
A NEW PI AND PID CONTROL DESIGN METHOD

AND ITS APPLICATION TO ACTIVE QUEUE

MANAGEMENT OF TCP FLOWS

a thesis

submitted to the department of electrical and

electronics engineering

and the institute of engineering and sciences

of bilkent university

in partial fulfillment of the requirements

for the degree of

master of science

By

Deniz Üstebay

June 2007

ABSTRACT

A NEW PI AND PID CONTROL DESIGN METHOD

AND ITS APPLICATION TO ACTIVE QUEUE

MANAGEMENT OF TCP FLOWS

Deniz Üstebay

M.S. in Electrical and Electronics Engineering

Supervisor: Prof. Dr. Hitay Özbay

June 2007

PID controllers are continuing to be used in many control applications due to

their simple structures. Design of such controllers for unstable systems with time

delays is an active research area. Recently, stabilizing PI and PD controllers for

a class of unstable MIMO (multi-input multi-output) systems with input/output

delays have been investigated and allowable controller gain intervals for such

controllers have been maximized. Motivated by these studies, this thesis proposes

a new method for tuning the parameters of PI, PD and PID controllers for

integrating processes with time delays. The method is based on selecting the

centers of the maximized gain intervals as the controller gains for the purpose

of obtaining optimal controllers. As an application of this method, controllers

for AQM (Active Queue Management) of TCP (Transmission Control Protocol)

flows have been designed. AQM is a congestion control method used in computer

networks to increase link utilization with less queueing delays. The fluid flow

model of TCP’s congestion avoidance mode based on delay differential equations

supplies the mathematical background for modelling the AQM as a feedback

iii

control system and designing different control schemes accordingly. Firstly, the

proposed controller design method has been applied to AQM for the case of

time invariant time delay and secondly the method has been supported with

switching control technique to obtain optimum system performance in the case

of time varying time delay. The performance of the designed controllers for both

cases has been illustrated by packet level simulations in ns-2.

Keywords: PID control, time delay, Active Queue Management (AQM), switch-

ing control, ns-2

iv

ÖZET

YENİ BİR PI VE PID KONTROLÜ TASARIMI METHODU VE

TCP AKIŞLARI İÇİN AQM TASARIMI UYGULAMASI

Deniz Üstebay

Elektrik ve Elektronik Mühendisliḡi Bölümü Yüksek Lisans

Tez Yöneticisi: Prof. Dr. Hitay Özbay

Haziran 2007

Günümüzde birçok kontrol uygulamasında basit yapıları sayesinde PID kontrol

birimlerinin kullanımı devam etmektedir. Zaman gecikmeli kararsız sistemler için

de bu tip kontrol birimlerinin tasarımı konusunda birçok çalışma yapılmaktadır.

Bir süre önce yayımlanan bir çalışmada, giriş ve/veya çıkışlarında zaman

gecikmesi olan bir sınıf çok girişli çok çıkışlı (MIMO) kararsız sistem için PI ve PD

kontrol tasarımı metodu geliştirilmiş ve daha sonra bu kontrol birimlerinin izin

verilen kazanç aralıklarını maksimize eden yeni bir çalışma yayınlanmıştır. Bu

tezde, bahsi geçen çalışmaların sonuçları kullanılarak, tümlevli ve zaman gecik-

meli sistemlerde uygulanacak PI, PD ve PID kontrol birimlerinin kazançlarını

ayarlamak üzere yeni bir metot sunulmaktadır. Bu yönteme gore kontrol bir-

imlerinin kazançları izin verilen en yüksek kazanç aralıklarının merkezi olarak

alınmakta ve böylece optimal kontrol birimleri elde edilmektedir. Önerilen

yöntemin bir uygulaması olarak TCP (İletişim Kontrol Protokolü) akışlarının

AQM (Etkin Kuyruk Yönetimi) problemi için kontrol birimleri tasarlandı. Etkin

kuyruk yönetimi, bilgisayar ag̃larında kullanılan bir sıkışıklıg̃ı giderici kontrol

yöntemi olup amacı kuyrukta bekleme gecikmelerini azaltmak ve bag̃lantıların

kullanım oranını artırmaktır. Daha önce yapılan çalışmalarda, sıkışıklıktan

v

kaçınma modunda çalışan TCP’nin türevsel denklemelere dayalı sıvı akış modeli

kullanılarak AQM bir geri besleme sistemi olarak modellenmiştir. Bu model kul-

lanılarak uygun kontrol birimleri tasarlandı. Önerilen kontrol metodu öncelikle

zamanla deg̃işmeyen zaman gecikmesi durumu için AQM’ye uygulandı. İkinci

olarak, metot anahtarlamalı kontrol yöntemi de kullanılarak zamanla deg̃isen

zaman gecikmeli duruma uygulandı. Her iki durum icin de geliştirilen kon-

trol birimlerinin performansları ns-2 platformunda paket düzeyinde benzetimlerle

gösterildi.

Anahtar Kelimeler: PID kontrol, zaman gecikmesi, Etkin Kuyruk Yönetimi

(AQM), anahtarlamalı kontrol, ns-2

vi

ACKNOWLEDGMENTS

I gratefully thank my supervisor Prof. Dr. Hitay Özbay for his enthusiasm,

encouragement, patience, and never ending guidance. Working under his su-

pervision has been a great pleasure and honor. I have learned a lot from him

and his cheerful attitude has always been a good reason to cheer up. I also

thank to the members of my thesis committee Prof. Dr. Ömer Morgül and

Asst. Prof. Dr. İbrahim Körpeoḡlu for their support.

I would like to thank my friend Özlem Güler for being my project mate during

graduate courses and for always being by my side. Sengör Altıngövde is one of

the most inspiring and funny friends ever and I thank him for being the source

of humor during the creation of this thesis. Many thanks go to Rohat Melik, he

has helped me with every little detail in these last few months. I also thank my

office mates Zeynep Yücel and Mehmet Kök. The friendly atmosphere that we

have created in EA227 is to be missed a lot.

Finally, my thanks go to my family. Their efforts beginning form the first

day of my life and their unlimited support made everything possible.

vii

Contents

1 Introduction 1

2 PI, PD and PID Control for Integrating Systems with Time

Delay 5

2.1 PD Controller . 6

2.2 PI Controller . 8

2.3 PID Controller . 10

2.4 Switching Control . 11

3 Application to AQM 12

3.1 Mathematical Model of AQM Supporting TCP Flows 12

3.1.1 Linearization . 14

3.2 Application of the proposed control

methods . 18

3.2.1 An alternative PID controller design 19

3.2.2 Switching Control . 20

viii

3.2.3 Digital implementation of the controllers 22

4 Simulation Results 24

4.1 Simulation results for the nominal network parameters 24

4.2 Robustness to uncertainties in the network parameters 27

4.3 Switching Control . 29

5 Conclusions 37

A ns-2 C++ function adapted for PID controller 39

B ns-2 tcl code (PI controller case) 41

ix

List of Figures

1.1 Delay representation . 2

2.1 Feedback system . 6

3.1 RED: Probability of packet marking vs. average queue size 16

3.2 Linearized Feedback System . 18

3.3 Γ(ω)/Ro versus ω for f(s)= e−Ros

1+Ros
. 19

3.4 Γ(ω)/Ro versus ω for fo(s)=
e−Ros(8θs+1)

(KRos+1)(Ros+1)
. 20

3.5 RTT . 21

4.1 Network Topology . 25

4.2 ns-2 simulations: queue length vs time. 26

4.3 ns-2 simulations: queue length vs time for c=1563 packets/sec. . 29

4.4 ns-2 simulations: queue length vs time for N=40 TCP flows. . . . 30

4.5 ns-2 simulations: queue length vs time for RTT=0.4 sec. 31

4.6 Mean and standard deviation of queue length under load variations 32

x

4.7 Errors under load variations . 32

4.8 Errors under load variations . 32

4.9 Mean and standard deviation of queue length under RTT variations 33

4.10 Errors under RTT variations . 33

4.11 Errors under RTT variations . 33

4.12 Mean and standard deviation of queue length under capacity vari-

ations . 34

4.13 Errors under capacity variations 34

4.14 Errors under capacity variations 34

4.15 ns-2 simulations: (a) RTT1 (b) single controller, Kpi0 (c) single

controller, Kpi1 (d) single controller, Kpi2 (e) two switching con-

trollers, Kpi1 and Kpi2, (f) N=16 switching controllers 35

4.16 ns-2 simulations: (a) RTT2 (b) single controller, Kpi0 (c) single

controller, Kpi1 (d) single controller, Kpi2 (e) two switching con-

trollers, Kpi1 and Kpi2, (f) N=16 switching controllers 36

xi

List of Tables

4.1 The analysis of simulation results 26

4.2 The analysis of simulation results for c=1563 packets/sec 28

4.3 The analysis of simulation results for N=40 TCP flows 28

4.4 The analysis of simulation results for RTT=0.4 sec 28

4.5 The analysis of simulation results for RTT1 35

4.6 The analysis of simulation results for RTT2 36

xii

To my parents, Sultan and Fettah

Chapter 1

Introduction

Proportional-Integral-Derivative (PID) controllers are widely used in various en-

gineering applications since they are easy to implement using low storage mem-

ory, their computational complexity is low and they are applicable to most control

systems, [1], [6]. PID controllers may not provide optimal control in many situa-

tions but they have proved their usefulness in providing satisfactory control with

the advantages above. In fact, today more than half of the industrial controllers

utilize PID or modified PID control schemes, [16].

In the most general form PID controllers are second order systems

Kpid(s) = Kp +
Ki

s
+ Kds (1.1)

where Kp is the proportional gain, Ki is the integral gain and, Kd is the derivative

gain. Furthermore, (1.1) with Kd=0 is a PI controller and (1.1) with Ki=0 is a

PD controller.

The main issue in PID control design is the “optimal” tuning of the gains,

Kp, Ki, Kd and many different types of tuning guidelines have been proposed in

the literature. Some current techniques for PID controller design include the

Ziegler-Nichols tuning methods, internal model controller (IMC) based tuning

1

u(t−T)u(t) Delay T

Figure 1.1: Delay representation

methods and dominant pole design (Cohen-Coon method). A comprehensive

survey on PID controller design methods can be found in [1].

In this study we consider integrating systems with time delays (i.e. the plant

contains an integrator, a time delay, and possibly other stable terms). Delays are

present in a system if a signal or a physical variable originating form one part of

the system becomes available in another part of the system after a lapse of time.

The block diagram of a delay element is given in Figure (1.1) and in Laplace

domain this delay is represented as e−Ts. Many problems in control engineering

involve time delays such as chemical processes, aerodynamics and communication

networks. Tuning of PID controllers for this type of unstable time delay systems

is an active research area, see [13], [20], [24] and the references therein.

In a recent study, stabilizing PID controllers are obtained for a class of MIMO

(multi-input multi-output) unstable plants with delays in the input and output

channels, [17]. Using the results of this study resilient PI (Proportional-Integral)

and PD (Proportional-Derivative) controllers with largest allowable controller

gain intervals are investigated for plants with at most two unstable poles, [7].

Maximization of the controller gain intervals is an important problem since this

way the sensitivity of the closed loop stability to perturbations in the controller

parameters can be minimized. In this thesis, the results of [17] and [7] are used to

obtain the largest allowable gain intervals for a SISO (single-input single-output)

plant with a given set of nominal plant parameters and the center of these max-

imized intervals is selected as the optimal gains of the controllers. Controllers

with perturbed gains can be seen as “optimal” controllers for plants with per-

turbed nominal parameters. So, the controllers proposed here are expected to

2

work for a wide range of plant parameters. Controllers using this method can be

applied to integrating time delay systems appearing in data flow control in com-

puter networks, target tracking problems in robotics applications, and material

transport systems encountered in process control.

In this study, proposed PID control method is applied to AQM schemes sup-

porting TCP flows. TCP is currently the dominant transport protocol used in

the Internet and with the addition of AQM, routers are able to detect congestion

before the queues overflow. Congestion occurs in a network when the demand

for the link bandwidth is higher than the available capacity of the resource, [23].

When some of the links are congested in a network, buffers at the routers over-

flow and any new incoming packets are dropped or lost. This situation leads to

long return-trip-times (RTT), i.e. delays, and may even result in an instability

in the network (e.g. congestion collapse in the Internet), [5]. On the other hand,

having an empty queue at a buffer means that the link capacity is not fully used,

i.e. network resources are under-utilized in this case. Therefore, the goal of AQM

is to keep the queue size at the buffers at a certain desired level. For this pur-

pose, most AQM schemes mark the Explicit Congestion Notification (ECN) bit

of the packets passing through the link according to a certain rule, [21]. In early

AQM methods, such as RED (Random Early Detection) [4] and REM (Random

Exponential Marking) [2], packet marking probability (control signal) is a static

function of the queue (or average queue) size. In [11], [14] mathematical mod-

els of AQM schemes supporting TCP flows have been proposed and with the

help of these models a control-theory based approach to analyze or design AQM

schemes has been possible. First attempts to design a dynamic controller appear

in [8, 9], where the authors use the fluid model of the TCP flows developed in

[14] to design a PI controller. This AQM scheme is currently implemented in

ns-2, [15] and in [9] it is shown that it performs better than RED. Therefore, PI

controller of [9] will be taken as the “benchmark” design for comparisons with

the alternative AQM controller tuning method proposed here.

3

Different schemes of AQM deploying control theory methods have been pro-

posed in the literature. In [12], a rate based controller method called adaptive

virtual queue (AVQ) has been proposed. A PID controller has been designed

for AQM with time domain analysis methods in [22]. Another rate based con-

trol mechanism which is called virtual rate control (VRC) has been proposed

in [19] and in fact it is just a PID controller. In [18], an H∞ controller has

been designed and later in [26], H∞ performance of the designed controller with

respect to uncertainty bound of RTT has been analyzed. Another robust H∞

based AQM control scheme (RHC) has been introduced in [3] to maintain queue

stabilization in the presence of variations of the network parameters. In [25]

a variable structure sliding mode controller based AQM scheme has been de-

signed for better performance in terms of packet loss ratio, link utilization and

queue fluctuation. With the exception of [26] , where H∞ based AQM techniques

are used, the papers mentioned above do not consider time varying propagation

delays, which may occur due to changes in the communication channels. [26]

proposes switching among a set of robust controllers designed at small operating

ranges for better performance than a single controller for the whole range of time

delay. However the proposed H∞ control method of [26] is relatively complicated

to implement in real networks. Therefore in this thesis switching is done among

PI controllers since they are much simpler and easy to implement.

Remaining parts of the thesis are organized as follows. Details of the con-

troller parameter tuning is given in Section 2. Application of this tuning method

to the AQM problem can be found in Section 3 whereas the simulation results

of this application along with the comparisons of the benchmark design with the

proposed design can be found in 4. Concluding remarks are made in Section 5.

4

Chapter 2

PI, PD and PID Control for

Integrating Systems with Time

Delay

In a recent study [7], existence of stabilizing PID (Proportional-Integral-

Derivative) controllers is shown for LTI (linear time-invariant) MIMO (multi-

input multi-output) unstable plants with possibly uncertain time delays in the

input and output channels. For plants with one or two unstable poles the pa-

rameters of these PID controllers are explicitly formulated from a small gain

argument. Using the results of this study, stabilizing PI (Proportional-Integral)

and PD (Proportional-Derivative) controllers with largest allowable gain inter-

vals are investigated in [17] for plants with only one unstable pole. Using the

results of these two studies we propose a new method for tuning the parameters

of PI and PID controllers for integrating processes with time delays.

Consider the unity feedback system in the Figure 2.1. The transfer function

of the plant is in the form

GΛ(s) =
Ko

s
e−hsg(s), h > 0 (2.1)

5

y
yref C

e u

v

G Λ

Figure 2.1: Feedback system

where g(s) is an arbitrary stable rational transfer function satisfying g(0) = 1

and therefore the only unstable pole of the plant is at s=0. For notational

convenience we define

f(s) := e−hsg(s) (2.2)

and let

G(s) =
Ko

s
g(s) (2.3)

be the finite dimensional part of the plant. A coprime factorization of G(s)

is in the form G(s) = X(s)Y (s)−1 with X(0) = sG(s) |s=0 6= 0. In this case,

Y (s) = s/(as + 1), for any a > 0, and since g(0) = 1, we have X(0) = Ko.

2.1 PD Controller

In [7] it is shown that a PD controller in the form

Kpd(s) = αX(0)−1(1 + K̂ds) (2.4)

stabilizes the feedback system of Figure 2.1 for any α ∈ R satisfying

0 < α < ‖ΦΛ‖−1
∞ = (sup

ω
‖ΦΛ(jω)‖)−1 (2.5)

where

ΦΛ :=
GΛ(s)Kpd(s)

α
− s. (2.6)

This overall gain interval is maximized in [17] for the purpose of obtaining a

resilient controller. Maximizing ‖ΦΛ‖−1
∞ is equivalent to minimizing

µ := ‖ΦΛ‖∞ = ‖s−1(f(s)(1 + K̂ds)− 1)‖∞ (2.7)

6

For K̂d being the free parameter this problem reduces to finding a K̂d ∈ R such

that

µ = ‖f(s)− 1

s
+ K̂df(s)‖∞ (2.8)

is minimized. Let the optimal solution be K̂d, opt. This is a single parameter

scalar H∞ norm minimization problem which can be solved numerically with

brute force search. The following algorithm steps will find a solution:

1. Choose candidate values of K̂d = K1, ..., KN and frequency values

ω = ω1, ..., ωM . The optimization will be done over the K values whereas norm

will be calculated over the ω values.

2. For k = 1, ..., N and l = 1, ..., M compute

Ψ(Kk, ωl) := ‖f(jωl)− 1

jωl

+ Kkf(jωl)‖. (2.9)

3. Define µ(Kk)=maxωl
Ψ(Kk, ωl).

4. Optimal K̂d is K̂d, opt=arg minKk
µ(Kk).

One can find a solution to (2.8) with this algorithm but that solution will be

sensitive to the number of grid points chosen for K and ω. Therefore, a direct

computation of the optimal solution will be more useful.

A closed form expression of the solution is given in Proposition 2 of [17] as:

Let f(s) = g(s)e −hs, with g ∈ H∞, g(0) = 1,and h > 0. Also let ρ(ω) := |f(jω)|
and φ(ω) := ∠f(jω) being the magnitude and phase functions of f(jω) and

η(ω) :=

∣∣∣∣
ρ(ω)− cos(φ(ω))

ω

∣∣∣∣ (2.10)

being a function with maximum, ηo, which is attained at a single frequency ωo,

in other words,

ηo := max
ω

∣∣∣∣
ρ(ω)− cos(φ(ω))

ω

∣∣∣∣ = η(ωo).

Then, the optimal solution of

K̂d, opt = arg min
K̂d∈R

‖f(s)− 1

s
+ K̂df(s)‖∞ (2.11)

7

is given by

K̂d, opt = − sin(φ(ωo))

ωo ρ(ωo)
(2.12)

if

Γ(ω) := η2
o − η2(ω)− |Ko − K̂d, opt(ω)|2ρ2(ω) ≥ 0 ∀ω (2.13)

is satisfied. Note that to find K̂d, opt we have to just find ωo numerically whereas

the algorithm given above requiring two dimensional search is much complicated.

Therefore (2.12) is the optimal solution of (2.8) which maximizes the lower

bound for ‖ΦΛ‖−1
∞ and the corresponding maximal lower bound for ‖ΦΛ‖−1

∞ is

found as 1/ηo.

We propose to take K̂d, opt as the derivative gain and the center of the max-

imum allowable overall gain interval as the overall gain, i.e. α=1/2ηo and the

resulting PD controller is in the form

Kpd(s) =
1

2ηo

(
1

Ko

+ K̂ds). (2.14)

The above PD controller design technique is valid for all plants in the form

(2.1) where g(s) can be any stable rational transfer function satisfying g(0) = 0,

with one caveat: one has to check that the corresponding η has a single maximum.

For a first order strictly proper g(s) (as in the AQM problem to be shown) this

is automatically satisfied.

2.2 PI Controller

According to [7] a PI controller in the form

Kpi(s) = αX(0)−1(1 +
γ

s
) (2.15)

stabilizes the feedback system in Figure 1 for any α ∈ R satisfying (2.5) with

K̂d = 0 and any γ ∈ R satisfying

0 < γ < γmax := ‖
α
s
f(s)(1 + α

s
f(s))−1 − 1

s
‖−1
∞ . (2.16)

8

For such a PI controller, the maximum integral action gain interval is studied for

fixed overall controller gain in [17]. First the function θ := ‖f(s)−1
s
‖∞ is defined

and then (2.5) can be rewritten as

0 < α < θ−1 (2.17)

and the lower bound for γmax is found as

γ∗ = α(1− αθ) ≤ γmax . (2.18)

With straightforward calculation it can be shown that the optimal α maximizing

this lower bound is α∗ = 1/2θ and the maximal γ∗ corresponding to this optimal

α is γ∗,max = α∗/2.

To make the controller robustly stable with respect to largest perturbations

in the controller parameters we propose to choose controller’s proportional gain

as α∗ and integral gain as γ∗,max/2, which is the center of the maximal interval.

The resulting PI controller is in the form

Kpi(s) =
1

2θ

1

Ko

(1 +
1

8θs
). (2.19)

It should be noted that, while we tried to maximize the upper bound of the

overall controller gain, the optimal overall gain came up as the center of the

overall controller gain interval. Therefore both the overall controller gain and

integral gain of the optimal PI controller are at the center of their corresponding

intervals.

The computation of (2.19) above is rather simplified thanks to conservatism

introduced by (2.18). In fact, γ−1
max is a function of α:

γ−1
max = sup

ω

∣∣∣∣
1

jω + αf(jω)

∣∣∣∣ =: Q(α).

This norm should be calculated for every α in the interval 0 < α < 1/θ. Then

γ−1
max could be chosen as the minimum of Q(α). However, this method requires

9

M ∗ N calculations for M being the ω grid points for H∞ norm computation

and N being the α grid points. Using (2.18) we skip the H∞ norm computation

for every fixed α. The conservatism introduced by (2.18) is currently under

investigation.

2.3 PID Controller

A PID controller can be obtained from the product of PI and PD controllers,

Kpid(s) = (Kp1 +
Ki

s
)(Kp2 + Kds) = (Kp1Kp2 + KiKd) +

KiKp2

s
+ Kp1Kds.

So, we will first design a PD controller, then design a PI controller for the PD

controlled open loop plant. The transfer function of the PD controlled plant is

GΛ(s)Kpd(s) =
Ko

s
e−hsg(s)

1

2ηo

(
1

Ko

+ K̂ds) =:
1

2ηo

e−hsgo(s)

s

with

go(s) := g(s) (1 + KoK̂ds).

Let’s define

θo := ‖go(s)− 1

s
‖∞ (2.20)

such that a PI controller is formed with the method explained in Section 2.2:

Kpi(s) =
1

2θo

2ηo (1 +
1

8θos
). (2.21)

So, the PID controller is

Kpid(s) =
(1 + KoK̂ds)

16Koθ2
o

(1 + 8θos)

s
. (2.22)

It is also possible to obtain a PID controller by first designing a PI controller

and then designing a PD controller for the PI controlled open loop plant. Such

a plant will have two poles at zero, one from the original plant (2.1) and one

from the PI controller (2.19) however the method proposed in [17] is valid for

10

plants with only one unstable pole. Therefore, we will not not use this method

for designing a PID controller for (2.1). On the other hand, in the application

problem (AQM) we will find an alternative to overcome this obstacle, see Section

(3.2.1).

2.4 Switching Control

For real systems with time varying time delays,the above controller design meth-

ods can be further improved. In [26], it was proposed to divide the range of time

delay into a number of smaller regions and designing controllers for each of these

regions. Then, while the time delay varies, switching between these controllers

accordingly is proposed to give better results than using a single controller de-

signed for the entire region of time delay. In that study, the application was done

for two switching controllers, here we increase the number of controllers and we

apply the idea to our proposed controllers. This method is detailed in Section

3.2.2 for the studied application problem.

11

Chapter 3

Application to AQM

3.1 Mathematical Model of AQM Supporting

TCP Flows

This thesis considers a network configuration consisting of a single bottleneck

link supporting N TCP flows and the routers mark the ECN bits of packets

to inform the TCP sources of congestion as proposed in [21]. The dynamical

model of TCP was developed using stochastic differential equation analysis and

fluid flow approximation in [14]. In this study a simplified version of this model

which was introduced in [9] is used. The model provides means for analysis and

design for TCP in congestion avoidance mode only, thus ignores the slow-start

and timeout mechanisms of TCP. In this model TCP dynamics are represented

with the following nonlinear differential, time-delayed equations:

Ẇ (t) =
1

R(t)
− W (t) W (t−R(t))

2 R(t−R(t))
p(t−R(t)) (3.1)

q̇(t) = N(t)
W (t)

R(t)
− c(t) when q(t) > 0 (3.2)

where ẋ(t) denotes time derivative and

12

W : average TCP window size (packets),

q : average queue length (packets),

R : round-trip time (seconds),

c : link capacity (packets),

N : number of TCP flows (i.e. load),

p : probability of packet mark.

Here, RTT (total delay in the feedback path) is expressed by

R(t) = Tp(t) +
q(t)

c(t)
(3.3)

where Tp(t) is the propagation delay and obviously, q(t)/c(t) is the queueing

delay. Note that in this study both time invariant and time varying round trip

time cases are considered. For the later case, the assumption is that the variations

of Tp(t) are slow compared to the variations of q(t)/c(t), but the magnitude of

the variations of the propagation delay is larger than the variations of queueing

delay. Therefore, the time variation in RTT will be taken to be due the variation

in the propagation delay.

Equation 3.1 specifies the TCP window dynamic in congestion avoidance

mode incorporating the additive increase and multiplicative decrease (AIMD)

behavior of TCP. In the right side of this equation, the 1/R term represents the

increase in the sending rate when no congestion is detected and the W/2 term

models the decrease in the sending rate when congestion is detected, i.e. packets

are marked with probability p.

Likewise, Equation 3.2 models the queue length dynamic as the difference

between incoming flow rate and outgoing flow rate (i.e. link capacity). It is

possible to use these equations to describe TCP as a feedback control system,

where p is the control input generated by a feedback from q, i.e.

p = K(q) (3.4)

13

where K is the feedback control operator. Clearly, the above system is nonlinear

and it depends on an implicit function R(t − R(t)). In general, ”optimal” con-

trollers for such nonlinear dynamical systems are difficult to obtain. Typically

the system is linearized around an equilibrium point using small signal analysis.

3.1.1 Linearization

To perform linearization on equations (3.1) and (3.2), we first assume that the

link capacity and the number of TCP sessions are constant, c(t) = c and N(t) =

N , as in [9]. The following equations should be satisfied for the equilibrium point:

Ẇ = 0 =⇒ Wo
2po

2
= 1 (3.5)

q̇ = 0 =⇒ WoN

Ro

= c. (3.6)

Then, given the set of network parameters ζ
.
= (N,C, Tp), the operating point is

defined by the solution (Ro,Wo, po) of the following equations:

Ro =
qo

c
+ Tp (3.7)

Wo =
RoC

N
(3.8)

po =
2

W 2
o

(3.9)

for a desired equilibrium queue size qo. Additionally, Wo ∈ (0, W̄), qo ∈ (0, q̄),

po ∈ (0, 1) should also be satisfied where W̄ is the maximum window size and

q̄ is the buffer capacity. We also assume that the time delay element R(t) in

(t− R(t)) is constant and equal to Ro. Then, the equations (3.1) and (3.2) can

be rewritten as:

Ẇ (t) =
1

q(t)
c

+ Tp

− W (t)

2

W (t−Ro)
q(t−Ro)

c
+ Tp

p(t−Ro) (3.10)

q̇(t) = N(t)
W (t)

R(t)
− c(t) when q(t) > 0 (3.11)

14

In order to linearize these two equations we first define

f(W,Wd, q, qd, pd)
.
=

1
q
c
+ Tp

− W Wd

2 (qd

c
+ Tp)

pd (3.12)

g(W, q)
.
=

N
q
c
+ Tp

W − c (3.13)

where Wd
.
= W (t−Ro), qd

.
= q(t−Ro), pd

.
= p(t−Ro) are the delayed variables.

Using the operating point relationships (3.5) and (3.6), the partial derivatives of

f and g at the operating point are found as:

∂f

∂W
= −Wo po

2Ro

= − 1

2Ro

= − 1

WoRo

= − N

R2
oC

∂f

∂Wd

=
∂f

∂Wd

= − N

R2
oC

∂f

∂q
= − 1

R2
oc

∂f

∂qd

= −W 2
o po

2R2
o

(−1

c
) =

1

R2
oc

∂f

∂pd

= −W 2
o

2Ro

= −Roc
2

2N2

∂g

∂q
= −NWo

R2
oc

= − 1

Ro

∂g

∂W
= −N

Ro

.

We then obtain

δẆ (t) = δW (t)
∂f

∂W
+δW (t−Ro)

∂f

∂Wd

+δq(t)
∂f

∂q
+δq(t−Ro)

∂f

∂qd

+δp(t−Ro)
∂f

∂pd

= − N

R2
oC

(δW (t)+δW (t−Ro))− 1

R2
oc

(δq(t)−δq(t−Ro)−Roc
2

2N2
δp(t−Ro) (3.14)

δq̇(t) = δW (t)
∂g

∂W
+ δq(t)

∂g

∂q
=

N

Ro

δW (t)− 1

Ro

δq(t) (3.15)

with

δW = W −Wo,

δq = q − qo,

δp = p− po

representing the small signal variables.

15

We will now consider the Random Early Detection (RED), [4], algorithm

as the AQM scheme, and show that qo is an equilibrium point. RED takes an

average measure of the router’s queue length and randomly marks ECN bits of

packets. The averaging which is achieved by a low-pass filter, is for eliminating

the effects of restarts and time-outs on the feedback signal. The randomness

on the other hand, is meant to overcome flow synchronization, [9]. The packet

marking probability as a function of average queue size is illustrated in Fig. 3.1.

p

1

max

qmin qmax

p(t)

average
queue

Figure 3.1: RED: Probability of packet marking vs. average queue size

As shown in the figure, packets are marked when the average queue size is between

maximum and minimum threshold values, qmax andqmin, with probability

p(t) = (
pmax

qmax − qmin

)(qav(t)− qmin). (3.16)

The goal of RED is keeping qav(t) near its equilibrium point between qmax and

qmin. At equilibrium qavo = qo and the slope in Fig. 3.1 is

L
.
=

pmax

qmax − qmin

. (3.17)

Then the probability of packet mark satisfies:

po =
pmax

qmax − qmin

qo − pmax

qmax − qmin

qmin
.
= αqo − β. (3.18)

Using equations (3.7), (3.8) and, (3.9)

po =
2

W 2
o

=
2N2

c2R2
o

=
2N2

qo + cTp
2 = αqo − β (3.19)

16

is found. Then qo should satisfy:

αqo(qo + cTp)
2 − β(qo + cTp)

2 − 2N2 = 0 (3.20)

q3
o + (2cTp − β

α
)q2

o + cTp(cTp − 2
β

α
)qo − (

β

α
)c2T 2

p −
2N

α
= 0. (3.21)

From (3.18) it is obvious that

β

α
= qmin. (3.22)

Assuming qmin = 0, equation (3.21) can be rewritten as

q3
o + 2cTpq

2
o + c2T 2

p qo − 2N

L
= 0. (3.23)

Let’s write the Routh Hurwitz array for this equation:

s3 1 c2T 2
p

s2 2cTp − 2N2L

s X
1 − 2N2L

From the array it is found that: X =
2c3T 3

p +2N2L

2cTp
. However, independent

of the sign of X , there is always one sign change in the first row of the array.

Therefore, there is always one root of qo in the right half plane. This proves that

the equilibrium point of equations (3.1) and (3.2) exits and is unique.

Turning back to the linearization problem, the differential equation for the

low-pass filter of RED is

q̇av(t) = −aqav(t) + aq(t) (3.24)

and with simplifying (3.1.1) as:

δẆ ∼= − 2N

R2
oC

δW − Roc
2

2N2
δp (3.25)

we obtain a block diagram representation of the linearized TCP dynamics for

RED with separated window and queue dynamics as in Figure (3.2). The transfer

17

R

2N
oC

2

N

Ro

2
C

s+

N
Ro

1
Ro

s+ as+

a

e-sRo L

TCP window dynamic
queue dynamic

low-pass filter

Delay (RTT)

dp(t-Ro) dW dq dqav

dp(t)

2

Figure 3.2: Linearized Feedback System

function Gpq(s) from the control input δp to the output to be regulated δq can

be obtained as:

Gpq(s) = e−Ros Roco K

Ros + K−1

1

Ros + 1
, K =

Roco

2No

. (3.26)

In this feedback system, the effect of the RED is the constant gain controller L =

pmax

qmax−qmin
and the main idea behind designing controllers for AQM is designing

controllers and replacing L with these controllers.

3.2 Application of the proposed control

methods

With the assumption of K À 1, the “plant” (3.26) is approximately in the form

(2.1) with Ko := coK, h = Ro and g(s) = (1 + Ros)
−1. Hence, we can apply the

technique proposed of Section 2 to design PI, PD and PID controllers. However,

for the design of PD controller one should not forget to check whether condition

(2.13) is satisfied. Figure 3.3 shows that it is satisfied for the plant model of

AQM.

18

10
−1

10
0

10
1

10
2

10
3

−0.1

0

0.1

0.2

0.3

0.4

ω

Γ(ω)/R
o

R
o
=0.48 sec.

R
o
=0.4 sec.

R
o
=0.32 sec.

R
o
=0.24 sec.

R
o
=0.16 sec.

Figure 3.3: Γ(ω)/Ro versus ω for f(s)= e−Ros

1+Ros

3.2.1 An alternative PID controller design

As addressed at the end of Section 2.3 there is a second possible PID control

design method with first designing a PI controller and then designing a PD

controller for the PI controlled plant. This PID controller design method is not

applicable to plant (2.1) since the PI controlled plant has two unstable poles and

the PD control design method is valid for those with only one unstable pole.

However, for the special case of (3.26) we propose an alternative approach. We

first design the PI controller as proposed and after that we release the assumption

of K À 1. Then the transfer function of the PI controlled plant becomes

Gpq(s)Kpi(s) =
KRo

16θ2

(8θs + 1)e−Ros

s(KRos + 1)(Ros + 1)
=:

KRo

16θ2

go(s)

s
(3.27)

with only one unstable pole which comes from the PI controller. Hence the PD

design method of Section 2.1 is valid for (3.27). Note that, Figure 3.4 shows that

condition (2.13) is satisfied for the PI controlled plant.

For designing the PD controller, first define fν = e−Rosgo(s) then, set ρν(ω) :=

|fν(jω)| and φν(ω) := ∠fν(jω) as the new magnitude and phase functions. Then

set ην(ω) := |ρν(ω)−cos(φν(ω))
ω

|. Assume that ην(ω) has a maximum, ην,o, which is

19

10
−1

10
0

10
1

10
2

10
3

−5

0

5

10

15

20

25

30

35

ω

R
o
=0.16 sec.

R
o
=0.24 sec.

R
o
=0.32 sec.

R
o
=0.4 sec.

R
o
=0.48 sec.

Γ(ω)/R
o

Figure 3.4: Γ(ω)/Ro versus ω for fo(s)=
e−Ros(8θs+1)

(KRos+1)(Ros+1)

attained at a single frequency ων,o. With this assumption define

K̂dν := −sin(φν(ων,o))

ων,o ρν(ων,o)
.

Then the PD controller is

Kν,pd(s) =
1

2ην,o

(
16θ2

KRo

+ K̂dνs).

Thus the overall PID controller for the plant (3.26) is the product of Kpi(s) and

Kν,pd(s), that is,

Kpid(s) =
(16θ2 + K̂dνs)

32ην,ocoRoK2

(1 + 8θs)

s
. (3.28)

3.2.2 Switching Control

In computer networks RTT is probably time varying or uncertain and for better

performance, in [26], switching among a set of robust controllers was proposed.

In this section we use this method to design PI controllers for smaller operating

ranges of RTT and switch among them accordingly for the case of known RTT

variation. Note that, we only explain the method for PI controller case but it

can be easily applied to PD, PID or any other controller. However, we will give

20

results in Section 4.3 only for switching PI controllers since they give satisfactory

results with less parameter computation. Ro +�RRo ��R R1 R2Ro
Figure 3.5: RTT

For the case shown in Fig. 3.5, the nominal value of RTT is Ro and we assume

that RTT takes values between Ro − ∆R and Ro + ∆R. If we are to design a

single PI controller for this plant we can assume

(i) the plant is nominal, let R = Ro, and implement Kpi0,

(ii) for Ro −∆R < RTT < Ro, let R = R1 = Ro − ∆R
2

and implement Kpi1

(iii) for Ro < RTT < Ro + ∆R, let R = R2 = Ro + ∆R
2

and implement Kpi2.

As the designed PI controllers are robust to the changes in RTT (to be shown

in Section 4.2), these three controllers are expected to have good performance in

the neighborhood of RTT values they are designed for. In this thesis, we illustrate

that it is possible to improve the performance in the case of time varying RTT

by applying switching control. Two different configurations are investigated:

a) Using two of the PI controllers above, we perform mid-point switching. When

RTT is in [Ro−∆R,Ro] interval Kpi1 is active and when RTT is in [Ro, Ro +∆R]

interval Kpi2 is active.

b) Instead of dividing [Ro − ∆R,Ro + ∆R] interval into two, we divide it into

N À 1 intervals. Therefore, we design N different PI controllers for each of these

intervals and as RTT varies among these intervals, the controller parameters

switch accordingly.

The switching mentioned above is actually mid-point switching since RTT is

assumed to be varying slowly, free of sudden large deviations. It should be noted

that, for a more frequently changing time delay case (i.e., chattering), hysteresis

switching may be beneficial.

21

3.2.3 Digital implementation of the controllers

When implementing these controllers in discrete time we need to convert the

differential equations into difference equations, there are several ways to do this,

see e.g. [10]. In [8] a method for the digital implementation of the PI controller

for ns-2 implementation is given. We slightly modify this method and also apply

it to the PID controller case. For digital implementation, z-transform of the

controller transfer function is calculated without any approximation and a proper

sampling frequency, fs, is chosen. It is advised to choose fs as 10-20 times the

loop bandwidth. In our case, the loop bandwidth is between 0.1-0.3 Hz, so we

choose fs = 4 Hz.

The PI controller transfer function is in the form (1.1) with Kd = 0, and in

z-domain it becomes:

Kpi(z) =
a− bz−1

1− z−1
(3.29)

where

a = Kp (3.30)

b = Kp −KiTs (3.31)

and, Ts = 1/fs. Note that, since Kpi(z) is the transfer function from δq(t) to

δp(t), (3.1), and assuming po is equal to 0, we can write:

p(z)

δq(z)
=

a− bz−1

1− z−1
. (3.32)

This transfer function can be converted to the following difference equation for

t = kTs:

p(kTs) = aδq(kTs)− bδq((k − 1)Ts) + p((k − 1)Ts) (3.33)

The digital implementation of this difference equation is done with the following

pseudo code:

p = a(q − qo)− b(qold − qo) + pold (3.34)

22

pold = p (3.35)

qold = q (3.36)

Similarly the PID controller (1.1) in z-domain can be given as:

Kpid(z) =
a0 + a1z

−1 + a2z
−2

b0 + b1z−1 + b2z−2
(3.37)

where

a0 = Kp + Kd (3.38)

a1 = −Kp − 2Kd + KiTs (3.39)

a2 = Kd (3.40)

b0 = 1 (3.41)

b1 = −1 (3.42)

b2 = 0 (3.43)

and, Ts = 1/fs. As in the above case, we can write

p(z)

δq(z)
=

a0 + a1z
−1 + a2z

−2

b0 + b1z−1 + b2z−2
. (3.44)

and for t = kTs the difference equation is

p(kTs)+b1p((k−1)Ts)+b2p((k−2)Ts) = a0δq(kTs)−a1δq((k−1)Ts)+a2δq((k−2)Ts)

(3.45)

The digital implementation of this difference equation is done with the following

pseudo code:

p = a0(q − qo) + a1(qold − qo) + a2(qelder − qo)− b1pold − b2pelder(3.46)

pelder = pold (3.47)

qelder = qold (3.48)

pold = p (3.49)

qold = q (3.50)

The C++ function derived from this pseudo code can be found in Appendix A.

It is an adaptation of a similar function which is implemented in the PI controller

in ns-2.

23

Chapter 4

Simulation Results

4.1 Simulation results for the nominal network

parameters

The performances of the designed PI, PD and PID controllers are tested via

ns-2 simulations. The simulation topology is a dumbbell network with a single

bottleneck link shared by N TCP connections which generate FTP flows as in

[25]. This bottleneck link is of capacity C0 = 10 Mbps with T0 = 20 ms delay. All

the remaining links in the network, namely the links between the TCP sources

and the first router, and the links between the TCP sinks and the second router

are C1 = C2 = 10 Mbps links with T1 = T2 = 40 ms propagation delay, see

Figure 4.1. The buffer sizes of both routers are set to 300 packets and each

packet is of size 1000 Bytes. The ns-2 code constructed for this configuration

can be found in Appendix B.

The nominal system parameters are: No = 30 TCP flows, c = C0 = 1250

packets/s, qo = 150 packets, Ro = 0.32 s. The simulation is carried out for

200 seconds. The queue length plots of the controllers are given in Figure 4.2.

24

.

.

.
.
.
.Router 1 Router 2

C1
T1

C2
T2

1

2

1

2

N N

C0
T0

Figure 4.1: Network Topology

Note that, the results for PD controllers are not included in this thesis, since

they do not provide improvement in the queue size compared to PI and PID

controllers. Furthermore, the designed controllers are not compared with RED

since the benchmark PI controller of [9] is already shown to perform better than

RED.

In order to evaluate these simulation results we use several error metrics. The

first error metric is the RMS value of the percentage error of the queue length

with respect to the desired queue length, qd = 150 packets, more precisely,

RMS error =

(
1

M

M∑

k=1

(
q(k)− qd

qd

)2
) 1

2

, (4.1)

here M is the total number of the samples generated by ns-2. To define the

second error metric, we specify a tolerance for tracking of the desired queue: let

Qd := [qd − qtol, qd + qtol] be a neighborhood of the desired queue. In our case we

have qd = 150 packets, and we choose qtol = 30 packets. Define T0 to be the total

length of the time intervals for which q(t) /∈ Qd, and let Ttotal be the length of

the total simulation time (in our setting Ttotal = 200 seconds). Then the second

error metric we are interested in is E = T0/Ttotal. This error provides a better

look on the variations of the queue length, and its small values bound the delay

jitter.

Since, the queue length settles at approximately 60 seconds, we divide time to

two intervals. Firstly, for t ∈ [0, 60] RMS error is calculated which gives a means

of understanding the transient behavior. Secondly, we evaluate E over the interval

25

0 50 100 150 200
0

50

100

150

200

250

300

Time (sec)

Q
ue

ue
 L

en
gt

h
(p

ac
ke

ts
)

PI (proposed)

mean=148
std=44

0 50 100 150 200
0

50

100

150

200

250

300

Time (sec)

Q
ue

ue
 L

en
gt

h
(p

ac
ke

ts
)

PI (benchmark)

mean=149
std=48

0 50 100 150 200
0

50

100

150

200

250

300

Time (sec)

Q
ue

ue
 L

en
gt

h
(p

ac
ke

ts
)

PID (First PI then PD)

mean=150
std=46

0 50 100 150 200
0

50

100

150

200

250

300

Time (sec)

Q
ue

ue
 L

en
gt

h
(p

ac
ke

ts
)

PID (First PD then PI)

mean=138
std=40

Figure 4.2: ns-2 simulations: queue length vs time.

t ∈ (60, 200]. This analysis reveals the steady state tracking characteristics of

the system.

Table 4.1 shows that the proposed PI controller performs better than the

benchmark PI controller for all error metrics defined above. Depending on the

cost function taken, it may be beneficial to use PID controllers by either first

PI then PD design or first PD then PI design. Note that all cost functions are

normalized with respect to the time interval. The new proposed PI design gives

Table 4.1: The analysis of simulation results

t ∈ [0, 60] t ∈ (60, 200]
Controller RMS error E RMS error E
PI (proposed) 0.29 0.28 0.47 0.22
PI (benchmark) 0.32 0.37 0.49 0.30
PID (first PI then PD) 0.30 0.30 0.49 0.21
PID (first PD then PI) 0.27 0.29 0.42 0.24

26

an improvement of 2% to 9% depending on the cost taken; when integrated over

time, the benefits of the new design can be significant.

4.2 Robustness to uncertainties in the network

parameters

We investigate the robustness of the four controller schemes under variations

of number of TCP connections (load) N , the round trip time RTT and, the

link capacity c. The controller designs are for the nominal values of the system

parameters, as in the previous section, and are fixed throughout the robustness

tests. In Figures (4.6, 4.7, 4.8) we vary the number of TCP connections from

10 to 60. In Figures (4.9, 4.10, 4.11) the round trip time is varied between 160

msec and 480 msec. In Figures (4.12, 4.13, 4.14) the capacity is changed from 625

packets/second to 1875 packets/second (from 5 Mbps to 15 Mbps). These figures

illustrate the mean and standard deviations of the queue lengths and the error

metric comparisons. We omitted the results for the second PID controller (first

PD then PI), because it yields similar results to that of the first PID controller

(first PI then PD). The time graphs for some of the robustness cases are also

given in Figures (4.3, 4.4, 4.5) and analyzed in Tables (4.2, 4.3, 4.4).

As seen in all the figures related to performance robustness analysis, the

proposed PI controller performs better than the PI benchmark design except for

small values of N . The PI controller scheme that we propose here gives better

results than PI benchmark for standard deviation and for all of the error metrics.

Simulation results showed that in certain situations the proposed PI controller

is better than the PID controller as far as the robustness is concerned.

27

Table 4.2: The analysis of simulation results for c=1563 packets/sec

t ∈ [0, 60] t ∈ (60, 200]
Controller RMS error E RMS error E
PI (proposed) 0.26 0.29 0.68 0.39
PI (benchmark) 0.27 0.32 0.74 0.40
PID (first PI then PD) 0.27 0.32 0.72 0.40
PID (first PD then PI) 0.31 0.48 0.79 0.43

Table 4.3: The analysis of simulation results for N=40 TCP flows

t ∈ [0, 60] t ∈ (60, 200]
Controller RMS error E RMS error E
PI (proposed) 0.27 0.22 0.66 0.43
PI (benchmark) 0.29 0.30 0.72 0.46
PID (first PI then PD) 0.29 0.34 0.73 0.45
PID (first PD then PI) 0.25 0.21 0.67 0.40

Table 4.4: The analysis of simulation results for RTT=0.4 sec

t ∈ [0, 60] t ∈ (60, 200]
Controller RMS error E RMS error E
PI (proposed) 0.34 0.36 0.76 0.56
PI (benchmark) 0.37 0.42 0.76 0.58
PID (first PI then PD) 0.36 0.40 0.77 0.58
PID (first PD then PI) 0.34 0.45 0.80 0.49

28

0 50 100 150 200
0

50

100

150

200

250

300

Time (sec)

Q
ue

ue
 L

en
gt

h
(p

ac
ke

ts
)

PI (proposed)

mean=146
std=39

0 50 100 150 200
0

50

100

150

200

250

300

Time (sec)

Q
ue

ue
 L

en
gt

h
(p

ac
ke

ts
)

PI (benchmark)

mean=148
std=41

0 50 100 150 200
0

50

100

150

200

250

300

Time (sec)

Q
ue

ue
 L

en
gt

h
(p

ac
ke

ts
)

PID (First PI then PD)

mean=148
std=40

0 50 100 150 200
0

50

100

150

200

250

300

Time (sec)

Q
ue

ue
 L

en
gt

h
(p

ac
ke

ts
)

PID (First PD then PI)

mean=123
std=37

Figure 4.3: ns-2 simulations: queue length vs time for c=1563 packets/sec.

4.3 Switching Control

We investigate the performance of five different configurations:

(a) single controller, Kpi0,

(b) single controller, Kpi1,

(c) single controller, Kpi2,

(d) two switching controllers, Kpi1 and Kpi2,

(e) N=16 switching controllers.

This experiment is done twice, first for an RTT function, RTT1, as in Fig.

4.15(a) and then for a more quickly changing RTT function, RTT2, as in Fig.

4.16(a). The plots of queue lengths are given in Fig. 4.15 and Fig. 4.16. The

results are given in Tables 4.5 and 4.6. According to the figures and tables,

29

0 50 100 150 200
0

50

100

150

200

250

300

Time (sec)

Q
ue

ue
 L

en
gt

h
(p

ac
ke

ts
)

PI (proposed)

mean=151
std=40

0 50 100 150 200
0

50

100

150

200

250

300

Time (sec)

Q
ue

ue
 L

en
gt

h
(p

ac
ke

ts
)

PI (benchmark)

mean=152
std=44

0 50 100 150 200
0

50

100

150

200

250

300

Time (sec)

Q
ue

ue
 L

en
gt

h
(p

ac
ke

ts
)

PID (First PI then PD)

mean=152
std=44

0 50 100 150 200
0

50

100

150

200

250

300

Time (sec)

Q
ue

ue
 L

en
gt

h
(p

ac
ke

ts
)

PID (First PD then PI)

mean=148
std=38

Figure 4.4: ns-2 simulations: queue length vs time for N=40 TCP flows.

switching between two controllers improves the tracking and mean, standard

deviation, RMS and E values for both RTT functions. Using 16 controllers does

not provide a significant improvement according to the results in Tables 4.5 and

4.6. However for RTT2 case, around t ∈ [30, 40] there is a sudden drop in queue

length which cannot be compensated by two switching controllers, see Fig. 4.16.

This sudden drop in q(t) is not seen when we use Kpi1 (designed for smallest

nominal RTT) or 16 switched controllers. Since the numerical results show that

Kpi1 is not able to track the queue length properly, the sudden drop problem can

be solved by 16 controllers with good performance.

30

0 50 100 150 200
0

50

100

150

200

250

300

Time (sec)

Q
ue

ue
 L

en
gt

h
(p

ac
ke

ts
)

PI (proposed)

mean=147
std=52

0 50 100 150 200
0

50

100

150

200

250

300

Time (sec)

Q
ue

ue
 L

en
gt

h
(p

ac
ke

ts
)

PI (benchmark)

mean=151
std=55

0 50 100 150 200
0

50

100

150

200

250

300

Time (sec)

Q
ue

ue
 L

en
gt

h
(p

ac
ke

ts
)

PID (First PI then PD)

mean=149
std=54

0 50 100 150 200
0

50

100

150

200

250

300

Time (sec)

Q
ue

ue
 L

en
gt

h
(p

ac
ke

ts
)

PID (First PD then PI)

mean=126
std=45

Figure 4.5: ns-2 simulations: queue length vs time for RTT=0.4 sec.

31

0 20 40 60
100

110

120

130

140

150

160

 N

M
ea

n
va

lu
e

of
 q

ue
ue

 le
ng

th
 (p

ac
ke

ts
)

0 20 40 60
35

40

45

50

55

60

65

 N

St
an

da
rd

 d
ev

. o
f q

ue
ue

 le
ng

th
 (p

ac
ke

ts
)

PI (proposed)
PI (benchmark)
PID

Figure 4.6: Mean and standard deviation of queue length under load variations

0 20 40 60
0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

 N

RM
S

er
ro

r

0 20 40 60
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

 N

ε

PI (proposed)
PI (benchmark)
PID

Figure 4.7: Errors under load variations

0 20 40 60
0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

 N

RM
S

er
ro

r (
t∈

[0
,6

0]
)

0 20 40 60
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

 N

ε (
t∈

[6
0,

20
0]

)

PI (proposed)
PI (benchmark)
PID

Figure 4.8: Errors under load variations

32

0.1 0.2 0.3 0.4 0.5
138

140

142

144

146

148

150

152

154

156

 RTT (sec)

M
ea

n
va

lu
e

of
 q

ue
ue

 le
ng

th
 (p

ac
ke

ts
)

0.1 0.2 0.3 0.4 0.5
30

35

40

45

50

55

60

 RTT (sec)

St
an

da
rd

 d
ev

. o
f q

ue
ue

 le
ng

th
 (p

ac
ke

ts
)

PI (proposed)
PI (benchmark)
PID

Figure 4.9: Mean and standard deviation of queue length under RTT variations

0.1 0.2 0.3 0.4 0.5
0.2

0.22

0.24

0.26

0.28

0.3

0.32

0.34

0.36

0.38

0.4

 RTT (sec)

RM
S

er
ro

r

0.1 0.2 0.3 0.4
0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

 RTT (sec)

ε

PI (proposed)
PI (benchmark)
PID

Figure 4.10: Errors under RTT variations

0.1 0.2 0.3 0.4 0.5

0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

 RTT (sec)

RM
S

er
ro

r (
t∈

[0
,6

0]
)

0.1 0.2 0.3 0.4
0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

 RTT (sec)

ε (
t∈

[6
0,

20
0]

)

PI (proposed)
PI (benchmark)
PID

Figure 4.11: Errors under RTT variations

33

500 1000 1500 2000
140

142

144

146

148

150

152

154

 Capacity (packets/sec)

M
ea

n
va

lu
e

of
 q

ue
ue

 le
ng

th
 (p

ac
ke

ts
)

500 1000 1500 2000
34

36

38

40

42

44

46

48

 Capacity (packets/sec)

St
an

da
rd

 d
ev

. o
f q

ue
ue

 le
ng

th
 (p

ac
ke

ts
)

PI (proposed)
PI (benchmark)
PID

Figure 4.12: Mean and standard deviation of queue length under capacity vari-
ations

500 1000 1500 2000
0.23

0.24

0.25

0.26

0.27

0.28

0.29

0.3

0.31

0.32

 Capacity (packets/sec)

RM
S

er
ro

r

500 1000 1500 2000
0.2

0.22

0.24

0.26

0.28

0.3

0.32

0.34

0.36

0.38

 Capacity (packets/sec)

ε

PI (proposed)
PI (benchmark)
PID

Figure 4.13: Errors under capacity variations

500 1000 1500 2000

0.35

0.4

0.45

0.5

0.55

 Capacity (packets/sec)

RM
S

er
ro

r (
t∈

[0
,6

0]
)

500 1000 1500 2000
0.1

0.15

0.2

0.25

0.3

0.35

 Capacity (packets/sec)

ε (
t∈

[6
0,

20
0]

)

PI (proposed)
PI (benchmark)
PID

Figure 4.14: Errors under capacity variations

34

0 50 100 150 200

0.2

0.25

0.3

0.35

0.4

0.45

0.5

Time (sec)

R
TT

 (s
ec

)

0 50 100 150 200
0

50

100

150

200

250

300

Time (sec)

Q
ue

ue
 L

en
gt

h
(p

ac
ke

ts
)

0 50 100 150 200
0

50

100

150

200

250

300

Time (sec)

Q
ue

ue
 L

en
gt

h
(p

ac
ke

ts
)

0 50 100 150 200
0

50

100

150

200

250

300

Time (sec)

Q
ue

ue
 L

en
gt

h
(p

ac
ke

ts
)

0 50 100 150 200
0

50

100

150

200

250

300

Time (sec)

Q
ue

ue
 L

en
gt

h
(p

ac
ke

ts
)

0 50 100 150 200
0

50

100

150

200

250

300

Time (sec)

Q
ue

ue
 L

en
gt

h
(p

ac
ke

ts
)

Figure 4.15: ns-2 simulations: (a) RTT1 (b) single controller, Kpi0 (c) single
controller, Kpi1 (d) single controller, Kpi2 (e) two switching controllers, Kpi1 and
Kpi2, (f) N=16 switching controllers

Table 4.5: The analysis of simulation results for RTT1

Controller Mean Std RMS error E
Kpi0 153.34 39.64 0.27 0.33
Kpi1 142.60 39.14 0.27 0.27
Kpi2 159.91 45.96 0.31 0.49

Kpi1-Kpi2 Switching 152.52 35.07 0.23 0.22
16 Switching Controllers 148.77 34.63 0.23 0.23

35

0 50 100 150 200

0.2

0.25

0.3

0.35

0.4

0.45

0.5

Time (sec)

R
TT

 (s
ec

)

0 50 100 150 200
0

50

100

150

200

250

300

Time (sec)

Q
ue

ue
 L

en
gt

h
(p

ac
ke

ts
)

0 50 100 150 200
0

50

100

150

200

250

300

Time (sec)

Q
ue

ue
 L

en
gt

h
(p

ac
ke

ts
)

0 50 100 150 200
0

50

100

150

200

250

300

Time (sec)

Q
ue

ue
 L

en
gt

h
(p

ac
ke

ts
)

0 50 100 150 200
0

50

100

150

200

250

300

Time (sec)

Q
ue

ue
 L

en
gt

h
(p

ac
ke

ts
)

0 50 100 150 200
0

50

100

150

200

250

300

Time (sec)

Q
ue

ue
 L

en
gt

h
(p

ac
ke

ts
)

Figure 4.16: ns-2 simulations: (a) RTT2 (b) single controller, Kpi0 (c) single
controller, Kpi1 (d) single controller, Kpi2 (e) two switching controllers, Kpi1 and
Kpi2, (f) N=16 switching controllers

Table 4.6: The analysis of simulation results for RTT2

Controller Mean Std RMS error E
Kpi0 152.28 46.03 0.31 0.42
Kpi1 134.68 43.60 0.31 0.42
Kpi2 159.47 51.80 0.35 0.52

Kpi1-Kpi2 Switching 150.67 41.69 0.28 0.32
16 Switching Controllers 150.57 40.31 0.27 0.32

36

Chapter 5

Conclusions

In this thesis we proposed new PI, PD and PID controller tuning methods for

integrating systems with time delay using the analysis of allowable PID gains

done in [7, 17]. The PI and PD controller expressions (2.19), (2.14) appearing in

Chapter 2 are valid for all integrating systems whose transfer function is in the

form (2.1) where g(s) is an arbitrary stable transfer function containing a time

delay and satisfying g(0) = 0.

We have illustrated this method on the AQM problem for a single bottleneck

network of TCP flows. Performance of the proposed designs are compared with

the benchmark design of [8, 9] which is currently implemented in ns-2. Simu-

lations show that steady state queue variations are lower in the new PI design,

and the transient response performance is better. On the other hand, designed

PID controllers also perform better than benchmark PI scheme but their advan-

tages over proposed PI controller is only for some error metrics. Robustness of

the designs with respect to variation in R, N and c are also analyzed and we

have seen that in almost all cases the new PI controller performs better than the

benchmark PI controller.

37

We also proposed switching PI controllers for time varying time delayed single

bottleneck network. Simulations show that switching between two controllers

gives better results compared to a single controller case.

Theoretical proof of performance improvement by using switched controllers

in such a complicated nonlinear system (packet level simulation setting) is not

easy to obtain. In fact, even for simplified flow model it can be shown that ar-

bitrary switching between two controllers may even destabilize the feedback sys-

tem. Therefore our simulation results illustrate the value of mid-point switched

PI controllers for this AQM problem.

There are several other dynamic AQM schemes using control theory tech-

niques such as H∞ and sliding mode control. However implementation of these

controllers are rather complicated and in this thesis PID controllers are discussed

in order to provide simple controllers with satisfactory performances. As a future

work, the performance of PID controllers can be compared with the mentioned

complicated controllers in the scope of the AQM problem. Furthermore, it is

possible to test the proposed controller schemes for multi bottleneck networks

and for networks with unresponsive flows.

38

APPENDIX A

ns-2 C++ function adapted for

PID controller

double PIDQueue::calculate_p() {

//double now = Scheduler::instance().clock();

double p;

int qlen = qib_ ? q_->byteLength() : q_->length();

if (qib_) {

p=edp_.a0*(qlen*1.0/edp_.mean_pktsize-edp_.qref)+

edp_.a1*(edv_.qold*1.0/edp_.mean_pktsize-edp_.qref)+

edp_.a2*(edv_.qelder*1.0/edp_.mean_pktsize-edp_.qref)-

edp_.b1*edv_.v_prob-

edp_.b2*edv_.pelder;

}

else {

p=edp_.a0*(qlen-edp_.qref)+

edp_.a1*(edv_.qold-edp_.qref)+

edp_.a2*(edv_.qelder-edp_.qref)-

39

edp_.b1*edv_.v_prob-

edp_.b2*edv_.pelder;

}

if (p < 0) p = 0;

if (p > 1) p = 1;

edv_.pelder=edv_.v_prob;

edv_.v_prob = p;

edv_.qelder=edv_.qold;

edv_.qold = qlen;

CalcTimer.resched(1.0/edp_.w);

return p;

}

40

APPENDIX B

ns-2 tcl code (PI controller case)

#Create a simulator object

set ns [new Simulator]

#set number of sources

set M 30

#making routers

set n(1) [$ns node]

set n(2) [$ns node]

#making sources and destinations

for {set i 1} {$i <=$M} {incr i}{

set s($i) [$ns node]

set r($i) [$ns node]

}

#creating the network link

$ns duplex-link $n(1) $n(2) 15Mb 20ms PI

41

#creating the edge links

for {set i 1} {$i <= $M} {incr i} {

$ns duplex-link $s($i) $n(1) 10Mb 40ms DropTail

$ns duplex-link $n(2) $r($i) 10Mb 40ms DropTail

}

#Setup TCP connections

for {set i 1} {$i <= $M} {incr i} {

set tcp($i) [new Agent/TCP/Reno]

set sink($i) [new Agent/TCPSink]

$ns attach-agent $s($i) $tcp($i)

$ns attach-agent $r($i) $sink($i)

$ns connect $tcp($i) $sink($i)

$tcp($i) set ecn_ true

$tcp($i) set fid_ $i

$tcp($i) set window_ 300

}

#setup FTP applications

for {set i 1} {$i<= $M} {incr i} {

set ftp($i) [new Application/FTP]

$ftp($i) attach-agent $tcp($i)

$ftp($i) set type_ FTP

}

#start FTP applications

for {set i 1} {$i<= $M} {incr i} {

$ns at 0 "$ftp($i) start"

$ns at 200 "$ftp($i) stop"

}

Tracing a queue

set redq [[$ns link $n(1) $n(2)] queue]

$redq set setbit_ true

42

$redq set limit_ 300

$redq set mean_pktsize_ 1000

$redq set qref_ 150

$redq set w_ 4

$redq set a_ 0.000045351

$redq set b_ 0.000042821

set tchan_ [open PI_new_09_09.txt w]

$redq trace curq_ $redq

attach $tchan_

Define ’finish’ procedure (include post-simulation processes)

proc finish {} {

global tchan_

set awkCode {

{

if ($1 == "Q" && NF>2) {

print $2, $3 >> "temp.q";

set end $2

}

else if ($1 == "a" && NF>2)

print $2, $3 >> "temp.a";

}

}

set f [open temp.queue w]

puts $f "TitleText: PI_new_09_09"

puts $f "Device: Postscript"

if { [info exists tchan_] } {

close $tchan_

}

43

exec rm -f temp.q temp.a

exec touch temp.a temp.q

exec awk $awkCode PI_new_09_09.txt

puts $f \"queue

exec cat temp.q >@ $f

#puts $f \n\"ave_queue

#exec cat temp.a >@ $f

close $f

exec xgraph -bb -tk -x time -y queue temp.queue &

exit 0

}

#Call the finish procedure after 200 seconds of simulation time

$ns at 201 "finish"

#Run the simulation

$ns run

44

Bibliography

[1] K. J. Aström, T. Hagglund, PID Controllers: Theory, Design, and Tuning,

2nd Ed., Instrument Society of America, Research Triangle Park, NC, 1995.

[2] S. Athuraliya, S. H. Low, V. H. Li, Q. Yin, “REM: Active Queue Manage-

ment,” IEEE Network, vol. 15, no. 3, May-June 2001, pp. 48-53.

[3] M. di Bernardo, F. Garofalo, and S. Manfredi, “Performance of Robust AQM

controllers in multibottleneck scenarios,” Proc. of the 44th IEEE Conference

on Decision and Control, and the European Control Conference 2005 Seville,

Spain, December 2005, pp. 6756–6761.

[4] S. Floyd, V. Jacobson, “Random early detection gateways for congestion

avoidance,” IEEE/ACM Transactions on Networking, vol. 1, no. 4, Aug.

1993, pp. 397-413.

[5] S. Floyd, K. Fall, “Promoting the use of end-to-end congestion control in the

Internet,” IEEE/ACM Transactions on Networking, vol. 7 (1999), pp. 458–

472.

[6] G. C. Goodwin, S. F. Graebe, and, M. E. Salgado Control System Design,

Prentice Hall, 2001.

[7] A. N. Gündeş, H. Özbay, A. B. Özgüler, “PID Controller Synthesis for

a Class of Unstable MIMO plants with I/O Delays,” Automatica, vol. 43

(2007), pp. 135–142.

45

[8] C. Hollot, V. Misra, D. Towsley, W. Gong, “On designing improved con-

trollers for AQM routers supporting TCP flows,” in IEEE INFOCOM,

Alaska, April 2001, pp. 1726-1734.

[9] C. Hollot, V. Misra, D. Towsley, W. Gong, “Analysis and design of con-

trollers for AQM routers supporting TCP flows,” IEEE Transactions on

Automatic Control, vol. 47, no. 6, June 2002, pp. 945-959.

[10] R. Isermann, Digital Control Systems Volume 1: Fundamentals, Determin-

istic Control, 2nd revised Ed., Springer-Verlag, 1989.

[11] F. Kelly, “Mathematical modeling of the Internet,” Mathematics Unlimited-

2001 and Beyond, B. Engquist and W. Schmidt Eds., Berlin, Germany,

Springer-Verlag, 2001.

[12] S. Kunniyur, R. Srikant, “Analysis and design of an adaptive virtual queue

(AVQ) algorithm for active queue management,” in Proc. ACM SIGCOMM,

San Diego, CA, Aug. 2001, pp. 123-134.

[13] Y. Lee, J. Lee, S. Park, “PID controller tuning for integrating and unstable

processes with time delay,” Chemical Engineering Science , vol. 55, 2000,

pp. 3481-3493.

[14] V. Misra, W. Gong, D. Towsley, “Fluid-based analysis of a network of AQM

routers supporting TCP flows with an application to RED,” in Proc. ACM

SIGCOMM, Stockholm, Sweeden, Sep. 2000, pp. 151-160.

[15] ns-2 Network Simulator, version: 2.27. [Online]. Available:

http://www.isi.edu/nsnam/ns/.

[16] K. Ogata, Modern Control Engineering, 3rd Ed., Prentice Hall, 1997.

[17] H. Özbay, A. N. Gündeş, “Resilient PI and PD Controllers for a Class of

Unstable MIMO plants with I/O Delays,” in CDROM Proceedings of 6th

IFAC Workshop on Time Delay Systems, L’Aquila, Italy, July 2006.

46

[18] P-F. Quet, H. Özbay, “On the Design of AQM Supporting TCP Flows Using

Robust Control Theory ,” IEEE Transactions on Automatic Control, vol.

49 (2004), no. 6, pp. 1031-1036.

[19] E-C. Park, H. Lim, K-J. Park, C-H. Choi, “Analysis and design of the virtual

rate control algorithm for stabilizing queues in TCP networks,” Computer

Networks, vol. 44 (2004), pp. 17-41.

[20] E. Poulin, A. Pomerlau, “PI Settings for Integrating Processes Based on

Ultimate Cycle Information” IEEE Transactions on Control Systems Tech-

nology, vol. 7, 1999, pp. 509-511.

[21] K. Ramakrishnan, S.Floyd, “A Proposal to add Explicit Congestion Notifi-

cation (ECN) to IP,” RFC 2481, January 1999.

[22] S. Ryu, C. Rump, C. Qiao, “A predictive and robust active queue manage-

ment for Internet congestion control,”in Proc. of the 8th IEEE Symposium

on Computers and Communications, Kemer, Antalya, Turkey, June-July

2003, pp. 991–998.

[23] S. Ryu, C. Rump, C. Qiao, “Advances in Internet Congestion Control,”in

IEEE Communications Surveys and Tutorials, vol. 5, no. 1, Third Quarter

2003, pp. 28-38.

[24] G.J. Silva, A. Datta, S. P. Bhattacharyya, PID Controllers for Time-Delay

Systems, Birkhäuser, Boston, 2005.

[25] P. Yan, Y. Gao, H. Özbay, “A Variable Structure Control Approach to

Active Queue Management for TCP with ECN,” IEEE Transactions on

Control Systems Technology, vol. 13, no. 2, March 2005, pp. 203-215.

[26] P. Yan and H. Özbay, “Robust Controller Design for AQM and H∞ Per-

formance Analysis,” in Advances in Communication Control Networks, S.

Tarbouriech, C. Abdallah, J. Chiasson Eds., Springer-Verlag LNCIS, Vol.

308, 2004, pp. 49-64.

47

