvk (t)‖2
‖pk(t)‖2

)

, ewk = 10 log
(

‖pk(t)−p̃wk (t)‖2
‖pk(t)‖2

)

and

normalized energy difference percentages edk = 100
‖p̃cvk (t)−p̃wk (t)‖2

‖p̃cvk (t)‖2 are tabulated

in Table-2.2. As observed, there is no significant difference between the signal

components estimate by utilizing two different segmentation techniques.

Finally, we tested our method on two real signals. The first one is the bat

echolocation signal [74] shown in Fig.2.20a. It is a 2.8msec echolocation pulse

emitted by the Large Brown Bat, Eptescius Fuscus. We added synthetically gen-

erated circularly symmetric white noise such that the SNR was set to 0dB. The

resulting noise corrupted signal and its spectrogram are shown in Fig.2.20(b) and

(c), respectively. By applying the proposed multi-component analysis technique,
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Figure 2.20: (a) Echolocation pulse emitted by the Large Brown Bat, Eptescius
Fuscus; (b) its noisy version at 0dB; (c) spectrogram of the noisy signal. While
computing the spectrogram in (b), a Gaussian window with standard deviation
σ = 14× 10−5sec was used.

41



Norm. App. Err/ Comp. p1(t) p2(t) p3(t)
ecv -14.7 -16.1 -14.3
ew -14.3 -15.6 -14.8
ed 0.17 0.25 0.21

Table 2.2: Normalized approximation error and energy difference for each com-
ponent estimated by utilizing Chan-Vese and Watershed segmentation techniques
in the proposed method.

the strongest 3 components have been identified and extracted. The approxima-

tion orders were estimated to be 4 for the first (occurring at time 0.5msec and

50kHz), 9 for the second (occurring at time 0.1msec and 40kHz) and 8 for the

third component (occurring at time −0.5msec and 25kHz), using (2.52). The

sum of estimated components is plotted in Fig.2.21(a). The normalized approx-

imation error between this signal and the original one shown in Fig.2.20(a) is

around -11.7dB. This error was around -14.8dB when we analyzed the original

noise-free signal. Its spectrogram is given in Fig.2.21(b). Comparing this plot

with Fig.2.20(c), proposed multi-component analysis method estimated the signal

components reliably.

To obtain a high resolution time-frequency representation of this multi-

component signal, we used Wigner-Ville distribution (WVD). WVD provides the

highest time-frequency resolution for a mono-component signal which has linear

frequency modulation. However, direct computing WVD of a multi-component

signal generates alien energy localizations, which do not actually exist in the sig-

nal, in the resulting time-frequency representation. These alien energy localiza-

tions are referred as cross-terms or cross-cross-terms. To eliminate cross-terms,

WVD of each component estimated by the proposed method is computed and

superposed. However, since none of the estimated components has exact linear

instantaneous frequency, WVD of each component still has alien energy local-

izations. This time, these alien energy localizations are referred as auto-cross

terms. Auto-cross terms can also be eliminated by the proposed method. When

the pre-processing stage is applied to the signal component, the resulting signal

has its component under analysis with a compact circular support without sig-

nificant non-linear frequency variation. Once HG representation is applied on to

the signal extracting the component under analysis, the obtained signal doesn’t
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generate auto-cross terms in its WVD. Then, inverse transforms (post-processing

stage) is applied to the computed WVD. Let s̃ks(t), k = 1, 2, 3 denote the estimate

of the kth component after the pre-processing stage given in (2.38) and WV k
s (t, f)

denote its WVD . The auto-cross-term-free WVD of s̃k(t) is given by:

WV k (t, f) =
1

vk
WV k

s

(

t− tkc
vk

, vk(f − fk(t))

)

, (2.60)

where and {tkc , fk(t), vk}, k = 1, 2, 3 are the transform parameters. The sum

WV (t, f) = WV 1(t, f)+WV 2(t, f)+WV 3(t, f) is both auto-cross term and cross-

cross-term free WVD of the bath echolocation pulse and shown in Fig.2.21(c).

The second real signal that we analysed is a 2 sec EEG recording (1 sec

pre, 1 sec post stimulus), stimulated by an oddball paradigm shown in Fig.2.22

[75]. Only the post stimulus region (time > 0sec) was analysed. 3 components

were identified and extracted by the proposed method. Estimated components

c1(t), c2(t), c3(t) are shown in Fig.2.23(a),(b),(c), respectively. In Fig.2.24(a), the

original recording x(t) (solid-black) and sum of the estimated components c̃(t) =

c1(t)+ c2(t)+ c3(t) are plotted. To provide comparisons, wavelet based denoising

method in [75] has also been implemented and applied to the recording only for the

post stimulus interval. The resulting denoised signal ĉ(t) (dashed-dotted-red) is

given in Fig.2.24(a). In Fig.2.24(b), the residuals r̃(t) = x(t)− x̂(t) (dashed-blue)

and r̂(t) = x(t)− ĉ(t) are also shown. As observed, superposition of the estimated

components by our method provides a better fit to the original recording. Note

that, while the wavelet method returns only the total denoised signal, our method

is capable of providing each individual signal component buried in the available

observation.

2.6 Conclusions for Chapter 2

A new fully automated signal analysis technique is proposed for decomposition

of signals into its components that have compact TFSs. The proposed approach

utilizes HG functions that are adapted to the identified TFSs of the individual

signal components. To fully achieve the optimal localization properties of the
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Figure 2.21: (a) Sum of the estimated components and (b) its spectrogram.
While computing the spectrogram, a Gaussian window with standard deviation
σ = 14× 10−5 sec was used. (c) Obtained both auto-cross-term and cross-cross-
term free Wigner-Ville distributions of the echolocation pulse.
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Figure 2.22: (a) EEG recording and (b) its spectrogram. While computing the
spectrogram, a Gaussian window with standard deviation σ = 0.1/

√
2π sec was

used.

HG function expansion, a pre-processing technique is developed to transform the

support of a chosen signal component to a circular one centered around the origin.

Also an EM like iterative procedure is developed for accurate analysis of multi-

component signals. Robust techniques are introduced for reliable estimation of

pre-processing and expansion parameters. Obtained results show that proposed

method provides reliable identification and extraction of signal components even

under severe noise cases.
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Figure 2.23: Estimated signal components (a-c) from the EEG recording shown
in Fig.2.22.
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Figure 2.24: (a) Original EEG recording (solid-black), sum of the estimated com-
ponents (dashed-blue), wavelet denoising result (dotted-dashed-red). (b) Residu-
als for the proposed method (dashed-blue) and wavelet denoising (dotted-dashed-
red).
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Chapter 3

UWB Orthogonal Pulse Shape

Set Design by Using

Hermite-Gaussian Functions

3.1 Introduction

The emerging ultra-wideband (UWB) technology has attracted great attention for

designing systems for short range, high data rate communications [12, 13, 14, 15].

Since the pulse shapes used by UWB communication systems has short durations

in the order of nano seconds, these systems occupy a very broad spectrum and

hence cause interference to the existing wireless communication systems in the

vicinity. To avoid this problem, U.S. Federal Commission of Communications

(FCC) has released the spectral mask, shown in Fig.3.1, imposing restrictions on

the spectrum of the pulse shapes used by the UWB systems [16]. Some researchers

have defined more strict spectral masks, which is also shown in Fig.3.1 to account

for multipath regrowth. Although the spectral mask restricts the transmission

power of the UWB system, at the receiver side high transmission power is required

to improve the detection performance. As a result, designing high energy pulse

shapes satisfying the spectral mask has become a widely investigated research
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Figure 3.1: Specktral mask defined by FCC (solid) and a more strict spectral
mask for accounting multipath regrowth (dashed).

problem.

In [76], projection on to convex sets is applied for designing a single pulse.

The single pulse shape design problem has been extended to designing multiple

orthogonal pulse shapes to further increase the data rate and the channel utiliza-

tion. In [17], pulse shapes are obtained by computing the dominant eigenvectors

of a channel matrix constructed by sampling the spectral mask. However, in this

way only a low number of orthogonal pulse shapes could be generated and their

pulse shapes do not efficiently utilize the spectral mask, resulting in a decrease

on SNR at the receiver side. In [18], each pulse is represented as a linear combi-

nation of time shifted Gaussian mono-pulses. A sequential design procedure has

been proposed, where at each step a single pulse shape is constructed by solving

a convex optimization problem. The performance of this method is improved by

inserting a phase adaptation routine to each step of the sequential design proce-

dure for achieving a better phase match between spectral mask and the designed

pulse shapes [19]. Hermite-Gaussian (HG) functions have also been used for de-

signing UWB orthogonal pulse shapes because of their optimal time-frequency

localization characteristics. Since, HG functions constitute an orthogonal family
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which occupies the smallest area in the time-frequency plane, they are very es-

sential for representing signals which are constrained both in time and frequency

[8]. In [20], a circuit topology is proposed for generating HG functions to be used

for pulse shape generation in UWB communication systems. In [21], a procedure

for designing orthogonal pulse shapes, where each pulse is modelled as linear

combination of HGs, has been proposed. However, obtained pulse shapes do not

effectively utilize the spectral mask.

In all of the approaches listed above, designed orthogonal pulse shapes are

used as the correlators at the receiver. However, high-efficiency antennas are typ-

ically resistive-capacitive devices which often behave as differentiators [22, 23].

As a result, when the designed orthogonal pulses arrive at the receiver, they are

no more orthogonal. Basically, a scaled second derivative of the pulse is received

at the receiver. To solve this problem, one approach would be using integrators

at the receiver. However, since the pulse duration is extremely short, there would

be severe problems in the hardware implementation. Another approach is to

design the pulse shapes such that their second derivatives are orthogonal. This

time second derivatives of the pulse shapes should be generated at the receiver to

form the correlating functions, which would lead to different transmitter-receiver

structures. Also implementing the hardware which generates second derivatives

of the pulse shapes having durations around one nanosecond at the receiver would

not be straight forward. To overcome this problem in [24], pulse shapes are con-

structed as combinations of elementary HG functions with weighting coefficients

derived by employing orthogonal-triangular factorization (QR) of the model ma-

trix which ensures the orthogonality of the received pulse shapes at the receiver.

However, no spectral constraints on the pulses have been considered. In [25],

a simplified suboptimal structure for non-matched correlation detection is pro-

posed, where the received pulses are correlated with the locally generated HG

pulses. Although the generated pulses are adapted the spectral mask, the method

is suboptimal.

In this chapter, we propose three different approaches for designing high en-

ergy UWB pulse shapes, which are orthogonal at the receiver and satisfy the spec-

tral mask in the air, by considering the differentiating affect of the transmitting
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and receiving antennas. Each pulse shape is represented as a linear combination

of time-shifted and scaled HG functions. The transmitting and receiving anten-

nas are modelled as differentiators with a certain gain. Although three different

optimization problems are constructed, all of them use the following design crite-

ria: 1) Energy of the received pulse shapes in their effective passband should be

maximized to improve the detection performance at the receiver side; 2) Designed

pulse shapes should satisfy the spectral mask on the air; 3) Duration of the pulse

shapes should be smaller than the given pulse duration at the transmitter side; 4)

All the pulse shapes should be orthogonal at the receiver side. We also show that

derivative of any HG function can be represented by a known linear combination

of the HGs. By using this fact, a very simple receiver structure for preserving the

orthogonality of the pulses at the receiver side is proposed.

The organization of this chapter is as follows: In Section 3.2, problem formu-

lation is introduced. Transmit/receive antenna model is detailed in Section 3.3.

In Section 3.4, pulse model is introduced. Dictionary design for representing the

pulse shapes is given in Section 3.5. Proposed transmitter and receiver structure

is provided in Section 3.6. Section 3.7 is reserved for design examples. Finally,

concluding remarks for chapter 3 are given in Section 3.8.

3.2 Problem Formulation

Let pn(t), n = 1, 2, .., Np denote the pulse shapes generated at the transmitter. Let

gn(t), n = 1, 2, .., Np denote the transmitted pulse through the antenna system

and let rn(t), n = 1, 2, .., Np denote the received pulses at the output of the

receiving antenna system. Given the spectral mask M(f) and allowed pulse

duration Tp as design constraints, the UWB pulse shape design problem can be
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stated by the following optimization problem1:

max
p1(t),p2(t),..,pNp(t)

Np
∑

n=1

∫

Fp

|Rn(f)|2df

s.t. |Gn(f)|2 ≤M(f), n = 1, .., Np,

Tpn ≤ Tp, n = 1, .., Np,
∫

rn(t)rm(t)dt = 0, n,m = 1, .., Np, n 6= m, (3.1)

where Rn(f) and Gn(f) are the Fourier transforms of rn(t) and gn(t), respectively.

Tpn is the effective duration of pn(t) and Fp is its effective passband. Here, the

benefit function is cast as superposition of energy of the received pulse shapes.

The first constraint forces the pulses, which propagate from transmitter to the

receiver, to satisfy the spectral mask. The second constraint puts an upper limit

on the pulse durations. The last constraint ensures the orthogonality of the pulses

at the receiver.

Rather than maximizing the total energy of the pulses, a max-min type benefit

function could also be constructed leading to the following optimization problem:

max
pn(t)

min
n∈{1,2,..,Np}

∫

Fp

|Rn(f)|2df

s.t. |Gn(f)|2 ≤M(f), n = 1, .., Np,

Tpn ≤ Tp, n = 1, .., Np,
∫

rn(t)rm(t)dt = 0, n,m = 1, .., Np, n 6= m. (3.2)

In this setting, the minimum pulse energy is to be maximized, which results in

a set of pulses about the same energy level. On the other hand, pulse shapes

obtained as the solution to (3.1) may have significantly different energy levels.

In (3.1) and (3.2), all the pulse shapes are obtained through a joint optimiza-

tion. To reduce the complexity, a sequential design methodology may also be

used [18, 19]. Assume that n− 1 orthogonal pulses have already been designed.

1All the integrals in this chapter are computed from −∞ to ∞ unless otherwise is stated.
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The following optimization problem can be cast to obtain the nth pulse shape:

max
pn(t)

∫

Fp

|Rn(f)|2df

s.t. |Gn(f)|2 ≤M(f),

Tpn ≤ Tp ,
∫

rn(t)rm(t)dt = 0, m = 1, 2, .., n− 1. (3.3)

In sequential pulse shape design methodology, the first pulse is designed by solving

(3.3) with no orthogonality constraints. The remaining pulses will be designed

by solving (3.3) sequentially for n = 2, .., Np. In the next section the effect

of transmitting and receiving antennas on the pulse shapes and corresponding

mathematical model will be investigated.

3.3 Transmit/Receive Antenna Model

High-efficiency antennas are typically resistive-capacitive devices which often be-

have as differentiators [22, 23]. We model each antenna in transmitter and receiver

as differentiators with a certain gain factor, hence the following relations between

the generated pulse in the transmitter, pulse transmitted by the antenna and the

pulse received at the output of the receiver antenna are assumed:2

gn(t) = αtp
′
n(t), (3.4)

rn(t) = αrg
′
n(t) = αtαrp

′′
n(t). (3.5)

Here, αt and αr are the gain factors of the transmitter and receiver antennas,

respectively.

To mathematically describe the duration constraint in (3.1), (3.2) and (3.3),

the following definition for the effective duration of a pulse shape will be used:
∫

(1− λ(t))|pn(t)|2dt < ζ, (3.6)

2()′ and ()′′ indicate the first and second derivative of the underlying function with respect
to its argument.
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where λ(t) is the rectangular window function, which is 1 for t ∈ [0, Tp] and 0

else, and ζ is the energy threshold. With this definition, energy of the pulse shape

outside the [0, Tp] interval is restricted to be less than ζ . Since the transmitted

pulse gn(t) is constrained by the frequency mask, then the generated pulse at the

transmitter pn(t) should satisfy

|Pn(f)|2 ≤
M(f)

α2
t |jπf |2

∀f. (3.7)

Then, ζ can be chosen as

ζ = γ

∫

Fp

M(f)

α2
t |jπf |2

df, (3.8)

where γ is the threshold parameter, which is typically chosen as γ = 0.0001. In

the following section the model that we use for representing the pulse shapes will

be detailed.

3.4 Pulse Subspace

In all the three approaches for orthogonal pulse shape design problem in Section

3.2, optimization variables are the pulse shapes, which are continuous functions

of time. Hence, each optimization problem is infinite dimensional. The search

space can be reduced to a finite dimensional space by using a parametric pulse

model. Consider the following model for the nth pulse shape to be designed:

pn(t) =

K
∑

k=1

αn,kqk(t) = Q(t)αn (3.9)

where Q(t) = [q1(t), .., qK(t)] is the signal dictionary, whose elements are linearly

independent, and αn = [αn,1, .., αn,K ]
T is the coefficient vector for the nth pulse

shape generated at the transmitter. With this model, each pulse is considered

as a superposition of the elements of the signal dictionary Q(t) and represented

by its coefficient vector αn. Inserting (3.9) in (3.1), we have the following finite
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dimensional optimization problem:

min
α1,α2,..,αNp

−
Np
∑

n=1

αH
n Aαn

s.t. αH
n Bkαn ≤ m̂k, n = 1, .., Np, k = 1, .., Nf ,

αH
n Cαn ≤ ζ, n = 1, .., Np,

αH
n Dαm = 0, n,m = 1, .., Np, n 6= m. (3.10)

Here, A =
∫

Fp
Q̂2(f)

HQ̂2(f)df , Bk = Re{Q̂1(fk)
HQ̂1(fk)}, m̂k = M(fk), C =

∫

(1 − λ(t))Q(t)HQ(t)dt and D =
∫

Q2(t)
HQ2(t)dt, where Q̂1(f) is the Fourier

transform of Q1(t), Q̂2(f) is the Fourier transform of Q2(t), with Q1(t) = αtQ
′(t)

and Q2(t) = αtαrQ
′′(t). The maximization in P1 is replaced with a minimization

by negating its benefit function. Note that, the frequency variable in the first

constraint of P1 is uniformly sampled at Nf frequency points and finite number

of mask constraints is also attained. The frequency sampling is performed dense

enough (Nf can be chosen as Nf = 15×Np×K, where D is the dimension of the

problem, according to [77]) to converge to the same optimal solution. Similarly,

(3.2) and (3.3), respectively, take the following forms:

min
αn

max
n∈{1,2,..,Np}

−αH
n Aαn

s.t. αH
n Bkαn ≤ m̂k, n = 1, .., Np, k = 1, .., Nf ,

αH
n Cαn ≤ ζ, n = 1, .., Np,

αH
n Dαm = 0, n,m = 1, .., Np, n 6= m. (3.11)

min
αn

−αH
n Aαn

s.t. αH
n Bkαn ≤ m̂k, k = 1, .., Nf ,

αH
n Cαn ≤ ζm̂,

αH
n Dαm = 0, m = 1, .., n− 1. (3.12)

In (3.10) and (3.11), the dimension of the problem is Np×K, where K is the

size of the dictionary Q(t), and the number of constraints is Np(Nf +(Np+1)/2).

Also, in these two formulations, the constructed optimization problem is non-

convex. The sequential design methodology decreases the problem dimension and
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the number of constraints. In (3.12) problem dimension is K and the number of

constraints is Nf +n. Moreover, (3.12) can be converted to a convex optimization

problem by defining the following cost function [18]:

J =

∫

Fp

∣

∣

∣

√

M(f)ejφ(f) − Pn(f)
∣

∣

∣

2

df

=

∫

Fp

∣

∣

∣

√

M(f)ejφ(f) −Q(f)αn

∣

∣

∣

2

df, (3.13)

where φ(f) is the phase of the spectral maskM(f), which is assumed to be known.

Later on, this assumption will be removed by choosing φ(f). The cost function in

(3.13) computes the energy of the difference between the spectral mask and the

designed pulse. Note that, given the power spectral density M(f) and the phase

φ(f),
√

M(f)ejφ(f) serves as the frequency domain representation of the spectral

mask. Inserting (3.13) into (3.12), we have the following convex optimization

problem3:

min
αn

−αH
n Aαn + 2rHαn

s.t. αH
n Bkαn ≤ m̂k, k = 1, .., Nf ,

αH
n Cαn ≤ ζ ,

αH
n Dαm = 0, m = 1, .., n− 1, (3.14)

where rH = −
∫

Fp
Re{

√

M(f)e−jφ(f)Q(f)}df . (3.14) is a QCQP (Quadratically

Constrained Quadratic Problem ) and can be solved at the global optimum point

by converting it to a SOCP (Second Order Cone Program) as [78]:

min
αn,t

− t + 2rHαn

s.t. ‖Âαn‖2 ≤ t,

‖B̂kαn‖ ≤ m̂
1/2
k , k = 1, .., Nf ,

‖Ĉλαn‖ < ζ1/2m̂1/2,

dH
mαn = 0, m = 1, .., n− 1, (3.15)

where Â and Ĉ are the matrices such that ÂHÂ = A and ĈHĈ = C. B̂k =

Re{Q(fk)} and dm = CHαm. Any SOCP solver can be deployed for solving

(3.15). In this work SeDuMi is used for the solution of (3.15) [79].

3All the norms defined as ‖.‖ indicate l2 norm unless otherwise is stated.
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Algorithm 2 Orthogonal Pulse Shape Set Design by Iterative Phase Adaptation

1: Initialization:
2: φ0(f) = 0, α0

n = 0, i = 1
3: Iterations:
4: Find optimal αi

n by solving (3.15)
5: P i

n(f) = Q̂(f)αi
n

6: φi(f) = ∠P i
n(f)

7: if ‖αi
n −αi−1

n ‖2/K ≤ η then
8: Terminate iterations
9: else
10: i← i+ 1
11: Go back to 4.
12: end if

The unknown phase φ(f) of the spectral mask can be iteratively adjusted as

described in [19]. First, its phase is chosen as φ(f) = 0 and (3.15) is solved. The

Fourier transform of designed pulse shape is computed and its phase is assigned

to φ(f) and (3.15) is resolved. Iterations are terminated when the difference

between the two consecutive solutions of (3.15) is below a certain threshold η.

This method is summarized in Algorithm-2. In the next section, forming the

dictionary Q(t) will be detailed.

3.5 Dictionary Design

To increase the dimension of the search space, the dictionary Q(t) should have

as much linearly independent elements as possible. Since there are constraints on

the pulse shape both in time and frequency, the waveforms in the dictionary Q(t)

should be chosen accordingly. In [18, 19], time shifted Gaussian mono-pulses are

used as the dictionary elements with the amount of time shifts T = 1/(28GHz).

For an allowed pulse duration Tp, in this approach the dictionary constructed as

⌈Tp/T ⌉+1 time-shifted Gaussian mono-pulses4. In [21, 24, 25], HG functions are

4The operator ⌈.⌉ returns the nearest integer larger than its argument.
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used because of their optimal time-frequency localization characteristics. How-

ever, using high number of HG functions requires higher complexity in the trans-

mitter/receiver structure. To avoid this, in this thesis, it is proposed to construct

a dictionary from low order HG functions and their time-shifted versions.

To represent pulse shapes which have durations around one nanosecond, the

dictionary elements should be properly scaled in time. Let Th,n and Bh,n denote

the effective time and frequency support of the nth HG function, respectively,

and Bw is the maximum allowed effective bandwidth for the dictionary elements.

Since HG functions have circular support in the time-frequency plane [8], their

effective time and frequency supports are equal, i.e., Th,n = Bh,n. Assume that

Nh HG functions of order 0, 1, .., Nh−1 are to be used for forming the dictionary.

Each HG function could be scaled such that its effective bandwidth is set to

Bw. However, this will complicate the hardware structure because it requires

generation of Gaussian functions with different standard deviations. Rather than

that, all of them are scaled with a fixed scaling factor c = Bw/Bh,Nh−1. Then,

effective time and frequency support of each scaled HG function is given by

T̃h,n = Th,n/c, B̃h,n = Bh,nc. To represent the pulse shape with duration of

[0, Tp], the waveform dictionary is constructed by using time shifted, scaled HGs.

The shifting amount is selected as integer multiples of T = 1/(28GHz) as in [18].

For the nth scaled HG function, the shifting amounts are given by {kn
minT, (k

n
min+

1)T, .., kn
maxT} where kn

min = ⌊T̃h,n/(2T )⌋ and kn
max = ⌈(Tp − T̃h,n/2)T )⌉. Hence

the constructed dictionary is given by:

Q̄(t) = [h̃0(t− k0
minT ), h̃0(t− (k0

min + 1)T ), .., h̃0(t− k0
maxT ),

h̃1(t− k1
minT ), h̃0(t− (k1

min + 1)T ), .., h̃0(t− k1
maxT ),

...

h̃Nh−1(t− kNh−1
min T ), h̃Nh−1(t− (kNh−1

min + 1)T ), .., h̃0(t− kNh−1
max T )].

(3.16)

Since the constructed dictionary contains many waveforms, some of them

could be linearly dependent. However, such a linearly dependent dictionary will

generate different waveform combinations corresponding to the same pulse shape,

hence it is not desired. To overcome this problem, we define a new dictionary
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Algorithm 3 Dictionary Construction for Pulse Representation

1: Definitions:
2: Let q̄m(t), m = 1, ..,M denote the mth waveform of Q̄(t)
3: Let σmin and σmax be the minimum and maximum singular values of A,

respectively.
4: Initialization:
5: Construct Q̄(t) in (3.16)
6: Q(t) = q̄1(t)
7: m = 2
8: Iterations:
9: for m = 2 : M do
10: A = [Q(t), q̄m(t)]
11: Compute sigular values of A and find σmin, σmax

12: if σmax/σmin ≤ ς then
13: Q(t) = [Q(t), q̄m(t)]
14: end if
15: end for

Q(t) and insert elements of Q̄(t) one by one. In each insertion we compute the

singular values ofQ(t) and observe the ratio between the maximum and minimum

valued singular values. If this ratio is larger than a predefined threshold ς, the

last inserted waveform is discarded due to its larger than tolerable projection

on to the subspace of previously chosen dictionary elements. This procedure is

summarized in Algorithm-3. In the next section the structure of the transmitter

and receiver will be discussed.

3.6 Proposed Transmitter/Receiver Structure

Since all the waveforms in the dictionary Q(t) are scaled HG functions with the

same scale, shifted in time by integer multiples of 1/(28GHz) seconds and since

each pulse is represented as a linear combination of the dictionary elements, the

transmitter can be built based on the highly regular structure shown in Fig.3.2,

where, Nh is the number of HG functions used, Q(t) is the constructed waveform

dictionary provided by Algorithm-3, Ψ is the coefficient matrix, whose nth, n =

1, 2, .., Np row corresponds to the optimized coefficients of the nth pulse shape.
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Figure 3.2: Proposed transmitter structure.

In the receiver side, the received waveform is correlated with Np number of

correlative functions, each of which corresponds to one pulse shape at the trans-

mitter side, and the one which has the maximum correlation with the received

waveform is decoded as the transmitted pulse shape. The correlating functions

are rn(t), n = 1, .., Np in (3.5), which are the second derivatives of the transmitted

pulse shapes with certain gains. Hence, second derivatives of the HG functions

that are in the dictionary should be generated at the receiver. Direct generations

of derivatives of HGs having durations around one nanosecond would bring im-

plementation difficulties. However, as shown in Apprendix-B, derivatives of HG

functions can be represented as linear combinations of HGs as well. Specifically

the following relations hold:

h′
0(t) = β0,1h1(t),

h′′
0(t) = θ0,0h0(t) + θ0,2h2(t),

h′
1(t) = β1,0h0(t) + β1,2h2(t),

h′′
1(t) = θ1,1h1(t) + θ1,3h3(t),

h′
n(t) = βn,n−1hn−1(t) + βn,n+1hn+1(t), ∀n ≥ 2,

h′′
n(t) = θn,n−2hn−2(t) + θn,nhn(t) + θn,n+2hn+2(t), ∀n ≥ 2.

(3.17)

59



Table 3.1: Representation coefficients of the first and second derivatives of the
first four HG functions.

h′
0(t) h′′

0(t) h′
1(t) h′′

1(t) h′
2(t) h′′

2(t) h′
3(t) h′′

3(t)
h0(t) 0 -3.141 1.772 0 0 4.443 0 0
h1(t) -1.772 0 0 -9.424 2.5066 0 0 7.695
h2(t) 0 4.442 -2.506 0 0 -15.708 3.070 0
h3(t) 0 0 0 7.695 -3.07 0 0 -21.991
h4(t) 0 0 0 0 0 10.882 -3.544 0
h5(t) 0 0 0 0 0 0 0 14.049

In Table-3.1, θa,b coefficients of the first and second derivative of the first 4 HG

functions are provided. Hence the waveforms propagated through the transmitter

antenna, gn(t), and at output of the receiver antenna, rn(t), can be represented

as:

gn(t) = Q(t)Π1αn, n = 1, 2, .., Np (3.18)

rn(t) = Q(t)Π2αn, n = 1, 2, .., Np (3.19)

where Π1 and Π2 are the corresponding sparse matrices composed of θa,b coeffi-

cients that are used to represent derivatives of HGs in terms of HGs. Proposed

simple receiver structure is given in Fig.3.3. In the next section, design examples

will be provided.

3.7 Design Examples

In this section, results of the proposed pulse shape design procedure are provided

for two different pulse durations Tp = 0.55 nanosecond, and Tp = 0.88 nanosec-

ond. In both designs, the constructed optimization problems (3.10), (3.11), (3.15)

are solved and the results are compared.

For the first pulse duration, 8 pulse shapes are designed by solving each con-

structed optimization problem. In Fig.3.4 and Fig.3.5, designed pulse shapes

pn(t), n = 1, .., 8 by solving (3.15) are shown. The power spectral densities of

the transmitted pulse shapes gn(t), n = 1, .., 8 together with the normalized spec-

tral mask M(f) are provided in Fig.3.6 and Fig.3.7. Results for solving (3.10)
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Figure 3.3: Proposed receiver structure.

and (3.11) are given in Fig.3.8 to Fig.3.11 and Fig.3.12 to Fig.3.15, respectively.

For solving the non-convex problems in (3.10) and (3.11) MATLAB optimization

toolbox [80], for solving the convex problem in (3.15) SeDuMi [79] is used .

To compare the performance of the three proposed approaches, we use the

spectral utilization factor (SUF) defined as [18]:

SUF (n) =

∫

Fp

|Gn(f)|2df
∫

Fp

M(f)df
, (3.20)

where Gn(f) is the Fourier transform of nth propagated pulse and Fp is the effec-

tive passband of the transmitted pulse shape, which is taken as Fp = [0, 10.6]GHz
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in this work. In Fig.3.16 and Fig.3.17, SUF of the designed pulse shapes for

Tp = 0.55ns and Tp = 0.88ns durations, respectively, are given. As observed,

optimization problems in (3.10) and (3.11) can design a larger set of orthogonal

pulse shapes with higher SUF values compared to (3.15), since they are optimizing

the coefficients of the all pulse shapes jointly.

3.8 Conclusions for Chapter 3

A new approach for designing high energy orthogonal UWB pulse shapes is pro-

posed, in which orthogonality of the received pulses at the output of differentiating

antennas are maintained. We model each pulse shape as a linear combination of

time-shifted and scaled HG functions and construct three different optimization

problems for designing high energy pulse shapes. By showing that derivative of

each HG function can be represented as linear combination of other HGs, a simple

receiver structure is achieved. Obtained results show that high energy orthogonal

pulse shapes can be designed by using the proposed method.
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Figure 3.4: Designed pulse shapes p1(t) (solid), p2(t) (dashed), p3(t) (dashed-
doted), p4(t) (doted) by solving the optimization problem (3.15) for pulse duration
Tp = 0.55 nanosecond.
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Figure 3.5: Designed pulse shapes p5(t) (solid), p6(t) (dashed), p7(t) (dashed-
doted), p8(t) (doted) by solving the optimization problem (3.15) for pulse duration
Tp = 0.55 nanosecond.
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Figure 3.6: Power spectral densities of the transmitted pulse shapes g1(t) (solid),
g2(t) (dashed), g3(t) (dashed-doted), g4(t) (doted) by solving the optimization
problem (3.15) for pulse duration Tp = 0.55 nanosecond with the spectral mask
M(f).
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Figure 3.7: Power spectral densities of the transmitted pulse shapes g5(t) (solid),
g6(t) (dashed), g7(t) (dashed-doted), g8(t) (doted) by solving the optimization
problem (3.15) for pulse duration Tp = 0.55 nanosecond with the spectral mask
M(f).
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Figure 3.8: Designed pulse shapes p1(t) (solid), p2(t) (dashed), p3(t) (dashed-
doted), p4(t) (doted) by solving the optimization problem (3.10) for pulse duration
Tp = 0.55 nanosecond.
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Figure 3.9: Designed pulse shapes p5(t) (solid), p6(t) (dashed), p7(t) (dashed-
doted), p8(t) (doted) by solving the optimization problem (3.10) for pulse duration
Tp = 0.55 nanosecond.
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Figure 3.10: Power spectral densities of the transmitted pulse shapes g1(t) (solid),
g2(t) (dashed), g3(t) (dashed-doted), g4(t) (doted) by solving the optimization
problem (3.10) for pulse duration Tp = 0.55 nanosecond with the spectral mask
M(f).
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Figure 3.11: Power spectral densities of the transmitted pulse shapes g5(t) (solid),
g6(t) (dashed), g7(t)(dashed-doted), g8(t) (doted) by solving the optimization
problem (3.10) for pulse duration Tp = 0.55 nanosecond with the spectral mask
M(f).
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Figure 3.12: Designed pulse shapes p1(t) (solid), p2(t) (dashed), p3(t) (dashed-
doted), p4(t) (doted) by solving the optimization problem (3.11) for pulse duration
Tp = 0.55 nanosecond.
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Figure 3.13: Designed pulse shapes p5(t) (solid), p6(t) (dashed), p7(t) (dashed-
doted), p8(t)(doted) by solving the optimization problem (3.11) for pulse duration
Tp = 0.55 nanosecond.
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Figure 3.14: Power spectral densities of the transmitted pulse shapes g1(t) (solid),
g2(t) (dashed), g3(t) (dashed-doted), g4(t)(doted) by solving the optimization
problem (3.11) for pulse duration Tp = 0.55 nanosecond with the spectral mask
M(f).
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Figure 3.15: Power spectral densities of the transmitted pulse shapes g5(t) (solid),
g6(t) (dashed), g7(t) (dashed-doted), g8(t) (doted) by solving the optimization
problem (3.11) for pulse duration Tp = 0.55 nanosecond with the spectral mask
M(f).
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Figure 3.16: SUF of the designed pulse shapes by solving (3.10) (circle), (3.11)
(diamond) and (3.15) (square) for pulse duration Tp = 0.55 nanosecond.
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Figure 3.17: SUF of the designed pulse shapes by solving (3.10) (circle), (3.11)
(diamond) and (3.15) (square) for pulse duration Tp = 0.88 nanosecond.
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Chapter 4

Phase-Only Control of Array

Antennas by Using Convex

Programming

4.1 Introduction

Array antennas are used in many applications such as radar [28], sonar [29], com-

munications [30], radio astronomy [31], seismology and tomography [32]. Op-

erating frequency and spatial positions of the array elements define the main

characteristics of antenna pattern. By applying different complex weights to the

array elements, the beam pattern can be steered to directions of interest, sidelobe

levels can be suppressed, mainlobe beam width can be reduced [33]. These com-

plex element weights are implemented as amplitude controllers and phase shifters

at the system level [81]. Because of cost constraints and hardware limitations,

many systems do not have an individual amplitude controller for each array el-

ement. Hence, array beam pattern is typically controlled by only varying the

element phases.

A synthesis method for generating multiple patterns from the same array
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antenna is proposed in [82], where a common amplitude distribution and indi-

vidual phase for each target pattern are estimated. In [37, 38], particle swarm

optimization and genetic algorithm are used to minimize a certain cost function

of element phases for phase-only control of the beam pattern. Suppressing the

beam pattern at some certain direction by only varying the element phases has

been also widely investigated [34, 36, 35, 39]. Adaptive sidelobe nulling based on

the autocorrelation function of the received signal is proposed in [34, 35]. How-

ever, proposed method can not be used for the transmit antenna case. A phase

perturbation based method, where the non-linear phase-only nulling problem is

linearised by assuming small phase perturbations is proposed in [36]. Since the

phase variations are assumed to be small, there would be significant challenges

in hardware implementations. Suppressing the beam power at a certain angle by

adjusting the least significant bits of the phase shifter for minor deviations in the

pattern at the steering direction by using genetic algorithm is proposed in [39].

However, since the cost function is non-convex, the optimality of the provided

solution is not guaranteed.

In this work, unlike the previous approaches, a convex programming based

method is proposed. First, an optimization problem corresponding to the phys-

ical problem is constructed. Then, a convex relaxation, which doesn’t destroy

the nature of the physical problem, is applied to obtain a convex optimization

problem, which can be solved to obtain the global optimum point by utilizing an

available convex solver. We define two specific problems related to phase-only

control of beam pattern: 1) Phase-only beam synthesis for moderate size arrays;

2) Phase-only sidelobe suppression for large arrays. In the first problem, a set

of element phases, for which the resulting beam pattern should satisfy the given

“≤”, “≥” constraints limiting the sidelobe and mainlobe power, are to be esti-

mated. In the second problem, element phases are to be estimated to minimize

the total radiation power of the resulting beam pattern at given directions, while

satisfying the desired mainlobe power level. For both of the problems, first, a

quadratically constrained quadratic problem (QCQP) is constructed to model

the physical problem. Then, a convex semidefinite problem (SDP), which can be

solved at the global optimum point in polynomial time, is obtained by relaxing

71



the constructed QCQP. Although the resulting SDP is convex, its optimal solu-

tion is almost never a rank-1 matrix. For the first problem, to achieve a rank-1

solution, we propose a novel iterative rank refinement algorithm, where at each

step an SDP with additional convex constraints are solved. We show that, after

a few iterations, the optimal solution of the constructed SDP has very fast de-

caying singular values, converging to a rank-1 solution. Although the proposed

method can be utilized for solving the second problem for moderate size arrays, it

is not appropriate for large arrays having more than 100 elements since it requires

solving a new SDP of dimension 10000 at each iteration. Convex solvers imple-

menting interior point methods can not handle problems of this size on ordinary

desktop computers. Hence, we propose an Alternating Direction Method of Mul-

tipliers (ADMM) based solution for the second problem. By utilizing ADMM,

the constructed SDP is divided into smaller subproblems whose solutions are ei-

ther analytically known or easy to compute. Moreover, as required, a rank-1

solution is obtained. Conducted experiments show that, the proposed ADMM

based method for the second problem can provide desired solutions to large arrays

having up to 500 elements by performing required computations on an ordinary

desktop computer.

The organization of this chapter is as follows: In Section 4.2, a brief informa-

tion on phased array antennas is provided. Phase-only beam synthesis problem

and the proposed iterative rank refinement algorithm is given in Section 4.3. In

Section 4.4, phase-only sidelobe suppression problem and the proposed ADMM

based solution is discussed. Finally, concluding remarks are given in Section 4.5.

4.2 Phased Array Antennas

Let pn, n = 1, ..., N denote the spatial positions of antenna elements, where

pn = [pn,x, pn,y, pn,z]
T . The beam pattern of the array is a two dimensional

72



Figure 4.1: Definition of elevation (θ) and azimuth (φ) angles.

function defined as1:

B(θ, φ) =
N
∑

n=1

αnvn(θ, φ), (4.1)

where αn is the complex weight of the nth element, θ and φ are elevation and

azimuth angles defined in Fig.4.1, respectively. vn(θ, φ) is the manifold vector of

the nth antenna element given by:

vn(θ, φ) = exp{j 2π
λ
pT
na}. (4.2)

Here λ is the operating wavelength and a = [sin θ cosφ, sin θ sinφ, cos θ]T is the

directional cosines. The power pattern, which defines the angular distribution of

radiation, is computed as:

P (θ, φ) = |B(θ, φ)|2. (4.3)

To steer the antenna beam to the direction (θ̄, φ̄), i.e., to set the direction of max-

imum radiation to (θ̄, φ̄), the following optimization problem should be solved:

max
α1,..,αN

P (θ̄, φ̄)

s.t. |αn| ≤ 1, n = 1, .., N, (4.4)

1Throughout this chapter, all the array elements are assumed to have omni directional
radiation patterns.
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Figure 4.2: A 10 × 20 array geometry. Inter element spacings are chosen as
dy = dz = λ/2. Operating frequency is 6 GHz.

where we assume that the amplitude controllers can set the radiation power of

each element to any value in the interval [0, 1] Watt, without loss of generality.

With this formulation, the radiation power at direction (θ̄, φ̄) is to be maximized

by varying the element weights. The optimization problem in (4.4) has the fol-

lowing closed form solution:

αn = vn(θ̄, φ̄)
∗, n = 1, .., N. (4.5)

For the array geometry shown in Fig.4.2, at 6 GHz, the normalized power

pattern2 of the antenna, when the antenna beam is steered to (θ̄ = 90o, φ̄ = 0o)

and (θ̄ = 90o, φ̄ = 45o) is given in Fig.4.3 and Fig.4.4. In Fig.4.5, elevation

θ = 90o cut of the Fig.4.3 and Fig.4.4 are shown in blue and red, respectively. As

observed, by changing the element phases, array beam can be steered to desired

direction. However, as discussed above, controlling the sidelobe levels of the

beam pattern by only varying the element phases is not straight forward. In the

following two sections, two problems discussing this issue, together with proposed

solutions will be investigated.

2By normalization, we mean that the maximum radiation power of the antenna at the
steering direction is set to 0 dB Watt.
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Figure 4.3: Normalized power pattern of the antenna array shown in Fig.4.2
operating at 6 GHz, when the array beam is steered to (θ̄ = 90o, φ̄ = 0o).
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Figure 4.4: Normalized power pattern of the antenna array shown in Fig.4.2
operating at 6 GHz, when the array beam is steered to (θ̄ = 90o, φ̄ = 45o).
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Figure 4.5: Elevation θ = 90o cut of the power patterns given in Fig.4.3 and
Fig.4.4 for steering direction (θ̄ = 90o, φ̄ = 0o) (blue) and (θ̄ = 90o, φ̄ = 45o)
(red).
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4.3 Phase-Only Beam Synthesis Problem

4.3.1 Problem Definition

We define the phase-only beam synthesis problem as follows: While keeping the

mainlobe power above a given required level, find the phases of each element so

that the sidelobe power in a set of given directions are restricted to be less than a

given threshold. Hence, the following optimization problem can be constructed:

find α1, ..., αN

s.t. |B(θ̄, φ̄)|2 ≥ δ,

|B(θsk , φsk)|2 ≤ δs, k = 1, .., K,

|αn|2 = 1, n = 1, .., N,

|B(θ̄, φ̄)|2 > |B(θmh
, φmh

)|2, h = 1, .., H. (4.6)

Here, (θ̄, φ̄) is the steering direction and δ is the allowed minimum power level

in that direction, and (θsk , φsk), k = 1, .., K are the sidelobe directions for which

the maximum allowed power level is δs. Without loss of generality, we assume

that all the elements operate at a power level of 1 Watt. The last constraint is

to localize the direction of maximum radiation in the steering direction. Here,

(θmh
, φmh

) are the directions around (θ̄, φ̄). This constraint is critical especially

in direction finding applications. In Fig.4.6, these constraints are illustrated for

a N = 21 element linear array.

The feasible set of (4.6) might be empty because of the constraints |αn|2 =

1 constraints could be too strict. Hence, first we define the following relaxed
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Figure 4.6: Illustration of the constraints in (4.6). Green ellipse indicate the
steering direction. Green line is the mainlobe power level constraint δ. Red
line is the threshold δs for sidelobe constraints. Green and red arrows indi-
cate the mainlobe and sidelobe constraint directions (θmh

, φmh
), h = 1, .., H and

(θsk , φsk), k = 1, .., K, respectively.

problem, whose feasible set contains the feasible set of (4.6)3:

max
α∈CN

‖α‖2

s.t. |αT v̄|2 ≥ δ,

|αTvsk |2 ≤ δs, k = 1, ..., K,

|αn|2 ≤ 1, n = 1, ..., N,

|αT v̄|2 > |αTvmh
|2, h = 1, ..., H, (4.7)

where v̄ = [v1(θ̄, φ̄), .., vN(θ̄, φ̄)]
T , vsk = [v1(θsk , φsk), .., vN(θsk , φsk)]

T , vmh
=

[v1(θmh
, φmh

), .., vN(θmh
, φmh

)]T , and α = [α1, .., αN ]
T . In this formulation, to-

tal radiated power is to be maximized, sidelobe and mainlobe constraints of (4.6)

are preserved and equality constraints on the antenna weights are replaced with

inequality constraints. Hence, the feasible set of (4.7) is guaranteed to be non-

empty for reasonable choices of δ and δs. If the feasibility problem in (4.6) has a

solution, then it would also be an optimal solution for (4.7).

3All the norms defined as ‖.‖ in this chapter indicate l2 norm unless otherwise is stated.
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The optimization problem in (4.7) has dimension N , where the optimization

variables are complex numbers. It can equivalently be formulated as a 2N di-

mensional optimization problems in real variables:

min
β∈R2N

− βTβ

s.t. βT V̄V̄Tβ ≥ δ,

βTVskV
T
sk
β ≤ δs, k = 1, ..., K,

βTWT
nWnβ ≤ 1, n = 1, ..., N,

βT
(

V̄V̄T −Vmh
VT

mh

)

β ≥ ǫ, h = 1, ..., H, (4.8)

where β =

[

ℜ{α}
ℑ{α}

]

, V̄ =

[

ℜ{v̄T}, −ℑ{v̄T}
ℑ{v̄T}, ℜ{v̄T}

]

, Vsk =

[

ℜ{vT
sk
}, −ℑ{vT

sk
}

ℑ{vT
sk
}, ℜ{vT

sk
}

]

,

Vmh
=

[

ℜ{vT
mh
}, −ℑ{vT

mh
}

ℑ{vT
mh
}, ℜ{vT

mh
}

]

, Wn is an 2 × 2N matrix composed of all zeros

except Wn(1, n) = 1 and Wn(2, N+n) = 1, and ǫ is a positive number very close

to zero. The operators ℜ{.} and ℑ{.} return the real and imaginary parts of their

arguments, respectively. Note that the maximization in (4.7) is converted to a

minimization in (4.8). For notational simplicity, we further define the following

matrices A = V̄V̄T , Bk = VskV
T
sk
, Cn = WT

nWn, Dh = V̄V̄T −Vmh
VT

mh
and

rewrite (4.8) as the following QCQP:

min
β∈R2N

− βTβ

s.t. βTAβ ≥ δ,

βTBkβ ≤ δs, k = 1, ..., K,

βTCnβ ≤ 1, n = 1, ..., N,

βTDhβ ≥ ǫ, h = 1, ..., H. (4.9)

Since the QCQP in (4.9) has non-convex cost function and constraints, its global

optimizer might not be obtained in polynomial time [83]. In the next section, pro-

posed iterative rank refinement algorithm for solving the non-convex optimization

problem in (4.9) will be detailed.
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4.3.2 Proposed Iterative Rank Refinement Algorithm

Constructed QCQP in (4.9) can be equivalently written as an SDP:

min
Λ∈R2N×2N

Tr{−Λ}

s.t. Tr{AΛ} ≥ δ,

T r{BkΛ} ≤ δs, k = 1, ..., K,

Tr{CnΛ} ≤ 1, n = 1, ..., N,

T r{DhΛ} ≥ ǫ, h = 1, ..., H,

Λ � 0,

rank(Λ) = 1. (4.10)

Note that optimization variable of this SDP is a matrix Λ ∈ R
2N×2N . By increas-

ing the problem dimension from 2N to 4N2, all the quadratic constraints in (4.9)

are handled as linear constraints in this formulation. If βopt is an optimal solution

for (4.9), then the matrix βoptβopt
T is an optimal solution for (4.10). However,

(4.10) is still an NP hard problem because of the rank constraint. By removing

the rank constraint, it can be relaxed to a convex SDP, which can be solved to

obtain the global optimum point in polynomial time [84]:

min
Λ∈R2N×2N

Tr{−Λ}

s.t. Tr{AΛ} ≥ δm,

T r{BkΛ} ≤ δs, k = 1, ..., K,

Tr{CnΛ} ≤ 1, n = 1, ..., N,

T r{DhΛ} ≥ ǫ, h = 1, ..., H,

Λ � 0. (4.11)

There are many convex solvers, such as CVX [85], SeDuMi [79], SDPT3 [86],

which can be used for solving (4.11). However, optimal solution Λopt of (4.11) is

not rank-1 in general, since convex solvers implementing interior point methods

almost never provide rank-1 solutions for SDPs [84]. The rank-1 approximation
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of Λopt, which minimizes ‖Λopt − Λ̃opt‖2F , can be formed as4:

Λ̃opt = σ1u1u
T
1 , (4.12)

where σ1 is the largest singular value of Λopt and u1 is the corresponding left

singular vector. Then, a candidate solution for the QCQP in (4.9) can be con-

structed as

β̃ =
√
σ1u1. (4.13)

However, since Λopt is not rank-1, β̃ can be an infeasible point or a very distant

point to the optimal solution of (4.9). Moreover, the convex semidefinite relax-

ation in (4.11) can not be forced to have a strictly rank-1 solution, since (4.9)

and its equivalent formulation (4.10) are NP hard. However, it can iteratively be

forced to have a solution matrix with fast decaying singular values, approximat-

ing to a rank-1 solution. Assume σi
1 ≥ σi

2 ≥ ... ≥ σi
2N are the singular values and

ui
1,u

i
2, ...,u

i
2N are the corresponding left singular vectors of Λi

opt, where Λ
i
opt is the

obtained optimal solution of (4.11) at the ith iteration of the proposed method.

Then, the following 2N − 1 convex quadratic constraints

(ui
k)

TΛ(ui
k) ≤ ζ i

1

2N

2N
∑

n=1

σi
n, k = 2, ..., 2N (4.14)

are attached to (4.11) and it is resolved. Here, ζ i is a predefined multiplier,

which we initially choose as ζ i = 1. If the objective value −Tr{Λi+1
opt } is less than

a target objective value Ot, then the multiplier at iteration i + 1 is updated as

ζ i+1 ← µζ i, where 0 < µ < 1 is the parameter controlling the convergence rate

of the algorithm. After finite number of iterations Niter or the difference between

energy ratio of highest singular value of Λi
opt between two consecutive iterations,

i.e.,

r(i) =

∣

∣

∣

∣

∣

∣

∣

∣

σi
1

2N
∑

n=1

σi
n

− σi−1
1

2N
∑

n=1

σi−1
n

∣

∣

∣

∣

∣

∣

∣

∣

(4.15)

4‖.‖F indicates the Frobenius norm of its argument.
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is smaller than a certain threshold ν, iterations are terminated and the final

solution of (4.9) is obtained as:

β̃
i
=
√

σi
1u

i
1. (4.16)

Then, the corresponding complex antenna weight vector can be formed as:

α̃i = Ŵβ̃
i
, (4.17)

where Ŵ is an N ×2N matrix composed of zeros except Ŵ(n, n) = 1,Ŵ(n,N +

n) = j, for n = 1, .., N . If the value of the cost function in (4.9) evaluated at the

optimal solution Λi
opt at the final iteration is greater than −N , then the complex

antenna weights α̃i
n, n = 1, .., N, do not satisfy the power constraint in (4.4).

Therefore, weights should be normalized as:

α̂i
n = α̃i

n/|α̃i
n|, n = 1, ..., N. (4.18)

In Algorithm-4, steps of the proposed optimization algorithm are summarized.

In the next section experimental results demonstrating the performance of the

proposed iterative rank refinement algorithm will be provided.

4.3.3 Experimental Results

To investigate the performance of the proposed method, a uniform linear array

with N = 21 elements shown in Fig.4.7 is used. Inter element spacing is set to

d = 0.4λ, where λ is the wavelength. The operating frequency is f = 2 GHz. As

design constraints, we allow 5 dB power reduction in the steering direction (δ =

10 logN2−5 dB) and require 23 dB sidelobe suppression (δs = 10 logN2−23 dB).
The beamwidth measured at 23 dB below the maximum power level (10 logN2)

around the steering direction is constrained to be less than 15 degree in azimuth.

All the antenna elements are required to operate at 1 Watt. The proposed method

in Algorithm-4 is initialized with parameters Niter = 20, ν = 0.01 for steering

direction of φ̄ = 90o in azimuth and θ̄ = 0o in elevation. For solving the SDP in

(4.11), CVX is used [85].
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Algorithm 4 Iterative semidefinite relaxations with rank refinement:

Initialization:
i = 0.
ζ i = 1.
r(i) = 1.
Find Λi

opt by solving (4.11).

Apply SVD to Λi
opt and find its singular values σi

1 ≥ σi
2 ≥ .. ≥ σi

2N and the
corresponding left singular vectors ui

1,u
i
2, ..,u

i
2N .

β̃
i
=
√

σi
1u

i
1.

Compute r(i) by using (4.15).
Iterations:
while i ≤ Niter and r(i) ≥ ν do
Attach (ui

k)
TΛ(ui

k) ≤ ζ i 1
2N

∑2N
n=1 σ

i
n ∀k = 2, 3, .., 2N constraints to (4.11)

and resolve it for finding Λi+1
opt .

Apply SVD to Λi+1
opt and find its singular values σi+1

1 ≥ σi+1
2 ≥ .. ≥ σi+1

2N and

the corresponding left singular vectors ui+1
1 ,ui+1

2 , ..,ui+1
2N .

β̃
i+1

=
√

σi+1
1 ui+1

1 .
Compute r(i+ 1) by using (4.15).
if Tr{−Λi+1

opt } ≤ Ot then
ζ i+1 ← µζ i.

end if
i← i+ 1

end while
Form complex weights: α̃i = Ŵβ̃

i

Normalize complex weights: α̂i
n = α̃i

n/|α̃i
n|, n = 1, ..., N.
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After the first iteration, optimal value of the SDP in (4.11) is found to be -21.

However, since the provided solution is not rank-1, the total power of the antenna

elements is ‖α̃1‖2 = 8, much smaller than 21. Hence the normalized coefficients

α̂1 are quite different from the computed ones α̃1. In Fig.4.8, elevation θ = 0o cut

of the power pattern generated for the normalized complex weight vector after

the first (α̂1) is plotted (black). As observed, resulting beam pattern does not

satisfy the design constraints. After 20 iterations, still the optimal value of the

SDP in (4.11) is computed to be -21, the optimal solution matrix A20
opt is nearly

rank-1 and the total power of the antenna elements is ‖α̃20‖2 = 20.88. Hence

the normalized coefficients α̂20 are almost equal to α̃20. The resulting pattern

after iteration 20 is also plotted in Fig.4.8 (blue). As observed, all the design

constraints are well satisfied.

In Fig.4.9, the ratio of the largest singular value of the optimal solution matrix

Λi
opt of (4.11) to the sum of all its singular values as a function of iteration number

i, i.e., σi
1/
∑N

n=1 σ
i
n, is plotted. As observed, at iteration i = 20, the solution

matrix Λi is nearly rank one, since the largest singular value occupies most of

its energy. Note that, as the iteration number increases, this ratio increases,

demonstrating the converge behaviour of the proposed method. In Fig.4.10, 10

largest singular values of Λi
opt at iteration i = 1, i = 3, i = 20 are plotted. In

the first iteration, singular values Λ1
opt have a small decay rate. After iteration

3, singular values have a faster decay. At iteration 20, most of the energy is

accumulated in the first singular value and the remaining ones are very close to

0, hence, effectively a rank-1 solution to (4.11) is obtained.

For different steering directions (θ̄ = 0o, φ̄ = 125o) and (θ̄ = 0o, φ̄ = 45o),

same experiment is repeated. The resulting patterns after iteration i = 1 (black)

and i = 20 (blue) are shown in Fig.4.11 and Fig.4.12, respectively. As observed,

proposed method can find a set of phase values, for which the resulting pattern

satisfies the given constraints in the set of given steering directions.
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Figure 4.7: Uniform linear array with N = 21 elements. Inter element spacing is
d = 0.4λ.
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Figure 4.8: Elevation θ = 0o cut of the power pattern for steering direction
(θ̄ = 0o, φ̄ = 90o) computed using the weights found at iteration i = 1 (black)
and i = 20 (blue), respectively. Red lines indicate the sidelobe power level δs and
green line indicates the main lobe power level δ.
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Figure 4.9: Ratio of the largest singular value of the optimal solution matrix Λi
opt

of (4.11) to the sum of all its singular values as a function of iteration number i.
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Figure 4.10: 10 largest singular values of Λi
opt at iteration i = 1 (black), i = 3

(green), i = 20 (blue).
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Figure 4.11: Elevation θ = 0o cut of the power pattern for steering direction
(θ̄ = 0o, φ̄ = 125o) computed using the obtained weights after iteration i = 1
(black) and i = 20 (blue). Red lines indicate the sidelobe power level δs and
green line indicates the main lobe power level δ.
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Figure 4.12: Elevation θ = 0o cut of the power pattern for steering direction
(θ̄ = 0o, φ̄ = 45o) computed using the obtained weights after iteration i = 1
(black) and i = 20 (blue). Red line indicates the sidelobe power level δs and
green line indicates the main lobe power level δ.
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4.4 Phase-Only Sidelobe Suppression Problem

4.4.1 Problem Definition

In phase only sidelobe suppression applications, while maintaining the mainlobe

power at a certain level, the total radiated power at desired directions is mini-

mized by varying the element phases. Hence, the following optimization problem

formalizes the phase-only sidelobe level suppression:

min
αn∈C,n=1,..,N

K
∑

k=1

|B(θsk , φsk)|2

s.t. B|(θ̄, φ̄)|2 = δ,

|α1| = |α2| = ... = |αN |, (4.19)

where (θsk , φsk), k = 1, .., K are the sidelobe directions, at which the total radiated

power is to be minimized; (θ̄, φ̄) is the steering direction, for which the required

power level is restricted to be δ. Defining v̄ = [v1(θ̄, φ̄), .., vN(θ̄, φ̄)]
T , vsk =

[v1(θsk , φsk), .., vN(θsk , φsk)]
T , and β = [α1, α2, .., αN ]

H , the optimization problem

in (4.19) can be written in the following form:

min
β∈CN ,γ∈R+

βH

(

K
∑

k=1

vskv
H
sk

)

β

s.t. βH v̄v̄Hβ = δ,

|βn| = γ, n = 1, .., N. (4.20)

By further defining V = v̄v̄H , Vs =
∑K

k=1 vskv
H
sk
, its equivalent SDP formulation

can be obtained as:

min
Λ∈CN×N ,γ∈R+

Tr(VsΛ)

s.t. Tr(VΛ) = δ,

Λi,i = γ, i = 1, ..., N,

Λ � 0,

rank(Λ) = 1. (4.21)
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Although the quadratic constraints are linearised in this formulation, because of

the rank constraint the constructed optimization problem in (4.21) is still non-

convex. For moderate number of array elements, this problem could be solved

by using the proposed method in Section 4.3. However, for large arrays, convex

solvers fail to provide results in reasonable computation time. In the next section,

an Alternating Direction Method of Multipliers (ADMM) based optimization

approach will be proposed for efficient solution of large scale applications.

4.4.2 Proposed ADMM Based Solution

ADMM is an iterative algorithm, which integrates the decomposability property

of dual ascent and the superior converge properties of method of multipliers [87].

Specifically, ADMM can be utilized for solving optimization problems in the

following form:

min f(x) + g(z)

s.t. : Ax+Bz = c, (4.22)

where x∈Rn, z∈Rm, A∈Rp×n, B∈Rp×m, c∈Rp, f and g are convex functions of

variables x and z, respectively. At each ADMM iteration the following three

updates are utilized:

xk+1 = argmin
x

Lρ(x, z
k,yk),

zk+1 = argmin
z

Lρ(x
k+1, z,yk),

yk+1 = yk + ρ(Axk+1 +Bzk+1 − c), (4.23)

where k is the iteration number and Lρ(x, z,y) is the augmented Lagrangian for

(4.22) which is defined as:

Lρ(x, z,y) = f(x) + g(z) + yT (Ax+Bz− c) +
ρ

2
‖Ax+Bz− c‖2. (4.24)

Here, ρ > 0 is the parameter controlling deviation from the constraints of (4.22).

By defining u=y/ρ, the x, z and y-update in (4.22) can be equivalently written
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as:

xk+1 = argmin
x

f(x) +
ρ

2
‖Ax+Bzk − c+ uk‖2,

zk+1 = argmin
z

g(z) +
ρ

2
‖Axk+1 +Bz− c+ uk‖2,

uk+1 = uk +Axk+1 +Bzk+1 − c. (4.25)

ADMM iterations are terminated when the following conditions are satisfied:

‖rk‖2 ≤ ǫpri, (4.26)

‖sk‖2 ≤ ǫdual, (4.27)

where primal error rk, dual error sk and the corresponding termination thresholds

ǫpri and ǫdual are given by:

rk = Axk +Bzk − c, (4.28)

sk = ρATB(zk − zk−1), (4.29)

ǫpri =
√
pǫabs + ǫrel max(‖Axk‖, ‖Bxk‖, ‖c‖), (4.30)

ǫdual =
√
nǫabs + ǫrelATyk. (4.31)

The constants ǫabs and ǫrel are typically chosen as, 10−4 and 10−2, respectively

[87]. Derivations of the termination criteria in (4.26) and (4.27) are given in

Appendix-C.

To solve (4.21) by using ADMM, x, z and u-update steps of ADMM itera-

tions should be defined according to (4.21). The x-update step for (4.21) can be

constructed as:

Xk+1 = argmin
X∈CN×Nγ∈R+

Tr(VsX) +
ρ

2
‖X− Zk +Uk‖2F

s.t. Tr(VX) = δ,

Xi,i = γ, i = 1, .., N (4.32)

89



The optimization variable in (4.32) is the matrix X composed of complex num-

bers. The equivalent formulation to (4.32) with real optimization variables is:

X̂k+1 = argmin
X̂∈R2N×N ,γ∈R+

Tr(V̂sX̂) +
ρ

2
‖X̂− Ẑk + Ûk‖2F

s.t. Tr(V̂X̂) = δ,

X̂i,i = γ, i = 1, .., N,

X̂i+N,i = 0, i = 1, .., N, (4.33)

where X̂ = [ℜ{X};ℑ{X}], V̂s = [ℜ{Vs},−ℑ{Vs}], V̂ = [ℜ{V},−ℑ{V}], Ẑk =

[ℜ{Zk};ℑ{Zk}] and Ûk = [ℜ{Uk};ℑ{Uk}]. To obtain a simpler form of (4.33),

we introduce the following definitions:

x̂=Vec(X̂), (4.34)

v̂s=Vec(V̂T
s ), (4.35)

v̂=Vec(V̂T ), (4.36)

ẑk=Vec(Ẑk), (4.37)

ûk=Vec(Ûk), (4.38)

where “Vec(.)” is the operator which converts matrices to vectors by column wise

concatenation. By using the above vectorized forms, (4.33) can be equivalently

written as:

x̂k+1 = argmin
x̂∈R2N2

‖x̂− ẑk + ûk +
1

ρ
v̂s‖22

s.t. Ax̂ = a. (4.39)

where A∈R(2N)×2N2

and Ai,i+(i−1)2N=1, i = 1, .., N − 1; Ai,i+1+i2N= − 1, i =

1, .., N − 1; Ai+N−1,i+(i−1)2N+N = 1, i = 1, .., N ; A2N,i = v̂i, i = 1, .., 2N2. All the

other elements of A are zero. a∈R2N and ai = 0, i = 1, .., 2N − 1; a2N = δ. The

optimization problem in (4.39) has an analytic solution, which is the projection

of dk = ẑk − ûk − v̂s/ρ to the affine subspace Adk = a:

x̂k+1 = dk −AT (AAT )−1(Adk − a). (4.40)

In ADMM iterations, the frequently used product AT (AAT )−1 can be precom-

puted and stored for a fast implementation. Once the optimal x̂k+1 is computed
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by using (4.40), the complex matrices in (4.32), i.e., X∈CN×N , Zk∈CN×N and

Uk∈CN×N , can be reconstructed.

In the z-update step, positive semidefiniteness and rank-1 constraints of (4.21)

are handled by projectingXk+1+Uk on to the space of positive-semidefinite, rank-

1 matrices. This projection can be computed by utilizing spectral factorization

of Xk+1 +Uk:

Xk+1 +Uk = QΣQH ,

Zk+1 = σ1q1q
H
1 , (4.41)

where Q = [q1,q2, ..,qN ] and Σ = diag(σ1, σ2, .., σN) with σ1 being the largest

eigenvalue.

Finally, the u-update step is performed as

Uk+1 = Uk +Xk+1 − Zk+1. (4.42)

When the ADMM iterations are terminated, solution to (4.20) is obtained as:

β̃ =
√
σ1u1. (4.43)

where σ1 is the largest singular value ofX obtained in the final iteration of ADMM

and u1 is the corresponding left singular vector. A final scaling and conjugation

is applied to the elements of β̃ to the find the estimates of the optimal phase

values as:

α̃n = β̃∗
n/|β̃n|, n = 1, .., N. (4.44)

In the next section experimental results demonstrating the performance of the

proposed ADMM based method will be provided.

4.4.3 Experimental Results

In this section, for different array geometries and pattern constraints, ADMM

based proposed technique is compared with the commonly used convex solver
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CVX [85]. For the CVX solution, (4.21) is first relaxed to a convex program

by removing its rank constraint, then it is solved by using CVX and estimates

of the optimal phase values are obtained by applying rank-1 approximation and

rescaling to the optimal solution as in (4.43) and (4.44). As a comparison metric,

we define the average power in the set of directions at which suppression is desired:

Pavr =
1

K

K
∑

k=1

|B(θsk , φsk)|2,

=
1

K
α̃TVsα̃

∗, (4.45)

where α̃ = [α̃1, .., α̃N ]
T . In the rest of this section, the performance of the pro-

posed approach will be illustrated over a set of simulations corresponding to

practical applications.

In the first experiment, a uniform linear array of 50 elements is used. Array

elements are placed along the x-axis. The operating frequency is set to 1GHz.

Interelement spacing is chosen as half of wavelength. Steering direction of the

beam is φ̄ = 90o in azimuth and θ̄ = 90o in elevation. The suppression sectors

are defined as {φsk , |φsk ∈ [93o, 103o] ∪ [120o, 130o] ∪ [150o, 160o]} in azimuth and

θsk = 90o in elevation. These sectors are indicated with green dots in Fig.4.15.

The mainlobe power is restricted to be half of the maximum achievable main

lobe power, i.e., δ = N2/2. This level is also shown in Fig.4.15 with a black dot.

As observed in Fig.4.13, the convergence rate of the ADMM iterations decrease

as the iterations proceed for both primal and dual errors defined in (4.21) and

(4.22), respectively. In Fig.(4.23), singular values of the optimal solution matrix

for (4.21) provided by ADMM and CVX are shown. ADMM provided a rank-1

solution matrix. In Fig.4.15, the resulting antenna pattern for the phase estimates

provided by ADMM(top-red) and CVX (bottom-red) are plotted. When array

beam is only steered without any phase optimization, the resulting pattern is

shown by blue on both top and bottom figures. Pavr values for ADMM and CVX

results are -16.1dB and -5.6dB, respectively, showing that proposed ADMM based

method provides 10dB additional suppression than CVX.

In the second experiment, a 10 × 3 planar array, whose elements are placed

on the y-z plane is simulated. Operating frequency, interelement spacings and
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steering direction are chosen as they are in the first experiment. However, in the

considered case here, this time the suppression direction is chosen as an angular

region defined as {φsk , |φsk ∈ [17o, 40o]} in azimuth and {θsk , |θsk ∈ [85o, 95o]} in
elevation. This region is indicated with a green rectangle on the top figure in

Fig.4.18. The mainlobe power is again constrained to be δ = N2/2. As shown

in Fig.4.16, ADMM iterations converge rapidly. In Fig.4.17, singular values of

optimal solution matrix provided by ADMM (blue) and CVX (red) are shown.

ADMM provides a rank-1 solution in the planar case as well. In Fig.4.18, the

resulting antenna patterns are shown. In the top figure, a two dimensional plot

of the original pattern without any phase optimization is provided. The resulting

patterns for ADMM and CVX solutions are shown in the middle and the bottom

figures, respectively. Pavr values calculated over the green rectangular region

shown on the top plot for ADMM and CVX are -22.8dB and -7.9db, respectively.

For this experiment, ADMM shows a 15dB improvement over CVX in terms of

sidelobe suppression.

In the final experiment, the performance of ADMM for arrays having large

number of elements is investigated. For a 200-element linear array, we repeated

the first experiment with steering direction φ̄ = 45o in azimuth and θ̄ = 90o

in elevation. The suppression directions are {φsk , |φsk ∈ [50o, 55o] ∪ [80o, 85o] ∪
[105o, 110o]} in azimuth and θsk = 90o in elevation. The mainlobe power level

is δ = N2/2. Note that, the number of variables in (4.21) for this problem is

40000. ADMM iterations are terminated after 200 iterations, which take about

85 seconds on an ordinary desktop computer. However, CVX can not provide

a solution and returns a memory error on the same computer. Primal and dual

error computed at each ADMM iteration is given in Fig.4.19, which indicates

the convergence of the proposed method. Singular values of the solution matrix

provided by ADMM is plotted in Fig.4.20. Even for this size of a sidelobe sup-

pression problem, ADMM provides a rank-1 solution. In Fig.4.21, the resulting

beam pattern is given. As observed, obtained phase values provides effective

attenuation in the desired directions while satisfying the mainlobe power level.
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Figure 4.13: Convergence rate of ADMM iterations for the first experiment: Pri-
mal (blue) and dual (red) error defined in (4.21) and (4.22), respectively.
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Figure 4.14: Singular values of the optimal solution matrix for (4.21) provided
by ADMM (blue) and CVX (red) for the first experiment.
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Figure 4.15: Resulting antenna patterns for ADMM (top-red) and CVX (bottom-
red) results for the first experiment. When the array beam is only steered without
any phase optimization, the resulting pattern is shown in blue on both top and
bottom figures. Green dots indicate the suppression directions.
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Figure 4.16: Convergence rate of ADMM iterations for the second experiment:
Primal (blue) and dual (red) error defined in (4.21) and (4.22), respectively.
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Figure 4.17: Singular values of the optimal solution matrix for (4.21) provided
by ADMM (blue) and CVX (red) for the second experiment.
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Figure 4.18: The resulting antenna pattern for the second experiment. On the
top: original antenna pattern without any phase optimization (on the top). Green
rectangle indicates the angular region for suppression. On the middle and on the
bottom resulting patterns for the set of phase values provided by ADMM and
CVX, respectively.
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Figure 4.19: Convergence rate of ADMM iterations for the third experiment:
Primal (blue) and dual (red) error defined in (4.21) and (4.22), respectively.
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Figure 4.20: Singular values of the optimal solution matrix for (4.21) provided
by ADMM.
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Figure 4.21: Resulting antenna pattern for ADMM (red) for the third experi-
ment. When the array beam is only steered without any phase optimization, the
resulting pattern is shown in blue. Green dots indicate the suppression directions.
Black dot shows the mainlobe power level.

4.5 Conclusions for Chapter 4

For phase-only control of array antennas, two specific problems with proposed

convex optimization based solutions are introduced. In the first problem, a set

of phase values, for which the resulting beam pattern should satisfy the given

sidelobe and mainlobe constraints are to be obtained. In the second problem,

a set of phase values, which minimize the total radiation power of the resulting

beam pattern at given directions, while keeping its mainlobe power at a certain

level are to be estimated. Both problems are transformed to a convex SDP

formulation. For the first problem, an iterative rank refinement algorithm is

proposed. Conducted experiments show that proposed method provides a rank-1

solution for the constructed SDP. Hence, obtained phase estimates provides beam

patterns with desired characteristics. For the second problem, an ADMM based

method is proposed. We show that proposed method can provide rank-1 solutions

to problems even for very large dimensions, which result in effective suppression

in the desired directions.

99



Chapter 5

Conclusions and Future Work

In this thesis, to provide further flexibility and improved performance, novel ap-

proaches to three classical signal processing problems in optimization framework

are developed. In the first part, a new signal analysis tool, which use Hermite-

Gaussian (HG) functions, is developed. The key success behind the developed

analysis technique is that HG functions provide optimal representations for sig-

nals, which are properly transformed in the time-frequency plane. Conducted

experiments show that proposed method provides reliable identification and ex-

traction of signal components even under severe noise cases.

In the second part, three alternative optimization based approaches are pro-

posed for the design of orthogonal pulse shapes for ultra-wideband (UWB) com-

munication systems with wideband antennas. We model each pulse shape as a

linear combination of time shifted and scaled HG functions. Since the derivatives

of HG functions can be represented as a linear combination of HGs, a simpler

optimal correlating receiver structure is proposed.

In the final part, two novel methods are developed for phase-only control of

array antenna patterns. First, antenna pattern design problem is formulated as a

non-convex quadratically constrained quadratic problem (QCQP) is constructed.

Then, by relaxing the constructed QCQP, a convex semidefinite problem (SDP)
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is obtained. For moderate size arrays, to converge iteratively to a rank-1 so-

lution matrix for the SDP, we propose an iterative rank refinement algorithm,

which forces sequentially obtained solution matrices towards a rank-1 matrix.

Conducted experiments show that, proposed algorithm converges rapidly to a

rank-1 solution of the constructed SDP. For large arrays, an alternating direc-

tion method of multipliers (ADMM) based method is developed. Since ADMM

handles the SDP as a set of smaller subproblems, whose solutions are either an-

alytically known or easy to numerically compute, optimal phase settings with

desired beam characteristics for very large arrays can be obtained.

There are many other signal problems that can be reformulated as a SDP for

improved performance. Applications such as SAR motion-compensation, phase

retrieval in X-ray crystallography and signal design in ambiguity domain are

among the many other applications that will benefit from such a reformulation.

The main drove back of semidefinite programming is that the commonly en-

countered rank-1 constraint on the matrix of variables can not be handled and

typically removed from the constraint set. Therefore, the obtained solutions to

the SDP formulations fail to be rank-1. The iterative rank-refinement technique

proposed in this thesis forces the obtained solutions towards a rank-1 matrix and

hence, provides the desired solution using the efficient SDP solvers. As a future

work, this novel rank-refinement approach will be used to obtain improved per-

formances on the other problems mentioned above. For the ADMM formulation,

to increase the converge rate, proximal based methods in [88] will be used.
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Appendix A

A.1 Time-Frequency Distributions: A Short

Review

The basic idea behind the time-frequency transforms is to device a distribution

that represents the energy of a signal simultaneously in time and frequency. An

infinite number of time-frequency distributions with different properties of a signal

s(t) can be generated from the following generalized formula [89]:

TFs(t, f) =

∫ ∫ ∫

κ(ν, τ)s(u+ τ/2)s∗(u− τ/2)ej2π(νu−νt−τf)dudνdτ, (A.1)

where κ(ν, τ) is the kernel of the distribution. Different choices of the kernel func-

tion leads to different time-frequency distributions [90]. By choosing κ(ν, τ) = 1,

the Wigner-Ville distribution (WVD) is obtained:

WVDs(t, f) =

∫

s(t+ τ/2)s∗(t− τ/2)e−j2πτfdτ. (A.2)

The spectrogram of s(t) is obtained by choosing the kernel function as:

κ(ν, τ) = 2π

∫

h(u+ τ/2)h∗(u− τ/2)e−j2πνudu, (A.3)

where h(t) is a window function. Hence, the spectrogram of s(t) is given by:

SPECs(t, f) =

∣

∣

∣

∣

∫

s(τ)h(τ − t)e−j2πτfdu

∣

∣

∣

∣

2

. (A.4)
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Here, the integral term is also called as the short time Fourier transform (STFT)

of the signal:

STFTs(t, f) =

∫

s(τ)h(τ − t)e−j2πτfdu, (A.5)

where the signal is first multiplied by a time-shifted window function and then its

Fourier transform is computed. Interesting properties of WVD, STFT and other

time-frequency distributions can found in [90].

A.2 Fractional Fourier Transform

The ath order, a ∈ R, 0 < |a| < 2, fractional Fourier Transform (FrFT) of a signal

s(t) is defined as [91]:

Fa
s (t) =

∫

Ka(t, τ)s(τ)dτ, (A.6)

where the kernel of the transformation Ka(t, τ) is

Ka(t, τ) = Aφe
jπ(t2 cotφ−2tτ cscφ+τ2 cotφ), (A.7)

Aφ =
e−jπsgn(sinφ)/4+jφ/2

√

| sinφ|
, (A.8)

φ =
aπ

2
. (A.9)

The 1th order transform (a = 1) is the ordinary Fourier transform:

Fas(t) = S(f) =

∫

s(t)e−j2πftdt. (A.10)

The 0th order transform (a = 0) is the function itself. Other interesting properties

of FrFT can be found in [91].
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Appendix B

B.1 Derrivatives of Hermite-Gaussian Func-

tions

In this appendix, it will be shown that successive derivatives of HG (Hermite-

Gaussian) functions can be expressed as linear combinations of HG functions.

The nth HG function is given by

hn(t) = αnHn(c1t)e
c2t2 , (B.1)

where αn = 21/4√
2nn!

, c1 =
√
2π, c2 = −π and Hn(t) is the nth order Hermite

polynomial. Hermite polynomials satisfy the following two relations [65]:

2tHn(t) = Hn+1(t) + 2nHn−1(t) , (B.2)

d

dt
Hn(t) = 2nHn−1(t) . (B.3)

The first derivative of hn(t) is given by:

d

dt
hn(t) = 2αnc2e

c2t2tHn(c1t) + αne
c2t2

d

dt
Hn(c1t)

= 2αnc2e
c2t2t

(

Hn+1(c1t) + 2nHn−1(c1t)

2c1t

)

+ c1αne
c2t22nHn−1(c1t)

=

(

c2
c1

+ c1

)

2nαne
c2t2Hn−1(c1t) +

c2
c1
αne

c2t2Hn+1(c1t)

(B.4)
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=
c2
c1

αn

αn+1

hn+1(t) + 2n

(

c2
c1

+ c1

)

αn

αn−1

hn−1(t)

=
c2
c1

√

2(n+ 1)hn+1(t) +
√
2n

(

c2
c1

+ c1

)

hn−1(t) . (B.5)

By using (B.5), second derivative of hn(t) can be computed as:

d2

dt2
hn(t) =

c2
c1

√

2(n+ 1)
d

dt
hn+1(t) +

√
2n

(

c2
c1

+ c1

)

d

dt
hn−1(t)

=
c2
c1

√

2(n+ 1)

[

√

2(n+ 1)

(

c2
c1

+ c1

)

hn(t)
c2
c1

√

2(n+ 2)hn+2(t)

]

+

+
√
2n

(

c2
c1

+ c1

)[

√

2(n− 1)

(

c2
c1

+ c1

)

hn−2(t) +
c2
c1

√
2nhn(t)

]

= 2
√

n(n− 1)

(

c2
c1

+ c1

)2

hn−2(t)

+ (4n+ 2)
c2
c1

(

c2
c1

+ c1

)

hn(t)

+ 2
√

(n+ 1)(n+ 2)

(

c2
c1

)2

hn+2(t). (B.6)

Successive derivatives of higher order can be computed similarly.
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Appendix C

C.1 Termination Criteria of ADMM Iterations

In this appendix, termination criteria of ADMM iterations will be derived. Con-

sider the following optimization problem:

min f(x) + g(z)

s.t. Ax+Bz = c, (C.1)

where x ∈ Rn, z ∈ Rm, A ∈ Rp×n, B ∈ Rp×m and c ∈ Rp. f and g are convex

and functions. The necessary and sufficient condition for (x∗, z∗, y∗) to be the

optimal solution of (C.1) is primal feasibility

Ax∗ +Bz∗ − c = 0, (C.2)

and dual feasibility

0 ∈ ∂f(x∗) + ATy∗, (C.3)

0 ∈ ∂g(z∗) +BTy∗, (C.4)

(C.5)

where ∂ is the subdifferential operator.

In the z-update step of ADMM iterations, the following optimization problem

is solved:

zk+1 = argmin
z

Lρ(x
k+1, z, yk). (C.6)
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Hence, zk+1 satisfies the following condition:

0 ∈ ∂g(zk+1) +BTyk + ρBT (Axk+1 +Bzk+1 − c)

= ∂g(zk+1) +BT (yk + ρ(Axk+1 +Bzk+1 − c))

= ∂g(zk+1) +BT yk+1. (C.7)

This shows that, dual feasibility condition in (C.4) is automatically satisfied in

the z-update step. As a result, optimality of the point (x∗, z∗, y∗) depends on

(C.2) and (C.3).

In the x-update step of ADMM iterations, the following optimization problem

is solved:

xk+1 = argmin
x

Lρ(x, z
k, yk). (C.8)

Hence, xk+1 satisfies the following condition:

0 ∈ ∂f(xk+1) + AT yk + ρAT (Axk+1 +Bzk − c)

= ∂f(xk+1) + AT (yk + ρ(Axk+1 +Bzk+1 − c) + ρB(zk − zk+1))

= ∂f(xk+1) + ATyk+1 + ATB(zk − zk+1), (C.9)

which can be equivalently written as

ATB(zk − zk+1) ∈ ∂f(xk+1) + ATyk+1. (C.10)

Here, sk+1 = ATB(zk − zk+1) can be viewed as residual for the dual feasibility

condition at iteration k + 1. Similarly, rk+1 = Axk+1 −Bzk+1 − c can be defined

as the residual for primal feasibility at iteration k + 1.

A reasonable termination criteria for ADMM iterations is that both primal

and dual residuals should be smaller than certain thresholds:

rk+1 ≤ ǫpri, (C.11)

sk+1 ≤ ǫdual. (C.12)

These thresholds can be chosen as1:

ǫpri =
√
pǫabs + ǫrel max(‖Axk+1‖, ‖Bxk+1‖, ‖c‖), (C.13)

ǫdual =
√
nǫabs + ǫrel‖ATyk+1‖, (C.14)

1All the norms are l2 norms.
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where ǫabs > 0 is an absolute tolerance and ǫrel > 0 is a relative tolerance,

which can be typically chosen as ǫabs = 10−4 and ǫrel = 10−2, depending on the

application [87].
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