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ABSTRACT

A COMPARATIVE ANALYSIS OF DIFFERENT
APPROACHES TO TARGET DIFFERENTIATION

AND LOCALIZATION USING INFRARED SENSORS

Tayfun Aytaç

Ph. D. in Electrical and Electronics Engineering

Supervisor: Prof. Dr. Billur Barshan

December 2006

This study compares the performances of various techniques for the differentia-

tion and localization of commonly encountered features in indoor environments,

such as planes, corners, edges, and cylinders, possibly with different surface prop-

erties, using simple infrared sensors. The intensity measurements obtained from

such sensors are highly dependent on the location, geometry, and surface prop-

erties of the reflecting feature in a way that cannot be represented by a simple

analytical relationship, therefore complicating the localization and differentiation

process. The techniques considered include rule-based, template-based, and neu-

ral network-based target differentiation, parametric surface differentiation, and

statistical pattern recognition techniques such as parametric density estimation,

various linear and quadratic classifiers, mixture of normals, kernel estimator,

k-nearest neighbor, artificial neural network, and support vector machine classi-

fiers. The geometrical properties of the targets are more distinctive than their

surface properties, and surface recognition is the limiting factor in differentiation.

Mixture of normals classifier with three components correctly differentiates three

types of geometries with different surface properties, resulting in the best perfor-

mance (100%) in geometry differentiation. For a set of six surfaces, we get a cor-

rect differentiation rate of 100% in parametric differentiation based on reflection

modeling. The results demonstrate that simple infrared sensors, when coupled

with appropriate processing, can be used to extract substantially more informa-

tion than such devices are commonly employed for. The demonstrated system

would find application in intelligent autonomous systems such as mobile robots

whose task involves surveying an unknown environment made of different geom-

etry and surface types. Industrial applications where different materials/surfaces

must be identified and separated may also benefit from this approach.
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ÖZET

KIZILBERİSİ ALGILAYICILARLA HEDEF
AYIRDETME VE KONUM KESTİRİM

YÖNTEMLERİNİN KARŞILAŞTIRMALI İNCELEMESİ

Tayfun Aytaç

Elektrik ve Elektronik Mühendisliği, Doktora

Tez Yöneticisi: Prof. Dr. Billur Barshan

Aralık 2006

Bu çalışma, farklı yüzey özelliklerine sahip düzlem, köşe, kenar ve silindir

gibi iç mekanlarda sıkça karşılaşılan öznitelikleri veya hedefleri basit kızılberisi

algılayıcılar kullanarak ayırdetme ve konumlandırmaya ilişkin çeşitli tekniklerin

başarımlarını karşılaştırmaktadır. Bu tip algılayıcılardan elde edilen yeǧinlik

ölçümleri hedefin konumuna, geometrisine ve yüzey özelliklerine analitik olarak

kolayca ifade edilemeyecek şekilde baǧlı olup bu durum ayırdetme ve konumlan-

dırma sürecini zorlaştırmaktadır. Karşılaştırılan teknikler kural-tabanlı, referans

sinyallerine dayalı ve yapay sinir aǧlarına dayalı hedef ayırdetme, parametrik

yüzey ayırdetme ve parametrik yoǧunluk kestirimi, farklı doǧrusal ve kare-

sel ayırdediciler, karma Gauss sınıflandırıcıları, çekirdek kestiricisi, k-en yakın

komşuluǧu, yapay sinir aǧları sınıflandırıcıları ve destekçi vektör makinaları

gibi istatistiksel örüntü tanıma tekniklerini içermektedir. Hedeflerin geometrik

özellikleri yüzey özelliklerine göre daha ayırdedicidir ve yüzey tipi, ayırdetmede

sınırlayıcı etkendir. Üç bileşenli karma Gauss sınıflandırıcıları farklı yüzey

özelliklerine sahip üç geometriyi en iyi geometri ayırdetme oranı olarak (%100)

doǧru ayırdetmektedir. Altı farklı yüzey için yansıma modeline dayalı parametrik

ayırdetmede en iyi olarak %100 doǧru ayırdetme oranı elde edildi. Sonuçlar, basit

kızılberisi algılayıcıların, uygun işlemeyle çok daha fazla bilgi çıkarılarak bilinen

yaygın uygulamaları dışında da kullanılabileceǧini göstermektedir. Öne sürülen

sistem gezgin robotların farklı geometri ve yüzey tiplerinden oluşan bilinmeyen

ortamların incelenmesi ve harita çıkarımı gibi uygulamalarda akıllı otonom sis-

temler tarafından kullanılabilir. Farklı maddelerin/yüzeylerin tanımlanmasının

ve ayırdedilmesinin gerektiǧi endüstriyel uygulamalar da bu yaklaşımdan fay-

dalanabilir.

Anahtar sözcükler : kızılberisi algılayıcılar, optik algılama, hedef ayırdetme, hedef

vi



vii

konum kestirimi, yüzey tanıma, konum kestirimi, öznitelik çıkarımı, istatistiksel

örüntü tanıma, yapay sinir ağları.
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Chapter 1

INTRODUCTION

Target differentiation is of considerable interest for intelligent systems that need

to interact with and operate in their environment autonomously. Such systems

rely on sensor modules which are often their only available source of information.

Since the resources of such systems are limited, the available resources should be

used in the best way possible. It is desirable to maximally exploit the capabilities

of lower cost sensors before more costly and sophisticated sensors with higher

resolution and higher resource requirements are employed. This can be achieved

by employing better characterization and physical modeling of these sensors.

Although ultrasonic sensors have been widely used for object detection and

ranging [1–6], they are limited by their large beam-width and the difficulty of

interpreting their readings due to specular, higher-order, and multiple reflections

from surfaces. Furthermore, many readily available ultrasonic systems cannot de-

tect objects up to 0.5 m which corresponds to their blank- out zone. Therefore, in

performing tasks at short distances from objects, use of inexpensive and widely

available sensors such as simple infrared detectors are preferable to employing

ultrasonic sensors or more costly laser and vision systems. Furthermore, in a

sensor-fusion framework, infrared sensors would be perfectly complementary to

these systems which are not suitable for close-range detection. Infrared detectors

offer faster response times and better angular resolution than ultrasonic sensors

1



CHAPTER 1. INTRODUCTION 2

and provide intensity readings at nearby ranges (typically from a few centime-

ters up to a meter). The intensity versus range characteristics are nonlinear and

dependent on the properties of the surface and environmental conditions. Con-

sequently, a major problem with the use of simple infrared detectors is that it

is often not possible to make accurate and reliable range estimates based on the

value of a single intensity return because the return depends on both the geometry

and surface properties of the encountered object. Likewise, the surface properties

and the geometry of the target cannot be deduced from simple intensity returns

without knowing its position and orientation.

Due to single intensity readings not providing much information about the

target properties, recognition capabilities of infrared sensors have been under-

estimated and underused in most work. To achieve accurate results with these

sensors, their nonlinear characteristics should be analyzed and modeled based on

experimental data. Armed with such characterization and modeling, their poten-

tial can be more fully exploited and their usage can be extended beyond simple

tasks such as counting and proximity detection. The aim of this study is to max-

imally realize the potential of these simple sensors so that they can be used in

more complicated tasks such as differentiation, recognition, clustering, docking,

perception of the environment and surroundings, and map building. With the

approaches considered in this thesis, we can differentiate a moderate number of

targets and/or surfaces commonly encountered in indoor environments, using a

simple infrared system consisting of one emitter and one detector. We provide

a comparison of these approaches based on real data acquired from simple in-

frared sensors. The results indicate that if the data acquired from such simple

infrared sensors are processed effectively through the use of suitable techniques,

substantially more information about the environment can be extracted than is

commonly achieved with conventional usage.
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1.1 Related Work

The use of infrared sensors in the pattern recognition area has been mostly lim-

ited to the recognition or detection of features or targets in conventional two-

dimensional images. Examples of work in this category include face identifica-

tion [7], automatic target recognition [8], target tracking [9], automatic vehicle

detection [10], remote sensing [11], detection and identification of targets in back-

ground clutter [12, 13], and automated terrain analysis [14]. We note that the

position-invariant target differentiation and position estimation achieved in this

thesis are different from such operations performed on conventional images [15, 16]

in that here we work not on direct “photographic” images of the targets obtained

by some kind of imaging system, but rather on angular intensity scans obtained

by rotating a point sensor. The targets we differentiate are not patterns in a two-

dimensional image whose coordinates we try to determine, but rather objects

in space, exhibiting depth, whose position with respect to the sensing system we

need to estimate. For this reason, position-invariant pattern recognition and posi-

tion estimation achieved in this thesis is different from such operations performed

on conventional images [15–25].

Application areas of infrared sensing include robotics and automation, pro-

cess control, remote sensing, and safety and security systems. More specifically,

they have been used in simple object and proximity detection [26], counting [27],

distance and depth monitoring [28], floor sensing, position control [29], obsta-

cle/collision avoidance [30], and machine vision systems [31]. Infrared sensors are

used in door detection [32], mapping of openings in walls [33], as well as monitor-

ing doors/windows of buildings and vehicles, and light curtains for protecting an

area. In [34], an automated guided vehicle detects unknown obstacles by means

of an “electronic stick” consisting of infrared sensors, using a strategy similar to

that adopted by a blind person. In [35], infrared sensors are employed to locate

edges of doorways in a complementary manner with sonar sensors. Other re-

searchers have also dealt with the fusion of information from infrared and sonar

sensors [36, 37, 38] and infrared and radar systems [39, 40]. In [26], infrared prox-

imity sensing for a robot arm is discussed. Following this work, [30] describes a
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robot arm completely covered with an infrared skin sensor to detect nearby ob-

jects. Processing the data from the artificial infrared skin by motion planning

algorithms, real-time collision avoidance for the entire arm body is achieved in

an unknown or dynamic environment.

In [41], the properties of a planar surface at a known distance have been de-

termined using the Phong illumination model, and using this information, the

infrared sensor employed has been modeled as an accurate range finder for sur-

faces at short ranges. Reference [42] also deals with determining the range of

a planar surface. By incorporating the optimal amount of additive noise in the

infrared range measurement system, the authors were able to improve the system

sensitivity and extend the operating range of the system. A number of commer-

cially available infrared sensors are evaluated in [43]. References [44, 45] describe

a passive infrared sensing system which identifies the locations of the people in

a room. Infrared sensors have also been used for automated sorting of waste ob-

jects made of different materials [46, 47]. In [48], an infrared sensor-based system

which can measure distances up to 1 m is described. References [49, 50, 51] deal

with optical determination of depth information. In [52], simulation and evalua-

tion of the recognition abilities of active infrared sensor arrays are considered for

autonomous systems using a ray-tracing approach.

In earlier work [53], the authors developed a novel range estimation technique

using an infrared emitter-detector pair which is independent of surface type since

it is based on the position of the maximum intensity value instead of surface-

dependent absolute intensity values. An intelligent feature of the system is that

its operating range is made adaptive based on the maximum intensity of the

detected signal.

In the thesis work described by [54], infrared sensors are used for position

estimation. Reflectance from spherical objects is modeled by considering the

position, orientation, and the characteristics of the emitter and detector, the

position, size, and reflectivity of the spherical object, and the intensity of the

reflected light. 3-D position estimation of objects have been implemented using a
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non-touch screen. 2-D object position estimation is implemented using an electri-

cally powered wheelchair, whose movement is controlled by the head movement

through infrared sensors.

1.2 Contribution

In this thesis, we propose several new techniques for processing infrared inten-

sity signals and compare their performances with several existing approaches

for differentiation and localization of commonly encountered features in indoor

environments. The classification approaches include rule-based, template-based

(matched filter and least-squares variations), neural network-based differentiation,

parametric differentiation, and pattern recognition techniques such as maximum-

likelihood estimation, various linear and quadratic classifiers, mixture of normals,

k-nearest neighbor classifier, neural network classifier, and support vector ma-

chine classifier. One advantage of our system is that it does not greatly depend

on environmental conditions, since we employ an active sensing modality.

To the best of our knowledge, no attempt has been made to differentiate and

estimate the position of several kinds of targets using infrared sensors. Also, a

comparative study based on experimental work does not exist for target differ-

entiation using infrared sensors. One of the major contributions of this thesis is

that it provides such a comparison. The results indicate that it is possible to

extract a significantly greater amount of information from simple optical sensors

than is commonly achieved with conventional usage.

As a first attempt to differentiation of targets with simple infrared sensors, we

employed a rule-based approach which is based on extracting empirical rules by

inspecting the nature of the infrared intensity scans. For this purpose, angular

intensity scans are obtained from two infrared sensors horizontally mounted on

a rotary table. The method can achieve position-invariant target differentiation

without relying on the absolute return signal intensities of the infrared sensors.

The target primitives employed in the rule-based approach are plane, corner, edge,
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and cylinder, all made of unpolished oak wood. Based on tests with experimental

data, an average correct differentiation rate of 91.3% is achieved.

The template-based approach is based on comparing the acquired infrared

intensity scans obtained from targets located at randomly selected distance and

azimuth values with previously stored templates acquired from targets located at

predetermined distances and the line-of-sight of the experimental setup. Hence,

this approach relies on the distinctive natures of the infrared intensity scans

and requires the storage of a complete set of reference scans of interest. We

considered the following three different cases: targets with different geometrical

properties but made of the same surface material (97% correct differentiation

rate), targets made of different surface materials but of the same planar geometry

(87% correct differentiation rate), and targets with both different geometry and

surface properties (80% correct differentiation rate).

As an alternative to template-based differentiation, artificial neural networks

are proposed for geometry and surface type determination. The training algo-

rithms employed are back-propagation (BP) and Levenberg-Marquardt (LM).

The networks trained with LM are pruned with Optimal Brain Surgeon tech-

nique [55] for the optimal network structure. Pruning also results in improved

classification. The differentiation results are comparable with those obtained with

template-based target differentiation, where geometry type of the targets is clas-

sified with 99% accuracy and an overall correct differentiation rate of 78.4% is

achieved for all surfaces.

The parametric approach is based on modeling of infrared intensity scans.

In parametric surface differentiation, only the reflection coefficients obtained us-

ing the proposed reflection model are considered as parameters and used in the

differentiation process, instead of using the complete infrared intensity scans as

in the previous differentiation approaches. The surface materials considered are

unpolished oak wood, Styrofoam packaging material, white painted matte wall,

white and black cloth, and white, brown, and violet paper (matte). For a set of

six surfaces including Styrofoam packaging material, white painted matte wall,

white or black cloth, and white, brown, and violet paper (also matte), we got a
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correct differentiation rate of 100%.

We extended the parametric surface differentiation approach to differentia-

tion of both the geometry and surface type of the targets using statistical pattern

recognition techniques. We constructed feature vectors based on the parameters

obtained modeling of angular infrared intensity scans from different targets to

determine their geometry and/or surface type. The techniques considered in this

thesis include statistical pattern recognition techniques (parametric density esti-

mation, Karhunen Lóeve based classifier, logistic linear classifier, Fisher’s linear

classifier, nearest mean classifier and its scaled version, quadratic discriminant

classifier, mixture of normals, kernel estimator, k-nearest neighbor, artificial neu-

ral network, and support vector machine classifiers). Mixture of normals classifier

with three components correctly differentiates three types of geometries with dif-

ferent surface properties, resulting in the best performance (100%) in geometry

differentiation.

1.3 Thesis Outline

This thesis is organized as follows: Chapter 2 describes the infrared sensor and the

experimental setup used in this study. In Chapter 3, rule-based target differen-

tiation [56] is explained. Chapter 4 describes template-based geometry [57], sur-

face [58], and both geometry and surface differentiation and localization and dis-

cusses the limits of the proposed approaches [59]. As an alternative to template-

based differentiation, artificial neural network-based geometry and surface type

determination is proposed in Chapter 5. Chapter 6 provides differentiation of pla-

nar surfaces based on parametric modeling of the infrared intensity scans [60]. In

Chapter 7, statistical pattern recognition techniques using reflection coefficients

are proposed for geometry and surface type determination [61]. A comparison

of the techniques is provided in Chapter 8. Concluding remarks are made and

directions for future work are provided in Chapter 9.



Chapter 2

INFRARED SENSOR AND

THE EXPERIMENTAL SETUP

We believe that for proper operation of a sensor, the parameters affecting its

operation should be thoroughly investigated. In this chapter, the effects of pa-

rameters such as range, azimuth, and surface properties on the operation of the

infrared sensor are investigated.

This chapter is organized as follows: The operation of the infrared sensor and

the parameters affecting its operation are investigated thoroughly in Section 2.1.

The experimental setup is described in Section 2.2.

2.1 Infrared Sensor

The emitter-detector configuration of infrared sensors can be classified into four

groups as opposed, retroreflective, diffuse, and convergent modes [31] (Figure 2.1).

Opposed mode is used, for instance, in remote controls. The retroreflective mode,

in which the emitted energy is reflected from a retroreflector, such as a corner cube

is commonly used in, for instance, doorway detectors in buildings and elevator

doors. It is also used for reference marking purposes in automated guided vehicles.

8
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emitter detector
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detector
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retroreflector
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detector
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Figure 2.1: (a) Opposed, (b) retroreflective, (c) diffuse, and (d) convergent modes.

Mostly used in object detection is the diffuse mode, where the emitted energy is

reflected from the object of interest. In the convergent mode, the optical axis of

the emitter-detector is tilted in order to detect objects over a specific range.

In our experimental work, the IRS-U-4A infrared sensor [62] is used (see Fig-

ure 2.2). The sensor works with 20–28 V DC input voltage, and provides an

analog output voltage proportional to the measured intensity reflected off the

target. The detector window is covered with an infrared filter to minimize the

effect of ambient light on the intensity measurements. Indeed, when the emitter

is turned off, the detector reading is essentially zero. The sensitivity of the device

can be adjusted with a potentiometer to set the range of operation of the system.

Various surfaces with different colors and surface properties have been con-

sidered. To analyze the effect of the surface roughness, packing materials with

different reflection properties are employed. The experimental setup used for this

purpose is shown in Figure 2.2, where a planar surface is employed for the pur-

pose of uniform characterization of different surfaces. The plane is chosen large

enough to contain the infrared spot size. The optical axis of the infrared sensor

is coincident with the normal of the plane. Measurements are taken with the po-

tentiometer adjusted both at its rightmost and leftmost positions, corresponding

to minimum (5 cm) and maximum range of operation (70 cm), respectively.

To study the effect of target range, azimuth, and surface parameters on the

measurements, intensity samples are acquired for each position and surface, and
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Figure 2.2: Experimental setup to analyze the effect of various parameters on the
performance of the infrared sensor.

their mean and standard deviations are calculated. In Figure 2.3(a), the plots of

intensity versus distance are given for the plane covered with white, red, green,

and yellow copier/printer papers. Notice that for each color, there is a certain

range of operation determined by saturation at the lower end and loss of signal

at the higher end (beyond a certain range, the output voltage is not detectable).

For the situation where the potentiometer is adjusted at its rightmost position,

it is possible to deduce the range of the plane of different colors within a few

centimeters error. We observe that the color does not have a strong effect on the

output intensity which makes the system suitable for range detection of different

colored surfaces.

Unlike the planes above, the plane covered with glossy, smooth, black plane

(craft paper) showed different behavior due to its high absorption property (Fig-

ure 2.3(b)).

Drawing papers having gray, dark blue, and brown colors are also employed.

These papers are slightly thicker than copier papers and have a little more rough-

ness on one side than the other. Because of their different surface properties, their

characteristics differ from those of the copier papers. The intensity variations with

respect to distance are given in Figure 2.3(c).

Blister packaging materials made of transparent colorless nylon with large and
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(b) black craft paper

0 10 20 30 40 50 60 70 80
0

2

4

6

8

10

12

DISTANCE (cm)

IN
T

E
N

S
IT

Y
 (

V
)

Dark blue
Dark blue
Brown
Brown
Gray
Gray

Maximum range 
of operation

Minimum range 
of operation

(c) drawing papers of different colors

0 10 20 30 40 50 60 70 80
0

2

4

6

8

10

12

DISTANCE (cm)

IN
T

E
N

S
IT

Y
 (

V
)

Bubble (Large)
Bubble (Large)
Bubble (Small)
Bubble (Small)
Thick plastic 
Thick plastic 
Thin plastic  
Thin plastic  

Maximum range 
 of operation 

Minimum range 
 of operation 
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Figure 2.3: Intensity versus distance characteristics for planar target of different
surface properties.

small bubbles and Styrofoam packaging materials are also used to investigate the

effect of different surface properties on the measurements. The blister packaging

material with small bubbles has a honeycomb pattern of uniformly distributed

circular bubbles of diameter 1.0 cm and height 0.3 cm, with a center-to-center

separation of 1.2 cm. The blister packaging material with large bubbles has the

same pattern with diameter, height, and center-to-center separation of 2.5, 1.0,

and 2.8 cm, respectively. The variation of the intensity with respect to distance

is given in Figure 2.3(d). The Styrofoam packaging material absorbs more energy

than the blister packaging materials. As expected, for a given distance, the return

signal for the plane with small bubbles is greater than that with large bubbles.
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Figure 2.4: Effect of surface roughness on the intensity readings for a plane of
gray drawing paper.

This is the result of enhanced multi-directional reflection due to large bubbles.

In Figure 2.4, the results obtained with both sides of the gray drawing paper

are displayed, one surface being slightly rougher than the other. As seen from the

graph, the surface roughness may result in erroneous readings even for a plane of

the same color.

The variation of the standard deviation with respect to distance for various

planes is given in Figure 2.5. For a given distance value and a surface type,

the standard deviation was calculated over 10,000 intensity measurements. The

standard deviation varies approximately within a band of 0.04 ±0.01 V.

The variation of the standard deviation with respect to the scan angle is

illustrated in Figure 2.6 for a wooden plane located at r =35 cm and θ = 0◦. The

mean and the standard deviation values of the scan were calculated over 1,000

intensity measurements at each step of the scan. Figure 2.6 illustrates the mean

value ±25σ. The standard deviation was calculated to vary between a minimum

value of 0.006 V and a maximum value of 0.04 V.

Now, we turn our attention to the problem of determining the operating range
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Figure 2.6: The mean and the ±25σ of the intensity measurements versus scan
angle for a wooden plane located at r =35 cm and θ = 0◦.
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Figure 2.7: Detectable range of a smooth white plane by the infrared sensors.

and angle of our system. To this end, the sensing unit will be situated on the

grid points shown in Figure 2.7, in each case pointing towards the center of the

radial grid. We have considered both of the extreme settings of the potentiometer.

Using the plane covered with white copier/printer paper, measurements are taken

at 5 cm intervals from 5 to 80 cm, and at θ = 10◦ intervals from θ = 0◦ and θ = 80◦

with the normal of the plane (smooth, white plane is chosen to minimize the effect

of the diffuse reflectance ratios [63]).

The variation of the intensity with respect to distance and angle for the white

plane is given in Figure 2.8. By using these plots, the detectable range of the plane

is given in Figure 2.7. The outer curve is composed of points whose intensities

are less than 0.1 V, and the inner curve is composed of points whose intensities

are greater than or equal to 0.1 V. The curves are given both for the rightmost

(solid lines) and leftmost (dashed lines) positions of the potentiometer. For the

rightmost position of the potentiometer, the infrared sensor can detect the plane

making θ = 80◦ angle with the normal of the plane at 50 cm. On the other

hand, at the same angle, the infrared sensor can detect the plane at 20 cm at

the leftmost position of the potentiometer. As seen from the plot, the intensity
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Figure 2.8: Variation of the intensity with respect to distance and angle for a
smooth white plane.

depends on the position of the plane with respect to the infrared sensor. As the

line-of-sight of the infrared sensor deviates from the normal of the plane, the

intensity decreases (Figure 2.8).

The half-power beamwidth of the infrared sensor is found as in [64] by set-

ting the intensity to 1/
√

2 of the maximum reading obtained. The half-power

beamwidth is found to be approximately θ = 3.3◦ (Figure 2.9), which makes it

useful for object detection due to its acceptable angular resolution.

2.2 Experimental Setup

The infrared sensor is mounted on a 12 inch rotary table [65] to obtain angu-

lar intensity scans from these targets. The close-up view of the infrared sensor

and the photograph of the experimental setup can be seen in Figure 2.10. The

schematics of the experimental setup is shown in Figure 2.11. For the rule-based

classification, described in the next chapter, we use two infrared sensors horizon-

tally mounted on the rotary table with a center-to-center separation of 11 cm
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Figure 2.9: The half-power beamwidth of the infrared sensor.

(see Figure 3.1). The target primitives employed in this study are a plane, a

90◦ corner, a 90◦ edge, and a cylinder of radius 4.8 cm, whose cross-sections are

given in Figure 2.12. The horizontal extent of all targets other than the cylinder

is large enough that they can be considered infinite and thus edge effects need

not be considered. They are covered with different materials of different surface

properties, each with a height of 120 cm. For the methods discussed in this study,

results will be given for targets of different geometry and/or surface properties

and their combinations.

In this chapter, we discussed the effects of range, azimuth, and surface prop-

erties on the operation of the infrared sensors and introduced the experimental

setup. In the following chapters, we will describe and compare different methods

for target differentiation and localization.
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(a)

(b)

Figure 2.10: (a) The infrared sensor and (b) the experimental setup used in this
study.
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Figure 2.11: Top view of the experimental setup used in target differentiation and
localization. The emitter and detector windows are circular with 8 mm diameter
and center-to-center separation of 12 mm. (The emitter is above the detector.)
Both the scan angle α and the surface azimuth θ are measured counter-clockwise
from the horizontal axis.
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Figure 2.12: Target primitives used in this study.



Chapter 3

RULE-BASED

DIFFERENTIATION

In this chapter, we consider processing information from a pair of infrared sensors

using a rule-based approach for target differentiation and localization. The work

in this chapter was published in [56]. The advantages of a rule-based approach

are shorter processing times, greater robustness to noise, and minimal storage

requirements in that it does not require storage of any reference scans: the in-

formation necessary to differentiate the targets is completely embodied in the

decision rules [66]. Examples of related approaches with ultrasonic sensors may

be found in [67, 68].

Our method is based on angularly scanning of the target over a certain angular

range. We use two infrared sensors horizontally mounted on a 12 inch rotary

table [65] with a center-to-center separation of 11 cm [Figure 3.1] to obtain angular

scans I(α) from the targets. Targets are scanned from −60◦ to 60◦ in 0.15◦

increments, and the mean of 100 samples are calculated at each position of the

rotary table. The targets are situated at ranges varying between 20 and 65 cm.

The outputs of the infrared sensors are multiplexed to the input of an 8-bit

microprocessor compatible analog-to-digital converter chip having a conversion

time of 100 µsec.

19
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3.1 Differentiation and Localization Algorithm

Some sample scan patterns obtained from the targets are shown in Figure 3.2.

Based on these patterns, it is observed that the return signal intensity patterns

for a corner, which have two maxima and a single minimum (a double-humped

pattern), differ significantly from those of other targets which have a single maxi-

mum [Figure 3.2(b)]. The double-humped pattern is a result of the two orthogonal

planes constituting the corner. Because of these distinctive characteristics, the

corner differentiation rule is employed first. We check if the scan pattern has

two humps or not. If so, it is a corner. The average of the angular locations of

the dips in the middle of the two humps for the left and right infrared sensors

provides an estimate of the angular location of the corner.

If the target is found not to be a corner, we next check whether it is a plane or

not. As seen in Figure 3.2(a), the difference between the angular locations of the

maximum readings for the planar targets is significantly smaller than for other

targets. Planar targets are differentiated from other targets by examining the

absolute difference of the angle values at which the two intensity patterns have

their maxima. If the difference is less than an empirically determined reference

value, then the target is a plane; otherwise, it is either an edge or a cylinder.

(In the experiments, we have used a reference value of 6.75◦.) The azimuth

estimation of planar targets is accomplished by averaging the angular locations

of the maxima of the two scans associated with the two sensors.

infrared 

sensor 1

infrared 

sensor 2

rotary

table

d=11 cm α
target

line−of−sight
z

Figure 3.1: Top view of the experimental setup used in rule-based target differ-
entiation.
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Figure 3.2: Intensity-versus-scan-angle characteristics for various targets along
the line-of-sight of the experimental setup.
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Notice that the preceding (and following) rules are designed to be independent

of those features of the scans which vary with range and azimuth, so as to enable

position-invariant recognition of the targets. In addition, the proposed method

has the advantage that it does not require storage of any reference scans since

the information necessary to differentiate the targets are completely embodied in

the decision rules.

If the target is not a plane either, we next check whether it is an edge or

a cylinder. The intensity patterns for the edge and the cylinder are given in

Figures 3.2(c) and (d). They have shapes similar to those of planar targets, but

the intersection points of the intensity patterns differ significantly from those of

planar targets. In the differentiation between edges and cylinders, we employ

the ratio of the intensity value at the intersection of the two scans corresponding

to the two sensors, to the maximum intensity value of the scans. (Because the

maximum intensity values of the right and left infrared scans are very close, the

maximum intensity reading of either infrared sensor or their average can be used

in this computation.) This ratio is compared with an empirically determined

reference value to determine whether the target is an edge or a cylinder. If the

ratio is greater than the reference value, the target is an edge; otherwise, it is a

cylinder. (In our experiments, the reference value was 0.65.) If the scan patterns

from the two sensors do not intersect, the algorithm cannot distinguish between

a cylinder and an edge. However, this never occurred in our experiments. The

azimuth estimate of edges and cylinders is also obtained by averaging the angular

locations of the maxima of the two scans. Having determined the target type and

estimated its azimuth, its range can also be estimated by using linear interpolation

between the central values of the individual intensity scans given in Figure 3.2.

The rule-based method is flexible in the sense that by adjusting the threshold

parameters of the rules, it is possible to vary the acceptance criterion from tight

to loose. If the threshold parameter for the plane is chosen small, the acceptance

criterion will be tightened and a greater number of unidentified targets will be

produced. If the threshold parameter for the plane is chosen large, the acceptance

criterion will be relaxed and targets with greater deviations in geometry (such as

85◦ corner) or surface properties (such as surface wrapped with rough material)
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will be accepted in the same class as the nominal targets.

3.2 Experimental Verification

Using the experimental setup described above, the algorithm presented in the

previous section is used to differentiate and estimate the position of a plane, a

90◦ corner, a 90◦ edge, and a cylinder of radius 4.8 cm.

Based on the results for 160 experimental test scans (from 40 different lo-

cations for each target), the target confusion matrix shown in Table 3.1, which

contains information about the actual and detected targets, is obtained. The

average accuracy over all target types can be found by summing the correct deci-

sions given along the diagonal of the confusion matrix and dividing this sum by

the total number of test scans (160), resulting in an average accuracy of 91.3%

over all target types. Targets are localized within absolute average range and

azimuth errors of 0.55 cm and 1.03◦, respectively. The errors have been calcu-

lated by averaging the absolute differences between the estimated ranges and

azimuths and the actual ranges and azimuths read off from the millimetric grid

paper covering the floor of the experimental setup.

The percentage accuracy and confusion rates are presented in Table 3.2. The

second column of the table gives the percentage accuracy of correct differentiation

of the target and the third column gives the percentage of cases when a certain

Table 3.1: Confusion matrix (P: plane, C: corner, E: edge, CY: cylinder).

target differentiation result total

P C E CY
P 36 – 4 – 40
C – 40 – – 40
E 4 – 33 3 40
CY 3 – – 37 40

total 43 40 37 40 160
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Table 3.2: Performance parameters of the algorithm.

actual correct diff. diff. diff.
target rate (%) error I (%) error II (%)

P 90 10 16.3
C 100 0 0
E 82.5 17.5 10.8
CY 92.5 7.5 7.5

overall 91.25 8.75 8.65

target was mistaken for another. The fourth column gives the total percentage of

other target types that were mistaken for a particular target type. For instance,

for the planar target (4+3)/43 = 16.3%, meaning that targets other than planes

are incorrectly classified as planes with a rate of 16.3%.

Because the intensity pattern of a corner differs significantly from the rest of

the targets, the algorithm differentiates corners accurately with a rate of 100%.

A target is never classified as a corner if it is actually not a corner. Edges and

cylinders are the most difficult targets to differentiate.

By designing the decision rules so that they do not depend on those features

of the scans which vary with range and azimuth, an average correct target differ-

entiation rate of 91.3% over all target types is achieved and targets are localized

within average absolute range and azimuth errors of 0.55 cm and 1.03◦, respec-

tively. The proposed method has the advantage that it does not require storage

of any reference scans since the information necessary to differentiate the targets

are completely embodied in the decision rules. The method also exhibits consid-

erable robustness to deviations in geometry or surface properties of the targets

since the rule-based approach emphasizes structural features rather than the ex-

act functional forms of the scans. The major drawback of the present method, as

with all such rule-based methods, is that the rules are specific to the set of objects

and must be modified for a different set of objects. Nevertheless, the rules we

propose are of considerable practical value since the set of objects considered is

an important set consisting of the most commonly encountered features in typical
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indoor environments and therefore deserves a custom set of rules. (Differentiating

this set of objects has long been the subject of investigations involving ultrasonic

sensors [1–6].)

We demonstrated differentiation of four basic target types having similar sur-

face properties. Broadly speaking, the major effect of different materials and

textures is to change the reflectivity coefficients of the objects. This in turn will

primarily have the effect of modifying the amplitudes of the scans with relatively

less effect on their structural forms. Therefore, the same general set of rules

can be applied with relatively minor modifications or merely adjustments of the

parameters.

In the next chapter, we provide template-based differentiation and localization

algorithm and extensively investigate the limits of the proposed approach through

experimental studies.



Chapter 4

TEMPLATE-BASED

DIFFERENTIATION

In this chapter, we deal with the problem of differentiating and localizing targets

whose geometry and/or surface properties both vary, using a template based ap-

proach. This chapter is organized as follows: In Section 4.1, the differentiation

and localization of wooden targets of different geometries is proposed [57, 66].

Surface differentiation and localization is explained in Section 4.2 [58, 66]. Sec-

tion 4.3 deals with simultaneous differentiation and localization of targets whose

geometry and surface properties both vary, generalizing and unifying the results

of Sections 4.1 and 4.2 [59].

4.1 Geometry Differentiation and Localization

The targets employed in this study are plane, 90◦ corner, 90◦ edge, and a cylinder

of radius 4.8 cm, whose cross-sections are given in Figure 2.12. They are made of

wood, each with a height of 120 cm. Our method is based on angularly scanning

each target over a certain angular range. The infrared sensor is mounted on

a 12 inch rotary table (Figure 2.11) to obtain angular scans from these target

primitives. Reference data sets are collected for each target with 2.5 cm distance

26
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increments, ranging from 15 cm to the maximum detectable range of each target,

at θ = 0◦.

The resulting reference scans for plane, corner, edge, and cylinder are shown in

Figures 4.1, respectively. The intensity scans are θ-invariant but not r-invariant;

changes in r do not result in any simple scaling. As we will see, these scans

contain sufficient information to identify and localize the different target types

with a good degree of accuracy. Figure 4.1(b) shows the distinctive double-

humped scan pattern for the corner target (this double-humped pattern can be

interpreted by thinking of the corner in terms of its two orthogonal constituent

planes). The greatest difficulty is encountered in differentiating cylinders and

edges which have the most similar intensity patterns. Notice that the return

signal intensities saturate at an intensity corresponding to 10.7 V output voltage.

We now describe how to determine the target type and position of an arbi-

trarily located target whose intensity scan has been observed. First, we check

whether the observed scan I(α) exhibits saturation or not. This situation is

treated separately as will be explained later in Section 4.1.3.

We start by determining the target type. Unfortunately, direct comparison

with the corresponding curves in Figure 4.1 is not possible since we do not yet

know the distance of the target, and comparing with all the curves at all distances

would be computationally very expensive. Therefore, we exploit the fact that

the successive curves in Figure 4.1 exhibit a monotonic dependence on distance.

Furthermore, when an observed scan is compared to the several successive curves

in any part of Figure 4.1, the two measures of difference between them described

in Sections 4.1.1 and 4.1.2 also exhibit a monotonic fall and rise around a single

minimum. Therefore, we are assured that we will not be settling at a suboptimal

point if we compare the observed scan not with all scans at all distances but

only with the four scans (one for each target type) whose central intensities are

closest to that of the observed scan. Therefore, for unsaturated scans, only four

comparisons need to be made. This remains the case even if the 2.5 cm increments

are reduced to smaller values. This has the advantage that the accuracy of the

system can be increased without increasing the cost of computation (although a
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(b) corner

−90 −80 −60 −40 −20 0 20 40 60 80 90
0

2

4

6

8

10

12

SCAN ANGLE (deg)

IN
T

E
N

S
IT

Y
 (

V
)

(c) edge
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(d) cylinder

Figure 4.1: Intensity scans of the four targets at different distances.

greater number of scans do have to be stored). As a test, we also ran a version of

the method where eight comparisons were made using the scans with the nearest

central intensities both above and below the observed central intensity, and also

using all of the scans shown in Figure 4.1. These computationally more expensive

approaches (the latter one exceedingly more so) did not improve the results over

those of comparison with only four scans. In fact, in the matched filtering case

discussed in Section 4.1.2, the results are even somewhat better when four scans

are used, due to the fact that this systematic elimination of a priori suboptimal

scans eliminates the small possibility that they will mistakenly be chosen as the

best matching scan due to noise and other errors.
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Two alternative approaches are employed in performing the four comparisons.

These are discussed below in the following two subsections.

4.1.1 Least-Squares Approach

First, we estimate the angular position θ of the target as follows: Assuming the

observed scan pattern is not saturated, we check if it has two humps or not. If

so, it is a corner and we find the angular location of the dip in the middle of

the two humps and the corresponding intensity value. If not, we find the angular

location of the maximum, denoted θMAX, and again the corresponding intensity

value. These angular values can be directly taken as estimates of the angular

position of the target. Alternatively, the angular position can be estimated by

finding the center-of-gravity (COG) of the scan as follows:

θCOG =

∑n
i=1 αiI(αi)∑n

i=1 I(αi)
(4.1)

where n is the number of samples in the angular scan. Ideally, these estimates

would be equal, but in practice they differ by a small amount. They would

be equal under ideal conditions because the scans are symmetric and peaked

at their center of symmetry. Symmetry follows from the symmetry of the data

acquisition process and the maximum value being at the center is a consequence

of the decrease of reflections with increasing |α|. We consider the use of both

alternatives when tabulating our results. From now on, we will refer to either

estimate as the center angle of the scan.

Plots of the intensity at the center angle of each scan in Figure 4.1 as a

function of the distance at which that scan was obtained, play an important part

in our method. Figure 4.2 shows these plots for the maximum intensity (central

dip intensity for corner) case.

In this approach, we compare the intensity scan of the observed target with

the four reference scans by computing their least-squares differences after aligning

their centers with each other. Since the squared difference is sensitive even to

multiplicative factors which are close to unity, we have employed an interpolated
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Figure 4.2: Central intensity versus distance curves for the different geometries.

reference scan obtained by linearly interpolating between the two consecutive

scans whose central intensities are just above and just below the observed scan.

The mean-square difference between the observed scan and the four interpolated

scans, one for each possible target type, is computed as follows:

Ej =
1

n

n∑

i=1

[I(αi − αalign)− Ij(αi)]
2 (4.2)

where Ij, j = 1, 2, 3, 4 denote the four interpolated reference scans. Here, αalign

is the angular shift that is necessary to align the two patterns. The target type

resulting in the smallest value of E is declared as the observed target. Once the

target type is determined, the range can be estimated by using linear interpolation

on Figure 4.2. We use the set of points associated with the determined geometry

type and employ linear interpolation between the points at which reference scans

are available to determine a distance estimate from the observed intensity value.

For instance, if the geometry is determined to be a corner, and the intensity

is observed to be 6 V, we use linear interpolation to estimate the distance as

approximately 43.5 cm. Note that, this way, the accuracy of the method is not

limited by the 2.5 cm spacing used in collecting the reference scans.
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4.1.2 Matched Filtering Approach

As an alternative, we have also considered the use of matched filtering [69] to

compare the observed and reference scans. The output of the matched filter is

the cross-correlation between the observed intensity pattern and the jth reference

scan normalized by the square root of its total energy:

yj(l) =

∑
k I(αk)Ij(αk−l)√∑

k [Ij(αk)]2
(4.3)

where l = 1, . . . , 2n − 1 and j = 1, 2, 3, 4. The target type corresponding to

the maximum cross-correlation peak is declared as the correct target type, and

the angular position of the correlation peak directly provides an estimate of the

azimuth angle of the target. Then, the distance is estimated by using linear

interpolation on Figure 4.2 using the intensity value at the azimuth estimate.

4.1.3 Saturated Scans

If saturation is detected in the observed scan, special treatment is necessary.

As with other target geometries, a corner scan is considered saturated when

its central intensity enters the saturation region, not the humps, since it is the

former value which is relevant for our method. In the least-squares approach,

mean-square difference between the aligned observed scan and all the saturated

reference scans are computed and the target type with the minimum mean-square

difference is chosen. The range estimate of the target is taken as the distance

corresponding to the scan resulting in the minimum mean-square difference. Sim-

ilarly, for the matched filter, correlation between the observed scan and all the

stored saturated reference scans is computed and the target type resulting in the

highest correlation peak is selected. The range estimate is again taken as that of

the best matching scan.

It should be noted that, in the saturated case, range estimation accuracy

is limited by the 2.5 cm interval at which the reference scans were taken since
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interpolation is not possible. In this case, we cannot expect a maximum error

better than ±1.25 cm and an average absolute error better than 0.625 cm. If this

accuracy is not satisfactory, it can be improved by reducing the 2.5 cm intervals.

We underline that the 2.5 cm interval does not limit the range estimation accuracy

in the unsaturated case, where accurate interpolation is possible from Figure 4.2.

In the unsaturated case, the azimuth could be estimated by taking the angular

value corresponding to either the maximum value of the intensity curve or its

COG. In the case of saturated scans, a single maximum may not be observed

but the COG can still be used to reliably estimate the azimuth. Even when the

maximum intensity is used for the unsaturated scans, the COG approach is used

for the saturated scans.

4.1.4 Experimental Verification

In this section, we experimentally verify the proposed method by locating the

targets at randomly selected distances z and azimuth angles θ and collecting a

total of 120 test scans. The targets are randomly located at azimuths varying

from −45◦ to 45◦ from 15 cm up to the maximum ranges in Figure 4.1.

The results of least-squares based target differentiation are displayed in Ta-

bles 4.1 and 4.2 in the form of target confusion matrices. Table 4.1 gives the

results obtained using the maximum (or the central dip for corner) intensity val-

ues, and Table 4.2 gives those obtained using the intensity value at the COG

of the scans. The average accuracy over all target types can be found by sum-

ming the correct decisions given along the diagonal of the confusion matrix and

dividing this sum by the total number of test trials (120). The average correct

classification rates obtained by using the max/dip and the COG variations of the

least-squares approach are 93% and 89%, respectively.

Matched filter differentiation results are presented in Table 4.3. The average

accuracy of differentiation over all target types is 97% which is better than that

obtained with the least-squares approach. The matched filter correctly classifies
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Table 4.1: Confusion matrix: least-squares based classification (max/dip varia-
tion).

target differentiation result total

P C E CY
P 29 – 1 – 30
C – 30 – – 30
E 1 – 26 3 30
CY 4 – – 26 30
total 34 30 27 29 120

Table 4.2: Confusion matrix: least-squares based classification (COG variation).

target differentiation result total

P C E CY
P 30 – – – 30
C – 30 – – 30
E 5 – 23 2 30
CY 4 – 2 24 30
total 39 30 25 26 120

planar targets as well as corners with an accuracy of 100%.

As shown in the tables, corners are always correctly identified regardless of

which method is used, due to their distinctive signature. Second best to corners

are planes which are also usually correctly identified. Cylinders and edges are the

most confused target types as we had expected from the similar nature of their

intensity scans. Nearly all misclassified targets are located at far ranges where

the return signal intensities are very weak.

The average absolute range and azimuth estimation errors for the different

approaches are presented in Table 4.4 over all test targets. As seen in the table,

using the max/dip and COG variations of the least-squares approach, the target
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Table 4.3: Confusion matrix: matched filter based classification.

target differentiation result total

P C E CY
P 30 – – – 30
C – 30 – – 30
E – – 29 1 30
CY – – 3 27 30
total 30 30 32 28 120

Table 4.4: Absolute range and azimuth estimation errors over all test targets.
(LS: least-squares, MF: matched filter.)

average
method P C E CY error

LS-max/dip r(cm) 1.0 0.7 1.1 1.8 1.2
θ(deg) 4.1 5.7 2.3 1.7 3.5

LS-COG r(cm) 0.5 0.7 4.3 1.5 1.7
θ(deg) 2.9 2.8 3.0 2.4 2.8

MF r(cm) 0.7 0.7 0.8 1.0 0.8
θ(deg) 1.2 1.7 1.8 1.8 1.6

ranges are estimated with average absolute range errors of 1.2 and 1.7 cm, re-

spectively. Matched filtering results in an average absolute range error of 0.8 cm

which is much better than that obtained with the least-squares approach. The

greatest contribution to the range errors comes from targets which are incorrectly

differentiated. If we average over only correctly differentiated targets, the average

absolute range errors are reduced to 0.6, 0.6, and 0.7 cm for the max/dip and

COG variations of least-squares and the matched filter approaches, respectively.

Since these numbers are comparable, we may conclude that the superior range ac-

curacy of matched filtering is mostly a consequence of its superior differentiation

accuracy.

As for azimuth estimation, matched filtering results in an average absolute
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estimation error of 1.6◦, which is the best among the approaches compared. Av-

eraging the azimuth errors over only correctly differentiated targets does not

result in significant changes. This is due to the fact that azimuth estimation is

not dependent on correct differentiation.

Because of the sharpness of the scans for the cylindrical target around their

peaks, azimuth estimation of cylinders is more accurate than that of other targets

when the least-squares approach is used. On the other hand, angular localization

of corners is less accurate since it is difficult to estimate with good accuracy

the exact angular location of the relatively shallow central dip, especially with

the max/dip variation of least-squares approach. The COG variation is, on the

average, better than the max/dip variation in azimuth estimation due to the fact

that COG based calculations average out the noise in the return signal intensities.

The accomplishment of this study is that even though the intensity patterns

are highly dependent on target location, and this dependence cannot be repre-

sented by a simple relationship, we achieve position-invariant target differentia-

tion. An average correct target differentiation rate of 97% over all target types

is achieved and targets are localized within absolute range and azimuth errors of

0.8 cm and 1.6◦, respectively. The method we propose is scalable in the sense

that the accuracy can be increased by increasing the number of reference scans

without increasing the computational cost.

4.2 Surface Differentiation and Localization

In this part of the study, we consider differentiation of surfaces having the same

planar geometry. The surfaces employed in this study are aluminum, white

painted wall, brown craft paper, and Styrofoam packaging material. Our method

is based on angularly scanning the surfaces over a certain angular range. Refer-

ence data sets are collected for each surface type with 2.5 cm distance increments,

ranging from 12.5 cm to 57.5 cm, at θ = 0◦.

The resulting reference scans for the four surfaces are shown in Figure 4.3.
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Figure 4.3: Intensity scans of the four surfaces at different distances.

Notice that the scans are peaked at around α = 0◦ since both specular and diffuse

reflections decrease with increasing |α|. The intensity scans are θ-invariant but

not z-invariant; changes in z do not result in any simple scaling. As we will

see, these scans contain sufficient information to identify and localize different

surfaces with a good degree of accuracy.

Figure 4.4 shows the maximum intensity of each scan as a function of the

distance at which that scan was obtained. Once the type of the surface is de-

termined, the range can be estimated by using Figure 4.4. For instance, if the

surface is determined to be a white wall, and the intensity is observed to be 6 V,
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we use linear interpolation to estimate the distance as approximately 43.5 cm.

The same methodology as in Section 4.1 is used here.

10 15 20 25 30 35 40 45 50 55 60
0

2

4

6

8

10

12

DISTANCE (cm)

IN
T

E
N

S
IT

Y
 (

V
)

aluminum
white wall
brown paper
Styrofoam

Figure 4.4: Central intensity versus distance curves for the different surfaces.

4.2.1 Experimental Verification

In this section, we experimentally verify the proposed method by locating the

surfaces at randomly selected distances z and azimuth angles θ and collecting a

total of 100 test scans. The surfaces are randomly located at ranges from 12.5 to

57.5 cm and azimuths from −45◦ to 45◦.

The results of least-squares based surface differentiation are displayed in Ta-

bles 4.5 and 4.6 in the form of surface confusion matrices. Table 4.5 gives the

results obtained using the maximum intensity values, and Table 4.6 gives those

obtained using the intensity value at the COG of the scans. The average accuracy

over all surface types can be found by summing the correct decisions given along

the diagonal of the confusion matrix and dividing this sum by the total number

of test trials (100). The average correct classification rates obtained by using the

maximum intensity and the COG variations of the least-squares approach are

81% and 82%, respectively.
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Table 4.5: Confusion matrix: least-squares based recognition (maximum intensity
variation). (AL: aluminum, WW: white wall, BR: brown paper, ST: Styrofoam).

surface recognition result total

AL WW BR ST
AL 25 – – – 25
WW – 20 3 2 25
BR – 5 17 3 25
ST – – 6 19 25
total 25 25 26 24 100

Table 4.6: Confusion matrix: least-squares based recognition (COG variation).

surface recognition result total

AL WW BR ST
AL 25 – – – 25
WW – 20 3 2 25
BR – 4 18 3 25
ST – – 6 19 25
total 25 24 27 24 100

Matched filter differentiation results are presented in Table 4.7. The average

accuracy of differentiation over all surfaces is 87%, which is better than that

obtained with the least-squares approach. In Section 4.1, where we dealt with the

differentiation of targets with different geometries as opposed to different surfaces

treated in this section, the least-squares approach resulted in a differentiation

accuracy of 93% and 89% and the matched filtering approach resulted in an

accuracy of 97%. Based on these results, we conclude that differentiating targets

with different surfaces is considerably more difficult than differentiating targets

with different geometries.

As shown in the tables, aluminum is always correctly identified regardless of

which method is used, due to its distinctive signature. The remaining surfaces are
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Table 4.7: Confusion matrix: matched filtering based recognition.

surface recognition result total

AL WW BR ST
AL 25 – – – 25
WW – 21 3 1 25
BR – 1 21 3 25
ST – – 5 20 25
total 25 22 29 24 100

comparable in terms of their correct identification percentages. Brown craft paper

is the surface most confused with others, especially Styrofoam. Although the

intensity scans of these two surfaces do not resemble each other in the unsaturated

region, their saturated scans are similar, contributing to the misclassification rate.

Nearly all misclassified targets are located at nearby ranges where the return

signal intensities are saturated. This means that the misclassification rate can be

reduced by increasing the lower limit of the range interval at the cost of reducing

the operating range.

The average absolute range and azimuth estimation errors for the different

approaches are presented in Table 4.8 over all surface types. As seen in the table,

using the maximum intensity and COG variations of the least-squares approach,

the target ranges are estimated with average absolute range error of 1.5 cm in

both cases. Matched filtering results in an average absolute range error of 1.2 cm

which is better than that obtained with the least-squares approach. The greatest

contribution to the range errors comes from targets which are incorrectly recog-

nized. If we average over only correctly recognized targets, the average absolute

range errors become 1.0, 1.1, and 1.2 cm for the maximum intensity and COG

variations of least-squares and the matched filter approaches, respectively. Since

these three numbers are relatively closer than the corresponding numbers in Ta-

ble 4.8, we may conclude that the superior range accuracy of matched filtering is

mostly a consequence of its superior differentiation accuracy. The major contri-

bution to range errors comes from saturated scans where linear interpolation from
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Table 4.8: Absolute range and azimuth estimation errors over all surfaces.

average
method AL WW BR ST error

LS-max r(cm) 2.4 1.3 1.3 0.9 1.5
θ(deg) 0.8 1.9 1.6 0.8 1.3

LS-COG r(cm) 2.4 1.3 1.3 0.9 1.5
θ(deg) 0.8 1.0 1.6 0.8 1.1

MF r(cm) 1.7 1.2 1.0 0.8 1.2
θ(deg) 0.8 1.1 1.6 0.7 1.0

Figure 4.4 cannot be employed to obtain better range estimates. Consequently,

surfaces for which saturation occurs over a greater portion of the operating range

exhibit greater range estimation errors, with aluminum being the worst.

As for azimuth estimation, matched filtering results in an average absolute

estimation error of 1.0◦, which is the best among the approaches compared. Av-

eraging the azimuth errors over only correctly differentiated surfaces does not

result in significant changes. This is because azimuth estimation is not depen-

dent on correct differentiation. The COG variation is, on the average, better than

the maximum intensity variation in azimuth estimation because COG based cal-

culations average out the noise in the return signal intensities.

We have also considered expanding the range of operation of the system. As an

example, changing the operating range from [12.5 cm, 57.5 cm] to [5 cm, 60 cm],

results in a reduction of the correct differentiation percentage from 87% to 80%.

This reduction in performance is mostly a consequence of highly saturated scans

and scans with very low intensities, both of which are prone to greater errors.

Light reflected from a surface consists of specular and diffuse components.

The specular component is concentrated along the direction where the reflection

angle equals the incidence angle, whereas the diffuse component is spread equally
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in all directions with a cosine factor. For different types of surfaces, the contri-

bution of these two components and the rate of decrease of intensity with the

scan angle α is different. It is this difference which results in a characteristic in-

tensity scan pattern (signature) for each surface, enabling us to distinguish them

without knowing their positions. In contrast, a system relying only on reflected

energy could not distinguish between a highly reflecting distant object and a less

reflecting nearby one. Occasionally, two very distinct surfaces may have intensity

scans with very similar dependence on α, in which case they cannot be reliably

differentiated with the present method.

4.3 Geometry and Surface Differentiation and

Localization

In this part of the study, we investigate the problem of differentiation and lo-

calization targets whose geometry and surface properties both vary, generalizing

and unifying the results of Sections 4.1 and 4.2.

The targets employed are plane, 90◦ corner, and 90◦ edge each with a height

of 120 cm (Figure 2.12). They are covered with aluminum, white cloth, and

Styrofoam packaging material. Reference data sets are collected for each target

with 2.5 cm distance increments, from their nearest to their maximum observable

ranges, at θ = 0◦.

The resulting reference scans for plane, corner, and edge covered with mate-

rials of different surface properties are shown in Figure 4.5. The intensity scans

are θ-invariant but not z-invariant; changes in z result in variations in both the

magnitude and the basewidth of the intensity scans. Scans of corners covered

with white cloth and Styrofoam packaging material have a triple-humped pat-

tern (with a much smaller middle hump) corresponding to the two orthogonal

constituent planes and their intersection. The intensity scans for corners cov-

ered with aluminum [Figure 4.5(d)] have three distinct saturated humps. The

same methodology as described in Section 4.2 is used. The same two alternative
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Figure 4.5: Intensity scans for targets (first row, plane; second row, corner; third
row, edge) covered with different surfaces (first column, aluminum; second col-
umn, white cloth; third column, Styrofoam) at different distances.
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approaches are employed in classifying the observed scans. The only difference

is that each observed scan is compared with nine (3 geometries × 3 surfaces )

reference scans instead of four.

Plots of the intensity at the center angle of each scan in Figure 4.5 as a

function of the distance at which that scan was obtained, play an important role

in our method. Figure 4.6 shows these plots for the intensity value at the COG

of each scan for planes, corners, and edges. Once the geometry and the surface

type are determined, the range can be estimated by using linear interpolation on

the appropriate curve in Figure 4.6. This way, the accuracy of the method is not

limited by the 2.5 cm spacing used in collecting the reference scans.

Table 4.9: Confusion matrix: least-squares based classification (maximum varia-
tion) (WC: white cloth).

d e t e c t e d
P C E

AL WC ST AL WC ST AL WC ST
AL 24 – – – – – – – –

a P WC – 25 4 – – – – – –
c ST – 9 20 – – – – – –
t AL – – – 22 – – – – –
u C WC – – – – 10 12 – – –
a ST – – – – – 20 – – –
l AL – – – – – – 9 – 1

E WC – – – – – – – 11 9
ST – – 1 – – – – 8 9

4.3.1 Experimental Verification

In this section, we experimentally verify the proposed method by situating targets

at randomly selected distances z and azimuth angles θ and collecting a total of

194 test scans. The targets are randomly located at azimuth angles varying from

−45◦ to 45◦ from their nearest to their maximum observable ranges in Figure 4.5.
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Figure 4.6: Central intensity (COG) versus distance curves for different targets:
(a) plane; (b) corner; (c) edge.
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Table 4.10: Confusion matrix: least-squares based classification (COG variation).

d e t e c t e d
P C E

AL WC ST AL WC ST AL WC ST
AL 24 – – – – – – – –

a P WC – 25 4 – – – – – –
c ST – 9 20 – – – – – –
t AL – – – 22 – – – – –
u C WC – – – – 13 9 – – –
a ST – – – – 2 18 – – –
l AL – – 1 – – – 7 – 2

E WC – – – – – – – 14 6
ST – 1 1 – – – – 10 6

The results of least-squares based target differentiation are displayed in Ta-

bles 4.9 and 4.10 in the form of confusion matrices. Table 4.9 gives the results

obtained using the maximum intensity (or the middle-of-two-maxima intensity

for corner) values, and Table 4.10 gives those obtained using the intensity value

at the COG of the scans. The average accuracy over all target types can be

found by summing the correct decisions given along the diagonal of the confu-

sion matrix and dividing this sum by the total number of test trials (194). The

same average correct classification rate is achieved by using the maximum and

the COG variations of the least-squares approach, which is 77%.

Matched filter differentiation results are presented in Table 4.11. The average

accuracy of differentiation over all target types is 80% which is better than that

obtained with the least-squares approach.

Planes and corners covered with aluminum are correctly classified with all

approaches employed due to their distinctive features. Planar targets of different

surface properties are better classified than the others, with a correct differen-

tiation rate of 91% for the matched filtering approach. For corner targets, the

highest correct differentiation rate of 83% is achieved with the COG variation
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Table 4.11: Confusion matrix: matched filter based classification.

d e t e c t e d
P C E

AL WC ST AL WC ST AL WC ST
AL 24 – – – – – – – –

a P WC – 27 2 – – – – – –
c ST – 5 24 – – – – – –
t AL – – – 22 – – – – –
u C WC – – – – 14 8 – – –
a ST – – – – 4 16 – – –
l AL – – – – – – 9 1 –

E WC – – – – – – – 11 9
ST – – 2 – – – – 8 8

of the least-squares approach. The greatest difficulty is encountered in the dif-

ferentiation of edges of different surfaces, which have the most similar intensity

patterns. The highest correct differentiation rate of 60% for edges is achieved

with the maximum intensity variation of the least-squares approach. Taken sep-

arately, the geometry and surface type of targets can be correctly classified with

rates of 99% and 81%, respectively, which shows that the geometrical proper-

ties of the targets are more distinctive than their surface properties, and surface

determination is the limiting factor.

The average absolute range and azimuth estimation errors for the different

approaches are presented in Table 4.12 for all test targets. As we see in the

table, using the maximum and COG variations of the least-squares approach, the

target ranges are estimated with average absolute range errors of 1.8 and 1.7 cm,

respectively. Matched filtering results in an average absolute range error of 1.5 cm

which is better than the least-squares approach. The greatest contribution to the

range errors comes from targets which are incorrectly differentiated and/or whose

intensity scans are saturated. If we average over only correctly differentiated

targets (regardless of whether they lead to saturation), the average absolute range

errors are reduced to 1.2, 1.0, and 0.7 cm for the maximum and COG variations of

least-squares and the matched filtering approaches, respectively. As for azimuth

estimation, the respective average absolute errors for the maximum and COG
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Table 4.12: Absolute range and azimuth estimation errors over all test targets.

P C E average
method AL WC ST AL WC ST AL WC ST error
LS-max r(cm) 2.2 2.3 1.0 2.1 0.8 0.5 2.4 1.9 2.7 1.8

θ(deg) 0.9 2.3 0.8 2.4 1.7 1.3 1.1 2.0 1.7 1.6
LS-COG r(cm) 2.2 0.6 1.0 2.1 0.6 0.6 3.8 1.4 3.2 1.7

θ(deg) 0.9 1.0 0.8 2.4 1.4 1.1 1.2 2.2 2.3 1.5
MF r(cm) 1.7 0.5 0.7 1.5 0.6 0.6 2.2 1.7 4.2 1.5

θ(deg) 0.8 0.9 0.7 1.0 1.1 1.0 1.1 2.6 0.9 1.1

variations of least-squares and the matched filtering approaches are 1.6◦, 1.5◦,

and 1.1◦, with matched filtering resulting in the smallest error. When we average

over only correctly differentiated targets, these errors are reduced to 1.5◦, 1.2◦,

and 0.9◦, respectively.

4.3.2 Limitations of System Performance

To explore the limitations of the system performance and to assess the robustness

of the system, we have also tested the system with targets of either unfamiliar

geometry, unfamiliar surface, or both, whose scans are not included in the refer-

ence data sets. Therefore, these targets are totally new to the system. First, tests

are done for planes, corners, and edges covered with five new surfaces: brown,

violet, black, and white paper, and wood. The results of these tests are presented

in Tables 4.13–4.15. Planes are classified as planes 100% of the time using both

variations of the least-squares method and 99.3% of the time using the matched

filtering approach. Corners are classified as corners 100% of the time using any of

the three approaches. Edges are correctly classified 89.1% of the time using the

maximum variation of the least-squares approach, 88.2% of the time using the

COG variation of the least-squares approach, and 87.3% of the time using the

matched filtering approach. In these tests, no target type is mistakenly classified

as a corner due to the unique characteristics of the corner scans. For the same
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Table 4.13: Confusion matrix for planar targets with unfamiliar surface. (WO:
wood, VI: violet paper, BL: black paper, WH: white paper.)

d e t e c t e d
P C E

AL WC ST AL WC ST AL WC ST
WO – 16 14 – – – – – –
BR – 20 10 – – – – – –

a P VI – 22 8 – – – – – –
(LS-max) BL – 24 6 – – – – – –

c WH – 18 11 – – – – – –
WO – 15 15 – – – – – –

t BR – 20 10 – – – – – –
P VI – 22 8 – – – – – –

u (LS-COG) BL – 24 6 – – – – – –
WH – 16 13 – – – – – –

a WO – 19 11 – – – – – –
BR – 22 8 – – – – – –

l P VI – 23 6 – – – – – 1
(MF) BL 1 25 4 – – – – – –

WH – 18 11 – – – – – –

reason, corners of the preceding five surface types are never classified as planes

or edges. The range and azimuth errors are comparable or slightly larger than

before (not shown).

We have also tested the system with cylinders, which were not among the

three geometries in the original data sets, with the same surface types as used

in the reference data sets: aluminum, white cloth, and Styrofoam. The results

are given in Table 4.16 and indicate that cylindrical targets are most likely to

be classified as edges. In this case, correct surface classification rate drops to

35%. We have also considered cylinders whose surface properties are different

than the surface types considered in the reference data sets. These are brown,

violet, black, and white paper, and wood. That is, both the geometry and surface

type of this target is totally unfamiliar to the system. Again, cylinders are most

likely to be classified as edges with Styrofoam surface type (see Table 4.17). In
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these two cases, average range estimation error increases to about 9 to 11 cm, but

the azimuth error is of the same order of magnitude as before, since our azimuth

estimation method is independent of target type.

Table 4.14: Confusion matrix for corner targets with unfamiliar surface.

d e t e c t e d
P C E

AL WC ST AL WC ST AL WC ST
WO – – – – 9 13 – – –
BR – – – 1 3 17 – – –

a C VI – – – 1 20 – – – –
(LS-max) BL – – – – 12 10 – – –

c WH – – – – 12 9 – – –
WO – – – – 10 12 – – –

t BR – – – 1 3 17 – – –
C VI – – – 1 2 18 – – –

u (LS-COG) BL – – – – 13 9 – – –
WH – – – – 13 8 – – –

a WO – – – – 14 8 – – –
BR – – – 1 4 16 – – –

l C VI – – – 1 3 17 – – –
(MF) BL – – – – 13 9 – – –

WH – – – – 13 8 – – –

These results indicate that geometrical properties of the targets are more dom-

inant and distinctive compared to their surface properties. When the geometry

is familiar but the surface type is not, as in the cases in Tables 4.13–4.15, the cor-

rect classification rate of the geometry is very high (about 96% on the average).

However, when the surface type is familiar but the geometry is not, the correct

classification rate of the surface type is lower (35%), as in Table 4.16.

Among the three approaches, the maximum variation of the least-squares ap-

proach is slightly more robust to deviations from targets included in the reference

sets.
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Table 4.15: Confusion matrix for edge targets with unfamiliar surface.

d e t e c t e d
P C E

AL WC ST AL WC ST AL WC ST
WO – 1 5 – – – – 9 7
BR – – 2 – – – – 12 8

a E VI – – 2 – – – – 10 8
(LS-max) BL – – – – – – – 14 9

c WH – – 2 – – – – 12 9
WO – 2 4 – – – 1 11 4

t BR – – – – – – 1 15 6
E VI – 1 3 – – – – 15 1

u (LS-COG) BL – 1 – – – – – 16 6
WH – 2 – – – – – 13 8

a WO – – 6 – – – – 12 4
BR – – 3 – – – – 10 9

l E VI – – 1 – – – – 17 2
(MF) BL – – 2 – – – – 15 6

WH – – 2 – – – – 12 9

4.3.3 Effect of Orientation of the Targets

In this section, we will discuss the effect of varying the orientation of the targets

from their head-on positions. This constitutes a separate degree-of-freedom than

the range and azimuth of the targets. Varying the orientation for planes does

not make any difference since a complete scan is acquired. The acquired scan

will still be that of a plane, with its peak shifted to the azimuthal value which

corresponds to the direction where the sensor line-of-sight is perpendicular to

the plane. In other words, varying the orientation of planes does not lead to

any deterioration in performance since such planes are already included in the

reference set. Variation of orientation is not an issue for cylinders to begin with,

since they are rotation invariant.

Change of orientation will make a difference when the target geometry is a

corner or an edge, leading to scans not existing in the reference set. Unlike with
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Table 4.16: Confusion matrix for cylindrical targets with familiar surface.

d e t e c t e d
P C E

AL WC ST AL WC ST AL WC ST
AL – – – – – – 1 – 12

a CY WC 7 – 1 – – – – 5 12
c (LS- max) ST 4 – – – – – 1 4 16
t AL – – – – – – – – 13
u CY WC 7 1 – – – – – 4 13
a (LS-COG) ST 4 1 1 – – – – 5 14
l AL – – – – – – 1 – 12

CY WC 8 – 2 – – – – 2 13
(MF) ST 5 – 1 – – – – 5 14

the case of planes and cylinders, varying the orientation of corners and edges leads

to asymmetric scans. If the scan is symmetric, it is either a plane or a cylinder,

or a corner or an edge with nearly 0◦ orientation, and the described algorithm

can handle it. If the scan is asymmetric, we know that the target is either a

corner or an edge with nonzero orientation. While it is possible to deal with this

case by extending the reference set to include targets with nonzero orientation,

the introduction of a simple rule allows us to handle such cases with only minor

modification of the already presented algorithm. We can determine whether the

asymmetric scan comes from a corner or an edge by checking whether or not it

has two humps. Thus, even with arbitrary orientations, the target geometry can

be determined. Furthermore, we observe that variations in orientation have very

little effect on the central intensity of the asymmetric scans (see Figure 4.7 for

some examples). This means that the central intensity value can be used for de-

termining the distance in the same manner as before by using linear interpolation

on the central intensity versus distance curves for a particular target.

To summarize, with the above observations and minor modifications to the

algorithm, the same geometry and surface recognition and position estimation

objectives can be achieved even when the targets do not have 0◦ orientations.
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Table 4.17: Confusion matrix for cylindrical targets with unfamiliar surface.

d e t e c t e d
P C E

AL WC ST AL WC ST AL WC ST
WO 8 – – – – – – 4 13
BR 7 – – – – – – 5 13

a CY VI 7 1 1 – – – – 5 12
(LS-max) BL 5 – – – – – – 3 16

c WH 8 – – – – – – 5 13
WO 8 – – – – – – 3 14

t BR 7 – 1 – – – – 4 13
CY VI 7 2 1 – – – – 5 11

u (LS-COG) BL 5 – – – – – 1 7 11
WH 8 1 – – – – – 3 14

a WO 8 – – – – – – 5 12
BR 7 – 2 – – – – 4 12

l CY VI 8 – 3 – – – – 3 12
(MF) BL 7 – 2 – – – – 3 12

WH 8 – – – – – – 5 13

Note, however, that while this approach enables us to accomplish the desired ob-

jectives in an orientation-invariant manner, it does not determine the orientation

of the target. If determination of target orientation is also desired, this can be

accomplished either by storing corresponding scans in the reference set (increas-

ing storage requirements), or more efficiently by constructing orientation angle

versus measure-of-asymmetry plots based on suitable measures of asymmetry (for

instance, ratios of characteristics of the left- and right-hand sides of the scans).

In order to demonstrate this, we performed additional experiments with cor-

ners and edges. These targets were placed at random orientation angles at ran-

domly selected distances. A total of 100 test scans were collected. Using the

orientation-invariant approach already described, 100% correct differentiation and

absolute mean range errors of 1.02 and 1.47 cm for corners and edges respectively

were achieved.
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Figure 4.7: Intensity scans for a wooden (a) corner at 65 cm, (b) edge at 35 cm
for orientations between 0◦ and 35◦ with 2.5◦ increments. The curves with the
dotted lines indicate 0◦ orientation.

We also tested the case where reference scans corresponding to different ori-

entations are acquired. Reference data sets were collected for both targets with

5 cm distance increments at θ = 0◦, where the orientation of the targets are

varied between −35◦ to 35◦ with 2.5◦ increments. A total of 489 reference scans

were collected. For each test scan, the best-fitting reference scan was found by

matched filtering. This method also resulted in 100% correct differentiation rate.

Absolute mean range and orientation errors for corners and edges were 1.13 and

1.26 cm and 4.48◦ and 5.53◦, respectively.

The matched filtering approach in general gave better results both for dif-

ferentiation and localization. The robustness of the methods was investigated

by presenting the system with targets of either unfamiliar geometry, unfamiliar

surface type, or both. These targets were not included in the reference sets so

they were completely new to the system.

An average correct target differentiation rate of 80% over all target types was

achieved and targets were localized within absolute range and azimuth errors of

1.5 cm and 1.1◦, respectively. The method we propose is scalable in the sense

that the accuracy can be increased by increasing the number of reference scans
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without increasing the computational cost. The results reported here represent

the outcome of our efforts to explore the limits of what is achievable in terms

of identifying information with only a simple emitter-detector pair. Such simple

sensors are usually put to much lower information-extracting uses.

We have seen that the geometrical properties of the targets are more dis-

tinctive than their surface properties, and surface determination is the limiting

factor. In this study, we have demonstrated target differentiation for three target

geometries and three different surfaces. Based on the data we have collected and

the results of Sections 4.1, 4.2, and 4.3, it seems possible to increase the vocabu-

lary of different geometries, provided they are not too similar. However, the same

cannot be said for the number of different surfaces. For a given total number of

distinct targets, increasing the number of surfaces and decreasing the number of

geometries will, in general, worsen the results. On the other hand, decreasing

the number of surfaces and increasing the number of geometries will in general

improve the results.

In the next chapter, as an alternative to template-based differentiation, we

consider processing the same experimental data using artificial neural networks

and provide a comparison of the results.



Chapter 5

NEURAL NETWORK-BASED

DIFFERENTIATION

In this chapter, we propose artificial neural networks for target differentiation as

an alternative to the template-based approach described in Chapter 4.

Artificial neural networks (ANNs) have been widely used in areas such as

target detection and classification [70], speech processing [71], system identifica-

tion [72], control theory [73], medical applications [74], and character recogni-

tion [75]. In this chapter, ANNs are employed to identify and resolve parameter

relations embedded in the characteristics of infrared intensity scans acquired from

target types of different geometry, possibly with different surface properties, for

their differentiation in a robust manner. This is done in two stages, where the

first stage consists of target geometry determination and the second stage involves

determining the surface type of the target.

ANNs consist of an input layer, one or more hidden layers to extract progres-

sively more meaningful features, and a single output layer, each comprised of a

number of units called neurons. The model of each neuron includes a smooth

nonlinearity, which is called the activation function. Due to the presence of dis-

tributed nonlinearity and a high degree of connectivity, theoretical analysis of

ANNs is difficult. These networks are trained to compute the boundaries of

55
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Figure 5.1: Activation function used in the neural networks.

decision regions in the form of connection weights and biases by using training

algorithms. Performance of ANNs is affected by the choice of parameters re-

lated to the network structure, training algorithm, and input signals, as well as

parameter initialization.

This chapter is organized as follows: Section 5.1 introduces the ANN structure

and parameters. Geometry and surface determination is described with experi-

mental results in Sections 5.2 and 5.3, respectively.

5.1 ANN Structure and Parameters

The ANNs used in this thesis consist of one input, one hidden, and one output

layer, with 160, 10, and 3 neurons, respectively. The numbers for the input and

hidden layers both include the bias values of 1. The hyperbolic tangent function

of the form ϕ(v) = (1− e−2v)/(1 + e−2v), illustrated in Figure 5.1, is used as the

activation function for all the neurons. The output neurons can take continuous

values between –1 and 1 and the decision at the output is made based on a

maximum selection scheme. The structure of the ANN is given in Figure 5.2.
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Figure 5.2: Neural network structure used in the study.

It is important to determine the optimal network structure with respect to

the correct differentiation rate and network complexity. The infrared scans are

provided as input to the ANN after being downsampled by 10 to reduce the com-

plexity of the network (the number of connection weights between the input and

hidden layers). This sampling rate is chosen such that the patterns preserve their

shapes and no identifying information is lost. Our different trials show that in-

clusion of more samples of the original scans does not improve the differentiation

accuracy. Fully-connected ANNs are trained starting with different initial con-

ditions, different weight factors, and different numbers of neurons in the hidden

layer.

Two training algorithms are considered, namely, back-propagation (BP) and

Levenberg-Marquardt (LM) algorithms. A set of training patterns is presented

to the network. With the BP algorithm, the error between the resulting signal at

the output and the desired signal is minimized with a gradient-descent procedure.

The two adjustment parameters of the algorithm, namely the learning rate and

the momentum constant [76] are chosen as 0.01 and 0.9, respectively.

Since the results of training with BP were not satisfactory, training of ANNs

was done by the LM algorithm which is more robust and converges in a shorter
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time than BP. When the ANNs are trained with the LM algorithm, a weight decay

factor is used for regularization. One disadvantage of this algorithm is the high

memory requirement, which is not an issue for our relatively small training set.

This method is applied in the batch mode, where the network parameters are

updated after processing the whole input data. The weight decay factor is chosen

as 10−4. By choosing this factor sufficiently small, one can reduce the average

generalization error. If the weight decay factor is chosen too small (< 10−4), it

will take a long time to converge to the desired accuracy. On the other hand, for

greater weight decay factors, the ANN may not converge to the desired accuracy.

The learning rate of the LM algorithm is changed adaptively, so the initial value

of the learning rate only affects the convergence speed of the network.

Average mean-square error criterion is used for the convergence of ANNs and

the acceptable error level is set to a value of 10−3. The training process stops

either when the error criterion is satisfied or the maximum number of epochs

(100,000) is exceeded, whichever occurs earlier. The second case occurs very

rarely.

After training the fully-connected network, the network structure is further

optimized by pruning the weights, which involves training the network until it

has the minimum number of weights and hidden-layer neurons for a given error

tolerance level. Pruning can be done by eliminating weights having the smallest

magnitudes, but the resulting ANNs may not be optimal as the weights with

smaller magnitudes may be important for the training [77]. In this thesis, Opti-

mal Brain Surgeon technique [55] is implemented for finding the optimal network

structure. This technique uses second-order approximation of the criterion func-

tion (J in Equation (5.1)) for evaluating the effect of the weights on the training

error. J is the sum-squared-error criterion, J(w) = 1
2

∑3
k=1(tk − zk)

2, where w

is the weight vector, tk and zk are the desired and actual output values. The

network is trained to a local minimum and the weight resulting in the smallest

increase in the training error is pruned. The Taylor series expansion of the crite-

rion function around w∗, which results in local minimum training error, is given
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by:

δJ =

(
δJ

δw

)T

· δw +
1

2
δwT · δ2J

δw2
· δw +O

(
‖δw‖3

)
(5.1)

The first term in Equation (5.1) is approximately zero and third and higher-

order terms are ignored. The δ2J
δw2

in the second term is called the Hessian

matrix (H). Given that one weight is eliminated, the solution that minimizes this

function is given as

δw = − wq[
H−1

]
qq

H−1 · uq and Lq =
1

2

wq
2

[
H−1

]
qq

(5.2)

where δw is optimal weight change, wq is the qth weight, uq is the unit vector

along the qth direction, [H−1]qq is the qth diagonal element of the inverse Hessian

matrix, and Lq is the training error if weight q is pruned. The weights other than

those eliminated are updated using Lq in Equation (5.2). Optimal Brain Surgeon

procedure is outlined below [55]:

1. train a reasonably large network to minimum error

2. compute H−1

3. find the q that gives the smallest saliency and compute Lq

4. if Lq is less than a preset error bound, eliminate the qth weight, proceed to

step 5; otherwise proceed to step 6

5. use the q from step 3 to update all weights using Lq

6. If no more weights can be eliminated without large increase in training

error, retrain the network

In our case, when 5% of the weights are pruned, the network is retrained

within a maximum of 50 iterations. (Retraining can also be done each time one

of the weights is pruned. However, this is a very time-consuming process.) At

each retraining step, the ANN is tested with the test data and the error and the
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corresponding weights are stored. The pruned network resulting in the smallest

test error is chosen as the optimal one and is retrained with the weights resulting

in the minimum test error, but with no weight decay factor. In the implemen-

tation of LM and Optimal Brain Surgeon, the ANN-based system identification

toolbox [78, 79] is used.

5.2 Differentiation of Geometry Types with

ANN

The targets employed in this part of the study are plane, corner, and edge (Fig-

ure 2.12), covered with aluminum, white cloth, and Styrofoam packaging ma-

terial. Reference data sets are collected for each geometry-surface combination

with 2.5 cm distance increments, from their nearest to their maximum observable

ranges, at θ = 0◦. The resulting reference scans are shown in Figure 4.5. Note

that these scans are the original scans, not their downsampled versions used as

training inputs to the ANN. The training set consists of 147 sample scans, 60

of which correspond to planes, 49 of which correspond to corners, and 38 of

which correspond to edges. The number of scans for each geometry is different.

This is because the targets have different reflective properties and each target

is detectable over a different distance interval determined by its geometry and

surface properties. We have chosen to acquire the training scans in a uniformly

distributed fashion over the detectable range for each target. Training is done by

the LM algorithm. The input weights are initialized randomly. The ANN result-

ing in the highest correct differentiation rate on the training and test sets has 10

hidden-layer neurons in fully connected form. Initially, Optimal Brain Surgeon

is not used for pruning the network so that this ANN may not have the optimal

structure.

We test the ANN with infrared data acquired by situating targets at randomly

selected distances r and azimuth angles θ and collecting a total of 194 test scans,

82 of which are from planes, 64 from corners, and 48 from edges. The targets are

randomly located at azimuth angles varying from −45◦ to 45◦ from their nearest
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Table 5.1: Confusion matrix for ANN before Optimal Brain Surgeon: results are
outside (inside) the parentheses for maximum intensity (COG) based azimuth
estimation.

target differentiation result total

P C E
P 75(76) –(–) 7(6) 82(82)
C –(–) 64(64) –(–) 64(64)
E –(5) –(–) 48(43) 48(48)
total 75(81) 64(64) 55(49) 194(194)

to their maximum observable ranges. (Note that the test scans are collected for

random target positions and orientations whereas the training set was collected

for targets at equally-spaced ranges at θ = 0◦.) When a test scan is obtained, first,

the azimuth of the target is estimated using the center-of-gravity (COG) and/or

the maximum intensity of the scans. The test scans are shifted by the azimuth

estimate, then downsampled by 10, and the resulting scan is used as input to

the ANN. The differentiation results for the COG case are shown in Table 5.1

in parentheses, where an overall correct differentiation rate of 94.3% is achieved.

Corners are always correctly identified and not confused with the other target

types due to the special nature of their scans. Planes are confused with edges at

six instances out of 82 and similarly, edges are confused with planes in five cases

out of 48. Secondly, to observe the effect of the azimuth estimation method,

we used the maximum values of the unsaturated intensity scans. The overall

correct differentiation rate in this case is 96.4% (given outside the parentheses in

Table 5.1), which is better than that obtained using COG, due to the improvement

in the classification of edges. Except for seven planar test scans, all planes are

correctly differentiated. Six of the seven incorrectly classified planar test targets

are covered with aluminum, whose intensity scans are saturated.

At the next step, the ANN is pruned with the Optimal Brain Surgeon tech-

nique. The plot of training and test errors with respect to the number of weights

left after pruning is shown in Figure 5.3. In this figure, the errors evolve from

right to left. The minimum error is obtained on the test set when 263 weights
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are used. The eliminated weights are set to zero. As the number of weights is

decreased beyond 263, both the training and test errors increase rapidly due to

the elimination of too many weights. If 263 weights are kept, the corresponding

number of hidden-layer neurons is still 10. Pruned neural network is given in

Figure 5.4.
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Figure 5.3: Test and training errors while pruning the network with Optimal
Brain Surgeon.

Using the weights resulting in the smallest test error, we retrained the network

again with the LM algorithm but with zero weight decay factor. The ANN

converges in seven iterations to an error of 0.00033. The differentiation results

for the optimized network are given in Table 5.2. An overall correct differentiation

rate of 99.0% is achieved. Therefore, apart from optimizing the structure of the

ANN, pruning the network resulted in improved geometry differentiation.

5.3 Differentiation of Surface Types with ANN

In the second stage, we consider differentiating the surface types of the targets

assuming their geometries are correctly identified previously. The same network
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Figure 5.4: Neural network after pruned with Optimal Brain Surgeon.

structure and the same procedure used in geometry differentiation is employed in

surface type classification.

For each geometry, all surface types are correctly differentiated in the training

set. In Table 5.3, the confusion matrix for the three geometries and surfaces is

given. For planes, an average correct differentiation rate of 80.5% is achieved.

Planes covered with aluminum are correctly classified with 100% correct differen-

tiation rate. The surface types of the corners are correctly classified with a rate

Table 5.2: Confusion matrix for ANN after Optimal Brain Surgeon.

target differentiation result total

P C E
P 80 – 2 82
C – 64 – 64
E – – 48 48
total 80 64 50 194
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Table 5.3: Confusion matrix for three geometries and three surface types.

d e t e c t e d

P C E U

AL WC ST AL WC ST AL WC ST

AL 24 – – – – – – – – –
a P WC – 23 6 – – – – – – –
c ST – 9 19 – – – – – – 1

t AL – – – 22 – – – – –
u C WC – – – – 14 8 – – – –
a ST – – – – 1 19 – – – –

l AL – – – – – – 8 – – 2
E WC – – – – – – – 19 – 1

ST – – – – – – – 13 4 1

of 85.9%. All corners covered with aluminum are correctly differentiated due to

their distinctive features. Worst classification rate (64.6%) is achieved for edges

due to their narrower basewidths. Edges covered with Styrofoam are incorrectly

classified as edges covered with white cloth with a rate of 72.2%. However, edges

covered with white cloth are not confused with Styrofoam packaging material.

An overall correct differentiation rate of 78.4% is achieved for all surfaces.

In this chapter, an optimal neural network structure is proposed for improved

target classification using a simple infrared sensor. The input signals are the

intensity scans obtained from different targets by scanning with a point sensor.

The intensity scans are preprocessed by downsampling to decrease the computa-

tional complexity of the network. The networks trained with LM are pruned with

the Optimal Brain Surgeon technique to obtain the optimal network structure.

Pruning also results in improved classification. A modular approach is adopted

where first the geometry of the targets is determined, followed by the surface

type. Geometry type of the targets is classified with 99% accuracy. Only two

planes are incorrectly classified as edges. For the surface type determination, an

overall correct differentiation rate of 78.4% is achieved for all surfaces. However,

the correct differentiation rates on the test set were worse than expected when

compared to our earlier results achieved with the use of techniques other than
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neural networks. One of the reasons for this might be the generalization prob-

lem, where the network memorizes the training set. As the network complexity

increases, the network has a tendency to memorize the training set. Complex

networks may also result in overtraining where the network tries to learn the

noise. On the other hand, simpler network models are not sufficient for the de-

sired tasks. One way to overcome the generalization problem is to divide the test

set into training and validation sets. Validation and test sets are constituted by

taking every second scan in the original training set. It has been observed that

the best differentiation results on the training set do not necessarily occur with

the best differentiation rate on the original training set. The main reason for this

might be the smaller size of the training set. By dividing the original training set

into two smaller subsets, we decrease the representation capability of the training

set. Therefore, we tried to increase the number of samples in the training set by

adding noise to the scans in the original training set. The noise was added in two

ways. First, white Gaussian noise is added to each sample in the scan so that

the network does not try to fit to the noisy data. Alternatively, small angular

disturbances (fixed for a full scan) are added to the samples so that scans, which

might deviate from the θ = 0◦ after alignment, can also be correctly differenti-

ated. Another attempt was to reduce the input scan vectors by downsampling

the scans. Unfortunately, these trials did not result in any improvement in the

correct classification rate.

In the template-based approach in Chapter 4, an average correct classifica-

tion rate of 80% of both geometry and surface over all target types was achieved.

Taken separately, the geometry and surface type of targets were correctly classi-

fied with rates of 99% and 81%, respectively. The results are comparable to those

achieved in this study.

In the previous chapters, full intensity scans have been used for target dif-

ferentiation and localization. In the next chapters, we use suitable models for

infrared intensity scans and use reflection parameters for target differentiation.



Chapter 6

PARAMETRIC

DIFFERENTIATION

Our approaches to the differentiation and localization problem in the earlier chap-

ters can be considered as nonparametric where no assumptions about the para-

metric form of the intensity scans were made. In this chapter, position-invariant

surface differentiation is achieved by parametric modeling of the infrared inten-

sity scans rather than using full infrared intensity scans as in the Chapters 4 and

5. The work presented in this chapter was published in [60].

This chapter is organized as follows: In Section 6.1, our parametric model-

ing of infrared intensity scans is discussed. Section 6.2 provides experimental

verification of the proposed approach.

6.1 Modeling of Infrared Intensity Scans

Light reflected from a surface depends on the wavelength, the distance, and the

properties of the light source (i.e., point or diffuse source), as well as the properties

of the surface under consideration such as reflectivity, absorptivity, transmittivity,

and orientation [80]. Depending on the surface properties, reflectance can be

66
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Figure 6.1: Lambertian (diffuse) reflection from an opaque surface. Note how the
intensity decreases with increasing α but is of equal magnitude in every direction.

modeled in different ways:

Matte materials can be approximated as ideal Lambertian (diffuse) surfaces

which absorb no light and reflect all the incident light equally in all directions

such that the intensity of the reflected light is proportional to the cosine of the

angle between the incident light and the surface normal [80, 63, 81]. This is

known as Lambert’s cosine law [82].

When a Lambertian surface is illuminated by a point source of radiance li,

then the radiance reflected from the surface will be

ls,L = li[kd(l.n)]d (6.1)

where kd is the coefficient of the diffuse reflection for a given material and l and n

are the unit vectors representing the directions of the light source and the surface

normal, respectively, as shown in Figure 6.1. If d > 1, the diffuse reflection is

concentrated on a narrower lobe and resembles specular reflection more. For the

case where d < 1, the reflected light is more diffused in every direction. Note that

in Lambertian reflection, intensity is equally diffused in each direction (therefore,

view independent) but the amount of the reflected intensity is dependent on cos α

(Figure 6.1).

In perfect or specular (mirror-like) reflection, the incident light is reflected in

the plane defined by the incident light and the surface normal, making an angle

with the surface normal which is equal to the incidence angle α [Figure 6.2].
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Figure 6.2: Specular reflection from an opaque surface.

For glossy surfaces, the reflected light is approximated as directional diffuse.

The radiance reflected from the surface will be

ls,S = li[ks(r.v)m] (6.2)

where ks is the coefficient of specular reflection for a given material, r and v are

the unit vectors representing the directions of the reflected light and the viewing

angle, respectively (Figure 6.2), and m refers to the order of the specular fall-off

or shine.

The Phong model [83], which is frequently used in computer graphics appli-

cations to represent the intensity of energy reflected from a surface, combines the

three types of reflection, which are ambient, diffuse (Lambertian), and specular

reflection, in a single formula:

ls,total = laka + li[kd(l.n)] + li[kd(r.v)m] (6.3)

where ls,total is the total radiance reflected from the surface, la and li are the

ambient and incident radiances on the surface, ka, kd, and ks are the coefficients

of ambient light, diffuse, and specular reflection for a given material, l, n, r,

and v are the unit vectors representing the directions of the light source, the

surface normal, the reflected light, and the viewing angle, respectively, as shown

in Figure 6.1, and m refers to the order of the specular fall-off or shine as before.

The scalar product in the second term of the Phong model equals cos α, where



CHAPTER 6. PARAMETRIC DIFFERENTIATION 69

α is the angle between the vectors l and n. Similarly, the scalar product in the

last term of the Phong model equals cos β where β is the angle between r and v.

Since the infrared emitter and receiver are situated at approximately the same

position, then the angle β between the reflected vector r and the viewing vector

v is equal to 2α.

In [41], the simple nonempirical mathematical model represented by Equa-

tion 6.3 is used to model reflections from planar surfaces located at a known

distance (10 cm) by fitting the reflectance data to the model to improve the ac-

curacy of the range estimates of infrared sensors over a limited range interval

(5 to 23 cm). A similar approach with a simplified reflection model is employed

in [48], where an infrared sensor-based system can measure distances up to 1 m.

The requirement of prior knowledge of the distance to the surface is eliminated

in [84, 85] by considering two angular intensity scans taken at two different known

distances (10 and 12 cm). The distance error is less than 1 cm over a very lim-

ited range interval (10–18 cm) for the reflection coefficients found based on the

scans at 10 cm and 12 cm. As the distance increases to the maximum operat-

ing range (24 cm), the distance error increases as reported in [84, 85]. For five

different surfaces, a correct classification rate of 75% is achieved by considering

the invariance property of the sum of the reflection coefficients below a certain

range (14 cm) [85]. In the same study, the authors alternatively propose to use

the maximum intensity values at a known range for improved surface differenti-

ation, which requires prior knowledge or estimation of the range to the surface.

Our approach differs from those in [41, 48] in that it takes distance as a variable

and does not require prior knowledge of the distance. Another difference is that

those works concentrate mainly on range estimation over a very limited range

interval rather than the determination of the surface type, whereas in this thesis,

we focus on the determination of the surface type over a broader range interval.

When we compare our results with those of [84, 85], we can conclude that the

proposed approach is better in terms of the correct differentiation rate and the

number of surfaces recognized. Furthermore, in the work done in this thesis, we

can simultaneously recognize surfaces and estimate their ranges by relating max-

imum intensity values to the reflection coefficients in a novel way. The surface
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materials considered are unpolished wood, Styrofoam packaging material, white

painted matte wall, white and black cloth, and white, brown, and violet paper

(not glossy).

Reference intensity scans were collected for each surface type by locating the

surfaces between 30 to 52.5 cm with 2.5 cm distance increments, at θ = 0◦.

The resulting reference scans for the eight surfaces are shown in Figure 6.3 using

dotted lines. These intensity scans were modeled by approximating the surfaces

as ideal Lambertian surfaces since all of the surface materials involved had matte

surfaces. The received return signal intensity is proportional to the detector area

and inversely proportional to the square of the distance to the surface and is

modeled with three parameters as

I =
C0 cos(αC1)

[ z
cos α

+R( 1
cos α

−1)]
2 (6.4)

which is a modified version of the second term in the model represented by Equa-

tion (6.3). In our case, the ambient reflection component, which corresponds

to the first term in Equation (6.3), can be neglected with respect to the other

terms because the infrared filter, covering the detector window, filters out this

term. Furthermore, the second term in Equation (6.3), representing Lambertian

reflection, dominates the third term for the matte surface types considered in

this study, as further discussed in the following paragraph. In Equation (6.4),

the product of the intensity of the emitter, the area of the detector, and the

reflection coefficient of the surface is lumped into the constant C0, and C1 is

an additional coefficient to compensate for the change in the basewidth of the

intensity scans with respect to distance (Figure 6.3). A similar dependence on

C1 is used in sensor modeling in [86]. The z is the horizontal distance between

the rotary platform and the surface, as shown in Figure 2.11. The denominator

of I is the square of the distance d between the infrared sensor and the surface.

From the geometry, d + R = z+R
cos α

, from which we obtain d as z
cos α

+ R( 1
cos α

− 1),

where R is the radius of the rotary platform and α is the angle made between

the infrared sensor and the horizontal.

Besides the model represented by Equation (6.4), we have checked the suit-

ability of a number of other models to our experimental data, which were basically
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(c) white painted matte wall
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Figure 6.3: Intensity scans of the eight surfaces collected between 30 to 52.5 cm in
2.5 cm increments. Solid lines indicate the model fit and the dotted lines indicate
the experimental data.
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different variations of Equation (6.3). The increase in the number of model pa-

rameters results in overfitting to the experimental data, whereas simpler models

result in larger curve fitting errors. The model represented by Equation (6.4) was

the most suitable in the sense that it provided a reasonable trade-off.

Using the model represented by Equation (6.4), parameterized curves were

fitted to the reference intensity scans employing a nonlinear least-squares tech-

nique based on a model-trust region method provided by MATLABTM [87]. The

resulting curves are shown in Figure 6.3 as solid lines. For the reference scans, z is

not taken as a parameter since the distance between the surface and the infrared

sensing unit is already known. The initial guesses of the parameters must be made

cleverly so that the algorithm does not converge to local minima and curve fitting

is achieved in a smaller number of iterations. The initial guess for C0 is made by

evaluating I at α = 0◦, and corresponds to the product of I with z2. Similarly,

the initial guess for C1 is made by evaluating C1 from Equation (6.4) at a known

angle α other than zero, with the initial guess of C0 and the known value of z.

While curve fitting, C0 value is allowed to vary between ± 2000 of its initial guess

and C1 is restricted to be positive. The variations of C0, C1, and z with respect

to the maximum intensity of the reference scans are shown in Figure 6.4. As the

distance d decreases, the maximum intensity increases and C0 first increases then

decreases but C1 and z both decrease, as expected from the model represented

by Equation (6.4). The model fit is much better for scans with smaller maximum

intensities because our model takes only diffuse reflections into account, but the

contribution of the specular reflection components around the maximum value

of the intensity scans increases as the distance decreases. Hence, the operating

range of our system is extended at the expense of the error at nearby ranges.

6.2 Experimental Verification

In this section, we experimentally verify the proposed method. In the test process,

the surfaces are randomly located at azimuth angles varying from −45◦ to 45◦,

and range values between 30 to 52.5 cm. In the given region, the return signal
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Figure 6.4: Variation of the parameters (a) C0, (b) C1, and (c) z with respect to
the maximum intensity of the scan.
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intensities do not saturate. In fact, we have experimented with fitting models

to the saturated scans so that the operating range of the system is extended to

include the saturation regions. However, these trials were not very successful.

For unsaturated scans, first, the maximum intensity of the observed intensity

scan is found and the angular value where this maximum occurs is taken as

the azimuth estimate of the surface. If there are multiple maximum intensity

values, the average of the minimum and maximum angular values where the

maximum intensity values occur is calculated to find the azimuth estimate of

the surface. Then, the observed scan is shifted by the azimuth estimate and the

model represented by Equation (6.4) is fitted using a model-trust region based

nonlinear least-squares technique [87]. The initial guess for the distance z is

found from Figure 6.4(c) by taking the average of the maximum possible and

the minimum possible range values corresponding to the maximum value of the

recorded intensity scan. (Linear interpolation is used between the data points

in the figure.) This results in a maximum absolute range error of approximately

2.5 cm. Therefore, the parameter z is allowed to vary between ±2.5 cm of its

initial guess. Using the initial guess for z, the initial guesses for C0 and C1

are made in the same way as already explained for the reference scans. After

nonlinear curve fitting to the observed scan, we obtain three parameters C∗
0 , C

∗
1 ,

and z∗. In the decision process, the maximum intensity of the observed scan is

used and a value of C1 is obtained by linear interpolation between the data points

in Figure 6.4(b) for each surface type. In other words, Figure 6.4(b) is used like a

look-up table. Surface-type decisions are made based on the absolute difference of

C1 − C∗
1 for each surface because of the more distinctive nature of the C1 variation

with respect to the maximum intensity. The surface type giving the minimum

difference is chosen as the correct one. The decision could have also been made

by comparing the parameters with those at the estimated range. However, this

would not give better results because of the error and the uncertainty in the

range estimates. We have also considered taking different combinations of the

differences C0 − C∗
0 , C1 − C∗

1 , and z − z∗ as our error criterion. However, the

criterion based on C1 − C∗
1 difference was the most successful.

For a set of six surfaces including Styrofoam packaging material, white painted
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matte wall, white or black cloth, and white, brown, and violet paper (also matte),

we get a correct differentiation rate of 100% and the surfaces are located with

absolute range and azimuth errors of 0.2 cm and 1.1◦, respectively. We can

increase the number of surfaces differentiated at the expense of a decrease in the

correct differentiation rate. For example, if we add wood to our test set keeping

either white or black cloth, we get a correct differentiation rate of 86% for seven

surfaces (Table 6.1). For these sets of surfaces, absolute range and azimuth

Table 6.1: Confusion matrix: C1-based differentiation (initial range to the surface
is estimated using the maximum intensity of the scan).

surface differentiation results total
WO ST WW WC(BC) WP BR VI

WO 4 – – – 7 – 1 12
ST – 12 – – – – – 12
WW – – 12 – – – – 12
WC(BC) – – – 12 – – – 12
WP 4 – – – 8 – – 12
BR – – – – – 12 – 12
VI – – – – – – 12 12
total 8 12 12 12 15 12 13 84

errors are 0.6 cm and 1.1◦, respectively. Similarly, if we form a set of surfaces

excluding wood but keeping both white and black cloth, we achieve a correct

differentiation rate of 83% for seven surfaces (Table 6.2) and the surfaces are

located with absolute range and azimuth errors of 0.5 cm and 1.1◦, respectively.

The recognition results for all eight surfaces considered are tabulated in Table 6.3.

Over these eight surfaces, an overall correct differentiation rate of 73% is achieved

and surfaces are located with absolute range and azimuth errors of 0.8 cm and

1.1◦, respectively. Referring to Tables 6.1–6.3, note that the range estimation

accuracy improves with increasing correct classification rate, whereas the azimuth

estimation accuracy is independent of it, as expected, because of the way it is

estimated. In these tables, white and black cloth as well as wood and white paper

are the surface pairs most often confused with each other. Thus, the decrease in
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Table 6.2: Confusion matrix: C1-based differentiation (initial range to the surface
is estimated using the maximum intensity of the scan).

surface differentiation results total
ST WW WC BC WP BR VI

ST 12 – – – – – – 12
WW – 12 – – – – – 12
WC – – 7 5 – – – 12
BC – – 9 3 – – – 12
WP – – – – 12 – – 12
BR – – – – – 12 – 12
VI – – – – – – 12 12
total 12 12 16 8 12 12 12 84

the differentiation rate resulting from adding new surfaces does not represent an

overall degradation in differentiation rates across all surface types but is almost

totally explained by pairwise confusion of the newly introduced surface with a

previously existing one, resulting from the similarity of the C1 parameter of the

intensity scans of the two confused surfaces.

To investigate the effect of the initial range estimate of the surface on the

differentiation process, we now assume that the distance to the surface is known

beforehand. For this case, only the two variables C0 and C1 are taken as param-

eters. Since the azimuth estimation process is independent of range estimation,

for the same set of surfaces, the same azimuth estimation results are obtained.

Therefore, they are not repeated here. For the same six surfaces considered as in

the previous case (where the initial range to the surface is estimated using the

maximum intensity of the scan), the same correct classification rate of 100% is

achieved. If we add wood to our test set keeping either white or black cloth, we

get a correct differentiation rate of 87% for seven surfaces (Table 6.4). Similarly, if

we form a set of surfaces excluding wood but keeping both white and black cloth,

we achieve a correct differentiation rate of 88% for seven surfaces (Table 6.5). The

differentiation results over all eight surfaces are given in Table 6.6, corresponding

to a correct differentiation rate of 78%. When we compare these results with
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Table 6.3: Confusion matrix: C1-based differentiation (initial range to the surface
is estimated using the maximum intensity of the scan).

surface differentiation results total
WO ST WW WC BC WP BR VI

WO 4 – – – – 7 – 1 12
ST – 12 – – – – – – 12
WW – – 12 – – – – – 12
WC – – – 7 5 – – – 12
BC – – – 9 3 – – – 12
WP 4 – – – – 8 – – 12
BR – – – – – – 12 – 12
VI – – – – – – – 12 12
total 8 12 12 16 8 15 12 13 96

those obtained without exact knowledge of the distance to the surface, we can

conclude that similar surfaces are confused with each other (wood/white paper

and white/black cloth) with smaller confusion rates.

As an alternative, we take as the initial range estimate, the mid-point of the

operating range (30 to 52.5 cm), which is 41.25 cm for all surfaces. An overall

correct differentiation rate of 65% over eight different surfaces is achieved (Ta-

ble 6.7), which is worse than the two classification alternatives already considered.

The surfaces are located with an absolute range error of 1 cm, which is slightly

greater than the absolute range error achieved with the initial range estimate

using the maximum intensity of the scan. If we exclude wood and white cloth

or wood and black cloth from our test set, we get correct differentiation rates of

93% and 94% for the remaining six surfaces and the surfaces are located with ab-

solute range errors of 0.3 and 0.4 cm, respectively. As azimuth estimation errors

are independent of the applied classification techniques, they are not repeated

here. Note that for these sets of surfaces, a correct differentiation rate of 100%

was achieved using the classification approaches already considered. These high

differentiation rates show that even for a maximum initial guess error of 11.25 cm

in the range estimates, the proposed approach can recognize a moderate number
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Table 6.4: Confusion matrix: C1-based differentiation (range to the surface is
known).

surface differentiation results total
WO ST WW WC(BC) WP BR VI

WO 5 – – – 6 – 1 12
ST – 12 – – – – – 12
WW – – 12 – – – – 12
WC(BC) – – – 12 – – – 12
WP 4 – – – 8 – – 12
BR – – – – – 12 – 12
VI – – – – – – 12 12
total 9 12 12 12 14 12 13 84

of surfaces with reasonably good accuracy.

The main accomplishment of the parametric approach is that we achieved

position-invariant surface differentiation and localization with simple infrared

sensors despite the fact that their individual intensity readings are highly de-

pendent on the surface position and properties, and this dependence cannot be

represented by a simple analytical relationship. The intensity scan data acquired

from a simple low-cost infrared emitter and detector pair was processed and mod-

eled. Different parameterized reflection models were considered and evaluated to

find the most suitable model fit to our experimental data, which also best rep-

resents and classifies the surfaces under consideration. The proposed approach

can differentiate six different surfaces with 100% accuracy. In Chapters 4 and

5, where we considered differentiation and localization of surfaces by employing

non-parametric approaches, a maximum correct differentiation rate of 87% over

four surfaces was achieved. Comparing this rate with that obtained in this part

of the study, we can conclude that the parametric approach is superior to non-

parametric ones, in terms of the accuracy, number of surfaces differentiated, and

memory requirements, since the non-parametric approaches we considered require

the storage of reference scan signals. By parameterizing the intensity scans and
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Table 6.5: Confusion matrix: C1-based differentiation (range to the surface is
known).

surface differentiation results total
ST WW WC BC WP BR VI

ST 12 – – – – – – 12
WW – 12 – – – – – 12
WC – – 8 4 – – – 12
BC – – 6 6 – – – 12
WP – – – – 12 – – 12
BR – – – – – 12 – 12
VI – – – – – – 12 12
total 12 12 14 10 12 12 12 84

storing only their parameters, we eliminated the need to store complete refer-

ence scans. The decrease in the differentiation rate resulting from adding new

surfaces in the parametric approach does not represent an overall degradation

in differentiation rates across all surface types but is almost totally explained by

pairwise confusion of the newly introduced surface with a previously existing one,

resulting from the similarity of the C1 parameter of the intensity scans of the two

confused surfaces. (Similar decreases in differentiation rate with increasing num-

ber of surfaces or objects are also observed with non-parametric template-based

approaches.) As an improvement, one can consider using differentiation tech-

niques or learning and/or clustering algorithms that involve more parameters.

One possibility is to take a sequential approach: If the estimated C1 parameter

of the surface matches more than one surface closely, one can then inspect the

other parameters of the surface in sequence. This would be faster than taking all

the parameters into account all of the time.

In the next chapter, target properties are determined based on the para-

metric modeling discussed in this chapter using statistical pattern recognition

techniques.



CHAPTER 6. PARAMETRIC DIFFERENTIATION 80

Table 6.6: Confusion matrix: C1-based differentiation (range to the surface is
known).

surface differentiation results total
WO ST WW WC BC WP BR VI

WO 5 – – – – 6 – 1 12
ST – 12 – – – – – – 12
WW – – 12 – – – – – 12
WC – – – 8 4 – – – 12
BC – – – 6 6 – – – 12
WP 4 – – – – 8 – – 12
BR – – – – – – 12 – 12
VI – – – – – – – 12 12
total 9 12 12 14 10 14 12 13 96

Table 6.7: Confusion matrix: C1-based differentiation (initial range estimate is
taken as half of the operating range for all surfaces).

surface differentiation results total

WO ST WW WC BC WP BR VI
WO 2 – – – – 9 – 1 12
ST – 12 – – – – – – 12
WW – – 9 1 2 – – – 12
WC – – – 7 5 – – – 12
BC – – – 10 2 – – – 12
WP 4 – – – – 7 1 – 12
BR 1 – – – – – 11 – 12
VI – – – – – – – 12 12
total 7 12 9 18 9 16 12 13 96



Chapter 7

DIFFERENTIATION BASED

ON STATISTICAL PATTERN

RECOGNITION TECHNIQUES

In this chapter, we extend the parametric surface differentiation approach pre-

sented in the previous chapter to the differentiation of the geometry of the target

types in parameter space, using statistical pattern recognition techniques. Part

of this work is published in [61] and it is also submitted as a full paper.

7.1 Statistical Pattern Recognition Techniques

The geometries considered are plane, edge, and cylinder made of unpolished oak

wood. The surfaces are either left uncovered (plain wood) or alternatively covered

with Styrofoam packaging material, white and black cloth, and white, brown, and

violet paper (matte). In the implementation, PRTools [88, 89] is used.

After nonlinear curve fitting to the observed scan as in Chapter 6 (see Fig-

ures 7.1, 7.2, and 7.3), we get three parameters C0, C1, and z. We begin by

81
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constructing two alternative feature vector representations based on the para-

metric representation of the infrared scans. The feature vector x is a 2 × 1 col-

umn vector comprised of either the [C0, Imax]
T or the [C1, Imax]

T pair, illustrated

in Figures 7.4 (a) and (b), respectively. Therefore, the dimensionality d of the

feature vector representations is 2.

We associate a class wi with each target type (i = 1, . . . , c). An unknown

target is assigned to class wi if its feature vector x = [x1, . . . , xd]
T falls in the

region Ωi. A rule which partitions the decision space into regions Ωi, i = 1, . . . , c

is called a decision rule. Each one of these regions corresponds to a different

target type. Boundaries between these regions are called decision surfaces. Let

p(wi) be the a priori probability of a target belonging to class wi. To classify a

target with feature vector x, a posteriori probabilities p(wi|x) are compared and

the target is classified into class wj if p(wj|x) > p(wi|x) ∀i 6= j. This is known

as Bayes minimum error rule. However, since these a posteriori probabilities

are rarely known, they need to be estimated. A more convenient formulation of

this rule can be obtained by using Bayes’ theorem: p(wi|x) = p(x|wi)p(wi)/p(x)

which results in p(x|wj)p(wj) > p(x|wi)p(wi) ∀i 6= j =⇒ x ∈ Ωj where p(x|wi)

are the class-conditional probability density functions (CCPDFs) which are also

unknown and need to be estimated in their turn based on the training set. The

training set consists of several sample feature vectors xn, n = 1, . . . , Ni which all

belong to the same class wi, for a total of N1 +N2 + . . .+Nc = N sample feature

vectors. The test set is then used to evaluate the performance of the decision rule

used. This decision rule can be generalized as qj(x) > qi(x) ∀i 6= j =⇒ x ∈ Ωj

where the function qi is called a discriminant function.

The various statistical techniques for estimating the CCPDFs based on the

training set are often categorized as non-parametric and parametric. In non-

parametric methods, no assumptions on the parametric form of the CCPDFs

are made; however, this requires large training sets. This is because any non-

parametric PDF estimate based on a finite sample is biased [90]. In parametric

methods, specific models for the CCPDFs are assumed and then the parameters

of these models are estimated. These parametric methods can be categorized as

normal and non-normal models.
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Figure 7.1: Intensity scans of the planes covered with seven planar surfaces col-
lected at different ranges [see Figure 7.4(c)]. Solid lines indicate the model fit
and the dotted lines indicate the actual data.
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Figure 7.2: Intensity scans of the edges covered seven surfaces collected at differ-
ent ranges [see Figure 7.4(c)]. Solid lines indicate the model fit and the dotted
lines indicate the actual data.



CHAPTER 7. DIFFERENTIATION BASED ON STATISTICAL PATTERN RECOGNITION TECHNIQUES85

−50 −40 −30 −20 −10 0 10 20 30 40 50
0

2

4

6

8

10

12

scan angle (deg)

in
te

ns
ity

 (
V

)

(a) wood

−50 −40 −30 −20 −10 0 10 20 30 40 50
0

2

4

6

8

10

12

scan angle (deg)

in
te

ns
ity

 (
V

)

(b) Styrofoam

−50 −40 −30 −20 −10 0 10 20 30 40 50
0

2

4

6

8

10

12

scan angle (deg)

in
te

ns
ity

 (
V

)

(c) white cloth

−50 −40 −30 −20 −10 0 10 20 30 40 50
0

2

4

6

8

10

12

scan angle (deg)

in
te

ns
ity

 (
V

)

(d) black cloth

−50 −40 −30 −20 −10 0 10 20 30 40 50
0

2

4

6

8

10

12

scan angle (deg)

in
te

ns
ity

 (
V

)

(e) white paper

−50 −40 −30 −20 −10 0 10 20 30 40 50
0

2

4

6

8

10

12

scan angle (deg)

in
te

ns
ity

 (
V

)

(f) brown paper

−50 −40 −30 −20 −10 0 10 20 30 40 50
0

2

4

6

8

10

12

scan angle (deg)

in
te

ns
ity

 (
V

)

(g) violet paper

Figure 7.3: Intensity scans of the cylinders covered with seven surfaces collected
at different ranges [see Figure 7.4(c)]. Solid lines indicate the model fit and the
dotted lines indicate the actual data.
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7.1.1 Determination of Geometry

7.1.1.1 Normal Density Based Classifiers

7.1.1.1.1 Parameterized Density Estimation (PDE): In this method,

the CCPDFs are assumed to be d-dimensional normal:

p(x|wi) =
1

(2π)(d/2)|Σi|1/2
exp

[
−1

2
(x− µi)

TΣ−1
i (x− µi)

]
, i = 1, . . . , c (7.1)

where the µi’s denote the class means, and the Σi’s denote the class-covariance

matrices, both of which must be estimated based on the training set. The most

commonly used parameter estimation technique is the maximum likelihood esti-

mator (MLE) [91] which is also used in this study.

In PDE, d-dimensional homoscedastic and heteroscedastic normal models are

used for the CCPDFs. In the homoscedastic case, the covariance matrices for

all classes are selected equal, usually taken as a weighted (by a priori probabili-

ties) average of the individual class-covariance matrices:
∑c

i=1
Ni

N
Σ̂i [92]. In the

heteroscedastic case, they are individually calculated for each class.

In this study, both homoscedastic and heteroscedastic normal models have

been implemented to estimate the means and the covariances of the CCPDF for

each class (i.e., target type) using the MLE, for each of the two feature vector

representations described above. These are the [C0, Imax]
T and [C1, Imax]

T feature

vectors illustrated in Figure 7.4(a) and (b), respectively.

The training set consists of N = 175 data pairs for three classes: N1 = 70

Table 7.1: Confusion matrix: homoscedastic PDE using the [C0, Imax]
T feature

vector. Numbers outside (inside) the parentheses are for the training (test) scans.

geometry differentiation result total

P E CY
P 61(–) –(50) 9(34) 70(84)
E –(–) 49(43) 6(–) 55(43)
CY 4(–) 5(84) 41(–) 50(84)
total 65(–) 54(177) 56(34) 175(211)
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Figure 7.4: Variation of the parameters (a) C0, (b) C1, and (c) z with respect
to maximum intensity (dashed, dotted, and solid lines are for planes, edges, and
cylinders, respectively).

planes, N2 = 55 edges, and N3 = 50 cylinders. The test set consists of 211 data

pairs for three classes: 84 cylinders, 43 edges, and 84 planes. A given test feature

vector is classified into the class for which Equation (7.1) is maximum.

Since the feature vector size d is two and the number of classes c is three, three

2-D normal functions are used for classification. The discriminant functions for

PDE are plotted on the training set feature vectors [C0, Imax]
T in Figure 7.5. The

classification results are given in Table 7.1 for both the training and test sets for

homoscedastic PDE. Overall correct differentiation rates of 86.3% and 20.4% are

achieved for the training and test sets, respectively. The main reason for the low

differentiation rate on the test set is due to the [C0, Imax]
T feature vector of the

observed intensity scans not being very distinctive. For the heteroscedastic case,
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Figure 7.5: Discriminant functions for PDE when the [C0, Imax] feature vector is
used.

the geometry confusion matrix is given in Table 7.2. The differentiation rates for

this case are same as the homoscedastic case.

Equal probability contours of the 2-D normal functions are given in Fig-

ure 7.6 (a) and (b) for each case when the [C1, Imax]
T feature vector is used

for differentiation. The corresponding discriminant functions are shown in Fig-

ure 7.7. From Table 7.3, the correct differentiation rates for homoscedastic PDE

are 96.6% and 98.6% for the training and test sets, respectively. For the test data,

Table 7.2: Confusion matrix: heteroscedastic PDE using the [C0, Imax]
T feature

vector.

geometry differentiation result total

P E CY

P 60(–) –(46) 10(38) 70(84)

E –(–) 51(43) 4(–) 55(43)

CY 4(–) 6(84) 40(–) 50(84)

total 64(–) 57(173) 54(38) 175(211)
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Figure 7.6: 2-D normal contour plots for (a) homoscedastic (b) heteroscedastic
PDE when the [C1, Imax]

T feature vector is used.
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Figure 7.7: Discriminant functions for PDE when the [C1, Imax]
T feature vector

is used.

only three edges are incorrectly classified as cylinders. For heteroscedastic PDE

(Table 7.4), the differentiation rate on the training set improves to 98.3% and

the correct differentiation rate on the test set is the same as in the homoscedastic

case. These results are much better than those obtained with the classification

based on the [C0, Imax]
T feature vector. We have also considered the use of feature

vectors [C0, C1, Imax]
T and [C0, C1]

T . However, these did not bring any improve-

ment over those reported. Since the results indicate the C1 parameter is more

distinctive then C0 in identifying the geometry, from now on, we concentrate on

differentiation based only on the [C1, Imax]
T feature vector.
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Table 7.3: Confusion matrix: homoscedastic PDE using the [C1, Imax]
T feature

vector.

geometry differentiation result total

P E CY
P 70(84) –(–) –(–) 70(84)
E –(–) 49(40) 6(3) 55(43)
CY –(–) –(–) 50(84) 50(84)
total 70(84) 49(40) 56(87) 175(211)

Table 7.4: Confusion matrix: heteroscedastic PDE using the [C1, Imax]
T feature

vector.

geometry differentiation result total

P E CY
P 70(84) –(–) –(–) 70(84)
E –(–) 52(40) 3(3) 55(43)
CY –(–) –(–) 50(84) 50(84)
total 70(84) 52(40) 53(87) 175(211)

7.1.1.1.2 Mixture of Normals (MoN) Classifier: In the MoN classifier,

each feature vector in the training set is assumed to be associated with a mixture

of M different and independent normal distributions [93]. Each normal distri-

bution has probability density function pj with mean vector µj and covariance

matrix Σj:

pj(x|µj,Σj) =
1

(2π)(d/2)|Σj|1/2
exp

[
−1

2
(x− µj)

TΣ−1
j (x− µj)

]
, j = 1, . . . ,M(7.2)

The M normal distributions are mixed according to the following model, using

the mixing coefficients αj:

p(x|Θ) =
M∑

j=1

αjpj(x|µj,Σj) (7.3)

Here, Θ = [α1, . . . , αM ; µ1, . . . , µM ; Σ1, . . . ,ΣM ] is a parameter vector which

consists of three sets of parameters and conveniently represents the relevant

parameters for the normals to be mixed. The mixing coefficients should sat-

isfy the normalization condition
∑M

j=1 αj = 1 and 0 ≤ αj ≤ 1 ∀j and can be
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thought of as prior probabilities of each mixture component so that αj =

Prob{j′th component} = p(j) and
∑M

j=1 p(j|x,Θ) = 1. In our implementation,

M takes the values two and three. For the i’th class, the parameter vector Θi

maximizing Equation (7.3) needs to be estimated, corresponding to the MLE.

Since deriving an analytical expression for the MLE is not possible in this case,

Θi is estimated by using expectation-maximization (E-M) clustering which is it-

erative [88]. The elements of the parameter vector Θi are updated recursively as

follows:

αijk = 1
Ni

∑Ni
n=1 p(j|xn,Θi,k−1)

µijk =
∑Ni

n=1
xnp(j|xn,Θi,k−1)∑Ni

n=1
p(j|xn,Θi,k−1)

Σijk =
∑Ni

n=1
(xn−µijk)(xn−µijk)T p(j|xn,Θi,k−1)∑Ni

n=1
p(j|xn,Θi,k−1)

where i = 1, . . . , c and j = 1, . . . ,M

(7.4)

Here, Θi,k is the parameter vector estimate of the i’th class at the k’th iteration

step and Ni is the number of feature vectors in the training set representing the

i’th class. The expectation and maximization steps are performed simultaneously.

The algorithm proceeds by using the newly derived parameters as the guess for

the next iteration. With E-M clustering, even if the dimensionality of the feature

vectors increases, fast and reliable parameter estimation can be accomplished.

Each class is considered independent from the others and training is performed

separately for each class. For this reason, addition of new classes can be done

conveniently by adding the corresponding feature vectors to the training data set

and estimating the corresponding class parameter vector.

After estimating the parameter vectors for each class based on the training set

feature vectors, testing is done as follows: A target with a given test feature vector

x is assigned to the class whose parameter vector Θi maximizes Equation (7.3)

so that p(x|Θi) > p(x|Θl) ∀i 6= l. Then, the target is labeled as a member of

class wi.

The discriminant functions for classification based on [C1, Imax]
T feature vector

are shown in Figure 7.8. Differentiation results for M = 3 are given in Table 7.5

in the form of a confusion matrix. For both M = 2 and M = 3, all training

targets are correctly classified using the [C1, Imax]
T feature vector. In the tests,
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Figure 7.8: Discriminant functions for the MoN classifier when the [C1, Imax]
T

feature vector is used.

for the M = 3 case (Table 7.5, in parentheses), again 100% correct differentiation

rate is achieved. For the M = 2 case, the only difference in the test results is that

one of the edges is misclassified as a cylinder so that the correct classification rate

falls to 99.5%.

7.1.1.2 Linear and Quadratic Classifiers

7.1.1.2.1 Linear Classifier by Karhunen Lóeve (KL) Expansion of Co-

variance Matrix: This classifier is based on the KL expansion of the common

covariance matrix of c classes. The mean vector µ and the common covariance

matrix Σ are computed for the training set. The eigenvectors and eigenvalues of

the common covariance matrix are computed using the following equations:

Σei = λiei, i = 1, . . . , d

(Σ− λiI)ei = 0
(7.5)
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Table 7.5: Confusion matrix: MoN classifier (M = 3) using the [C1, Imax]
T feature

vector.

geometry diff. result total

P E CY
P 70(84) –(–) –(–) 70(84)
E –(–) 55(43) –(–) 55(43)
CY –(–) –(–) 50(84) 50(84)
total 70(84) 55(43) 50(84) 175(211)

Table 7.6: Confusion matrix: linear classifier by KL expansion of the common
covariance matrix.

geometry differentiation result total

P E CY

P 70(84) –(–) –(–) 70(84)

E –(–) 49(40) 6(3) 55(43)

CY –(–) –(–) 50(84) 50(84)

total 70(84) 49(40) 56(87) 175(211)

where I is the 2× 2 identity matrix and 0 is the 2× 1 zero vector. Eigenvectors

with the largest eigenvalues are selected [77]. Although the size of the common

covariance matrix (2× 2) is small for our case, we investigate the effect by either

taking the eigenvector with the larger eigenvalue or both of the eigenvectors.

Then, the training set is projected onto a subspace of size determined by the

number of eigenvectors selected. This is done by AT (x− µ), where the columns

of matrix A consists of the selected eigenvectors. For the one eigenvector case,

the correct differentiation rates for training and test sets are 49.7% and 64%,

respectively. As expected, the differentiation rates are low for this case. Detailed

results are given for the two eigenvector case in Table 7.6. An average correct

differentiation rate of 96.7% is achieved on the training set. For test targets,

98.6% is the correct differentiation rate, which is better than that obtained for

the training targets.
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Table 7.7: Confusion matrix: logistic linear classifier.

geometry differentiation result total

P E CY

P 70(84) –(–) –(–) 70(84)

E –(–) 52(40) 3(3) 55(43)

CY –(–) –(–) 50(84) 50(84)

total 70(84) 52(40) 53(87) 175(211)

7.1.1.2.2 Logistic Linear Classifier: In the logistic linear classifier, the

linear classifier is computed by maximizing the likelihood criterion using the lo-

gistic (sigmoid) function [94]. For the two-class problem, logistic classifier maxi-

mizes [12]:

maxθ{
∏

xi∈w1

q1(x
1
i ; θ)

∏

xi∈w2

q2(x
2
i ; θ)} (7.6)

For any discriminant function, f(x; θ), logistic functions are

q1(x; θ) = (1 + e−f(x;θ))−1,

q2(x; θ) = (1 + ef(x;θ))−1
(7.7)

For linear discriminant functions f(x; θ), Equation (7.6) can be easily optimized.

Detailed results are given in Table 7.7. An average correct differentiation rate

of 98.3% is achieved on the training set. For test targets, 98.6% is the correct

differentiation rate, which is better than that obtained for the training targets.

7.1.1.2.3 Fisher’s Linear Classifier: Fisher’s least-squares linear classi-

fier [77, 94] finds the linear discriminant function between the classes by min-

imizing the errors in the least-squares sense. The aim is to project data from d

dimensions onto a line and find the orientation of the line, [w in Equation (7.8)],

such that the projected data are well separated [77]. The projection is achieved

using the following equation:

y = wTx, (7.8)
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Table 7.8: Confusion matrix: Fisher’s least-squares linear classifier.

geometry differentiation result total

P E CY

P 70(84) –(–) –(–) 70(84)

E 18(25) –(–) 37(18) 55(43)

CY –(–) –(–) 50(84) 50(84)

total 88(109) –(–) 87(102) 175(211)

where x is the data consisting of N d-dimensional samples and ‖w‖ = 1.

The separation of the projected data points are calculated by finding class

means, µi. The mean of the projected data is µ̃i = wT µi. The separation

distance between means is |µ̃1− µ̃2| = |wT (µ1−µ2)|. Fisher linear classifier uses

a linear function wTx such that the criterion given by the following equation is

maximized:

J(w) =
|µ̃1 − µ̃2|2
|s̃1 − s̃2|2 , (7.9)

where s̃i is scatter of class wi and computed as s̃2
i . For a c class problem, there

will be c − 1 discriminant functions, where the dimension of the data should be

greater than or equal to the number of classes. Details for the generalization to

multiple classes can be found in [77]. The correct differentiation rates are lower

than the previous cases, where 68.6% and 79.6% correct differentiation rates are

obtained for the training and test targets, respectively. This is due to overlapping

of the training data. Detailed results are given in Table 7.8.

7.1.1.2.4 Nearest Mean Classifier: We also applied nearest mean classi-

fier and its scaled version, where the linear discriminant function is computed

assuming zero covariances and equal class variances. The differentiation rates are

low as expected from the distribution of the classes since the data from different

classes are correlated. For the nearest mean classifier case, the correct differenti-

ation rates are 82% and 75% for the training and test targets, respectively. For
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Table 7.9: Confusion matrix: quadratic discriminant classifier.

geometry differentiation result total

P E CY

P 70(84) –(–) –(–) 70(84)

E –(–) 51(40) 4(3) 55(43)

CY –(–) –(–) 50(84) 50(84)

total 70(84) 51(40) 54(87) 175(211)

the scaled version, the respective rates are 82.2% and 75.4%.

7.1.1.2.5 Quadratic Discriminant Classifier: In this case, covariance ma-

trix is computed according to the following equation:

Σ = (1−R−S) ·Σ+R · diag(diag(Σ))+S ·mean(diag(Σ)) · eye(size(Σ, 1)) (7.10)

Regularization parameters (R and S) can take values between 0 and 1. diag

function returns diagonal values of a given matrix or constitutes a matrix, whose

diagonal values are the given vector, eye returns identity matrix, and size returns

size of the given matrix. In the first case, regularization parameters are set to

zero. The correct differentiation rates are 98.6% and 97.7% for the training and

test targets, respectively. Detailed results are given in Table 7.9. When R and S

are set to 0.5 for example, the respective rates become 74.9% and 81.5%, which

is lower than the previous case.

7.1.1.3 Non-Parametric Classifiers

In this section, we consider different non-parametric classifiers, which are the

kernel estimator, k-nearest neighbor, artificial neural network, and support vector

machine classifiers.
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7.1.1.3.1 Kernel Estimator (KE): KE is a family of PDF estimators first

proposed by Fix and Hodges in 1951 [95]. In the KE method, the CCPDF

estimates p̂(x|wi) are of the form

p̂(x|wi) =
1

Nihd
i

Ni∑

n=1

K
(
x− xn

hi

)
i = 1, . . . , c (7.11)

where x is the d-dimensional feature vector at which the estimate is being made

and xn, n = 1, . . . , Ni are the training set sample feature vectors associated with

class wi. Here, hi is called the spread or smoothing parameter or the bandwidth of

the KE, and K(z) is a kernel function which satisfies the conditions K(z) ≥ 0 and
∫

K(z)dz = 1. In this method, the selection of the bandwidth hi is important [96,

97]. If hi is selected too small, p̂(x|wi) degenerates into a collection of Ni sharp

peaks, each located at a sample feature vector. On the other hand, if hi is selected

too large, the estimate is oversmoothed and an almost uniform CCPDF results.

Usually, hi is chosen as a function of Ni such that limNi→∞ h(Ni) = 0.

In the implementation of this method, since d = 2, we employed a 2-

dimensional normal kernel function. The bandwidth hi for the ith class is pre-

computed based on the Ni sample feature vectors available for all classes by

optimization with respect to leave-one-out error [88]. After hi’s are computed, a

test feature vector x is classified into that class for which the CCPDF in Equa-

tion (7.11) is maximized. This requires the training data to be stored throughout

testing.

7.1.1.3.2 k-Nearest Neighbor (k-NN) Classifier: Consider the k nearest

neighbors of a feature vector x in a set of several feature vectors. Suppose ki

of these k vectors come from class wi. Then, a k-NN estimator for class wi can

be defined as p̂(wi|x) = ki

k
, and p̂(x|wi) can be obtained from p̂(x|wi)p̂(wi) =

p̂(wi|x)p̂(x). This results in a classification rule such that x is classified into class

wj if kj = maxi(ki), where i = 1, . . . , c. In other words, the k nearest neighbors

of the vector x in the training set are considered and the vector x is classified

into the same class as the majority of its k nearest neighbors.
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Figure 7.9: Discriminant functions for the KE and the k-NN classifier when the
[C1, Imax]

T feature vector is used.

A major disadvantage of this method is that a pre-defined rule for the selec-

tion of the value of k does not exist [98]. In this study, the number of nearest

neighbors k is determined by optimization with respect to leave-one-out error.

In the implementation of the k-NN classifier, k values varying between 1 and 12

have been considered. For k = 1, 2 and 3, the same correct differentiation rates

are obtained (given below) for the training and test sets, respectively. For larger

values of k, the errors start increasing. Again, the training data must be stored

during testing.

In Figure 7.9, the discriminant functions for both the KE and the k-NN classi-

fiers are illustrated when the [C1, Imax]
T feature vector is used. For both classifiers,

the training targets are correctly differentiated with 100% correct differentiation

rate. For the test targets, only one edge target is incorrectly classified as a cylin-

der, corresponding to a correct differentiation rate of 99.5%.
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Table 7.10: Confusion matrix: ANN trained with BP.

geometry differentiation result total

P E CY
P 70(84) –(–) –(–) 70(84)
E –(–) 52(40) 3(3) 55(43)
CY –(–) –(–) 50(84) 50(84)
total 70(84) 52(40) 53(87) 175(211)

7.1.1.3.3 Artificial Neural Network (ANN) Classifiers: Feed-forward

ANNs trained with back-propagation (BP) and Levenberg-Marquardt (LM) al-

gorithms, and a linear perceptron (LP) are used as classifiers. The feed-forward

ANN has one hidden layer with four neurons. The number of neurons in the input

layer is two (since the feature vector consists of two parameters) and the number

of neurons in the output layer is three. LP is the simplest type of ANN, used

for classification of two classes that are linearly separable. LP consists of a single

neuron with adjustable input weights and a threshold value [99]. If the number

of classes is greater than two, LPs are used in parallel. One perceptron is used for

each output. The maximum number of epochs is chosen as 1000. The weights are

initialized randomly and the learning rate is chosen as 0.1. MATLABTMNeural

Network Toolbox is used for the implementation. The discriminant functions are

given in Figure 7.10 for the three classifiers. The correct differentiation rates

using the BP algorithm are given in Table 7.10. Differentiation rates of 98.3%

and 98.6% are achieved for the training and test sets, respectively. When training

is done by LM, the same correct differentiation rate is obtained on the training

set (see Table 7.11). However, this classifier is better than the BP method in

the tests, where only one edge target is misclassified as a cylinder, resulting in a

correct differentiation rate of 99.5%. The results for the LP classifier are given

in Table 7.12. As expected from the distribution of the parameters, because the

classes are not linearly separable, lower correct differentiation rates of 77.7% and

76.3% are achieved on the training and test sets, respectively.
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Figure 7.10: Discriminant functions for ANN classifiers when the [C1, Imax]
T fea-

ture vector is used.

7.1.1.3.4 Support Vector Machine (SVM) Classifier: SVM classifier is

a machine learning technique proposed early in the eighties [100]. It has been

used in applications such as object, voice, and handwritten character recognition,

and text classification.

If the feature vectors in the original feature space are not linearly separable,

SVMs preprocess and represent them in a space of higher dimension where they

become linearly separable. The dimension of the transformed space is typically

Table 7.11: Confusion matrix: ANN trained with LM.

geometry differentiation result total

P E CY
P 70(84) –(–) –(–) 70(84)
E –(–) 52(42) 3(1) 55(43)
CY –(–) –(–) 50(84) 50(84)
total 70(84) 52(42) 53(85) 175(211)
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Table 7.12: Confusion matrix: ANN trained with LP.

geometry differentiation result total

P E CY
P 70(84) –(–) –(–) 70(84)
E –(–) 45(32) 10(11) 55(43)
CY –(–) 29(39) 21(45) 50(84)
total 70(84) 74(71) 31(56) 175(211)

much higher than the original feature space. With a suitable nonlinear mapping

φ(.) to a sufficiently high dimension, data from two different classes can always be

made linearly separable, and separated by a hyperplane [101]. The choice of the

nonlinear mapping depends on the prior information available to the designer. If

such information is not available, one might choose to use polynomials, Normals,

or other types of basis functions. The dimensionality of the mapped space can

be arbitrarily high. However, in practice, it may be limited by computational

resources. The complexity of SVMs is related to the number of resulting support

vectors rather than the high dimensionality of the transformed space.

Consider SVMs in a binary classification setting. We are given the training

feature vectors xi that are vectors in some space X ⊆ <d and their labels li ∈
{−1, 1} where i = 1, . . . , N . The goal in training a SVM is to find the separating

hyperplane with the largest margin so that the generalization of the classifier is

better. All vectors lying on one side of the hyperplane are labeled as +1, and

all vectors lying on the other side are labeled as –1. The support vectors are

the (transformed) training patterns that lie closest to the hyperplane and are at

equal distance from it. They correspond to the training samples that define the

optimal separating hyperplane and are the most difficult patterns to classify, yet

the most informative for the classification task.

More generally, SVMs allow one to project the original training data in space

X to a higher dimensional feature space F via a Mercer kernel operator K [102].

We consider a set of classifiers of the form f(x) =
∑N

i=1 βi K(xi,x). When

f(x) ≥ 0, we label x as +1, otherwise as –1. When K satisfies Mercer’s condition,
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K(u,v) = φ(u) · φ(v) where φ(.) : X → F is a nonlinear mapping and “·”
denotes the inner product. We can then rewrite f(x) as f(x) = a · φ(x), where

a =
∑N

i=1 βi φ(xi) is a weight vector. Thus, by using K, the training data is

projected into a new feature space F which is often higher dimensional. The

SVM then computes the βi’s that correspond to the maximal margin hyperplane

in F . By choosing different kernel functions, we can project the training data

from X into spaces F for which hyperplanes in F correspond to more complex

decision boundaries in the original space X . Hence, by nonlinear mapping of

the original training patterns into other spaces, decision functions can be found

using a linear algorithm in the transformed space by only computing the kernel

K(xi,x).

The function f(x) = a · φ(x) is a linear discriminant function in the trans-

formed space based on the hyperplane a ·φ(x) = 0. Here, both the weight vector

and the transformed feature vector have been augmented by one dimension to

include a bias weight so that the hyperplanes need not pass through the origin.

A separating hyperplane ensures

li f(xi) = li a · φ(xi) ≥ 1 for i = 1, . . . , N (7.12)

It can be shown that finding the optimal hyperplane corresponds to minimizing

the magnitude of the weight vector ‖ a ‖2 subject to the constraint given by

Equation (7.12) [77]. Using the method of Lagrange multipliers, we construct the

functional

L(a, λ) =
1

2
‖ a ‖2 −

N∑

i=1

λi [li a · φ(xi)− 1] (7.13)

where the second term in the above equation expresses the goal of classifying the

points correctly. To find the optimal hyperplane, we minimize L(.) with respect to

the weight vector a, while maximizing with respect to the undetermined Lagrange

multipliers λi ≥ 0. This can be done by solving the constrained optimization

problem by quadratic programming [88] or by other alternative techniques. The

solution of the weight vector is a∗ =
∑N

i=1 li λi φ(xi) corresponding to βi = liλi.

Then the decision function is given by:

f ∗(x) =
N∑

i=1

λi li φ(xi) · φ(x) (7.14)
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In this study, the method described above is applied to differentiate target

feature vectors from multiple classes. Following the one-versus-rest method, c dif-

ferent binary classifiers are trained, where each classifier recognizes one of c target

types. SVM classifiers with polynomial, exponential, and radial basis function

kernels are used. The kernel functions are Kp(x,xi) = (x · xi + 1)3, Ke(x,xi) =

e−‖x−xi‖, Kr(x,xi) = e−‖x−xi‖2 , respectively [88]. The dimension of the feature

space F is 3. 100% correct differentiation rate is achieved on the training set

for all of the SVM classifiers. For the test set, the correct differentiation rates

are 99.5%, 99.5%, and 99.1% for SVM classifiers with polynomial, exponential,

and radial basis function kernels, respectively. Therefore, the polynomial and

exponential kernels result in the highest classification rates.

To summarize the results of the statistical pattern recognition techniques for

geometry classification based on the [C1, Imax]
T feature vector, the overall dif-

ferentiation rates are given in Table 7.13. Best classification rate is obtained

for the test scans using the MoN classifier with three components. This is fol-

lowed by MoN with two components, KE, k-NN, and SVM with polynomial and

exponential kernels, equally. Ranking according to highest classification rate con-

tinues as ANN trained with LM algorithm, SVM with radial kernel, heteroscedas-

tic and homoscedastic PDE, KL, logistic classifier, ANN trained with BP, SVM

with polynomial kernel, quadratic discriminant classifier, Fisher’s linear classifier,

ANN trained with LP, scaled nearest mean classifier, and nearest mean classifier.

7.1.2 Determination of Surface Type

Parametric surface differentiation is a more difficult problem than geometry dif-

ferentiation. This is clearly seen in the very similar variation of the parameters

for different surfaces corresponding to the same geometry (Figure 7.4). In [60],

planar surfaces covered with six different surfaces are correctly classified with

100% correct differentiation rate. Although we succeeded with surface differenti-

ation for planar surfaces, the surface differentiation results for other geometries

were not as good. The above classification approaches were applied to differen-

tiate between surface types assuming the geometry of the targets is determined
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Table 7.13: Correct differentiation percentages for different classifiers (PDE-
HM: Parametric density estimation-homoscedastic, PDE-HT: Parametric den-
sity estimation-heteroscedastic, LC-KL: Linear classifier-Karhunen Lóeve, LC-
LOG: Linear classifier-logistic, LC-FIS: Linear classifier-Fisher’s least-squares,
NM: nearest mean classifier, NMS: nearest mean scaled classifier, QC: quadratic
classifier, MoN-2: Mixture of normals with two components, MoN-3: Mixture of
normals with three components, KE: kernel estimator, k-NN: k-nearest neighbor,
ANN-BP: ANN trained with BP, ANN-LM: ANN trained with LM, ANN-LP:
ANN trained with LP, SVM-P: SVM with polynomial kernel, SVM-E: SVM with
exponential kernel, SVM-R: SVM with radial kernel).

classification techniques data set

training test

PDE-HM 96.6 98.6

PDE-HT 98.3 98.6

LC-KL 96.7 98.6

LC-LOG 98.3 98.6

LC-FIS 68.6 79.6

NM 82 75

NMS 82.2 75.4

QC 98.6 97.7

MoN-2 100 99.5

MoN-3 100 100

KE 100 99.5

k-NN 100 99.5

ANN-BP 98.3 98.6

ANN-LM 98.3 99.5

ANN-LP 77.7 76.3

SVM-P 100 99.5

SVM-E 100 99.5

SVM-R 100 99.1
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correctly beforehand. For example, for cylindrical targets, the classification error

is about 85% when PDE is used. Since the results were not promising, no further

attempt has been made to differentiate surface types in parametric space.

As an alternative, we extracted features from these intensity scans correspond-

ing to different surfaces of the same geometry using forward feature selection.

Since the magnitude and basewidth of intensity scans both change with distance,

the intensity scans are first normalized before feature extraction. We experi-

mented with different features of the intensity scans by extracting the points

representing the intensity scans best and using them for differentiation. How-

ever, the differentiation results were not promising. For example, for cylindrical

targets, the surfaces are correctly classified only with a correct differentiation rate

of 20%. Different initialization procedures did not result in any improvement in

feature extraction.

In this chapter, we extended the parametric surface differentiation approach

proposed in [60] to differentiate both the geometry and surface type of the targets

using statistical pattern recognition techniques. We compared different classifiers

such as PDE, LC-KL, LC-LOG, LC-FIS, NM, NMS, QC, MoN, kernel estimator,

k-NN, ANN, and SVM for geometry type determination. Best differentiation

rates (100%) are obtained for the MoN classifier with three components. MoN

classifier performs better than models which associate the data with a single

distribution. It is also more robust and the training set can be easily updated

when new classes need to be added to the database.

In the next chapter, a comparison of the proposed methods is made.



Chapter 8

COMPARISON OF THE

TECHNIQUES

This chapter provides a summary of the performances of the different differenti-

ation approaches used throughout this thesis for target differentiation and local-

ization of commonly encountered features in indoor environments. To the best

of our knowledge, no attempt has been made to differentiate and estimate the

position of several kinds of targets using simple infrared sensors. Also, a compact

comparison based on experimental data does not exist for target differentiation

using infrared sensors. Differentiation results of each approach were given at

the end of the corresponding chapter. Here, we will summarize the results and

provide a compact comparison.

Rule-based approach, described briefly in Chapter 3, achieves position-

invariant target differentiation without relying on the absolute return signal in-

tensities of the infrared sensors. The target primitives employed in the rule-based

approach are plane, corner, edge, and cylinder, all made of unpolished oak wood.

An average correct differentiation rate of 91.3% is achieved.

In the template-based approach, discussed in Chapter 4, an average correct

classification rate of 93% is obtained with the least-squares approach for targets

with different geometrical properties (plane, corner, edge, and cylinder) but made
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of the same surface material (wood). For the matched filtering case, the aver-

age correct differentiation rate over all target types is 97%, which is better than

that obtained with the least-squares approach. For different surface materials

(aluminum, white wall, brown paper, and Styrofoam) of the same planar geom-

etry, the average correct classification rate obtained by using the least-squares

approach is 82%. For the matched filtering case, the average correct differen-

tiation rate over all surfaces is 87%. For targets with both different geometry

and surface properties (plane, corner, and edge covered with aluminum, white

cloth, and Styrofoam), 77% average correct classification rate is achieved by us-

ing least-squares. With matched filter, the average accuracy of differentiation

over all target types is 80%.

Results using artificial neural networks are given in Chapter 5. The train-

ing algorithms employed are BP and LM. The network trained with LM and

pruned with Optimal Brain Surgeon technique gives differentiation results which

are comparable with those obtained with template-based target differentiation,

where geometry type of the targets is classified with 99% accuracy and an overall

correct differentiation rate of 78.4% is achieved for all surfaces.

The parametric surface differentiation approach is discussed in Chapter 6. For

a set of six surfaces including Styrofoam packaging material, white painted matte

wall, white or black cloth, and white, brown, and violet paper (also matte), we

get a correct differentiation rate of 100%.

For the statistical pattern recognition techniques (Chapter 7), mixture of nor-

mals classifier with three components correctly differentiates three types of geome-

tries with different surface properties, resulting in the best performance (100%)

in geometry differentiation.

Table 8.1 summarizes the results for all of the methods considered, allowing

their overall comparison. In this summary table, the first column represents the

methods used in the classification. References to our related publications are

given in this column for more detail. The second and third columns represent

the geometries and surfaces considered for each classification method. The result

type indicates the differentiation of geometry and/or surface. Best differentiation
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rates are given for the different variations of the methods considered.

The matched filtering approach gives better results in the template-based dif-

ferentiation. We have seen that the geometrical properties of the targets are more

distinctive than their surface properties, and surface determination is the limit-

ing factor. Based on the data we have collected, it seems possible to increase the

vocabulary of different geometries, provided they are not too similar. However,

the same cannot be said for the number of different surfaces. For a given total

number of distinct targets, increasing the number of surfaces and decreasing the

number of geometries will in general make the results worse. On the other hand,

decreasing the number of surfaces and increasing the number of geometries will in

general improve the results. The method we propose as a template-based differ-

entiation is scalable in the sense that the accuracy can be increased by increasing

the number of reference scans without increasing the computational cost.

The differentiation results obtained using artificial neural networks are com-

parable with those obtained in template-based differentiation. Planes and corners

covered with aluminum are correctly classified in all of our studies due to their

distinctive features. In both approaches, the greatest difficulty is encountered in

the differentiation of edges of different surface types.

The parametric approach can differentiate six different surfaces with 100%

accuracy. In the template-based approach, where we considered differentiation

and localization of surfaces by employing non-parametric approaches, a maximum

correct differentiation rate of 87% over four surfaces was achieved. Comparing

this rate with that obtained with the parametric approach, we can conclude

that the parametric approach is superior to non-parametric ones, in terms of the

accuracy, number of surfaces differentiated, and memory requirements, since the

non-parametric approaches we considered require the storage of reference scan

signals. By parameterizing the intensity scans and storing only their parameters,

we have eliminated the need to store complete reference scans. The decrease

in the differentiation rate resulting from adding new surfaces in the parametric

approach does not represent an overall degradation in differentiation rates across

all surface types but is almost totally explained by pairwise confusion of the newly
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Table 8.1: Overview of the differentiation techniques compared (U: used, S:
stored, and NS: not stored).

differentiation type of type of feature correct training learning parametric

technique geometry surface diff.(%) data

rule-based [56] P,C,E,CY WD geo 91.3 U, NS no no

template-based

[57] P,C,E,CY WD geo 97 U, S no no

[58] P AL,WW,BP,ST surf 87 ” ” ”

[59] P,C,E AL,WC,ST geo 99 ” ” ”

” ” ” surf 81 ” ” ”

” ” ” geo+surf 80 ” ” ”

ANN P,C,E AL,WC,ST geo 99.0 U, NS yes no

P ” surf 80.5 ” ” ”

C ” ” 85.9 ” ” ”

E ” ” 64.6 ” ” ”

P,C,E ” geo+surf 78.4 ” ” ”

parametric [60] P ST,WW,WC(BC), surf 100 U, NS yes yes

WP,BP,VP

” ST,WW,WC(BC), ” 86 ” ” ”

WP,BP,VP,WD

” ST,WW,WC,BC, ” 83 ” ” ”

WP,BP,VP

” ST,WW,WC,BC, ” 73 ” ” ”

WP,BP,VP,WD

statistical

pattern recognition [61]

PDE-HM, PDE-HT P,E,CY ST,WC,BC, geo 98.6 U, NS no yes

WP,BP,VP,WD

LC-KL ” ” ” 98.6 ” ” no

LC-LOG ” ” ” 98.6 ” ” ”

LC-FIS ” ” ” 79.6 ” ” ”

NM ” ” ” 75 ” ” ”

NMS ” ” ” 75.4 ” ” ”

QC ” ” ” 97.7 ” ” ”

MoN-3 ” ” ” 100 ” ” yes

KE ” ” ” 99.5 U, S ” no

k-NN ” ” ” 99.5 ” ” ”

NN-LM ” ” ” 99.5 U, NS yes ”

SVM-P, SVM-E ” ” ” 99.5 ” no ”
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introduced surface with a previously existing one, resulting from the similarity

of the C1 parameter of the intensity scans of the two confused surfaces. (Similar

decreases in differentiation rate with increasing number of surfaces or objects are

also observed with non-parametric template-based approaches.) We can increase

the number of surfaces differentiated at the expense of a decrease in the correct

differentiation rate.

Surface differentiation using statistical pattern recognition techniques was not

as successful as geometry type determination due to the similar (Imax,C1) varia-

tion of edges and cylinders.

We give localization results for rule-, template-, and parameter-based dif-

ferentiation. As the approaches for target localization are the same for other

classification approaches (ANNs and statistical pattern recognition techniques),

results are not given for these cases. Emphasis is made on target differentiation.

Two alternatives, center-of-gravity and maximum intensity of the intensity scans,

are used for azimuth estimation of the targets depending whether the intensity

scans are saturated or not. After determination of the target type, range of the

targets is found by interpolating on the intensity versus distance curve. There-

fore, the greatest contribution to the range errors comes from targets which are

incorrectly differentiated and/or whose intensity scans are saturated.

The correct differentiation rate is low for targets located at far or nearby dis-

tances to the infrared sensing unit, as the intensity scan is weak or saturated

for the two extreme cases, respectively. The experiments are conducted in a

controlled environment, but the data for training and test scans are collected

at different times. The results are consistent over time and for different envi-

ronmental conditions. While performing differentiation and localization, scans

for the training sets should be obtained carefully. In our case, targets were lo-

cated on millimetric grid paper during data acquisition. The orientation of the

targets is also done carefully. We also considered cases where the scans deviate

from ideal cases. The proposed algorithms can be easily modified with minor

modifications for different environments and target/surface types. The methods

can be applied/implemented successfully in real-time for on-board applications.
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In real-time, a circular array of emitter/detector pairs can be used for fast and

on-line target determination. This way, data acquisition can be done faster. The

complexity of the data processing for target type determination is low, where

the processing of the training set took more time. As training is done off-line

for some of the methods, it does not degrade the real-time performance of the

proposed algorithm. Rule-based approach processes full intensity scans, and the

decision is made only using simple computations. Template-based approach also

uses full intensity scans, and processing taking differences with reference scans

or matched filtering requires more computational cost than rule-based approach

but again it is fast enough for real-time applications. Also, neural network based

target differentiation is comparable to the template-based approach in terms of

processing time. Other approaches do not use full intensity scans, but only two

parameters obtained by fitting a reflection model to the scans. The fitting process

is also suitable for real-time applications where model-based clever initial guesses

are made for fast convergence.

In this chapter, a comparison of all approaches used for target classification

and localization throughout this thesis is made. Because of the different proper-

ties of each target, the number of scans per geometry and surface and the range

interval where the targets are visible by the experimental setup are not the same.

This is in the nature of the application, therefore no attempt has been made to

make the number of training scans equal as this will also introduce a bias which

inherently is not part of the nature of the application.

The results provided in this thesis are vital for robotics researchers who are

looking for which method results in better target classification and localization

performance with infrared sensors. In the next chapter, conclusions are drawn

and directions for future work are provided.



Chapter 9

CONCLUSIONS AND FUTURE

WORK

In this thesis, differentiation and localization of commonly encountered indoor

features or targets such as planes, corners, edges, and cylinders with different

surfaces is achieved using an inexpensive infrared emitter and detector pair. One

advantage of our system is that it does not greatly depend on environmental

conditions since we employ an active sensing modality.

Different approaches are compared in terms of correct target differentiation

rate, and range and azimuth estimation accuracy. The techniques considered in

this study include rule-based, template-based and neural network-based differ-

entiation, parametric surface differentiation, and statistical pattern recognition

techniques such as parametric density estimation, different linear and quadratic

classifiers, mixture of normals, kernel estimator, k-nearest neighbor, artificial

neural network, and support vector machine classifiers.

The results reported here represent the outcome of our efforts to explore the

limits of what is achievable in terms of identifying information with only a simple

emitter-detector pair. Such simple sensors are usually put to much lower informa-

tion extracting uses. To the best of our knowledge, no previous attempt has been

made to differentiate and estimate the position of several kinds of targets using
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such simple infrared sensors. Also, a compact comparison based on experimental

work does not exist for target differentiation using infrared sensors.

This thesis demonstrates that simple infrared sensors, when coupled with

appropriate processing, can be used to extract substantially more information

than such devices are commonly employed for. We expect this flexibility to sig-

nificantly extend the range of applications in which such low-cost single sensor

based systems can be used. Specifically, we expect that it will be possible to

go beyond relatively simple tasks such as simple object and proximity detection,

counting, distance and depth monitoring, floor sensing, position measurement,

obstacle/collision avoidance, and deal with tasks such as differentiation, classifi-

cation, recognition, clustering, position estimation, map building, perception of

the environment and surroundings, autonomous navigation, and target tracking.

The approach presented here would be more useful where self-correcting operation

is possible due to repeated observations and feedback.

The demonstrated system would find application in intelligent autonomous

systems such as mobile robots whose task involves surveying an unknown envi-

ronment made of different surface types. Industrial applications where different

materials/surfaces must be identified and separated may also benefit from this

approach.

Given the attractive performance-for-cost of infrared-based systems, we be-

lieve that the results of this study will be useful for engineers designing or im-

plementing infrared systems and researchers investigating algorithms and per-

formance evaluation of such systems. While we have concentrated on infrared

sensing, the techniques evaluated and compared in this thesis may be useful for

other sensing modalities and environments where the objects are characterized by

complex signatures and the information from a multiplicity of partial viewpoints

must be combined and resolved.

Future work may involve designing a more intelligent system whose operat-

ing range is adjustable based on an initial range estimate to the target. This will

eliminate saturation and enable the system to accurately differentiate and localize

targets over a wider operating range. Another issue to consider is the extension
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of the model to include specular reflections from glossy surfaces. Parametric

modeling and representation of intensity scans of different geometries (such as

corner, edge, and cylinder) can be considered to employ the proposed approach

in the simultaneous determination of the geometry and the surface type of the

targets. Identifying more generally shaped objects (such as a vase or a bottle)

by using several scans from each object is another possible research direction.

In a sensor-fusion framework, infrared sensors would be perfectly complementary

to ultrasonic systems which are not suitable for close-range detection (less than

40 cm). They can be used together with ultrasonic sensors for target differentia-

tion purposes [1–6]. Finally, evaluating the techniques on a mobile robot moving

in indoor environments would put the system into practical use.
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[53] Ç. Yüzbaşıoğlu and B. Barshan, “Improved range estimation using simple

infrared sensors without prior knowledge of surface characteristics,” Mea-

surement Science and Technology, vol. 16, pp. 13905–1409, July 2005.

[54] H. V. Christensen, Position Detection Based on Intensities of Reflected In-

frared Light. PhD thesis, Aalborg University, Department of Control Engi-

neering, Denmark, November 2005.



BIBLIOGRAPHY 122

[55] B. Hassibi and D. G. Stork, “Second-order derivatives for network pruning:

optimal brain surgeon,” in Advances in Neural Information Processing Sys-

tems (S. J. Hanson, J. D. Cowan, and C. L. Giles, eds.), vol. 5, pp. 164–171,

Morgan Kaufmann, San Mateo, CA, 1993.
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