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ABSTRACT

OPTIMAL EXERCISE OF COLLAR TYPE AND
MULTIPLE TYPE PERPETUAL AMERICAN STOCK

OPTIONS IN DISCRETE TIME WITH LINEAR
PROGRAMMING

Emre Kara

M.S. in Industrial Engineering

Supervisor: Prof. Dr. Mustafa Ç. Pınar

June, 2014

An American option is an option that entitles the holder to buy or sell an

asset at a pre-determined price at any time within the period of the option con-

tract. A perpetual American option does not have an expiration date. In this

study, we solve the optimal stopping problem of a perpetual American stock

option from optimization point of view using linear programming duality under

the assumption that underlying’s price follows a discrete time and discrete state

Markov process. We formulate the problem with an infinite dimensional linear

program and obtain an optimal stopping strategy showing the set of stock-prices

for which the option should be exercised. We show that the optimal strategy

is to exercise the option when the stock price hits a special critical value. We

consider the problem under the following stock price movement scenario: We use

a Markov chain model with absorption at zero, where at each step the stock price

moves up by ∆x with probability p, and moves down by ∆x with probability q

and does not change with probability 1 − (p + q). We examine two special type

of exotic options. In the first case, we propose a closed form formula when the

option is collar type. In the second case we study multiple type options, that are

written on multiple assets, and explore the exercise region for different multiple

type options.

Keywords: Perpetual American options, Collar type options, Multiple type op-

tions, Triple random walk, Difference equations.
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ÖZET

YAKA TİPİ VE ÇOKLU VARLIKLI VADESİZ
AMERİKAN HİSSE SENEDİ OPSİYONLARININ

KESİKLİ ZAMANDA DOĞRUSAL PROGRAMLAMA
İLE EN İYİ KULLANIM DEĞERLERİNİN

BELİRLENMESİ

Emre Kara

Endüstri Mühendisliği, Yüksek Lisans

Tez Yöneticisi: Prof. Dr. Mustafa Ç. Pınar

Haziran, 2014

Amerikan opsiyonu, sahibine bir varlığı herhangi bir zamanda önceden belir-

lenmiş bir fiyata alma ya da satma hakkını verir. Vadesiz Amerikan opsiyonunun

bitiş zamanı yoktur. Bu çalışmada, opsiyonun yazıldığı hisse senedinin kesikli

zamanda kesikli değerler aldığı Markov süreçlerini izlediği varsayımıyla doğrusal

programlama yöntemleri kullanılarak vadesiz Amerikan opsiyonunun en iyi karı

verecek şekilde ne zaman kullanılması gerektiği problemi ele alınmıştır. Prob-

lem, sonsuz değişkenli doğrusal programlama ile modellenmiş ve en iyi opsiyon

kullanım stratejisini veren hisse senedi değerleri belirlenmiştir. En iyi kullanım

stratejisinin aslında hisse senedinin belli bir değere ulaşır ulaşmaz opsiyonun kul-

lanılması olduğu gösterilmiştir. Problem, hisse senedinin şu şekilde bir hareket

izlediği varsayımıyla modellenmiştir: Hisse senedi, 0 değeri aldığında artık işlem

göremeyeceği varsayımını yapan Markov zinciri modelini izler, hisse senedinin

değeri her bir adımda ya p olasılıkla ∆x kadar artar, ya q olasılıkla ∆x kadar

azalır, ya da 1 − (p + q) olasılıkla sabit kalır. İki farklı egzotik opsiyon tipi in-

celenmiştir. Birincisinde, yaka tipi opsiyonlar için kapalı çözüm formülü elde

edilmiştir. İkincisinde ise birden fazla hisse senedi üzerine yazılmış birkaç tip

çoklu varlıklı opsiyon için opsiyonu kullanma alanları belirlenmiştir.

Anahtar sözcükler : Vadesiz Amerikan opsiyonları, Yaka tipi opsiyonlar, Çoklu

varlıklı opsiyonlar, Üçlü rassal yürüyüş, Fark denklemleri.
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Chapter 1

Introduction

Mathematical finance is one of the fields of applied mathematics, mainly con-

cerned with financial markets. This field derives and extends mathematical mod-

els by assuming market prices given while financial economics might investigate

the structural reasons behind it. There are two main research branches in math-

ematical finance: One is derivative pricing which we will be dealing with in this

thesis, and the other one is risk and portfolio management.

A derivative can be defined as financial instrument whose value depends on

(or derives from) the values of other, more basic, underlying variables [1]. For

example, a stock option is a derivative whose value is dependent on the price

of the underlying stock. The most common underlying assets are commodities,

stocks, bonds, interest rates and currencies. In this thesis, we will focus on stocks

as an underlying asset.

In the last 30 years, derivatives have become increasingly important in finance.

They can be used for either risk management by hedging, meaning that providing

offsetting compensation in case of an undesired event, or speculation which means

a financial bet to make money.

Derivatives are traded on financial markets like stocks, currencies, and com-

modities, as well. Most traded derivatives are futures and options. A future
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contract is an agreement between two parties to buy or sell an asset at a certain

time in the future for a certain price. An option contract, on the other hand,

is an agreement between two parties to have the right but not the obligation to

buy or sell an asset at a certain time in the future for a certain price. The main

difference between these two derivatives is that for futures, there is an obligation

to honor the contract at the expiration date, but not for options. That is why

there is no cost to enter a future contract but there is for options, called premium.

Determining the premium is the fundamental question for both buyer and

seller of an option contract in the financial market. It is called the fair price of

an option. Valuation of options have some complexities compared to valuation

of traditional equities. It is even more complicated when the option holder has

right to use the contract at any time within the contract period which is the case

in so-called American type options. In this study, we will construct an optimal

trading strategy for an American option holder under the assumption that stock

price follows discrete time discrete state triple random walk process. Optimal

trading strategy will show to the holder at which states (s)he will use the option

contract to get the best expected future pay-off.

1.1 Basic Terminology on Options

A call option gives the owner the right, but not the obligation, to buy an asset

at a specified price within a specified time. A put option gives the owner the

right, but not the obligation, to sell an asset in a similar fashion. Strike price of

an option is the fixed price at which the owner of the option can buy or sell the

underlying asset. The date on which the option expires is called maturity date.

When the option holder uses the contract, meaning that (s)he buys or sells the

underlying asset at strike price, we say that the holder has exercised the option.

In a given state of the world, the amount that the option holder gains or loses as

a function of underlying’s payoff is called option payoff. In this work, we will use

S for strike price, T for maturity date, the real-valued function f : E → R for

the option payoff where E is the set of all possible states of the world.

2



A European option can be exercised only at the expiration date, i.e., single

pre-defined point in time. On the other hand, an American option can be exer-

cised at any time before the expiration date. If there is no expiration date, it is

called perpetual option. In this thesis, we work on perpetual American options.

American type options require dynamic valuation process since the option holder

must observe the underlying’s price through time and decide on a time to exercise

to maximize his/her earnings. This type of analysis is not required in European

type options since exercise date is fixed during the agreement.

American and European types of options are called plain vanilla options and

these types of options are used in financial markets most frequently. Options

which do not fall this category is called exotic options. Exotic options are rarely

used compared to plain vanilla options but they are more complex derivatives

and constitute an interesting background in the derivative pricing literature.

Assume that for some state of the world x ∈ E, the payoff of the underlying is

represented by X(x). For the call option holder, if X(x) is greater than the strike

price S at the maturity date, it is meaningful for the holder to exercise the option

for an immediate gain of X(x)− S, since the contract gives her the right to buy

a unit of the underlying at the price S. Then, by selling this unit in the original

market for its real market value X(x), the owner can have the specified gain. If

the price of the underlying, however, is lower than S, it will not be profitable

to exercise the option because the same asset is already available cheaper in the

exchange market. For a call option, the payoff function corresponds to:

f(x) = max{X(x)− S, 0} = (X(x)− S)+

In the case of a put option, the condition on trade is reversed, and the owner has

the right to sell the option at the maturity date. Note that this strategy is only

profitable when X(x) < S, hence, the payoff of a put option is:

f(x) = max{S −X(x), 0} = (S −X(x))+

Note that, in this study, an option is assumed to be call option unless otherwise

stated.

3



1.2 Motivation

Let us consider a perpetual American option holder. Since there is no maturity

date for the contract, the holder will decide when to exercise the option only based

on the observations on the underlying stock price movement. The objective of the

trader is to find the states where (s)he should exercise the option to obtain the

best expected payoff. The purpose of this study is based on this important need

of the option holder. In this study, we will characterize the optimal exercising

strategy so that the option holder will know at which states to exercise the option

and at which states to wait further in order to obtain more with respect to the

expected pay-off.

Suppose that underlying stock follows a stochastic process Xt on the state

space E. For any initial state x and any time t, expected payoff at time t can

be denoted as E[f(Xt)|X0 = x]. Let us introduce a discount factor α (a num-

ber slightly less than one) to account for the fact that future dollars are worth

less than present dollars. Value function v for any option is represented by the

maximum of all such functions over any future time t, that is

v(x) = max
t∈T

Ex
[
αtf(Xt)

]
.

This value function v tells both to the seller and buyer of the contract that fair

price of the option is v(x) if the current stock price is x. In each period, the

option holder observes current stock price x, and decides either to exercise the

option or keep it for one more period. This decision is made by looking at the

gap between value function v and option payoff f . Note that it is not possible to

have v(x) < f(x) since the time-index set involves time zero. Another important

note is that delaying the decision to exercise when v cannot beat f(x) will clearly

be suboptimal, due to the time value of money.

Exercise region can be characterized by a subset OPT of state space E such

that for all x ∈ OPT , v(x) = f(x). For all x /∈ OPT , v(x) must be greater than

f(x), meaning that expected payoff of future gains is greater than current option

payoff, therefore, option holder should wait further to gain more. This region is

called continuation region.
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Optimal trading strategy is to exercise the option immediately once we have

v(x) = f(x), and to keep option as long as v(x) > f(x). In this thesis, our

aim is to find the correct value function and set OPT to tell the trader optimal

exercising strategy.

In this work, we assume that (1) stock price follows a discrete time discrete

state triple random walk, (2) discount factor α ∈ (0, 1) is used for the time value

of money, and (3) option is perpetual American option with no expiration date.

Basically, we will deal with two different special cases of this problem. First,

we will solve the problem when the option is collar type. Second, we will explore

the exercise region when option is multiple stock options which is written on more

than one stock (two different stocks in our case). These two types of options are

exotic options and details will be given in corresponding chapters.

5



Chapter 2

Literature Review

Financial market instruments can be divided into two distinct species. There

are the underlying stocks, shares, bonds, currencies; and their derivatives, claims

that promise some payment or delivery in the future contingent on an underlying’s

behavior. Pricing of this second type, derivative pricing is well established and

documented research area in mathematical finance. Since options are widely used

derivatives in the financial market, they have taken researcher’s attention more

than other derivative instruments. This field of research has again two distinctive

branches, based on being European or American type option. We are focusing

on optimal strategy of American type perpetual stock options written on stocks

which follows discrete time discrete state triple random walks.

Option pricing has well-known history and there are many books and papers

written on this field of study. Comprehensive treatments of option pricing can

be found in Hobson’s survey [2], if reader is interested in specifically of American

options, (s)he can refer to Myneni’s [3] surveys. Hull’s text [1] is a good reference

for fundamental models in derivative pricing such as Black-Scholes option pricing

model.

Option pricing literature started by Bachelier [4], he studied European type

options. Later, Samuelson [5] provided a comprehensive treatment on the theory

of option pricing. With the contribution of Black and Scholes [6] and Merton

6



[7], option pricing literature has become a well-established research field. In their

work, Black and Scholes show that in a frictionless and arbitrage-free market, the

price of an option solves a special differential equation, a variant of the heat equa-

tion arising in physical problems. Their assumption that the stock price follows

a geometric Brownian motion has been a very key and much cited assumption.

The problem of determining correct prices for American type contingent

claims was first handled by McKean upon a question posed by Samuelson (see

appendix of [8]). In his response, McKean transformed the problem of pricing

American options into a free boundary problem. The formal treatment of the

problem from an optimal stopping perspective was later done by Moerbeke [9]

and Karatzas [10], who used hedging arguments for financial justification. Wong,

in a recent study, has collected the optimal stopping problems arising in the

financial markets [11].

In this thesis, we want to provide a different approach to solve American

option pricing problem in the perspective of linear programming when stock price

follows discrete time discrete state triple random walk. Our aim is to characterize

the exercise region to show the option holder when to exercise the option. It is

well known that the value function of an optimal stopping problem for a Markov

process is the minimal excessive function majorizing the pay-off of the reward

process (see [12] and [13]). With this property of the value function, the problem

can be structured as an infinite dimensional linear model and solved by linear

programming duality concepts. This approach is first used in [14] to treat singular

stochastic control problems. Then, Vanderbei and Pınar [15] use this approach to

propose an alternative method for the pricing of American perpetual warrants.

In their work, they solve the problem when stock price follows simple random

walk and underlying option is plain vanilla option. In this thesis, we will solve

the problem when stock price follows triple random walk, meaning that stock

price can remain at the same price with some probability, and underlying option

is collar type option which is one of the favorite exotic options used for hedging.

Next, we will model the problem when option is multiple type, i.e., option is

written on more than one stock, and explore the exercise region.

7



Chapter 3

Background

This chapter contains mathematical definitions and main concepts that will be

used in the remaining part of the thesis. This develops a base to approach this

problem from the linear programming perspective and details can be found in

[13].

3.1 Markov Processes

Let the triplet (Ω,F , P ) be a probability space.

Definition 3.1.1. A stochastic process X = {Xt, t ∈ T} with the state space E

is a collection of E-valued random variables indexed by a set T , often interpreted

as the time. X is a discrete-time stochastic process if T is countable and a

continuous-time stochastic process if T is uncountable. Likewise, X is called a

discrete-state stochastic process if E is countable and called a continuous-state

stochastic process if E is an uncountable set.

We model the stock price movement as a triple random walk which is a classical

example of stochastic processes. We use memoryless property for stock price

movement model, i.e., future of the process only depends on the current state of

the process. This property is called Markov property.

8



Definition 3.1.2. A stochastic process X having the property,

P{X(t+ h) = y |X(s),∀s ≤ t} = P{X(t+ h) = y |X(t)}

for all h > 0 is said to have the Markov property. A stochastic process with the

Markov property is called a Markov process.

In our study, stock price follows discrete time discrete state Markov process

and by the Markov property, next state of stock price is only dependent to current

state.

3.2 Potentials and Excessive Functions

Potentials and excessive functions are the fundamental concepts in optimal stop-

ping literature. They allow us to link stochastic processes and outcomes. Here

are some important definitions from Chapter 7 of [13].

Definition 3.2.1. A real-valued function g : E → R is called the reward function

of a stochastic process X.

Definition 3.2.2. Let g : E → R be a reward function defined on E. The

function Rg : E × T → R defined as

Rgt(i) = Ei
∞∑
h=0

g(Xt+h)

is called the potential of g.

Definition 3.2.3. Let g : E → R be a reward function defined on E and α ∈
(0, 1]. The function Rαg : E × T → R defined as

Rαgt(i) = Ei
∞∑
h=0

αng(Xt+h)

is called the α-potential of g.

9



Payoff of an option at any arbitrary state is defined by a reward function. By

using this function, we can model the payoff of an option contract with respect

to the stock price at any given state.

Given a state, an option holder should decide between exercising the option in

that state or keeping it one more period. The decision can be made by comparing

expected value of the option in that state and pay-off when option is exercised.

The expected value of the option is modeled by potentials as defined above. We

use α-potentials to include time value of the money in the model.

Definition 3.2.4. Let f be a finite-valued function defined on E and P be a

transition matrix. The function f is said to be α-excessive provided that f ≥ 0

and f ≥ αPf . If f is 1-excessive, it is simply called excessive.

This property of value function is very crucial in our work. This tells us that

at any given state, the associated reward at time 0 is always greater than or

equal to the discounted expected value of any future reward. This will constitute

a lower bound for our value function in the linear programming model.

3.3 Optimal Stopping on Markov Processes

Definition 3.3.1. The real valued function v on E given by

v(i) = sup
τ

Ei [ατf(Xτ )]

is said to be the value function of a game associated with the Markov process X

and the reward function f .

This measure basically gives the supremum of the discounted expected future

rewards over all stopping times τ when the initial state is i. In order to make

a stopping decision, we need to determine the set of states, which is OPT ⊂ E,

such that v(j) = f(j), ∀j ∈ OPT .
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3.4 The Fundamental Theorem

Theorem 3.4.1. Let f be a bounded function on E. The value function v is the

minimal α-excessive function greater than or equal to the pay-off function f .

Proof. Both given in [12], p.105 and [13], p.221.

This theorem is a key theorem that we will base our model on. By using ex-

cessive and majorant properties of value function, we can construct the following

LP to model this optimal stopping problem.

min
∑
i∈E

v(i)

s.t. v(i) ≥ f(i) , i ∈ E
v(i) ≥ αPv , i ∈ E
v(i) ≥ 0 , i ∈ E

One important note is that the theorem states that payoff function f must be

bounded. In our case, f is bounded above by the second strike price S2, therefore

the theorem can be applied.

3.5 Triple Random Walk

As we discussed in Chapter 1, we will model stock price movement as triple

random walk.

Let ∆x be a fixed positive integer in the interval (0, 1]. We define the set

E1 = {j · ∆x, j ∈ N} to be the state space for the stock price process. Let t0

denote the beginning period of analysis and define the collection {Xt, t ∈ N} of

random variables for each Xt ∈ E1 to be the stock price process. Then, triple
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random walk on E1 can be defined by letting:

Xt+1 =


Xt + ∆x w.p. p

Xt −∆x w.p. q

Xt w.p. 1− p− q

for each period t ∈ N and Xt ∈ E1 − {0}.

State 0 is an absorbing state; as stock price hits zero, it means associated

company goes bankrupt and stock price will never be able to go back to any

positive value.

3.6 Collar Type Options

Collar type options are used basically for hedging purposes if holder already has

a stock in hand. This type of options allow the holder to gain some amount if

stock prices goes up but it puts a cap on the gain in return for putting a floor on

the downside in order to prevent risk of big stock price decline.

A collar type option is created by an investor being (1) long the underlying

stock, (2) long a put option at strike price S1, and (3) short a call option at strike

price S2.

The payoff of collar type options are as follows [16]:

f(x) = min{max{X(x), S1}, S2}

When option is exercised, if stock price is lower than first strike price, then holder

will get first strike even if actual stock price is lower. If stock price is between

two strikes, holder will get actual amount of stock. If stock price is greater than

second strike price, then holder will get second strike even if stock has greater

value than second strike. With this strategy, holder guarantees a payoff between

two levels and limits herself for downside risk in return for sacrificing upside gain.
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3.7 Multiple Type Options

In Chapter 6 of [17], Detemple considered American options written on multiple

underlying assets. In his book, he studied different cases such as options written

on minimum, average, and maximum of two assets in continuous time finance

point of view.

Among those three multiple type options, we will consider and model max-call

options. These type of options are exotic options and rarely used in trade market.

However, it is an attractive and challenging research area since value and payoff

function is in third dimension in this case which makes it complicated to find

exercise region.

Given two stocks X and W which follows discrete time discrete state random

walk, payoff function of max-call option written on these two stocks is as follows:

f(x,w) = max{max{X(x),W (w)} − S, 0} = (max{X(x),W (w)} − S)+

At any given state, option holder observes stock price level of both stocks and

decides based on the comparison of maximum of both stock prices and strike

price.
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Chapter 4

Optimal Stopping for Collar

Type Options

4.1 Primal Problem

Under the triple random walk assumption, the problem is modeled by the follow-

ing infinite dimensional LP:

minimize
∞∑
j=0

vj

s.t. vj ≥ fj, j ≥ 0,

vj ≥ α(pvj+1 + qvj−1 + (1− p− q)vj), j ≥ 1.

where xj = j∆x, vj = v(xj), fj = f(xj), and f(xj) = min{max{xj, S1}, S2}.

This problem stands for the optimal stopping problem of a perpetual collar

type American option written on a stock following triple random walk. If there

exists an optimal solution for this problem, based on the gap between v and f ,

the option holder will find out on which states to exercise the contract, and on

which states to wait further.

Therefore, our aim is to solve this problem optimally, and characterize the
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exercise region.

4.2 Dual Problem

The solution procedure is based on linear programming duality. Therefore, next

step is to find the dual problem to the primal problem above. The associated

dual problem is

maximize
∞∑
j=0

fjyj

s.t. y0 − αqz1 = 1,

y1 + (1− α(1− p− q))z1 − αqz2 = 1,

yj − αpzj−1 + (1− α(1− p− q))zj − αqzj+1 = 1, j ≥ 2,

yj ≥ 0, j ≥ 0,

zj ≥ 0, j ≥ 1.

Here, yj’s and zj’s are dual variables correspond to first and second set of

constraints of the primal problem, respectively.

4.3 Complementary Slackness Conditions

Based on the primal and dual problem, let us write the complementary slackness

conditions:

(fj − vj)yj = 0, j ≥ 0,

(α(pvj+1 + qvj−1 + (1− p− q)vj)− vj)zj = 0, j ≥ 1,

v0(1− y0 + αqz1) = 0,

v1(1− y1 − (1− α(1− p− q)z1) + αqz2) = 0,

vj(1− yj + αpzj−1 − (1− α(1− p− q)zj) + αqzj+1) = 0, j ≥ 2,
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4.4 Solution Procedure for Primal and Dual

Problem

Let vj denote the optimal primal solution and yj and zj the optimal dual solution

(i.e., we are dropping the usual “stars” that denote optimality). Finite approxi-

mations of the primal problem suggests that there exists a j∗ such that

v0 = f0,

vj = α(pvj+1 + qvj−1 + (1− p− q)vj) > fj, for 0 < j < j∗,

vj = fj > α(pvj+1 + qvj−1 + (1− p− q)vj), for j∗ ≤ j.

Due to our assumption, we already know the values of v∗ for j ≥ j∗. To

determine v∗j for 0 < j < j∗, we need to solve the second order homogeneous

difference equation:

vj − α(pvj+1 + qvj−1 + (1− p− q)vj) = 0, 0 < j < j∗

with the boundary conditions:

v0 = S1,

vj∗ = fj∗ .

From the numerical analysis, we know that value function behaves as an expo-

nential function. Therefore, to this end, suppose that

vj = ξj

for some positive real number ξ. If we substitute it into the difference equation,

we get

ξj − α(pξj+1 + qξj−1 + (1− p− q)ξj) = 0.

Dividing by ξj−1, we get a quadratic equation

−αpξ2 + (1− α(1− p− q))ξ − αq = 0.

The two roots of this equation are

ξ− =
α(1− p− q)− 1−

√
(1− α(1− p− q))2 − 4α2pq

−2αp
,
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ξ+ =
α(1− p− q)− 1 +

√
(1− α(1− p− q))2 − 4α2pq

−2αp
.

where we used ξ− to denote the larger root and ξ+ for the smaller root. The

general solution to the difference equation is therefore

vj = c+ξ
j
+ + c−ξ

j
−.

From the first boundary condition v0 = S1, we get that c+ + c− = S1. This

relation together with the second boundary condition vj∗ = fj∗ gives

c+ =
fj∗ − S1ξ

j∗

−

ξj
∗

+ − ξ
j∗

−

Hence,

vj =

(
fj∗ − S1ξ

j∗

−

ξj
∗

+ − ξ
j∗

−

)
(ξj+ − ξ

j
−) + S1ξ

j
−, 0 < j < j∗.

Now, let us solve for zj. Since vj∗ is optimal for primal problem, it has to

satisfy CS conditions. We know that v∗j 6= fj for 0 < j < j∗, thus, y∗j = 0 when

0 < j < j∗ and last CS condition reduces to:

(1− α(1− p− q))zj − α(pzj−1 + qzj+1) = 1, 0 < j < j∗.

with the boundary conditions:

z0 = 0,

zj∗ = 0.

First boundary condition is just an additional variable which does not affect the

problem formulation. Second boundary condition is obtained from the second CS

condition; since for j ≥ j∗, first part of the multiplication is nonzero which forces

zj to be 0.

We need a particular solution to the equation and the general solution to the

associated homogeneous equation. For a particular solution, we try a constant

value

zj ≡ c.
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Substituting into the difference equation, we get c = 1/(1− α).

Let us write the equation for zj in different form:

zj − α(qzj+1 + pzj−1 + (1− p− q)zj) = 1, 0 < j < j∗.

This homogeneous equation is exactly the same as the equation for vj except

with p and q interchanged. Hence the general solution, which is the sum of the

particular and the homogeneous, is given by

zj =
1

1− α
+ c+ζ

j
+ + c−ζ

j
−

where

ζ+ = 1/ξ− =
α(1− p− q)− 1−

√
(1− α(1− p− q))2 − 4α2pq

−2αq
,

ζ− = 1/ξ+ =
α(1− p− q)− 1 +

√
(1− α(1− p− q))2 − 4α2pq

−2αq
.

Using the boundary conditions to eliminate the two undetermined constants, we

get

zj =

(
1− ζj

∗

− − 1

ζj
∗

− − ζ
j∗

+

ζj+ −
ζj
∗

+ − 1

ζj
∗

+ − ζ
j∗

−
ζj−

)/
(1− α), 0 < j < j∗.

It only remains to show the values of yj. The dual constraint ensure that

yj = 1 for j > j∗ since zj = 0 in this region. Then,

yj =


1 + αqz1 j = 0

0 0 < j < j∗

1 + αpzj∗−1 j = j∗

1 j > j∗
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To summarize, we have

vj =


S1 j = 0

(fj∗ − S1ξ
j∗

− )

(
ξj+−ξ

j
−

ξj
∗

+ −ξ
j∗
−

)
+ S1ξ

j
−, 0 < j < j∗

fj j∗ ≤ j

zj =


(

1− ζj
∗
− −1

ζj
∗
− −ζ

j∗
+

ζj+ −
ζj
∗

+ −1
ζj
∗

+ −ζ
j∗
−
ζj−

)/
(1− α) 0 < j < j∗

0 j∗ ≤ j

yj =



1 + αqz1 j = 0

0 0 < j < j∗

1 + αpzj∗−1 j = j∗

1 j∗ < j

Now, we have candidate optimal solutions vj, yj, and zj to the primal and dual

problems. The only thing left we have to show is that these candidate solutions

satisfy all constraints in both primal and dual problems.

4.5 Check the Inequalities

Inequalities we need to check are as follows:

yj ≥ 0, j ≥ 0, (4.1)

zj ≥ 0, j ≥ 1, (4.2)

vj ≥ fj, j ≥ 0, (4.3)

vj ≥ α(pvj+1 + qvj−1 + (1− p− q)vj), j ≥ 1. (4.4)

In [15], a methodology to check these inequalities for a plain vanilla option

under simple random walk assumption is proposed. We will follow the same

methodology with some modifications for collar type options under triple random

walk assumption.

19



4.5.1 Inequalities 4.2

For j ≥ j∗, it directly follows from the formula of zj. We are done when we show

that it holds for 0 < j < j∗.

By a contrary, let us assume that zj < 0 for some 0 < j < j∗. Then, there

must be a k at which zk is negative and a local minimum:

zk ≤ zk−1 and zk ≤ zk+1.

If j′ is the index of the local minimum, that is j′ = k, from the last CS condition

and yj = 0 for 0 < j < j∗, we have:

(1− α(1− p− q))zj′ = 1 + α(pzj′−1 + qzj′+1)

≥ 1 + α(pzj′ + qzj′)

zj′ − αzj′ + αpzj′ + αqzj′ ≥ 1 + αpzj′ + αqzj′

zj′(1− α) ≥ 1.

which implies that zj′ ≥ 1/(1 − α). This contradicts with zj′ being negative. If

j′ is not the index of the local minimum then we either have zj′−1 > zj′ > zj′+1

or zj′−1 < zj′ < zj′+1. Note that due to the boundary conditions, that are

z0 = 0, zj∗=0, we must have at least one local minimum as we change j′ towards

0 or j∗ which will again lead to a contradiction. Hence, zj ≥ 0 for all 0 < j < j∗

4.5.2 Inequalities 4.1

We proved that zj ≥ 0 for j ≥ 1. p, q, and α are nonnegative. Combining these

facts, from the formula of yj, it is easy to see that yj ≥ 0 for j ≥ 0.

4.5.3 Inequalities 4.4

These hold trivially for j < j∗. For j ≥ j∗, We will split it by j > j∗ and j = j∗.

Let us start with the former case. To show that inequality holds, we need make

an assumption. We will assume that αp ≤ 1/3 , αq ≤ 1/3, and α(1−p−q) ≤ 1/3.
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Let j = j∗+k, k = 1, 2, . . . and assume αp ≤ 1/3, αq ≤ 1/3, and α(1−p−q) ≤
1/3. Then,

αpvj∗+k+1 + αqvj∗+k−1 + α(1− p− q)vj∗+k
= αpfj∗+k+1 + αqfj∗+k−1 + α(1− p− q)fj∗+k

≤ 1

3
fj∗+k+1 +

1

3
fj∗+k−1 +

1

3
fj∗+k

=
1

3
(fj∗ + (k + 1)∆x) +

1

3
(fj∗ + (k − 1)∆x) +

1

3
(fj∗ + k∆x)

= fj∗ + k∆x

= fj∗+k

= vj∗+k.

The one just given suffices but is not necessary. A necessary and sufficient con-

dition is obtained by recalling that vj = fj for j > j∗. It is easy to see after some

simple algebraic manipulation that for j = j∗ + k, and k = 1, 2, . . . we have

αpvj∗+k+1 + αqvj∗+k−1 + α(1− p− q)vj∗+k ≤ vj∗+k

αpfj∗+k+1 + αqfj∗+k−1 + α(1− p− q)fj∗+k ≤ fj∗+k

Since

fj∗+k = fj∗ + k∆x

We have

fj∗ + k∆x ≥ αpfj∗ + αp(k + 1)∆x+ αqfj∗ + αq(k − 1)∆x+ α(1− p− q)fj∗
+α(1− p− q)k∆x

fj∗ + k∆x ≥ αp∆x− αq∆x+ αfj∗ + αk∆x

fj∗(1− α) ≥ α∆x(p− q) + k(α− 1)∆x

Since k(α−1)∆x is negative (α < 1), the left hand side is maximized at k = 1.

Hence, (4.4) holds with vj = fj if and only if

(1− α)fj∗ ≥ α∆x(p− q) + (α− 1)∆x.

We’ll come back to the inequality (4.4) for j = j∗ after we consider inequalities

(4.3).
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4.5.4 Inequalities 4.3

For j ≥ j∗, vj = fj from the formula for vj. We need to show that vj ≥ fj for

j ≤ j∗. In order to have these inequalities hold for j < j∗, we need to pick

j∗ ∈ K :=

{
k : (fk − S1ξ

k
−)

(
ξk−1+ − ξk−1−

ξk+ − ξk−

)
+ S1ξ

k−1
− > fk−1

}
.

We need to assume that K is nonempty. We need to show that K has finite

number of elements.In order to show it, let us observe the following inequality for

k ∈ K:

(fk − S1ξ
k
−)

(
ξk−1+ − ξk−1−

ξk+ − ξk−

)
+ S1ξ

k−1
− > fk−1

It can be written as:

ξk−1+ − ξk−1−

ξk+ − ξk−1− ξ−
>

fk−1 − S1ξ
k−1
−

fk − S1ξk−

The LHS behaves as 1/ξ− and the right hand as 1 for large k, which implies

that k cannot grow without bound since ξ− > 1.

For an hj and the assumption that j∗ ∈ K, we have that vj∗ = hj∗ and

vj∗−1 > hj∗−1. Suppose that vj′ < hj′ for some j′ < j∗. Then the sequence

uj := vj − hj must have a local maximum at some point, say k, strictly between

j′ and j∗. That is, uk > uk−1 and uk > uk+1. But, we also have

uk = vk − hk
= α(pvk+1 + qvk−1 + (1− p− q)vk)−

1

3
(hk+1 + hk−1 + hk)

≤ 1

3
(vk+1 + vk−1 + vk)−

1

3
(hk+1 + hk−1 + hk)

=
1

3
(uk+1 + uk−1 + uk)

< uk.

It is a contradiction. Therefore, uj can’t have a local maximum and therefore vj

cannot dip below hj and this ends the proof.
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4.5.5 Inequality 4.4 with j = j∗

Finally, to get inequality (4.4) for j = j∗, we need to assume that j∗ + 1 6∈ K,

meaning that following inequality must hold:

(fj∗+1 − S1ξ
j∗+1
− )

(
ξj
∗

+ − ξ
j∗

−

ξj
∗+1

+ − ξj∗+1
−

)
+ S1ξ

j∗

− ≤ fj∗

Let wj denote the solution to the difference equation

wj − α(pwj+1 + qwj−1 + (1− p− q)wj) = 0, 0 < j,

w0 = 0,

wj∗ = fj∗ .

This is the same as the difference equation we used to solve for vj but extended

to all j. Clearly we have vj∗ = wj∗ and vj∗−1 = wj∗−1. Hence, (4.4) at j∗ will

hold if and only if vj∗+1 ≤ wj∗+1:

fj∗+1 = vj∗+1 ≤ wj∗+1 = (fj∗ − S1ξ
j∗

− )

(
ξj
∗+1

+ − ξj
∗+1
−

ξj
∗

+ − ξ
j∗

−

)
+ S1ξ

j∗+1
−

The resulting inequality is clearly equivalent to the one above we are trying to

show after some algebraic manipulation

A natural consequence of our analysis above is that j∗ should be chosen as:

j∗ := max

{
k : (fk − S1ξ

k
−)

(
ξk−1+ − ξk−1−

ξk+ − ξk−

)
+ S1ξ

k−1
− > fk−1

}
.

Note that there is no S2 in the closed form formula to calculate j∗. However,

it externally bounds the j∗ as it is not meaningful to wait further once stock price

hits second strike price.

4.6 Numerical Results

Theoretically, we have shown that there exists a j∗ such that after that critical

point, the option holder should exercise the option in order to collect maximum
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gain among all other expected payoffs and we give a closed form formulation to

calculate j∗.

If we solve the finite approximation of infinite dimensional LP for 20 states, for

chosen parameters p, q, α, S1, S2 (shown in the definition of figure), the obtained

results are presented in figure 4.1.
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Figure 4.1: Value and pay-off function (p = 0.35, q = 0.35, α = 0.998, S1 = 0.5,
S2 = 1.5, ∆x = 0.1).

Optimal v values and payoff function f are graphed. For chosen parameters,

finite approximation of our LP model says that j∗ is obtained at state 13, i.e.,

when stock price hits 1.3 (note that ∆x = 0.1), option should be exercised.

One immediate observation from the figure is that, as claimed, until critical

value, value function stands above the payoff function. It means that keeping

option for one more period is more beneficial than exercising the option. In those

states, vj > fj. After the critical point j ≥ j∗, value function sticks to the payoff

function (vj = fj) and continues to grow together.

For given parameters, proposed formula suggests to pick maximum index j
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k f(k) ξ+(k-1) ξ-(k-1) ξ+(k) ξ-(k) result f(k-1) v

0 0,5 0,500

1 0,5 1,000 1,000 0,927 1,079 0,500 0,5 0,537

2 0,5 0,927 1,079 0,860 1,163 0,499 0,5 0,577

3 0,5 0,860 1,163 0,797 1,255 0,497 0,5 0,620

4 0,5 0,797 1,255 0,739 1,353 0,496 0,5 0,667

5 0,5 0,739 1,353 0,685 1,460 0,494 0,5 0,717

6 0,6 0,685 1,460 0,635 1,574 0,575 0,5 0,772

7 0,7 0,635 1,574 0,589 1,698 0,661 0,6 0,831

8 0,8 0,589 1,698 0,546 1,832 0,749 0,7 0,895

9 0,9 0,546 1,832 0,506 1,976 0,839 0,8 0,964

10 1 0,506 1,976 0,469 2,131 0,930 0,9 1,039

11 1,1 0,469 2,131 0,435 2,298 1,022 1 1,119

12 1,2 0,435 2,298 0,403 2,479 1,114 1,1 1,206

13 1,3 0,403 2,479 0,374 2,674 1,206 1,2 1,300

14 1,4 0,374 2,674 0,347 2,884 1,299 1,3 1,400

15 1,5 0,347 2,884 0,321 3,110 1,392 1,4 1,500

16 1,5 0,321 3,110 0,298 3,355 1,393 1,5 1,500

17 1,5 0,298 3,355 0,276 3,618 1,395 1,5 1,500

18 1,5 0,276 3,618 0,256 3,903 1,396 1,5 1,500

19 1,5 0,256 3,903 0,238 4,210 1,396 1,5 1,500

20 1,5 0,238 4,210 0,220 4,540 1,397 1,5 1,500

Figure 4.2: Calculation of j∗ with proposed closed form formula.

as j∗ which makes the LHS of the expression greater than fk−1. In this example,

state 13 is the last state that makes LHS greater than RHS, therefore 13 is chosen

as j∗. (See figure 4.2)

Thus, results from the solution of LP model and output of closed form formula

coincides. Hence, obtaining exercising strategy using proposed formula provides

computational efficiency.

Note that the given closed form formula works even if the assumption αp ≤ 1/3

is violated. Low interest rates (α very close to one) and up probability greater

than 1/3 are very likely in any stock market. Therefore, it is enough to check

necessary and sufficient condition obtained which is as follows:
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(1− α)fj∗ ≥ α∆x(p− q) + (α− 1)∆x.

4.7 Sensitivity Analysis

In this section, we will investigate how exercising strategy can be affected by the

changes in parameters.

4.7.1 Sensitivity on p and q

Probabilities p, q and 1− p− q represent the market projection for the future of

stock price. If up probability p is higher than q, it means that in the long run, it

is more probable that stock price increases.
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Figure 4.3: Value and pay-off function (p = 0.3, q = 0.4, α = 0.998, S1 = 0.5,
S2 = 1.5, ∆x = 0.1).

By keeping all other parameters same as in the example above, we just change
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up and down probabilities to see their impacts on j∗.

If we decrease up probability to 0.3 and increase down probability to 0.4, j∗

is chosen as 8 instead of 13. (See figure 4.3) It means that, since the probability

that stock prices go up is relatively lower, it is more beneficial to exercise the

option at an earlier state.
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Figure 4.4: Value and pay-off function (p = 0.36, q = 0.34, α = 0.998, S1 = 0.5,
S2 = 1.5, ∆x = 0.1).

In figure 4.4, we graphed the opposite case, i.e., probability that stock price

goes up is relatively higher than the one in main example. As expected, optimal

strategy is to wait more until j∗ = 15 as market is relatively more favorable for

this stock.

4.7.2 Sensitivity on α

The parameter α stands for time value of money in the model. Our model is very

much dependent on the choice of α. For small and high (very close to 1) α values,

j∗ will position at the extremes, at S1, or S2.
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We investigate the cases where α = 0.99, and α = 0.999. Former is lower

than the one in main example and latter is higher. Resulting graphs can be seen

in figure 4.5, and figure 4.6, respectively.

In the first case, money deflates at a higher rate compared to the main ex-

ample, therefore keeping option to obtain higher return is not a good strategy.

Therefore, model suggests a critical point which is earlier. (exercise when j∗ = 8)

In the second case, larger α value favors the strategy to wait for obtaining

higher stock prices to gain more. It is optimal to exercise the option when stock

price hits 1.5.
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Figure 4.5: Value and pay-off function (p = 0.35, q = 0.35, α = 0.99, S1 = 0.5,
S2 = 1.5, ∆x = 0.1).
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Figure 4.6: Value and pay-off function (p = 0.35, q = 0.35, α = 0.999, S1 = 0.5,
S2 = 1.5, ∆x = 0.1).
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4.7.3 Sensitivity on S1

S1 is the first strike price of collar type option. It is the minimum amount that

the option holder can get in the worst case.

Figure 4.7 and 4.8 represents two cases when S1 = 0.3, and S1 = 0.8. For

lower S1 values, value function sticks to the payoff earlier, therefore option holder

should exercise the option at earlier states.

For higher S1’s, the holder starts to gain at relatively higher stock prices which

leads holder to wait more to obtain the optimal gain.
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Figure 4.7: Value and pay-off function (p = 0.35, q = 0.35, α = 0.998, S1 = 0.3,
S2 = 1.5, ∆x = 0.1).
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Figure 4.8: Value and pay-off function (p = 0.35, q = 0.35, α = 0.998, S1 = 0.8,
S2 = 1.5, ∆x = 0.1).
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4.7.4 Sensitivity on S2

S2 is the second boundary on the option payoff function. It is not present in the

closed form formula to calculate j∗. However, it externally bounds the j∗ as it

is not meaningful to wait further once stock price hits second strike price. It is

the ultimate amount that can be obtained by the option holder and if the holder

does not exercise the option at that time, (s)he will lose money when stock price

reaches the same level again because of time value of money.

In figure 4.9, when S2 = 1.0, value function sticks to the pay-off at state 10.

Recall that in the main example, it was state 13. Here, S2 bounds the value

function and forces it to equalize with option payoff at an earlier state.

As in figure 4.10, increasing S2 from 1.5 to 1.8 does not affect the result.

It behaves like a redundant constraint since j∗ was already picked as 13 when

S2 = 1.5 in the main example, so no change in other parameters results with the

same j∗ even if S2 is increased.
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Figure 4.9: Value and pay-off function (p = 0.35, q = 0.35, α = 0.998, S1 = 0.5,
S2 = 1.0, ∆x = 0.1).
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Figure 4.10: Value and pay-off function (p = 0.35, q = 0.35, α = 0.998, S1 = 0.5,
S2 = 1.8, ∆x = 0.1).
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Chapter 5

Optimal Stopping for Multiple

Type Options

Multiple type options are options which are written on more than one asset. A

standard example is the case of an index option that is based on the value of a

portfolio of assets. Options on the S&P 100, which have traded on the Chicago

Board of Options Exchange (CBOE) are American options on a value weighted

index of 100 stocks. Options on the maximum of two or more assets can be

found in firms choosing among mutually exclusive investment alternatives, or in

employment switching decisions by agents. Gasoline crack spread options traded

in New York Mercantile Exchange (NYMEX) are examples for multiple type

spread options.

In this thesis, we will study multiple type options written on two assets. We

will consider 4 different types of multiple options. These are maximum, minimum,

average, and spread options. In the main part, we will work on maximum call

options which have payoff structures as in the following:

f(x,w) = max{max{X(x),W (w)} − S, 0} = (max{X(x),W (w)} − S)+

There are two underlying stocks, denoted as X, and W , and the option holder

gain the difference between maximum of two stock prices and strike price if the

maximum of those stock prices is greater than strike price; (s)he does not exercise
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the option if it is less than strike, because in that case, there is no gain.

In this chapter, we will model the problem again with an infinite dimensional

LP as in Chapter 4. Note that we need two indices to include both stocks in

our model and it makes the problem complicated to solve by following the same

methodology. Instead of coming up with a closed form formula to calculate critical

optimal stopping point here, we will explore the exercise region for different kinds

of multiple type options.

We assume that both stocks follow different triple random walk process. We

will use px, and pw for up probabilities for stock X, and W , respectively. In a

same manner, we will use qx, and qw for down probabilities. And we will define

rx, and rw for 1− (px + qx), and 1− (pw + qw) to simplify the model.

Based on those assumptions, by the fundamental theorem, we model the pri-

mal problem as follows:

5.1 Primal Problem

The primal problem is

minimize
∞∑
i=0

∞∑
j=0

vi,j

s.t. vi,j ≥ fi,j, i, j ≥ 0,

vi,j ≥ α(pxpwvi+1,j+1 + rxpwvi,j+1 + qxpwvi−1,j+1

+pxrwvi+1,j + rxrwvi,j + qxrwvi−1,j

+pxqwvi+1,j−1 + rxqwvi,j−1 + qxqwvi−1,j−1), i, j ≥ 1.

where xi = i∆x, wj = j∆x, vi,j = v(xi, wj), fi,j = f(xi, wj), and f(xi, wj) =

max{max{xi, wj} − S, 0}.
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5.2 Dual Problem

The associated dual problem is

maximize
∞∑
i=0

∞∑
j=0

fi,jyi,j

s.t. y0,0 − αqxqwz1,1 = 1,

y1,1 + (1− αrxrw)z1,1 − αqxqwz2,2 − αrxqwz1,2 − αqxrwz2,1 = 1,

y0,1 − αqxrwz1,1 − αqxqwz1,2 = 1,

y1,0 − αrxqwz1,1 − αqxqwz2,1 = 1,

y0,j − αqxpwz1,j−1 − αqxrwz1,j − αqxqwz1,j+1 = 1, j ≥ 2,

yi,0 − αpxqwzi−1,1 − αrxqwzi,1 − αqxqwzi+1,1 = 1, i ≥ 2,

y1,j + (1− αrxrw)z1,j − αrxqwz1,j+1 − αqxqwz2,j+1 − αqxrwz2,j
−αqxpwz2,j−1 − αrxpwz1,j−1 = 1, j ≥ 2,

yi,1 + (1− αrxrw)zi,1 − αqxrwzi+1,1 − αqxqwzi+1,2 − αrxqwzi,2
−αpxqwzi−1,2 − αpxrwzi−1,1 = 1, i ≥ 2,

yi,j + (1− αrxrw)zi,j − αqxqwzi+1,j+1 − αrxqwzi,j+1 − αpxqwzi−1,j+1

−αqxrwzi+1,j − αpxrwzi−1,j − αqxpwzi+1,j−1

−αrxpwzi,j−1 − αpxpwzi−1,j−1 = 1, i, j ≥ 2,

yi,j ≥ 0, i, j ≥ 0,

zi,j ≥ 0, i, j ≥ 1.

5.3 Complementary Slackness Conditions

Based on these primal and dual problems, we can write CS conditions. We skip

to write all conditions but the important one:

(vi,j − (α(pxpwvi+1,j+1 + rxpwvi,j+1 + qxpwvi−1,j+1

+ pxrwvi+1,j + rxrwvi,j + qxrwvi−1,j

+ pxqwvi+1,j−1 + rxqwvi,j−1 + qxqwvi−1,j−1))zj = 0, i, j ≥ 0
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Crucial part to solve this problem is to solve the following second order ho-

mogeneous difference equation

vi,j − (α(pxpwvi+1,j+1 + rxpwvi,j+1 + qxpwvi−1,j+1

+ pxrwvi+1,j + rxrwvi,j + qxrwvi−1,j

+ pxqwvi+1,j−1 + rxqwvi,j−1 + qxqwvi−1,j−1) = 0, i, j ≥ 0

with the boundary conditions:

v0,0 = 0,

vi∗,j∗ = fi∗,j∗ .

We could not solve this equation to come up with a similar closed form formula

for vi∗,j∗ , i
∗, and j∗. We leave this part as a further research area. Instead, we

will use the primal problem and explore exercise regions for maximum, minimum,

average, and spread type multiple options. It will reveal the optimal exercising

strategy for the option holder by telling at which (i, j) stock price pairs (s)he

should exercise the option.

5.4 Exercise Regions

An increasing number of contractual rewards and obligations, held by economic

entities, involve options that are written on multiple underlying assets. Some of

the payoffs that have become fairly common include options on the maximum

of several asset prices (max-options), options on the minimum of several prices

(min-options), options on an average of prices (portfolio options) and options on

the difference between two prices (spread options)[17]. Contingent claims with

these characteristics can be found on financial exchanges, in over-the-counter

transactions, in cash flows generated by investment decisions of firms and in

executive compensation plans.

For options written on single assets, we have shown that there exists a critical

point after which it is optimal to exercise the option. Intuition suggests that

the same must be true for multiple type options. However, the determination
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of optimal strategy for multiple type options is not as straightforward as in the

single asset case. The presence of multiple prices, that jointly determine the

exercise region, is an obvious complication. Some of the basic insights from the

single asset type options do not carry over when several prices affect the payoff.

Let us give an example for such a situation. The fundamental intuition from

single asset case is that for large stock price values, it is optimal to exercise the

option. However, if we study maximum call options, they have a property called

diagonal property. On the diagonal of the stock price pairs matrix, stock prices

are equal to each other. For the sake of simplicity, let us assume that both stocks

follow the same simple random walk with both up and down probabilities are

equal to 0.5. Then, the probability of an increase in any one of the underlying

asset prices over the next increment of time is roughly equal to 0.5. But the

probability of an increase in the maximum of two prices is about 0.75. The

max-option holder has therefore much better chance of improving his/her payoff

by waiting, than the holder of an option on a single underlying asset. Even if

the stock prices are high, it might not be optimal to exercise the option on the

diagonal for max-call options.

The multivariate nature of these claims ultimately results in complex decision

making. Precise description of the exercise regions become useful for accurate

decision making, as well as for pricing and risk management purposes.

We solve the finite approximation of our infinite dimensional model for some

chosen parameters and explore the exercise and continuation region for four dif-

ferent multiple type options. Note that 1’s in the figures represent the stock price

pairs at which the options should be exercised, meaning that collection of 1’s

in the figures stands for exercise region. Empty regions stand for continuation

region in which option holder should keep the option.
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5.4.1 Maximum Call Options

The payoff function of maximum call options is represented as:

f(xi, wj) = max{max{xi, wj} − S, 0}.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50

0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

5 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

6 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

7 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

8 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

9 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

10 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

12 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

13 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

14 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

15 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

16 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

17 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

18 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

19 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

20 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

21 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

22 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

23 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

24 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

25 1 1 1 1 1 1 1 1 1 1 1 1 1 1

26 1 1 1 1 1 1 1 1 1 1 1 1 1 1

27 1 1 1 1 1 1 1 1 1 1 1 1 1

28 1 1 1 1 1 1 1 1 1 1 1 1 1

29 1 1 1 1 1 1 1 1 1 1 1 1 1

30 1 1 1 1 1 1 1 1 1 1 1 1 1 1

31 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

32 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

33 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

34 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

35 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

36 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

37 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

38 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

39 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

40 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

41 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

42 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

43 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

44 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

45 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

46 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

47 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

48 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

49 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

50 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

i

j

Figure 5.1: Exercise Region for Maximum Call Options (p = 0.35, q = 0.35,
α = 0.998, S = 2, ∆x = 0.1).
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5.4.2 Minimum Call Options

The payoff function of minimum call options is as follows:

f(xi, wj) = max{min{xi, wj} − S, 0}.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50
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24 1
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31 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

32 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

33 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

34 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

35 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

36 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

37 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

38 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

39 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

40 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

41 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

42 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

43 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

44 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

45 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

46 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

47 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

48 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

49 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
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j

Figure 5.2: Exercise Region for Minimum Call Options (p = 0.35, q = 0.35,
α = 0.998, S = 2, ∆x = 0.1).
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5.4.3 Average Call Options

The payoff function of (arithmetic) average call options is:

f(xi, wj) = max{average{xi, wj} − S, 0}.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50

0 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1

2 1 1 1 1 1

3 1 1 1 1 1

4 1 1 1 1 1

5 1 1 1 1 1

6 1 1 1 1 1

7 1 1 1 1 1 1

8 1 1 1 1 1 1

9 1 1 1 1 1 1

10 1 1 1 1 1 1 1

11 1 1 1 1 1 1 1

12 1 1 1 1 1 1 1 1

13 1 1 1 1 1 1 1 1 1

14 1 1 1 1 1 1 1 1 1

15 1 1 1 1 1 1 1 1 1 1

16 1 1 1 1 1 1 1 1 1 1 1

17 1 1 1 1 1 1 1 1 1 1 1

18 1 1 1 1 1 1 1 1 1 1 1 1

19 1 1 1 1 1 1 1 1 1 1 1 1 1

20 1 1 1 1 1 1 1 1 1 1 1 1 1 1

21 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

22 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

23 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

24 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

25 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

26 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

27 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

28 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

29 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

30 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

31 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

32 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

33 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

34 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

35 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

36 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

37 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

38 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

39 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

40 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

41 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

42 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

43 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

44 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

45 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

46 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

47 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

48 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

49 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

50 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

i

j

Figure 5.3: Exercise Region for Average Call Options (p = 0.35, q = 0.35, α =
0.998, S = 2, ∆x = 0.1).
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5.4.4 Spread Options

Spread options have the following payoff structure:

f(xi, wj) = max{xi − wj − S, 0}.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50

0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

5 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

6 1 1 1 1 1 1 1 1 1 1 1 1 1

7 1 1 1 1 1 1 1 1 1 1

8 1 1 1 1 1 1 1

9 1 1 1 1

10 1

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

i

j

Figure 5.4: Exercise Region for Spread Call Options (p = 0.35, q = 0.35, α =
0.998, S = 2, ∆x = 0.1).
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Chapter 6

Conclusion

In this thesis, we have studied the optimal stopping problem of perpetual Amer-

ican call options. American options can be exercised any time in the option

contract period and perpetual American options have no maturity date. The

optimal stopping problem of perpetual American options is to find set of stock

price states that the option holder should exercise the option to get maximum

gain. We assume that stock price follows discrete time discrete state Markov

process, especially triple random walk where stock can go up, down, or remain

same with some probabilities. The problem has been modeled with an infinite di-

mensional linear program and it has been solved to find a closed form formula to

find exercise region by the linear programming duality and solution of difference

equations.

This thesis mainly consists of two parts. In the first part, we study collar type

perpetual American call options and provide a closed form formula to calculate

critical point j∗ after which it is optimal to exercise the option. In addition, sen-

sitivity analysis on the problem has been provided to see the impact of parameter

changes on the exercise region.

In the second part, we study a more complex problem where the option is

written on multiple stocks, called multiple type options. The problem has been

modeled again by infinite dimensional linear program, yet for this type of problem,
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we could not come up with a closed form formula to define the exercise region.

Instead, we study 4 different types of multiple options; maximum, minimum,

average, and spread options and explore the exercise regions by using the finite

approximation of the linear program.

Optimal stopping problem on American options is a well-known problem in the

literature. However, approaching this problem in linear programming perspective

is fairly new approach. In this subject, ground work has been done in [15] and

we have further shown that the study can be extended to different random walk

models and option types. The study also is extended to options on multiple

assets.

We will conclude the thesis by providing further research potentials arising

from the work that has been done in this thesis. The methodology conducted

to solve collar type options can be applied to different single asset options. It

only requires a little modification on the boundary conditions during the solution

process of difference equations, yet a formal study is needed. Another impor-

tant extension would be to solve the difference equation that remained unsolved

to come up closed form solution for multiple type options. It requires deeper

differential equation knowledge compared to single asset type options case.
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Appendix A

GAMS code for the model of

collar type options

Set J/0*20/;

Parameter mesh(j);

mesh(j) = 0;

mesh(j) = 0.1*(ord(j)-1);

Parameters strike1, strike2;

strike1 = 0.5;

strike2 = 1.5;

Parameters f(j), alpha, p, q;

alpha = 0.998;

p = 0.35 ;

q = 0.35 ;

f(j) = min(max(mesh(j),strike1), strike2);
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Variables z ;

positive variables v(j);

Equations obj, eq1(j), eq2(j);

obj.. z =e= sum(j,v(j));

eq1(j).. v(j) =g= f(j);

eq2(j)$(ord(j) gt 1).. v(j) =g= alpha*(p*v(j+1) + q*v(j-1)

+ (1-p-q)*v(j));

Model collar /all/;

Solve collar minimizing z using lp;

execute_unload "collar.gdx" v.L

execute ’gdxxrw.exe collar.gdx var = v.L’
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Appendix B

GAMS code for the model of

maximum call options

Set i /0*50/ ;

Set j /0*50/ ;

Parameter x(i) ;

Parameter w(j) ;

Parameter deltax ;

Parameter deltaw ;

deltax = 0.1 ;

deltaw = 0.1 ;

x(i) = deltax * (ord(i)-1) ;

w(j) = deltaw * (ord(j)-1) ;

Display x ;

Display w ;
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Parameter strike ;

strike = 2 ;

Parameter alpha ;

alpha = 0.998 ;

Parameter f(i,j) ;

f(i,j) = max(0, max(x(i), w(j)) - strike) ;

Display f;

Variable z ;

Positive Variable v(i,j) ;

Parameters px, rx, qx ;

Parameters pw, rw, qw ;

px = 0.35 ;

qx = 0.35 ;

rx = 1 - (px + qx) ;

pw = 0.35 ;

qw = 0.35 ;

rw = 1 - (pw + qw) ;

Equations obj, eq1(i,j), eq2(i,j) ;

obj.. z =e= sum((i,j), v(i,j)) ;

eq1(i,j).. v(i,j) =g= f(i,j) ;

eq2(i,j)$(ord(i) gt 1 and ord(j) gt 1).. v(i,j) =g=

alpha * (px*pw*v(i+1,j+1)+ rx*pw*v(i,j+1) + qx*pw*v(i-1,j+1)

+ px*rw*v(i+1,j) + rx*rw*v(i,j) + qx*rw*v(i-1,j)

+ px*qw*v(i+1,j-1) + rx*qw*v(i,j-1) + qx*qw*v(i-1,j-1));
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Model maxcall /all/;

Solve maxcall minimizing z using lp;

execute_unload "maxcall.gdx" v.L, f ;

execute ’gdxxrw.exe maxcall.gdx var = v.L rng valuefunc!A1:AZ52’ ;
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