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ABSTRACT

SSFT: SELECTIVE SOFTWARE FAULT TOLERANCE

Tuncer Turhan

M.S. in Computer Engineering

Supervisor: Assoc. Prof. Dr. Özcan Öztürk

January, 2014

As technology advances, the processors are shrunk in size and manufactured

using higher density transistors which makes them cheaper, more power efficient

and more powerful. While this progress is most beneficial to end-users, these ad-

vances make processors more vulnerable to outside radiation causing soft errors

which occur mostly in the form of single bit flips on data. For protection against

soft errors, hardware techniques like ECC (Error Correcting Code) and Ram

Parity Memory are proposed to provide error detection and even error correc-

tion capabilities. While hardware techniques provide effective solutions, software

only techniques may offer cheaper and more flexible alternatives where additional

hardware is not available or cannot be introduced to existing architectures. Soft-

ware fault detection techniques -while powerful- rely mostly on redundancy which

causes significant amount of performance overhead and increase in the number

of bits susceptible to soft errors. In most cases, where reliability is a concern,

the availability and performance of the system is even a bigger concern, which

actually requires a multi objective optimization approach. In applications where

a certain margin of error is acceptable and availability is important, the existing

software fault tolerance techniques may not be applied directly because of the

unacceptable performance overheads they introduce to the system. Our tech-

nique Selective Software Fault Tolerance (SSFT) aims at providing availability

and reliability simultaneously, by providing only required amount of protection

while preserving the quality of the program output. SSFT uses software profiling

information to understand application’s vulnerabilities against transient faults.

Transient faults are more likely to occur in instructions that have higher execu-

tion counts. Additionally, the instructions that cause greater damage in program

output when hit by transient faults, should be considered as application weak-

nesses in terms of reliability. SSFT combines these information to eliminate the

instructions from fault tolerance, that are less likely to be hit by transient errors

or cause errors in program output. This approach reduces power consumption
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and redundancy (therefore less data bits susceptible to soft errors), while improv-

ing performance and providing acceptable reliability. This technique can easily be

adapted to existing software fault tolerance techniques in order to achieve a more

suitable form of protection that will satisfy different concerns of the application.

Similarly, hybrid and hardware only approaches may also take advantage of the

optimizations provided by our technique.

Keywords: Software Fault Tolerance, Software Fault Injection, Software Profiling

for Reliability, Reliability, Multi objective optimization: Reliability and Avail-

ability.



ÖZET

SEÇİMSEL YAZILIM HATA TOLERANSI

Tuncer Turhan

Bilgisayar Mühendisliği, Yüksek Lisans

Tez Yöneticisi: Doç. Dr. Özcan Öztürk

Ocak, 2014

Teknolojik gelişmelerle birlikte, işlemciler boyut olarak daha küçültülüyor ve

üretim sürecinde daha sık ve küçük boyutlu transistorler kullanılarak üretiliyorlar.

Bu üretim süreci işlemcileri daha ucuz, daha güç tasarruflu ve daha güçlü kılıyor.

Bu süreç son kullanıcı için son derece faydalı olmasına karşın, bu süreç işlemcileri

dış ortamdan kaynaklı radyasyona karşı daha zayıf kılıyor ve bunun sonu-

cunda, genellikle veri üstünde tek bir bitin değer değiştirmesi formunda oluşan,

yumuşak hatalar oluşuyor. Yumuşak hatalara karşı uygulamaların güvenilirliğini

arttırabilmek adına, literatürde ECC (Hata Düzeltme Kodu) özellikli veya Parite

özellikle hafıza gibi donanımsal hata tolerans teknikleri geliştirilmiştir. Do-

nanımsal hata tolerans teknikleri etkili çözümler üretmesine karşın, donanımsal

altyapının bulunmadığı ya da var olan sisteme eklenmesi mümkün olmadığı du-

rumlarda, yazılımsal hata toleransı teknikleri daha ucuz ve esnek bir alternatif

sunabilir. Yazılımsal Hata Toleransı teknikleri, güçlü bir alternatif olmasına

rağmen, genellikle yedekleme mantığına dayalı çalıştıklarından, performans

düşüşüne ve hataya neden olmaya açık olan bit sayısını arttırmaktadır. Uygu-

lama güvenilirliğinin bir endişe olduğu sistemlerde, performans ve erişiliebilirlik

daha büyük bir sistem endişesi ve gereksinimi durumunda olduğundan, bu çoklu

objektifli bir yaklaşım gerektirmektedir. Belirli ölçüde bir hatanın kabul edilebilir

olduğu ve erişilebilirliğin önemli olduğu uygulamalarda, sisteme getirdikleri per-

formans yükünden ötürü, literatürdeki yazılımsal hata toleransı tekniklerini

olduğu gibi kullanılamayabilir. Bu noktada bizim tekniğimiz seçimsel yazılım

hata toleransı (SYHT) erişilebilirlik ve güvenilirliği eş zamanlı sağlamayı hede-

fler. SYHT bunu, uygulamanın sadece ihtiyaç duyduğu ölçüde hata toleransı

kullanarak ve uygulamanın ürettiği verilerde kaliteyi koruyarak sağlamaktadır.

SYHT yazılım profil bilgisini kullanarak, uygulamanın yumuşak hatalara karşı

hassasiyetlerini anlamaya çalışır. Yumuşak hatalar yüksek sayıda çalışan komut

satırlarında oluşmaya meyillidir. Ayrıca, yumuşak hatalara maruz kaldığında,

uygulama tarafından oluşturulan verilerde daha fazla hataya sebep olan komut
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satırlarının uygulamanın güvenilirlik açısından hassas komut satırları olduğu

söylenebilir. SYHT bu bilgileri kullanarak, yumuşak hatalara maruz kalma

olasılığı düşük ve uygulama tarafından oluşturulan verilerde daha az hataya

sebep olan komut satırları için hata toleransını kaldırır. Bu yaklaşım, perfor-

mansı arttırırken ve güvenilirliği yeterli seviyede tutarken, enerji tüketimlerini ve

yedeklenen veri sayısını (dolayısıyla yumuşak hatalara maruz kalan bit sayısını)

azaltır.Bu teknik kolaylıkla literatürde yaygın olan yazılımsal hata toleransı

tekniklerine adapte edilebilir. Bu adaptasyonu yaparken de, uygulamanın çeşitli

endişelerine uygun olacak şekilde bir hata toleransı kullanır. Benzeri şekilde, hib-

rit ve donanımsal hata toleransı yaklaşımları da bizim yaklaşımımızın sağladığı

iyileştirmelerden faydalanabilirler.

Anahtar sözcükler : Yazılımsal Hata Toleransı, Yazılımsal Hata Enjeksiyonu,

Yazılım Güvenliği için Yazılımsal Profil Çıkarma , Yazılım Güvenilirliği, Çoklu

Objektifli İyileştirme: Güvenilirlik ve Erişilebilirlik.
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Chapter 1

Introduction

Over the last decade, the processors have improved in many aspects through

technological advancements; they have become cheaper, more powerful and less

energy consuming and overall offer better and more efficient computing. In order

to provide more efficient and powerful processors, hardware manufacturers keep

improving their designs and fabrication technologies. There are many improve-

ments being applied; however the following aspects are more important for this

thesis: using higher density transistors and introduction of Chip Multiprocessors

(CMP). The current state of the art technology is 14nm process technology which

is adopted by most of the processor and System on Chip manufacturers including

Intel, AMD, Nvidia and ARM. The number of transistors on integrated circuits

doubles approximately every two years according to Moore’s Law and to pro-

vide such advancements companies increase the transistor densities. Although,

these advancements provide users cheaper, faster and more efficient processors,

there are issues that need to be addressed in order to continue with such ad-

vancements. Baumann states that, ”As the dimensions and operating voltages

of computer electronics shrink to satisfy consumers’ insatiable demand for higher

density, greater functionality, and lower power consumption, sensitivity to radi-

ation increases dramatically.” [1]. According to recent studies [2] soft errors are

expected to grow further as the scaling goes beyond 14nm, and with each gen-

eration 8% increase in soft-error rate is expected. This sensitivity to radiation
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presents itself in the form of Single Event Upset (SEU). While these faults, in

general, are considered as transient errors and do not cause any permanent dam-

age on the hardware, a single bit flip in data may cause significant failures. In

software systems, application programs, operating systems or drivers are consid-

ered as main causes of faults; however, in some cases, these transient faults may

be the source of the actual failure. In 2000, Sun Microsystems acknowledged that

cosmic rays interfered with cache memories and caused crashes in server systems

at major customer sites, including America Online, and dozens of others [3, 4].

In a more recent event, Hewlett Packard stated that cosmic ray strikes causing

transient faults was the main cause of the frequent crashes in 2048-CPU server

system in Los Alamos National Laboratory [5]. For brevity and keeping focus on

the concerns addressed in this thesis, the details about the formal definition of

the transient faults and actual reasons behind faults will not be further discussed.

In order to prevent failures caused by transient faults, the general convention

is to use bit level protection techniques like ECC (Error Correction Code) or

EDAC (Error Detection and Correction Code) in the memory architecture. In

order to comply with the needs of ECC, a circuitry that is capable of encoding

(Hamming Code, Reed Solomon) the data (encoded data is used for error detec-

tion and recovery), additional data space to store the encoded data bits, error

checking and recovery mechanisms are introduced to existing memory architec-

tures. For error detection and recovery, the Hamming Code encoding requires 8

extra bits to be encoded and stored for each of the 64 bit cells in the memory

architecture. The added circuitry will use these encoded data bits for error de-

tection and recovery purposes.

ECC hardware implementing Hamming Code is able to detect 2 bit errors and

can correct 1 bit errors in memory which is called SECDED (single error correc-

tion, double error detection). This SECDED is the convention in ECC because;

in order to recover from multiple bit errors a higher number of bits needed to be

stored, more hardware will be introduced to system for encoded data calculation

and data recovery. These additional requirements will result in an even more

expensive and slower system which is impractical in most cases. Multiple bit

failures are considered to happen much less frequently compared to SEU, which

makes SEU detection by far the most important concern [4].
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While ECC offers great level of protection and recovery, it is sometimes omit-

ted for being costly and increasing the access times in memory [6]. Parity RAM

is another hardware solution, which requires less hardware than ECC. However,

faults can only be detected, but not corrected with this protection. In general,

Parity RAM is also considered to be costly and slower than RAM that is not

providing any protection, therefore may also be omitted. The convention is that,

memory units that are lower in the memory hierarchy, such as L1 and L2 caches,

are equipped with parity protection. In case of a failure, the data is restored

from its original location in RAM. Although most of the memory hierarchy is

seemingly under protection, there are parts inside the CPU architecture that are

not being protected (due to limitations of hardware fault tolerance techniques)

and hence are open to transient faults. ECC and parity bit protection techniques

cannot be applied to most parts of the CPU architecture and are often criticized

as they are not scalable to address the reliability concerns of the entire computer

architecture.

To give a more specific example, consider a system having ECC protection

in its RAM memory and parity protection in its cache level memory. Any SEU

on the data located in the RAM; will be detected and corrected before it can

cause any faulty behavior. The L1 and L2 caches will detect any SEU using

the parity bits and restore its data from the RAM which is known to be pro-

tected by ECC. However, when faults occur inside the ALU (Arithmetic Logic

Unit) or in the instruction fetch-decode unit or the registers inside the CPU, the

fault detection and recovery is not possible. ECC protection for these internal

parts of the CPU is known to be costly, power consuming and slow, and thus

is considered not scalable and usually not adopted by CPU manufacturers. For

instance, protection of the data in a CPU register file using ECC is shown to

be extremely costly in terms of both performance and power [7]. For ALU, such

protection will disrupt the pipeline architecture, impair the performance of the

whole processor while increasing the power consumption and the cost. Other

alternatives include using the pipelined structures inside the CPU and executing

the same instruction twice and delay the output until the result is verified by the

second execution. Similarly, VLIW (Very Long Instruction Word) architecture is

able to take advantage of ILP (Instruction Level Parallelism) and can be used in

3



order to execute the same instruction twice and comparing the results. VLIW

is a very common architecture, especially in GPUs (Graphics Processing Unit)

which implement SIMD (Single Instruction Multiple Data) or MIMD (Multiple

Instruction Multiple Data) on a manycore architecture. Since, GPU is a many-

core architecture that can process multiple data in an extremely fast manner; it

has become a new alternative for General Purpose Computing and referred to as

GPGPU (General-Purpose GPU). In both VLIW and GPU, executing the same

instruction multiple times will have an impact on the ILP and impair the system

performance dramatically, while decreasing the availability.

The bit level hardware protection is not commonly adopted in the low-level

hardware hierarchy due to aforementioned concerns. The manufacturers are of-

ten forced to implement high level protections, by which they are able to obtain

promising results with less severe impacts on the performance and cost. These

architecturally high level approaches are called ”macro-reliability protection” [7].

Macro-reliability protection often uses duplication of coarse-grained structures

such as CPU cores or hardware contexts inside the processing unit to provide

transient fault tolerance in a more cost-effective and scalable manner [7]. While

this approach overcomes the scaling problems of the prior bit-level techniques,

macro-reliability schemes adopt a rather inflexible one size fits all protection over

the whole CPU architecture. This strict protection scheme will not be able to

adapt different levels of performance and reliability requirements and most of the

time will end up overprotecting the entire system. This overprotection will be re-

flected to the end-user as higher power consumption levels with significant losses

in performance and availability while increasing the overall cost. The end-users

may want to use the same underlying hardware for different types of applications

having different levels of reliability requirements, while in some applications faults

are intolerable, in others imprecise results may be acceptable. Similarly, the user

may want to upgrade the system configuration to increase the overall reliability

or performance of the system, in order to adapt rapidly changing requirements of

the market. These system upgrades will be much more costly because of the one

size fits all protection approach. Moreover, in most cases the underlying hardware

cannot be modified and the user may still want to improve the level of protection

from the transient faults. These examples can be multiplied, but concisely, the
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reliability and performance concerns need to be handled in a more adaptable way

to fulfill the specific performance and reliability requirements of an application.

This is where software fault tolerance (SFT) techniques become more appealing

alternatives with promises of providing a more flexible way for users to adjust the

reliability and performance levels according to their needs and in case of a lack

of underlying hardware support.

SFT techniques rely on some form of redundancy similar to Hardware Fault

Tolerance (HFT) techniques. SFT techniques use different forms and levels of

redundancies. For instance, a bit-level approach in software can be used in terms

of error-detection and recovery, just like hardware ECC and parity protections.

This will require the application to handle encoding of Hamming Code (or Reed

Solomon) extra bits, store them in memory, check in case any error occurs and re-

cover the data. In practice, the software approach of ECC will perform worse than

hardware ECC, since bit level encoding calculations can be better implemented in

hardware as well as, detection and recovery calculations. Since the calculations

cannot be directly injected in the main thread due to performance overheads,

the software ECC will be performed in another thread in the form of periodical

sweeps to data residing in memory. Rapidly changing data in memory cannot be

addressed with software ECC, since the recovery data needs to be recalculated

in each data change. The parts of the memory where data is more immutable is

rather convenient for this protection scheme like L1 instruction cache where the

running application resides. The data in memory is partially protected and the

protection of the application code is done without any distinction. Additionally,

any error occurring between the sweeps will still affect the execution and even

spread throughout the rest of the program.

Another SFT technique is instruction duplication, where each instruction is

duplicated and the results of the duplicate instructions (shadow instructions) are

compared with the main instruction’s results at synchronization points. The syn-

chronization points in the execution cycle are mainly chosen as the store instruc-

tions which store the data from registers to memory. The main idea is to keep the

data in the memory intact, detect errors before data is written back to memory,

and prevent any corruption. The instruction duplication is expected to double

the execution latency of the application, however with the use of ILP (Instruction

5



Level Parallelism) techniques and some additional improvements the performance

overhead can be reduced. For instance, SWIFT (an SFT instruction duplication

technique), is able to improve execution latency to 1.41x compared to the baseline

where no SFT is applied [4]. Similar to performance overheads, other concerns

emerge with instruction duplication. Such as code size and volatile memory re-

quirements. Instruction duplication scheme can also be used in hybrid techniques,

where hardware supports software implementation. Hybrid techniques were pro-

posed to tackle the performance bottlenecks of SFT-only instruction duplication

techniques, with provided additional hardware assistance.

In addition to software redundancy at the instruction level, it is also possible

to implement redundancy at the thread level, where an identical copy of the main

thread runs for reliability. Two different types of redundant thread mechanisms

come to mind, running the redundant thread in the same CPU that supports si-

multaneous multithreading capabilities (SMT) and running the redundant thread

in another CPU core which is possible in Chip Multiprocessor (CMP) systems.

The redundant thread introduces a synchronization problem between the threads

since it requires a slack between leading and trailing threads in which the trailing

thread will follow the leading thread. The trailing thread will detect and recover

from faults that may occur. The redundant thread mechanism in CMP is also

referred to as CRT (Chip level redundantly threading). CRT scheme also in-

troduces a communication overhead, due to data needed by multiple processors.

Therefore, it requires require additional hardware queues to be implemented in-

side the CPU.

The details of the SFT techniques described above will be discussed in more

detail in the related work section. The novel idea behind the SFT techniques is

that these techniques provide a more flexible, cheaper alternative to HFT meth-

ods. However, despite its advantages, these systems overprotect the application

as a whole without taking advantage of the application and hardware character-

istics. In addition to performance overhead, volatile and non-volatile memory

requirements increase; additional hardware requirements emerge with the use of

SFT techniques, which defeats the whole purpose of using them. Moreover, the

redundancies introduced to system (shadow instructions, hardware queues, etc.)

increase the number of data bits that are vulnerable to SEUs, thereby leading to

6



a higher soft error rate [8].

Based on the drawbacks of current SFT techniques, it is necessary to take a

fresh look at software fault tolerance, where reliability and performance require-

ments of the running applications considered. More specifically, SFT schemes

should aim at a balanced protection, that provides required levels of protection

while decreasing the cost and performance overheads. In order to achieve a bal-

anced protection, SFT techniques should be applied selectively. In the rest of

this thesis, this is called selective SFT (SSFT). In order to selectively apply fault

tolerance, the application should be carefully analyzed using software profiling

information.

There are two different analysis in using software profiling information for

reliability, static and dynamic. Static analysis uses the offline information that

is obtained during the compilation process of the application code. Compilers

often uses passes to analyze the application. The application code is first parsed

and converted in to structure called Control Flow Graph (CFG). CFG consists of

basic blocks that are connected by edges. Basic blocks are straight lines of code,

that does not contain any jump instructions. The jumps between basic blocks

are provided by edges that connect basic blocks. CFG shows the paths that can

be traversed during the execution of the program. After CFG is formed, compiler

processes the application code to eliminate dead code and optimize program ex-

ecution. An example for static analysis can be type inference for fault-tolerance

prediction [9]. This study analyzes the instruction operand types, an informa-

tion that can acquired during compilation. EPIC, another technique using static

analysis, uses error propagation and CFG data to understand the impacts of a

soft error [10]. Although, offline analysis provide invaluable information to under-

stand the application characteristics in terms of reliability, an online analysis may

provide a different perspective. SSFT follows an orthogonal path, using run-time

information to understand the effects of soft-errors.

For dynamic analysis of an application, we use statistical data that is pro-

duced during program execution. The statistical data provides us, the paths that

application traverses in CFG and the the execution counts for each basic block.

The statements that are located in basic blocks with high execution counts, are
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more vulnerable to transient faults. Moreover, the output produced by the appli-

cation can be analyzed in order to understand the weaknesses of the application.

The statements that causes heavy damage in program output, when distrupted

by a SEU, should be protected by some form of fault tolerance in order to preserve

the reliability. Additionally, the hardware and environmental conditions can also

be an effective factor, when considering the rate of transient faults.

SSFT will use aforementioned dynamic analysis, to selectively protect the

code segments that are most likely to damage software reliability. The code seg-

ments that are less likely to damage application execution, can be removed from

fault tolerance without impairing reliability. During this selection, the amount

of redundancies introduced to the system are reduced, while, the probability of

transient fault occurrence and specific output quality requirements of the user are

considered. SSFT will increase the performance, decrease hardware requirements

and therefore cost, while effectively preserving the software reliability. The mo-

tivations behind SSFT, briefly discussed above, will be explained in depth with

examples in the next chapter.
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Chapter 2

Motivation

The motivation behind using SFT techniques is that they are more flexible and

cheaper unlike their HFT counterparts. The HFT techniques protect the whole

CPU hardware without considering the running application. Moreover, HFT

techniques are expensive, and therefore not scalable (especially bit-level tech-

niques like ECC or Parity). Furthermore, they increase the access times of

volatile memory, thereby decreasing the availability and increasing the power

usage. While most of these overheads are valid, it will be shown that SFT tech-

niques do not completely overcome these problems.

To overcome the limitations of SFT, we propose Selective SFT, where we

choose specific portions of the application that are most vulnerable to transient

faults. Specifically, we profile the application and apply SFT to program seg-

ments that are likely to cause the most damage to program execution. By careful

selection of these program portions, the overall output quality is preserved with

minimal safekeeping.

Both EDDI [11] and SWIFT [4] protection schemes use instruction duplica-

tion for each and every line of the code. They use different registers for the

duplicated instructions and faults are detected at synchronization points (store

instructions). Similar to HFT techniques, both of these techniques overprotect

the whole CPU hardware without any distinctions. Application binary and data

is protected in a unified manner with no distinction.
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One can observe that not all parts of the code have the same importance

level. For instance, a register may contain debugging data that does not affect

the outcome of the program. An error occurring in this register, will not affect

the application output. Similarly, a register file that is masked by an ”AND”

instruction, will not cause any errors in the program output if the transient fault

occurs in the masked bits. Moreover, a register file that contains obsolete in-

formation (i.e. a loop variable after the loop is execution is finished), will not

affect the software execution in case of a transient fault occurrence. As a last

example, data in the register file may contain highly precise information which is

not required for that application (Double precision data is not vital for floating

point calculations). Any error occurring, in high precision bits will not impact

the output. In each of these examples, the application will resiliently recover from

the soft errors occurring in these sections without any serious impact of the ap-

plication outcome, therefore totally abandoning duplicated instruction approach

or using a more lightweight protection scheme for these sections will not have

major impact on software reliability. However, no such distinctions are made

in duplicated instruction schemes, all instructions and data are duplicated and

protected.

HFT methods are known to be expensive and not scalable, whereas SFT meth-

ods are expected to be cheaper and not require additional hardware. EDDI, as

one of the initial single threaded SFT techniques, has a geometric mean of 1.62x,

whereas SWIFT has 1.41x execution time compared to the baseline without any

fault tolerance. Therefore, reliability is achieved at the expense of availibility and

performance. In other words, SWIFT requires a better performing CPU (1.41x)

to achieve the same performance levels. In addition to performance, memory

footprint will also be affected. Specifically, application binary size will be 2.4x

larger compared to the baseline SWIFT implementation [4]. Moreover, the extra

shadow instructions will increase the pressure on CPU registers, cache, and RAM.

The issues above show that instruction duplication technique also has its own

drawbacks similar to HFT. While these issues cannot be ignored or resolved com-

pletely, their impacts can be safely reduced, especially for applications that are

more resilient to soft errors. Consider an application in which the calculations
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do not require 100% precision, that is an imprecise or approximate result is ac-

ceptable. These types of computations are commonly used in soft computing

applications, which are naturally more resilient to soft errors since an exact re-

sult is not always essential. For an application where 95% precision is sufficient,

a protection scheme that protects some parts of the application and gives 95%

precision will be sufficient. According to SEU model, a bit is defined as ACE (Ar-

chitecturally Correct Execution) if a transient fault affecting that bit will cause

the program to execute incorrectly [12]. When the redundancy is reduced in the

system, the number of bits susceptible to soft errors will decrease, hence the num-

ber of ACE bits will decrease.

Another example that can make use of SFT is software ECC, where an ECC

encoding is done over the instruction cache memory [6]. The software ECC thread

is a high priority thread that detects and corrects errors in the running applica-

tion code. The sweep performance affects the overall availability and performance

of the system since other processes are halted during the sweeps. Profiling in-

formation about the running application and selectively choosing the instruction

data to protect will result in less sweep time, therefore will put less pressure on

the system performance and eventually increase the availability.

Thread-level redundancy which runs an identical copy of the main thread for

error detection requires a slack between the main and trailing thread. CRT (Chip

level redundantly threading) systems which may be preferable for performance

(2 CPUs are running the threads instead of one) and reliability concerns, since

the trailing thread will be running in a CPU that is physically far away from

the CPU that the main thread is running. This way overheads due to running

threads will be reduces while eliminating the possibility of a fault corrupting both

threads [13]. However CRT has a major impact on inter thread communication

in that the thread communication transforms into inter processor communication

which requires fast communication channels. This communication overhead is

hidden by enabling a longer slack between redundant threads, which effectively

stalls the main thread. When SSFT idea is applied to CRT or CRTR (Chip-

level Redundantly Threaded multiprocessor with Recovery), the trailing thread

will not require the same amount of resources as the original thread and the re-

sources seized by the trailing thread can be safely released when trailing thread
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Figure 2.1: Improvements for CRT.

is not used. The slack between main and trailing thread can be reduced through

SSFT which will improve the overall performance, reduce power consumption

and resource requirements. Similar to the SFT techniques presented above, the

improvements and the time saved can be put to better use for recovery purposes.

Figure 2.1 shows how SSFT can be applied to CRT, where bold lines represent

a redundant fault detection and recovery thread. As can be seen from the figure,

trailing thread does not need to be an exact replica of main thread, i.e, the lines

that are not bolded ar not executed by trailing thread. The spare time achieved

by not executing these statements, can be used for recovery and to compensate

communication delays.

Selectively applying reliability can also be implemented to accommodate hard-

ware fault tolerance techniques. The compiler previously informed about the

underlying hardware and the running application can make informed decisions

about where in memory each instruction should be placed. The instructions or

data that are more resilient to soft errors can be placed in locations that are un-

protected or only protected with parity, whereas the instructions that are most

likely to cause great damage are placed in ECC covered memory locations. In
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this manner, the costs can be reduced and HFT techniques can be applied more

effectively.

Beyond the benefits brought to fault tolerance techniques, SSFT mainly uti-

lizes the key fact that not all applications require the same amount of reliability.

Some applications are actually more tolerant to imprecisions and approximations

which make them more resilient to transient faults. These applications (referred

to as Soft Computations) may require some amount of reliability when they also

have conflicting performance and availability concerns. In stream processing ap-

plications, financial calculations and even some safety critical systems, where a

margin of error is acceptable. The SSFT idea is feasible to apply and potentially

will bring a balance between performance and reliability.

The arguments presented above constitute the motivational base for profiling

the running application and selectively applying the fault tolerance techniques.

The details about fault injection, software profiling, fault detection and recovery

will be discussed in the next section.
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Chapter 3

Related Work

3.1 Fault Injection

The fault injection techniques follow various paths in simulating the transient

faults that are caused by cosmic radiation. MEFISTO [14], VERIFY [15] and

DEPEND [16] tools inject faults into a simulation model. RIFLE [17] and MES-

SALINE [18] tools inject faults at hardware pin-level. FIAT [19], and FER-

RARI [20] are tools that inject faults into physical systems using software im-

plemented fault injection (SWIFI). The SWIFI idea brings a new perspective to

fault injection in that, the faulty conditions can be simulated without hardware

requirements. These tools have the general problem of being specifically designed

for a certain hardware and therefore cannot be adapted to different configura-

tions. Tools that are more adaptable emerged later on, such as NFTAPE [21],

GOOFI [22], PROPANE [23] and SWIF-IT [24].

NFTAPE tool supports multiple fault models (bit-flips, communication and

IO errors), multiple fault event triggers (path-based, time-based, and event-based

triggers), multiple targets (distributed applications, software implemented fault

tolerance (SIFT) middleware layer, black box applications, communication inter-

face, and operating system) and supports memory dumps when required. [21]

GOOFI tool on the other hand, is an object-oriented JAVA and SQL based
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tool, in which user can use existing fault injection techniques or extend the tool

by defining their own and run fault injection tests. The tool targets Thor RD mi-

croprocessor which is a SAAB Ericsson Space AB processor and is created solely

for highly dependable space applications [22].

Propagation Analysis Environment (PROPANE) is a software profiling and

fault injection tool for applications running on desktop computers. PROPANE

supports the injection of both software faults (by mutation of source code) and

data errors (by manipulating variable and memory contents) [23]. PROPANE’s

capabilities for software profiling, is more focused on the error propagation char-

acteristics of the running application.

SWIF-IT is more of a kernel level tool developed to run under Linux, which

injects fault at memory locations and inspects the impacts of the injected fault.

The fault injector being implemented within the kernel has the limitation that

memory corruptions are restricted to the kernel’s view of the hardware meaning

that corruption of a data structure inside the process table is easier compared

to a data in a specific memory location [24]. Additionally, this tool offers er-

ror recovery schemes for the faulty memory locations. The recovery schemes are

based on simple redundancy techniques like Hamming Code and majority voting,

in which multiple copies of the same data is stored and in case of an error it is

recovered using the value that has the majority.

While these software implemented fault injection (SWIFI) tools provide some

level of fault injection capabilities, we have implemented our own fault injection

and testing tool which provides us the required data for our approach.
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3.2 Fault Detection and Recovery

When considering transient fault detection and recovery, there are three main

classes of techniques: hardware fault tolerance (HFT), software fault tolerance

(SFT) and hybrid techniques (software implemented hardware supported).

3.2.1 Hardware Fault Tolerance

HFT techniques can be further categorized in to two, bit-level approaches and

macro-reliability approaches. Bit-level approaches mostly rely on redundantly

storing extra data bits for the data in memory in order to detect and recover

from any transient faults. One of the simplest approaches for error detection is

parity. Parity for a data is calculated by simply applying the XOR operation

on the data bits. For instance, even and odd parity for the following 7 bit data

”1101011” is calculated as follows.

1⊕ 1⊕ 0⊕ 1⊕ 0⊕ 1⊕ 1 = 1 Even Parity (3.1)

∼ (1⊕ 1⊕ 0⊕ 1⊕ 0⊕ 1⊕ 1) = 0 Odd Parity (3.2)

The idea is store the parity information in memory or in data transactions so

that a single bit error in data can be detected. For instance, in an ASCII data

transmission, the resulting parity bit is added as the 8th bit data and the data

will be sent as ”11010111” where the last bit is the even parity bit. The receiver

will check the received data by simply applying the parity calculation on data

and comparing the calculated parity bit with the parity bit received. In case

a parity error is detected, data transmission is repeated. Similarly, this is also

used in memory hierarchy. Especially, CPU caches adopt this idea in hardware

so that in case of an error inside the data in the cache, data is invalidated and

requested from memory. Parity bit is able to detect a single bit error inside the

data; however, it does not offer any recovery options.

For recovery purposes, different error detection and recovery schemes have
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Check Number Check Positions Positions Checked

1 1 1,3,5,7,8,11,13,15,17...

2 2 2,3,6,7,10,11,14,15,18...

3 4 4,5,6,7,12,13,14,15,20...

4 8 8,9,10,11,12,13,14,15,24...
. . .
. . .
. . .

Figure 3.1: Check positions for Hamming Code.

been proposed and used in the literature. Hamming Code, Reed-Solomon Code

and other cyclic code schemes are commonly used in the industry for this purpose.

For brevity, only Hamming code (the recovery method adopted in ECC memory)

will be explained here. Hamming code can be used to detect and correct single

bit errors, and with an additional parity bit added, it can also detect double

errors. The idea is to put parity protections on the positions that are powers

of two starting from the first bit position. For a 64 bit data, the parity will be

placed on 1, 2, 4, 8, 16, 32, and 64 check positions which will make a sum of 7

parity bits. The check positions and the positions checked are shown in Figure

3.1.

For instance, a check position 4 (100 in binary) has the check number 3 mean-

ing that, all the data bit positions having 1 in their 3rd bit needs to be added in

parity calculation, which are 100 (4), 101 (5), 110 (6), 111 (7), 1100 (12) and
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so on. As an example for detection and recovery, consider a 7 bit data, 1101011,

and calculate the parity for check positions 1, 2 and 4, powers of two up to the

total number of data bits. The bits are numbered from right to left starting from

one and the data in position x is shown as dx.

P1 = d1 ⊕ d3 ⊕ d5 ⊕ d7 = 1⊕ 0⊕ 0⊕ 1 = 0 (3.3)

P2 = d2 ⊕ d3 ⊕ d6 ⊕ d7 = 1⊕ 0⊕ 1⊕ 1 = 1 (3.4)

P3 = d4 ⊕ d5 ⊕ d6 ⊕ d7 = 1⊕ 0⊕ 1⊕ 1 = 1 (3.5)

Consider the case when a single bit flip occurs in bit location 6, then the parities

will look like as the following.

P1 = d1 ⊕ d3 ⊕ d5 ⊕ d7 = 1⊕ 0⊕ 0⊕ 1 = 0 (3.6)

P2 = d2 ⊕ d3 ⊕ d6 ⊕ d7 = 1⊕ 0⊕ 0⊕ 1 = 0 (3.7)

P3 = d4 ⊕ d5 ⊕ d6 ⊕ d7 = 1⊕ 0⊕ 0⊕ 1 = 0 (3.8)

The location of the error is determined by comparing the parity values. P1

is correct, therefore we write a 0; P2 is incorrect therefore we write a 1 to the

left, obtaining 10; P3 is incorrect as well, therefore putting another one to the

left we end up with 110 which indicates the data in the 6th bit position is flipped.

This way, the Hamming Code is able to perform 1 bit error detection and 1 bit

data recovery. In order to have single error correction, double error detection

(SECDED), an even data parity is added to 7 bit data (XOR of all data bits).

Although bit level approaches offer detection and recovery options, they are

often found not to be scalable, and therefore have not been used widely in CPU

architectures. This is due to their impact on performance and power consump-

tion. The alternative is to follow a higher level approach called macro-reliability.

Some of the older systems like HPs NonStop Cyclone System [25] or IBMs S/390

G5 processor [26] or Triple redundant 777 primary flight computer [27], all rely on

redundant CPU cores (Boeing 777 even has multiple ARINC data buses), through
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which faults are detected, corrected. Even in case of a total hardware failure of

a single hardware, these systems promise to operate uninterrupted. There are

also simpler approaches in duplicating hardware for redundancy such as extra

pipelines in processors, queues for memory loads and stores, extra branch pre-

dictors [13, 28, 29, 30], additional data bits for detection of possibly incorrect

data [31].

Recently, with the emergnce of Chip Multiprocessors (CMP), hardware dupli-

cation and usage has become much more attractive. However, the he additional

hardware is required to overcome the difficulties in communication, race condi-

tions and other problems that arise with reliability concerns.

Intel Itanium proessor is a good example of hardware reliability scheme im-

plementation. Specifically, Itanium processor offer parity protection in low-level

caches, ECC protection in high level caches. Errors in pipelines are detected

using residues, which are calculated during mathematical operations, or using

parity bits [32]. The instruction level faults are detected and corrected inside the

pipelining architecture. Whenever a soft error occurs, the instruction is simply

re-read correctly from the instruction buffer and restarted through the pipeline

as if the error had never occurred (referred to as replay). An error occurring in

the instruction buffer is handled in the following manner; all instructions in the

instruction execution pipeline, the instruction buffer, and the instruction fetch

pipeline are removed, then the erratic instruction and the instructions after it are

re-read from cache (referred to as refetch). Soft errors in translation lookaside

buffers (TLBs) and in general purpose and floating point register files are handled

by firmware which eventually restarts the OS or application to resume running

as if no errors occurred (referred to as resteer). The technique described above is

handled by hardware without any software interventions.

3.2.2 Software Fault Tolerance

Software fault tolerance techniques mostly rely on redundant data and computa-

tions and comparison of the original and redundant data (or calculation). The

recovery of the faulty data is generally addressed as a separate problem. For
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software fault detection, there are single threaded techniques that duplicate the

instructions like EDDI [11] or SWIFT [4]. The instruction duplication was pre-

sented first as an ALU instruction duplication scheme. The idea was to increase

reliability, by keeping the redundancy as low as possible, simply by using the

same registers and abuse the VLIW architecture’s ability to execute the same

instruction on multiple data and compare the outcomes that are executed by the

same CPU instruction [33].

In order to generalize this approach and protect all instructions inside the

system with better reliability, error detection by duplicated instructions (EDDI)

was proposed. EDDI simply duplicates all the instructions and reorders the

duplicated (or shadow) instructions that occur before the store instructions, so

that the instruction level parallelism (ILP) capabilities of CPU are utilized. The

results of the main instruction (MI) and shadow instruction (SI) are compared

before the store instructions so that the data in memory is always kept intact.

All store and load instructions (memory operations) are duplicated and the only

control over control flow errors relies on the count of instructions that are run by

shadow and main instructions. According to the experimental results, EDDI has

an execution time of 1.61x compared to the baseline execution [4, 11]. Normal

duplication of the instructions or execution of the same instructions twice is

expected to have a 2x execution latency, however exploiting ILP, the performance

is improved by 20% percent. However, this improvement all depends on the ILP

capabilities of the underlying CPU. More specifcially, instead of using a 4-way

issue CPU, a 2-way issue CPU has an execution latency of 1.82x. Experiments

show that EDDI is able to provide a 98% error coverage capability [11]. Figure 3.2

shows how EDDI adds the shadow instructions and schedules the instructions. As

can be seen from this figure, the SI (marked with an apostrophe) are interspersed

with main instructions for better ILP and the comparison is done just before the

data is written back to the memory.

SWIFT tries to tackle the problems that are not addressed or partially ad-

dressed by EDDI and tries to improve the overall performance by rather simple

optimizations. One simple optimization is that the I5’ instruction in Figure 3

can simply be omitted since it is not critical and the stored value will require
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I
1
 : ADD R1, R2, R3 

I
2
 : SUB R4, R1, R7 

I’
1
 : ADD R21, R22, R23 

I
3
 : AND R5, R1, R2 

I’
2
 : SUB R24, R21, R27 

I
4
 : MUL R6, R4, R5 

I’
3
 : AND R25, R21, R22 

I’
4
 : MUL R26, R24, R25 

I
c
 : BNE R6, R7, go_to_error_handler 

I
5
 : ST R6 

I’
5
 : ST R26 

Figure 3.2: EDDI instruction duplication and scheduling example.

additional memory space and an additional rather slow memory instruction to

be executed (referred to as EDDI + ECC). Another improvement in SWIFT is

in terms of the control flow checking mechanisms. EDDI does not have a direct

control flow control but rather implicitly checks the number of MI and SI. This

check may cause invalid branches to be taken, invalid store and load instructions

to be executed that may disrupt the MI execution or feed these instructions with

invalid data [4]. SWIFT overcomes this problem by adding the branch instruc-

tions as synchronization points and designating block signatures to the executing

block, so that the control flow is validated by comparison of the expected block

signature and the executing block signature. The block signatures are stored

and updated for each block in GSR and RTS registers. This improvement is

referred to as EDDI + ECC + CF (Control Flow Checking). One observation

for EDDI + ECC + CF is that, the control flow checking mechanism is required

only when the output is stored in memory since the main purpose is to keep the

data in memory intact. Therefore, the CF mechanism, signature comparison etc

can be safely omitted in blocks that do not have store instructions (referred to
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as ”SCFOpti”). Another simple observation is that, the comparisons for branch

instructions is actually covered by the idea of comparison of block signatures

which ensures correct branching, henceforth the branch synchronization can be

safely omitted (referred to as ”BROpti”). SWIFT does not offer an actual per-

formance improvement over EDDI, however it improves EDDI with control flow

checking mechanism and by removing redundancies. Based on the conducted ex-

periments, it is shown that SWIFT has an execution latency of 1.41x compared

to the baseline implementation.

Another software only fault tolerance technique is software EDAC (or ECC)

technique which is a software implementation of ECC (Error Correcting Code).

The implementation aims only to protect the instructions that are placed in the

memory hierarchy before execution. Due to the dynamic nature of the data it

is not preferred and is argued to be not practical to use software ECC [6]. In

this approach, the protection of the software code in memory is done in terms

of sweeps in which the ECC walks through each memory block that contains

software instructions and checks for errors. When a sweep takes place, it takes

the highest execution priority; therefore any other software should be halted

during the sweep interval which eventually is a bottleneck in availability and

performance. The sweeps cannot be cached since; in each sweep the memory will

be read once and checked for errors. Another issue for software ECC is that,

the ECC software also runs in memory and itself is also susceptible to transient

errors in memory. This requires to execute multiple copies and a cross check

between these copies. Although software ECC provides some protection when

hardware ECC does not exist and offers recovery options compared to other SFT

approaches, it does not offer any protection over data and the memory is left

unprotected between the sweeps.

There are other software techniques in the literature having different levels

of duplications or controls, such as control flow only detections (using signature

comparisons for blocks, execution parity calculations) [34],high level code dupli-

cation and result comparison [35], analysis for different levels of duplication and

tailoring between instruction and procedure call duplication for energy consump-

tion reductions [36], and process level duplication [37].
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Software fault tolerance techniques that depend on simultaneous multithread-

ing (SMT), mostly require a hardware support for queuing the load values (LVQ),

register values (RVQ), and branch outcomes [13, 28, 29]. Therefore these schemes

should be considered under the umbrella of hybrid techniques as they require ad-

ditional hardware.

In terms of recovery, SWIF-IT offers hamming code and majority voting based

recovery schemes in which multiple copies of the same data is stored and in case

of an error, it is recovered using the value that has the majority. SWIFT-R [38]

technique is an addition to SWIFT that has recovery capabilities. The following

techniques are suggested in SWIFT-R. Triple execution of the same instruction

and decide the result by majority voting in case an error is detected (referred to

as SWIFT-R). Another extension is using AN-CODE to back up a multiple of

the original data (possibly 3) and in case of an error, restoring the data by simply

using the AN-CODE coefficient. For instance, a data x is multiplied by 3 and

stored as y. In case of an error, if y is divisible by 3 then y is correct and x should

be recovered as x = y
3
, otherwise y is incorrect and should be restored to y = 3x.

SWIFT-R suggests that, the data containing single bit information inside a 64

bit register should not be affected with the bit flips of the rest of the 63 bits that

are irrelevant. Therefore, these data bits can be ignored and masked (data&0x1)

in order to decrease the vulnerability of the register data (instead of having 64

bit vulnerability, only a single bit is susceptible to transient faults). However,

the applicability of this scheme is limited due to performance overheads. For the

masking idea, it can be argued that the register value having a single bit value is

hard to be ensured and therefore not easy to apply in most cases.

3.2.3 Hybrid Techniques

The hybrid techniques are generally offered as extensions of software only fault

tolerance techniques, to overcome the single points of failures or performance

bottlenecks that cannot be dealt with software. One of the extensions suggested

to improve software techniques is CRAFT, which is an extension over SWIFT

technique.
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In SWIFT, two problems for memory operations were not addressed and con-

sidered to be the limitations of the approach. One problem in SWIFT is that, the

store instructions are single points of failure [8], since the fault checking is done in

software before the store instruction is issued. Any errors occurring before com-

mit and after the error check cannot be detected and will cause the corrupted

data to be stored in memory, which may later feed and corrupt other instructions.

In order to resolve this store instruction issue, the comparison is removed and

replaced with another store instruction. The second store instruction is fed with

a signature that is not an actual store instruction; rather, it is issued to validate

the original store instruction. In order to provide validation, the stores do not di-

rectly store the data to memory, instead they are queued in a protected hardware

queue and the commit for stores is delayed until the second (or shadow) store

instruction is executed and the data to be written is confirmed to be valid [8].

Similarly, for load memory operation, in order to duplicate the data loaded

from memory and have an exact replica of the loaded data, SWIFT does not

replicate the load instruction (for memory mapped IO, two load instructions may

return different values); instead, it inserts a move instruction to copy the loaded

value. However, there are two intervals where transient failures can be corruptive.

The first interval is, after the load instruction and before the move instruction,

and the second interval for errors is after the memory address verification and

before the actual load instruction. In the first interval, the original and the copy

will contain a corrupted value which will not be detected. In the second interval,

the data loaded will be issued to a faulty address and will contain invalid data.

In both cases, the faulty data may eventually feed a store instruction at some

point. In order to prevent these faults, the memory load values are queued in a

hardware protected buffer called Load Value Queue (LVQ), where only the main

instruction loads the data from memory and the shadow instruction loads the

value queued inside LVQ, which prevents from feeding the shadow instructions

with corrupted data. The data in LVQ can be safely discarded after the shadow

instruction is fed with the buffered data. These additional buffers improve the

performance while dealing with the vulnerabilities that cannot be addressed by

SWIFT. The performance results compared to the baseline are given as 1.334,
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1.376, and 1.314 which are improvements with CSB, LVQ, and CSB + LVQ,

respectively [8]. Additionally, the vulnerability factor for silent data corruption

(SDC), which are the undetected errors, is decreased from 90.5% to 89.0% when

both techniques, CSB and LVQ, are applied.

Redundant multithreading techniques can also be considered as hybrid tech-

niques, due to their hardware requirements. With the idea of multithreading as a

way of maximizing on-chip parallelism [39, 40], the idea of using multithreading as

a way to improve reliability also emerged in various approaches [41, 30, 29]. Chip

Multiprocessors (CMP) and CPU level multithreading enabled researchers to in-

vestigate different alternatives [29]. Redundant multithreading can be achieved

with two alternative ways, running the leading and trailing threads in the same

single CPU core that supports multithreading capabilities (SMT) or running

the threads in different CPU cores (CRT) preferrably in adjacent cores in or-

der to reduce the physical distance and communication delays. AR-SMT [30],

SRT [41, 28, 29] and SRTR [28] were suggested as alternatives for SMT tech-

niques, in which two threads (main and trailing thread) run the same instructions

in parallel threads and the results are compared for detection of transient faults.

In all SMT techniques (and even CRTs), queues or similar queueing mechanisms

are built to enable communication between main and trailing thread. Specifically,

LVQ is used to buffer the load values of the main thread, register value queue

(RVQ) is used to buffer the register values of main thread for comparison, branch

outcome queue (BOQ) is used to store the branch outcomes for the main thread,

and store buffer (StB) is used to verify the values issued by store instructions from

the main thread. The queue values are created by main thread and consumed by

trailing thread in order to check for faults.

SRT chooses stores as synchronization points, instead of register updates.

Secondly, a slack fetch organization handles and tries to keep the slack ( trail-

ing thread follows main thread behind certain number of instructions ) between

threads to a pre-defined number and organizes fetches accordingly.

SRTR scheme is actually the extended version of the SRT detection scheme

with recovery abilities. In order to provide the recovery, some SRT modules were
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reconsidered. In SRT, leading instructions may commit to memory before check-

ing for faults. However, this is not feasible for SRTR since recovery mechanism

depends on trailing thread values, and therefore can not recover when the values

are committed to memory. Secondly, SRTR compares the leading and trailing

instruction values as soon as trailing instruction is complete without being have

to wait for leading instruction commit. To make this possible and reduce commu-

nication requirements, register values are placed in RVQ from which the trailing

thread can make comparisons and detect faults. In order to reduce the band-

width requirements and pressure on RVQ, a dependency check mechanism called

dependence-based checking elision (DBCE) is applied to check the true depen-

dency chains of registers so that only the last instruction in a chain is used and

placed in RVQ.

Although AR-SMT uses the multithreading infrastructure, it neither aims to

exploit the advantages of a CMP structure nor attacks the problems of running the

redundant threads in seperate CPU cores. Slipstream [42] processor idea was the

first to take the performance advantages of a CMP and use CMPs for reliability

purposes. Later on CRT [29] and CRTR [13] were suggested as alternatives

for fault detection and recovery in CMP systems. In Slipstream, the register

commits are asynchronous in order to overcome the interprocessor communication

delays. The checks are only done at memory commits, and the memory commits

are done only after the checks are completed. The memory instructions are

not copied as in Slipstream (only a single copy of memory is used) only the

register files are duplicated. Also it extends the DBCE idea in SRTR with death

and dependence based checking elision (DDBCE), in which the formerly ignored

masking instructions are also added to dependency chains. The DDBCE chains

a masking instruction only if the source operand of the instruction dies after

the instruction. Register deaths ensure that masked faults do not corrupt later

computation [13].
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3.3 Software Profiling For Fault Tolerance

Software Profiling for fault tolerance is the analysis of the application in order

to understand the characteristics of the application in terms of fault tolerance.

The characteristics of the application or the profiling information can be put

to use for better protection of the running application. The profiling info can

provide the programmer, which parts of the program are more susceptible to

transient faults, what is the approximate possibility of occurrence of some fault,

what is the impact of an error to the program output, in what path does the

errors propagate. These details combined with the underlying hardware, such as

operating system or other system specifics will provide invaluable information in

terms of providing the best fault tolerance fit to the reliability requirements of

the system with minimal cost. This thesis mainly relies on this fact.

One of the studies in this area uses instruction operand types as predictors

for transient fault impacts [9]. The instruction operands are separated into four

base groups called F, O, C and A. ”F” is an abbreviation used for floating point

operand, ”O” is for memory offset, ”C” is for comparison operand and ”A” stands

for ALU instruction operand. By this grouping, each register in the instructions

are grouped according to their usage. For instance, a register operand is of type

O, C, A when the register operand is used in memory offset, comparisons and

ALU instructions. Using this grouping, software characteristics is tried to be

predicted. A case study, Brake by wire [9] is used to evaluate the power of

operand type analysis. The analysis shows that, the brake by software is more

likely to be vulnerable to F and O type operands, meaning any errors in these

operands cause major defects and corruptive faults. Although the type inference

idea provides some insight of software vulnerabilities, it does not give any specific

detail about how to improve the software fault tolerance techniques. Moreover,

although grouping the instructions may seem like a good predictor, all memory

instructions cannot be considered important when some of the memory instruc-

tions cause critical errors. In other words, not all data written to memory or

read from memory carries critical or invaluable information. Or some instruc-

tion operands may contain critical data despite the fact that, most of that type
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of operands contains insignificant data. As a hypothetic example, consider the

brake by wire case in which ”F” and ”O” type operands seems to carry more vital

information. While this gives a better idea about operands, it may not always be

true. For instance, an ”A” instruction operand may also carry vital information.

Naturally, this particular operand should also be considered for protection when

reliability is a concern. However with type inference technique it may conversely

be grouped into ”A” type operands which are considered to be safe to ignore in

terms of reliability.

Another study has a similar approach to ours; EPIC suggests that error propa-

gation and the effect of errors is a requirement that should be taken into account

when developing dependable software. They track error propagation paths as

well as the impact of the errors. For each input-output couple they suggest that

there is a permeability that is defined as the conditional probability of an error

occurring on the output given that the input is faulty [10]. They extend the idea

for multiple input-output systems punishing the modules with large I/O count.

When considering a single input and its impact on single output, the probability

of an error showing in this output (or the weight of an input) is calculated as

the multiplication of the error permeability of the I/O systems in the backtrack

tree. Figure 3.3, is an example that shows I/O paths and weights for outputs in

EPIC [10].

For instance, the calculation of W2 is follows:

W2 = PB
2.1P

B
1.3P

D
1.1P

E
2.1 (3.9)

The error permeability is only one side of the story and it should be combined

with the effect of the errors that propagated the criticality of the error. The

criticality of the errors is a coefficient for the weights calculated which is decided

by the system administrator and is a value between 0 and 1, where 1 denotes the

highest possible criticality value.

In EPIC, inputs of the system are assumed to be independent of each other and

the dependencies are tried to be resolved with the coefficients assigned. An input

may have different effects on the output according to the variation or values of
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Figure 3.3: Weight calculation for error paths.

other inputs. In addition, error permeability of a single input can be misleading,

an input may have critical effect on the output (high permeability), although the

probability that it is used in calculation of the output may be low (a branch that

is taken only 0.1% of the time). The impact of the risk and the probability of the

risk occurrence should be evaluated independently and the system administrator

should be able to assign coefficients for these factors. In addition, the errors that

seem to disappear in error permeability paths may go unnoticed and eventually

have dramatic impacts in the program output. For instance, these errors may

cause invalid branches to be taken, input data corruption, and invalid memory

accesses.

The testing environment chosen for EPIC is in embedded (or circuitry) sys-

tems domain in which, input-output signals and their relations have more clear

cut definitions. However, in practice, a single output may not be present for an
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input (an input may only be used for data offset, branch decision, etc.) or the

output may feed another output as an input.

EPIC uses the gathered profiling information for simple executable assertions

(EA), which checks for an output signal to be in a pre-defined range and injects

these checks in software where an input has high error permeability on the output.

The input-outputs are considered in signal level in EPIC, therefore the data in

between input and output is simply ignored.

Another approach similar to ours, although has a very different context and

a very different fault model, supports the ideas presented in this thesis. The con-

text of the work is financial calculations in stream processing environments where

large amount of data is constantly processed and a continuous output is produced.

Partial fault tolerance (PFT) is tested for stream processing applications in order

to understand if PFT is viable. Specifically, PFT is partial selection of the data

for protection in order to achieve decent reliability with minimal cost and impact

on performance. Output quality for the financial calculations is used as a key

metric for deciding which parts of the data to protect. Although PFT idea is

presented for data protection in stream processing applications, we can borrow

and apply the same idea for general reliability concerns. Applying PFT is not

reasonable without a clear understanding of the impact of faults on the quality of

the application output [43]. Similar to PFT, our SSFT idea also requires an out-

put quality assessment when selectively applying the reliability measures in the

running application. Our expectation, similar to PFT, is that SSFT will provide

better resource utilization, less power consumption and better performance.

Our design is different from EPIC in following aspects; we use a probabilistic

approach for error occurrence calculation, and estimate an expected probability

for an error to occur. Additionally, we extend the error impact idea, using again

the golden runs idea, and use different measures for error impact calculation. We

then combine the probability and error impact values, and with user defined coef-

ficients calculate an expected error rate for different variables inside the software.

We do not reduce the inputs and outputs to signals; therefore our approach is

more generic and can be applied regardless of the running application or hard-

ware. We then use optimization techniques for best fit protection that has the
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minimum protection cost (performance, hardware requirements), while providing

a decent amount of protection. The next section will explain the details of the

approach taken in this work.
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Chapter 4

Our Approach

4.1 Preliminaries

In this section, we will briefly introduce the definitions required to understand

this thesis. Basic block is a fundamental term, which other notions are build on.

A basic block is a piece of code that does not contain any branches or jumps.

Branches or jumps provide transitions between blocks. Basic blocks have single

entry and exit points. The transitions between an entry point of one basic block,

to exit point of another basic block, which are called edges. In order to have a

deeper understanding of a software execution cycle, the compilers form a data

structure to present the pieces of software which is called Control Flow Graph

(CFG). To obtain this graph, the software is decomposed into basic blocks that

are connected by edges.

GCC, the compiler infrastructure used in this thesis, is a collection of compiler

front ends for languages C, C++, Objective-C, Fortran, Java, Ada, and Go etc.

GCC converts these high level code into GIMPLE statements as a middle-layer

form, which is a three-address representation which is formed in tuples of no

more than 3 operands (with some exceptions like function calls) [44]. In order

to imitate SEU, we inject errors on the parameters of the GIMPLE statements,

which we will refer to as statement parameter throughout the rest of this thesis.
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The term program execution cycle referred in this thesis, is a process that be-

gins with execution of application binary and ends with generation of the output.
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4.2 Overview

Selective Software Fault Tolerance, relies on the fact that the characteristics of

the running application and the underlying hardware have major impact on the

reliability of the whole system. Profiling information can be put to use for fine

tuning reliability measures and effectively protecting the entire program. Our

main idea of software profiling for reliability, is rather simple and intuitive. The

statements that are executed the most in percentage, and the parameters that

are used in these statements are most likely to be vulnerable to transient faults.

Additionally, the statements that cause the most dramatic effect in terms of

program execution cycle and program output quality are likely to require the most

protection when reliability is considered. These ideas when combined constitute

an effective approach for analyzing the program vulnerabilities.

The statements that are executed the most in percentage can be analyzed by

statistical analysis of executing program. The statistical information about the

number of executions of a single line of code can be obtained through compiler

directives. When we know the execution statistics for each satement, we can

simply acquire the percentage of execution (PE) of a statement in the program

execution cycle.

PEi =
Execution count for statement i

n∑
i=1

(Execution count for each statement)
(4.1)

PE for a statement (or an instruction for assembly language) actually gives

the likelihood of a statement being executed in a standard program execution

cycle. The more a statement is executed, the more it is likely to be hit by

transient faults. With this information, one can extract the statements that are

most vulnerable and these statements can be considered as main points of failure

when SEUs are of concern. It should be noted that program execution depends

on the input data. Therefore, the execution statistics and PE for each statement

is likely to change for varying inputs. For simplicity, each test input is given the

same probability and the final execution counts are taken as the average of the
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execution counts for different inputs. However, this estimation can be tailored

using the likelihood of the input data; therefore a finer approximation for PE can

be achieved.

The statements that affect the program execution and output quality the

most can be analyzed through experimentation methods. For experimentation,

the SEU should be imitated for a single statement (even better to analyze a sin-

gle parameter for a line of code). After a bit flip is injected inside the program,

the program should be executed and the behavior of the application should be

observed. This observation will involve the quality of the program output, or

abnormal execution termination after the injection. The output quality will be

measured by comparing the results before and after error injection (which is also

called Golden Run Comparison). The quality measure is different for each and

every different program, therefore different measures need to be applied. Typical

measures we use for our approach and details will be discussed in section 4.4.

From these measures, one can infer the quality effect (QE) of a SEU for a given

parameter inside a statement. The QE will be measured as a percentage and

for simplicity the program hang-ups, memory segmentation errors etc. will be

considered as a 100%QE. For applications that do not need to generate output,

for each input data, this QE value can be modified accordingly. For instance,

for an electronic wheel steering application, an output is generated in every few

microseconds. Although, the application is safety critical, it will work uninter-

rupted, in case of a single failure in output.

When considering QE for a transient fault, there are different observations

and aspects that need to be considered. A critical observation here is that,

some statements may not require reliability precautionary measures since they

may contain irrelevant information, dead code or code only needed for debugging

purposes. These statements do not have a QE, therefore may be ignored in

terms of reliability. Similarly, some parts of the program may only be for testing

purposes or contain test data. Those statements, should also be ignored when

QE experimentation takes place. Our technique allows user to selectively inject

errors, so that irrelevant functions are ignored.
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The output quality is subjective, since different applications produce different

kinds of outputs which may or may not tolerate soft errors. This subjectivity

requires a human observation for output quality, since quantitative analysis may

not be sufficient. For instance, consider a lossless compression algorithm. Any

error in the output is intolerable, since the output is useless when any byte errors

occur. Conversely, a lossy compression algorithm used in JPEG images or media

compressions will be able to tolerate some margin of byte errors, therefore, is

more flexible in terms of soft errors. Similarly, applications that contain calcu-

lations where imprecise or partially correct results are acceptable are called soft

computing applications. Especially, these types of applications, where soft com-

puting is used as a computation convention, are by nature, more resilient to soft

errors. Therefore, a margin of error is presumed to be acceptable which makes

these applications perfect for Selective SFT optimizations.

In addition to QE and PE parameters, other parameters should also be con-

sidered when estimating the impact of transient faults in the program execution.

For example, at the hardware level, process technology will have an important

effect. According to recent research [2], dimension scaling will cause 8% increase

in soft-error rate with each generation. The process technology, therefore, should

also be considered as an input when vulnerabilities to transient faults are being

measured. While shrinking process technology, has its own advantages in power

consumption, heat dissipation, it also makes the entire system more vulnerable

to transient faults.

By using the QE and PE parameters, one can simply evaluate the expected

rate of error for each statement parameter inside the program. Expected rate of

error (ER) can be calculated by the following equation.

ER = F (PE)× F (QE) (4.2)

Expected rate of error is, the error expectation percentage in the program out-

put in case of a transient fault occurrence inside a statement argument. Statement

parameter or statement argument term shall be used throughout the rest of the

thesis referring to the variables inside a statement to which error injections can

be made (i.e. transient faults can alter the value of the parameter causing errors).
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The F (PE) and F (QE) are functions that can be used to adjust the error rate

factors’ impacts. For simpler cases, where the parameters are to be used as is, F

function can be taken as a unit function. For instance, in some cases, the percent-

age of execution should be adjusted in order to increase the significance of this

parameter meaning that the error occurrence probability is an important factor

for calculating the expected error rate. Consider that the QE effect is required to

be empowered for very low error rates and weakened for values larger than 50%,

then a model function F(QE) can be constructed as F (QE) =
(

QE+25
QE+100

)
× 100.

For a different scenario where QE is required to be empowered for larger QE

values, than F (QE) may be constructed as F (QE) =
(

QE×30
110−QE

)
. When a simpler

logic, like diminishing the overall error values is required following expression

can be used F (QE) = m × logn (QE). Figure 4.1 shows the effects of applying

different functions on the QE values.
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37



In order to obtain the expected rate of error for the entire program, the ER

values for each individual statement argument should be accumulated. Formula

4.3 shows how PER (Program Expected Error Rate) value is calculated.

PER = AER×
∑

(ER) (4.3)

In formula 4.3, AER is the Architectural Error Rate which is a physical mea-

sure of the rate of failures (or the percentage of transient fault event occurrence).

The general convention in literature is to use MTBF (Mean time between fail-

ures), instead of failure rates since the MTBF value is a positive value and a

large value compared to the failure rates. For instance, consider a machine that

is expected to fail in every 5000 hours, the MTBF is considered as 5000 hours,

which is easier to use than an error rate of 0.0002 failures/hour. Failure rates are

generally considered with a factor of time, rather than number of instructions ex-

ecuted. We can calculate AER from a given failure rate as follows. For instance,

if a CPU has a rate of 1 failures/second and CPU can execute 109 instructions

per second, we achieve an AER value of 10-9.

This AER parameter can be affected by the density of the transistors used in

manufacturing the CPU unit, CPU clock frequency, and environmental radiation.

For instance, a CPU that is manufactured using denser transistor technology

is more susceptible to transient faults then a CPU that is manufactured using

sparser transistor technology, i.e, a 22 nm CPU is more likely to be affected by

radiation than a 90 nm manufactured CPU. In addition AER factor can also be

affected by environmental radiation. Normand states that, in avionics the SEU

rates are correlated to neutron flux, which is also correlated to the altitude [45].

For instance, an application running in a plane flying at 10000 ft is less likely

to be hit by neutron radiation than an application running in a plane flying at

60000 ft.

Since, PER is a measure of the rate of error that a program is expected to

produce against transient faults; we use PER as a reliability measure for the pro-

gram and try to optimize our reliability measures while keeping PER parameter

in an acceptable range. The acceptable PER value defined for the application,

will be referred to as λPER throughout the rest of this thesis. λPER value can be
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adjusted for the reliability requirements of different applications. For the appli-

cations that do not tolerate any errors, the λPER value is zero meaning that the

program is fully protected and is not produce any errors in case of a transient

fault.

For our optimizations, our method is to leave out as much statement parame-

ters unprotected as possible, while preserving λPER value of the application. The

statement parameters that are protected requires, some sort of reliability mea-

sures to be taken like instruction duplication, parameter duplication and similar

which result in performance overhead, increased hardware requirements, and more

power consumption. When we reduce the number of statement parameters that

are protected, we end up with a system that has better resource utilization, less

power consumption and better performance. In order to choose the statement

parameters that have less critical impacts on PER, we can sort the statement

parameters in terms of their ER values. For instance, a statement parameter

with an ER value of 0 can safely be omitted without affecting the PER value of

the running application, meaning a transient fault that changes the value of this

statement parameter does not have any impact in the produced software output.

Our approach works as follows; we first accept each and every statement

parameter to be protected as default by some form of reliability measure (redun-

dancy, memory protection, etc.), therefore the PER value is zero at the beginning.

The statement parameters are sorted in ascending order according to ER values.

Then, we remove protection from each statement parameter one by one. PER

value is re-calculated according to the ER values of the new set of parameters.

When we reach λPER value, we can no longer optimize since the PER value will

not be acceptable according to reliability requirements of the application. When

λPER value is zero, we can only take out the statement parameters that have zero

ER values. These parameters do not require any protection and can be omitted

when reliability measures are taken.

We call this optimization technique selective SFT (SSFT), meaning selectively

and carefully choosing the parameters that require Software Fault Tolerance and
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leaving the rest of the parameters unprotected. By the use of aforementioned op-

timization, the underlying hardware and the specific output quality requirements

of each application is taken into account. This way, the amount of redundancy

is minimized even though some statement parameters inside the program are

left unprotected. This optimization provides a reliability level tailored for each

application, which in turn, increases the performance, decreases the hardware

requirements (therefore reduces cost), decreases power consumption, and reduces

the overall redundancies introduced to the system (therefore reduces the vulner-

abilities).

As discussed in chapter 2, our technique can be used in conjunction with

any redundancy technique. It can be used to reduce the number of duplications

in, those techniques that use instruction duplication such as EDDI or SWIFT.

Similarly, it can be used for software and even hardware ECC techniques, to selec-

tively choose the statement parameters to protect. For multithreading techniques

such as CRTR or SMT, our technique can be applied for safely releasing the re-

sources seized by the trailing thread, reducing the slack between main and trailing

threads, therefore improving the overall performance while reducing power con-

sumption and resource requirements.

As expected, our technique will provide better optimization when λPER value

is above zero, meaning that a margin of error is acceptable for the application.

The next section will discuss the details of our system architecture.
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4.3 Selective SFT

Selective SFT (SSFT) technique uses static and dynamic analysis for profiling

the application. As explained in section 4.1, compilers form Control Flow Graph

(CFG) to understand application characteristics better. CFG is a static form of

analysis, which contains all possible paths that an application can traverse during

execution. In addition to static information captured in the CFG, statistical

data recorded during program execution will also give a better insight about

the application. Statistical data is recorded during program execution and is

a dynamic analysis instrument. As such, SSFT records the damage in output

(which is also another dynamic analysis instrument) for a statement parameter

in case of a transient fault occurrence. Figure 4.2 shows a partial CFG for an
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Figure 4.2: An example CFG graph.

application. Let the probability of branch (shown as directed edges) that connects
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basic block Bi to Bj be Pi,j. For instance, the probability of the branch that

connects B1 to B2 is shown as P1,2 in Figure 4.2. Also, let the set of predecessors

for a basic block be PREi. For instance, the set predecessors for basic block B6

(or PRE6) contains two basic blocks, namely B2 and B5. The cyclic edges in

the CFG shown in Figure 4.2, shows the loops in the application. Let Li be the

loop count for basic block Bi, i.e, for example B3, will have a loop count equal to

L3. B3 will be executed L3 + 1 times, since loop control block is executed once

more before the loop exits. Finally, let each basic block Bi be executed Ei times.

The entry block Bi in Figure 4.2, will be executed once. Equation 4.4 shows how

execution time of basic block Bj is calculated.

Ej =
∑

Bi∈PREj

(Ei × Pi,j)× (Lj + 1) (4.4)

For example, for basic block B3, B1 is the only predecessor in PRE3, therefore

E3 = E1 × P1.3 × (L3 + 1). The value L3 is different than 0 since, B3 has an

incoming cyclic edge meaning that B3 is loop control block. For basic block

B6, PRE6 contains the basic blocks B2 and B5, and L6 is zero since the basic

block does not have an incoming cyclic edge. The execution count of B6 is,

E6 = (E2 × P2.6) + (E5 × P5.6). The branch probabilities P2.6 and P5.6 is 1 since

these branches are unconditional, hence E6 = E2 + E5. We use these Ei values

for calculating the vulnerability of the statements inside the basic blocks. The

statements that have high percentage of execution in the program execution cycle,

are likely to be affected by transient faults. Equation 4.5 shows how percentage

of execution for a statement in a basic block can be calculated.

PEi =
Ei∑n
i=1 Ei

(4.5)

Let parameter k of statement j in Bi is exposed to SEU be expressed as Pi,j,k.

Let the output produced by the application, when parameter k is affected by a

transient fault be Oi,j,k. Let the output produced by the application without any

errors be Ogolden. We use a ”COMPARE” function to evaluate the quality of

output Oi,j,k, according to the requirements of the application. The result of the

evaluation is stored in parameter QEi,j,k. Equation 4.6 shows how the damage

caused by SEU in Pi,j,k is estimated.

QEi,j,k = COMPARE(Ogolden, Oi,j,k) (4.6)
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Let the probability of SEU for an application be PSEU and probability of state-

ment i to have SEU be PSEU
i . Equation 4.7 shows the probability calculation for

PSEU
i .

P SEU
i = PEi × P SEU (4.7)

The error expectation for parameter k of statement j in basic block Bi, depends

on the probability of SEU occurrence for statement j and the damage caused

by statement parameter k when SEU occurs. Note that, error expectancy also

contains the probability of SEU for the application. The estimation of error

expectation will then be:

ERi,j,k = P SEU
i ×QEi,j,k. (4.8)

The error expectancy of an application (or PER value in our previous expression)

is an accumulation of the error expectancies of the statement parameters. SSFT

orders the parameters according to ERi,j,k values and removes as much parameters

as possible, without violating the error margin of the application. The reliability

of the application is not impaired while improving the performance, reducing the

hardware requirements and power consumption.
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Figure 4.3: SSFT system architecture.

4.4 Implementation Details

Our overall system architecture is shown in Figure 4.3. As can be seen from Fig-

ure 4.3, ”Parameter Detection Module” (PMD) takes ”Application Source Code”

as input, and detects all the integer and floating point parameters inside the

source code to which error injections can be made. ”Error Injection Module”

(EMD) takes the statement parameters and the ”Application Source Code” as

input. EMD then, injects an error to a certain parameter in a statement and

compiles the application code to produce ”Error Injected Application Binary”.

The ”Error Injected Application Binary” then, is executed to produce output

and statistics data. ”QE Estimator Module” (QMD) uses the output produced

by ”Error Injected Application Binary” to calculate the QE value for the er-

ror injected statement parameter. EMD takes QE and PE values as input and

estimates the ER values. When all the statement parameters detected by our

PMD are injected with errors and ER values are calculated, ”Optimizer Module”

(OMD) can sort the statement parameters according to their ER values, and
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optimizes until the user defined PER value is reached.

In order to estimate ER (expected rate of error) values for statement param-

eters of the running application, we have to perform error injections in statement

parameters. Existing error injection tools like NFTAPE, GOOFI, PROPANE and

SWIF-IT was not useful for our purpose, since they are either architecture spe-

cific or has limited error injection capabilities. Additionally, some of the studies

similar to ours use ”GNU Debugger” tool, which has error injection capabilities

on the running application. The problem with this tool is that it does not offer

any automatic capabilities whereas our approach require thousands of different

errors to be injected automatically, in addition to compiling the error injected

code and recording the output. Moreover, our experiments require a tool that

has high level language error injection capabilities, can discriminate and record

different types of error injections and is flexible. For error injection, we preferred

a high level approach since it will result in fewer test runs and will be sufficient for

our purposes. A detailed low-level error injection tool would have injected errors

in different register values or memory parameters which eventually will impact

the value of a single parameter inside a high level statement.

In order to optimize the statement parameters, we applied two algorithms.

Algorithm 1 shows the steps of ER estimation for each statement parameter.

Algorithm 2 uses the data obtained from Algorithm 1, to selectively pick the

statement parameters that can be optimized (i.e. can be omitted with a fault

tolerance approach).
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Algorithm 1 Error Expectancy Estimator(ER-set).

Input: P-set, set of statement parameters
Output: ER-set, set of ER values of statement parameters

procedure Parameter-Scanner(P-set, I-set,F-set)
I-set← ∅
F-set← ∅
for all p ∈ P-set do

if p.type = integer then
I-set← I-set + p

else if p.type = float then
F-set← F-set + p

end if
end for

end procedure

procedure Estimate-PE(execution count)
return execution countp

n∑
i=1

execution counti

end procedure

procedure Estimate-ER(statisticsp)
return ERp ← F(QEp)× F(PEp)

end procedure

procedure ER-Estimator(I-set,F-set)
for all p ∈ I-set ∪ F-set do

p.value← p.value XOR (1≪ Rand(32))
executablep ←Compile(P-set)
outputp ←Execute(executablep)
execution count←Statistics(executablep)
QEp ←Error-Compare(outputp, outputgolden)
PEp ←Estimate-PE(execution count)
ERp ←Estimate-ER(QEp, PEp)
ER-set← ER-set+ERp

end for
end procedure
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Algorithm 2 Optimizer.

Input: ER-set, set of ER values for statement parameters
Output: R-set set of parameters that can be removed, PER value

Require: Initial PER value is 0.
procedure Optimizer(ER-set, acceptable PER)

SortAscending(ER-Set)
R-set← ∅
for all p ∈ ER-set do

calculated PER ← Calculate PER(R-set + p)
if calculated PER ≤ acceptable PER then

R-set← R-set + p
else

PER ← Calculate PER(R-set)
end if

end for
end procedure

For our error injection purposes, we use the GCC compiler infrastructure.

GCC uses different passes in the compilation process which include parsing the

code, converting high level code to GIMPLE statements, compiler-level opti-

mizations, code elimination and many other passes. GIMPLE is a three-address

representation which is formed in tuples of no more than 3 operands (with some

exceptions like function calls) [44]. Our error injection is implemented as a GCC

compilation pass, and is capable of detecting the parameters inside GIMPLE

statements, and injecting errors on these parameters in the form of SEU (Bit

flips on data). A single high level language statement may correspond to mul-

tiple statements in GIMPLE since auxiliary variables are needed when breaking

the code into 3 operand form. Figure 4.4 shows the conversion of a statement

into GIMPLE.
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i.0 = (unsigned int) i; 

D.2340 = i.0 * 32; 

D.2341 = block + D.2340; 

D.2342 = *D.2341[k]; 

D.2343 = (float) D.2342; 

D.2344 = cos2[k][j]; 

D.2345 = D.2343 * D.2344; 

sum = D.2345 + sum; 

sum += block[i][k] * cos2[k][j]; 

High Level Code 

GIMPLE Code 

Figure 4.4: GIMPLE code example.

Our error injection tool inside GCC has three major capabilities. First, we

are able to record the integer and floating point number variable parameters for

each function implemented in the running application. This will provide the base

data for our error injection scripts, which will simply inject the error to a specific

parameter inside a specific function, compile and run the software. The detection

and recording of the statement parameters is presented as ”Parameter Detector

Module” in Figure 4.3.

In order to use these error injection parameters and compile and run the error

injected software, we use scripts and modify the GIMPLE statements. Specifi-

cally, we notify the compiler to inject a single bit flip error into a specific operand

of a GIMPLE statement during compilation. After the compilation is done, the

error injected application executable is built and the results of error injection is

recorded for analysis. Figure 4.5 shows the compilation process for our imple-

mentation.
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Figure 4.5: Modified GCC compiles the application source code to produce error
injected application executable.

After the compilation of modified executable, we run the executable and record

the output with a specific error signature (the name of the function and the index

of the integer or float parameter can be used for such purpose). The output

recording requires some sort of book keeping mechanism so that the outputs

can be easily traced back to error injections. For instance, for a program that

generates a file as an output, the output name may comply the error injection

details so that the output can be associated to the error injection. Similarly, for

a program that generates a result as an output, the program output should be

written to a text file including the error injection details. This recording, in some

cases, requires modification to the application source code which is one of the

obstacles in our implementation. Figure 4.6 shows how we implement the overall

test procedure.

49



Error injected 

application executable 

Coverage statistics 

Original application 

executable 
Golden output 

Output with error 

signature 

The execution counts for 

each statement 

Figure 4.6: Test runs produce output and coverage statistics.

For estimating the error rate, golden run comparisons are performed. Appli-

cation is first executed without any error injections which is called the ”Golden

Run”. Then, the error injected copies of the same application is executed. The

output generated by the ”Golden Run” is used as a yardstick to measure how

the error injected software output strays from the ”Golden” output value. In

our implementation, we compare the results of the golden output and the error

injected outputs, and record the results in a file. For error percentage calcula-

tions, different criteria is used for each program. These criteria may actually be

subjective and require user provided coefficients in order for the error percentages

to be more meaningful. For instance, a JPEG conversion or filtering application

may be more tolerable to errors in the output; however a lossless compression

application, like ZIP compression, can be intolerable to any sorts of error. Sim-

ilarly, a stray in the PI calculation application may have a more dramatic effect

in the output, while a statistical analysis tool can be more tolerable to errors in

the output.

For simplicity, we have chosen criteria for error percentage calculations as
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Figure 4.7: QE is estimated by golden run comparisons.

simple as possible. For applications that generate files as outputs, we have used

the error criteria as the amount of data that does not match the Golden output.

For applications which generate ranking information as output, like in the case

of a sorting output, we use the ratio of the number of out of order elements to

the number of all elements in the list. In case of single result output applications,

like mean value, standard deviation, or square root calculation, we measured the

error rates by simply measuring the percentage of stray in final results. The error

rates are captured and stored in the form of percentages and this information

is used for optimizations and expected error rate calculations along with other

statistical information. Figure 4.7 shows how error rate calculations are handled.

As explained before, our technique adds a statistics parameter during com-

pilation in order to record the execution statistics data. The execution statistic

we collect is called Coverage Statistics, which is generated by ”GCOV” tool pro-

vided by GCC infrastructure. When the compiled software is executed, GCOV

interferes and records program execution statistics like the percentage of branch

decisions, the number of executions for each line of code, etc. The recorded data

can then be visualized when necessary. Since our primary interest is in the vul-

nerabilities against transient errors for each statement, we use GCOV to generate

the source code containing the number of executions of statement. These execu-

tion counts provide valuable information when identifying the sensitivity of each

statement. The reliability measures for these code pieces should be stricter for

keeping reliability at acceptable levels. Figure 4.8 shows how this data is gen-

erated. These results can be processed and used for our software profiling and

optimization purposes for better tailored software reliability.
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Figure 4.8: ER estimations are produced using QE values, coverage statistics (PE
values) and error injection details.

The collected results (ER estimations) can be used for different optimizations,

i.e. same data can be processed differently according to different PER values.

As discussed in chapter 4.2, λPER value is the acceptable PER value for an

application. When considering an application that cannot tolerate any errors,

that is λPER value is 0, the optimizations can only take place on the statement

parameters that do not cause any forms of errors in the program output in order

to yield a 0 PER value. This allows us to provide different levels of optimizations

for different reliability requirements.

We modified the GCC compiler and added our error injection pass into the

GCC compiler framework in order to implement error injection in the system.

This pass has been implemented using C programming language, where we in-

struct the GCC compiler to inject the errors. We have chosen benchmarks that

are coded in C programming language with minimum number of external libraries.

We combine the data generated from different sources (our own, GCC, GCOV,

etc.) using JAVA programming language.

Due to limited capabilities in GCC, error injections for pointer or array data

are missing from our implementation. Section 4.5 will discuss over an example

how we used the control flow graph and statistical information in order to obtain

the PE parameter.
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4.5 CFG Based Vulnerability Estimation Exam-

ple

As explained in section 4.1, CFG represents the execution properties of the ap-

plication in basic blocks and edges. For example, Figure 4.9 shows the CFG of

the DCT function from the Compress benchmark.

Figure 4.9: CFG for DCT function of Compress benchmark.

The execution statistics in Figure 4.9 were obtained using GCOV, whereas

CFG itself is obtained using GCC compiler. During the execution of the bench-

mark, DCT function is called 256 times, which is the reason for the entry basic

block, B2, to be executed 256 times. Therefore, each instruction in B2 is also

executed 256 times.

Figure 4.10 shows the code fragment corresponding to the basic blocks B2

through B10 of Figure 4.9. Note that, these basic blocks are on the right branch

of the given CFG.

The execution statistics in the CFG are in accordance with branch probabili-

ties. For instance, basic block B10, which contains the necessary GIMPLE code
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Figure 4.10: Code fragment for DCT.

for the first ”FOR” loop (for loop with index i), is executed 2304 times. The

GIMPLE code for this loop is shown in Figure 4.11.

Figure 4.11: GIMPLE Code for basic block 10.

In this example, ”B” is a symbolic name used for constant value 8. Basic

block B10 is executed 9 times making the total execution count 256× 9 = 2304,

which is compatible with the expected statistics. Similarly basic blocks B3 and

B8 are executed 2304× 8
9
×9 = 18432 times which is the execution count recorded

by GCOV. Additionally, in GCOV, the branch probabilities are recorded as %89

for B3 and %11 for B11, respectively.

Figure 4.12: GIMPLE Code for basic block 2.

Our approach first compiles the ”Compress” benchmark and injects the errors

for each statement parameter of each function in ”Compress”. GCC generated
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GIMPLE code for basic block B2 is shown in Figure 4.12. In order to inject an

error to basic block B2, we instruct compiler with the necessary parameters. We

explicitly indicate whether floating point parameters will also have error injected

to them. After the error injection, the basic block takes the form shown in

Figure 4.13

Figure 4.13: GIMPLE Code for Basic Block 2 after error injection.

The injection in Figure 4.13 causes the loop variable ”i” to have value 8 in-

stead of 0. When the loop variable ”i” takes value 8 instead of 0, the loop is not

executed therefore no calculations are made and the sum variable now contains

an undefined value. According to our measurements, this error injection causes

100% error in the output for the ”Compress” benchmark (i.e., this parameter has

a QE value of 100%). This indicates that, the value of this variable is extremely

important and the software does not tolerate any errors in this statement param-

eter hence this parameter should be protected using some form of fault tolerance.

However, PE (the percentage of execution) is also an important factor and should

also be considered when ER value for this statement parameter is calculated.

According to our measurements, the total number of statements executed in the

entire ”Compress” benchmark is ”727360”. Therefore, PEB10 = 2304
727360

= 0.3%

meaning that, this particular parameter takes 0.316% percent of the program

execution cycle.

Similarly, ER = 100 × 0.00316 = 0, 316, assuming that adjusting functions

for PE and QE are both unit functions. The ER parameter is used in calculating

PER (Program Expected Error Rate) and eventually is used in our optimizations.

For optimizations, the parameters that have lower ER values can easily be ignored

when fault tolerance techniques are applied.

As another example, the basic block B6 has an execution count of 147456.

When we instruct the compiler to inject an error in this basic block, basic block
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takes the form in Figure 4.15 instead of the one in Figure 4.14.

Figure 4.14: GIMPLE Code for basic block 6.

Figure 4.15: GIMPLE Code for Basic Block 6 after error injection.

According to our measurements, this injected error, causes an error rate of

78.68% in the output. Based on this error rate, we can assume that an injection

to this statement parameter causes heavy damage in the output, hence should be

handled with care when using a fault tolerance technique to increase reliability.

The corresponding PE will be equal to 147456
727360

= 20%, meaning that execution of

this inner loop block, corresponds to 20% percent of the execution cycle. When

calculated without any adjustment ER will have 78.68 × 0.2027 = 15.95 error

expectancy. This indicates that this statement parameter is far more important

than other statement parameters when reliability is considered, since it consti-

tutes a larger portion of the software execution cycle. However, 100% percent

error or a crash in program is undesirable; therefore the error rate needs to be

improved by adjusting the functions accordingly.

PER value is calculated as the sum of all error expectancies from all statement

parameters. Table 4.16 shows a portion of the error rates, execution counts, and

the basic block that statement parameter belongs to, sorted according to the ER

values.
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Injected Statement Block Error Rate Execution Count Total Execution ER Value

1 14,-7,dct 15 0 147456 727360 0

2 16,-5,dct 16 0 16384 727360 0

3 23,2,dct 16 0 16384 727360 0

4 6,-15,dct 7 0 18432 727360 0

5 7,-14,dct 8 0 18432 727360 0

6 9,-12,dct 10 0 2304 727360 0

7 20,-1,dct 22 81,00775 2304 727360 0,25660176

8 19,-2,dct 21 83,33333 2304 727360 0,263968313

9 10,-11,dct 11 85,27132 2304 727360 0,270107129

10 8,-13,dct 9 86,43411 2304 727360 0,273790406

11 0,-21,dct 2 100 2304 727360 0,316761989

12 24,3,dct 17 83,72093 16384 727360 1,88583881

13 15,-6,dct 16 85,27132 16384 727360 1,920761806

14 21,0,dct 4 88,37209 16384 727360 1,990607571

Figure 4.16: Table for Error Rates and ER values for statement parameters.

From the table 4.16, we selectively apply SFT and obtain a new PER value.

As a starting point, we assume that all of the statement parameters are protected

through some SFT and the PER value is initially equal to 0 for the application.

Then from the set of parameters (sorted similar to table 4.16), we choose the

parameters that are to be left out and not protected by the SFT. For instance, if

we do not protect parameters with an ER value of 0 (lines 2 to 7), the PER value

for the application does not change since these parameters are proven to be not

causing any errors in the application in case of a SEU event. The optimization

of the rest of the parameters is infeasible if the user set the λPER value as 0.

However, for soft computing applications and applications that are more tol-

erable to errors, the rest of the parameters can be added to the optimization

list until the specified PER value is reached. For example, the parameter in

basic block 22 (line 7) has an ER equal to 81.0075 × 2304
727360

= 0.256. When

this parameter is considered alone, overall application PER will be equal to

ER × AER = 0.256 × 10−7 = 2.56 × 10−9. If the acceptable value for PER

is too low (for instance, 10−9 could be picked as an acceptable error expectancy
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for the program) then this parameter cannot be removed from the list of parame-

ters that will exercise SFT techniques since, the PER value exceeds the acceptable

PER value when this parameter is left unprotected. However, if the application

is more tolerant to faults, a larger PER value can be used (for instance,10−8 for

the previous example). This way, other statement parameters can be added to

the list of unprotected parameters. As can be seen in table 4.16, parameter in

line 8 has an ER value equal to 83.33 × 2304
727360

× 10−7 = 2.64 × 10−9, whereas

parameter in line 9 has an ER value of 85.27× 2304
727360

× 10−7 = 2.7× 10−9. When

we do not protect these two parameters, the PER value will be equal to 5.2×10−9

and 7.9× 10−9, respectively. Therefore, both parameters can be included in the

unprotected parameters.

However, when parameter in line 10 is considered, corresponding ER and PER

values are equal to 86.43× 2304
727360

× 10−7 = 3.16× 10−9 and 11.06× 10−9, respec-

tively. This PER does not allow leaving this parameter unprotected. Similar to

this example, we selectively add as many parameters as possible to the list of

unprotected parameters according to λPER value.

The above values are for illustration purposes and are not used for our final

results, since it is only applied to a single function in the ”compress” benchmark to

better show our approach. Chapter 5 will continue with experimental evaluation.
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Chapter 5

EXPERIMENTAL

EVALUATION

5.1 Benchmarks and Setup

We implemented our selective software fault tolerance technique in a modified

version of GCC, where we introduce error injection capabilities. We used ten

benchmarks to test the effectiveness of our scheme. Table gives these benchmarks

and their salient features. Note that, these are all implemented in C since we are

operating on a modified GCC environment.

Number of Code Number of
Benchmark Source Basic Size (Bytes) Execution

Blocks Cycles

bs Generic 23 4580 32
compress UTDSP 70 7355 727360
edge detect UTDSP 49 8365 1466059
fft 1024 UTDSP 24 5151 85042
jpeg UTDSP 940 93460 15629
lpc UTDSP 116 13342 19155
mpeg2enc MediaBench 2646 220086 28149452
qsort Generic 51 4926 471
sqrt Generic 28 4149 63
st Generic 54 4284 30051

Table 5.1: The characteristics of the benchmark codes used in this study.

59



The third column gives the number of basic blocks in the CFGs of each bench-

mark. The fourth column gives the maximummemory space occupied by the basic

blocks of the applications (at runtime). Note that, if no memory space optimiza-

tion is performed, this is the ”memory occupancy” (or ”memory consumption”)

of the application. Our objective is to reduce the memory occupancy over the

course of execution by exploiting the lifetimes of basic blocks. The last column

of Table 5.1 gives the number of execution cycles for each benchmark, when no

reliability optimization is used.

We have mainly used UTDSP [46] as our benchmark suite since it fits well with

our approach. Scientific benchmarks we used from UTDSP are compress, edge de-

tect, FFT, LPC and JPEG. Compress benchmark uses discrete cosine transform

to compress a 128 x 128 pixel image by a factor of 4:1 while preserving its infor-

mation content. Edge detect benchmark, detects the edges in a 256 gray-level 128

x 128 pixel image relying on a 2D-convolution routine to convolve the image with

kernels (sobel operators) that expose horizontal and vertical edge information.

FFT is 1024-point complex fast fourier transformation benchmark (radix-2, in-

place, decimation-in-time). LPC benchmark is a linear predictive coding (LPC)

encoder benchmark. JPEG is a JPEG filtering program, which filters images. In

addition to these UTDSP benchmarks, we have also added some commonly used

applications like binary search, quick sort, square root calculation, and statis-

tics. Statistics application includes sum, mean, variance, and standard deviation

calculations. Additionally, we used MPEG-2 encoding benchmark (from Media-

Bench [47]), which does conversion of uncompressed video frames into MPEG-1

and MPEG-2 video coded bit stream sequences.
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5.2 Results

Our experiments and optimizations are affected by ER values for individual state-

ment parameters. If a parameter in a statement, does not cause any errors in the

output (ER value is 0), then the instruction can be eliminated since it does not

require any safety precautions against transient errors.

Aside from the ER values, for individual statement parameters, our experi-

ments and improvements are affected by architectural factors. In order to rep-

resent architectural factors, we defined the architectural error rate parameter

(AER). AER parameter is directly related to how the CPU is manufactured

(higher density transistors will end up with higher transient faults) and the envi-

ronmental factors (the outside radiation levels, clock rates, how close the circuits

are designed to one another). The AER factor is expected to grow exponentially

as the nanometric scaling continues [1]. For our base implementation, we take

AER factor value as 10-7. AER factor does not affect our implementation results,

since only PER value is affected by this parameter. The acceptable PER value

can be adjusted accordingly for different AER values, hence we see similar results

with various AER values.
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Figure 5.1: PER values for our benchmarks (10−6).

As explained before, program expected error rate (PER) depends on ER values

and AER parameter. More specifically, PER value indicates the error expectation

in the output of an application without applying any protection. For example,

fft 1024 benchmark has an error expectation of 2.6× 10−5, which is obtained by

using the transient fault and the quality impact of the error when occurred. If

there are no errors, that is the application is protected, PER value will be equal

to 0. Figure 5.1 shows the PER values for our benchmarks.

As can be seen from this figure, applications have a wide spectrum of PER

values ranging from 4.9× 10−7 (sqrt) to 2.6× 10−5 (fft 1024). This wide range of

values are mainly due to the fact that PE values for each statement parameter

have a different value since they are calculated using execution counts. Specific

execution counts for our benchmarks are shown in Figure 5.2.
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Figure 5.2: Execution counts for our benchmarks (106).

As indicated, PER values are greatly affected by the execution count. How-

ever, execution counts for an application are not directly correlated with error

expectations. For example, when a program has many loops or lots of lines of

code that take much longer to execute, it does not mean that, that program is

more prone to transient faults. Instead, if frequently executed code blocks have

major impact in the output, the application would have greater error expectancy.

As explained in Chapter 4, our goal is to reduce the number of statement

parameters that require reliability precautions. For this purpose we set a λPER

value for the application (discussed in section 4.2) in order to pick the statement

parameters that can be eliminated. For instance, a 0 value for λPER means that,

the software can not tolerate any errors and only the statement parameters that

has 0 ER value can be safely ignored when reliability precautions are applied.

Figure 5.3 shows the amount of improvements with our approach when the

application is executed without any errors, that is with a λPER value of 0.

According to these results, improvements brought by our approach is 40.85%
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Figure 5.3: Improvements with our approach when the application is executed
without any errors, that is λPER = 0.

on the average. This indicates that 40.85% of these application code segments can

be optimized without any compromises in terms of reliability. The improvements

range from 8.5% to 81.75% which shows that our optimizations mostly rely on

the characteristics of the application. In the next set of experiments, we use

our approach with two different software fault tolerance techniques, EDDI [11]

and SWIFT [4]. We compare the execution time, program size, and instruction

count improvements, when EDDI and SWIFT are seperately optimized using

our framework. Note that, the fault tolerance technique used is orthogonal to

our approach and can be chosen independently. In Figure 5.4, benchmark

execution times are compared to the baseline SWIFT and EDDI execution times.

Our implementation provides improvements between 2.5% and 23.8%, and has

a mean value of 12%, when applied over the SWIFT technique. The reduction

in the execution times are not as impressive as the previous results. First of all,

SWIFT is already optimized, and it can benefit from the advantages of Instruction

Level Parallelism (ILP).
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Figure 5.4: Normalized execution times compared to SWIFT and EDDI ap-
proaches without applying our technique.

On the other hand, our normalized execution times with respect to base EDDI

implementation are between 3.3% and 31.3%, and has a mean value of 15.7%.

Next, we give the improvements brought by our approach in the program size.

The code size reductions we achieve are shown in Figure 5.5. As can be seen from

Figure 5.5, our approach reduces the code size in SWIFT between 5% and 48%,

has a mean value of 23.9%. Similarly, for EDDI, our reductions in code size vary

5.6% to 53% has a mean value of 26.5%.
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Figure 5.5: Program binary size reductions compared to SWIFT and EDDI ap-
proaches without applying SSFT.

Similar to code size, we see considerable reductions in the instruction counts.

Specifically, the average instruction count reductions are 22.5% and 25.8% for

SWIFT and EDDI, respectively. As can be seen from Figure 5.6, reductions range

from 4.7% and 45%, and 5.4% and 52% for SWIFT and EDDI, respectively.

While not presented here, we expect to see a much better improvement in

power consumption, since, although ILP techniques improve execution times for

SWIFT and EDDI, the power consumptions will not be improved. When all

other parameters are the same, power consumption will be similar to the number

of executed instructions.

In our experiments discussed so far, we assumed that applications are not

tolerable to errors. That is, these applications have λPER = 0. However, there

are many applications in the soft computing domain which potentially accept

results with an error margin. For such applications, our approach is capable

of providing much better results since we are able to identify higher number
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Figure 5.6: Instruction count reductions compared to SWIFT and EDDI ap-
proaches without applying our technique.

of statement parameters without violating the error margin indicated by λPER

parameter. In the next section, we present a sensitivity analysis on λPER values.
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5.3 Sensitivity Analysis

For soft applications where a margin of error is acceptable, λPER parameter can

be adjusted to increase the amount of parameters that can be removed from the

list of protected parameters. Figure 5.7 shows the percentage of parameters that

can be excluded from protection without violating the λPER value.
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Figure 5.7: The percentage of parameters that can be excluded from software
tolerance for different λPER values.

Compared with λPER = 0, the amount of parameters excluded from SFT

will increase from from 40.85% to 64.5% when λPER = 10−7. This improve-

ment highly depends on software characteristics. ”st” benchmark improved by

66.7%, ”edge detect” benchmark improved by 46.4%, ”mpeg2enc” benchmark

improved by 31%, ”jpeg” and ”compress” benchmarks improved around 20%,

”qsort” benchmark and ”sqrt” benchmarks improved around 15%, while ”bs”

benchmark did not improve any further. As seen in Figure 5.7, when λPER value

is set to a value that is too high, most of the statement parameters are excluded

from fault tolerance, which may not be desirable. The λPER value should be
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adjusted according to the application requirements. For the following figures,

we used SWIFT approach (without applying SSFT) as baseline and show our

improvements over this technique for different λPER values.
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Figure 5.8: Normalized execution times compared to SWIFT approach without
applying our technique for different λPER values.

When λPER = 10−7, our technique reduces execution time between 6.8% and

25.9% with a mean value of 18.8% for SWIFT technique. The execution times

improve further, when λPER is set to higher values.
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Figure 5.9: Program binary size reductions compared to SWIFT approach with-
out applying our technique for different λPER values.

When λPER = 10−7, our technique reduces program size between 13.7% and

52%, with a mean value of 37.6% for SWIFT.
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Figure 5.10: Instruction count reductions compared to SWIFT approach without
applying our technique for different λPER values.

Our technique reduces instruction count between 12.9% and 49.11%, with a

mean value of 35.56% when it is applied on SWIFT and the λPER = 10−7.

In the next figure, Figure 5.11, we give the average percentage of parameters

that can be excluded from fault tolerance (over all benchmarks) over a range of

λPER values. Specifically, when λPER = 10−7, on the average 23.5% reduction

is possible. Along with other figures, this indicates that, for soft computing

applications, SSFT will further reduce the redundancies; hence will provide better

performance, higher availability and cheaper overall cost (hardware requirements

and power consumptions).
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Figure 5.11: The average rate of parameters that can be removed from software
tolerance for different λPER values.
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Chapter 6

Conclusion

In order to improve software reliability and provide protection against transient

faults that does not cause permanent damage in hardware, reliability techniques

have been proposed. Software reliability can be achieved through hardware, soft-

ware, or hybrid techniques, which all rely on some form of redundancy. These re-

dundancies cause performance overhead, higher power consumption and increase

the cost of hardware components required by the system.

It is necessary to keep the redundancies minimal in order to reduce their

effect in the system, while maintaining necessary protection. This requires a

better understanding in terms of reliability and performance requirements of the

running application and the environmental factors that affect of transient fault

occurrence (such as hardware specifications and environmental radiation levels).

We propose SSFT (Selective software fault tolerance) that uses software pro-

filing information to understand the vulnerabilities of the running application in

terms of reliability and tries to reduce the redundancies while providing the re-

quired levels of protection. Reduction in redundancies will decrease the overall

system cost and performance overhead.

Our experiments shows that, even for applications that cannot tolerate any

errors and require 0 error expectancy, some optimizations can still be made on the
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statement parameters. For instance, for benchmarks that are more amenable to

such optimizations (as in LPC benchmark), 81.75% of the statement parameters

can be safely omitted without impairing the reliability of the software. A fault

tolerance technique that does not have any optimizations would have protected

81.75% of the statement parameters that do not even require protection. The

impact of this overprotection can easily be seen from our results. For the same

LPC benchmark when SWIFT fault tolerance technique is applied, our approach

improves the execution time of the software by 23.8%, the program binary size

by 47.7%, and the instruction count by 45.1%. Similarly, when it is applied with

EDDI fault tolerance technique, our approach improves the execution time of the

software by 31.3%, the program binary size by 52.9%, and the instruction count

by 51.8% . The reduced redundancy will provide less power consumption, better

performance; therefore improve the availability and will decrease the number of

data bits susceptible to soft errors. Additionally, the reduced execution time will

allow a cheaper and slower CPU, a smaller non-volatile storage, and a smaller

volatile memory. These improvements will reduce the cost of the hardware re-

quirements due to applying the software fault tolerance. On the average, our

technique provides 11.9% execution time, 23.9% binary size, and 22.6% instruc-

tion count reduction for SWIFT, 15.7% execution time, 26.5% binary size, and

25.9% instruction count reduction for EDDI, respectively.

For soft computing applications that can tolerate some margin of error, i.e,

has less strict reliability concerns our technique provides even better reductions.

Instead of enforcing zero error, if we allow an error rate (PER) of 10−6, our bench-

marks, on the average, improve from 40.85% to 81.2%. This further improves

SWIFT and EDDI execution times by 13% and 18.3% respectively. Similarly,

program size is reduced by 30.9% to 35.4%, and instruction count is reduced by

28.73% to 34.5% for SWIFT and EDDI, respectively. These results show that

there is more room for improvements for soft computing applications.

One key advantage of our technique is that, since the redundancies have severe

effects in terms of performance, power consumption and hardware requirements,

a small amount of reduction in redundancies results with a higher rate of im-

provement. The results above indicate that SSFT provides decent improvements
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in terms of performance and great improvements for program binary size and

program instruction count while preserving the reliability of the software.

In addition, our technique can be applied in combination with any fault toler-

ance technique. Hardware, software and hybrid fault tolerance techniques can all

benefit from reduced redundancies provided by our approach. Similarly, hardware

fault tolerance techniques can be informed by the compiler about the vulnera-

bilities of the software and can make informed decisions about where in memory

each instruction should be placed. For instance, a more critical statement argu-

ment or instruction will be placed in an ECC protected memory, whereas the rest

of the data can be placed in a parity protected memory, which will reduce the

cost of the hardware, reduce the power consumption and improve the response

time. Moreover, software techniques can be improved in terms of performance

overhead, power consumption, and memory requirements.

Our approach is flexible in the sense that it can be applied to applications that

do not tolerate any errors without any compromises. The amount of optimization,

however, is affected by the acceptable rate of error, i.e, software that can tolerate

some error rate (soft computing applications), can be improved further, and more

redundancy can be eliminated when reliability measures are taken. Overall, the

application is provided with the most suitable fault tolerance, the overall costs

are reduced, and the protection level provided by the fault tolerance is kept in

an acceptable level that suits the reliability requirements of the application.

One limitation in our technique is that, it relies on profiling information.

Since the software behavior may dramatically change for different data sets, the

program should be tested with a variety of data sets, in order to provide a more

representative profiling information.

Another limitation is that, the impact of injected error also depends on the

parameter and resulting data. In order to better simulate error injections, bit

flips should be randomized and the impact of different forms of bit flips should be

normalized. To obtain accurate results it is necessary to perform multiple tests.

As future work, we are planning to extend our approach such that it will
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enable hybrid techniques like CRTR and SRTR to utilize, and hardware fault

tolerance such as ECC protected memory to use it.

We also would like to implement fault injections and redundancy reductions

on array and pointer parameters. This was not possible due to limitations in

GCC framework. We expect to see further improvements with such additions.
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