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ABSTRACT

SCHEDULING IN FLEXIBLE ROBOTIC MANUFACTURING

CELLS

Hakan Gültekin

Ph.D. in Industrial Engineering

Supervisor: Prof. M. Selim Aktürk

September, 2006

The focus of this thesis is the scheduling problems arising in robotic
cells which consist of a number of machines and a material handling robot.
The machines used in such systems for metal cutting industries are highly
flexible CNC machines. Although flexibility is the key term that affects
the performance of these systems, the current literature ignores this. As a
consequence, the problems considered in the current literature are either too
limiting or the provided solutions are suboptimal for the flexible systems. This
thesis analyzes different robotic cell configurations with different sources of
flexibility. This study is the first one to consider operation allocation problems
and controllable processing times as well as some design problems and bicriteria
models in the context of robotic cell scheduling. Also, a new class of robot
move cycles is defined, which is overlooked in the existing literature. Optimal
solutions are provided for solvable cases, whereas complexity analyses and
efficient heuristic algorithms are provided for the remaining problems.

Key words : Robotic cell scheduling, Flexible manufacturing cells, CNC,
Controllable processing times, Bicriteria scheduling
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ÖZET

ROBOTLU ESNEK ÜRETİM HÜCRELERİNDE

ÇİZELGELEME

Hakan Gültekin

Endüstri Mühendisliği Bölümü Doktora

Tez Yöneticisi: Prof. Dr. M. Selim Aktürk

Eylül, 2006

Bu tezin konusu belirli sayıda makinadan ve bunlara malzeme taşıyan bir
robottan oluşan robotik hücrelerde ortaya çıkan çizelgeleme problemleridir.
Metal işleme endüstrisinde bu tür hücrelerde esnekliği sağlamak için CNC mak-
inaları kullanılmaktadır. Bu tür sistemler için esneklik, sistemin performansını
etkileyen temel unsurlardan olmasına rağmen, literatürde gözardı edilmiştir.
Bunun sonucunda, literatürde ele alınan problemler ya çok kısıtlı kullanım
alanları içindir ya da elde edilen sonuçlar esnek sistemler için alteniyidir. Bu
tez değişik hücre konfigürasyonlarını, değişik esneklik kaynaklarının varlığında
incelemektedir. Operasyon atama problemleri ve kontrol edilebilir işlem
zamanlarının yanında çeşitli dizayn ve iki kriterli eniyileme modelleri de robotik
hücre çizelgeleme problemleri bünyesinde ilk defa bu çalışmada ele alınmıştır.
Bunların yanında, literatürde gözden kaçan yeni bir robot hareket döngüsü
türü de ilk defa bu çalışmada tanımlanmıştır. Çözülebilir problem türleri için
eniyi çözümler sağlanırken geri kalanlar için karmaşıklık analizleri yapılmış ve
etkin sezgisel algoritmalar geliştirilmiştir.

Anahtar sözcükler : Robotik hücre çizelgelemesi, Esnek üretim hücreleri,
CNC, Kontrol edilebilir üretim zamanları, İki kriterli çizelgeleme
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Chapter 1

Introduction

The search for better ways to manufacture components has increased the level

of automation in manufacturing industries. This trend involves the use of

computer controlled machines and automated material handling devices. One

of the widespread applications of automation is the installation and use of

robotic cells. A manufacturing cell consisting of a number of machines and

a material handling robot is called a robotic cell. These kinds of robots are

used extensively in chemical, electronic and metal cutting industries. Robots

are installed in order to reduce labor cost, to increase output, to provide a

more flexible production system and to replace people working in dangerous

or hazardous conditions [13]. However, in order to use such systems efficiently

some important problems must be tackled. Among these, the design of the

cells and the scheduling of robot moves are eminent.

In this thesis we will consider a flexible robotic manufacturing cell which

consists of a number of Computer Numerically Controlled (CNC) machines

and a material handling robot. “Flexibility” plays a crucial role in such cells.

There are many different types of flexibilities such as operational flexibility,

1



CHAPTER 1. INTRODUCTION 2

process flexibility, routing flexibility, material handling flexibility, and machine

flexibility [18]. In this thesis we will consider those types of flexibilities that

affect the processing times of the parts on the machines. More specifically, we

will consider the operational and process flexibilities. Operational flexibility is

defined as the capability of changing the ordering of several operations where

process flexibility is defined as the capability of performing several operations

at the same machine. Such flexibilities are achieved by considering alternative

tool types for operations and loading multiple tools to the tool magazines of

the machines.

We will investigate the productivity gain attained by the additional

flexibility introduced by the CNCs. The aim is the maximization of the

throughput of the cell or equivalently minimization of the cycle time which

is defined as the long run average time required by the robotic cell to complete

one part. More formally, we assume that we have infinite number of parts and

if Cn denotes the completion time of the nth part then the long run average

cycle time is lim supn→∞ Cn/n [21]. Cyclic production in a robotic cell refers to

the production of finished parts by repeating a fixed sequence of robot moves.

As discussed in Geismar et al. [30], the main motivation for studying cyclic

production comes from practice: cyclic schedules are easy to implement and

control and are the primary ways of specifying the operation of a robotic cell

in industry. Furthermore, Dawande et al. [23] show that for the problem of

scheduling operations in bufferless robotic cells that produce identical parts

(similar to our problem), it is sufficient to consider cyclic schedules in order to

maximize throughput. They prove that there is at least one cyclic schedule in

the set of all schedules that optimizes the throughput of the cell.

After reviewing the relevant literature in Chapter 2 we formulate our

problem and present the necessary definitions and notation in Chapter 3. The

focus of Chapter 4 is an m-machine robotic cell in which the machines are
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assumed to be capable of performing all the required operations of each part.

As a consequence of this assumption, we relax the flowshop assumption which

is used in the current literature and which unnecessarily limits the number of

alternatives. The flexibility of the CNC machines leads to the definition of

a new class of robot move cycles. We select and focus on one of the cycles

among this class which is widely used in industry not because it is proved to

be optimal but because it is simple and practical. The regions of optimality

for this cycle for the m-machine case is determined. We analyze the 2- and

3-machine cases further in detail. For the regions where the proposed cycle

may not be optimal, we present a worst case performance bound of using this

cycle.

Till now the research on robotic cell scheduling problems concentrated on

the operational aspects such as finding the part input sequence and the robot

move sequence. However, the design of the cells also affects the performance

of such cells. In Chapter 5, we study some design problems arising in robotic

manufacturing cells. We first consider the layout of the machines and show

that the efficiency of the cells can be increased by changing the layout of the

machines. As a second design problem we consider the number of machines

as a decision variable. We determine the optimal number of machines that

minimizes the cycle time for given parameters such as the robot transportation

time, load/unload time and the processing times of the operations.

Assuming that the CNC machines are capable of performing all the

required operations may be unrealistic at times since the tool magazines have

limited capacity and in many practical applications the required number of

tools exceeds this capacity; ultimately, duplicating all the tools may not be

economically justifiable. In this respect, in Chapter 6 we consider a 2-machine

robotic cell and assume that some operations can only be processed on the

first machine while some others can only be processed on the second machine
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due to tooling constraints. As a consequence, the system is assumed to be a

flowshop in which each part passes through all machines in the same sequence;

1, 2, . . . ,m. The remaining operations can be processed on either machine. The

problem is to find the allocation of the remaining operations to the machines

and the optimal robot move cycle that jointly minimize the cycle time. We

prove that the optimal solution is either a 1-unit or a 2-unit robot move cycle,

where an n-unit cycle is defined to be a cycle in which all machines are loaded

and unloaded exactly n times and the initial and the final states of the system

(position of the robot and the status of each machine) are the same. We present

the regions of optimality for all 1-unit and 2-unit robot move cycles. Finally,

a sensitivity analysis on the results is conducted.

Processing times of the parts on the machines can be changed by altering

the machining conditions such as the speed and the feed rate for highly flexible

CNC machines and this affects the cycle time. On the other hand, altering

the machining conditions also affects the manufacturing cost. As a result, in

Chapters 7 and 8 we develop and solve a bicriteria problem formulation for the

robotic cell scheduling problem. In Chapter 7, we consider 2- and 3-machine

robotic cells. The cell is assumed to be a flowshop in which each part has one

specific operation on each machine and follows the same sequence of machines.

The aim is to find the robot move sequence as well as the processing times of

the parts on each machine that not only minimizes the cycle time but, for the

first time in robotic cell scheduling literature, also minimizes the manufacturing

cost. For each 1-unit cycle in 2- and 3-machine cells, we determine the efficient

set of processing time vectors such that no other processing time vector gives

both a smaller cycle time and a smaller cost value. We also compare these

cycles with each other to determine the sufficient conditions under which each

of the cycles dominates the rest. Finally, we show how different assumptions

on cost structures affect the results. On the other hand, in Chapter 8, besides
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determining the robot move sequence and the processing times of the operations

on the machines, we determine the allocation of the operations to the machines.

Since finding the allocation of the operations is NP-Hard itself, we develop a

heuristic algorithm which approximates a set of points on the efficient frontier.

An experimental framework is designed in order to evaluate the efficiency of

the algorithm and the results are compared with a commercial nonlinear mixed

integer program solver software GAMS-DICOPT2x-C.



Chapter 2

Literature Review

In this section we will review the relevant literature pertinent to this study.

However, let us first give some necessary notation and definitions that will be

used throughout this study. The following definitions are borrowed from [19].

Definition 2.1 Ai is the robot activity defined as; robot unloads machine i,

transfers part from machine i to machine i + 1, loads machine i + 1.

Definition 2.2 An n-unit robot move cycle is the robot move cycle in which

starting with an initial state of the system, the robot performs each activity

exactly n times and ends up with the initial state of the system. Note that, in

an n-unit robot move cycle exactly n parts are produced.

In an m-machine robotic cell we have exactly m + 1 robot activities: A0, A1,

. . ., Am, where the machines are numbered as 1, 2, . . . ,m, the input buffer

is numbered as 0 and the output buffer is numbered as m + 1. Since in an

optimal cycle we require that the robot move path is as short as possible, any

two consecutive activities uniquely determine the robot moves between them.

6
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Therefore, any robot move cycle can be uniquely described by a permutation of

the above activities. Additionally, Crama et al. [21] make the following basic

feasibility assumptions which we shall incorporate in our study as well:

1- Robot cannot load an already loaded machine.

2- Robot cannot unload an already unloaded machine.

These assumptions restrict the ordering of the activities. For example, let Sim

represent a specific robot move cycle in an m-machine robotic cell. Then for

two machines we have only two feasible 1-unit robot move cycles:

S2
1 = A0A1A2, S2

2 = A0A2A1.

In a 3-machine cell there are six feasible 1-unit cycles which can be listed

as follows:

S3
1 = (A0A1A2A3), S3

2 = (A0A2A1A3), S3
3 = (A0A1A3A2),

S3
4 = (A0A3A1A2), S3

5 = (A0A2A3A1), S3
6 = (A0A3A2A1).

The animated views of these robot move cycles can be found at the web

site http://www.ie.bilkent.edu.tr/∼robot. Now, let us calculate the cycle time

of S2
2 for a 2-machine cell producing identical parts as an example. Let Pi

represent the processing time of each of the identical parts on machine i and wi

represent the waiting time of the robot in front of machine i. Let TS represent

the cycle time of the robot move cycle S, i.e., the long run average time to

produce one part under robot move cycle S. Furthermore, let δ represent

the robot transportation time between any two consecutive machines and ε

represent the loading/unloading time of the machines. In this cycle, initially
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the first machine is idle and the second machine is loaded. The robot is in

front of the input buffer just before taking a part. The robot takes a part from

the input buffer (ε), transports it to the first machine (δ), loads it (ε), travels

to the second machine (δ), waits in front of the machine to finish processing of

the part (w2), unloads it (ε), transports the part to output buffer (δ), drops the

part (ε), travels back to the first machine (2δ), waits in front of the machine

(w1), unloads it (ε), transports the part to the second machine (δ), loads it (ε),

travels back to input buffer (2δ). The initial and the final states are the same

thus the cycle is completed. Then the cycle time is the following:

TS2
2

= 6ε + 8δ + w1 + w2.

Note that, when the robot arrives in front of a machine to unload it, if

the processing of the part is already completed then the robot unloads the

machine immediately without any waiting time. Otherwise, the waiting time

is equivalent to the remaining processing time. As a consequence, the waiting

times are w1 = max{0, P1 − 2ε − 4δ − w2} and w2 = max{0, P2 − 2ε − 4δ}.
After some simple arithmetic operations, the cycle time is found as follows:

TS2
2

= 6ε + 8δ + max{0, P1 − 2ε − 4δ, P2 − 2ε − 4δ}.

Now let us consider the basic assumptions that are common for most of the

studies.

• All data are deterministic.

• The robot and the processing machines never experience breakdown and

never require maintenance. Setup times are assumed to be negligible.

• No preemption is allowed in the processing of any operation.
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• Parts are always available at the input buffer and there is always an

empty place at the output buffer.

In the next section we will list the differences in robotic cell scheduling

problems and present the standard classification scheme for those problems. In

Section 2.2, we will present basic results from the previous studies on robotic

cell scheduling problems. In Section 2.3, the multicriteria scheduling models

considered in FMS scheduling literature are explained. The studies considering

controllable processing times in scheduling are summarized in Section 2.4.

2.1 Problem Types and Classification Scheme

The robotic cell scheduling problems differ from each other in the following

aspects:

1. Cell types,

2. Processing times,

3. Objective functions,

4. Robot travel times,

5. Loading and unloading times,

6. Number of machines and parts.

We will analyze each of them in detail in the following sections.
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2.1.1 Cell types

In most general terms, a robotic cell consists of m machines denoted as Mi, i =

1, 2, . . . ,m. Also there is an input and an output buffer denoted as (M0)

and (Mm+1) respectively. In some implementations, the input device and the

output device are at the same location, and this unit is called a load lock [30].

In most studies there is one robot that makes the loading/unloading of the

machines and the transportation of the parts between these machines. Some

studies also consider the multiple robots case.

An important characteristic of the robotic cells is the buffers in front of

the machines. In the literature, robotic cells with finite or infinite buffers and

no buffers are considered. In general, the additional freedom introduced by

buffers tends to complicate scheduling problems [82]. The focus of this study

is on robotic cells with no buffers. For the complexity of the robotic cells with

buffers we refer to Hurink and Knust [51]. Other problems and approaches to

this subject can be found in Kise [65], Hitomi and Yashimura [49], King et al.

[64], Finke et al. [27], Levner [71], and Kogan and Levner [66].

For the bufferless problems, all parts must be either on the input buffer, on

one of the machines, on the output buffer, or on the robot. This is equivalent to

blocking condition in a classical flowshop: a part that has completed processing

on Mi can not leave unless machine Mi+1 is unoccupied [83]. This should not

be confused with the more restrictive no-wait condition in which a part must

be removed from a machine and transferred to the next one as soon as that first

machine completes processing that part, a condition which will be analyzed in

Section 2.1.2.

Some researchers consider cells with dual gripper robots instead of single

gripper robots. Dual gripper robots can hold two parts at a time and unload
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Figure 2.1: Inline robotic cell layout

and load a machine simultaneously. This increases the number of feasible robot

move cycles drastically. As a consequence, the complexity of the problem also

increases. Another stream of research considers parallel machines at each stage

of production. The robot makes the transportation between the stages and the

loading/unloading of the parallel machines is performed by another material

handling device.

Another characteristic of the robotic cells is the layout of the cells. As

Han et al. [47] proposed, cell formation may increase efficiency of the cell.

Three different layouts are considered for the robotic cells: robot-centered cells

denoted as RCCm for an m-machine robotic cell, (where the robot movement

is rotational), in-line robotic cells denoted as IRCm (where the robot moves

linearly) and mobile-robot cells denoted as MRCm (generalization of in-line

robotic cell and robot-centered cell) [75]. In this thesis, consistent with most

of the research on this area, we will assume an in-line robotic cell layout as

shown in Figure 2.1.
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2.1.2 Processing times

In most general terms, the processing times are represented as [Lj
i , U

j
i ] which

gives the processing time of part j on machine Mi. The meaning of the

processing window is that the time spent by part j on machine Mi must be

at least Lj
i and may not exceed U j

i . For example, if we consider the case that

each part has a precisely defined processing time on each machine and can

wait on the machine indefinitely long after it has been processed, it can be

handled by setting all upper bounds U j
i to +∞. This case is referred to as

unbounded processing windows [21]. Another type of processing requirement is

referred to as with blocking, i.e., the machine becomes blocked if the part is

not removed from it after the processing is finished. Another model is referred

to as no-wait; here it is assumed that the parts must be removed from the

machines immediately after the processing is finished. These two problems

can be modelled by setting Lj
i = U j

i . This setting of processing windows

is referred to as zero-width processing windows [21]. No-wait type processes

are commonly seen in chemical and electronic industries, where the parts are

dipped into chemical substances, after a certain amount of time taken out and

in order not to become defective should immediately proceed with the next

operation in sequence. Also in plastic molding and steel manufacturing, where

the raw material must maintain a certain temperature, no-wait type conditions

are used. Such conditions also ensure freshness in food canning industries (Hall

and Sriskandarajah [46]). There is vast amount of research focusing on these

types of problems.

Another problem with a different processing requirement is formulated in

Akturk et al. [2] and Gultekin et al. [38] where the processing times are

assumed to be decision variables. The parts are assumed to have several

operations to complete their processing. Each operation has its own operation
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time. Then these operations are tried to be allocated to the machines in order

to minimize the cycle time. Thus, the processing times depend on the allocation

of the operations.

2.1.3 Objective functions

There are two objective functions that are commonly used in robotic cell

scheduling literature. The first and the most widely used one is the

minimization of the cycle time or the maximization of the throughput. Since

the robot follows a computer program, there must be a finite activity sequence

for the robot that it repeats to produce the parts. Thus, the robot activities

must be cyclic because of its nature and minimizing this cycle time is a relevant

objective. Cycle time is defined as the long run average time that is required

to produce one part where each robot activity is performed an equal number

of times and the initial and the final states of the system are the same. The

cycle time for an n-unit cycle is found by dividing the total time required to

finish the cycle by n so that the average time to produce one part is found.

The second objective function that is used widely is the minimization of the

makespan of the schedule, which is defined as the completion time of the last

job in the sequence.

2.1.4 Robot travel times

In the most general case, robot travel time between machine i and j is assigned

a value δij, 0 ≤ i, j ≤ m+1. The travel times are neither additive nor constant.

By additive we mean that δij = δi(i+1) +δ(i+1)(i+2) + . . .+δ(j−1)(j). That is, total

time to travel between machine i to machine j is the summation of the travel

times between consecutive machines on the way from machine i to machine j.
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Brauner et al. [11] study this problem with the following assumptions:

1. The travel time from a machine to itself is zero, i.e., δii = 0,∀i.

2. The travel times satisfy the triangular inequality, i.e. δij + δjk ≥ δik,

∀i, j, k.

3. The travel times are symmetric, i.e. δij = δji, ∀i, j.

A robotic cell that satisfies Assumptions 1 and 2 is called a Euclidean robotic

cell; one that satisfies Assumptions 1,2 and 3 is called a Euclidean symmetric

robotic cell [30]. The robotic cell scheduling problem for either case is NP-hard

in the strong sense [11].

In some studies, the robot travel time is assumed to be additive and constant

for any transportation between any two consecutive workstations in which case

δij = δ ∀i, j.

In more realistic cases, the acceleration and the deceleration of the robot

is considered [75]. In this case, the travel time between two consecutive

machines does not change while on the other hand, the travel time between

non-consecutive machines is reduced. For each intervening machine, the robot

is assumed to save γ units of time.

For mobile robot cells, since the robot both moves linearly and rotationally,

the linear movement can take more time. For a two machine cell this occurs

when the robot moves between machines 1 and 2 [75]. Thus, a time denoted

δ0 is added to the travel time for the movements that include transportation

between machines 1 and 2.

Dawande et al. [24] consider another transportation time model in which

additivity is not applicable. They assume that the robot travel time between
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any pair of machines is constant δ. This happens when the cells are compact

and the robots have varying acceleration and deceleration. Thus, the travel

times between any pair of machines vary in negligible amounts.

2.1.5 Loading and unloading times

Several authors consider the loading and unloading times to be machine

dependent, that is, it takes εi time to load or unload a part to machine i.

In other cases, this time is assumed to be constant for all workstations and

parts that is, εi = ε,∀i. Dawande et al. [24] state that, when comparing cycle

times of different cycles, the values of εi has no effect. This is because no

matter what the robot’s sequence may be, each part is unloaded from input

buffer, loaded and unloaded on each machine and loaded on output buffer.

2.1.6 Number of machines and parts

In a robotic cell the number of machines may differ from 2 to m. Naturally most

analytical results are for the cases where the number of machines are relatively

small, namely two and three. For the cases where the machine number is more

than three, most of the problems appear to be NP-hard. However, when a

flexible robotic cell is considered which consists of CNC machines, the number

of machines is relatively small due to physical space constraints.

The number of parts considered may also differ among the existing studies

in the literature. Some of the studies assume identical parts for which there is

no sequencing of the parts. The only problem is to find the robot move cycle

that minimizes the cycle time. On the other hand, in multiple parts case the

problem is to find the robot move sequence as well as the part input sequence
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that jointly minimize the cycle time. It is obvious that this problem is much

more difficult than its identical parts counterpart and most of the analytical

results derived for the identical parts case fail to apply to this case. Again,

because of the nature of industrial robots, the multiple parts case also must

follow a cycle and this cycle can use the concept of minimal part set (MPS). The

MPS for a production environment can be obtained, if the forecasted demand

Lj is given for each part type j over planning horizon. If d is the largest

common divisor of the integers L1, L2, . . . , Lk, the integer ratio (rj = Lj/d) of

part types can be represented as r = (r1, r2, . . . , rk). The vector is the minimal

production ratio (MPR) and the part set corresponding to this ratio is known

as the MPS. For the sake of clarity consider the following example. Let us

assume that we have three products A, B and C, with forecasted demand, Lj,

being 100, 150 and 250 respectively. Then, the largest common divisor, d, is 50

and the MPR is (2, 3, 5). As a result, the MPS is composed of 2 A’s, 3 B’s and

5 C’s. Given an MPS of n parts, Geismar et al. [30] define an MPS cycle to be

a sequence of robot moves in which exactly n parts of an MPS enter the cell at

the input station, exactly n parts of the MPS exit the cell at the output station

and the cell returns to its initial state. The order in which the parts enter the

cell is called the MPS part schedule (or simply part schedule). An MPS cycle

is determined by the MPS part schedule and the MPS robot move sequence or

simply robot move sequence that specifies all robot operations during the MPS

cycle. Sriskandarajah et al. [89] define Concatenated Robot Move Sequences

(CRM Sequences) as a class of MPS cycles in which the same 1-unit cycle of

robot actions are repeated n times. Thus, the problem in multiple parts case

is to find the robot move sequence and the part input sequence of the MPS.

Now let us present the classification scheme for robotic flowshops, which

will help us through the rest of this study. The standard classification scheme

for scheduling problems introduced by Graham et al. [36] can be denoted as



CHAPTER 2. LITERATURE REVIEW 17

ψ1|ψ2|ψ3 where ψ1 indicates the scheduling environment, ψ2 indicates the job

characteristics or restrictive requirements and ψ3 defines the objective function

to be minimized. Hall et al. [43] extended this scheme to capture the scheduling

problems arising in robotic cells, as follows:

Under ψ1, we have:

MRCm = a mobile-robot cell with m machines.

RCCm = a robot-centered cell with m machines.

IRCm = an in-line robot cell with m machines.

Under ψ2, we have:

k = the number of part-types.

r-unit(s) = the problem is being solved over robot move cycles that

produce r units.

S = robot move cycle S is used alone.

δi = δ = the travel time between any pair of consecutive machines

is equal.

εi = ε = the load and unload times at all machines are equal.

Under ψ3, we have:

Ct = long run average time to produce one part.

Cmax = the makespan for the manufacture of a given set of jobs.

In the next section, we will present basic results of the previous research

on robotic cell scheduling problems.
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2.2 Results from Previous Studies

There is vast amount of research on robotic cell scheduling problems. Some

date as far as 1970s, but the majority has been performed since 1990. We

will analyze the results from previous studies under the headings of identical

parts case, multiple parts case and some other cell configurations that have

particular assumptions. Crama et al. [21], Lee et al. [69] and Geismar et al.

[30] also provide surveys in this area.

2.2.1 Identical Parts Case

The identical parts robotic cell scheduling problem is simpler than its multiple

parts counterpart since the part sequencing problem vanishes in identical parts

case. However, like most scheduling problems, analytical results are found for

problems where there the number of machines is small.

The paper by Sethi et al. [86] can be considered as the initiation of the

robotic cell scheduling literature. In this study, the objective is to maximize

the throughput or in other words minimize the cycle time. One of the problems

considered in this study is ”one part type problem with two machines”, more

specifically, RCC2|k = 1, δi = δ, εi = ε|Ct. For this problem they prove that the

optimal solution is a 1-unit cycle. Since there are a total of two feasible 1-unit

cycles in a 2-machine cell, they determine the regions of optimality for each of

these cycles by comparing the cycle times of these two cycles with each other.

Another problem considered in the paper is “one part type problem with three

machines”, that is, RCC3|k = 1, δi = δ, εi = ε, 1 − unit|Ct. Determining the

sequence of robot moves constituting a 1-unit cycle that minimizes the cycle

time is considered. In this problem, only 1-unit cycles are considered since

the analysis of the problem without this restriction is difficult and perhaps
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intractable. As a solution to this problem, a decision tree is constructed in

order to determine the optimal policy. It is also proved that the number of

one-part cycles in the m-machine case is exactly m!. Another important result

of the paper is the conjecture that optimal 1-unit cycles are superior to every

n-unit cycle, for n ≥ 2.

Crama et al. [19] consider the problem RCCm|k = 1, δi, εi, 1 − unit|Ct.

They show that, when there is only one type of part to be produced

and considering only 1-unit cycles, the problem can be solved in (strongly)

polynomial time, even if the number of machines is viewed as an input

parameter of the problem. This generalizes previous results established

by Sethi et al. [86]. This result is achieved by proving that the set

of pyramidal permutations necessarily contains an optimal solution of the

problem. Pyramidal permutations have been previously introduced in the

framework of the travelling salesman problem; see e.g. Gilmore et al. [35].

Let π = (A0, Ai1 , . . . , Aik , Aik+1
, . . . , Aim). Then, π is pyramidal if 1 ≤ i1 <

. . . < ik = m and m > ik+1 > . . . > im ≥ 1. An algorithm is given which

computes the cycle time of a schedule described by a pyramidal permutation.

Lastly, a dynamic programming approach is presented that solves the identical

parts cyclic scheduling problem with the restriction that one unit is produced

in each cycle in O(m3) time where m is the number of machines in the cell.

Another result of that study is the derivation of the upper and the lower bounds

on the optimal cycle time.

Hall et al. [43] consider 3-machine cells producing single part-types and

prove that, the repetition of 1-unit cycles dominates more complicated policies

that produce two units. The validity of the conjecture of Sethi et al. [86] for

3-machine robotic flowshops is established by Crama et al. [20]. Brauner and

Finke [9] simplify this proof. In a later study, Brauner et al. [10] prove that

1-unit cycles do not necessarily yield optimal solutions for cells of size four or
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large. They present examples of such cases.

Dawande et al. [24] consider a different case of identical parts robotic cell

scheduling problem. They study the problem of finding the optimal robot move

cycle that minimizes the cycle time in an m machine robotic cell. However,

they consider only the 1-unit cycles. Differing from the literature, they assume

that the robot travel time between any pair of machines is constant, which

is referred to as constant travel time robotic cells. Such cells are used in

some manufacturing systems such as manufacturing of wafers. They provide a

polynomial time algorithm for finding an optimal 1-unit cycle.

Dawande et al. [23] show that cyclic schedules which repeat a fixed sequence

of robot moves indefinitely are the only ones that need to be considered in

order to maximize the long-term average throughput. Additionally, for the

different classes of robotic cells studied in the literature, the authors discuss

the current state of knowledge with respect to cyclic schedules. Geismar et

al. [29] consider an m-machine flexible robotic cell. They assume that each

part has one operation to be performed on each machine which makes a total

of m operations. They also assume that each part visits the machine in the

same order. However, the operations can be performed in any order and each

machine can be configured to perform any operation. They try to determine

the assignment of the operations to the machines so that the throughput

is maximized. They consider both the cases where the assignment of the

operations remains the same throughout the processing of the lot and it varies

for successive parts within a processing lot for 2, 3 and 4-machine cells.

A considerable amount of research in robotic cell scheduling area considers

the no-wait constraints which are required in some manufacturing systems such

as plastic molding, electroplating and steel manufacturing. In these systems,

material handling is mainly done by an automated material handling device
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such as AGV’s, hoists or robots. There is a vast amount of literature on no-wait

constraints in hoist and AGV scheduling problem areas. Since AGV scheduling,

hoist scheduling and robotic cell scheduling problems can be considered as

special cases of one another, the results for one of them can be extended to be

used for another, For example a single loop, single hoist scheduling problem

can be considered as a robotic cell scheduling problem.

One such study with no-wait constraints is the study of Kats et al. [61].

They consider an m machines identical parts robotic cell scheduling problem

with the objective of finding the 1-unit robot move cycle that minimizes the

cycle time. They assume that any machine may occur more than once in the

processing sequence of the parts. A polynomial algorithm which solves the

problem in O(K5) is presented. Here K is the number of processing stages in

the part’s production. If the re-entrance constraint is relaxed, they show that

the same algorithm has complexity O(m4), where m is the number of machines.

In a later study, Levner et al. [70] consider the same problem without re-

entrance constraints. They present an algorithm which in turn improves the

complexity of the previous one to O(m3 log m).

In a most recent study in no-wait robotic cells, Che et al. [15] consider an

m machine robotic cell with identical parts and constant processing times. The

objective is to find the optimal 2-unit robot move cycle that minimizes the cycle

time. They propose an algorithm which solves the problem in O(m8 log m)

time. They also extend this algorithm for the case of two nonidentical parts.

They present computational results which show that the algorithm effectively

finds the 2-unit cycles that minimizes the cycle time.
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2.2.2 Multiple Parts Case

As already mentioned, multiple parts problems are harder than the identical

parts problem even for small number of machines. Recall that, the problem is

to find the robot move sequence and the part input sequence for the MPS that

jointly minimize the cycle time.

In their study, Sethi et al. [86] consider multiple parts case also. More

specifically they consider RCC2|k ≥ 2, δi = δ, εi = ε, S2
1(S

2
2)|Ct. Given a fixed

sequence for the robot moves in a 2-machine cell and the desired production

ratios of the part types to be produced (MPS), determining the schedule of

parts at the input station that minimizes the cycle time is considered. As

a solution to this problem a polynomial time algorithm that determines an

optimal multi-part cycle is proposed.

Kise et al. [65] consider 2-machine multiple parts problem with the

objective of minimizing the makespan. They propose an O(n3) procedure

that solves the problem based on the known Gilmore and Gomory algorithm

(Gilmore and Gomory [34]). For the same problem, if the transportation time

between the machines is job dependent, then the problem is equivalent to an

asymmetric travelling salesman problem and is NP-hard in the strong sense

(Stern and Vitner [91]).

Again for the 2-machine multiple parts problem, Logendran and Sriskan-

darajah [75] consider three different layouts and establish optimal robot

sequences for these layouts. The problem of determining the optimal sequence

of multiple part types is shown to be equivalent with a 2-machines no-wait flow

shop problem, and is solved by Gilmore and Gomory’s algorithm. Besides the

analysis of a single MPS, production of multiple MPSs is also analyzed.

Hall et al. [43] attack the part scheduling and robot move sequencing
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problems simultaneously. They consider MRC2|k ≥ 2, δi = δ, εi = ε, |Ct.

They prove that CRM sequences generally do not give the optimal MPS robot

move sequences and they provide an example depicting this situation. An

O(n4) algorithm is provided for this case which gives the robot move cycle

and part input sequence that jointly minimize the cycle time, where n is the

number of parts in the MPS. They also consider the problem MRC3|k ≥
2, δi = δ, εi = ε, S3

1(S
3
2 , S

3
3 , S

3
4 , S

3
5 , S

3
6)|Ct. They show that the optimal part

sequencing problems associated with 4 of the 6 potentially optimal robot move

cycles for producing 1-unit are polynomially solvable and for the remaining 2

cycles, they show that the recognition version of the part sequencing problem

is NP-complete. More specifically, they show that the optimal part schedule

based on S3
1 is trivially solvable whereas the optimal part schedule based on

S3
3 , S3

4 and S3
5 can be solved polynomially using an algorithm based on the

Gilmore-Gomory [34] algorithm. On the other hand, finding the optimal part

schedules for S3
2 and S3

6 are NP-hard. Also, the conditions on the relative

lengths of processing times compared to robot move times under which the

last 2 cycles are dominated by the other 4 are given.

Aneja et al. [5] also consider MRC2|k ≥ 2, δi = δ, εi = ε, |Ct like Hall et al.

[43] and improve their algorithm which finds the optimal robot move sequence

and the part input sequence. They model the problem as a special case of TSP

and provide an algorithm of complexity O(n log n).

Sriskandarajah et. al. [90] consider MRCm|k ≥ 2, δi, εi|Ct. They classify

1-unit robot move cycles in an m-machine cell, for m ≥ 2, according to the

tractability of their associated part sequencing problems. The classification is

as follows:

U : Sequence independent (trivially solvable),

V1 : Capable of formulation as a TSP but polynomially solvable,
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V2 : Unary NP-hard TSP models,

W : Unary NP-hard, but not having TSP structure.

As a consequence of this classification, it is proved that the part sequencing

problems associated with exactly 2m − 2 of the m! available robot cycles are

polynomially solvable. The remaining cycles have associated part sequencing

problems which are unary NP-hard.

Another important result of the paper is as follows: in an m-machine robotic

cell with m ≥ 4 there are m! robot move cycles of which:

(a) One U-cycle defines a trivially solvable part sequencing problem,

(b) 2m − 3, V1-cycles define a part sequencing problem which is solvable in

O(nlogn) time,

(c)
bm/2c
∑

t=1

(

m
2t

)

−2m+3, V2-cycles define a part sequencing problem which can

be formulated as a TSP and which is unary NP-hard.

(d) m! − 1 −
bm/2c
∑

t=1

(

m
2t

)

, W-cycles define a part sequencing problem which in

general cannot be formulated as a TSP, and which is unary NP-hard.

Hall et al. [44] consider a 3-machine cell which produces multiple part-

types and prove that in two out of six potentially optimal robot move cycles

for producing one unit, the recognition version of the part sequencing problem

is unary NP-complete. The intractability of the part sequencing problem not

restricted to any one-unit cycle, that is, MRC3|k ≥ 2, δi, εi|Ct, is also proved.

Lastly, an algorithm is provided which initializes an empty cell into a steady

state as quickly as possible for any potentially optimal one-unit cycle.

Kamoun et al. [56] consider various problems in multiple parts scheduling

case and design and test heuristic procedures for the part sequencing problem.
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They provide heuristics for the following problems: MRC3|k ≥ 2, δi, εi, S
3
2 |Ct

and MRC3|k ≥ 2, δi, εi, S
3
6 |Ct which were shown to be NP-hard by Hall et

al. [43]. They also consider the most general 3-machine case, MRC3|k ≥
2, δi, εi|Ct, in which all possible robot move cycles are considered. Hall et

al. [44] prove that its recognition version is unary NP-complete. An efficient

heuristic is defined and tested for this problem also. The ways of extending

these heuristics to four machine cells as well as larger cells are illustrated.

They also consider a cell design problem which involves organizing several

machines into R ≥ 2 cells, which are arranged in a serial production process

with intermediate buffers.

Agnetis [1] consider a multiple parts no-wait robotic cell scheduling problem

with m machines. They assume that the parts are grouped into lots of identical

parts. They propose an ε-approximate algorithm which is based on the solution

to a transportation problem. Computational analysis results are presented.

2.2.3 Other Cell configurations

A new area of research is focusing on the robotic cells served by a robot

with a dual gripper. These robots are considered as a means to increase

throughput. These types of robots can hold two parts simultaneously and

thus, make it possible to unload a part from a machine and load it with

another part at the same time. This ability results in a huge increase in the

number of possible robot move cycles. For such robots, another time called the

repositioning time is defined. This is the required time to reposition the second

gripper of the robot in front of the machine after the first gripper finishes its

loading/unloading operation. It is generally assumed that the repositioning

requires much less time than the robot’s movement between two adjacent

machines or any machine’s processing time [30].
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Droboutchevitch et al. [26] consider identical parts case and develop a

formula to find the number of nondominated cycles in a general cell with m

machines. They show that for m = 2 there are 52 feasible 1-unit cycles.

However, they show that 13 of them dominate the rest.

Sethi et al. [85] also consider the dual gripper robotic cell scheduling

problem with identical parts and m machines. Since this problem is much

more complex than the case of single gripper robotic cell scheduling problem,

they extend the existing analytical framework to develop all 1-unit cycles for

dual gripper robotic cells. They consider only the 1-unit robot move cycles

and examine the cycle time advantage (or productivity advantage) of using

a dual gripper robotic cell rather than a single gripper robot. The best

possible improvement achieved by implementing a dual gripper robot appears

to be reducing the cycle time by half. They also propose a practical heuristic

algorithm to compare productivity of a single gripper and a dual gripper for

given cell data. Conditions which indicate the use of a dual gripper robot

include [30]:

1. m is not large and maxi{Pi/(δ + 2ε)} is large.

2. m is large and maxi{Pi/(δ + 2ε)} is not large.

3. ε/δ ≤ 1.

Sriskandarajah et al. [89] consider dual gripper robotic cells with multiple

parts. Focusing only on CRM sequences, they develop the notational and

modelling framework for cyclic production of multiple parts in dual gripper

robotic cells. They demonstrate that the recognition version of the part

sequencing problem subject to a given robot move sequence is unary NP-

complete for 6 out of 13 undominated sequences. For the special case of

negligible gripper switching time, they identify the robot move sequence that
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gives the minimum cycle time. For the general case, they provide an efficient

heuristic, which is empirically tested. Also computational experiments are

made to study the productivity gains of using a dual gripper robot in place of

a single gripper. They find the mean relative improvement range between 18%

and 36%.

Drobouchevitch et al. [25] also consider dual gripper robotic cells

with multiple parts. They consider 2-machines case. They focus on the

intractable problem of parts sequencing in a 2-machine dual gripper robot

cell. They develop a heuristic based on Gilmore-Gomory [34] that provides

3/2-approximation of the optimum for the 6 NP-hard CRM sequences. A

linear program is used to establish the performance guarantee without actually

calculating a lower bound. This approach is original in the literature of

scheduling robotic cells.

There are many other interesting robotic cell configurations in the

literature. An important class of problems addresses robotic cells involving

more than one robot. Problems of this type can be found in Karzanov and

Livshits [59] and Lieberman and Turksen [73]. In one of such problems Kats

et al. [60] study the problem of m machines identical parts no-wait robotic

cell scheduling problem with the objective of minimizing the number of robots

required to meet a cycle time of T . They propose an O(m5) time algorithm

that solves the problem optimally. Also in another study, Kats and Levner [62]

consider minimization of cycle time over the 1-unit robot move cycles with the

no-wait constraint and identical parts. They solve the problem for single and

several robots. They assume that the set of machines served by each robot

is known in advance. They solve the problem in O(m3logm) time. They also

show that the cyclic multi-robotic problem of the paper can be interpreted as

a new polynomially solvable case of the cyclic no-robot job-shop scheduling

problem.
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A special case of robotic cell scheduling is when all of the machines are

identical and working in parallel. Hall et al. [45] consider these systems

with different objectives (e.g. makespan, Cmax; maximum lateness, Lmax;

total tardiness,
∑

Tj etc.) and derive complexity results for these problems.

Geismar et al. [31] consider identical parts, parallel machines robotic cell where

the robot travel time is assumed to be constant for any pair of machines. The

authors provide guidelines to determine whether parallel machines will be cost-

effective for a given implementation. They also provide a simple formula for

determining how many copies of each machine are required to meet a particular

throughput rate and an optimal sequence of robot moves for a cell with parallel

machines under a certain common condition on the processing times.

Geismar et al. [32] combine dual gripper robotic cells and robotic cells

with parallel machines. The robot travel time is assumed to be constant for

any pair of machines. They provide a structural analysis of cells with one

or more machines per processing stage to obtain first a lower bound on the

throughput and subsequently an optimal solution under specific conditions. In

another study, Geismar et al. [33] consider a parallel machine robotic cell with

multiple robots that is used by a semiconductor equipment manufacturer. The

travel times are assumed to be Euclidean. The authors describe a schedule of

robot moves that is optimal under a common set of conditions for large cells

containing multiple robots. When this set of conditions does not hold, even

though optimality could not be proven, this schedule is shown to be superior to

one currently in use by some semiconductor manufacturers. They also present

a scheme that allows the robots to operate concurrently, efficiently, and with

no risk of colliding.

Blazewicz et al. [8] consider a two-stage FMS, in which they assume limited

buffers between the machines. A specific assumption of this problem was that

some parts need additional operation so will leave the system after the first
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machine and turn back later. Another difference of this research is that, they

consider setup times and assume that the production is made with batches

of identical parts. They also consider release dates of the parts and provide

heuristics to minimize the makespan.

Some studies in this area consider different objective functions other than

minimizing the makespan or the cycle time. For instance, Song et. al. [88]

and Jeng et. al. [55] try to minimize the sum of completion times. On the

other hand Levner and Vlach [72] consider an objective which minimizes some

penalty function of the maximum lateness.

Hurink and Knust [52] consider a single machine scheduling problem which

arises as a subproblem in a jobshop environment where the jobs have to be

transported between the machines by a single transport robot. They present a

tabu search algorithm for this problem, where they consider it as a generalized

TSP.

Lastly, Han and Cook [47], develop a mathematical model and a solution

algorithm for solving a robot acquisition and cell formation problem. They

formulate the problem as a multi-type two-dimensional bin packing problem,

which is known to be NP-hard. They develop and implement a heuristic

algorithm. The computational results show that the problems can be solved

with an optimality gap of less than 1% and over 70% of all solutions (334 out

of 450) were optimal.

2.3 Multicriteria scheduling

A single criterion is used in most of the existing scheduling studies. Algorithms

which focus entirely on optimizing one criterion may perform poorly for others
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since most of the criteria are conflicting with each other. The trade-offs involved

in considering several different criteria provide useful insights to the decision

maker. For example, a solution which minimizes the cycle time (long run

average time to produce one part) may perform poorly in terms of cost. Thus,

in the context of real life scheduling problems it is more relevant to consider

problems with more than one criterion. Multicriteria and bicriteria scheduling

models can be reviewed from Hoogeveen [50] and Nagar et al. [78]. Multicriteria

scheduling can provide good solutions for more than one objective. There are

different ways to deal with multiple criteria. One way is combining objectives

with linear, quadratic and Tchebycheff functions by assigning weights to each

objective. Another way is finding efficient solutions which provide more than

one alternative to the decision maker.

In multi-objective optimization problems, approximation quality of the

generated efficient set is important to the decision maker. In the literature,

there are different approximation quality evaluation metrics developed. These

metrics are useful for comparing different algorithms. A review and discussion

on existing metrics is available in Zitzler et al. [100]. Wu and Azarm [98]

propose some quality evaluation measures to compare efficient sets generated

by different multi-objective optimization methods.

The most common objectives used in multicriteria scheduling models

are minimizing flow time, number of tardy jobs, maximum tardiness, total

tardiness and total earliness. Koktener and Koksalan [68] use simulated

annealing and Koksalan and Keha [67] use genetic algorithms to solve a

bicriteria scheduling problem on a single machine. Ruiz-Torres et al. [84] study

the bicriteria identical parallel machine scheduling problem with the objectives

of minimizing the number of late jobs and minimizing the average flow time. A

simulated annealing procedure is proposed to generate nondominated solutions.

Suresh and Chaudhuri [92] propose a tabu search algorithm to solve bicriteria
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scheduling problem for unrelated parallel machines with the objectives of

minimizing the makespan and minimizing the maximum tardiness. Mohri

et al. [76] solve the bicriteria scheduling problem on three identical parallel

machines. The tradeoff curve which minimizes the makespan and maximum

lateness is found. Tiwari and Vidyarthi [93] propose a genetic algorithm to

solve machine loading problem with the availability of machining time and

tool slots constraints. The objectives are minimizing the system unbalance

and maximizing the throughput, which are the most commonly used objectives

in FMS scheduling with multiple machines. Bernardo and Lin [6] consider

the nonidentical parallel machine scheduling problem with the objectives of

minimizing the total tardiness and minimizing the setup costs. Gupta and

Ruiz-Torres [42] consider the objectives of minimizing total flow time and

minimizing total number of tardy jobs simultaneously and propose heuristic

algorithms to generate efficient solutions. Gupta and Ho [41] provide solution

methods for the problem of minimizing makespan subject to minimum flow

time for two parallel machines. Cao et al. [14] consider the machine selection

and scheduling decisions together in order to minimize the sum of machine cost

and job tardiness. Alagoz and Azizoglu [3] study a problem with the objectives

of minimizing total completion time and minimizing number of disrupted jobs

in a rescheduling environment.

Although, the local search heuristics do not guarantee to find all efficient

solutions, they can find approximately efficient solutions for multiple criteria

in reasonable computation times.
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2.4 Controllable Processing Times

In robotic cells, highly flexible Computer Numerical Control (CNC) machines

are used for the metal cutting operations so that the machines and the robot

can interact in real time. Machining conditions such as the cutting speed and

the feed rate are controllable variables for these machines. Consequently, the

processing time of any operation on these machines can be reduced by changing

the machining conditions at the expense of incurring extra cost resulting in the

opportunity of reducing the cycle time. Due to this reasoning, assuming the

processing times to be fixed on each machine is not realistic.

The first studies considering controllable processing times in scheduling

problems are by Vickson [95], [96]. He considers the single machine problem

with average flow cost and maximum tardiness objectives together with the

total compression cost. The total compression cost is assumed to be a

linear function of the processing time. An assignment model is proposed

for the average flow cost objective. An algorithm is proposed for the

maximum tardiness problem. Most of the studies consider single machine

scheduling problems with linear compression cost functions (Panwalkar and

Rajagopalan [81], Van Wassenhove and Baker [97], Daniels and Sarin [22]).

Although this assumption simplifies the problem, it is not realistic in most cases

because it does not reflect the law of diminishing returns. Nowicki and Zdrzalka

[79] provide a survey for sequencing problems with controllable processing times

which have a linear cost function. Mukhopadhyay and Sahu [77] consider the

minimization of makespan as a primary objective and the minimization of the

machining costs as a secondary objective.

There are few studies considering multiple machine problems. Zhang

at al. [99] propose a 3/2-approximation algorithm for solving the unrelated

parallel machine scheduling problem with the objectives of minimizing the
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total weighted completion time and the processing cost. Ishii et al. [53]

consider the uniform parallel machine scheduling problem with preemption.

They propose polynomial time algorithms in order to find optimal speeds of

the processors with the completion time and the processing costs objectives.

Nowicki and Zdrzalka [80] consider parallel machine scheduling with completion

time and processing cost objectives (preemption allowed). A greedy algorithm

is proposed to find the efficient frontier for identical machines. An algorithm is

proposed for the uniform machine case in order to find the ε-approximation of

the efficient frontier. Trick [94] proposes an integer programming formulation

and a heuristic to solve the multiple capacitated machine problem with

makespan objective.

The minimization of earliness and tardiness objective is considered in a

few number of papers considering controllable processing times. Most of them

consider the common due date assumption. Panwalkar and Rajagopalan [81]

consider a single machine problem with controllable processing times. The

objective is minimizing the sum of earliness and tardiness penalties and total

processing costs. The common due date is a decision variable that should be

determined with the proposed assignment model. Liman et al. [74] replace the

common due date assumption with the common due window assumption. They

consider the objective of minimizing the costs associated with the common due

window location, its size, processing time reduction and earliness and tardiness

penalties. The problem is formulated as an assignment problem. Alidaee

and Ahmadian [4] solve the non-identical parallel machine scheduling problem.

They consider the total weighted earliness and tardiness objective with common

due date assumption. The problem is formulated as a transportation problem.

Cheng et al. [16] study the unrelated parallel machine scheduling problem with

controllable processing times. The cost is a convex function of the amount

compressed. Karabati and Kouvelis [57] discuss simultaneous scheduling and
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optimal processing time decision problem to maximize the throughput for

a multi-product, deterministic flow line operated under a cyclic scheduling

approach. These studies assume linear job compression costs. A nonlinear

relationship is considered between processing times and production resource by

Shabtay and Kaspi [87]. They consider the classical single machine scheduling

problem of minimizing the total weighted flow time with controllable processing

times. In their setting, the processing times can be controlled by allocating

a continuously nonrenewable resource such as financial budget, overtime and

energy. They assume the processing times to be convex, nonlinear functions

of the amount of the resource consumed. The objective in their case is to

allocate the resource to the jobs and to sequence the jobs so as to minimize

the total weighted flow time. They propose polynomial time exact algorithms

for small to medium size problems and heuristic ones for large scale problems.

Kayan and Akturk [63] consider a single machine bicriteria scheduling model

with controllable processing times. They select total manufacturing cost and

any regular scheduling measure-one which cannot be improved by increasing

the processing times such as makespan, completion time or cycle time, as the

two objectives. They derive lower and upper bounds on processing times and

provide methods to determine an approximate efficient frontier for the problem.

The manufacturing cost we consider in this study is the sum of the

machining and tooling costs which are determined according to the operating

costs of machines and specific cutting tool related parameters that are

taken from the machining handbooks. When the processing times increase,

the machining cost increases and the tooling cost decreases. The total

manufacturing cost is a convex function of processing times.
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2.5 Summary

In this section the relevant literature is reviewed. In the robotic cell scheduling

literature the cell is assumed to be working like a flowshop type system. That

is, all parts pass through all machines in the same order and the processing

time of each part on each machine is a predefined parameter. Furthermore,

the design of the cell including the layout of the cell and the number of the

machines inside the cell are assumed to be predetermined. This may be due to

the fact that the robotic cell scheduling problem is originated from chemical and

electroplating industries. As a consequence, the current literature ignores the

flexibility of the machines. However, the use of robotic cells in metal cutting

industries in which the highly flexible CNC machines are used is increasing

rapidly. Considering the machines to be flexible leads to new research topics

which are practical and more general than the problems considered in the

current literature. Additionally, till now, a single criteria is used for the robotic

cell scheduling problems and there are no studies considering the manufacturing

cost as an objective which has the highest priority in process planning. In

this study, we consider the deficiencies of the current literature. We assume

the machines to be flexible CNC machines. As a consequence, for the first

time in robotic cell scheduling literature the processing times are assumed to

be decision variables. Again for the first time in this literature a cost based

objective function is considered and a bicriteria model is formulated and solved.

Rather than operational problems as in the current literature, some design

problems are also considered which initiate a new research direction.
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Problem Definition

In this section we give a formal definition of our problem and introduce the

basic terminology and notation. In chapters 7 and 8, different than chapters

4, 5 and 6, we will consider a bicriteria problem and a different source of

flexibility. Thus, in order to increase the readability and the understanding,

problem definitions and some required notations for chapters 7 and 8 are placed

at the beginning of those chapters.

In the existing literature, the allocation of the operations to each machine is

assumed to be constant. Each part goes through the machines in the same order

and the processing time of each part on each machine is a known parameter,

Pi, for machine i = 1, 2, . . . ,m. For given processing times, the optimum

robot move cycle minimizing the cycle time is to be determined. In some

manufacturing operations such as chemical electroplating and plastic molding,

since the parts must follow the same sequence of operations, this assumption

is meaningful and these operations mostly require no-wait constraints (see for

example Geismar et al. [30]). However, in the case of metal cutting operations

for which the CNC machines are used, the allocation of the operations to

36
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the machines is also a decision problem and Akturk et al. (2005) prove

that considering the allocation of the operations to the machines as decision

variables can improve the efficiency of the cells. This is because CNC machines

are capable of performing a wide range of operations with means of using

different cutting tools. Therefore, assuming that processing times are fixed on

each CNC machine may not accurately represent the capabilities of the CNC

machines and limits the number of alternatives unnecessarily for these systems.

In this study, we consider a robotic cell consisting of identical CNC

machines. We assume that there is an infinite number of identical parts to be

processed, where a part is defined by a fixed set of operations to be performed

in any order and each operation requires a unique type of cutting tool to be

performed. More specifically, one tool can perform different operations but an

operation can only be performed by a unique type of tool. The cutting tools

are stored in the tool magazines of these machines. A machine is capable of

performing any operation as long as the required cutting tools are loaded on

its tool magazine. We will analyze the case where all the required cutting tools

are loaded on all machines, that is all machines are capable of performing all

the required operations of each part, as well as the case where some tools have

single copies so that only the machine loaded with this tool can perform the

corresponding operation while the rest of the tools are loaded on all machines

so that all machines can perform the corresponding operations.

The identical parts have a number of operations to be completed on the

machines and the individual operation times are known and identical for

all machines. Let tl be the processing time for operation l. Furthermore,

let O be the set of operations that can be processed by all machines (the

required cutting tools for these operations are loaded to all machines). The

processing times of a part on each machine depend on the allocation of these

operations to the machines. An allocation of operations to the m machines
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means partitioning set O into m subsets; O1, O2, . . . , Om, where Oi is the set

of operations allocated to machine i. Consequently, by finding the optimal

allocation of the operations to the machines we can minimize the cycle time.

Moreover, the allocation of the operations to the machines need not be the

same for all parts. The operations of each part can be allocated differently.

Since during one repetition of the cycle more than one part can be processed on

different machines simultaneously, having different allocations for these parts

is an opportunity to minimize the cycle time. Let us consider the 2-machine

case. For one part, O can be partitioned as Z1 and (O \ Z1) and for the

next part to be processed it can be partitioned as Z2 and (O \ Z2) where

Z1 6= Z2. So the processing time of the first part on the first machine is
∑

l∈Z1
tl while the processing time of the second part on the same machine

is
∑

l∈Z2
tl. The processing times of the first and second parts on the second

machine are
∑

l∈(O\Z1) tl and
∑

l∈(O\Z2) tl, respectively. Thus the processing

times of the machines may change from one repetition of the robot move cycle

to the other. However, since we consider cyclic production, that is, the robot

performs the same set of activities repeatedly, after some point the allocation

of the operations of a part, say the (k+1)st part k = 1, 2, . . ., becomes identical

with the first part as shown in Figure 3.1. Then, the allocation of the operations

of the parts 1 through k is used in the same order repeatedly for the remaining

parts. That is, k is the period of the allocation types. Note that, for a specific

k, there are a finite (though large) number of different ways to allocate the

operations of the parts. For the clarity of the consequent discussion, we need

the following definition and notation.

Definition 3.1 Let Πk = [πij] denote a specific allocation matrix with k

different allocation types. The (i, j)th entry, πij, i = [1, 2, . . . , k] and j =

[1, 2, . . . ,m], of this matrix corresponds to the set of operations allocated

to the jth machine for every (rk + i)th part in the infinite sequence where
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Figure 3.1: Different allocation of k parts to the machines

r = 0, 1, 2, . . .. For this matrix we have:

• Each row corresponds to a proper m-partitioning of the operation set O.

With our notation, for any i, πi1 ∪ πi2 ∪ . . . ∪ πim = O and πij ∩ πil = ∅,
j 6= l. ∀j, l.

• No two rows are identical.

We also let Π∗
k denote the optimal allocation of operations when a total of k

different allocation types is used and let Π∗ denote the optimal allocation of

operations over all k.

For example for a cycle in a 3-machine cell for which a specific two different

allocation types are used, the allocations of the operations are represented as
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follows:

Π2 =











π11 π12 π13

π21 π22 π23











.

That is, there are two distinct 3-partitions of operations to the machines

which are used alternatingly. Note that a 2-unit robot move cycle with one-

allocation type means that all parts to be processed have the same allocation

of operations to the machines. A 2-unit cycle with two-allocation types means

that two identical parts with different allocation of operations to the machines

are produced alternatingly. The cycle time for this case is found by calculating

the total time to finish one repetition of the cycle and dividing by two. On the

other hand, a 2-unit cycle with three-allocation types means that the allocation

of operations for parts 1, 4, . . . , 3z + 1 where z = 1, 2, . . . are the same. This

also holds for parts 2, 5, . . . 3z + 2 and parts 3, 6, . . . 3z. In order to find the

cycle time of an n-unit cycle with k-allocation types, we have to find the least

common multiple of n and k; let this number be M . To find the average time

to produce one part, we have to repeat the cycle M/n times and divide the

total time by M . In particular, for a 2-unit cycle with three-allocation types,

we have to repeat the cycle 3 times and divide the total time by M = 6.

We will use the following notation throughout this thesis.

tl : Processing time of operation l. Note that the processing time of operation

l on all machines are equal, ∀l = 1, 2, . . . , p, where p is the number of

operations of each part.

P : Total processing time of the operations that will be allocated to the

machines, P =
∑

l∈O tl. Note that the sum of the processing times on

m machines corresponding to each row of the allocation matrix is also

equivalent to P .



CHAPTER 3. PROBLEM DEFINITION 41

Pij : Total processing time on machine j for the part which corresponds to the

ith row of the specific allocation matrix Π. That is, Pij =
∑

l∈πij
tl. Also,

we let Pπ = [Pij].

wij : Waiting time of the robot for machine j to finish the processing of the

part which is produced according to the ith row of the allocation matrix

Π. Note that, if the processing of the part is already finished when the

robot arrived to machine j, then the waiting time is 0.

ε : Consistent with the literature we assume that loading/unloading times

for all machines are the same.

δ : Time taken by the robot to travel between any two adjacent stations.

We assume this time to be additive. That is, the time required for the

robot to move from machine i to machine j is the sum of the movement

times between all of the intervening pairs of machines in the route from

machine i to j where i, j ∈ [1, 2, . . . ,m]. That is, the robot travel time

from machine i to j is |j − i|δ. So the triangular equality is satisfied.

For example, the transportation time from input buffer to the second

machine is |2 − 0|δ = 2δ.

TS(Πk) : Cycle time, i.e., the long run average time that is required to produce

one part using robot move cycle S and the specific allocation matrix Πk.

The following example will be helpful in understanding how different allocations

of the operations affect the cycle time.

Example 3.1 Let us consider a 3-machine cell and assume that each part

has 5 operations to be performed on the three machines with corresponding

operation times t1 = 30, t2 = 25, t3 = 35, t4 = 30 and t5 = 15. Thus, total

processing time of each part is P = 135. Let us also assume that ε = 2 and



CHAPTER 3. PROBLEM DEFINITION 42

δ = 4. Now consider the robot move cycle S3
6 which is defined by the following

activity sequence A0A3A2A1. In our study, the cycle time derived by Sethi et

al. [86] correspond to the case where the allocations of the operations of all

parts are identical. Let Π1 be a specific allocation. Then, the cycle time for

this case is the following:

TS3
6(Π1) = 8ε + 12δ + max{0, P11 − 4ε − 8δ, P12 − 4ε − 8δ, P13 − 4ε − 8δ}.

The optimal allocation in this case is: π∗
11 = {1, 5} with P ∗

11 = 45, π∗
12 = {2, 4}

with P ∗
12 = 55, and π∗

13 = {3} with P ∗
13 = 35. The corresponding cycle time is:

TS3
6(Π∗

1) = 64 + max{0, 45 − 40, 55 − 40, 35 − 40} = 79.

Now let us assume that two different allocation types are used repeatedly.

That is, a specific allocation is now represented by Π2. The new cycle time to

produce one part for this case is the following:

TS3
6
(Π2) = 8ε + 12δ +1

2
max{0, P11 − 4ε − 8δ, P22 − 4ε − 8δ, P13 − 4ε − 8δ}

+1
2
max{0, P21 − 4ε − 8δ, P12 − 4ε − 8δ, P23 − 4ε − 8δ}.

The optimal allocations of the operations for this case are, in the first allocation

type, π∗
11 = {1, 2}, π∗

12 = {3}, π∗
13 = {4, 5}. In other words, P ∗

11 = 55, P ∗
12 = 35

and P ∗
13 = 45. As for the second allocation type, π∗

21 = {4, 5} with P ∗
21 = 45,

π∗
22 = {1, 2} with P ∗

22 = 55, and finally π∗
23 = {3} with P ∗

23 = 35. Then the

corresponding cycle time is the following:

TS3
6
(Π∗

2) = 64 +1
2
max{0, 55 − 40, 55 − 40, 45 − 40}

+1
2
max{0, 45 − 40, 35 − 40, 35 − 40} = 74.

The Gantt chart in Figure 3.2 compares these two cases. In order to see the

difference, the Gantt chart of one allocation case is drawn for two repetitions

of the cycle. One can observe that the completion times of the first repetition

of both cycles (bold dashed line in the figure) are the same but the completion
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Figure 3.2: Gantt chart for example 3.1

times of the second repetition of the robot activities are different. In one

allocation case the second repetition is exactly the same as the first repetition

(which means the processing times on the machines are the same). However,

for two different allocations case, the time of the second repetition is less than

the first repetition because the total waiting time of the robot in front of the

machines is reduced by 10 units. Then, in order to produce 1 part, this makes

5 units or 5/79=6.3% decrease in between the cycle times of these two cases.

In fact, in this example using three different types of allocations is optimal.

The optimal allocation matrix and the corresponding processing times are:

Π∗ =





















{1, 2} {4, 5} {3}

{3} {1, 2} {4, 5}

{4, 5} {3} {1, 2}





















⇒ PΠ∗ =





















55 45 35

35 55 45

45 35 55





















.

The cycle time for this case is, TS3
6(Π∗

3) = 70.67. This corresponds to

8.33/79=10.5% decrease from the one allocation case. It is important to note
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that this significant decrease in cycle time can be obtained with no additional

cost, just by capturing the inherent flexibility of the CNC machines.



Chapter 4

Pure Cycles

In this chapter, we will assume that all of the machines are loaded with at least

one copy of all of the required tools. As a consequence, each machine is capable

of performing all of the operations of each part, and hence, each operation can

be performed by any one of the machines. We will propose a new robot move

cycle that fully utilizes the operational and process flexibility of CNC machines.

This cycle will then be compared with the traditional robot move cycles present

in the literature. Interestingly, this new cycle is used extensively in industry,

not because it is proved to be optimal but because it is very practical, easy to

understand and implement. We prove that this cycle is not only simple and

practical but also dominates all classical robot move cycles when there exist

two machines. For 3-machine cells we prove that the proposed cycle dominates

all classical 1-unit cycles except one and all 2-unit cycles. For the general m-

machine case, we provide the regions where the proposed cycle dominates the

classical robot move cycles and for the remaining regions we analyze the worst

case performance of the proposed cycle with respect to classical robot move

cycles.

45
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In the next section we will consider m-machine cells. In Section 4.2, we will

analyze the 2- and 3-machine cells in further detail. Section 4.3 will conclude

the chapter.

4.1 m-machine case

In this section we will analyze m-machine cells. The operational and

process flexibilities of CNC machines allow the possibility of new cycles which

necessitates definitions of new robot activities. Let,

A0i = The robot activity in which the robot takes a part from the input buffer

and loads machine i = 1, 2, . . . ,m.

Ai(m+1) = The robot activity in which the robot unloads machine i and drops

the part to the output buffer where i = 1, 2, . . . ,m.

In an m-machine robotic cell there are exactly 2m such activities. By using

these activities we can define new cycles as follows:

Definition 4.1 Under a pure cycle, starting with an initial state, the robot

performs each of the 2m activities (A0i, Ai(m+1), i = 1, . . . ,m) exactly once

and the final state of the system is identical with the initial state.

Note that under these cycles all of the operations of each part are performed

completely by one of the machines and between two loadings of any one of

the machines, all other machines are loaded exactly once. One repetition

of such a cycle produces m parts and in order to find the cycle time we

divide the total time necessary to complete one repetition of this cycle with

m. Each permutation of the 2m activities defines a pure cycle. However,

some permutations define the same pure cycle. For example, in 2-machines

case, A01A02A13A23 and A13A23A01A02 are different representations of the same
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cycle. As a result, after eliminating the different representations, there exist a

total of (2m-1)! different pure cycles in an m-machine cell. With this many

different pure cycles, finding the best and later comparing it against all the

classical flowshop type robot move cycles is extremely cumbersome and hence

omitted from the scope of the current study. Instead, we focus on the simplest

and most widely used pure cycle as a representative from this huge class. We

prove that even this cycle dominates all classical robot move cycles for 2-

machine cells and perform very well for the general m−machine cells. The

proposed cycle is defined with the following activity sequence for m-machines:

Definition 4.2 A01A02 . . . A0mA1(m+1)A2(m+1) . . . Am(m+1): The robot first loads

machines 1 through m with a different part in respective order and each machine

starts processing all of the operations of its loaded part. Then, the robot unloads

machines 1 through m respectively. In order to unload machine i, the robot

returns back to machine i, waits in front of the machine if the processing of the

part is not finished, unloads the machine, transports the part to output buffer

and drops the part.

Let us consider Example 3.1 again. The cycle time of the proposed cycle for

a 3-machine cell A01A02A03A14A24A34 with given parameters is T = 69, which

is optimal for this example. This makes a 10/79=12.7% decrease from the best

cycle time that can be found using the results reported in the literature.

4.1.1 Cycle time and lower bound calculations

In this subsection we will derive the cycle time of the proposed cycle and a

lower bound for the classical robot move cycles. Let us first derive the cycle

time of the proposed cycle. Assume the robot is idle at the input buffer at time

0. For i = 1, . . . ,m, let T load
i represent the time right after loading machine
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i and T unload
i represent the time the robot arrives at machine i for unloading.

We set Di = T unload
i − T load

i . Moreover, let wi be the waiting time of the robot

in front of machine i, i.e., wi = max{0, P − Di}. With our notation,

T load
1 = 2ε + δ,

since the robot takes a part from the input buffer (ε), transports to the first

machine (δ) and loads this machine (ε). After the robot loads the (i − 1)st

machine, it moves to the input buffer ((i− 1)δ), takes a part (ε), transports to

the ith machine (iδ) and loads this machine (ε). In other words,

T load
i = T load

i−1 + (2i − 1)δ + 2ε for i = 2, . . . m.

Before arriving at the first machine for unloading, the robot loads the mth

machine and moves to the first one, i.e.,

T unload
1 = T load

m + (m − 1)δ = 2mε + (m2 + m − 1)δ.

Before unloading machine i, the robot has to first unload machine i −
1 (T unload

i−1 + wi−1 + ε), drop the part to output buffer ((m − i + 2)δ + ε)

and come back to machine i ((m − i + 1)δ). Hence for i = 2, . . . ,m,

T unload
i = T unload

i−1 + (2m − 2i + 3)δ + 2ε + wi−1.

Now, using the above relationships, it is easy to attain

D1 = 2(m − 1)ε + (m2 + m − 2)δ and Di = Di−1 + (2m − 4i + 4)δ + wi−1,

and that

Di = D1 + 2(i − 1)(m − 1)δ + w1 + . . . wi−1 for i = 2, . . . ,m.

Now, if w1 > 0, in other words, w1 = P − D1 then Di ≥ P for i = 2, . . . ,m

and therefore w2 = w3 = . . . wm = 0. If w1 = 0, that is to say, P ≤ D1

then P ≤ Di for i = 2, . . . ,m as well since D1 ≤ Di and again we have
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w2 = w3 = . . . = wm = 0. The total time to produce m parts with the

proposed cycle is

T unload
m + ε + δ + ε + (m + 1)δ,

and after substituting for the easily calculated value of T unload
m , this becomes

4mε + 2m(m + 1)δ + max{0, P − 2(m − 1)ε − (m − 1)(m + 2)δ}.

Consequently, the cycle time of the proposed cycle with m machines is:

Tproposed(m) = 4ε+2(m+1)δ +1/m(max{0, P −2(m−1)ε− (m−1)(m+2)δ}).
(4.1)

If the whole processing of a part can be done on a single machine, one can

conjecture that there is no reason for performing a portion of it on a machine

and the rest on another. In this way some load/unload time will be saved.

Hence, the proposed cycle is always optimal and there is no reason to consider

the robot move cycles derived under the assumption of a flow-shop type system.

As we will see later in this chapter, this conjecture holds when the robot is the

bottleneck, that is, when the total processing time of the parts is small relative

to the load/unload time, ε and transportation time, δ. However, when the

machines are bottleneck instead of the robot, that is, total processing time

is large relative to the load/unload time, ε and transportation time, δ, the

proposed cycle may result in higher cycle time values. If the processing time

exceeds some value, then the average idle time of the machines waiting for

some part to be loaded becomes greater in the proposed cycle. The following

3−machine example provides a situation of this kind:

Example 4.1 Let us assume that each part requires 6 operations with t1 = 40,

t2 = 45, t3 = 50, t4 = 60, t5 = 50, t6 = 55 so the total processing time of each

part P = 300. Also let ε = 2 and δ = 10. Consider the 1-unit cycle S3
6 which
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is defined by the following activity sequence: A0A3A2A1. The cycle time for

this cycle is derived by Sethi et al. [86] as:

TS3
6

= 8ε + 12δ + max{0, a − 4ε − 8δ, b − 4ε − 8δ, b − 4ε − 8δ},

where a, b and c are the processing times on M1, M2 and M3 respectively. Let us

consider the following allocation of operations: operations 1 and 4 are allocated

to the first machine, a = 100, operations 2 and 6 are allocated to the second

machine b = 100 and operations 3 and 5 are allocated to the last machine

c = 100. Note that this allocation corresponds to a 1-allocation pattern and

with our notation a = P11, b = P21 and c = P31. The cycle time in this case

is TS3
6

= 148. On the other hand, using (4.1) with m = 3 and with the given

data, the cycle time of the proposed cycle is 152.

This example shows that we cannot establish the dominance of the proposed

cycle over the traditional robot move cycles for m ≥ 3. However, the proposed

cycle may not be the best pure cycle in this case. For example, consider

A01A34A03A24A02A14. The cycle time of this cycle with the parameters of the

above example turns out to be 129.33. However, there are 120 pure cycles in 3-

machine cells and finding regions of optimality for these cycles is unnecessarily

cumbersome. Hence, in the remainder we will only consider the proposed cycle

and prove that even this cycle performs very efficiently.

The following theorem derives a lower bound for the cycle time of any

robot move cycle in m-machine case for which the system is assumed to be

flow-shop. Let Tflowshop represent the lower bound for these cycles. Note that,

Tflowshop ≤ minS,k{TS(Π∗

k
)}. That is, the lower bound is over all flowshop type

robot move cycles, S’s, and for the optimal allocations, Π∗
k, over all possible

allocation periods, k.
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Theorem 4.1 For an m machine flow-shop type robotic cell, the cycle time of

any n-unit cycle is no less than

Tfs(m) = max{2(m + 1)(ε + δ) + min{P, δ}, 4ε + 4δ + (P/m)}, (4.2)

where Tfs(m) denotes the lower bound of the cycle time for an m-machine flow-

shop type robotic cell.

Proof. Geismar et al. (2005) derived the following lower bound for classical

robot move cycles when there are no flexibilities, i.e. the allocation and the

ordering of the operations are assumed to be fixed and known for each machine.

max{2(m + 1)(ε + δ) +
m

∑

i=1

min{Pi, δ}, 4ε + 4δ + maxi{Pi}}, (4.3)

where Pi is the processing time on machine i. The reasoning behind the first

argument of the max function in (4.3) is as follows: The robot loads and

unloads all m machines exactly once (2mε), and also takes a part from the

input buffer (ε), and drops a part to the output buffer (ε), in every cycle

resulting in 2(m + 1)ε. As the forward movement, the robot travels all the

way from the input buffer to the output buffer in some sequence of robot

activities which takes at least (m + 1)δ, and in order to return back to the

initial state, the robot must travel back to the input buffer, taking at least

(m + 1)δ. Additionally, note that each loading operation is followed by an

unloading operation of either the same or a different machine. (Note that,

taking a part from the input buffer is assumed to be an unloading operation).

The summation term in the first argument of (4.3) represents the total time

between all loading and the subsequent unloading operations. After loading

a part to machine i, the robot has these options: it either waits in front of

the machine to complete the processing of the part before unloading it (Pi),

or travels to another machine to unload it or travels to input buffer to take

another part. The minimum travel time from machine i to any other machine is
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δ. Thus, for machine i, in order to find a lower bound we take the minimum of

these two values and for all m machines this totals to
∑m

j=1 min{Pi, δ}. With

the assumptions of this study, the total robot travel time and load/unload

time do not change. However, the sum term in (4.3) follows from the fact that

the processing times on the machines are fixed. In this study, the processing

times are not fixed but depend on allocation patterns, in other words, they

are decision variables. For a cycle with k different allocation patterns where

k is arbitrary, the cycle is repeated k times, each repetition with potentially

different processing times. After loading a part to machine i, the robot either

waits in front of the machine to finish processing (Pik), or travels to another

machine to unload it or to input buffer to take a part which takes at least

δ time units. Hence, for all machines and for all repetitions of the cycle we

have
∑k

j=1

∑m
i=1 min{Pij, δ}. In order to find the lower bound to produce one

part we must divide this by k. Furthermore, we know that
∑m

i=1 Pij = P .

As a consequence,
∑m

i=1 min{Pij, δ} ≥ min{P, δ} for any allocation j . Then

we have,
∑k

j=1

∑m
i=1 min{Pij, δ} ≥ min{P, δ}. As a consequence, with the

assumptions of this study, the first argument of the max function reduces to

the following:

2(m + 1)(ε + δ) + min{P, δ}.

The reasoning behind the second argument of the max function in (4.3) is the

following: The cycle time of any cycle is greater than the time between two

consecutive loadings of a machine for which the consecutive loading time is

the greatest. But in order to make a consecutive loading, the robot must at

least perform the following activities: After loading a part to some machine i,

the minimum time required before unloading this part is Pi. Then, the robot

unloads machine i (ε), transports the part to machine (i + 1) (δ), loads it (ε),

returns back to machine (i − 1) (2δ), unloads it (ε), transports the part to

machine i (δ) and loads it (ε). This in total makes 4ε + 4δ + Pi. In order

to find the greatest consecutive loading time we take maxi{Pi}. However,
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with the assumption of process and operational flexibilities, for a cycle with k

different allocation patterns, where k is arbitrary, the longest processing time

is maxi,j(Pij). Since
∑m

i=1 P
ij

= P , ∀i, we have P/m ≤ maxi,j(Pij). Hence,

with the assumptions of this study the second argument of the max function

reduces to 4ε + 4δ + P/m. This completes the proof. 2

4.1.2 Regions where the proposed cycle dominates the

traditional robot move cycles

The number of pure cycles increases drastically as the number of machines

increases, thus finding the best pure cycle is a huge enumerative task for m ≥ 3.

Henceforth, we will only compare the proposed cycle with the classical robot

move cycles. Recall that the proposed cycle is a direct consequence of assuming

the machines to be CNC machines which are loaded with at least one copy of

each of the required tools. Since it is easy to control and implement, such a

cycle is preferred in the industry to more complex cycles, even if it is not the

provably optimal robot move cycle. With the following theorem, we find the

regions where the proposed cycle dominates in cycle time the traditional robot

move cycles for m-machine robotic cells.

Theorem 4.2 In comparison with the traditional robot move cycles, the

proposed cycle is the best if (m−2)δ ≤ 2ε or P ≤ 2(m2−1)ε+(m2+2m−2)δ.

Proof. In order to prove this theorem, we will compare the cycle time of the

proposed cycle with the lower bound value of the traditional robot move cycle

times. Let us first recall that:

Tfs(m) = max{2(m + 1)(ε + δ) + min{P, δ}, 4ε + 4δ + (P/m)}, and

Tproposed(m) = 4ε+2(m+1)δ +1/m(max{0, P −2(m−1)ε− (m−1)(m+2)δ}).
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Note that both of these are piecewise linear functions of P and can be rewritten

as follows:

Tfs(m) =



































2(m + 1)(ε + δ) + P, if P ≤ δ,

2(m + 1)ε + (2m + 3)δ, if δ < P ≤ 2m(m − 1)ε + m(2m − 1)δ,

4ε + 4δ + P/m, if P > 2m(m − 1)ε + m(2m − 1)δ.

(4.4)

Tproposed(m) =



















4ε + 2(m + 1)δ, if P ≤ 2(m − 1)ε + (m − 1)(m + 2)δ,

1/m(2(m + 1)ε + (m2 + m + 2)δ + P ), if P > 2(m − 1)ε + (m − 1)(m + 2)δ.

(4.5)

Clearly: δ ≤ 2(m − 1)ε + (m − 1)(m + 2)δ ≤ 2m(m − 1)ε + m(2m − 1)δ.

Hence, it is sufficient to consider the following cases:

1. If 0 ≤ P ≤ δ, then the cycle time of the proposed cycle is:

Tproposed(m) = 4ε + 2(m + 1)δ.

The lower bound of the cycle times of traditional robot move cycles is:

Tfs(m) = 2(m + 1)ε + 2(m + 1)δ + P.

Clearly, Tproposed(m) ≤ Tfs(m).

2. If δ < P ≤ 2(m − 1)ε + (m − 1)(m + 2)δ, then

Tproposed(m) = 4ε + 2(m + 1)δ ≤ 2(m + 1)ε + (2m + 3)δ = Tfs(m).

3. If 2(m − 1)ε + (m − 1)(m + 2)δ < P ≤ 2m(m − 1)ε + m(2m − 1)δ, then

Tproposed(m) = 1/m(2(m + 1)ε + (m2 + m + 2)δ + P ),

and Tfs(m) = 2(m + 1)ε + (2m + 3)δ.

When we compare these two values with each other we see that

Tproposed(m) ≤ Tfs(m) ⇐⇒ P ≤ 2(m2 − 1)ε + (m2 + 2m − 2)δ which

is one of the conditions in the statement of our theorem. Recall that,
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in this region P ≤ 2m(m − 1)ε + m(2m − 1)δ. If (m − 2)δ ≤ 2ε, then

P ≤ 2m(m − 1)ε + m(2m − 1)δ ≤ 2(m2 − 1)ε + (m2 + 2m − 2)δ. As

a result if (m − 2)δ ≤ 2ε and P ≤ 2m(m − 1)ε + m(2m − 1)δ, then

Tproposed(m) ≤ Tfs(m).

4. If P > 2m(m − 1)ε + m(2m − 1)δ, then

Tproposed(m) = 1/m(2(m + 1)ε + (m2 + m + 2)δ + P ),

and Tfs(m) = 4ε + 4δ + P/m.

Comparing these two, one can show that for (m−2)δ ≤ 2ε, Tproposed(m) ≤
Tfs(m).

2

Outside these regions, we can provide a worst case performance bound

of the proposed cycle with respect to the traditional robot move cycles. In

particular:

Lemma 4.1 In the region where (m − 2)δ > 2ε and P > 2(m2 − 1)ε + (m2 +

2m − 2)δ, the cycle time of the proposed cycle, Tproposed(m) < C · T ∗, where

C = 1 + m2−3m+2
m2+6m−2

and T ∗ is the optimal cycle time among the traditional robot

move cycles.

Proof. For (m − 2)δ > 2ε and P > 2(m2 − 1)ε + (m2 + 2m − 2)δ, from (4.4),

Tfs(m) ≥ 4ε+4δ+P/m and from (4.5), Tproposed(m) = 1/m(2(m+1)ε+(m2+m+

2)δ + P ). Hence, we can derive a worst case performance bound for using the

proposed cycle instead of the best flowshop type robot move cycle as follows:

Let T ∗ be the optimal cycle time among the traditional robot move cycles in

this region.

Tproposed(m)

T ∗
≤ 1/m(2(m + 1)ε + (m2 + m + 2)δ + P )

1/m(4mε + 4mδ + P )
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=
2(m + 1)ε + (m2 + m + 2)δ + P

4mε + 4mδ + P

= 1 +
−2(m − 1)ε + (m − 1)(m − 2)δ

4mε + 4mδ + P
.

Since P > 2(m − 1)(m + 1)ε + (m2 + 2m − 2)δ, we have:

Tproposed(m)

T ∗
< 1 +

−2(m − 1)ε + (m − 1)(m − 2)δ

(2m2 + 4m − 2)ε + (m2 + 6m − 2)δ
.

Let δ = αε where α > 2/(m − 2):

Tproposed(m)

T ∗
< 1 +

(m − 1)(m − 2)α − 2(m − 1)

(m2 + 6m − 2)α + (2m2 + 4m − 2)
.

The right hand side gets larger as α tends to infinity (loading/unloading time is

negligible when compared with robot transportation time). Hence, the bound

converges asymptotically to the following:

Tproposed(m)

T ∗
< lim

α→∞
(1+

(m − 1)(m − 2)α − 2(m − 1)

(m2 + 6m − 2)α + (2m2 + 4m − 2)
) = 1+

m2 − 3m + 2

m2 + 6m − 2
.

2

For m = 2 the worst case bound is 1 and for m → ∞ the asymptotic bound

is 2. As a consequence, the worst case bound takes values between 1 and 2

with respect to m. For example when m = 4 the worst case bound becomes

1 + 6/38 ≈ 1.158.

In the next section we will focus on the 2- and 3-machine cases and show

the dominance of the proposed cycle over the traditional robot move cycles.

4.2 2- and 3-machine cells

In this section we will compare the cycle times of the proposed cycle and the

traditional robot move cycles for 2- and 3-machine cells. Let us first consider

the 2-machine case.
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Using (4.1), the cycle time of the proposed cycle with m = 2 becomes:

Tproposed(2) = 4ε + 6δ + 1/2max{0, P − (2ε + 4δ)}. (4.6)

and using (4.2), the lower bound for the traditional robot move cycles becomes:

Tfs(2) = max{6ε + 6δ + min{P, δ}, 4ε + 4δ + P/2}. (4.7)

The next theorem will establish an important contribution.

Theorem 4.3 The proposed robot move cycle A01A02A13A23 gives the mini-

mum cycle time for 2-machine identical parts robotic cell scheduling problem

with process and operational flexibility.

Proof. A simple comparison of equations (4.6) and (4.7) for P ∈ [0, δ],

P ∈ (δ, 2ε + 4δ], P ∈ (2ε + 4δ, 4ε + 6δ] and P ∈ (4ε + 6δ,∞) yields

Tproposed(2) ≤ Tfs(2). 2

Note that the proposed cycle is not necessarily the best pure cycle. However,

Theorem 4.3 proves that even this cycle dominates all of the classical robot

move cycles. In a 2-machine cell there are 6 pure cycles, C1 through C6,

for which the activity sequences and the cycle time values are presented in

Appendix A. The following theorem compares the pure cycles with each other

and determines the regions of optimality.

Theorem 4.4 If P < 2ε + 4δ then C1 is optimal, if P > 2ε + 4δ then C6 is

optimal, if P = 2ε + 4δ then both C1 and C6 perform equally well.

Proof. Observing the cycle times of the cycles presented in Appendix A,

one can easily conclude that C1 dominates C2, C3, C4 and C5. A simple
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comparison of the cycle times of C1 and C6 concludes the proof. 2

Now let us consider 3-machine cells. Using (4.1), the cycle time of the

proposed cycle with m = 3 becomes:

Tproposed(3) = 4ε + 8δ + 1/3max{0, P − (4ε + 10δ)}. (4.8)

Recall that in a 3-machine cell there are six feasible 1-unit cycles which can

be listed as follows:

S3
1 = (A0A1A2A3), S3

2 = (A0A2A1A3), S3
3 = (A0A1A3A2),

S3
4 = (A0A3A1A2), S3

5 = (A0A2A3A1), S3
6 = (A0A3A2A1).

The lower bound of the classical robot move cycles found in Theorem 4.1

becomes the following for 3-machine robotic cells:

Tflowshop = max{8(ε + δ) + min{P, δ}, 4ε + 4δ + (P/3)}. (4.9)

The forthcoming corollary to Theorem 4.2 provides the regions where the

proposed cycle is the best for 3-machine cells.

Corollary 4.1 If δ ≤ 2ε or P ≤ 16ε + 13δ, then the proposed cycle gives the

minimum cycle time for 3-machine cells.

Now let us consider the region where the lower bound of the flowshop type

robot move cycles is less than the cycle time of the proposed robot move cycle.

That is, δ > 2ε and P > 16ε + 13δ. First we concentrate on the 1-unit robot

move cycles since they are simple, practical, easy to understand and provably

optimal for 3-machine flowshop type systems. The following lemma is very

useful in reducing the number of potentially optimal robot move cycles:
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Lemma 4.2 The proposed cycle dominates all flowshop type 1-unit cycles

except S3
6 .

Proof. Let us consider each 1-unit cycle one by one:

S3

1
: For the cycle S3

1 , whatever the allocation of the operations is, the cycle

time is the same. The cycle time derived by Sethi et al. [86] is:

TS3
1(Πk) = 8ε + 8δ + P.

As it is seen, the cycle time does not depend on the allocation. When we

compare this cycle time with the cycle time of the proposed cycle given in (4.8),

Tproposed(3) < TS3
1(Πk). Thus we conclude that the proposed cycle dominates S3

1 .

S3

2
: Let us derive the cycle time of the cycle S3

2 considering the assumptions of

this study. Consider an arbitrary allocation matrix Πk and the ith repetition of

this cycle. Initially the second machine is loaded with a part having allocation

type (i − 1) and the robot is in front of the input buffer. The robot takes a

part from the input buffer and loads it to the first machine, (2ε + δ), moves to

second machine, waits if necessary for the machine to finish the processing of

the part with allocation type (i− 1), (δ +w(i−1)2), unloads the second machine

and loads the third machine, (2ε + δ), moves to the first machine, waits if

necessary for the machine to finish the processing of the part with allocation

type i, (2δ + wi1), unloads the first machine and loads the second machine,

(2ε + δ), moves to the third machine and waits if necessary for the part with

allocation type (i − 1), (δ + w(i−1)3), unloads the machine and drops the part

to the output buffer, (2ε + δ), returns back to input buffer, (4δ). Hence the

time for the ith repetition of the cycle S3
2 with allocation matrix Πk becomes:

8ε + 12δ + wi1 + w(i−1)2 + w(i−1)3.

Let us denote max{0, a} as (a)+. With this notation,

wi1 = (Pi1 − 4ε − 8δ − w(i−1)2)
+, w(i−1)2 = (P(i−1)2 − 2ε − 4δ − w(i−2)3)

+ and
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w(i−1)3 = (P(i−1)3−2ε−4δ−wi1)
+ are the waiting times in front of the machines

1, 2 and 3, respectively. For all k repetitions, we have the following:

TS3
2(Πk) = 8ε + 12δ + 1/k(

k
∑

i=1

(wi1 + w(i−1)2 + w(i−1)3)).

Using the fact that a ≤ (a)+ we get:

∑k
i=1(wi1 + w(i−1)2 + w(i−1)3) ≥

∑k
i=1(Pi1 + P(i−1)2 + P(i−1)3 − 8ε − 16δ)

−∑k
i=1(wi1 + w(i−1)2 + w(i−2)3).

Since for r = 0, 1, . . . the allocation of every (rk + i)th part in the infinite

sequence is identical, then

k
∑

i=1

(Pi1 + P(i−1)2 + P(i−1)3 − 8ε − 16δ) = k(P − 8ε − 16δ),

and

k
∑

i=1

(wi1 + w(i−1)2 + w(i−1)3) =
k

∑

i=1

(wi1 + w(i−1)2 + w(i−2)3) = W,

where W is defined to be the total waiting time in front of the three machines

for the k parts produced according to the allocation matrix Πk. This yields;

2W ≥ k(P − 8ε − 16δ) ⇒ W ≥ k/2(P − 8ε − 16δ).

Thus for S3
2 we have:

TS3
2(Πk) ≥ 8ε + 12δ + 1/k(k/2(P − 8ε − 16δ)) = 1/2(8ε + 8δ + P ). (4.10)

S3

3
: Using the above procedure, the time for the ith repetition of S3

3 is:

8ε + 10δ + Pi1 + wi2 + w(i−1)3,

where wi2 = (Pi2 − 2ε− 4δ −w(i−1)3)
+, and w(i−1)3 = (P(i−1)3 − 4ε− 6δ −Pi1)

+

are the waiting times in front of machines 2 and 3, respectively. Then we have

the following:
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Pi1 + wi2 + w(i−1)3 ≥ Pi1 + Pi2 − 2ε − 4δ − w(i−1)3 + P(i−1)3 − 4ε − 6δ − Pi1.

This yields:

2(Pi1 + wi2 + w(i−1)3) ≥ 2(Pi1 + w(i−1)3) + wi2 ≥ Pi1 + Pi2 + P(i−1)3 − 6ε − 10δ.

For all k repetitions we have the following:

2
k

∑

l=1

(Pi1 + wi2 + w(i−1)3) ≥
k

∑

l=1

(Pi1 + Pi2 + P(i−1)3 − 6ε − 10δ).

Let W be as defined previously. Then we can write the following:

2W ≥ P − 6ε − 10δ ⇒ W ≥ 1/2(P − 6ε − 10δ).

Then for S3
3 we have the following:

TS3
3(Πk) ≥ 8ε + 10δ + 1/2(P − 6ε − 10δ) = 1/2(P + 10ε + 10δ). (4.11)

S3

4
: Total time for the ith repetition of S3

4 is the following:

8ε + 12δ + wi1 + Pi2 + w(i−1)3,

where wi1 = (Pi1−2ε−6δ−w(i−1)3)
+ and w(i−1)3 = (P(i−1)3−2ε−6δ)+ are the

waiting times in front of machines 1 and 3, respectively. A similar procedure

that we used for S3
3 yields, W ≥ 1/2(P − 4ε − 12δ) and

TS3
4(Πk) ≥ 1/2(12ε + 12δ + P ). (4.12)

S3

5
: Total time for the ith repetition of S3

5 is the following:

8ε + 10δ + wi1 + w(i−1)2 + P(i−1)3,

where wi1 = (Pi1−4ε−6δ−w(i−1)2−P(i−1)3)
+, and w(i−1)2 = (P(i−1)2−2ε−4δ)+

are the waiting times in front of the machines 1 and 2, respectively. From here

we get, W ≥ 1/2(P − 6ε − 10δ) and the lower bound for S3
5 becomes:

TS3
5(Πk) ≥ 1/2(10ε + 10δ + P ). (4.13)
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Comparing the lower bounds for the cycles S3
2 , S3

3 , S3
4 and S3

5 , given in equations

(4.10), (4.11), (4.12) and (4.13) respectively we get the following:

TS3
2(Πk) < TS3

3(Πk) = TS3
5(Πk) < TS3

4(Πk),

where TS3
j
(Πk) = minΠk

{TS3
j
(Πk)}. Let us compare TS3

2(Πk) = 1/2(P + 8ε + 8δ)

with the cycle time of the proposed cycle given in (4.8):

1/2(8ε + 8δ + P ) = 1/2(1/3(24ε + 24δ + 3P )).

Since in this region P > 16ε + 13δ,

TS3
2(Πk) = 1/6(24ε + 24δ + 2P + P ) > 1/6(40ε + 37δ + 2P )

= 1/3(20ε + (18.5)δ + P ) > 1/3(8ε + 14δ + P ) = Tproposed.

Thus we can conclude that the proposed cycle dominates S3
2 , S3

3 , S3
4 and

S3
5 .

S3

6
: Example 4.1 shows that S3

6 cannot be dominated by the proposed robot

move cycle. 2

1-unit cycles are important because they are simple, practical and easy

to understand. Also if the system is assumed to be a flowshop then 1-unit

cycles are provably optimal for 2-machine cells ([86]) and 3-machine cells ([20]).

However, Akturk et al. [2] proved that with the assumption of operational

flexibility, even in 2-machines case, a 2-unit cycle can result in smaller cycle

times than the 1-unit robot move cycles for some parameter ranges. This

motivates us to consider the 2-unit cycles. Hall et al. [43] derived the activity

sequences of all feasible 2-unit cycles in a 3-machine robotic cell. In Appendix

B we present a completely new procedure to derive the activity sequences of

these cycles and list them. This new procedure utilizes the fact that all 2-unit

cycles are made up from two 1-unit cycles. That is, let S3
i and S3

j be two

different 1-unit cycles. Then, in a 2-unit cycle, S3
ij is simply a combination of
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S3
i and S3

j ; during some part of the cycle the robot follows the activity sequence

of S3
i and during the remaining part of the cycle the robot follows the activity

sequence of S3
j .

The following lemma derives a general lower bound, T2, for all of the 2-unit

robot move cycles with any allocation matrix Πk.

Lemma 4.3 T2 = 1/2(P + 8ε + 8δ) where T2 ≤ minS3
ij

,k{TS3
ij(Π∗

k
)
}.

Proof. For the clarity of the presentation, we refer the reader to Appendix C

for the proof. 2

The following lemma proves that the proposed cycle dominates all flowshop

type 2-unit robot move cycles.

Lemma 4.4 The proposed cycle dominates all flowshop type 2-unit cycles.

Proof. With Corollary 4.1 we assert that the proposed cycle gives the

minimum cycle time for P ≤ 16ε + 13δ. Now let us consider the region where

P > 16ε+13δ. In this region the cycle time of the proposed cycle given in (4.8)

becomes 4ε+8δ+1/3(P −4ε−10δ) which can be rewritten as 1/3(P +8ε+14δ).

When we compare this cycle time with the lower bound we found in Lemma

4.3, we have the following:

T2 = 1/2(P + 8ε + 8δ) = 1/6(3P + 24ε + 24δ) ≥ 1/6(2P + 40ε + 37δ)

= 1/3(P + 20ε + (18.5)δ) > 1/3(P + 8ε + 14δ) = Tproposed.

This completes the proof. 2

Until now we considered all the 1 and 2-unit cycles and showed that the

proposed cycle dominates all except the 1-unit cycle S3
6 . Knowing that the
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proposed cycle dominates all 2-unit cycles, one can conjecture that it also

dominates 3 and higher unit cycles. Proving or disproving this conjecture

is not so simple because the number of feasible robot move cycles increases

drastically as n, the number of units produced in one cycle increases and

deriving and comparing these cycles with the proposed cycle become quite

complex. Additionally, the proposed cycle is simple, practical and easy to

implement. Furthermore, there is no allocation problem to be solved for this

cycle. More importantly, the worst case bound of the proposed cycle found

in Lemma 4.1 becomes 1.08 for 3-machine robotic cells. As a result of these

observations, we conclude that what little improvement we might attain (if

any) by considering 3 and higher unit cycles will not be sufficient enough to

justify the effort that will be spent for this purpose.

4.3 Concluding Remarks

In this chapter, we considered a new class of robot move cycles, called the

pure cycles, resulting from the flexibility of the CNC machines. Since there is

a huge number of such cycles in an m-machine robotic cell, we proposed one

of the cycles among this class which is extensively used in industry due to its

simplicity in understanding and implementation. We proved in Theorem 4.3

that this cycle, in fact, dominates the traditional robot move cycles for m = 2.

With Theorem 4.2 we found the regions where the proposed cycle dominates

the traditional robot move cycles for m ≥ 3. In order to prove this theorem, we

compared the proposed cycle with the lower bound of the classical robot move

cycles. For the remaining regions we proved that the proposed cycle dominates

all of the 1-unit robot move cycles except S3
6 and all of the 2-unit robot move

cycles in 3-machine cells. We also found a worst case performance bound

of the proposed cycle with respect to the traditional robot move cycles for
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the remaining regions. Furthermore, with the reduced cycle times (increased

throughput), our results enable the justification of additional tool inventories

that will be incurred when loading a copy of every required tool to both of

the machines (this might also necessitate a larger tool magazine). As a final

remark, in the new move cycle each part is loaded and unloaded only once,

which means less gaging; probably one of the important reasons why this cycle

is preferred in practice. An extended version of this chapter is accepted for

publication [39].



Chapter 5

Cell Design

In this chapter we will consider certain design problems arising in the context

of robotic manufacturing cells. In Section 5.1, we will consider different layouts

of the cell in order to improve the efficiency of the cell. In Section 5.2, we will

determine the number of machines which minimizes the cycle time for given

parameters such as the processing times of the operations, load/unload times

of the machines, ε and robot transportation time, δ. Section 5.3 is devoted to

the concluding remarks.

5.1 Layout analysis

Till now we have assumed an in-line robotic cell layout (IRC). For this layout

we proved that if we assume operational and process flexibility, a new cycle

gives better results than all of the common cycles reported in the literature. At

this point we will consider changing the layout of the cell to a robot centered

one (RCC) as shown in Figure 5.1. Although Han and Cook [47] stated that

the layout analysis can improve efficiency of the cells, classical robotic cell

66
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scheduling literature does not compare the cycle times of the robot move cycles

with IRC and RCC layouts. This is due to the fact that for the common cycles

reported in the literature both layout types give the same cycle time assuming

that for both type of cell layouts, the robot transportation time between two

adjacent machines is fixed as δ and assumed to be additive. In the robot

centered cell layout, the travel time from input buffer to machine 1 or machine

2 is δ and the travel time from machine 1 to machine 2 is equivalent to the

summation of travel times from machine 1 to input buffer (or output buffer)

(δ) and from input buffer (output buffer) to machine 2 (δ) which makes 2δ.

The travel times for the IRC and RCC layouts are different from each other.

For example, travel time from machine 1 to machine 2 is δ in the IRC layout

whereas it is 2δ in the RCC layout. As a consequence, the cycle time of the

proposed cycle will be different for these two layouts. In the following theorem

we compare the cycle times of the proposed cycle with IRC and RCC layouts

and prove that the cycle time with RCC layout is less than the cycle time with

IRC layout.

Theorem 5.1 For 2-machine robotic cells, the cycle time of the proposed cycle

with RCC layout is less than the cycle time with IRC layout.

Proof. First let us derive the cycle time of the proposed cycle with the RCC

layout: Initially the machines are empty and the robot is in front of the input

buffer. The robot takes a part (ε), transports to the first machine (δ), loads it

(ε), returns back to input buffer (δ), takes another part (ε), transports to the

second machine (δ), loads it (ε), returns back to the first machine (2δ), waits

if necessary for the machine to finish the processing of the part (w1), unloads

the machine (ε), transports the part to output buffer (δ), drops it (ε), moves

back to second machine (δ), waits if necessary (w2), unloads the machine (ε),

transports the part to the output buffer (δ), drops it (ε) and returns back to the
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Input Buffer Output Buffer

Machine 1

Machine 2

Robot

Figure 5.1: Robot centered cell layout

input buffer (2δ). Note that during one cycle two parts are produced. Thus,

in order to find the cycle time we divide the total time by 2 which makes:

Tproposed(RCC) = 4ε + 5δ + w1 + w2,

where w1 = max{0, P − (2ε + 4δ)} and w2 = max{0, P − (2ε + 4δ + w1)} and

hence

w1 + w2 = max{w1, P − (2ε + 4δ)} = max{0, P − (2ε + 4δ)}.
Consequently, the cycle time of the proposed cycle with the RCC layout is:

Tproposed(RCC) = 4ε + 5δ + 1/2max{0, P − (2ε + 4δ)}.

On the other hand, the cycle time for the proposed cycle with the IRC layout

is given in (4.6). After a simple comparison we conclude that changing the

layout proves to be favorable for the proposed cycle. 2

The above theorem is important since in many practical applications, robot

centered cells are used simply because particular type of cellular layout requires
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less space than an in-line robotic cell layout. Furthermore, stationary base

robots (as in robot centered cells) are cheaper to install and easier to program

and consequently more robust than the mobile robots. In the next section we

will consider the m-machine case.

5.2 Determining the optimal number of ma-

chines for the proposed robot move cycle

In the previous chapter, we studied the operational problem of determining the

robot move sequences for a given number of machines. Now let us consider the

number of machines as a decision variable and try to find the optimal number

of machines which minimizes the cycle time for given parameters ε, δ and P .

The cycle time for the proposed cycle for the most general m-machine case is

given in (4.1). In the following Lemma we show that this function is convex

with respect to m.

Lemma 5.1 The cycle time of the proposed cycle given in (4.1) is convex with

respect to m.

Proof. We can rewrite this function as follows:

max{2mδ + 4ε + 2δ, 1/m(m2δ + 2mε + mδ + P + 2ε + 2δ)},

which is equivalent to the following:

max{2mδ + 4ε + 2δ,mδ + 2ε + δ + 1/m(P + 2ε + 2δ)}. (5.1)

The first argument of the above max function is linear with respect to m. The

second argument is a summation of two convex functions: mδ + 2ε + δ and
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1/m(P + 2ε + 2δ) (note that m > 0). Thus, it is also convex. Finally, the

maximum of two convex functions is also a convex function. 2

Let a be a real number. We will denote the largest integer smaller than or

equal to a with bac. The following theorem determines the optimal number of

machines given the parameters ε, δ and P .

Theorem 5.2 The optimal number of machines, m∗, is one of the two

integers, b1/2δ(−2ε − δ + α)c or b1/2δ(−2ε − δ + α)c + 1, where α =
√

4ε2 + 12εδ + 9δ2 + 4δP .

Proof. We are trying to minimize a function of m of the form f(m) =

max{g(m), h(m)}, where, g(m) = 2mδ + 4ε + 2δ and h(m) = mδ + 2ε + δ +

1/m(P + 2ε + 2δ). Let m∗ denote the minimizer of f(m). Then, m∗ satisfies

at least one of the following: m∗ is a minimizer of g(m), it is a minimizer of

h(m) or g(m∗) = h(m∗). Let us consider each of these cases:

1. g(m) is a linear increasing function and is minimized for m = 0. However,

h(m) tends to ∞ for m → 0. Since f(m) takes the maximum of g(m)

and h(m), the minimizer of g(m) can not be a minimizer of f(m).

2. h(m) is a convex continuous function for m > 0.

∂h(m)

∂m
= 0 ⇒ δ − 1/m2(2ε + 2δ + P ) = 0 ⇒ m̂ =

√

1/δ(2ε + 2δ + P ).

However, at this point:

g(m̂) = 2δ
√

1/δ(2ε + 2δ + P )+4ε+2δ > 2δ
√

1/δ(2ε + 2δ + P )+2ε+δ = h(m̂).

Hence, the minimizer of h(m) can not be a minimizer of f(m).

3. Hence, we can conclude that the minimizer of (5.1) is at the intersection

point of the two arguments of the max function which is found as follows:

g(m) = h(m) ⇒ 2mδ + 4ε + 2δ = mδ + 2ε + δ + 1/m(2ε + 2δ + P )
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⇒ m2δ + (2ε + δ)m − 2ε − 2δ − P = 0.

We can find the roots of this equation by using the discriminant. There

are two roots one of which is less than 0. But since we consider the

region where m > 0 we take the nonnegative root as the solution of this

equation.

m = 1/2δ(−2ε − δ +
√

4ε2 + 4εδ + δ2 + 4δ(2ε + 2δ + P ))

= 1/2δ(−2ε − δ + α),

where α =
√

4ε2 + 12εδ + 9δ2 + 4δP . This is a real number. However, m

represents the number of machines which means it must be an integer.

From Lemma 5.1, the function is convex with respect to m. As a

consequence, in order to find the best integer value we have to consider

both sides of the real number. That is, the largest integer smaller than

1/2δ(−2ε − δ + α) and the smallest integer larger than this number.

The best integer value is one of the following: b1/2δ(−2ε − δ + α)c or

b1/2δ(−2ε − δ + α)c + 1 where α is defined as before. In order to find

which one of these two gives the minimum cycle time value, we evaluate

Equation (5.1) at these two integer values and take the one which gives

the minimum cycle time value.

2

As a result of this theorem, with given parameters such as the total

processing time, loading/unloading time and robot transportation time we can

easily determine the optimal number of machines to be placed inside a robotic

cell that minimizes the cycle time.
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5.3 Concluding Remarks

Till now the robotic cell scheduling literature considered the operational

problems such as determining the robot move cycle and/or the part input

sequence in order to optimize some objective function. In this chapter, rather

than an operational problem we considered some design problems and showed

that the efficiency of the cells can be improved by solving such design problems.

We first considered the layout of the cell as a design problem and in Theorem

5.1 we proved that RCC layout is preferable to IRC layout in the 2-machine

case when using the pure cycles. As a second design problem we considered

the number of machines to be placed inside a cell as a decision variable and

in Theorem 5.2 we determined the optimal number of machines to be used

for given parameter values. This study initiates a new research direction for

the robotic cell scheduling literature. An extended version of this chapter is

accepted for publication [40].



Chapter 6

Tooling Constraints

In this chapter we consider a 2-machine robotic cell. In an ideal FMS, each

machine is capable of performing all operations of all parts scheduled for

production as long as it has the required tools in its tool magazine. However,

Gray et al. [37] observe that a CNC has a limited tool magazine capacity and

the total set of tools required to process all jobs usually exceeds this capacity.

Furthermore, duplicating all the required tools and loading them to each tool

magazine may not be economically justifiable due to high tool investment costs.

Therefore, in this chapter, we assume that there is a single copy of some tools.

A subset of these single copies is loaded on the first machine and the remaining

ones are loaded on the second machine. On the other hand, some tools are

duplicated and loaded on both machines. As a consequence, each part to be

processed has three sets of operations. O1 is the set of operations that can only

be processed on the first machine, O2 is the set of operations that can only

be processed on the second machine, and O is the set of operations that can

be processed on either machine. Then the problem is not only sequencing the

robot’s activities but also partitioning the set of flexible operations into two

machines. The objective is to minimize the cycle time. As a consequence of the

73
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tooling constraints, we will assume that each part being processed goes through

the input buffer, the first machine, the second machine and finally the output

buffer in that order. In the next section we introduce some new definitions,

notations and the assumptions pertaining to this chapter. In Section 6.2 we

will reduce the number of potentially optimal robot move cycles to three and

we will find the regions of optimality for these robot move cycles according to

the given parameters such as the loading and unloading time ε and the robot

transportation time δ. The last section is devoted to the concluding remarks.

6.1 Problem Definition

Recall that for two machines, we have two 1-unit robot move cycles: S2
1 :

A0A1A2 and S2
2 : A2A1A0. The processing time of a part on a machine depends

on the allocation of the operations to the machines. As a consequence, although

the parts are assumed to be identical, their processing times on the machines

may be different than each other. Hence, 1-unit cycles need not be optimal

in all regions. In order to represent higher unit cycles we need the following

observations. Let us recall that a state of the system is defined by whether the

robot and the machines are loaded or empty and by the location of the robot.

These two 1-unit cycles have one common state in which the first machine

is empty and the second machine has just been loaded by the robot. Thus,

a transition from one of these cycles to the other can only be made at this

common state. If the robot waits in front of the second machine to finish the

processing of the part, then the robot follows the activities of the S2
1 cycle. Else

if the robot travels to input buffer to take a part and load the first machine,

then the robot follows the activities of the S2
2 cycle. During these transitions no

extra movements are made, thus no loss occurs in terms of robot transportation

time.
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Hall et al. [43] define two other robot move sequences to represent higher

unit robot move cycles. These are the transition movements of the robot

from performing cycle S2
1 to S2

2 (represented as S12) and S2
2 to S2

1 (represented

as S21). If a part is produced according to the S2
1 (S2

2) cycle in the first

machine and according to the S2
2 (S2

1) cycle in the second machine then the

transition movement S12 (S21) is made. To properly clarify these new robot

move sequences, we shall use the terminology of Dawande et al. [24]. Full

waiting is defined as the robot waiting in front of a machine through the whole

processing time of a part. On the other hand, partial waiting is the waiting

time from the arrival of the robot at the machine till the processing of the part

completes at this machine. Now, we are ready to list the S12 robot movements

which can be described as A0A1A0: (i) load the first machine and perform a

full wait, (ii) load the second machine and immediately return to input buffer,

(iii) load the first machine. Furthermore, the only activity that can follow this

activity sequence is to travel to the second machine while processing continues

on the first machine and perform a partial wait.

In a similar fashion, in S21 movement which can be described as A2A1A2,

the robot unloads the second machine, drops the part to the output buffer and

returns back to the first machine to unload the part. After a partial waiting,

unloads this machine and loads the second machine. Performs a full wait,

unloads the machine and drops the part to output buffer. That is, a partial

waiting on the first machine and a full waiting on the second machine are

encountered.

Further analysis of the sequences yields the following: (i) an execution

of S2
1 starts and ends with empty machines, (ii) an execution of S2

2 starts

and ends with loaded machines, (iii) an execution of S12 starts with empty

machines and ends with full machines, and (iv) an execution of S21 starts with

loaded machines and ends with empty machines. Based on these observations,
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  S1   S12

  S21   S2

Figure 6.1: Transition digraph

the transition digraph in Figure 6.1 depicts the feasible transitions among

sequences.

Hall et al. [43] showed that any robot move cycle can be represented by

the four robot move sequences: S2
1 , S2

2 , S12 and S21. For example, S12S21 is a

2-unit robot move cycle, actually it is the only 2-unit robot move cycle and we

can describe this cycle by the robot activity sequence: A0A1A0A2A1A2. S12S21

and S21S12 represent the same robot move cycle, the only difference being the

starting state of the cycle.

We will use the following additional notation throughout this chapter.

PM1 : Total processing time of the operations that are in set O1, PM1 =
∑

l∈O1
tl.

PM2 : Total processing time of the operations that are in set O2, PM2 =
∑

l∈O2
tl.

P : Total processing time of the operations that are to be allocated to either
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one of the machines, P =
∑

l∈O tl.

Note that if set O is empty, that is when P = 0, there is no allocation

problem. As a consequence, the problem becomes identical with the problem

considered by Sethi et al. [86].

6.2 Solution Procedure

In order to find the optimal robot move cycle, we have to compare the cycle

times of the robot move cycles. The cycle times depend on the allocation of

the operations. In the next subsection we will determine the optimal allocation

types for three robot move cycles and prove that according to given parameter

values one of these three robot move cycles is optimal. In Subsection 6.2.2

we will determine the regions of optimality for each of the three robot move

cycles and Subsection 6.2.3 is devoted to the sensitivity analysis on problem

parameters.

6.2.1 Optimal Allocation of Operations

In this section we will first observe that there is no allocation problem for S2
1 .

Theorems 6.1 and 6.3 will determine the optimal k to be used with the cycles

S2
2 and S12S21, respectively. In Theorem 6.2 we will prove that determining

the optimal allocation of operations to the machines is NP -complete for robot

move cycle S2
2 . We shall assume PM1 ≥ PM2 throughout all proofs. The other

case can be treated in a similar fashion.

The cycle times of the three robot move cycles discussed previously are

presented in Appendix D. The cycle time of S2
1 , given in equation (D.1) does
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not depend on the processing times of the parts on the machines individually

but only depends on the total processing time, in our case P + PM1 + PM2.

Thus, regardless of the allocation of the operations, the cycle time is the same

and hence there is no allocation problem for S2
1 .

The following theorem provides the optimal k to be used with S2
2 :

Theorem 6.1 Consider a cyclic production performing the 1-unit cycle S2
2 .

We have:

1. If PM1 ≥ P + PM2, then using one-allocation is optimal,

2. Otherwise, using either one-allocation or two-allocation is optimal.

Proof.

1. The total time to complete production of all k parts with k-allocation

type for cycle S2
2 under specific allocation matrix Πk, is given in Appendix

D, equation (D.4). Since PM1 ≥ P + PM2, then PM1 + Pi1 ≥ PM2 +

P(i−1)2, ∀i ∈ [1, . . . , k] where for notational purposes we take P01 ≡ Pk1.

Therefore, under optimal allocation matrix Π∗
k, we have P ∗

i1 = 0, ∀i.

However, this is nothing but one-allocation type and the optimal cycle

time is:

TS2
2(Π∗) = 6ε + 8δ + max{0, PM1 − (2ε + 4δ)}

2. Consider again (D.4). Since PM1 < P + PM2, under optimal allocation

matrix Π∗
k, each max term will individually be minimized when the last

two nonzero components are as close as possible, i.e., when PM1 + P ∗
i1 ≈

PM2 + P ∗
(i−1)2, ∀i. Consider two such consecutive relations, say for ith

and (i + 1)th max terms:

PM1 + P ∗
i1 ≈ PM2 + P ∗

(i−1)2 (6.1)
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PM1 + P ∗
(i+1)1 ≈ PM2 + P ∗

i2 (6.2)

From relations 6.1 and 6.2, if the equalities cannot be satisfied, then the

difference between both sides of each equality must be minimized. That

is, both |PM1 + P ∗
i1 − (PM2 + P ∗

(i−1)2)| and |PM1 + P ∗
(i+1)1 − (PM2 + P ∗

i2)|
must be minimized. Note however that P ∗

i2 = P − P ∗
i1 and P ∗

(i+1)1 =

P − P ∗
(i+1)2. Plugging in these two values and arranging the terms both

|PM1 + P ∗
i1 − (PM2 + P ∗

(i−1)2)| and |PM1 + P ∗
i1 − (PM2 + P ∗

(i+1)2)| must be

minimized. This yields either a one-allocation (P ∗
(i−1)1 = P ∗

i1 = P ∗
(i+1)1,

∀i) or a two-allocation (P ∗
(i−1)1 = P ∗

(i+1)1 and P ∗
i1 6= P ∗

(i−1)1, ∀i). 2

Though Theorem 6.1 guides us in selecting the optimal allocation type in

a cyclic production S2
2 , finding the optimal allocation of operations to the two

machines is not an easy job even when there is a fixed allocation type and even

when PM1 = PM2 = 0. More formally, we shall now show that the following

decision problem is NP -complete.

S2 Operation Allocation for one-allocation Type Decision Problem

(Problem S2TAP):

Instance: A finite set of operations O with respective integer processing

times {t1, . . . , tp}, loading/unloading time ε, transportation time δ and a

real number K.

Question: Can we find an allocation matrix for operations to the two

machines, Π1, so that the long run average cycle time TS2
2(Π1) ≤ K?

Theorem 6.2 Problem S2TAP is NP -complete.

Proof. S2TAP is in NP since whenever we are given a specific allocation of

operations, we can readily find the corresponding long run average cycle time
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and hence decide if it is less than or equal to K. We will show that S2TAP

is NP -complete by reducing the 2-Partition problem to it. As a reminder the

2-Partition problem can be stated as (see [28]):

Instance: Given A = {a1, . . . , ar}, ai integer and s(ai) ∈ Z+ size of item

i.

Question: Is there a partition of A into A
′

and A\A
′

(A
′ ⊆ A) such that

∑

i∈A
′ s(i) =

∑

i∈A\A
′ s(i)?

Suppose we have an arbitrary instance of 2-Partition. From this we are going

to construct a specific instance of S2TAP and show that S2TAP has a solution

if and only if 2-Partition instance has a solution. Let A = a1, . . . , ar, s(ai)

i ∈ [1, . . . , r] be the given instance of 2-Partition. We shall have r operations in

our set O each corresponding to an item from the given set A. Each ti will have

processing time s(ai). Let ε = (
∑

i∈[1,...,r] s(ai))/8 and δ = (
∑

i∈[1,...,r] s(ai))/16.

Claim: S2TAP has a solution with these specifications and K =

7
4

∑

i∈[1,...,r] s(ai) ⇔ 2-Partition instance has a yes answer.

For one-allocation type, TS2
2(Π1) = 6ε + 8δ + max{0, P11 − (2ε + 4δ), P12 −

(2ε+4δ)} and TS2
2(Π1) ≥ 6ε+8δ = 7

4

∑

i∈[1,...,r] s(ai). With given ε and δ values,

the cycle time for a one-allocation S2
2 becomes TS2

2(Π1) = 6ε+8δ+max{0, P11−
P/2, P12 − P/2}. Thus, the minimum cycle time 7/4P is attained if and only

if P11 = P12 = P/2, if and only if 2-Partition has a yes answer. 2

The following theorem determines the optimal k to be used with S12S21.

Theorem 6.3 For 2-unit robot move cycle S12S21, using two-allocation types

is optimal.
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Proof. In order to prove this theorem, we will first compare the cycle time of

two-allocation type for the cycle S12S21 with the cycle time of one-allocation

type for the cycle S12S21. The long run average cycle times of one-allocation

and two-allocation types for the cycle S12S21 are given in equations (D.5) and

(D.6), respectively.

We first argue that the optimal allocation for two-allocation type for the

cycle S12S21 is found by letting P ∗
11 = P ∗

22 = 0. Let us first rewrite (D.6)

by entering 1
2
(P11 + P22) into the max term, i.e., adding it to all the three

arguments of max. This leads us to the following form:

TS12S21(Π2) = 1/2(12ε + 14δ + PM1 + PM2)

+1/2(max{P11 + P22, P
M1 + P11 + P − (2ε + 4δ), PM2 + P + P22 − (2ε + 4δ)}).

Now, P11 and P22 only appear with positive coefficients. To minimize, we

must decrease both of these. So, we take P ∗
11 = P ∗

22 = P . Since we also have

PM1 ≥ PM2 the cycle time corresponding to this allocation type becomes:

TS12S21(Π∗

2) =
12ε + 14δ + PM1 + PM2 + max{0, (P + PM1) − (2ε + 4δ)}

2
.

(6.3)

Let us move P in equation (D.5) inside the max term. Thus we have:

TS12S21(Π∗

1) = 1/2(12ε + 14δ + PM1 + PM2)

+ 1/2(max{P, P + PM1 + P ∗
11 − (2ε + 4δ), P + PM2 + P ∗

12 − (2ε + 4δ)}).

Comparing this with equation (6.3), it is easily seen that TS12S21(Π∗

2) ≤
TS12S21(Π∗

1).

Now let us consider the cycle time for k-allocation (k > 2) type for the

cycle S12S21. Observe that, in robot move cycle S12S21, initially, the machines

are empty and the robot is waiting in front of the input buffer. Since this is a

2-unit cycle, exactly two parts are loaded and unloaded to each machine and
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at the end, identical to the initial state, the machines are again empty and the

robot is waiting in front of the input buffer. Then, in a k-allocation type for

the cycle S12S21, this 2-unit cycle is repeated exactly k/2 times to produce all

k parts with different allocation types. The objective is to find the optimal

allocation for these parts to the machines. However, the optimal allocation

at each repetition of the cycle must be the same as the optimal allocation of

the operations for a unique cycle S12S21. This is because, a k-allocation type

is a concatenation of k/2 two-allocation types for the cycle S12S21. Thus, we

conclude that the optimal cycle time for a k-allocation type for the cycle S12S21

is the same as the optimal cycle time for a two-allocation type for the cycle

S12S21. 2

Now, we are ready to provide one of the major results of our paper which

will restrict our search for the optimal cycle to three robot move cycles. We

first recall a result due to Hall et al. [43].

Lemma 6.1 (Hall et al. [43]) In any feasible robot move cycle, the number of

S12 sequences is equal to the number of S21 sequences.

Theorem 6.4 At least one of the cycles S2
1 , S2

2 or S12S21 has a cycle time that

is less than or equal to the cycle time of any given n-unit robot move cycle.

For the clarity of the presentation, this proof is deferred to Appendix E.

In summary, we have three potentially optimal robot move cycles. For the

robot move cycle S2
2 , we have an allocation problem. However, we know from

Theorem 6.1 that if PM1 ≥ P + PM2, then the allocation problem disappears

and we have TS2
2(Π∗) = 6ε+8δ+max{0, PM1−(2ε+4δ)}. Else, we can find lower

and upper bounds for this cycle time. We get a lower bound when it is possible

to have PM1 +Pi1 = PM2 +Pi2, i ∈ {1, 2}. Since any feasible solution provides
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an upper bound for the optimal cycle time, we will present a feasible solution

that can be attained with any given problem instance and use this feasible

solution as an upper bound. For a given problem instance, let us allocate all

of the operations that are in set O to the first machine for the first part and to

the second machine for the second part. Note that such an allocation is feasible

with any given problem parameter values. Thus, P11 = P22 = P in equation

(D.3). Let TS2
2

represent the lower bound of cycle S2
2 and TS2

2
represent the

upper bound. In other words:

TS2
2

= 6ε + 8δ + max{0, (P + PM1 + PM2)/2 − (2ε + 4δ)},

TS2
2

= 6ε + 8δ +
max{0, P + PM1 − (2ε + 4δ), P + PM2 − (2ε + 4δ)}

2

+
max{0, PM1 − (2ε + 4δ), PM2 − (2ε + 4δ)}

2
.

Since we assumed that PM1 ≥ PM2 the upper bound becomes:

TS2
2

= 6ε + 8δ +
1

2
max{0, P + PM1 − (2ε + 4δ)} +

1

2
max{0, PM1 − (2ε + 4δ)}.

Now we are ready to present the optimal S2
2 cycle times along with lower

and upper bounds based on a set of breakpoints partitioning the search space.

1- If PM1 ≥ P + PM2, then

1.1- If PM1 ≥ 2ε + 4δ, then

TS2
2(Π∗) = 4ε + 4δ + PM1. (6.4a)

1.2- Otherwise,

TS2
2(Π∗) = 6ε + 8δ. (6.4b)

2- Else (i.e. PM1 < P + PM2) we have lower and upper bounds. The lower

bounds are as follows:
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i- If (P + PM1 + PM2)/2 ≥ 2ε + 4δ, then

TS2
2

= 4ε + 4δ + (P + PM1 + PM2)/2. (6.4c)

ii- Otherwise,

TS2
2

= 6ε + 8δ. (6.4d)

The upper bounds are as follows:

i- If PM1 ≥ 2ε + 4δ, then

TS2
2

= 4ε + 4δ + PM1 + P/2. (6.4e)

ii- Else if P + PM1 < 2ε + 4δ, then

TS2
2

= 6ε + 8δ. (6.4f)

iii- Else,

TS2
2

= 5ε + 6δ + (P + PM1)/2. (6.4g)

On the other hand, the cycle time of two-allocation type for the cycle S12S21

is given in equation (D.6). Since PM1 ≥ PM2, employing Theorem 6.3, we get

the following cycle time:

TS12S21(opt) = 6ε + 7δ +
(PM1 + PM2)

2
+

1

2
max{0, (PM1 + P ) − (2ε + 4δ)}.

Therefore, we have the following breakpoints for this cycle time:

1- If P + PM1 ≥ 2ε + 4δ then,

TS12S21(Π∗) = 5ε + 5δ + PM1 +
(P + PM2)

2
. (6.5a)

2- Else,

TS12S21(Π∗) = 6ε + 7δ +
(PM1 + PM2)

2
. (6.5b)
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6.2.2 Regions of Optimality

In the sequel, we will prove a sequence of lemmas which will jointly lead to

Theorem 6.5 presenting the regions of optimality for these three robot move

cycles.

Lemma 6.2 If PM1 + PM2 ≥ 2δ, then S2
2 gives the minimum cycle time.

Proof. Assume PM1 + PM2 ≥ 2δ. Let us first compare TS2
1

and TS12S21(Π∗).

TS2
1

is as given in equation (D.1).

1. If P + PM1 ≥ 2ε + 4δ, TS12S21(Π∗) isas given in equation (6.5a). A simple

comparison yields TS12S21(Π∗) < TS2
1
.

2. Otherwise, TS12S21(Π∗) is given by equation (6.5b). Then we have the

following:

TS2
1

= 6ε+6δ+P+PM1+PM2 ≥ 6ε+6δ+P+
(PM1 + PM2)

2
+

2δ

2
≥ TS12S21(Π∗)

⇒ TS12S21(Π∗) ≤ TS2
1
.

We will now compare TS2
2(Π∗) with TS12S21(Π∗).

1- If PM1 ≥ P + PM2, then

1.1- If PM1 ≥ 2ε+4δ, this implies that P +PM1 ≥ 2ε+4δ. Then, TS2
2(Π∗)

and TS12S21(Π∗) are given by equations (6.4a) and (6.5a) respectively.

Hence, we conclude that in this region TS2
2(Π∗) < TS12S21(Π∗).

1.2- If PM1 < 2ε+4δ and P +PM1 ≥ 2ε+4δ, then TS12S21(Π∗) is the same

as above. TS2
2(Π∗) in this region is given in equation (6.4b). Since
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P + PM1 ≥ 2ε + 4δ and PM1 + PM2 ≥ 2δ we have:

TS12S21(Π∗) = 5ε + 5δ + P+P M1+P M1+P M2

2

≥ 5ε + 5δ + 2ε+4δ+2δ
2

= 6ε + 8δ = TS2
2(Π∗)

⇒ TS2
2(Π∗) ≤ TS12S21(Π∗).

1.3- If P + PM1 < 2ε + 4δ, TS2
2(Π∗) and TS12S21(Π∗) are presented in

equations (6.4b) and (6.5b), respectively. Since PM1 + PM2 ≥ 2δ

we have:

TS12S21(Π∗) = 6ε + 7δ +
(PM1 + PM2)

2
≥ 6ε + 8δ = TS2

2(Π∗)

⇒ TS2
2(Π∗) ≤ TS12S21(Π∗).

2- Else if PM1 < P + PM2, then we have upper and lower bounds for the

cycle time of S2
2 . If we can show that TS2

2
≤ TS12S21(Π∗), then we can

conclude that TS2
2(Π∗) ≤ TS12S21(Π∗). We have the following cases:

2.1- If PM1 ≥ 2ε + 4δ, this implies that P + PM1 ≥ 2ε + 4δ. TS2
2

and

TS12S21(Π∗) are given in equations (6.4e) and (6.5a), respectively. We

conclude easily that TS2
2(Π∗) ≤ TS2

2
< TS12S21(Π∗).

2.2 If PM1 < 2ε+4δ and P +PM1 ≥ 2ε+4δ, TS2
2

and TS12S21(Π∗) are given

in equations (6.4g) and (6.5a), respectively. Since PM1 +PM2 ≥ 2δ,

we have:

TS12S21(Π∗) = 5ε + 5δ + P+P M1+P M1+P M2

2

≥ 5ε + 5δ + P+P M1+2δ
2

= 5ε + 6δ + (P+P M1)
2

= TS2
2

⇒ TS2
2(Π∗) ≤ TS2

2
≤ TS12S21(Π∗).

2.3 If P + PM1 < 2ε + 4δ, this implies that PM1 < 2ε + 4δ. For this

case, TS2
2

and TS12S21(Π∗) are given in equations (6.4f) and (6.5b),

respectively. Since PM1 +PM2 ≥ 2δ we conclude easily that for this

case also TS2
2(Π∗) ≤ TS2

2
≤ TS12S21(Π∗).
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Since in all of the cases TS2
2
≤ TS12S21(Π∗), we conclude that S2

2 has the

minimum cycle time. 2

Lemma 6.3 If 2P +PM1 +PM2 ≤ 2δ, then S2
1 gives the minimum cycle time.

Proof. 2P + PM1 + PM2 ≤ 2δ ⇒ P + PM1 < 2ε + 4δ. TS12S21(Π∗) is given

in equation (6.5b). When we compare this with TS2
1

given in equation (D.1),

since 2P + PM1 + PM2 ≤ 2δ, we have:

TS2
1

= 6ε + 6δ + P + PM1 + PM2 = 6ε + 6δ + 2P+P M1+P M2+P M1+P M2

2

≤ 6ε + 7δ + (P M1+P M2)
2

= TS12S21(Π∗)

⇒ TS2
1
≤ TS12S21(Π∗).

Now we will compare TS2
1

with TS2
2(Π∗). We have the following cases:

1- Assume PM1 ≥ P + PM2. Since 2P + PM1 + PM2 ≤ 2δ, then PM1 <

2ε + 4δ. Using TS2
2(Π∗) as given in equation (6.4b) we have:

TS2
1

= 6ε + 6δ + P + PM1 + PM2 ≤ 6ε + 6δ + 2P + PM1 + PM2 ≤ 6ε + 8δ

⇒ TS2
1
≤ TS2

2(Π∗).

2- If PM1 < P+PM2, since 2P+PM1+PM2 ≤ 2δ, then (P+PM1+PM2)/2 <

2ε + 4δ. TS2
2

for this region is given in equation (6.4d). The comparison

in Case 1 above is valid for this case also. Hence, we conclude that

TS2
1
≤ TS2

2(Π∗). 2

Lemma 6.4 If PM1+PM2 < 2δ, 2P +PM1+PM2 > 2δ and P +2PM1+PM2 ≤
2ε + 6δ, then S12S21 gives the minimum cycle time.
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Proof. Since PM1 + PM2 < 2δ, then PM1 < 2ε + 4δ. If PM1 ≥ P + PM2 then

TS2
2(Π∗) is given in equation (6.4b), which is 6ε+8δ. If PM1 < P +PM2, we have

to show that TS12S21(Π∗) ≤ TS2
2
. Since P + PM1 + PM2 ≤ P + 2PM1 + PM2 ≤

2ε + 6δ, then (P + PM1 + PM2)/2 ≤ ε + 3δ < 2ε + 4δ. TS2
2

for this region is

given in equation (6.4d), which is also 6ε + 8δ. Thus, in both cases we will

compare TS12S21(Π∗) with 6ε + 8δ. We have the following cases:

1- If P + PM1 ≥ 2ε + 4δ, TS2
1

and TS12S21(Π∗) are given in equations (D.1)

and (6.5a), respectively. Observing these cycle times we conclude that

TS12S21(Π∗) < TS2
1
. In order to compare the cycle times of S2

2 and S12S21

we have:

TS12S21(Π∗) = 5ε + 5δ +
P + 2PM1 + PM2

2
≤ 5ε + 5δ +

2ε + 6δ

2
= 6ε + 8δ

⇒ TS12S21(Π∗) ≤ TS2
2(Π∗).

2- Otherwise, TS12S21(Π∗) is given in equation (6.5b). Since 2P+PM1+PM2 >

2δ, we have:

TS2
1

= 6ε + 6δ + 2P+P M1+P M2

2
+ P M1+P M2

2

> 6ε + 6δ + 2δ/2 + (P M1+P M2)
2

= TS12S21(Π∗)

⇒ TS12S21(Π∗) < TS2
1
.

When we compare the cycle time of S2
2 with the cycle time of S12S21,

since PM1 + PM2 < 2δ, using equation (6.5b) we have:

TS12S21(Π∗) = 6ε + 7δ + (PM1 + PM2)/2 < 6ε + 7δ + 2δ/2 = 6ε + 8δ

⇒ TS12S21(Π∗) < TS2
2(Π∗). 2

Lemma 6.5 If PM1+PM2 < 2δ, 2P +PM1+PM2 > 2δ and P +2PM1+PM2 >

2ε + 6δ, then either S2
2 or S12S21 gives the minimum cycle time.
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Proof. In this region since we assumed that PM1 + PM2 < 2δ, we have:

2ε + 6δ ≤ P + 2PM1 + PM2 < P + PM1 + 2δ ⇒ P + PM1 > 2ε + 4δ.

TS12S21(Π∗) is given in equation (6.5a). When we compare this cycle time with

TS2
1

given in equation (D.1), we conclude that TS12S21(Π∗) < TS2
1
. 2

As a result of this lemma we showed that S2
1 is dominated in this region.

On the other hand the following example will show that we cannot establish

any dominance relation between cycles S2
2 and S12S21.

Example 6.1 Let us suppose that we have 4 operations with a total processing

time of 100, ε = 10, and δ = 10. Because of the tooling constraints, one of the

operations with a processing time of 10 must be processed on the first machine,

and another one with a processing time of 5 must be processed on the second

machine. Therefore, PM1 = 10 and PM2 = 5. The remaining two operations

with a total operation time of 85 will be allocated to the machines. When we

observe the parameters, we see that Lemma 6.5 is applicable to this case. Since

P + PM1 ≥ 2ε + 4δ, the cycle time for S12S21 is given in equation (6.5a) and

with given parameters becomes 155.

For S2
2 , the allocation of the operations becomes important. For the first

case, assume that we have a total of two operations to be allocated for which,

one operation has a processing time of 50 and the other 35 making a total of

85. Calculating the cycle time of S2
2 given in equation (D.3), we get 140, which

is less than the cycle time of S12S21. For the second case, assume that we have

again two operations to be allocated for which, one operation has a processing

time of 75 and the other 10 making a total of 85. Now, the cycle time for S2
2

is equal to 160. Since this is greater than 155, for this case S12S21 is optimal.

Therefore we conclude that depending on the allocation of the operations of

S2
2 , either S2

2 or S12S21 can be optimal.
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Combining the findings in Lemmas 6.2–6.5, we now provide the main result

of this chapter.

Theorem 6.5

1- If PM1 + PM2 ≥ 2δ, then S2
2 gives the minimum cycle time,

2- Else,

2.1- If 2P + PM1 + PM2 ≤ 2δ, then S2
1 gives the minimum cycle time,

2.2- Else,

2.2.1- If 2PM1 + PM2 + P ≤ 2ε + 6δ, then S12S21 gives the minimum

cycle time,

2.2.2- Else, depending on the allocation of the operations for S2
2 , either

S2
2 or S12S21 gives the minimum cycle time.

Remember that for this theorem and the proof we assumed that PM1 ≥
PM2. For the reverse case, the results can easily be adapted in analogy with

the above analysis resulting in the following corollary:

Corollary 6.1 If we assume that PM1 < PM2 all cases of Theorem 6.5 are

still valid except case 2.2.1 which should be replaced with the following:

2.2.1 If PM1 + 2PM2 + P ≤ 2ε + 6δ, then S12S21 gives the minimum

cycle time.

6.2.3 Sensitivity Analysis

In this subsection we will perform sensitivity analysis on parameters such as

the robot transportation time δ, and the loading (or unloading) time of the
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Figure 6.2: Regions of optimality for Example 6.2

machines ε, and show how the regions of optimality change with a change in

these parameters. We represent PM2 as αPM1, where 0 ≤ α ≤ 1. The following

example will be useful in order to analyze the parameters graphically.

Example 6.2 Assume that ε = δ = 10 and α = 0, which means that PM2 = 0.

Figure 6.2 depicts the regions for this case as a graph of P versus PM1.

Consider parameters ε, δ, and α one at a time. Theorem 6.5, Case 1 states

that if PM1 +PM2 ≥ 2δ, then S2
2 gives the minimum cycle time. From here we

conclude that if the transportation time is zero or negligible, then S2
2 always

gives the minimum cycle time. This is logical since we can consider the robot

as a third machine which is the bottleneck one. Then, the main concern is to

minimize the waiting time of the robot in front of the machines. In order to

achieve this, in cycle S2
2 , while processing of a part continues on one of the

machines, the robot makes other activities (such as transportation, loading or
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unloading of the other machine, waiting in front of the other machine, etc.)

without being late.

The definition of n-unit cycles states that every machine is loaded and

unloaded exactly n times. Thus the loading/unloading times are equivalent for

all cycles. However, in cycles S2
2 and S12S21, while processing continues on one

of the machines, the robot does not wait in front of the machine and performs

other activities and when the robot returns back to the machine to unload

there is a partial waiting time in front of this machine. The loading/unloading

time affects these partial waiting times.

α is defined as PM2/PM1, where 0 ≤ α ≤ 1. When we increase PM2 from

0 to PM1, this is in favor of S2
2 because in cycle S2

2 the optimal allocation is

the one which balances the processing times on both machines and when PM2

is close to PM1, the ability to balance the processing times increases.

6.3 Conclusion

In this chapter, we studied the 2-machines, identical parts robotic operation

allocation problem with tooling constraints. The operation allocation flexibility

is a direct consequence of assuming that the machines in the robotic cell are

CNC machines as is the case for machining operations. The problem is to find

the allocation of the operations to the machines and the corresponding robot

move cycle that jointly minimize the cycle time. As a solution to this problem,

we proved in Theorem 6.4 that the optimal solution is either a 1-unit or a

2-unit cycle. In Theorem 6.5, we presented the regions of optimality for these

robot move cycles. We showed that the study of Sethi et al. [86] becomes a

special case of our study. We conducted a sensitivity analysis on parameters.

An extended version of this chapter is accepted for publication [38].



Chapter 7

Bicriteria Robotic Cell

Scheduling

In this chapter, different from the earlier ones, we will consider a bicriteria

optimization problem in the context of robotic cell scheduling. In scheduling

theory and practice, two main objectives are time and cost. Minimizing

production time (equivalently maximizing throughput) could have the highest

priority in “production planning”, while minimizing production costs has the

highest priority in “process planning”. It should also be noted that the former

of these objectives is relevant when the demand is assumed to be unlimited.

However, in today’s highly competitive environment, most industries face a

limited demand. Although there is an extensive literature on robotic cell

scheduling problems, to the best of our knowledge, none of these considers

cost objectives. Furthermore, the trade-offs involved in considering several

different criteria provide useful insights to the decision maker. For example,

a solution which minimizes the cycle time (long run average time to produce

one part) may perform poorly in terms of cost. Thus, in the context of real life

scheduling problems it is more relevant to consider problems with such dual

93
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criteria nature. The following chapters consider cost objectives simultaneously

with time objectives in the context of robotic cells.

We will consider 2- and 3-machine robotic cells which produce identical

parts. Each of the identical parts is assumed to have a number of operations

to be performed on the machines. In robotic cells, highly flexible Computer

Numerical Control (CNC) machines are used for the metal cutting operations

so that the machines and the robot can interact on a real time basis. Machining

conditions such as the cutting speed and the feed rate are controllable variables

for these machines. Consequently, the processing time of any operation on

these machines can be reduced by changing the machining conditions at the

expense of incurring extra cost resulting in the opportunity of reducing the

cycle time. Due to this reasoning, assuming the processing times to be fixed on

each machine is not realistic. In the following chapters, the processing times are

taken as decision variables. Different from the current literature, the problem is

not only to find the robot move sequence but also to determine the processing

times of the operations on the machines that simultaneously minimize the cycle

time and the total manufacturing cost. Since we have two criteria, the optimal

solution will not be unique but instead a set of nondominated solutions will be

identified. A solution is called nondominated if no other feasible solution has

smaller objective function values for both performance measures.

The processing time for each operation can be optimized from two different

points of view: (i) minimizing cost per unit, or (ii) maximizing production

rate. The first criterion is common and basic to all manufacturing. On

the contrary, in the current robotic cell scheduling literature only the second

criterion (e.g. minimizing the overall cycle time or maximizing throughput) is

discussed extensively. This objective is important when the production order

must be completed as quickly as possible. When there is limited demand,

robotic cells should operate in the interval between these two cases (referred



CHAPTER 7. BICRITERIA ROBOTIC CELL SCHEDULING 95

to as “high-efficiency range”) that could be defined by generating a set of

nondominated solutions by solving this bicriteria optimization problem.

Most of the studies in the existing literature of controllable processing times

assume a linear cost function (Vickson [95], van Wassenhove and Baker [97],

Daniels and Sarin [22], Janiak and Kovalyov [54], Cheng et al. [17]). Although

this assumption simplifies the problem, it is not realistic because it does not

reflect the law of diminishing returns. Thus, in the following chapters we

assume a nonlinear, convex, differentiable cost function.

The organization of this chapter is as follows: In the next section we will

present some new notation and definitions that will be used from now on. The

problem definition and the mathematical formulation will also be presented in

the next section. In Section 7.2, 2- and 3-machine cells will be analyzed and the

set of nondominated solutions will be determined. In Section 7.3, different cost

structures including the cost incurred by the robot will be analyzed. Section

7.4 is devoted to the concluding remarks.

7.1 Problem Definition

In the following chapters, due to the complexity of the problem, as most of the

studies of the robotic cell scheduling literature, we will restrict ourselves with

1-unit cycles since they are simple, practical and provably give good results. In

this chapter each part is assumed to have a number of operations o1, o2, . . . , op

in an m-machine robotic cell. In this chapter, we assume one operation to be

performed on each machine and the allocation of operations to the machines

is predefined. As a consequence, p = m and oi represents the operation to be

performed on machine i with corresponding processing time denoted by ti = Pi.

On the other hand, in the next chapter we will also consider the additional
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problem of allocating the operations to the machines as well in which case we

assume p ≥ m.

Processing times on the CNC machines can be written as functions of

the machine parameters such as the cutting speed and the feed rate. As

a consequence, selecting different parameters yields different processing time

values. Total manufacturing cost for the CNC machines can be written as

the summation of machining and tooling costs. The machining cost can be

considered as a function of either the exact working time of the machines or

the cycle time which includes some idle time for the machines. The former

of these assumes that the machines incur cost only if they perform some

operation on the parts. However, the latter one assumes that another job

cannot be scheduled during these idle times. We will start with the former of

these assumptions and the latter case will be analyzed in Section 7.3 where we

consider different cost structures. There is a tradeoff between machining and

tooling costs in selecting the processing time values. Reducing the processing

time reduces the machining cost but at the same time it reduces the tool life

which in turn increases the tooling cost. Conversely, increasing the processing

time increases the tool life and thus reduces the tooling cost, but this increases

the machining cost.

Kayan and Akturk [63] determined lower and upper bounds for the

processing times in order to minimize a convex cost function and any regular

scheduling measure. The lower bound of a processing time is derived from

constraints such as the limited tool life, machine power and surface roughness.

On the other hand, the upper bound of a processing time is the processing time

value for which the total manufacturing cost is minimized, so that beyond this

value of processing time, both objectives get worse. Note that, these upper

and lower bounds are different from time window constraints used in hoist

scheduling problems which indicates that any schedule that causes the hoist
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not to pick up a part within the time window is infeasible. In this study, a

schedule in which the processing times exceed their upper bounds is still feasible

but proved to be not optimal. The lower bound corresponds to the minimum

processing time-maximum cost case whereas the upper bound corresponds to

the maximum processing time-minimum cost case. Let PL
i and PU

i denote

the lower and upper bounds for the processing time of operation oi and fi(Pi)

denote the manufacturing cost incurred by the same operation. In this study,

we assume fi(Pi) to be strictly convex and differentiable. As a consequence,

from the derivation of the lower and upper bounds of the processing times, it is

monotonically decreasing for PL
i ≤ Pi ≤ PU

i , i = 1, 2, . . . ,m. As a consequence,

we can write the total manufacturing cost incurred by all the operations as
∑

i fi(Pi), which is also a convex, differentiable function for PL
i ≤ Pi ≤ PU

i ,

∀i. Obviously, the total manufacturing cost does not depend on the robot

move cycle but depends only on the processing times of the operations whereas

the cycle time depends on both. Figure 7.1 depicts the machining, tooling

and the total manufacturing costs with respect to the processing time of an

operation. PL
i and PU

i values and the cost function in between these values are

also depicted. It is clear from the determination of the lower and the upper

bounds that the portion of the manufacturing cost function lying in between

the bounds is monotonically decreasing.

We denote a processing time vector as P = (P1, P2, . . . , Pm). Any

processing time violating one of its bounds is called infeasible. As a

consequence, we can define the set of feasible processing time vectors as

Pfeas = {(P1, P2, . . . , Pm) ∈ Rm : PL
i ≤ Pi ≤ PU

i , ∀i}. On the other hand,

feasible robot move cycles are defined by Crama et al. [19] as the cycles in

which the robot does not load an already loaded machine and does not unload

an already empty machine. For example in a 2-machine robotic cell, there are

two feasible 1-unit cycles namely, S2
1 and S2

2 where Sm
i represents the ith robot
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Figure 7.1: Manufacturing cost with respect to processing time

move cycle in an m-machine robotic cell. We denote the set of all feasible

robot move cycles in an m-machine robotic cell as Sm
feas. Before proceeding,

let us present some new definitions and notation that will be in the following

chapters.

T : Cycle time, i.e., the long run average time that is required to produce one

part.

Co : Operating cost of the machines. Since we assume the machines to be

identical, operating cost is the same for each machine.

Ki : Cost of tool i used (for i = 1, . . . ,m, since each operation might require

a different tool).

F1(S,P ) =
∑m

i=1 fi(Pi) : Total manufacturing cost which depends only on

the processing times. Note that the individual cost functions for

each operation oi, fi(Pi) is strictly convex and differentiable and it is

monotonically decreasing for PL
i ≤ Pi ≤ PU

i , i = 1, 2, . . . ,m.
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F2(S,P ) : Cycle time corresponding to robot move cycle S and processing time

vector P .

As a result of the bounding scheme explained above, we can formulate the

bicriteria problem as follows:

min Total manufacturing cost

min Cycle time

Subject to PL
i ≤ Pi ≤ PU

i , ∀i.

This formulation minimizes two conflicting objectives simultaneously.

There are different ways to deal with bicriteria problems. We shall adopt

the notation summarized in Hoogeveen [50]. Let f and g represent the

two performance measures. The first method minimizes a linear composite

objective function in f and g with unknown relative weights and is denoted

by Gl(f, g). The second way is called the hierarchical optimization or the

lexicographical optimization and is denoted by Lex(f, g). In this approach,

performance measure f is assumed to be more important than g. As a result,

this problem minimizes g subject to the constraint that the solution value of

f is minimum. The third one is called the epsilon-constraint method denoted

by ε(f |g). In this approach, nondominated points are found by solving a series

of problems of the form minimize f given an upper bound on g. The last

approach which is the most difficult one and which will be used in this study

minimizes a composite objective function in f and g and is denoted by G(f, g).

In this approach, the only foreknowledge is that the composite function G is

nondecreasing in both arguments.

The decision variables of the bicriteria problem formulated above are the

processing times as well as the robot move cycles. In this study, we will consider

each 1-unit cycle individually. In other words, for each 1-unit cycle we will
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solve the bicriteria problem to determine the processing times and compare

these 1-unit cycles with each other. However, in order to be able to find

solutions minimizing both objectives simultaneously for 1-unit cycle S, we will

first consider the epsilon-constraint formulation of the problem. That is, we

will consider ε(F1(S,P )|F2(S,P )) to determine the sufficient conditions for the

processing time values minimizing the manufacturing cost for a given level of

cycle time. Using these conditions we will be able to write the manufacturing

cost as a function of the cycle time, which means we will be able to determine

the composite objective function G. As a result, for any given cycle time

(manufacturing cost) value we will be able to determine the corresponding

manufacturing cost (cycle time) value and the processing times of the parts on

the machines.

Epsilon-Constraint Problem (ECP)

min Total manufacturing cost

Subject to Cycle time ≤ T, (7.1)

PL
i ≤ Pi ≤ PU

i , ∀i. (7.2)

In this chapter, a solution to the bicriteria problem defines both a feasible

robot move cycle and a corresponding feasible processing time vector for the

parts. More formally, we can state a solution as follows:

Definition 7.1 A solution to the bicriteria problem for an m-machine robotic

cell is represented as ξ = (Sm,P ) where Sm ∈ Sm
feas and P ∈ Pfeas. Let

X = {ξ = (Sm,P ) : Sm ∈ Sm
feas and P ∈ Pfeas} be the set of all feasible

solutions.

In the context of bicriteria optimization theory, solution ξ1 dominates

solution ξ2 if it is not worse than ξ2 under any of the performance measures,
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and is strictly better under at least one of the performance measures.

Nondominated solutions are classified as Pareto optimal. We can state these

more formally as follows:

Definition 7.2 We say that ξ1 dominates ξ2 and denote it as ξ1 ¹ ξ2 if and

only if F1(ξ1) ≤ F1(ξ2) and F2(ξ1) ≤ F2(ξ2), one of which is a strict inequality.

A solution ξ∗ ∈ X is called Pareto optimal, if there is no other ξ ∈ X such

that ξ ¹ ξ∗. If ξ∗ is Pareto optimal, z∗ = (F1(ξ
∗), F2(ξ

∗)) is called efficient.

The set of all efficient points is the efficient frontier.

Recall that, in this study the problem is twofold. That is, we both try

to find the robot move sequence and the processing times of the parts on the

machines. In order to achieve this, we will fix the robot move cycles and for

each robot move cycle we will determine the set of nondominated processing

time vectors. In other words, we will solve the bicriteria problem for each 1-

unit cycle. The set of nondominated processing time vectors for an arbitrary

1-unit robot move cycle Sm
i can be defined as follows:

Definition 7.3 P ∗(Sm
i ) = {P ∈ Pfeas: There is no other P ∈ Pfeas such

that (Sm
i ,P ) ¹ (Sm

i ,P )}.

We already defined how one solution dominates another solution. However,

while comparing robot move cycles with each other we will make use of the

following, which defines how one robot move cycle dominates another one in

the context of this study.

Definition 7.4 A cycle Sm
i is said to dominate another cycle Sm

j (Sm
i ¹ Sm

j )

if there is no P̂ ∈ P ∗(Sm
j ) such that (Sm

j , P̂ ) ¹ (Sm
i , P̃ ), ∀P̃ ∈ P ∗(Sm

i ).
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In the current literature, the processing times are assumed to be fixed. A

cycle is said to dominate another one if the cycle time of the former is less

than that of the latter with the same, fixed processing times used for both

cycles. However, in order to find a dominance relation between two cycles

as stated in Definition 7.4, the processing times used in the two cycles need

not be the same. Hence, a dominance relation between two cycles is found

by comparing the minimum cost values of the two cycles corresponding to the

same cycle time value. That is, F1(S
m
i , P̃ ) is compared with F1(S

m
j , P̂ ), for all

P̃ ∈ P ∗(Sm
i ) and P̂ ∈ P ∗(Sm

j ), where F2(S
m
i , P̃ ) = F2(S

m
j , P̂ ). Although in

such a flexible environment, 1-unit cycles may not be optimal, we will restrict

ourselves with these cycles as is frequently done in the literature.

In the next section we will determine the set of nondominated processing

time vectors for the 1-unit cycles for 2- and 3-machine cells.

7.2 Solution Procedure

In this section we will consider 2- and 3-machine cells respectively. For

each 1-unit cycle, S, we will determine P ∗(S), the set of nondominated

processing time vectors and then compare these cycles with each other in light

of Definition 7.4 to find sufficient conditions under which each of the cycles

remains nondominated among all 1-unit cycles.

In the next section we will analyze the 2-machine cells and in Section 7.2.2

we will analyze the 3-machine cells.
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7.2.1 2-Machine Case

Let us first analyze the S2
1 cycle. Recall that the activity sequence of S2

1 is

A0A1A2. The cycle time of this cycle can be calculated as 6ε+6δ +P1 +P2. In

order to minimize the cost for a given cycle time value, T , the first constraint

(7.1) of the ECP must be replaced by:

6ε + 6δ + P1 + P2 ≤ T.

The following lemma is one of the major contributions of this chapter

which determines P ∗(S2
1), the processing times of the parts on each machine

under the S2
1 cycle that simultaneously minimize the cycle time and the

total manufacturing cost. Let (P ∗
1 , P ∗

2 ) be an optimal solution to the ECP

formulated for the S2
1 cycle, where the cycle time is bounded by T . Note that,

(P ∗
1 , P ∗

2 ) ∈ P ∗(S2
1) according to Definition 7.3.

Lemma 7.1

1. If T = 6ε+6δ+PL
1 +PL

2 , then P ∗
1 = PL

1 and P ∗
2 = PL

2 . The corresponding

cost is, F1(S
2
1 , (P

L
1 , PL

2 )) = f1(P
L
1 ) + f2(P

L
2 ).

2. If T = 6ε+6δ+PU
1 +PU

2 , then P ∗
1 = PU

1 and P ∗
2 = PU

2 . The corresponding

cost is, F1(S
2
1 , (P

U
1 , PU

2 )) = f1(P
U
1 ) + f2(P

U
2 ).

3. If 6ε + 6δ + PL
1 + PL

2 < T < 6ε + 6δ + PU
1 + PU

2 then optimal processing

times of the ECP are found by solving the following equations:

6ε + 6δ + P ∗
1 + P ∗

2 = T and

∂f1(P
∗
1 ) = ∂f2(P

∗
2 ).

After solving, one may get one of the following cases:

3.1 If both processing times satisfy their own bounds then the solution

found is optimal.
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3.2 Else if exactly one of the processing times, P ∗
i , violates one of its

bounds, say P b
i , then the optimal solution is P ∗

i = P b
i and P ∗

j =

T − 6ε − 6δ − P b
i , i, j = 1, 2, i 6= j.

3.3 Else if one of the processing times (assume P ∗
i ) violates its lower

bound (PL
i ) and the other one (P ∗

j ) violates its upper bound (PU
j )

then the optimal solution is found by comparing the manufacturing

costs of the following two processing time settings:

(i) P ∗
i = PL

i , P ∗
j = T − 6ε − 6δ − PL

i or

(ii) P ∗
j = PU

j , P ∗
i = T − 6ε − 6δ − PU

j , i, j = 1, 2, i 6= j.

Proof. For S2
1 , the cycle time satisfies the following, 6ε+6δ +PL

1 +PL
2 ≤ T ≤

6ε+6δ+PU
1 +PU

2 . If T = 6ε+6δ+PL
1 +PL

2 , then there exists a unique solution

where P ∗
1 = PL

1 and P ∗
2 = PL

2 , with corresponding cost f1(P
L
1 ) + f2(P

L
2 ). In

the same way, if T = 6ε + 6δ + PU
1 + PU

2 , then there exists a unique solution

where P ∗
1 = PU

1 and P ∗
2 = PU

2 , with corresponding cost f1(P
U
1 ) + f2(P

U
2 ). For

the remaining case, let (P ∗
1 , P ∗

2 ) be the optimal solution to our problem. Then,

both of the following cannot hold at the same time: P ∗
i = PL

i and P ∗
i = PU

i ,

unless PL
i = PU

i . Also since 6ε + 6δ + PL
1 + PL

2 < T < 6ε + 6δ + PU
1 + PU

2 ,

either P ∗
1 6= PL

1 or P ∗
2 6= PL

2 and either P ∗
1 6= PU

1 or P ∗
2 6= PU

2 . As a result,

(P ∗
1 , P ∗

2 ) is a regular point. Additionally, since the objective function and the

constraints are convex, any point satisfying the Karush-Kuhn-Tucker (KKT)

conditions is optimal. The Lagrangian function for point P ∗ is as follows:

L(P ∗, µ∗) = f1(P
∗
1 ) + f2(P

∗
2 ) + µ∗(6ε + 6δ + P ∗

1 + P ∗
2 − T ).

If we set ∇P (L(P ∗, µ∗)) = 0, we get:

∂f1(P
∗
1 ) + µ∗ = 0 and ∂f2(P

∗
2 ) + µ∗ = 0,

with the additional constraints, µ∗ ≥ 0 and PL
i ≤ P ∗

i ≤ PU
i , i = 1, 2. As a

result of these equations we have the following:

µ∗ = −∂f1(P
∗
1 ) = −∂f2(P

∗
2 ). (7.3)
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On the other hand, since ∂fi(P
∗
i ) < 0 for P ∗

i < PU
i ⇒ µ∗ = −∂fi(P

∗
i ) > 0,

which implies that the corresponding constraint must be satisfied as equality:

6ε + 6δ + P ∗
1 + P ∗

2 = T. (7.4)

P ∗
i can be found by solving equations (7.3) and (7.4) simultaneously. If exactly

one of the P ∗
i values violates one of its upper or lower bounds, P ∗

i is set

to the bound which is violated and the remaining processing time is found

correspondingly using equation 7.4. Both of the processing times can also

violate their own bounds. This can only be the case if one of the processing

times violates its lower bound and the other one violates its upper bound. Let

P ∗
i < PL

i and P ∗
j > PU

j , i, j = 1, 2, i 6= j. Then there exist two alternative

solutions as stated in the statements (3.3.(i)) and (3.3.(ii)) of this lemma and

the optimal solution is found by comparing the manufacturing cost values for

these two alternatives.

Note that, in order to determine the optimal processing time values, a

nonlinear equation system must be solved (equations 7.3 and 7.4) which has

a unique root for P ∗
i ≥ 0, i = 1, 2. The solution of these equations can

be approximated by using either the Newton’s method, the golden search

algorithm or a bisection algorithm. 2

The above solution finds the processing times which give the minimum

cost for a given cycle time value. That is, allocating the given resource (in

this case the cycle time) to two alternatives (in this case the processing times

on the two machines) without violating the bounds. While allocating this

resource, priority is given to the alternative (processing time) which has the

highest contribution to the cost. That is, the processing time which has the

highest contribution to the cost is increased more than the other one without

exceeding the corresponding bounds. According to this lemma, for given

manufacturing cost functions, fi(Pi), ∀i, the optimal processing times of the
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ECP can be written as functions of the cycle time, T . Using this fact, the total

manufacturing cost can also be written as a function of T , which determines

the efficient frontier of the bicriteria problem. The range of the cycle time

can easily be determined by using the lower and the upper bounds of the

processing time values. As a result, the minimum manufacturing cost (cycle

time) value corresponding to any given cycle time (manufacturing cost) value

can be determined easily. The processing times of the parts on the machines

can also be determined. The machine parameters such as the speed and the

feed rate are determined using these processing times.

Till now we considered the cost function to be any convex, nonlinear,

differentiable function. Now let us consider more specifically a single-tool,

single pass turning operation on CNC machines. For a more detailed

explanation of the cost figures used in this part we refer the reader to Kayan and

Akturk [63]. For this operation, the total manufacturing cost can be written

as the summation of the machining and the tooling costs. Machining cost is

Co · (P1 + P2), where Co is the operating cost of the CNC machine ($/minute).

Recall that in this section we assume the machining cost to be allocated in

terms of the exact working times of the machines (P1, P2). Different allocation

schemes will be analyzed in Section 7.3. On the other hand, the tooling cost is

K1U1P
a1
1 + K2U2P

a2
2 , where Ki > 0 and ai < 0 are specific constants for tool i

and Ui > 0 is a specific constant for operation i regarding parameters such as

the length and the diameter of the operation. We assume that each operation

is performed with a corresponding tool. Let us consider a given cycle time

value, T = 6ε+6δ+P1 +P2 ⇒ P1 +P2 = T −6ε−6δ. Then the machining cost

can be rewritten as Co · (T − 6ε− 6δ), which is constant for a given cycle time,

T . In order to find the minimum total cost corresponding to T , the tooling

cost will be minimized and summed with the corresponding machining cost.

Then using Lemma 7.1 the solution can be found as follows:
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1. If T = 6ε+6δ+PL
1 +PL

2 , then P ∗
1 = PL

1 and P ∗
2 = PL

2 . The corresponding

cost is, Co · (T − 6ε − 6δ) + K1U1(P
L
1 )a1 + K2U2(P

L
2 )a2 .

2. If T = 6ε+6δ+PU
1 +PU

2 , then P ∗
1 = PU

1 and P ∗
2 = PU

2 . The corresponding

cost is, Co · (T − 6ε − 6δ) + K1U1(P
U
1 )a1 + K2U2(P

U
2 )a2 .

3. Otherwise, P ∗
i is found by solving the following two equations, 6ε + 6δ +

P ∗
1 + P ∗

2 = T and P ∗
2 = (K1U1a1

K2U2a2
)

1
a2−1 (P ∗

1 )
a1−1

a2−1 . If any of the processing

times violates any of the bounds, update all processing times accordingly

so that they each satisfy their bounds and 6ε + 6δ + P ∗
1 + P ∗

2 = T .

If the operations on both machines are performed with a tool of the same

type, then a1 = a2 = a and K1 = K2 = K. In this case the above equations

can be solved easily to determine the processing times as follows:

P ∗
1 =

(T − 6ε − 6δ)U
1

a−1

2

U
1

a−1

1 + U
1

a−1

2

,

and

P ∗
2 =

(T − 6ε − 6δ)U
1

a−1

1

U
1

a−1

1 + U
1

a−1

2

.

As a consequence, the optimal total cost can be written in terms of the cycle

time as follows:

F1 = Co · (T − 6ε − 6δ) + KU1U2(T−6ε−6δ)a

(U
1

a−1
1 +U

1
a−1
2 )a−1

,

6ε + 6δ + PL
1 + PL

2 ≤ T ≤ 6ε + 6δ + PU
1 + PU

2 .

This identifies the whole set of nondominated solutions and shows the exact

tradeoff between the cycle time T and the total manufacturing cost F1.

Now let us consider the S2
2 cycle for which the activity sequence can be

written as A0A2A1. The cycle time of S2
2 can be calculated to be max{6ε +
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8δ, P1 + 4ε + 4δ, P2 + 4ε + 4δ}. Thus, constraint (7.1) of the ECP is replaced

by the following:

max{6ε + 8δ, P1 + 4ε + 4δ, P2 + 4ε + 4δ} ≤ T.

It is obvious that under S2
2 , T satisfies max{6ε+8δ, PL

1 +4ε+4δ, PL
2 +4ε+4δ} ≤

T ≤ max{6ε + 8δ, PU
1 + 4ε + 4δ, PU

2 + 4ε + 4δ}. Restricting T to this region,

the above constraint can be replaced by the following two linear constraints:

P1 + 4ε + 4δ ≤ T and

P2 + 4ε + 4δ ≤ T .

Lemma 7.2 Under cycle S2
2 , for a given cycle time level T , the processing

times minimizing the cost are: P ∗
i = min{PU

i , T − 4ε − 4δ}, i = 1, 2.

Proof. Any point (P ∗
1 , P ∗

2 ) for which PL
1 < P ∗

1 < PU
1 and PL

2 < P ∗
2 < PU

2 is a

regular point and under these conditions P ∗
1 = P ∗

2 = T − 4ε − 4δ is the point

satisfying the KKT conditions. Since the objective function and the constraints

are convex, this point is optimal. Including the bounds, the optimal processing

times can be rewritten as P ∗
i = min{PU

i , T − 4ε − 4δ}, i = 1, 2. As one can

observe, for any nonlinear, convex cost function we get the same processing

time values. 2

As a consequence of this lemma, the total manufacturing cost can be written

as a function of the cycle time which defines the efficient frontier of the bicriteria

problem. The intuition behind this lemma is the following: Having greater

processing times without exceeding the upper bounds of the processing times

and the given cycle time level T is better in terms of manufacturing cost and in

the above case the processing times are set to their maximum allowable level.

Note that in this cycle, after loading a part to one of the machines the robot

does not wait in front of the machine but instead performs other activities and

returns back to unload the part after finishing these activities. Then, if the
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processing of a part finishes before the robot returns back to unload the part,

the speed of the machine can be reduced so that the processing time is increased

without increasing the cycle time. This means having less cost with the same

cycle time value. Furthermore, it is apparent that the optimal processing times

on both machines are balanced under the S2
2 cycle. A numerical example will

be helpful for understanding.

Example 7.1 Let us consider S2
2 cycle for this example and consider a turning

operation and assume that both machines use a tool of the same type. Let the

parameters be given as follows: K = 4, Co = 0.5, U1 = 0.2, U2 = 0.03,

a = −1.43423, PL
1 = 0.5, PU

1 = 1.4, PL
2 = 0.3, PU

2 = 0.64, ε = 0.1 and δ = 0.2.

Let us first consider the solution where all of the processing times are set to their

lower bounds, (S2
2 , (0.5, 0.3)). The Gantt chart on top of Figure 7.2 depicts this

cycle. For this solution, F1(S
2
2 , (0.5, 0.3)) = 3.237 and F2(S

2
2 , (0.5, 0.3)) = 2.2.

If we analyze this cycle, we observe that the robot never waits and is the

bottleneck for this case. Without increasing the cycle time, we can increase

the processing time on the first machine from 0.5 to 1 and the processing time

on the second machine from 0.3 to 1. Now let us find the optimal processing

times on these machines for T = 2.2 by using Lemma 7.2. P ∗
i = min{PU

i , T −
4ε−4δ} ⇒ P ∗

1 = 1, P ∗
2 = 0.64. That is, the processing time of the first machine

is increased up to the end of the idle time period shown in Figure 7.2, but the

processing time of the second machine could not be increased because the upper

bound of this processing time is less than this value. The Gantt chart for this

solution is depicted as the second chart in Figure 7.2. As it is seen, for this case

the robot never waits and F1(S
2
2 , (1, 0.64)) = 1.848 and F2(S

2
2 , (1, 0.64)) = 2.2.

From Definition 7.4, we conclude that (S2
2 , (1, 0.64)) ¹ (S2

2 , (0.5, 0.3)). Thus,

we eliminate (S2
2 , (0.5, 0.3)) from further consideration. Let us also consider

another solution in which all of the processing times are fixed to their upper

bounds, (S2
2 , (1.4, 0.64)). The Gantt chart for this solution is depicted as the
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Figure 7.2: Gantt charts for different processing times for Example 7.1

last one in Figure 7.2. Note that in this case the first machine becomes the

bottleneck and the robot waits for this machine in order to finish the processing.

In this case, F1(S
2
2 , (1.4, 0.64)) = 1.7413 and F2(S

2
2 , (1.4, 0.64)) = 2.6. When we

compare this solution with (S2
2 , (1, 0.64)), F1(S

2
2 , (1.4, 0.64)) < F1(S

2
2 , (1, 0.64))

but F2(S
2
2 , (1.4, 0.64)) > F2(S

2
2 , (1, 0.64)). That is, none of these two solutions

dominates one another.

After characterizing P ∗(S2
1) and P ∗(S2

2), the following theorem compares

the two 1-unit robot move cycles S2
1 and S2

2 with each other and finds the

sufficient conditions under which one dominates the other.
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Theorem 7.1 Whenever, S2
2 is feasible (T ≥ 6ε + 8δ), it dominates S2

1 .

Proof. The cycle time of the S2
2 cycle can be at least 6ε + 8δ. Hence, for the

cycle time values less than 6ε+8δ, S2
2 cycle is not feasible and we have S2

1 ¹ S2
2 .

Now let us consider the region where the cycle time is at least 6ε + 8δ and

compare the two cycles for the same cycle time value. Let (P̂1, P̂2) ∈ P ∗(S2
1),

which satisfies T = P̂1 + P̂2 + 6ε + 6δ. The optimal processing times for S2
2

with the same cycle time value are the following: P̃i = min{PU
i , P̂1 + P̂2 +2ε+

2δ}, i = 1, 2, where (P̃1, P̃2) ∈ P ∗(S2
2). Since PU

i ≥ P̂i and P̂1 + P̂2 + 2ε +

2δ ≥ P̂i, then P̃i ≥ P̂i. For PL
i ≤ P ∗

i ≤ PU
i , the total manufacturing cost

is monotonically decreasing. Since for the same cycle time value, the optimal

processing times for the S2
2 cycle are greater than that of the S2

1 cycle, that

means the total manufacturing cost of the S2
2 cycle is less than that of S2

1 cycle.

Consequently, we have S2
2 ¹ S2

1 . 2

This theorem is one of the major contributions of this chapter and states

that for a given cell data, for the cycle time values that can be attained by

the S2
2 cycle, the minimum cost is also attained by the same cycle. However,

for very small cycle time values which cannot be attained by the S2
2 cycle,

although the cost values can be very high, S2
1 cycle is still an alternative for

the decision maker. Note that T < 6ε+8δ if and only if P̂1+P̂2 < 2δ. This fact

can be used to rewrite the above theorem. According to the different values

of the bounds of the processing times, different versions of this theorem can

also be created. For example, if PL
1 + PL

2 ≥ 2δ then all the cycle time values

that can be attained by the S2
1 cycle can also be attained by the S2

2 cycle. As

a result, S2
2 ¹ S2

1 in the whole region. In a similar way if PU
1 + PU

2 < 2δ then

S2
1 ¹ S2

2 in the whole region. From these, we can conclude that for greater

processing times S2
2 is preferable to S2

1 and for smaller processing times vice

versa. Observe that T = 6ε+8δ or P̂1 + P̂2 = 2δ, is the region of indifference in
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the case of Sethi et al. [86]. However, in the settings of this study, in this region

S2
2 dominates S2

1 . That is, previous studies can not handle the cost component

and thus state that both cycles perform identically. However, although both

cycles give the same cycle time value, S2
2 has a smaller manufacturing cost

value and is preferred to S2
1 . Additionally, if PU

1 ≤ 2ε + 4δ and PU
2 ≤ 2ε + 4δ,

then the cycle time of S2
2 can only take one value which is equivalent to 6ε+8δ.

The following example will aid in understanding such special cases.

Example 7.2 Let us consider a turning operation and assume that both

machines use a tool of the same type. Let the parameters be given as follows:

K = 4, Co = 0.5, U1 = 0.2, U2 = 0.03, a = −1.43423, PL
1 = 0.1, PU

1 = 1.4,

PL
2 = 0.08, PU

2 = 0.64 and ε = 0.02. In order to present different occurrences

of the efficient frontier four different values are used for δ. Using Lemmas 7.1

and 7.2, the efficient frontiers for these two cycles are drawn in Figure 7.3. In

the first case, let δ = 0.1. As a result, PL
1 + PL

2 < 2δ < PU
1 + PU

2 . The bold

curves show that for T < 6ε + 8δ = 0.92, S2
1 ¹ S2

2 and otherwise S2
2 ¹ S2

1 .

Although the cost of the S2
1 cycle for T < 6ε + 8δ is very high, the cycle time

is smaller than that of S2
2 and this region is still an alternative for the decision

maker. In the second case, let δ = 0.08, which results in PL
1 +PL

2 ≥ 2δ. As it is

seen from the figure, for all cycle time and cost combinations, S2
2 is preferable

to S2
1 . In the third case, let δ = 1.1. In this case, PU

1 + PU
2 ≤ 2δ and the only

cycle time value that S2
2 can take is given by 6ε+8δ = 8.92. The minimum cost

corresponding to this value of cycle time is found by setting P ∗
i = PU

i , i = 1, 2.

On the other hand, when the same processing time settings are used for the S2
1

cycle, the cycle time becomes 8.76. Since the same processing time values are

used, the cost is the same for both cycles. Thus, we conclude that in this case

S2
1 ¹ S2

2 . Lastly, let δ = 0.4. Since PU
1 ≤ 2ε + 4δ and PU

2 ≤ 2ε + 4δ, the cycle

time of S2
2 can only be 6ε + 8δ = 3.32 and this cycle time value corresponds
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Figure 7.3: Different occurrences of the efficient frontier with respect to given
parameters

to a cost of 1.74. S2
1 cannot take a cost value less than 1.74. As a result, S2

2

dominates S2
1 unless the cycle time of S2

1 < 3.32. For cycle time values smaller

than 3.32, the only alternative is the S2
1 cycle.

Akturk et al. [2] proved that 1-unit cycles need not be optimal in the

whole region even in 2-machine robotic cells with single objective function

when the processing times on the machines are not assumed to be fixed. The

following example proves a similar result for this study by finding a processing

time setting for the 2-unit cycle S12S21, in which for the same cycle time value

S12S21 gives the minimum cost. One repetition of this cycle produces two parts
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and we will determine the processing times of these two parts on the machines

which can be different from each other. In order to denote this, let Pij represent

the processing time on Mi for part j, i = 1, 2 and j = 1, 2. The cycle time for

this cycle is derived in Equation (D.6) where in this case PM1 = PM2 = 0:

1

2
max{P11+P22+12ε+14δ, P11+P22+P12+10ε+10δ, P11+P22+P21+10ε+10δ}

Example 7.3 Let us again consider the turning operation and use the same

parameter values for this example as the one above with δ = 0.1. Let P11 = 0.1,

P12 = 0.44, P21 = 0.44 and P22 = 0.08. With these settings, the cycle time of

S12S21 is 0.91 and the total manufacturing cost is 6.325. Since the cycle time of

S2
2 cannot take values less than 0.92 with these parameters, S12S21 ¹ S2

2 . On

the other hand, for T = 0.91, the minimum cost for S2
1 is 9.214 ⇒ S12S21 ¹ S2

1 .

This example shows that 1-unit cycles need not be optimal, even for

2-machines, under the assumptions of this study. However, the following

theorem determines the regions where they are optimal and their worst case

performances for the regions where they may not be optimal.

Theorem 7.2 S2
2 dominates all other robot move cycles whenever it is feasible

(T ≥ 6ε + 8δ) and S2
1 dominates all other robot move cycles for T < 6ε + 7δ.

Proof. For the general m-machine flowshop type robotic cells a lower bound

for cycle time is presented in Equation (4.3). In this section we have m = 2,

P = P1 +P2. As a consequence, this lower bound can be represented as follows

for use in this section:

max{6ε + 6δ + min{P1 + P2, δ}, 4ε + 4δ + max{P1, P2}}. (7.5)

Observing this equation we can state that for any given cycle time T , if T <

6ε + 7δ, then P1 + P2 < δ. As a consequence, T = 6ε + 6δ + P1 + P2 which
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is equivalent to the cycle time of the S2
1 cycle. This concludes that for any

given cycle time T < 6ε+7δ, S2
1 cycle dominates all other cycles. On the other

hand, if T ≥ 6ε + 7δ, the processing times can at most be increased (the cost

can at most be reduced) so that 4ε + 4δ + max{P1, P2} ≤ T . From here, since

the processing times have upper bounds, the processing times satisfying the

minimum cost for a given cycle time T is as follows, Pi = max{PU
i , T−4ε−4δ},

i = 1, 2. Using this processing time setting, we get a lower bound for the cost for

given cycle time value T . From Lemma 7.2, this is equivalent to the processing

time setting that minimizes the cost for given T under the S2
2 cycle. However,

S2
2 cycle is feasible for T ≥ 6ε + 8δ. This completes the proof. 2

This theorem determines the regions of optimality for the two 1-unit cycles.

It is also shown that for 6ε + 7δ ≤ T < 6ε + 8δ, 1-unit cycles need not be

optimal. Note that, in this region S2
2 is not feasible. In order to determine the

worst case performance of the S2
1 cycle inside this region one can calculate the

processing times for the S2
1 cycle according to Lemma 7.1 and compare the cost

corresponding to this setting of processing times with the cost corresponding

to setting Pi = max{PU
i , T − 4ε − 4δ}, i = 1, 2, to get a lower bound of the

cost according to the theorem above.

The next section is devoted to the three-machine robotic cells.

7.2.2 3-Machine Case

Increasing the number of machines in a robotic cell increases the number of

feasible robot move cycles drastically. More specifically, Sethi et al. [86] proved

that the number of feasible 1-unit cycles for an m-machine robotic cell is m!.

For a 3-machine robotic cell there are a total of six feasible 1-unit cycles. The

robot activity sequences and the corresponding cycle times for these cycles are
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presented in Appendix F. Note that S3
1 cycle is very similar, with respect to

robot activity sequence and the cycle time formula, to S2
1 cycle which may both

be classified as the forward cycles and the S3
6 cycle is very similar, again for

similar reasons, to S2
2 cycle both of which may be classified as the backward

cycles. Let us first consider the forward move cycle, S3
1 . Proceeding just as

in S2
1 , we can solve the single criterion problem. But this time we have three

variables to determine, P1, P2 and P3. The following lemma determines the

optimal processing times for the ECP of the S3
1 cycle.

Lemma 7.3 Let (P ∗
1 , P ∗

2 , P ∗
3 ) be the optimal processing times for the ECP

formulated for the S3
1 cycle for a given cycle time, T . Then, this point satisfies

the following set of nonlinear equations:

∂f1(P
∗
1 ) = ∂f2(P

∗
2 ) = ∂f3(P

∗
3 ),

P ∗
1 + P ∗

2 + P ∗
3 = T − 8ε − 8δ.

After solving,

1. If all of the processing times satisfy their lower and upper bounds, then

the solution found is optimal.

2. Else, if for exactly one index i, i = 1, 2, 3, P ∗
i violates its bounds, set it to

the bound which is violated. Let P b
i represent the bound which is violated.

Update T such that T̂ = T − P b
i . In order to determine the remaining

two processing times, proceed just as solving the S2
1 cycle case with cycle

time set to T̂ .

3. Else, if exactly two processing times violate their bounds and if both violate

their lower or both violate their upper bounds then set them to their own

violated bound. That is, for i, j, k = 1, 2, 3, i 6= j, i 6= k, j 6= k, if

P ∗
i < PL

i and P ∗
j < PL

j (or P ∗
i > PU

i and P ∗
j > PU

j ), set P ∗
i = PL

i and

P ∗
j = PL

j (P ∗
i = PU

i and P ∗
j = PU

j ). The last processing time is found as,
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P ∗
k = T − PL

i − PL
j − 8ε − 8δ (P ∗

k = T − PU
i − PU

j − 8ε − 8δ). Else, if

one of the processing times violates its lower (assume w.l.o.g P ∗
i < PL

i )

and the other one violates its upper bound (w.l.o.g P ∗
j > PU

j , i 6= j) then

compare the manufacturing costs found by the following two alternatives:

(i) Set P ∗
i = PL

i and solve for the remaining two processing times similar

to the S2
1 cycle,

(ii) Set P ∗
j = PU

j and solve for the remaining two processing times similar

to the S2
1 cycle.

4. Else, if all processing times violate their own bounds, let P b
i represent the

violated bound for P ∗
i , i = 1, 2, 3. Compare the manufacturing costs for

the following three alternative solutions:

(i) Set P ∗
1 = P b

1 and solve for the remaining two processing times similar

to S2
1 case,

(ii) Set P ∗
2 = P b

2 and solve for the remaining two processing times similar

to S2
1 case,

(iii) Set P ∗
3 = P b

3 and solve for the remaining two processing times similar

to S2
1 case.

Proof. The proof is very similar to that for cycle S2
1 and is omitted. 2

Now let us consider the backward cycle, S3
6 . For this case, the cycle time T

can take values between max{8ε+12δ, PL
1 +4ε+4δ, PL

2 +4ε+4δ, PL
3 +4ε+4δ} <

T < max{8ε + 12δ, PU
1 + 4ε + 4δ, PU

2 + 4ε + 4δ, PU
3 + 4ε + 4δ}.

Lemma 7.4 Under cycle S3
6 , the optimal processing times for the ECP for the

S3
6 cycle are P ∗

i = min{PU
i , T − 4ε − 4δ}, i = 1, 2, 3.

Proof. The proof is very similar to the S2
2 case and is omitted. 2
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In the following two theorems, we will prove some dominance relations

of the type stated in Definition 7.4. Considering only the 1-unit cycles,

Crama and Van de Klundert [19] proved that the set of pyramidal per-

mutations necessarily contains an optimal solution of the problem. Let

A0, Ai1 , . . . , Aik , Aik+1
, . . . , Aim denote the activity sequence of a 1-unit cycle in

an m-machine cell. Then, Crama and Van de Klundert [19] defines this cycle

to be pyramidal if 1 ≤ i1 < . . . < ik = m and m > ik+1 > . . . > im ≥ 1. The

following is an important theorem which proves that the classical dominance

of pyramidal cycles is valid with the assumptions of this study also.

Theorem 7.3 The set of pyramidal cycles is dominating among 1-unit cycles.

Proof. According to Theorem 3 of Crama and Van de Klundert [19], for any

processing time setting there exists at least one pyramidal cycle which gives

a smaller cycle time than any nonpyramidal cycle. This means that, for any

processing time setting there exists at least one pyramidal cycle which has the

same cost value with the nonpyramidal cycle but with a smaller cycle time value

meaning that the nonpyramidal cycle is dominated. Note that, this processing

time setting need not be optimal for the pyramidal cycle for this cost value.

That is, with another processing time setting for the pyramidal cycle a smaller

cycle time value can be found which corresponds to the same cost value. This

completes the proof. 2

In three-machine cells, the S3
2 and S3

4 cycles are nonpyramidal and the

remaining ones are pyramidal. According to the above theorem these two

cycles are dominated and can be eliminated from further consideration. In the

following theorem we will compare the remaining cycles with each other and

determine the regions where S3
6 dominates the remaining cycles. In order to

prove these, we will select an arbitrary T and find the optimal processing times

for the ECP formulation for each cycle and compare them with each other. Let
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P ∗
i (S3

j ) denote the nondominated processing times on machine i for the robot

move cycle S3
j .

Theorem 7.4 Whenever S3
6 is feasible (T ≥ 8ε + 12δ), it dominates all of the

remaining cycles.

Proof. S3
6 cannot take cycle time values less than 8ε + 12δ. Thus, for an

arbitrary selection of T ≥ 8ε + 12δ, we will compare S3
6 with S3

1 , S3
3 and S3

5 in

the following cases respectively:

1. The optimal solution of ECP for S3
1 satisfies, T = 8ε + 8δ + P ∗

1 (S3
1) +

P ∗
2 (S3

1) + P ∗
3 (S3

1). Optimal processing time values of ECP for the S3
6

corresponding to this cycle time value can be found by using Lemma 7.4

as P ∗
i (S3

6) = min{PU
i , 4ε + 4δ + P ∗

1 (S3
1) + P ∗

2 (S3
1) + P ∗

3 (S3
1)} ≥ P ∗

i (S3
1).

Therefore, S3
6 ¹ S3

1 in this region.

2. The optimal solution of ECP for S3
3 satisfies, T = 4ε + 4δ +

max{P ∗
3 (S3

3), P
∗
1 (S3

3) + 4ε + 6δ, P ∗
1 (S3

3) + P ∗
2 (S3

3) + 2ε + 2δ}. Optimal

processing time values of ECP for the S3
6 corresponding to this cycle time

value can be found by using Lemma 7.4 as, P ∗
i (S3

6) = min{PU
i , T − 4ε −

4δ} = min{PU
i , max{P ∗

3 (S3
3), P

∗
1 (S3

3)+4ε+6δ, P ∗
1 (S3

3)+P ∗
2 (S3

3)+2ε+2δ} ≥
P ∗

i (S3
3). Thus, S3

6 ¹ S3
3 for T ≥ 8ε + 12δ.

3. As one can observe from the cycle time functions presented in Appendix

F the cycle time function of S3
5 is very similar to that of S3

3 . The only

difference is the places of P ∗
1 (S3

3) and P ∗
3 (S3

3). When we swap the places of

these two in the cycle time function of S3
3 , we get the cycle time function

of S3
5 . Therefore, this case is identical with case 2, the only difference

being the places of P ∗
1 (S3

3) and P ∗
3 (S3

3).

2
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This theorem derives a similar result to Theorem 7.1 for 3-machine cells.

According to this theorem, for a given cell data such as the loading/unloading

time and robot transportation time, the backward cycle gives the minimum

cost values for the cycle time values that can be attained by this cycle. The

remaining three cycles, S3
1 , S3

3 and S3
5 can only be optimal for the cycle time

values that cannot be attained by S3
6 . Sethi et al. [86] provided a decision

tree on conditions for the robot move cycles to be optimal with any given cell

data considering only the cycle time. However, the above theorem shows that

earlier results are not valid anymore when the manufacturing cost is considered

besides the cycle time. That is, considering the cycle time as the only objective

hinders the additional insights provided by the cost of the suggested settings

for the cell.

Let us now consider the region for T < 8ε + 12δ. In this region three

cycles remain nondominated. According to the cycle times of these cycles

presented in Appendix F, one can easily verify that under the cycle S3
1 , T ≥

8ε + 8δ + PL
1 + PL

2 + PL
3 . Similarly, for the cycle S3

3 , T ≥ max{PL
1 + 8ε +

10δ, PL
1 + PL

2 + 6ε + 6δ, PL
3 + 4ε + 4δ}. For the cycle S3

5 , T ≥ max{PL
1 + 4ε +

4δ, PL
2 +PL

3 +6ε+6δ, PL
3 +8ε+10δ}. In Lemma 7.3, we determined the optimal

processing time values of the ECP for S3
1 . In the sequel we will prove similar

results for the cycles S3
3 and S3

5 , respectively.

Lemma 7.5 Under the cycle S3
3 , the optimal processing times of the ECP are

found as follows:

1. If PU
1 +PU

2 < T − 6ε− 6δ or PU
2 < 2ε+ 4δ, then P ∗

1 = min{PU
1 , T − 8ε−

10δ}, P ∗
2 = PU

2 and P ∗
3 = min{PU

3 , T − 4ε − 4δ},

2. Otherwise, P ∗
3 = min{PU

3 , T − 4ε − 4δ} and P ∗
1 and P ∗

2 are found by

solving the following two equations simultaneously: P ∗
1 +P ∗

2 = T −6ε+6δ
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and ∂f1(P
∗
1 ) = ∂f2(P

∗
2 ). After solving, one may get one of the following

cases:

2.1 If both processing times satisfy their own bounds then the solution

found is optimal.

2.2 Else if exactly one of the processing times, P ∗
i , violates one of its

bounds, P b
i , then the optimal solution is P ∗

i = P b
i and P ∗

j = T −6ε−
6δ − P b

i , i, j = 1, 2, i 6= j.

2.3 Else if one of the processing times (assume P ∗
i ) violates its lower

bound (PL
i ) and the other one (P ∗

j ) violates its upper bound (PU
j )

then the optimal solution is found by comparing the manufacturing

costs of the following two processing time settings:

(i) P ∗
i = PL

i , P ∗
j = T − 6ε − 6δ − PL

i or

(ii) P ∗
j = PU

j , P ∗
i = T − 6ε − 6δ − PU

j , i, j = 1, 2, i 6= j.

Proof. In order to find the optimal processing times, the objective function of

the ECP must be replaced by f1(P1)+f2(P2)+f3(P3), and the constraint (7.1)

must be written as max{P1 + 8ε + 10δ, P1 + P2 + 6ε + 6δ, P3 + 4ε + 4δ} ≤ T .

Under this cycle, the cycle time is bounded as follows:

max{PL
1 + 8ε + 10δ, PL

1 + PL
2 + 6ε + 6δ, PL

3 + 4ε + 4δ} ≤ T

≤ max{PU
1 + 8ε + 10δ, PU

1 + PU
2 + 6ε + 6δ, PU

3 + 4ε + 4δ}.
(7.6)

As a result, the above constraint can be rewritten as the union of three

constraints as follows:

P1 + 8ε + 10δ ≤ T, (7.7)

P1 + P2 + 6ε + 6δ ≤ T, (7.8)

P3 + 4ε + 4δ ≤ T. (7.9)



CHAPTER 7. BICRITERIA ROBOTIC CELL SCHEDULING 122

The Lagrangian for this formulation is the following:

L(P ∗, λ∗, µ∗) = f1(P
∗
1 ) + f2(P

∗
2 ) + f3(P

∗
3 ) + µ∗

1(P
∗
1 − T + 8ε + 10δ)

+µ∗
2(P

∗
1 + P ∗

2 − T + 6ε + 6δ) + µ∗
3(P

∗
3 − T + 4ε + 4δ).

If we set ∇P (L(P ∗, µ∗)) = 0, we get:

∂f1(P
∗
1 ) + µ∗

1 + µ∗
2 = 0,

∂f2(P
∗
2 ) + µ∗

2 = 0 and

∂f3(P
∗
3 ) + µ∗

3 = 0.

We also have µi ≥ 0 and PL
i ≤ Pi ≤ PU

i , ∀i.

From the last equation we get µ∗
3 = −∂f3(P

∗
3 ). Since the objective function

is strictly convex and decreasing, −∂f3(P
∗
3 ) > 0 unless P ∗

3 = PU
3 . Thus,

constraint (7.9) must be satisfied as equality. However, P ∗
3 cannot violate

its bounds. From equation (7.6), PL
3 ≤ T − 4ε − 4δ. As a result, P ∗

3 =

min{PU
3 , T − 4ε − 4δ}. Now let us consider the following cases:

1. If PU
1 + PU

2 < T − 6ε− 6δ or PU
2 < 2ε + 4δ, then constraint (7.8) cannot

be satisfied as equality. As a result, µ∗
2 = −∂f2(P

∗
2 ) = 0 ⇒ P ∗

2 =

PU
2 . Also since µ∗

2 = 0, µ∗
1 = −∂f1(P

∗
1 ) > 0 unless P ∗

1 = PU
1 . Thus,

constraint (7.7) is satisfied with equality. However, P ∗
3 cannot violate

its bounds. From equation (7.6), PL
1 ≤ T − 8ε − 10δ. As a result,

P ∗
1 = min{PU

1 , T − 8ε − 10δ}.

2. Otherwise, µ∗
2 = −∂f2(P

∗
2 ) > 0 unless P ∗

2 = PU
2 . Thus, in this case

constraint (7.8) is satisfied with equality. As a result µ∗
1 = ∂f2(P

∗
2 ) −

∂f1(P
∗
1 ) ≥ 0. Thus, we have the following cases:

2.1. If ∂f1(T − 8ε − 10δ) ≤ ∂f2(2ε + 4δ), then P ∗
1 = T − 8ε − 10δ and

P ∗
2 = 2ε + 4δ.

2.2. Else, solve ∂f1(P
∗
1 ) = ∂f2(P

∗
2 ) and P ∗

1 + P ∗
2 = T − 6ε − 6δ

simultaneously to find P ∗
1 and P ∗

2 .
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Instead of these two cases we can simply represent the solution as follows:

Solve ∂f1(P
∗
1 ) = ∂f2(P

∗
2 ) and P ∗

1 + P ∗
2 = T − 6ε − 6δ simultaneously to

find P ∗
1 and P ∗

2 . If any of them violates its bounds, set that processing

time to the violated bound and find the other one accordingly. The upper

bound for P ∗
1 in this case is min{PU

1 , T − 8ε − 10δ}.

2

When we compare the cycle time of this cycle with the S3
5 cycle, we easily

see that when we replace P1 with P3 in one of the cycle times, we get the cycle

time of the other one. Thus, the analysis for these two cycles are identical.

Consequently, the proof of the following lemma is very similar to the one above

and will not be presented here.

Lemma 7.6 Under the cycle S3
5 , the optimal processing times of ECP are

found as follows:

1. If PU
3 +PU

2 < T − 6ε− 6δ or PU
2 < 2ε+ 4δ, then P ∗

1 = min{PU
1 , T − 8ε−

10δ}, P ∗
2 = PU

2 and P ∗
3 = min{PU

3 , T − 4ε − 4δ},

2. Otherwise, P ∗
1 = min{PU

1 , T − 4ε − 4δ} and P ∗
3 and P ∗

2 are found by

solving the following two equations simultaneously: P ∗
3 +P ∗

2 = T −6ε−6δ

and ∂f3(P
∗
3 ) = ∂f2(P

∗
2 ). After solving, one may get one of the following

cases:

2.1 If both processing times satisfy their own bounds then the solution

found is optimal.

2.2 Else if exactly one of the processing times, P ∗
i , violates one of its

bounds, P b
i , then the optimal solution is P ∗

i = P b
i and P ∗

j = T −6ε−
6δ − P b

i , i, j = 2, 3, i 6= j.
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2.3 Else if one of the processing times (assume P ∗
i ) violates its lower

bound (PL
i ) and the other one (P ∗

j ) violates its upper bound (PU
j )

then the optimal solution is found by comparing the manufacturing

costs of the following two processing time settings:

(i) P ∗
i = PL

i , P ∗
j = T − 6ε − 6δ − PL

i or

(ii) P ∗
j = PU

j , P ∗
i = T − 6ε − 6δ − PU

j , i, j = 2, 3, i 6= j.

The following is a good example to illustrate the differences of this study

from the earlier ones.

Example 7.4 Let us consider a three-machine cell and CNC turning

operations with following parameters: ε = 0.02, δ = 0.1, K = 4, Co = 0.5,

a = −1.43423, U1 = 0.2, U2 = 0.03, U3 = 0.75, PL
1 = 0.1, PU

1 = 1.4, PL
2 = 0.08,

PU
2 = 0.64, PL

3 = 1.1, PU
3 = 2.42. Let us determine the optimal processing

times for the S3
3 cycle with cycle time given as T (S3

3) = 1.8. According to

Lemma 7.5, the optimal processing times for this cycle can be determined to be

as follows: P ∗
1 (S3

3) = 0.74, P ∗
2 (S3

3) = 0.34, P ∗
3 (S3

3) = 1.32. The corresponding

cost for this setting of processing time is 5.012. When we calculate the cycle

time of the S3
6 cycle with this same setting of processing times, as it is the case

in the current literature, we also get T (S3
6) = 1.8. This means that, both cycles

have the same cycle time and cost values and hence we are indifferent between

these two cycles. However, if we determine the optimal processing times for

the S3
6 cycle with T = 1.8 according to Lemma 7.4, we get P ∗

1 (S3
6) = 1.4,

P ∗
2 (S3

6) = 0.64, P ∗
3 (S3

6) = 1.32. The corresponding cost for this case is 4.416.

This means that both cycles have the same cycle time value but the minimum

cost corresponding this cycle time value for S3
6 is less than that of S3

3 . Hence,

S3
3 is dominated.

This example shows that, under the assumptions of this study, when

comparing the cycles with each other the processing time settings can be
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different for each cycle. Additionally, if the only criteria was the cycle time,

we would conclude that both S3
3 and S3

6 perform equally well. However, this

example proves that the cost of S3
6 is less than S3

3 and hence they can not be

considered as having equal performance.

Analyzing the remaining three cycles, S3
1 , S3

3 and S3
5 in the remaining region

(T < 8ε+12δ), we conclude that there is no general dominance relation among

these cycles, but instead according to the parameters such as PL
i , PU

i , ε and

δ, the regions where each of them dominates the others can be determined.

This is another result that differentiates this study from the earlier ones since

the decision tree provided by Sethi et al. [86] compares all of the 1-unit cycles

with each other and presents the sufficient conditions for each of them to be

optimal with any given cell data, where the only objective is the minimization

of the cycle time. In other words, the decision tree spans the whole feasible

region. However, with the assumptions of this study, only for T < 8ε + 12δ

the dominance relations among the remaining three cycles depend on the cell

data.

7.3 Different Cost Structures

In this section we will show how different assumptions on cost structures for

the machining cost and the cost of the robot can be handled. We will present

the analysis for the 2-machine cells which can be extended to 3-machine cells in

a similar manner. The machining cost can be assumed to be either a function

of the exact working time of the machines or a function of the cycle time. Till

now we assumed the former of these to hold. Additionally, the cost of the

robot could also be considered as another cost component. Although the cost

incurred by the robot is relatively small in comparison with the cost incurred
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by the machines and the structure for the cost of the robot cannot be defined

easily, we will consider two different cost structures for the robot in order to

show how to handle additional cost components. In the sequel, we will give

insights for handling different cost structures for the machining and robot costs.

7.3.1 Machining Cost as a Function of the Cycle Time

In this section, we assume the machining cost to be a function of the cycle time,

Co ·T , where T = 6ε+6δ+P1+P2 for the S2
1 cycle and T = 6ε+8δ+max{0, P1−

2ε − 4δ, P2 − 2ε − 4δ} for the S2
2 cycle. The lower bounds for the processing

times are determined by the constraints dictated by the limited tool life, the

machine power, and the surface roughness. These constraints are independent

of the machining cost. As a result, the lower bounds of the processing times

remain unchanged. On the other hand, the upper bounds arise from the total

manufacturing cost, which is different from the previous case. Furthermore,

as opposed to the previous case, since the machining costs for the S2
1 and S2

2

cycles are different from each other, the total manufacturing costs are also

different leading to different upper bounds of the processing times for identical

operations under these two cycles. As we mentioned earlier, the upper bound

for processing time Pi is the point satisfying
∂fi(P

U
i

)

∂Pi
= 0. Note that the total

manufacturing cost is assumed to be a convex function, the machining cost is

a nondecreasing function, and the tooling cost is a nonincreasing function. We

also have the following:

∂(Co(6ε + 6δ + P1 + P2))

∂Pi
≥ ∂(Co(6ε + 8δ + max{0, P1 − 2ε − 4δ, P2 − 2ε − 4ε}))

∂Pi
, ∀i.

As a consequence, PU
i (S2

2) ≥ PU
i (S2

1), ∀i, where PU
i (S) is the upper bound of

the processing time under robot move cycle S. Since the total manufacturing

cost is a monotonically decreasing function of the processing time Pi for PL
i ≤

Pi ≤ PU
i , Lemmas 7.1 and 7.2 are still valid. Additionally, since PU

i (S2
2) ≥

PU
i (S2

1), ∀i, Theorem 7.1 is also valid which determines the regions where the
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S2
1 and S2

2 cycles dominate each other.

7.3.2 Robot Cost as a Function of the Cycle Time

In this case the total cost function is assumed to consist of the machining

cost, tooling cost, and robot cost. Similar to the machining cost, the cost of

the robot can also be considered as a function of the cycle time. That is, a

cost is incurred for each unit of time the cell works. The analysis in this case

is very similar to that of the machining cost considered as a function of the

cycle time. The new cost terms in this case are; R · (6ε + 6δ + P1 + P2) and

R · (6ε + 8δ + max{0, P1 − 2ε − 4δ, P2 − 2ε − 4δ)} for S2
1 and S2

2 respectively

where R represents the cost for the robot for each unit of time the cell works

($/min). These new terms only affect the upper bounds of the processing times

as shown in Section 7.3.1 and similarly, PU
i (S2

2) ≥ PU
i (S2

1), ∀i. Lemmas 7.1

and 7.2, which determine the set of nondominated solutions for the S2
1 and S2

2

cycles respectively and Theorem 7.1, which compares the two cycles with each

other and determines the regions of optimality for these cycles, are still valid

in this case as well.

7.3.3 Robot Cost as a Function of Exact Working Time

In this section we assume that the cost of the robot is computed with respect

to the exact robot activity time. That is, if R represents the unit cost for

the robot activity time, then the cost incurred by the robot is R · (6ε + 6δ)

and R · (6ε + 8δ) under S2
1 and S2

2 cycles, respectively. Note that, during

an n-unit cycle, each machine is loaded and unloaded exactly n times. As a

result, the total load/unload times under all cycles to produce one part are

equivalent to each other. On the other hand, robot travel times differ among



CHAPTER 7. BICRITERIA ROBOTIC CELL SCHEDULING 128

cycles. Comparing 1-unit cycles with each other, the robot travel time is greater

under S2
2 than under S2

1 . As a result, the cost incurred by the robot is greater

under S2
2 than S2

1 . Remember that, Lemmas 7.1 and 7.2 determined the set of

nondominated solutions for S2
1 and S2

2 cycles respectively where the total cost

function did not include the cost of the robot. By assuming the robot cost to

be a function of the loading/unloading time and the robot transportation time

but not the processing times, it becomes a constant for the two cycles S2
1 and

S2
2 . As a consequence, Lemmas 7.1 and 7.2 are still valid.

On the other hand, Theorem 7.1, which compares the two cycles with each

other, is proved without the robot cost. The total cost functions for S2
1 and

S2
2 cycles are identical without the robot cost, which means that for the same

processing time values under both cycles, the total cost is equivalent for these

two cycles. Additionally, the total cost function is assumed to be monotonically

decreasing for the region under consideration which means that the cost will not

increase with a greater processing time. In the proof of Theorem 7.1, we used

these properties. However, as we include the robot cost, the total cost functions

for S2
1 and S2

2 cycles become different from each other and Theorem 7.1 is no

longer valid. Let fm(P ) represent the machining cost and ft(P ) represent the

tooling cost with the processing time vector P . The new breakpoint for the

region of dominance satisfies the following:

T̄ = 6ε + 6δ + P̂1 + P̂2 = 6ε + 8δ + max{0, P̃1 − 2ε − 4δ, P̃2 − 2ε − 4δ} and

fm(P̂1, P̂2) + ft(P̂1, P̂2) + R · (6ε + 6δ) = fm(P̃1, P̃2) + ft(P̃1, P̃2) + R · (6ε + 8δ)

where P̂i ∈ P ∗(S2
1) and P̃i ∈ P ∗(S2

2), i = 1, 2. If T ≤ T̄ then, S2
1 ¹ S2

2 ,

otherwise S2
2 ¹ S2

1 .

The following is an example showing that the breakpoint found in Theorem

7.1 is not valid for this new situation.

Example 7.5 Let us consider the turning operation for which the total cost
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function for the S2
1 cycle can be written as Co ·(P1+P2)+K1U1P

a1
1 +K2U2P

a2
2 +

R · (6ε + 6δ). The only difference in the cost function for the S2
2 cycle is the

robot cost which is R · (6ε + 8δ) for S2
2 . Let K1 = 6, K2 = 5, Co = 0.9,

R = 2, ε = 0.1, δ = 0.2, U1 = 0.03, U2 = 0.8, a1 = −0.6 and a2 = −1.

According to the given parameters, the upper bounds for the processing times

are found to be PU
1 = 0.266 and PU

2 = 2.108. Let T = 3.3 > 6ε + 8δ = 2.2.

Then, if the robot cost is ignored, for T = 3.3, according to Theorem 7.1,

S2
2 ¹ S2

1 . With the inclusion of the robot cost, let P̂1 = 0.152, P̂2 = 1.348,

where P̂i ∈ P ∗(S2
1) and P̃1 = 0.266, P̃2 = 2.1, where P̃i ∈ P ∗(S2

2). As a

consequence, F2(S
2
1 , (0.152, 1.348)) = F2(S

2
2 , (0.237, 2.1)) = 3.3. On the other

hand, F1(S
2
1 , (0.152, 1.348)) = 8.475 and F1(S

2
2 , (0.237, 2.1)) = 8.832. As a

result, in contrast to Theorem 7.1, with the presence of robot cost we have

S2
1 ¹ S2

2 , even though T > 6ε + 8δ.

This example shows that considering the cycle time as the only performance

measure hinders the other characteristics of the solutions. Although a solution

may have a small cycle time value, it may be dominated because of its poor

cost performance. Even the basic results of Sethi et al. [86] regarding the

2-machine identical parts robotic cell scheduling problem are not valid when

the cost is considered as a performance measure simultaneously with the cycle

time. This brings additional insights to the problem and provides flexibility

for the decision maker by determining the set of efficient solutions.

7.4 Conclusion

In this chapter, we considered a robotic cell with highly flexible CNC

machines. The processing times of the parts on these machines can be

controlled by adjusting the machining conditions such as the speed and the
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feed rate. However, adjusting these parameters also affects the tool life which

consequently affects the total manufacturing cost. Hence, in this chapter we

considered a bicriteria robotic cell scheduling problem in which the robot

move sequence as well as the processing times on the machines are the

decision variables and the cycle time and the total manufacturing cost are the

performance measures. Since there are two competing performance measures,

instead of a unique optimal solution a set of nondominated solutions exists for

such problems.

We determined the set of nondominated solutions for the two 1-unit cycles of

2-machine robotic cells in Lemmas 7.1 and 7.2, and compared these two cycles

with each other in Theorem 7.1. A similar analysis is performed for 3-machine

cells also. Theorem 7.3 proves that two of the six 1-unit cycles of a 3-machine

cell are dominated and need not be considered any more. Lemmas 7.3, 7.4,

7.5 and 7.6 determine the nondominated set of solutions for the remaining

four cycles. By comparing these with each other, Theorem 7.4 determines the

regions where S3
6 dominates the rest. Note that no dominance relations exist

between the remaining three cycles for the remaining very small region. We

carried out our analysis for any strictly convex, differentiable cost function. In

Section 7.3, we showed how different assumptions on cost structures can be

handled.



Chapter 8

Bicriteria Robotic Operation

Allocation

In this chapter we will consider a more generalized bicriteria optimization

problem in the context of robotic cell scheduling. We assume a robotic cell

with 2-machines producing identical parts. Each of the identical parts has a

set of operations O = {1, 2, . . . , p} to be performed. Recall that the processing

time of operation l is represented by tl. In the previous chapter we assumed

p = m for an m-machine robotic cell where the operations are preassigned to

the m machines so that each machine performs only one specific operation of

each part. However, as we proved in Chapter 6, by considering the allocation

of the operations to the machines as a decision variable we can improve the

efficiency of the cell in terms of the cycle time. As a consequence, in this

chapter we assume that the number of operations is greater than or equal to the

number of machines in the cell, i.e., p ≥ 2 and the allocation of the operations

to the machines is not known in advance. The problem considered in this

chapter is threefold: (i) to determine the robot move cycle, (ii) to determine

the allocation of the operations to the machines, and (iii) to determine the

131
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processing times of the operations all at the same time. The objective is to

minimize the cycle time together with the total manufacturing cost. Justified

with the complexity of the problem and consistent with most of the studies

of the robotic cell scheduling literature, we will restrict ourselves with 1-unit

cycles.

The organization of this chapter is as follows: In the next section we will

present the mathematical formulation of the problem. The solution procedure

for the S2
1 cycle will be developed in Section 8.2. In Section 8.3 we will present

a heuristic procedure to determine a set of points on the efficient frontier for

the S2
2 cycle and in Section 8.4 we will evaluate the efficiency of the heuristic

procedure with a computational study. Section 8.5 is devoted to the concluding

remarks.

8.1 Problem Formulation

In this section the necessary mathematical notation for the problem will be

presented. Each 1-unit cycle will be considered individually and for each

cycle the allocation of the operations to the machines and the processing

times of these operations on the machines will be determined. Similar to the

previous chapter, we consider the cycle time and manufacturing cost objectives

simultaneously. Since both of these objectives can not be improved at the

same time, there is not a unique optimal solution but a set of nondominated

solutions. We assume that both machines are capable of performing all of the

operations that are in set O. The processing time of a part on a machine is

equal to the summation of the processing times of the operations performed by

that machine. Let xli be the binary variable that indicates whether operation

l is allocated to machine i or not. The total processing time on machine i, Pi,
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can be written as
∑p

l=1 xlitl.

In this section, due to the complexity of the problem, a finite number of

nondominated points will be determined using the epsilon-constraint method.

In other words, ε(F1(S,P )|F2(S,P )) will be solved for a number of specific

F2(S,P ) values which are used to estimate the entire efficient frontier.

Estimating the entire efficient frontier means that the cycle time values for

which we solve the epsilon-constraint problem are uniformly spread over the

range of all feasible cycle time values.

The epsilon-constraint problem with cycle time bound T can be formulated

as follows:

Epsilon-Constraint Problem: ε(F1|T )

min
∑p

l=1 fl(tl) (8.1)

Subject to Cycle time ≤ T, (8.2)

xl1 + xl2 = 1, ∀l ∈ [1, . . . , p], (8.3)

tl ≥ tLl , ∀l ∈ [1, . . . , p], (8.4)

xli ∈ {0, 1}, ∀l ∈ [1, . . . , p],∀i ∈ [1, 2], (8.5)

In the formulation above, the objective function is the total manufacturing

cost which is assumed to be a strictly convex and differentiable function of the

processing times of the operations. Constraint (8.2) puts an upper bound on

the cycle time. Constraint set (8.3) forces each operation to be allocated to

exactly one of the machines. Constraint set (8.4) sets the processing time lower

bounds for each operation. Note that, in Constraint (8.4) the upper bounds of

the processing times could also be used. However, from the derivation of these

bounds we know that ∂fl(t
U
l ) = 0 and ∂fl(t̂l) > 0 for t̂l > tUl . Hence, t∗l ≤ tUl

always holds for optimal t∗l and is not required as an additional constraint.
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In the following sections we will solve ε(F1|T ) by considering both cycles

individually.

8.2 Solution Procedure for the S2
1 Cycle

In this section we will develop a solution procedure for the ε(F1|T ) for the S2
1

cycle. In particular, in order to solve the problem for the S2
1 cycle we will use

the following as Constraint (8.2) of ε(F1|T ):

6ε + 6δ +
p

∑

l=1

xl1tl +
p

∑

l=1

xl2tl ≤ T. (8.6)

From this equation it is obvious that regardless of the allocation of the

operations, the cycle time of the S2
1 cycle is the same. Hence, the binary

allocation variables, xli, can be eliminated from the formulation and we get

the following as the cycle time bound constraint:

6ε + 6δ +
∑p

l=1 tl ≤ T .

Since 6ε + 6δ is constant for a given problem setting, letting T̂ = T − 6ε − 6δ

we have the following formulation for the S2
1 cycle:

ε(F1|T̂ )S2

1 : min
p

∑

l=1

fl(tl) (8.7)

Subject to
p

∑

l=1

tl ≤ T̂ , (8.8)

tl ≥ tLl , ∀l ∈ [1, . . . , p]. (8.9)

This formulation is the same as a single machine makespan minimization

problem with p jobs and controllable processing times which is a nonlinear

knapsack problem. In the formulation above we have separable, convex

continuous objective function and constraints for which different solution

approaches can be reviewed in [12]. However, in the sequel we will develop a

more detailed problem specific solution procedure. Since ε(F1|T̂ )S2

1 minimizes
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a strictly convex function over a convex closed set, a local minimum of F1 is a

global minimum and there exists exactly one global minimum (See proposition

2.1.1 of Bertsekas [7]). Let t∗ = (t∗1, t
∗
2, . . . , t

∗
p) be the optimal solution to

ε(F1|T̂ )S2
1 throughout this section. Let TL

S2
1

and TU
S2

1
be the lower and upper

bounds of the cycle time of the S2
1 cycle, respectively. These can be calculated

by setting the processing times of all operations to their lower and upper

bounds, respectively, as follows:

TL
S2

1
= 6ε + 6δ +

p
∑

l=1

tLl , (8.10)

TU
S2

1
= 6ε + 6δ +

p
∑

l=1

tUl . (8.11)

Also let T̂L = TL
S2

1
− 6ε − 6δ and T̂U = TU

S2
1
− 6ε − 6δ. Note that, ε(F1|T̂ )S2

1

is infeasible if the cycle time bound in constraint (8.8) satisfies T̂ < T̂L and

all solutions are dominated if T̂ > T̂U . Theorem 7.1 in the previous chapter

gives a solution for the ε(F1|T̂ )S2
1 when the number of operations is limited

to 2. However, in this chapter the number of operations can be any positive

integer value. Hence, a more general solution procedure for the S2
1 cycle will be

developed here. The following lemma is helpful in characterizing the optimal

solution.

Lemma 8.1 In the optimal solution to ε(F1|T̂ )S2
1 for T̂L ≤ T̂ ≤ T̂U , constraint

(8.8) is satisfied as equality.

Proof. Let F ∗
1 =

∑p
l=1 fl(t

∗
l ) be the optimal objective function value of

ε(F1|T̂ )S2
1 with optimal processing time vector t∗. Assume to the contrary

that
∑p

l=1 t∗l < T̂ . Then consider another solution with, t̂∗l = t∗l , ∀l 6= l̂

for an arbitrary index l̂ such that t∗
l̂

< tU
l̂
. Let t̂∗

l̂
= t∗

l̂
+ β, 0 < β ≤

min{tU
l̂
− t∗

l̂
, T̂ − (

∑p
l=1 t∗l )}. As a consequence, this new solution has identical

processing times for all operations except l̂ and t̂∗
l̂

> t∗
l̂
. Since the cost function
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is decreasing with respect to processing times, the objective function of the

new solution, F̂ ∗
1 , satisfies: F̂ ∗

1 < F ∗
1 . However, this contradicts with t∗ being

the optimal solution to ε(F1|T̂ )S2
1 . 2

As a consequence of the lemma above, we know that the sum of the optimal

processing times is equal to the cycle time bound. Consider the partition

induced by t∗, i.e., J = {l : t∗l > tLl } and J̄ = {h : t∗h = tLh}. We know that

if T̂ > T̂L, then J 6= ∅. The following lemma determines the properties of the

operations of these two sets.

Lemma 8.2 In the optimal solution to ε(F1|T̂ )S2
1 , where T̂ > T̂L the following

conditions hold:

i. ∂fl(t
∗
l ) = ∂fk(t

∗
k), ∀l, k ∈ J ,

ii. ∂fl(t
∗
l ) ≤ ∂fh(t

∗
h), ∀h ∈ J̄ and ∀l ∈ J .

Proof. Since we assume T̂ > T̂L, then there exists at least one l such that

t∗l > tLl . Therefore, the vector t∗ = (t∗1, t
∗
2, . . . , t

∗
p) is a regular point. A point is

regular if the gradients of the active inequality constraints and the gradients of

the equality constraints are linearly independent at that point. Such a point

must satisfy the Karush-Kuhn-Tucker (KKT) conditions. From Lemma 8.1,

Constraint (8.8) is satisfied as equality. As a consequence, the Lagrangian

function for point t∗ can be written as follows:

L(t∗, λ∗, µ∗) =
p

∑

l=1

fl(t
∗
l ) + λ∗

( p
∑

l=1

t∗l − T̂

)

+
p

∑

l=1

µ∗
l (t

L
l − t∗l ).

If we set ∇t(L(t∗, λ∗, µ∗)) = 0, we get:

∂fl(t
∗
l ) + λ∗ − µ∗

l = 0, ∀l.
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If l ∈ J , then µ∗
l = 0. Thus, ∂fl(t

∗
l ) = −λ∗, ∀l ∈ J , which proves (i). On the

other hand, if h ∈ J̄ , then ∂fh(t
∗
h) = −λ∗ +µ∗

h. Since µ∗
h ≥ 0, ∂fh(t

∗
h) ≥ −λ∗ =

∂fl(t
∗
l ), ∀h ∈ J̄ and ∀l ∈ J , which proves (ii). 2

Up to know, we know that the operations are partitioned into two sets with

respect to their processing time values in the optimal solution to ε(F1|T̂ )S2
1 .

Additionally, the lemma above, identifies some properties of the elements of

these two sets regarding their processing time values. Let αl = ∂fl(t
L
l ), l =

1, 2, . . . , p. For each operation we can calculate a critical value of cycle time

from the given problem data as follows:

Ml =
∑

h∈O

max{tLh , ∂fh
−1(αl)}. (8.12)

The following lemma uses these values to determine the elements of the J and

J̄ sets easily, without determining the optimal processing times.

Lemma 8.3 In the optimal solution to ε(F1|T̂ )S2
1 , l ∈ J if and only if T̂ > Ml.

Proof. (proof by contradiction). Let us first prove the necessity: Assume that

T̂ > Mh but to the contrary h ∈ J̄ , for at least one operation h. From the

definition of set J̄ , t∗h = tLh . But from condition (ii) of Lemma 8.2, the following

must hold:

αh = ∂fh(t
L
h ) ≥ ∂fl(t

∗
l ), ∀l ∈ J.

Since fl is convex and invertible, we have the following:

t∗l ≤ ∂fl
−1(αh), ∀l ∈ J. (8.13)

T̂ can be written as:

T̂ =
∑

l∈J̄

tLl +
∑

l∈J

t∗l .

Using this together with inequality (8.13) we get:

T̂ =
∑

l∈J̄

tLl +
∑

l∈J

t∗l ≤
∑

l∈J̄

tLl +
∑

l∈J

∂fl
−1(αh).
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Since T̂ > Mh is assumed, rewriting the right hand side of the above

inequality we get the following:

p
∑

l=1

max{tLl , ∂fl
−1(αh)} ≥ T̂ >

p
∑

l=1

max{tLl , ∂fl
−1(αh)},

which is a contradiction.

Now let us prove the sufficiency: Assume h ∈ J but to the contrary T̂ ≤ Mh,

for at least one operation h. Hence, t∗h > tLh , which implies αh = ∂fh(t
L
h ) <

∂fh(t
∗
h). From condition (i) of Lemma 8.2, ∂fh(t

∗
h) = ∂fl(t

∗
l ), ∀h, l ∈ J .

Hence, the following must hold:

αh = ∂fh(t
L
h ) < ∂fl(t

∗
l ), ∀l ∈ J.

Since fl is convex and, it satisfies,

t∗l > ∂fl
−1(αh). (8.14)

T̂ can be written as:

T̂ =
∑

l∈J̄

tLl +
∑

l∈J

t∗l .

Using this with inequality 8.14 we get:

T̂ =
∑

l∈J̄

tLl +
∑

l∈J

t∗l >
∑

l∈J̄

tLl +
∑

l∈J

∂fl
−1(αh).

Since T̂ ≤ Mh is assumed, rewriting the left hand side of the above inequality

we get the following:

p
∑

l=1

max{tLl , ∂fl
−1(αh)} < T̂ ≤

p
∑

l=1

max{tLl , ∂fl
−1(αh)},

which is a contradiction. This completes the proof. 2

This lemma suggests that there is a breakpoint Ml for each operation l

that can be calculated easily from the given cost functions and processing time

lower bounds. For any operation, we can determine whether this operation is
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an element of set J or set J̄ by comparing the breakpoint of this operation

with the given cycle time value T̂ . The processing times of the operations

that are in set J̄ are set to their lower bounds in the optimal solution. After

this preprocessing, we need to determine the optimal processing times of the

remaining operations that are in set J . Following lemma will be used for this

purpose. Let Γ =
∑

h∈J̄ tLh .

Lemma 8.4 In the optimal solution to the ε(F1|T̂ )S2
1 , the processing times of

the operations in set J satisfy the following system of nonlinear equations:

1. t∗l = ∂fl
−1(∂fk(t

∗
k)), ∀l, k ∈ J ,

2.
∑

l∈J t∗l = T̂ − Γ.

Proof. As a consequence of Lemma 8.3, for a given value of T̂ , we can

determine which operations are in J and which are in J̄ in the optimal solution.

Additionally, Lemma 8.1 suggests that the cycle time bound constraint is

satisfied as equality in the optimal solution. As a result, ε(F1|T̂ )S2
1 reduces

to the following:

min
∑

l∈J fl(tl)

Subject to
∑

l∈J tl = T̂ − Γ, (8.15)

tl ≥ tLl , ∀l ∈ J. (8.16)

Note that any feasible vector t∗ is regular for T̂ > T̂L. Since the

objective function and the constraints are convex, any point satisfying the

KKT conditions is optimal. Hence, we have ∂fl(t
∗
l ) = −λ, ∀l ∈ J . From here

we get, t∗l = ∂fl
−1(−λ). Hence, the processing time of any operation l ∈ J can

be represented in terms of another operation k ∈ J as follows:

t∗l = ∂fl
−1(∂fk(t

∗
k)).
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The processing times of all operations can be found using this equation and

Equation (8.15) jointly. 2

Note that the system of nonlinear equations mentioned in the above lemma

can be solved using some search methods such as the bisection algorithm, the

Newton’s method or the golden search algorithm within an error bound. As a

consequence of lemmas 8.3 and 8.4, we can solve ε(F1|T̂ )S2
1 easily. This solution

corresponds to one of the nondominated solutions on the efficient frontier. We

can state an algorithm that determines a total of r nondominated solutions,

where the cth solution has the following cycle time value:

T̂L + (c − 1)
T̂U − T̂L

r − 1
. (8.17)

In this way it is guaranteed that the set of nondominated solutions that we

find is uniformly spread over the entire efficient frontier.

Algorithm Efficient Frontier for S2

1
(EFFRONT-S2

1
)

INPUT: r, O, tLl , fl(·), ∀l ∈ O.

OUTPUT: t∗lc, l ∈ O with corresponding cycle time T̂c and cost Cc values for

c = 1, 2, . . . , r.

1. Set solution counter c = 1.

2. Calculate tUl satisfying ∂fl(t
U
l ) = 0, ∀l ∈ O.

3. Using Equation (8.12) determine Ml, ∀l ∈ O.

4. T̂c ← T̂L + (c − 1) T̂ U−T̂ L

r−1
, (T̂L and T̂U are determined using Equations

(8.10) and (8.11), respectively).

5. Call SIMAM(O, T̂c, Ml, fl(·)). Let t∗l be the output of SIMAM, l ∈ O.

6. t∗lc ← t∗l , l ∈ O. Calculate Cc =
∑

l∈O fl(t
∗
l ). Output t∗lc, T̂c and Cc, l ∈ O,
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7. c ← c + 1,

8. If c ≤ r, go to Step 4. Else, STOP.

Subroutine SIMAM

INPUT: O′ ⊆ O, T , Ml, fl(·), l ∈ O′.

OUTPUT: t∗l , l ∈ O′.

1. Determine sets J and J̄ using T and Ml, l ∈ O′ according to Lemma

8.3. Set t∗h = tLh , ∀h ∈ J̄ ,

2. Calculate Γ =
∑

h∈J̄ tLh ,

3. Solve the following nonlinear equation as stated in Lemma 8.4 to

determine t∗
k̂

for an arbitrary k̂ ∈ J :

T − Γ =
∑

l∈J

∂fl
−1(∂fk̂(tk̂)),

4. Determine t∗l = ∂fl
−1(∂fk̂(t

∗
k̂
)), ∀l ∈ J , l 6= k̂,

5. Output t∗l , l ∈ O′ and return.

This algorithm generates a total of r nondominated solutions that are

uniformly spread on the efficient frontier. The SIMAM subroutine is called

to determine the optimal processing times of each of the r solutions. This

subroutine will also be used while determining the efficient frontier of the S2
2

cycle.

Till now the manufacturing cost function is considered to be any strictly

convex function. The following example considers the CNC turning operations,

which possess a strictly convex nonlinear cost function.
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Example 8.1 Let us consider a 2-machine robotic cell with CNC turning

machines. As stated in the previous chapter, manufacturing cost for CNC

turning operations can be written as: fl(tl) = Cotl + KlUlt
al

l . The optimal

processing time of an operation k̂ ∈ J can be determined by solving the

following nonlinear equation for tk̂:

T̂ − Γ =
∑

l∈J

t

a
k̂
−1

al−1

k̂

(

Kk̂Uk̂ak̂

KlUlal

)

1
al−1

.

Then t∗l can be determined using t∗
k̂

by solving the following equation:

t∗l = t∗
k̂

(

a
k̂
−1

al−1

)

(

Kk̂Uk̂ak̂

KlUlal

)

1
al−1

, ∀l ∈ J.

If all of the operations use the same tool type, then Kl = Kk = K and

ak = al = a, ∀l, k. As a consequence, the optimal processing times of the

operations that are in set J can be determined using the following closed form

expression:

t∗k =
(T̂ − Γ)(Uk)

1
1−a

∑

l∈J U
1

1−a

l

, ∀k ∈ J.

In the next section we will consider the S2
2 cycle.

8.3 Heuristic Procedure for the S2
2 Cycle

In this section we will consider the S2
2 cycle for which, unlike in the previous

section, we also have to deal with the allocation problem. In this section, the

allocation of the operations to the two machines means partitioning set O into

two subsets O1, O2 such that O1 ∪ O2 = O and O1 ∩ O2 = ∅. Oi denotes the

set of operations that are allocated to machine i, i = 1, 2. The total processing

time of the part on machine i is Pi =
∑

l∈Oi
tl, i = 1, 2. Recall that in Theorem

6.2 we proved that the operation allocation problem for the S2
2 cycle itself is
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NP -complete. Hence, we will develop a heuristic procedure that approximates

the efficient frontier and perform a computational study to verify its solution

quality. We will compare the results of the heuristic procedure by solving

the epsilon-constraint problem using nonlinear mixed integer problem solvers

GAMS-DICOPT2x-C and GAMS-BARON 7.2.3. Before proceeding with the

heuristic procedure let us first consider the mathematical formulation of the

problem. For the S2
2 cycle we will use the following as Constraint (8.2) of

ε(F1|T ):

max{6ε + 8δ, 4ε + 4δ +
p

∑

l=1

xl1tl, 4ε + 4δ +
p

∑

l=1

xl2tl} ≤ T,

which can be replaced by the following constraints:

6ε + 8δ ≤ T,

4ε + 4δ +
∑p

l=1 xlitl ≤ T, i = 1, 2.

Note that the second constraint is nonlinear. Let Nl denote a big number.

By replacing xlitl with wli, we can properly linearize the above constraints as

follows:

wli ≥ tl − Nl(1 − xli),

wli ≤ tl + Nl(1 − xli),

wli ≤ Nlxli,

wli ≥ 0.

Note that, Nl must be greater than tl. Hence, we will use Nl = tUl . As a result,

the epsilon-constraint problem for the S2
2 cycle can be formulated as follows:

ε(F1|T )S2

2 : min
p

∑

l=1

fl(tl)

s.t. 6ε + 8δ ≤ T, (8.18)

4ε + 4δ +
p

∑

l=1

wli ≤ T, ∀i ∈ [1, 2], (8.19)

wli ≥ tl − tUl (1 − xli), ∀l ∈ [1, . . . , p],∀i ∈ [1, 2], (8.20)
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wli ≤ tl + tUl (1 − xli), ∀l ∈ [1, . . . , p],∀i ∈ [1, 2], (8.21)

wli ≤ tUl xli, ∀l ∈ [1, . . . , p],∀i ∈ [1, 2], (8.22)

xl1 + xl2 = 1, ∀l ∈ [1, . . . , p], (8.23)

tl ≥ tLl , ∀l ∈ [1, . . . , p], (8.24)

xli ∈ {0, 1}, ∀l ∈ [1, . . . , p],∀i ∈ [1, 2], (8.25)

wli ≥ 0, ∀l ∈ [1, . . . , p],∀i ∈ [1, 2]. (8.26)

This mathematical problem is a Mixed Integer Nonlinear Problem (MINLP)

which allocates the operations to both machines and determines processing

time values of all operations satisfying a given cycle time value while minimizing

the total manufacturing cost.

Let O∗
i , i = 1, 2 denote the set of operations that are allocated to machine i

in the optimal solution to ε(F1|T )S2
2 . The following lemma characterizes some

properties of the optimal solution. Let t∗= (t∗1, . . . , t
∗
p) denote the vector of

optimal processing times to ε(F1|T )S2
2 throughout this section.

Lemma 8.5 Either one of the following two properties holds:

1.
∑

l∈O∗

1
t∗l =

∑

l∈O∗

2
t∗l or,

2. If
∑

l∈O∗

1
t∗l <

∑

l∈O∗

2
t∗l , then t∗l = tUl , ∀l ∈ O∗

1. Else t∗l = tUl , ∀l ∈ O∗
2.

Proof. Let t∗ be the optimal processing time vector with optimal objective

function value F ∗
1 . Assume to the contrary that

∑

l∈O∗

1
t∗l <

∑

l∈O∗

2
t∗l and

t∗
l̂

< tU
l̂
, for at least one operation l̂ ∈ O∗

1. Then we have another feasible

solution such that t̂∗l = t∗l , ∀l 6= l̂ and t̂∗
l̂

= t∗
l̂
+ β for 0 < β ≤ min{∑

l∈O∗

2
t∗l −

∑

l∈O∗

1
t∗l , t

U
l̂
− t∗

l̂
}. Since the cost function is decreasing, F̂ ∗

1 < F ∗
1 . This

contradicts with t∗ being an optimal solution. 2
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The cycle time of the S2
2 cycle is determined by the machine which has the

greatest processing time. The other machine has no effect on the cycle time.

Hence, the cycle time does not change by increasing the processing times of

the operations on the other machine as long as the total processing time of

this machine does not exceed the other machine. However, such a change

reduces the cost. Hence, the lemma above states that in the optimal solution

to ε(F1|T )S2
2 , the operations are allocated such that the total processing times

on both machines are equal to each other. However, since the processing times

have upper bounds, the processing times on both machines may not be optimal

in some cases. Assume without loss of generality that
∑

l∈O∗

1
t∗l <

∑

l∈O∗

2
t∗l .

Then we know that, in the optimal solution
∑

l∈O∗

2
t∗l −

∑

l∈O∗

1
t∗l is minimum

and t∗l = tUl , ∀l ∈ O∗
1. As a consequence, if the processing times are not decision

variables but predetermined parameters, the optimal allocation of operations

to the machines can be determined by solving the following Allocation Problem

which is a Mixed Integer Problem (MIP) formulation:

(AP) min T

Subject to 6ε + 8δ ≤ T, (8.27)

4ε + 4δ +
p

∑

l=1

xlit̂l ≤ T, i = 1, 2, (8.28)

xl1 + xl2 = 1, ∀l, (8.29)

xl1, xl2 ∈ {0, 1}, ∀l. (8.30)

In this formulation, t̂l is not a decision variable but a parameter. We

can make use of this formulation in order to determine the upper and lower

bounds of the cycle time of the S2
2 cycle. Let TU

S2
2

and TL
S2

2
denote the upper

and lower bounds for the cycle time of S2
2 , respectively. Furthermore, let

tL = (tL1 , tL2 , . . . , tLp ) and tU = (tU1 , tU2 , . . . , tUp ) be the vectors of lower and upper

bounds of the processing times of operations, respectively. Let T ∗
L denote

the optimal objective function value of the AP where t̂l = tLl , ∀l. Then,
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TL
S2

2
= T ∗

L. Furthermore, if the processing times on both of the machines are

equal to each other in the optimal solution, then from Lemma 8.5, the point

(F1(t
L), F2(t

L)), where F2(t
L) = T ∗

L is one of the nondominated solutions of

the bicriteria formulation for S2
2 . This is the minimum cycle time-maximum

cost solution. On the other hand, if the processing times on both machines

are not equal to each other, according to Lemma 8.5 the point (F1(t
L), F2(t

L))

is dominated. Hence, we can conclude that solving the above AP provides

the lower bound of the cycle time. Additionally, if the processing times on

both machines are equal to each other, we get the nondominated solution

corresponding to the minimum cycle time value. However, if the processing

times are not equal to each other, in order to get the nondominated solution,

we have to solve the epsilon-constraint problem by setting the cycle time bound

to TL
S2

2
, that is ε(F1|TL

S2
2
)S2

2 . Similarly the upper bound of the cycle time can be

found by solving the AP by setting t̂l = tUl , ∀l. The optimal objective function

value of this formulation is the upper bound of the cycle time, F2(t
U). Note

that, according to Case (2) of Lemma 8.5, the point (F1(t
U), F2(t

U)) is a

nondominated solution for the bicriteria problem, which corresponds to the

maximum cycle-time minimum cost pair.

From Constraint (8.27) of the AP, the cycle time can not be less than 6ε+8δ.

As a consequence, from Constraint (8.28) of the AP, the total processing times

on any one of the machines is not less than 2ε + 4δ in the optimal allocation

unless the processing times of the operations allocated to the same machine

are not set to their upper bounds. We can write this more formally as in the

following lemma. Let x∗
li be the optimal solution to the AP where all processing

times are set to their upper bounds, t̂l = tUl , ∀l ∈ O.

Lemma 8.6 If
∑p

l=1 x∗
lit

U
l ≤ 2ε + 4δ, i = 1, 2, the point (F1(t

U), F2(t
U)),

where F1(t
U) =

∑p
l=1 fl(t

U
l ) and F2(t

U) = 6ε + 8δ dominates all other feasible
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solutions.

Proof. If
∑p

l=1 x∗
lit

U
l ≤ 2ε+4δ, i = 1, 2, then Constraint (8.27) of AP is binding

in the optimal solution. Hence, the cycle time can only be equal to 6ε + 8δ.

Furthermore,
∑p

l=1 fl(t
U
l ) is the lower bound for the cost. Any other solution

will have a greater cost value, which means that it is dominated. 2

The cycle time of the S2
2 cycle can not be less than 6ε + 8δ. This is the

time required for the robot to perform all the necessary loading/unloading and

transportation operations. In this cycle, while the processing on one machine

continues, the robot does not wait in front of this machine, but loads/unloads

the other machine. Hence the processing time of the operations on this machine

can be increased so that the processing of all operations are completed when

the robot arrives to unload this machine. Such a change does not increase the

cycle time but reduces the cost. However, if the upper bounds of the processing

times of the operations are so small such that the total processing times on

both machines are completed before the robot arrives in front of the machines

even if all processing times are set to their upper bounds, then there is a unique

nondominated solution, as stated in the lemma above.

In order to estimate the efficient frontier we will determine r uniformly

spread nondominated solutions. The quality of the estimation depends on

the magnitude of r. Since the allocation problem is NP-complete, solving

even only a single problem to optimality using a nonlinear mixed integer

solver will require a significant amount of CPU time. Because of this, we will

present a heuristic algorithm. This algorithm generates a new nondominated

solution using the solution at hand. Starting from TL
S2

2
, the cycle time value

is incremented at each step until we reach TU
S2

2
. Instead of using a fixed

increment amount, a new increment amount is determined dynamically at

each step depending on problem characteristics. As a result, the number of
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nondominated solutions generated is unknown prior to running the algorithm,

but it is guaranteed that the generated solutions are spread in the range

between (F1(t
L), F2(t

L)) and (F1(t
U), F2(t

U)).

The problem is twofold: finding the allocation of the operations to the

machines and determining the processing time values of the operations.

According to Lemma 8.5, for fixed processing times the former of these

problems is identical to set partitioning problem, for which we will make use

of the Difference Method (DM) developed by Karmarkar and Karp [58]. Let

D = {a1, a2, . . . ap} be a set of numbers to be partitioned. Let

D′ = D \ {aj, ak} ∪ {|aj − ak|}.

From a partition (A′, B′) of D′ a partition (A,B) of D can be constructed

easily so that both partitions have identical differences. Suppose aj > ak and

|aj − ak| ∈ A′. Then

A = A′ \ {|aj − ak|} ∪ {aj},

B = B′ ∪ {ak},
(8.31)

gives the desired partition. Then, the Difference Method does the following:

Difference Method (DM))

INPUT: A set of numbers to be partitioned: D.

OUTPUT: A partition (A,B) of set D.

While |D| > 1 do begin

pick the largest two numbers aj, ak ∈ D.

D ← D \ {aj, ak} ∪ {|aj − ak|}.

end

Do the backtracking operations as in Equation (8.31).
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The algorithm terminates when |D| = 1. It is trivial to construct the

actual partition (A,B) by backtracking through the sequence of differencing

operations as in Equation (8.31). The following example will be helpful in

understanding.

Example 8.2 Let us consider partitioning set D = {7, 4, 8, 10, 3}. We can

present the DM algorithm as follows:

Step Ordered Set aj − ak

1 {10, 8, 7, 4, 3} 10-8=2

2 {7, 4, 3, 2} 7-4=3

3 {3, 3, 2} 3-3=0

4 {2, 0} 2-0=2

5 {2} STOP

The resulting set with only 2 as the element in Step 5 of the algorithm

is found by differencing operation (2-0=2). Hence, the partition in Step 4

which has identical difference as Step 5 is ({0}, {2}). In a similar way we can

backtrack all the differencing operations as follows:

Step Partition

5 ∅ {2}

4 {0} {2}

3 {3} {2, 3}

2 {3, 4} {2, 7}

1 {3, 4, 8} {7, 10}
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As already mentioned, we will use a different increment value at each

step of the algorithm in order to generate a new nondominated solution.

More specifically, let Tc be the cycle time value of the current nondominated

solution. Then a new solution will be determined with a cycle time value of

Tc + inc, where inc is the amount of increment calculated for that step. We

will determine two candidates and select the minimum of these as the the

increment value. One of these candidates will be calculated considering the

DM algorithm. Recall that this algorithm works with a set of fixed numbers.

However, in our case the processing times which are to be partitioned are not

fixed but are decision variables. In such a case, we have to determine the

sensitivity of the algorithm. That is, for each processing time tl, let βl be

calculated such that adjusting the processing time as tl + λ, does not change

the allocation resulting from the DM algorithm for 0 < λ ≤ βl, but it does

for λ > βl. These breakpoints are determined considering the ordering of the

numbers at each step. The following example illustrates the procedure for

determining the first breakpoint.

Example 8.3 Let us consider the same example above with a1 = 10, a2 = 8,

a3 = 7, a4 = 4 and a5 = 3. In Step 1 we have the following descending order

of numbers: (10-8-7-4-3). Incrementing a1 = 10 does not yield a change in

the ordering of the operations. However, incrementing a2 more than a1 − a2 =

10 − 8 = 2 yields a new order and probably a new partition. Thus, β21 = 2,

where βlj is the bound for al at step j. At this step we have β11 = ∞, β21 = 2,

β31 = 1, β41 = 3 and β51 = 1. In Step 2, a1 and a2 are removed from the set but

a new element (a1 − a2) is included. The new ordering of the numbers at this

step is: (7-4-3-2). The bounds in this step are as follows: β32 = ∞, β42 = 3,

β52 = 1. Note that, the last element, 2, is found as a1 − a2 = 10 − 8 = 2.

Incrementing this number by 1 leads to a new partition. Hence, 1 is a bound

for a1 ⇒ β12 = 1. On the other hand, decrementing this by 2 leads to a
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negative number. Decrementing this number means incrementing a2. Hence,

2 is a bound for a2 ⇒ β22 = 2. Proceeding similarly the following bounds can

be determined at each step:

Step Bounds

1 β11 = ∞ β21 = 2 β31 = 1 β41 = 3 β51 = 1

2 β12 = 1 β22 = 2 β32 = ∞ β42 = 3 β52 = 1

3 β13 = 1 β23 = 2 β33 = 0 β43 = 0 β53 = 0

4 β14 = ∞ β24 = 2 β34 = 2 β44 = 0 β54 = 2

Then the overall bound for element l is βl = minj,βlj 6=0{βlj}. Note that, in some

steps, the bounds may be equal to 0. A bound may be 0 if there are alternative

partitions with identical differences. These are not considered while calculating

the overall bounds for the numbers. Furthermore, the processing times to be

partitioned have upper bounds. Let aU
l be the upper bound of al. As a result

we have: 0 < βl ≤ aU
l − al. Finally, the candidate for the increment value is

minl{βl}. This value is selected as a candidate because an increment less than

this value does not yield a different partition but a greater increment yields a

new partition according to the DM algorithm. Hence, this candidate for the

increment value determines whether we need to run the DM algorithm or not

in order to generate the new solution.

The second candidate for the increment comes from Lemma 8.3. This

lemma determines whether the processing time of an operation is equal to its

lower bound or greater than it. Ml values, calculated for each operation l, are

used for this decision. However, the calculation of the Ml values for the S2
2

cycle differs from the calculation of those for the S2
1 cycle since allocation does

not matter for the S2
1 cycle. However, we can calculate Ml values for a given

allocation as follows: Ml =
∑

h∈Oi
max[tLh , ∂fh

−1(∂fl(t
L
l ))], ∀l ∈ Oi, i = 1, 2.
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From Constraint (8.19) of ε(F1|T )S2
2 the sum of the processing times allocated

to the same machine must be less than or equal to Tc − 4ε − 4δ. Then if

Ml > Tc − 4ε − 4δ for an arbitrary operation l, then t∗l = tLl . Assume that the

cycle time is incremented so that Tnew = Tc + λ. If λ ≤ Ml − Tc − 4ε − 4δ,

then t∗l = tLl . Otherwise, t∗l > tLl . As a consequence, the second candidate is

calculated as ∆T = Tc−4ε−4δ−maxl∈J̄{Ml}. As a result, the increment value

for the cycle time to determine a new nondominated solution is determined as:

min{∆T ,minl{βl}}. However, in some cases this increment value becomes

very small especially when the number of operations is high. As a result, a

set of unnecessarily large number of solutions is computed by the heuristic,

resulting in a relatively large CPU time. In order to avoid this, the increment

value is bounded below by ω = E ∗10ln p

10 . By this bound, the number of points

generated by the algorithm and the CPU time requirements are balanced for

problems with small number of operations and large number of operations.

The bound can be adjusted by altering the constant E.

The following heuristic algorithm generates a number of solutions on the

efficient frontier of the S2
2 cycle.

Algorithm Efficient Frontier for S2

2
(EFFRONT-S2

2
)

INPUT: O, ω, tLl , fl(·), l ∈ O.

OUTPUT: t∗lc, l ∈ O with corresponding cycle time Tc and cost Cc values and

allocation of operations to machines (O1c, O2c), for each nondominated solution

c = 1, 2, . . . , r, and the total number of nondominated solutions r.

1. Set solution counter c = 1.

2. Calculate tUl satisfying ∂fl(t
U
l ) = 0, l ∈ O.

3. Call DM({tU
1

, tU
2

, . . . , tU
p

}). Let (O1, O2) be the output.

3.1. If
∑

l∈Oi
tUl ≤ 2ε + 4δ, i = 1, 2, then according to Lemma 8.6, there



CHAPTER 8. BICRITERIA ROBOTIC OPERATION ALLOCATION 153

is a unique nondominated solution with TU = 6ε + 8δ and CL =
∑

l∈O fl(t
U
l ). Output tUl , TU , CL, (O1, O2), c. STOP.

3.2. Else, TU = maxi{
∑

l∈Oi
tUl + 4ε + 4δ}, CL =

∑p
l=1 fl(t

U
l ).

4. Call DM(tL
1
, tL

2
, . . . , tL

p
}). Let (O1, O2) be the output. Set Oic = Oi,

i = 1, 2 and tlc = tLl , ∀l ∈ O.

4.1. Let Pic =
∑

l∈Oic
tlc, i = 1, 2. If Pic < 2ε + 4δ, i = 1, 2, then go to

Step 5.

4.2. Else,

4.2.1. Calculate Ml for l ∈ O1 and l ∈ O2 independently using

Equation (8.12).

4.2.2. Call Calculate-t((O1c, O2c), tlc, Ml, fl(·)). Let tl be the

output.

4.2.3. Set tlc = tl, ∀l ∈ O. Calculate Tc = maxi{Pic + 4ε + 4δ},
Cc =

∑

l∈O fl(tlc). Output tlc, Tc, Cc, (O1c, O2c). Let c ← c + 1.

5. Calculate Ml, for l ∈ O1 and l ∈ O2 independently using Equation (8.12).

6. If Pic < 2ε + 4δ, i = 1, 2, then set ∆T = mini{2ε + 4δ − Pic}, else

∆T = mini{Pic − maxl∈J̄{Ml}}, i = 1, 2. Determine breakpoints βl,

l ∈ O as explained in Example 8.3.

6.1. If ∆T < minl{βl},

6.1.1. inc = min{∆T , ω}.

6.1.2. Set Ti = min{∑

l∈Oic
tlc, Pic + inc}, i = 1, 2.

6.1.3. Call SIMAM( O1c, T1, Ml, fl(·)) and SIMAM( O2c, T2, Ml, fl(·)).

Let tl be the output of these. Set tlc = tl, ∀l ∈ O.

6.2. Otherwise,

6.2.1. inc = min{minl{βl}, ω}.
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6.2.2. Let l∗ ∈ Oi∗ = argminl{βl}. Set Ti∗ = Pi∗ + inc. Call

SIMAM( Oi∗ , Ti∗ , Ml, fl(·)).

6.2.3. Call DM({t1c, t2c, . . . tpc}). Let (O1, O2) be the output. Set

Oic = Oi, i = 1, 2.

6.2.3.1. If Pic < 2ε + 4δ, i = 1, 2, then go to Step 5.

6.2.3.2. Else, Call Calculate-t((O1c, O2c), tlc, Ml, fl(·)). Let tl

be the output. Set tlc = tl, ∀l ∈ O.

7. Calculate Tc = maxi{Pic + 4ε + 4δ}, Cc =
∑

l∈O fl(tlc). Output tlc, Tc,

Cc, (O1, O2).

8. If Tc = TU , output c. STOP. Else, let c ← c + 1, go to Step 6.

Subroutine Calculate-t

INPUT: (O1, O2), tl, Ml, fl(·), l ∈ O.

OUTPUT: tl, ∀l ∈ O.

1. If
∑

l∈O1
tl =

∑

l∈O2
tl, output tl, ∀l ∈ O, return.

2. Else if
∑

l∈O1
tl >

∑

l∈O2
tl, then Call SIMAM( O2,

∑

l∈O1
tl, Ml, fl(·) ),

output tl, ∀l ∈ O, return.

3. Else if
∑

l∈O1
tl <

∑

l∈O2
tl, then Call SIMAM( O1,

∑

l∈O2
tl, Ml, fl(·)),

output tl, ∀l ∈ O, return.

This heuristic algorithm determines a set of nondominated solutions by

generating a new point from an initial point. An increment value for the

cycle time is determined and the corresponding allocation of the operations

and the processing time values are determined. In Step 2, the largest cycle

time-smallest cost solution is determined by setting all processing times to

their upper bounds and allocating them to the machines. Similarly, in Step
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3, the smallest cycle time-largest cost alternative is determined by setting all

processing times to their lower bounds and allocating the operations to the

machines. If the processing times on both machines are not equal to each

other, the processing times of the operations are updated using the SIMAM

algorithm. In Step 4 breakpoints are determined in order to determine sets

J and J̄ using Lemma 8.3. In Steps 5, 6 and 7 the increment value of the

cycle time to find the next efficient point is determined. The increment value

is bounded by E ∗ 10ln p

10 . The reason for using such a bound is that, the

increment values start to be too small after some iterations of the algorithm

and especially when the number of operations is high. As a result, a set of

unnecessarily large number of solutions is determined by the heuristic, resulting

in a relatively large CPU time. By this bound, the number of points generated

by the algorithm and the CPU time requirements are balanced for problems

with small number of operations and large number of operations. The bound

can be adjusted by altering the constant E. The difference between the current

cycle time value and the next largest breakpoint value determined in Step 4

and the bounds from the DM algorithm are calculated. The minimum of

these values is selected as the increment value. If the increment is equal to the

difference between the current cycle time value and the next largest breakpoint

value, then the allocation is not changed and the new processing time values

are determined using the SIMAM algorithm. Otherwise, the processing times

on the pivot machine are updated using the SIMAM algorithm, operations

are reallocated to the machines and using the SIMAM algorithm again the

processing times are updated. The heuristic continues until the cycle time

value for the next point to be determined is equal to the upper bound of the

cycle time.

This heuristic procedure generates a set of nondominated solutions which

are not necessarily equally spaced. However, since a large number of points
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are generated, the distance between two consecutive points is very small and

the points are spread to the entire efficient frontier. Additionally, the following

lemma presents an important property of the EFFRONT-S2
2 algorithm.

Lemma 8.7 Any two solutions generated by the EFFRONT-S2
2 algorithm can

not dominate each other.

Proof. The EFFRONT-S2
2 algorithm generates a new solution starting with

an initial solution. Let Tc < TU and Cc be the cycle time and cost values of

a solution generated by the algorithm. Using this solution, a new solution is

generated by setting T(c+1) = Tc+inc, where inc > 0. Then, the EFFRONT-S2
2

algorithm allocates this increment in cycle time to the individual processing

times using the SIMAM algorithm as a subroutine, which guarantees the

allocation to be the most cost reducing alternative (since the cost function is

decreasing with respect to the processing times). As a result, C(c+1) < Cc.

This guarantees that Tc < Td and Cc > Cd for any solution generated

by the EFFRONT-S2
2 algorithm, which means that the solutions generated

by the EFFRONT-S2
2 algorithm can not dominate each other and a new

nondominated solution is generated at each iteration of the algorithm. 2

The following small example illustrates the results generated after some

iterations of the algorithm.

Example 8.4 Let us consider a CNC turning operation for which the

manufacturing cost is presented in Example 8.1 and consider a problem with

5 operations. Let the parameters be given as follows:
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l tLl tUl Tl ∗ Ul al

1 1.2 4.7 15.87 -1.49

2 2 2.8 4.48 -1.56

3 1.8 5.6 23.72 -1.46

4 3.5 4.2 14.13 -1.70

5 2.2 3.4 6.66 -1.38

Table 8.1 presents the results of both the heuristic and MINLP solver

GAMS-DICOPT2x-C after the first 5 iterations. (1∗) in this table, denotes

the first point generated by allocating the operations to the machines with

the processing times set to their lower bounds. Note that the second solution

dominates this one since the two solutions have identical cycle time values

whereas the second solution has a smaller manufacturing cost than the first

one. Note that, both the allocation of the operations to the machines and the

processing time values may change from one solution to another. Furthermore,

as T increases, the processing times of some operations may decrease depending

on the allocated machine. These properties show the complexity of the

problem.

In the next section we will test the efficiency of our heuristic algorithm with

an experimental design on problem parameters.

8.4 Computational Study

In this section we will test the EFFRONT-S2
2 algorithm. This algorithm

works for any strictly convex and differentiable function. In order to evaluate

the algorithm we will consider CNC turning operations for which the cost

function is presented earlier. We will compare the results of the EFFRONT-

S2
2 algorithm with the results of MINLP solvers GAMS-DICOPT2X-c and
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EFFRONT-S2
2 DICOPT

Iteration T l Machine tl Cost Machine tl Cost

1 1 3.5 1 3.5

2 2 2.2 2 2.2

1∗ 5.4 3 2 2 32.94 2 2 32.94

4 1 1.8 1 1.8

5 2 1.2 2 1.2

1 1 3.5 1 3.5

2 2 2.2 2 2.2

2 5.4 3 2 2 32.23 2 2 32.23

4 1 1.9 1 1.9

5 2 1.2 2 1.2

1 1 3.5 1 3.5

2 2 2.2 2 2.2

3 5.5 3 1 2 29.67 1 2 29.67

4 2 1.8 2 1.8

5 2 1.5 2 1.5

1 1 3.5 1 3.5

2 2 2.2 2 2.2

4 5.534 3 1 2.034 29.37 1 2.034 29.37

4 2 1.8 2 1.8

5 2 1.534 2 1.534

1 1 3.5 1 3.5

2 2 2.2 1 2.2

5 5.7 3 1 2.2 28.10 2 2 26.96

4 2 1.89 2 2

5 2 1.61 2 1.7

Table 8.1: Results of the first 5 iterations of EFFRONT-S2
2 and DICOPT for

Example 8.4
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GAMS-BARON 7.2.3. DICOPT was developed at the Engineering Design

Research Center at the Carnegie Mellon University. The MINLP algorithm

inside DICOPT solves a series of NLP and MIP subproblems. Despite the

speed of the algorithm, DICOPT is unable to prove the optimality and the

quality of the solution provided. On the other hand, the Branch-And-Reduce

Optimization Navigator (BARON) is a GAMS solver for the global solution

of nonlinear (NLP) and mixed-integer nonlinear programs (MINLP). BARON

implements deterministic global optimization algorithms of the branch-and-

bound type that are guaranteed to provide global optima under fairly mild

assumptions. However, BARON requires much more CPU time in comparison

with DICOPT. We coded the EFFRONT-S2
2 algorithm in C language and

compiled with Gnu C compiler. The DICOPT and EFFRONT-S2
2 methods

were run on a computer with 512 MB memory and Pentium IV 3.00GHz CPU.

Whereas due to licensing issues, the BARON method is run on a computer

with 1294 MB memory and Pentium III 1133 MHz CPU.

There are four experimental factors that can affect the efficiency of the

methods. These factors are presented in Table 8.4. The number of operations

affects the problem size and thus the computational requirements. The most

important parameters that affect the efficiency of the methods are tL and tU .

Using factors B, C and D, tL and tU parameters are generated as follows:

tUl = U [C ∗ D,D] and tLl = B ∗ tUl ,

where U [a, b] is a Uniform distribution on the interval [a, b]. Factors C and

D affect the shape of the manufacturing cost function and this in turn affects

the running times of the MINLP solvers. A small value for Factor B means

a greater range between tL and tU and a small value for Factor C means

greater variability for both tL and tU values in which case the MINLP solvers

are expected to work better. Additionally, the tU level is another important

parameter that increases the importance of the allocation of the operations to
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the machines. If the tU level is greater, then the penalty of a poor allocation

is higher in which case the performance of the DM algorithm used inside the

EFFRONT-S2
2 algorithm increases. In addition to these experimental design

parameters, we assume identical CNC machines with operating cost Co = 0.5.

Consistent with earlier studies [63], al is selected from U [−1.7,−1.3] and given

these parameters, the required values for Kl ∗ Ul can be calculated using,

Kl ∗ Ul = − Co

al(t
U
l

)(al−1) , ∀l ∈ {1, . . . , p}.

Factor Definition Level 1 Level 2 Level 3

A Number of operations, (p) 20 50 80

B tL − tU range 0.5 0.8

C tU variability 0.7 0.3

D tU level 5 10

Table 8.2: Experimental design factors

Also note that the robot transportation time δ and load/unload time ε do

not have an effect on either the allocation of the operations to the machines or

the processing times. However, as mentioned in the previous chapter, if these

parameters are too large with respect to the processing times, this affects the

values that the cycle time can attain. For example, after setting all processing

times to their upper bounds and allocating them to both machines, if the

processing times on both machines are less than 2ε + 4δ, then the only value

that the cycle time can take is 6ε + 8δ. As a consequence of this, in order to

test the efficiency of the EFFRONT-S2
2 algorithm we will assume that ε = 0

and δ = 0. In this way, we guarantee that the heuristic will not stop in STEP

2 and a comprehensive test can be made.

Five replications are taken for each of the experimental settings, (3∗2∗2∗2),

which makes a total of 120 different problem settings. This means, by this

experimental design we will approximate a total of 120 efficient frontiers. In
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order to approximate these, we will use 20 different cycle time bounds that

are spread over the entire efficient frontier. Hence, a total of 2400 problems

will be solved. Additionally, as already mentioned, the minimum cycle time-

maximum cost solution is found by solving AP formulation with commercial

MIP solver GAMS-CPLEX 9.1 by setting all processing times to their lower

bounds. Let T ∗ be the optimal objective function value of the AP. The solution

found by CPLEX is a nondominated solution if the processing times on both

machines are equal to each other. However, if the processing times are not

equal to each other, in order to determine the minimum cycle time-maximum

cost solution, the ECP formulation is solved by using T ∗ as the cycle time

bound. Similarly, the maximum cycle time-minimum cost solution is found

by solving the AP formulation with CPLEX by setting all processing times to

their upper bounds. However, unlike the previous case, the generated solution

is a nondominated solution regardless of the processing times of the optimal

solution. The remaining 18 problems are solved using a MINLP solver. Due

to CPU restrictions, in order to find a good solution in a reasonable time we

set optcr = 0.05, which is the relative optimality gap. That is, when optcr =

0.05, the MINLP model stops as soon as |Best Found − Best Possible|
Best Possible

≤ 0.05. In

such a case, even for very small problem instances, the model stops with an

optimality gap. In order to catch these instances, we run the DICOPT model

with optcr = 0 with a time limit of 900 seconds. If the run is not completed

until this time limit, then we set optcr = 0.05, input the best integer solution

found till that time as the starting solution and run the model again with

a time limit of 3600 seconds this time. As a consequence, the solver either

makes a normal completion before 900 seconds or stops with optcr = 0.05

between somewhere in [900, 4500] seconds after starting the run or stops due

to time limit when it reaches to 4500 seconds. On the other hand, the BARON

model is used only for p = 20 case. However, since we want to compare the

results of the heuristic procedure with high quality results, in contrast with the
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DICOPT BARON

p Normal optcr = 0.05 Time Limit Normal optcr < 0.05 optcr = 0.05

20 800 - - 65 594 141

50 154 612 34

80 104 653 43

Table 8.3: Completion statistics for DICOPT and BARON

DICOPT case, the BARON model is run for 1800 seconds initially. If the run

is not completed but optcr ≤ 0.05, then it is stopped immediately. Otherwise,

the model is run until optcr = 0.05. Table 8.3 lists the number of instances

with each stopping type for both MINLP methods. Note that all of the normal

completions listed for the BARON method are actually achieved by the CPLEX

solver for the AP formulations to determine the minimum cost-maximum cycle

time and maximum cost-minimum cycle time solutions. None of the BARON

runs are normally completed within the time limit. As expected, the number

of normal completions decreases as the number of operations increases. For

the DICOPT model, for p = 20 all 800 instances including the CPLEX runs

for the AP formulations completed within the 900 seconds time limit, whereas

this number reduced to 154 and 104 for p = 50 and p = 80, respectively.

The number of approximate efficient points generated by the EFFRONT-

S2
2 algorithm depends on the experimental design parameters as well as the

manufacturing cost parameters and the step size constant E. In this study

we will use E = 0.0001. Since the number of points to be generated by

the EFFRONT-S2
2 algorithm is not known in advance, in order to compare

the results of different methods we first run the EFFRONT-S2
2 algorithm

and generate a set of points. Then we choose 18 of these other than the

minimum cycle time-maximum cost and maximum cycle time-minimum cost

solutions such that each successive point pair has (almost) equal separation
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Figure 8.1: Comparison of points generated by the three methods

and run the MINLP models for the corresponding cycle time values of the

20 points. Figure 8.1 depicts the points generated by the EFFRONT-S2
2

algorithm and the 20 points generated by the DICOPT and BARON solvers

for 20 operations with the factor combination (B,C,D) = (0.5, 0.3, 5). For this

example, the EFFRONT-S2
2 algorithm generated a total of 17327 approximate

efficient points in 15.156 seconds. 18 points generated by DICOPT in addition

to 2 points generated by CPLEX used a total of 1089.74 seconds, where for all

20 points the models made normal completions. Note that, normal completion

with DICOPT does not necessarily mean the global optima is achieved but in

most cases a local optimal solution is presented. On the other hand, BARON

used 29574.17 seconds to generate the 20 points, 2 of which are generated

by CPLEX. In 12 of the 18 points generated by BARON, the model stopped

immediately after reaching 1800 seconds since optcr ≤ 0.05 is achieved within

this time. In the remaining 6 problems, the model ran until optcr = 0.05.

Let us use F1 and F2 instead of F1(S,P ) and F2(S,P ), respectively, for

notational simplicity. We measured the relative difference between F1 values

of different methods for the same given F2 values. Let
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R1 R2 R3

p > 0 = 0 < 0 > 0 = 0 < 0 > 0 = 0 < 0

20

Number 90 6 704 387 2 411 699 101 0

Min (×10−6) 0,009 - -0,006 0,007 - -0,009 0,007 - -

Avg (×10−6) 0,436 - -31,402 0,785 - -49,361 2,982 - -

Max (×10−6) 6,721 - -5722,0 8,337 - -5722,0 67,585 - -

50

Number 154 5 641

Min (×10−6) 0,003 - -0,003

Avg (×10−6) 0,099 - -2,435

Max (×10−6) 0,341 - -59,319

80

Number 214 5 581

Min (×10−6) 0,002 - -0,002

Avg (×10−6) 0,073 - -26,095

Max (×10−6) 0,245 - -10653,6

Table 8.4: Summary of results

R1 = (F1(EFFRONT -S2
2) − F1(DICOPT ))/F1(DICOPT ),

R2 = (F1(EFFRONT -S2
2) − F1(BARON))/F1(BARON),

R3 = (F1(DICOPT ) − F1(BARON))/F1(BARON).

The detailed results of all runs for each problem factor are presented in Tables

G.1-G.5 in Appendix G. Tables 8.4 and 8.5 aggregate and summarize these

results. Table 8.4 compares the methods in terms of their average, minimum

and maximum R1, R2 and R3 values. Comparisons with BARON can only be

made for 20 operations case due to CPU time restrictions. The R1 statistics

show that, although the average difference is very small (0.203 × 10−6), in

most of the cases the EFFRONT-S2
2 algorithm finds better solutions than

DICOPT. In 704, 641 and 581 out of 800 instances for 20, 50 and 80

operations, respectively, the EFFRONT-S2
2 algorithm found a better solution

than DICOPT. As the number of operations increases, this performance seems

to slightly decrease. This is due to the usage of the step size limit. This

limit is 0.000069 for 20 operations case whereas it is 0.012 for 80 operations

case with E = 0.0001. Using a smaller step size limit increases the number
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and the quality of the generated points. On the other hand, a smaller step

size means greater CPU time requirements. Comparing the EFFRONT-S2
2

algorithm with BARON, we see that these two methods perform similar to

each other. The number of instances where each of these methods performed

better than the other is nearly equal (387 vs 411). However, the average value

of R2 is greater (in absolute magnitude) for the instances where EFFRONT-S2
2

performed better than the instances where BARON performed better (-49.361

vs 0.785 (×10−6), respectively). Finally, comparing BARON with DICOPT,

we can conclude that in 699 out of 800 cases, BARON performed better than

DICOPT and in the remaining ones they found the same solution. DICOPT

could not find a better solution than BARON. However, the average R3 value

is very small (2.982 × 10−6).

Paired t-tests presented in Table 8.5 compare the three methods in

pairs (EFFRONT-S2
2 , DICOPT), (EFFRONT-S2

2 , BARON) and (DICOPT,

BARON) with respect to their F1 values at each instance. The tests prove that

the differences of F1 values are statistically significant for the three methods

except for p = 80. Considering the 95% confidence interval of the difference,

although the lower and upper limits of the confidence interval are very small,

EFFRONT-S2
2 performs better than both DICOPT and BARON for p = 20

and better than DICOPT for p = 50. Also BARON performs better than

DICOPT for p = 20. The reason for the probability being greater for p = 80 is

the high standard deviation. That is, the performances of EFFRONT-S2
2 and

DICOPT have a high variability from instance to instance for p = 80.

Another factor for evaluating the quality of an algorithm is the CPU time

requirements. The total number of points generated by the EFFRONT-S2
2

algorithm and the corresponding CPU times for each factor combination for

all methods are presented in Table 8.6. The CPU times listed for DICOPT

and BARON are only for generating 20 points on the efficient frontier. The
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Paired Differences

95% Confidence Interval

Std. Std. Error of the Difference

p Pair Mean Deviation Mean Lower Upper t df Sig.

20

E-D -3.75E-03 3.72E-02 1.31E-03 -6.33E-03 -1.17E-03 -2,855 799 0,004

E-B -3.47E-03 3.72E-02 1.31E-03 -6.04E-03 -8.87E-04 -2,638 799 0,008

D-B 2.86E-04 7.02E-04 2.48E-05 2.38E-04 3.35E-04 11,540 799 0,000

50 E-D -5.38E-04 1.77E-03 6.26E-05 -6.61E-04 -4.15E-04 -8,586 799 0,000

80 E-D -6.99E-03 0,126013 4.46E-03 -1.57E-02 1.75E-03 -1,570 799 0,117

Table 8.5: Paired t-tests

results indicate that the EFFRONT-S2
2 algorithm generates at least 600 times

more points than DICOPT and BARON generate in a very small CPU time.

The increase in the CPU time as the number of operations increases is very

small for the EFFRONT-S2
2 algorithm (from 18.6 for 20 operations to 203.7

for 80 operations). On the other hand, for DICOPT even for 50 operations,

the average CPU time requirements (892 seconds) reaches time limit of normal

completion (900 seconds) and for BARON we are not able to generate solutions

for p = 50 and p = 80 cases even with setting optcr = 0.05 after the first 1800

seconds.

Now let us evaluate the effects of the experimental design parameters on the

performance of the methods. Table 8.7 aggregates the results for each design

parameter. The results indicate that having a high tL − tU range (Factor B set

to 0.5) is in favor of the EFFRONT-S2
2 algorithm. Considering the number of

points generated by the EFFRONT-S2
2 algorithm presented in Table 8.6, we

can determine the reasoning. When the tL − tU range is high, as expected, the

EFFRONT-S2
2 algorithm generates 2 to 3 times more points than the other

case. This is because, the two solutions, one of which is generated from the

other one, are consecutive and the difference between two consecutive points

decreases when the generated number of points increases. As a result as the

number of generated points increases, the solution quality also increases. But as
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EFFRONT-S2
2 DICOPT BARON

Factors
N

CPU Number of CPU CPU

p B C D Time (sec) Points Time (sec) Time (sec)

20

0 0 0 100 27,15 29207,6 52,26 1983,08

0 0 1 100 42,71 44938,8 45,28 2006,21

0 1 0 100 16,49 18416,2 50,66 1577,26

0 1 1 100 20,84 21975,0 69,83 1636,31

1 0 0 100 9,03 9716,8 129,15 1692,18

1 0 1 100 20,08 19871,2 121,41 1692,31

1 1 0 100 4,83 4745,6 118,50 1696,02

1 1 1 100 7,69 7324,0 93,58 1684,24

Average 18,60 19524,4 85,08 1745,95

50

0 0 0 100 95,99 25351,4 838,32

0 0 1 100 188,87 50500,0 885,13

0 1 0 100 73,03 19884,4 852,56

0 1 1 100 135,81 36095,0 1060,18

1 0 0 100 38,11 9896,8 900,28

1 0 1 100 73,69 19727,2 846,28

1 1 0 100 28,00 7763,4 873,18

1 1 1 100 53,38 14440,4 882,10

Average 85,86 22957,3 892,27

80

0 0 0 100 112,03 14020,0 790,47

0 0 1 100 225,34 27860,4 786,07

0 1 0 100 86,48 10930,0 736,98

0 1 1 100 175,32 21791,0 1857,62

1 0 0 100 43,39 5594,6 882,28

1 0 1 100 88,71 11072,6 880,17

1 1 0 100 32,48 4240,6 882,43

1 1 1 100 66,21 8415,0 891,28

Average 103,75 12990,5 963,41

Table 8.6: Number of points generated by the EFFRONT-S2
2 and the CPU

times
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already mentioned and as listed in the same table, the CPU time requirements

increase in this case. However, DICOPT requires greater CPU time when

the tL − tU range is smaller. When the range is smaller, this means a lot of

alternatives with similar penalty costs for the MINLP solvers to evaluate, where

the marginal contribution is very small. As a result, proving the optimality of

a solution requires more CPU time in such a case.

R1

A Factor Level N = 0 > 0
Avg

< 0
Avg

(×10−6) (×10−6)

20

B
0 400 3 43 0,567 354 -9,160

1 400 3 47 0,315 350 -5,240

C
0 400 2 41 0,627 357 -5,576

1 400 4 49 0,348 347 -9,352

D
0 400 1 60 0,475 339 -7,579

1 400 5 30 0,465 365 -6,820

50

B
0 400 2 47 0,080 351 -3,855

1 400 3 107 0,108 290 -0,715

C
0 400 2 95 0,088 303 -2,553

1 400 3 59 0,118 338 -2,320

D
0 400 3 76 0,132 321 -2,210

1 400 2 78 0,067 320 -2,650

80

B
0 400 1 158 0,612 331 -45,532

1 400 4 300 0,166 250 -0,360

C
0 400 3 101 0,064 296 -46,978

1 400 2 113 0,081 285 -4,405

D
0 400 1 253 0,189 282 -39,433

1 400 4 205 0,108 299 -13,515

Table 8.7: Analysis of factors

Tables H.1 and H.2 placed in Appendix H present the ANOVA results for

R1, R2 and R3 statistics. These results prove that Factor B is significant with

respect to R1, R2 and R3 for p = 20 and p = 50 cases. Furthermore, tU

variability (Factor C) and tU level (Factor D) are significant with respect to

R1 and R2 for only p = 20 case. From Table 8.6 we observe that the number

of points generated by the EFFRONT-S2
2 algorithm and the required CPU
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Figure 8.2: Relative differences for 20 points with p = 20

times are higher when the tU level is higher and tU variability is lower. This

is reasonable since as the tU variability reduces, the step size also reduces

and more points are generated by the EFFRONT-S2
2 algorithm. On the other

hand, by considering F1 values instead of R1, R2 and R3 values in the ANOVA

analysis, all the factors appear to be statistically significant.

It is also important to analyze the performance of the EFFRONT-S2
2

algorithm on different parts of the efficient frontier. We generated a total

of 20 points on the efficient frontier using DICOPT and BARON. Let these

points be numbered from 1 to 20 where Point 1 corresponds to the minimum

cycle time-maximum cost solution and Point 20 corresponds to the maximum

cycle time-minimum cost solution. Figure 8.2 depicts the average R1, R2 and

R3 values with respect to points for the p = 20 case. We can conclude that the

EFFRONT-S2
2 algorithm performs better in the middle parts of the efficient

frontier. As we go from Point 1 to Point 20, the performances of all methods

get closer. This is due to the behavior of the manufacturing cost functions.

The derivatives of the cost functions for all operations become almost equal

at the tails of the cost functions. This means that the marginal contribution
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of changing the processing times to the cost is almost equal for all operations.

As a result, different allocations with different processing time settings yield

very close cost values. However, this increases the CPU time requirements

for the MINLP Solvers. Figures 8.3 and 8.4 depict the average CPU time

requirements with respect to the 20 points for p = 20 operations. Figure 8.5

depicts a similar figure for p = 50 and p = 80 cases on the same chart. These

figures support the above ideas. As we move from Point 1 to Point 20, the CPU

requirements increase and in most of the cases the MINLP solvers stop by the

time limit through Point 20. Note that, Point 20 is generated by solving the
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Figure 8.3: CPU times for p = 20 operations with DICOPT

AP formulation using CPLEX. As a consequence, the CPU requirements to

generate this point is smaller with respect to the points generated by DICOPT

and BARON.

Since we considered a bicriteria problem, after comparing the methods

with respect to solution quality and the corresponding CPU time, we also

have to compare the solution methods with respect to some multicriteria

comparison criteria. In the literature there are different metrics used to

compare the approximation quality of solution sets generated by different
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Figure 8.4: CPU times for p = 20 operations with BARON

methods. We will use the metric proposed by Hansen and Jaszkiewicz [48],

which consists of measuring the probability P (A,B) that an algorithm A gives

a better solution than another algorithm B. It is calculated as P (A,B) =
∫

u∈[0,1] C(A(u), B(u))du, where

C(A(u), B(u)) =







































1, f(A(u)) < f(B(u)),

1/2, f(A(u)) = f(B(u)),

0, f(A(u)) > f(B(u))

and f(A(u)) = minx∈A{max(uF ′
1(x), (1 − u)F ′

2(x))}, where F ′
1(x) = (F1(x) −

F1(Z2))/(F1(Z1) − F1(Z2)) which is a normalization of F1 using the minimum

cycle time-maximum cost solution (Z1) and maximum cycle time-minimum

cost solution (Z2). This method estimates the decision maker’s probability to

choose a solution generated by method A over method B. Table 8.8 presents

the P(EFFRONT-S2
2 , DICOPT) results for each factor combination. The

results indicate that the probability for the decision maker to select a solution

generated by the EFFRONT-S2
2 algorithm never falls below 99.3%. These

results are due to the incomparably large number of solutions generated by
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Figure 8.5: CPU times for p = 50 and p = 80 operations with DICOPT

the EFFRONT-S2
2 algorithm with respect to DICOPT and the quality of the

solutions. In conclusion, the EFFRONT-S2
2 algorithm appears to be a very

efficient method to generate nondominated solutions from the multicriteria

optimization perspective as well.

In this section we presented the computational results of the EFFRONT-S2
2

algorithm. The next section is devoted to the concluding remarks.

8.5 Conclusion

In this chapter, we considered bicriteria robotic cell scheduling problem in a

2-machine robotic cell. The machines are assumed to be CNC machines which

are highly flexible. As a result, instead of assuming the processing times to

be fixed on each machine, we assumed the allocation of the operations as well

as the processing time values of each operation to be decision variables. We

presented the mathematical formulation of the problem which appeared to be

a Mixed Integer Nonlinear Programming (MINLP) formulation. Considering
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p A B C P (EFFRONT -S2
2 , DICOPT )

20

0 0 0 1,00000
0 0 1 1,00000
0 1 0 0,99400
0 1 1 1,00000
1 0 0 1,00000
1 0 1 1,00000
1 1 0 0,99300
1 1 1 0,99800

Average 0,99812

50

0 0 0 1,00000
0 0 1 1,00000
0 1 0 1,00000
0 1 1 1,00000
1 0 0 1,00000
1 0 1 1,00000
1 1 0 1,00000
1 1 1 1,00000

Average 1,00000

80

0 0 0 1,00000
0 0 1 1,00000
0 1 0 1,00000
0 1 1 0,99900
1 0 0 1,00000
1 0 1 1,00000
1 1 0 1,00000
1 1 1 1,00000

Average 0,99987

Table 8.8: Comparison of EFFRONT with DICOPT with a multi-objective
criteria

each of the 1-unit cycles one at a time, we first developed a solution procedure

for the S2
1 cycle. Since the allocation problem for the S2

2 cycle is proved to

be NP-Complete, we presented a heuristic algorithm that generates a set of

approximate efficient solutions. We compared the results of the algorithm with

commercial MINLP solvers DICOPT and BARON. The computational study

proved that the proposed algorithm is very efficient in terms of the number and

the quality of the generated efficient solutions, the computational requirements

and from the multicriteria point of view.



Chapter 9

Conclusion

This thesis considers scheduling problems arising in flexible robotic manufac-

turing cells. The machines used in these systems for metal cutting operations

are predominantly CNC machines which possess many different types of

flexibilities. Although flexibility is the key term that affects the performance

of these systems, the current literature of robotic cell scheduling problems

ignores this. As a consequence, the results of the earlier studies are either

suboptimal or valid under some limiting assumptions. Furthermore, the earlier

studies considered only the operational problems such as finding the part input

sequence and the robot move sequence. However, the efficiency of the cells

depends on the design of the cells as well as the operation of the cells. This

is the first study that considers flexibility issues and some design problems in

the robotic cell scheduling literature.

In the next section the contributions of this study will be explained and in

Section 9.2, some future research directions will be provided.

174
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9.1 Contributions

In this thesis, a manufacturing cell composed of a number of highly flexible

CNC machines and a material handling robot which produces identical parts is

considered. The CNC machines can perform different operations as long as the

required cutting tools are loaded in their tool magazines. As a consequence,

each part is assumed to have a set of operations to be performed on these

machines. The current literature assumes the allocation of the operations to the

machines to be fixed for each part. Hence, the processing time of each part on

each machine is assumed to be a known parameter. However, this assumption

is unrealistic for cells consisting of CNC machines and limits the number of

alternatives unnecessarily. In the first part of the thesis (Chapters 4-6), the

allocation of the operations to the machines is assumed to be a decision variable.

Since different allocations yield different processing times which in turn yield

a different cycle time value, considering the allocation of the operations as a

decision variable is an option to increase the efficiency of such cells.

In Chapter 4, we define a new class of robot move cycles, namely, the class

of pure cycles, which is a direct consequence of the flexibility of the machines.

Despite the fact that these cycles are used extensively in industry because of

their simplicity, there were no studies considering these cycles in the robotic

cell scheduling literature until this study. For 2-machine cells we prove that the

set of pure cycles dominates all the traditional robot move cycles considered

in the literature. Furthermore, we determine the regions of optimality for each

of the 6 feasible pure cycles in a 2-machine cell. Since the number of pure

cycles increases drastically as the number of machines increases, we select the

most widely used pure cycle for 3- and m-machine cells as the proposed cycle.

The regions where this cycle dominates the traditional robot move cycles are

determined. For the remaining region, a worst case performance bound is
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derived for the proposed cycle. Since 3-machine cells are common in industry

we analyze these cells in detail and prove that the proposed cycle dominates

all 2-unit cycles and all 1-unit cycles except S3
6 . The results indicate that the

pure cycles are not only simple and practical but also perform effectively.

The efficiency of the cells measured in terms of the throughput of the cells

depends on the operations of the cells as well as the design of the cells. Despite

this fact, to our knowledge, there are no studies considering the design of the

cells. In Chapter 5, two design problems are considered. First, we consider the

layout of the cells as a decision variable and prove that changing the layout from

in-line robotic cell layout to robot centered cell layout reduces the cycle time

for pure cycles. This is an important result since the robot centered cells are

preferred to in-line robotic cells in industry because they require less physical

space and because the rotational movements of a robot are more convenient

than linear movements. The second design problem considered in this chapter

is the determination of the optimal number of machines to be placed in a cell.

Considering the proposed cycle, we determine the optimal number of machines

that a robot serves for given parameters such as the robot move time and

loading/unloading time. The results can be used to determine the machine,

robot and other equipment requirements, to redesign the production facility,

to determine the physical space requirements, etc., in order to increase the

efficiency of the system.

The machines considered in this study are highly flexible CNC machines

which can perform any operation as long as the required cutting tool is loaded

on the tool magazine of the machine. However, the tool magazines of these

machines have limited capacity. Additionally, duplicating and loading a copy

of each of the required tools to the tool magazines of all of the machines

may not be economically justifiable due to high tool investment costs. Such a

situation is analyzed in Chapter 6. A 2-machine cell producing identical parts



CHAPTER 9. CONCLUSION 177

is considered where each of the identical parts has three sets of operations. The

operations that are in the first set can only be processed on the first machine,

the operations that are in the second set can only be processed on the second

machine, and the operations of the last set can be processed on either machine

due to tooling constraints. Then the problem is not only sequencing the robot’s

activities but also partitioning the last set of operations into two machines.

We prove that the optimal solution to this problem is not necessarily a 1-

unit cycle but a 2-unit cycle can also be optimal in some regions. We reduce

the number of potentially optimal robot move cycles to three and present the

regions of optimality for each of these cycles. We show that the earlier problems

considered in the literature are special cases of this one.

In the second part of the thesis, we consider a bicriteria approach to the

robotic cell scheduling problem, an approach undertaken for the first time

in this literature. Time and cost related objectives are two main objectives

considered in the scheduling literature. Although minimizing production

costs has the highest priority in process planning, there were no studies

considering cost objectives in the robotic cell scheduling literature until this

study. The processing times of the parts on the CNC machines can be

controlled by adjusting the machining conditions such as the speed and the

feed rate. However, adjusting these parameters also affects the tool life which

consequently affects the total manufacturing cost. Hence, a bicriteria problem

is considered in which the cycle time and the total manufacturing cost are the

performance measures. Since there are two competing performance measures,

instead of a unique optimal solution, a set of nondominated solutions exists for

such problems.

In Chapter 7, 2- and 3-machine cells, where each part has one operation

to be performed on each machine, are considered. The robot move sequence

as well as the processing times on the machines are the decision variables.
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The analysis is carried out for any non-linear, convex, nonincreasing cost

function. We determine a set of nondominated solutions for the two 1-unit

cycles of 2-machine robotic cells and compare these two cycles with each other

to determine the regions of optimality for each. A similar analysis is also

performed for 3-machine cells. We prove that two of the six 1-unit cycles of

a 3-machine cell are dominated and need not be considered any further. We

determine a nondominated set of solutions for the remaining four cycles. We

prove that S3
6 dominates the rest of the cycles for the cycle time values that

can be attained by this cycle. For the remaining very small region, it is shown

that no dominance relations exist between the remaining three cycles. These

results suggest that considering only the cycle time as the unique objective

function hinders the additional information provided by the cost objective and

considering several different criteria provides useful insights to the decision

maker. We also consider how different assumptions on cost structures can be

handled using a 2-machine cell. These assumptions include how we can allocate

the machining cost and how we can take the cost incurred by the robot into

account. We show that if the machining cost and the cost of the robot are

allocated with respect to the cycle time, earlier results found in this study are

still valid. However, if the robot cost is allocated with respect to the exact

working time of the robot, the regions of optimality for the S2
1 and S2

2 cycles

change. This change is in favor of the S2
1 cycle under which the number of

robot moves is less than the number of robot moves under S2
2 cycle.

In the last chapter, we consider a more general bicriteria model by including

the decision of the allocation of the operations to the problem definition as well.

We first consider the S2
1 cycle for which the cycle time is independent of the

allocation of the operations. We show that the problem is identical to a single

machine makespan minimization problem with controllable processing times

and propose a new solution procedure to solve the problem in polynomial time
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by solving a nonlinear equation system with an approximation algorithm. On

the other hand, the cycle time of the S2
2 cycle depends on the allocation of

the operations and the allocation problem is proved to be NP-Complete. The

mathematical formulation of the problem is a mixed integer nonlinear (MINLP)

program. We develop a heuristic algorithm which efficiently generates a large

number of approximate efficient points. The results of the experimental design

on the problem parameters prove that the proposed algorithm is a powerful

method in terms of the number and the quality of the generated efficient

solutions and the computational requirements as well as in terms of several

multicriteria evaluation metrics.

9.2 Future Research Directions

This study considers a new set of problems for the first time in the robotic

cell scheduling literature which initiates some new research directions. These

problems arise from: (i) the assumption that the cell is a flexible manufacturing

cell in which highly flexible machines are used, (ii) considering bicriteria

approaches on robotic cell scheduling problems, and (iii) considering some

design problems.

Throughout this study we assume the parts to be identical. However,

since CNC machines are used to increase flexibility and reduce the response

time to meet the customer demand, the assumption of having identical parts

may be limiting in such systems. Considering multiple parts is a challenging

open problem in which case the additional problem of finding the part input

sequence must be solved. Another possible topic may be the case of non-

identical machines. Such a situation is commonly faced in industry, where for

example, some of the machines may be new and may technologically dominate
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the other ones in terms of power, speed etc. As a consequence, the processing

times of the same operation on different machines will be different. Hence,

the allocation problem of the operations to the machines and determining the

processing times for the controllable processing times get complicated even

further. The assumptions of multiple parts and nonidentical machines can

simultaneously or independently be adapted to all problems considered in this

study leading to new challenging problems.

In Chapter 4, we define a new class of robot move cycles called the pure

cycles and show that these cycles perform efficiently in comparison with the

traditional robot move cycles. However, finding the best pure cycle in an m-

machine cell is an open problem. Note that this is not an easy problem since

there are (2m− 1)! pure cycles in an m-machine cell. Deriving the cycle times

and comparing them with each other for that many cycles is a very challenging

task.

In Chapter 5, we consider some design problems including the layout of the

cells and the optimal number of machines to be placed in a cell. These design

problems can be combined with operational problems to have a more general

problem. For example, the optimal number of machines and the optimal layouts

can be determined for each pure cycle and the best pure cycle can be determined

by comparing the cycle times of these cycles. Additionally, there are some

studies considering determination of the number of robots in a robotic cell

with no-wait constraints. However, there are no studies which relax the no-

wait constraints. Combining such problems with the ones suggested in this

study will lead to more general design problems.

The number of machines in a robotic cell is an important parameter

affecting the problem complexity. Most analytical results could be derived

for the cells where the number of machines is 2 or 3. In this study also, in
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Chapters 6 and 8 we consider 2-machine cells and in Chapter 7 we consider

2- and 3-machine cells together. Solving similar problems for cells with larger

number of machines will be an important contribution to the literature.

A newly emerging area of research in the robotic cell scheduling literature

considers dual gripper robotic cells. Such robots can unload and then load

the same machine without having to move to another machine which leads to

an increase in the cell efficiency. However, the number of feasible robot move

cycles increases drastically in such cells. Considering dual gripper robotic cells

with operation allocation as well as with bicriteria objectives developed in this

study is a new research direction.

In Chapters 7 and 8, for the sake of simplicity, we restrict our analysis to

the 1-unit cycles. 1-unit cycles are important because they are simple, practical

and provide efficient results. However, as it is shown, in some cases these cycles

may yield suboptimal results. Hence, another future research direction is to

extend the analysis of these chapters so that not only 1-unit cycles but all

feasible cycles are considered as alternatives.
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Appendix A

Pure cycles for 2-machine cells

Cycle Activity Sequence Cycle Time

C1 A01A02A13A23 4ε + 6δ + 1/2(max{0, P − 2ε − 4δ})

C2 A01A02A23A13 4ε + 6δ + P/2

C3 A01A13A02A23 4ε + 6δ + P

C4 A01A13A23A02 4ε + 6δ + P/2

C5 A01A23A13A02 4ε + 7δ + 1/2(max{0, P − 2ε − 4δ})

C6 A01A23A02A13 4ε + 7δ + 1/2(max{0, P − 4ε − 8δ})

194



Appendix B

Derivation of the 2-unit cycles

Let us present the procedure for deriving the activity sequences for the 2-unit

robot move cycles. In a 2-unit cycle, each activity is made exactly twice. A

2-unit robot move cycle is in fact a combination of two 1-unit cycles. At some

part of the 2-unit cycle it follows the activity sequence of one of the 1-unit

cycles and in the remaining part it follows the activity sequence of the other

1-unit cycle. Then, in order to follow the activity sequences of two 1-unit robot

move cycles, there must be a transition state from one of them to the other and

later another transition from the latter one to the initial. This requires the two

1-unit robot move cycles to have at least one common state. In the context

of this study, any state of the system can be defined as a triplet (x1x2x3),

xi ∈ {0, 1} where xi = 0 indicates that machine i is empty and xi = 1 indicates

that machine i is loaded. For example, (011) is a state in which machine 1

is empty and machines 2 and 3 are loaded. The following lists the activity

sequences and the states of all 1-unit robot move cycles:

S3
1 : A0A1A2A3 : (000) → (100) → (010) → (001),

S3
2 : A0A2A1A3 : (010) → (110) → (101) → (011),

S3
3 : A0A1A3A2 : (001) → (101) → (011) → (010),

195
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S3
4 : A0A3A1A2 : (001) → (101) → (100) → (010),

S3
5 : A0A2A3A1 : (010) → (110) → (101) → (100),

S3
6 : A0A3A2A1 : (011) → (111) → (110) → (101).

In the above list all cycles have a common state with each other except

cycles S3
1 and S3

6 . This means that we will have C(6, 2) − 1 = 14, 2-unit

robot move cycles. Let us give an example of constructing a 2-unit robot move

cycle from two 1-unit robot move cycles. Let S3
ij be defined as the 2-unit cycle

made up from 1-unit cycles Si3 and Sj3. Let us consider S3
1 and S3

2 for this

example. The common state for these two cycles is (010). Thus, without loss

of generality, we may start with the activities of S3
1 and follow them until we

reach state (010); A0A1 · · ·. At the common state we start following the activity

sequence of S3
2 until we reach to that common state again; A0A1A0A2A1A3 · · ·.

Finally, we end up with the remaining activities of S3
1 ; A0A1A0A2A1A3A2A3.

The robot activity sequences for each of the fourteen 2-unit robot move

cycles over 3-machines are listed below.

S3
12 = A0A1A0A2A1A3A2A3 S3

26 = A0A2A1A0A3A2A1A3

S3
13 = A0A1A2A0A1A3A2A3 S3

34 = A0A1A3A2A0A3A1A2

S3
14 = A0A1A2A0A3A1A2A3 S3

35 = A0A1A3A0A2A3A1A2

S3
15 = A0A1A0A2A3A1A2A3 S3

36 = A0A1A0A3A2A1A3A2

S3
23 = A0A1A3A0A2A1A3A2 S3

45 = A0A2A3A1A2A0A3A1

S3
24 = A0A2A1A3A2A0A3A1 S3

46 = A0A1A0A3A2A3A1A2

S3
25 = A0A2A1A3A0A2A3A1 S3

56 = A0A2A1A0A3A2A3A1



Appendix C

Lower bounds for the 2-unit

cycles

Let TS3
ij(Π∗

k
)

be the lower bound of the cycle time of the 2-unit cycle S3
ij with

any allocation matrix Πk. Note that TS3
ij(Π∗

k
)
≤ minΠk

{TS3
ij(Πk)

}. We will show

that T2 ≤ TS3
ij(Π∗

k
)
. We will consider each 2-unit cycle, S3

ij, one at a time and

derive a lower bound, TS3
ij(Π∗

k
)
, for each of them. For each of these cycles, we

will consider one repetition of the cycle where we assume w.l.o.g. that the cycle

starts with the state that the robot is in front of the input buffer just taking

a part with ith allocation type. We will find a lower bound for the total time

of this particular repetition and show that this lower bound does not depend

on i, which means that the lower bound for the total time of this repetition of

the cycle is also a lower bound for the total time of all repetitions of the cycle.

Now let us consider each 2-unit cycle one at a time.

S3

12
: One can calculate the total time for one repetition of this cycle starting

with loading a part with ith allocation type as 16ε+ 20δ +Pi1 +wi2 +w(i+1)1 +

wi3 + w(i+1)2 + P(i+1)3,

197
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where wi2 = (Pi2 − 2ε − 4δ)+, w(i+1)1 = (P(i+1)1 − 2ε − 4δ − wi2)
+,

wi3 = (Pi3 − 2ε − 4δ − w(i+1)1)
+, and w(i+1)2 = (P(i+1)2 − 2ε − 4δ − wi3)

+.

Since we have Pi2−2ε−4δ ≤ wi2, Pi3−2ε−4δ−w(i+1)1 ≤ wi3, 0 ≤ w(i+1)2 and

0 ≤ P(i+1)3, we have 16ε+20δ+Pi1+Pi2−2ε−4δ+w(i+1)1+Pi3−2ε−4δ−w(i+1)1 ≤
16ε + 20δ + Pi1 + wi2 + w(i+1)1 + wi3 + w(i+1)2 + P(i+1)3. Since in a 2-unit cycle

two parts are produced in one repetition, a lower bound to produce one part

can be found as:

TS3
12(Π∗

k
)
= 1/2(P + 12ε + 12δ) > T2.

S3

13
: Total time of one repetition of this cycle is 16ε + 18δ + Pi1 + Pi2 +

P(i+1)1 + wi3 + w(i+1)2 + P(i+1)3, where wi3 = (Pi3 − 4ε − 6δ − P(i+1)1)
+ and

w(i+1)2 = (P(i+1)2 − 2ε − 4δ − wi3)
+.

Since P(i+1)2−2ε−4δ−wi3 ≤ w(i+1)2, we have 16ε+18δ+P(i+1)1+wi3+P(i+1)2−
2ε− 4δ−wi3 +P(i+1)3 ≤ 16ε+18δ +Pi1 +Pi2 +P(i+1)1 +wi3 +w(i+1)2 +P(i+1)3.

Thus, a lower bound for the time to produce one part can be found as:

TS3
13(Π∗

k
)
= 1/2(P + 14ε + 14δ) > T2.

S3

14
: Total time of one repetition of this cycle is 16ε + 20δ + Pi1 +

Pi2 + w(i+1)1 + wi3 + P(i+1)2 + P(i+1)3, where wi3 = (Pi3 − 2ε − 6δ)+ and

w(i+1)1 = (P(i+1)1 − 2ε − 6δ − wi3)
+.

Since P(i+1)1−2ε−6δ−wi3 ≤ w(i+1)1, we have 16ε+20δ+P(i+1)1−2ε−6δ−wi3+

wi3 + P(i+1)2 + P(i+1)3 ≤ 16ε + 20δ + Pi1 + Pi2 + w(i+1)1 + wi3 + P(i+1)2 + P(i+1)3.

Thus, a lower bound for the time to produce one part can be found as:

TS3
14(Π∗

k
)
= 1/2(P + 14ε + 14δ) > T2.

S3

15
: Total time of one repetition of this cycle is 16ε + 18δ + Pi1 +

wi2 + w(i+1)1 + Pi3 + P(i+1)2 + P(i+1)3, where wi2 = (Pi2 − 2ε − 4δ)+ and
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w(i+1)1 = (P(i+1)1 − 4ε − 6δ − wi2 − Pi3)
+.

Since Pi2 − 2ε − 4δ ≤ wi2 and 0 ≤ w(i+1)1, a lower bound for the total time to

produce one part can be found as:

TS3
15(Π∗

k
)
= 1/2(P + 14ε + 14δ) > T2.

S3

23
: Total time of one repetition of this cycle is 16ε + 22δ + Pi1 + w(i−1)3 +

wi2 + w(i+1)1 + wi3 + w(i+1)2, where w(i−1)3 = (P(i−1)3 − 4ε − 6δ − Pi1)
+,

wi2 = (Pi2 − 4ε − 8δ − w(i−1)3)
+, w(i+1)1 = (P(i+1)1 − 2ε − 4δ − wi2)

+,

wi3 = (Pi3 − 2ε − 4δ − w(i+1)1)
+, and w(i+1)2 = (P(i+1)2 − 2ε − 6δ − wi3)

+.

Since Pi2−4ε−8δ−w(i−1)3 ≤ wi2, Pi3−2ε−4δ−w(i+1)1 ≤ wi3 and 0 ≤ w(i+1)2,

a lower bound for the total time to produce one part can be found as:

TS3
23(Π∗

k
)
= 1/2(P + 10ε + 10δ) > T2.

S3

24
: Total time of one repetition of this cycle is 16ε + 24δ + w(i−1)2 +

wi1 + w(i−1)3 + wi2 + wi3 + w(i+1)1, where w(i−1)2 = (P(i−1)2 − 2ε − 4δ)+,

wi1 = (Pi1 − 2ε − 4δ − w(i−1)2)
+,

w(i−1)3 = (P(i−1)3 − 2ε − 4δ − wi1)
+, wi2 = (Pi2 − 2ε − 4δ − w(i−1)3)

+,

wi3 = (Pi3 − 2ε − 6δ)+, and w(i+1)1 = (P(i+1)1 − 2ε − 6δ − wi3)
+.

Since Pi1−2ε−4δ−w(i−1)2 ≤ wi1, Pi2−2ε−4δ−w(i−1)3 ≤ wi2, Pi3−2ε−6δ ≤ wi3

and 0 ≤ w(i+1)1, a lower bound for the total time to produce one part can be

found as:

TS3
24(Π∗

k
)
= 1/2(P + 10ε + 10δ) > T2.

S3

25
: Total time of one repetition of this cycle is 16ε + 22δ + w(i−1)2 +

wi1 + w(i−1)3 + wi2 + Pi3 + w(i+1)1, where w(i−1)2 = (P(i−1)2 − 2ε − 4δ)+,

wi1 = (Pi1 − 2ε − 4δ − w(i−1)2)
+,

w(i−1)3 = (P(i−1)3 − 2ε − 4δ − wi1)
+, wi2 = (Pi2 − 4ε − 8δ − w(i−1)3)

+, and
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w(i+1)1 = (P(i+1)1 − 4ε − 6δ − wi2 − Pi3)
+.

Since, Pi1−2ε−4δ−w(i−1)2 ≤ wi1, Pi2−4ε−8δ−w(i−1)3 ≤ wi2 and 0 ≤ w(i+1)1,

a lower bound for the total time to produce one part can be found as:

TS3
25(Π∗

k
)
= 1/2(P + 10ε + 10δ) > T2.

S3

26
: Total time of one repetition of this cycle is 16ε + 24δ + w(i−1)2 +

wi1 + w(i−1)3 + wi2 + wi3 + w(i+1)1, where w(i−1)2 = (P(i−1)2 − 4ε − 8δ − wi3)
+,

wi1 = (Pi1 − 2ε − 4δ − w(i−1)2)
+,

w(i−1)3 = (P(i−1)3 − 4ε − 8δ − wi1)
+, wi2 = (Pi2 − 4ε − 8δ − w(i−1)3)

+,

w(i+1)1 = (P(i+1)1−4ε−8δ−w(i−1)3−wi2)
+, and wi3 = (Pi3−2ε−4δ−w(i+1)1)

+.

Since Pi1 − 2ε − 4δ − w(i−1)2 ≤ wi1, Pi2 − 4ε − 8δ − w(i−1)3 ≤ wi2 and

Pi3 − 2ε − 4δ − w(i+1)1 ≤ wi3, a lower bound for the total time to produce

one part can be found as:

TS3
26(Π∗

k
)
= 1/2(P + 8ε + 8δ) = T2.

S3

34
: Total time of one repetition of this cycle is 16ε + 22δ + Pi1 + w(i−1)3 +

wi2 + wi3 + w(i+1)1 + P(i+1)2, where w(i−1)3 = (P(i−1)3 − 4ε − 6δ − Pi1)
+,

wi2 = (Pi2 − 2ε − 4δ − w(i−1)3)
+,

wi3 = (Pi3 − 2ε − 6δ)+, and w(i+1)1 = (P(i+1)1 − 2ε − 6δ − wi3)
+.

Since Pi2 − 2ε− 4δ−w(i−1)3 ≤ wi2, Pi3 − 2ε− 6δ ≤ wi3 and 0 ≤ w(i+1)1, a lower

bound for the total time to produce one part can be found as:

TS3
34(Π∗

k
)
= 1/2(P + 12ε + 12δ) > T2.

S3

35
: Total time of one repetition of this cycle is 16ε + 20δ + Pi1 + w(i−1)3 +

wi2 + Pi3 + w(i+1)1 + P(i+1)2, where w(i−1)3 = (P(i−1)3 − 4ε − 6δ − Pi1)
+,

wi2 = (Pi2 − 4ε− 8δ −w(i−1)3)
+, and w(i+1)1 = (P(i+1)1 − 4ε− 6δ −wi2 −Pi3)

+.

Since Pi2 − 4ε− 8δ −w(i−1)3 ≤ wi2 and 0 ≤ w(i+1)1, a lower bound for the total
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time to produce one part can be found as:

TS3
35(Π∗

k
)
= 1/2(P + 12ε + 12δ) > T2.

S3

36
: Total time of one repetition of this cycle is 16ε + 22δ + Pi1 + w(i+1)1 +

w(i−1)3 + wi2 + wi3 + w(i+1)2, where w(i−1)3 = (P(i−1)3 − 6ε − 10δ − Pi1)
+,

wi2 = (Pi2 − 4ε − 8δ − w(i−1)3)
+,

w(i+1)1 = (P(i+1)1 − 4ε − 8δ − w(i−1)3 − wi2)
+, wi3 = (Pi3 − 2ε − 4δ − w(i+1)1)

+,

and

w(i+1)2 = (P(i+1)2 − 2ε − 4δ − wi3)
+.

Since Pi2−4ε−8δ−w(i−1)3 ≤ wi2, Pi3−2ε−4δ−w(i+1)1 ≤ wi3 and 0 ≤ w(i+1)2,

a lower bound for the total time to produce one part can be found as:

TS3
36(Π∗

k
)
= 1/2(P + 10ε + 10δ) > T2.

S3

45
: Total time of one repetition of this cycle is 16ε + 22δ + w(i−1)2 +

P(i−1)3 + wi1 + Pi2 + wi3 + w(i+1)1, where w(i−1)2 = (P(i−1)2 − 2ε − 4δ)+,

wi1 = (Pi1 − 4ε − 6δ − w(i−1)2 − P(i−1)3)
+,

wi3 = (Pi3 − 2ε − 6δ)+, and w(i+1)1 = (P(i+1)1 − 2ε − 6δ − wi3)
+.

Since Pi1−4ε−6δ−w(i−1)2−P(i−1)3 ≤ wi1, Pi3−2ε−6δ ≤ wi3 = and 0 ≤ w(i+1)1,

a lower bound for the total time to produce one part can be found as:

TS3
45(Π∗

k
)
= 1/2(P + 10ε + 10δ) > T2.

S3

46
: Total time of one repetition of this cycle is 16ε + 20δ + Pi1 + w(i−1)3 +

wi2 + Pi3 + w(i+1)1 + w(i+1)2, where w(i−1)3 = (P(i−1)3 − 6ε − 10δ − Pi1)
+,

wi2 = (Pi2 − 4ε − 8δ − w(i−1)3)
+, and

w(i+1)1 = (P(i+1)1 − 6ε − 10δ − w(i−1)3 − wi2 − Pi3)
+.

Since Pi2 − 4ε− 8δ −w(i−1)3 ≤ wi2 and 0 ≤ w(i+1)1, a lower bound for the total

time to produce one part can be found as:
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TS3
46(Π∗

k
)
= 1/2(P + 12ε + 12δ) > T2.

S3

56
: Total time of one repetition of this cycle is 16ε + 22δ + w(i−1)2 +

wi1 + w(i−1)3 + wi2 + Pi3 + w(i+1)1, where w(i−1)2 = (P(i−1)2 − 2ε − 4δ)+,

wi1 = (Pi1 − 2ε − 4δ − w(i−1)2)
+,

w(i−1)3 = (P(i−1)3 − 4ε − 8δ − wi1)
+, wi2 = (Pi2 − 4ε − 8δ − w(i−1)3)

+, and

w(i+1)1 = (P(i+1)1 − 6ε − 10δ − w(i−1)3 − wi2 − Pi3)
+.

Since Pi1−2ε−4δ−w(i−1)2 ≤ wi1, Pi2−4ε−8δ−w(i−1)3 ≤ wi2 and 0 ≤ w(i+1)1,

a lower bound for the total time to produce one part can be found as:

TS3
56(Π∗

k
)
= 1/2(P + 10ε + 10δ) > T2.

Thus, for any 2-unit cycle, S3
ij, we showed that T2 ≤ TS3

ij(Π∗

k
)
. Consequently,

we can use T2 as a global lower bound for the 2-unit robot move cycles. 2



Appendix D

Cycle time calculations

We will find the cycle times of S2
1 , S2

2 and S12S21 for a given k-allocation type.

Let us start with S2
1 . Sethi et al. [86] proved the cycle time of S2

1 to be:

TS2
1

= 6ε + 6δ + a + b,

where a and b are the processing times of the part on the first and second

machines respectively. With our notation this cycle time is the following

TS2
1

= 6ε + 6δ + P + PM1 + PM2, (D.1)

and it does not depend on the allocation type. So whatever the allocation is,

this cycle time is the same.

Now consider S2
2 . Sethi et al. [86] also provided that:

TS2
2

= 6ε + 8δ + max{0, a − (2ε + 4δ), b − (2ε + 4δ)},

where a and b are defined as above. With our definitions the above equation

is the cycle time of S2
2 with one-allocation type where, a = PM1 + P11 and

b = PM2 + P12. Then the cycle time of a one-allocation for cycle S2
2 with our

notation is the following:

TS2
2(Π1) = 6ε+8δ+max{0, PM1+P11−(2ε+4δ), PM2+P12−(2ε+4δ)}. (D.2)

203
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Now consider a two-allocation type for the cycle S2
2 : for a part with the first

allocation type, the processing time on the first machine is PM1 + P11 and on

the second machine is PM2 + P12. For a part with the second allocation type,

the processing times on the first and the second machines are PM1 + P21 and

PM2 + P22 respectively. Then, the long run average cycle time to produce one

part with cycle S2
2 with a specific allocation matrix Π2 is:

TS2
2(Π2) = 6ε + 8δ

+1/2(max{0, PM1 + P11 − (2ε + 4δ), PM2 + P22 − (2ε + 4δ)})

+1/2(max{0, PM1 + P21 − (2ε + 4δ), PM2 + P12 − (2ε + 4δ)}).
(D.3)

We can easily generalize this for a k-allocation type for the cycle S2
2 as

follows:

TS2
2(Πk) = 6ε + 8δ

+1/k(max{0, PM1 + P11 − (2ε + 4δ), PM2 + Pk2 − (2ε + 4δ)})

+1/k(max{0, PM1 + P21 − (2ε + 4δ), PM2 + P12 − (2ε + 4δ)})

+1/k(max{0, PM1 + P31 − (2ε + 4δ), PM2 + P22 − (2ε + 4δ)})

+ . . .

+1/k(max{0, PM1 + Pk1 − (2ε + 4δ), PM2 + P(k−1)2 − (2ε + 4δ)}).
(D.4)

Now let us consider cycle S12S21. The long run average cycle time for one-

allocation type for the cycle S12S21 can be derived as follows: The activity

sequence of this robot move cycle is A0A1A0A2A1A2. Initially both machines

are empty and the robot is in front of the input buffer just starting to take a

part. The robot takes a part from the input buffer transports it to the first
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machine and loads it, (ε + δ + ε); waits in front of the machine to finish the

processing of the part, (PM1+P11); unloads the part transports it to the second

machine and loads it, (ε+δ+ε); returns back to the input buffer, takes another

part, transports it to the first machine and loads it, (2δ + ε + δ + ε); travels

to the second machine, (δ); waits if necessary, (w12); unloads the machine,

transports the part to the output buffer and drops it (ε + δ + ε); travels to the

first machine, (2δ); waits if necessary, (w11); unloads the machine, transports

the part to the second machine and loads it, (ε + δ + ε); waits for the machine

to finish the processing, (PM2 +P12); unloads the machine, transports it to the

output buffer, drops the part and returns back to the input buffer so that the

initial and the final states are the same, (ε + δ + ε + 3δ ). As a result, total

time to produce two parts is:

TS12S21(Π1) = 12ε + 14δ + P + PM1 + PM2 + w11 + w12,

where w11 = max{0, PM1 + P11 − (2ε + 4δ + w12)} and w12 = max{0, PM2 +

P12 − (2ε + 4δ)}.
In other words, w11+w12 = max{0, PM1+P11−(2ε+4δ), PM2+P12−(2ε+4δ)}.

Hence the cycle time for one-allocation for the cycle S12S21 is:

TS12S21(Π1) = 1
2

(

2ε + 14δ + P + PM1 + PM2
)

+1
2

(

max{0, PM1 + P11 − (2ε + 4δ), PM2 + P12 − (2ε + 4δ)}
)

.

(D.5)

Now consider the case when we have two-allocation types:

TS12S21(Π2) =
12ε + 14δ + PM1 + PM2 + P11 + P22 + w12 + w21

2
,

where w12 = max{0, PM1 + P12 − (2ε + 4δ + w21)} and w21 = max{0, PM2 +
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P21 − (2ε + 4δ)}. In other words,

TS12S21(Π2) = 1/2(12ε + 14δ + PM1 + PM2 + P11 + P22)

+1/2(max{0, PM1 + P21 − (2ε + 4δ), PM2 + P12 − (2ε + 4δ)}).
(D.6)



Appendix E

Proof of Theorem 6.4

The following definition will play a crucial role in the forthcoming context.

Definition E.1 State 0 is defined to be the state in which both machines are

empty and the robot is in front of the input buffer.

Consider any n-unit robot move cycle during which State 0 is encountered.

Clearly, the allocations immediately preceding and those immediately following

this state can be treated as completely independent from each other. As far

as the cycle time computations are involved, the contribution of the portion of

the cycle between two State 0’s is simply additive. This observation deserves

further attention:

Fact E.1 The average cycle time of an n-unit robot move cycle is simply the

average of the cycle time corresponding to a sub-cycle between two State 0’s

and the cycle time of the remaining cycle after the sub-cycle is extracted.

After inspecting the cycles we have introduced thus far, it is easy to state

that:

207
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Fact E.2 S1 cycle starts and ends with State 0. S12 sequence starts with State

0 and S21 sequence ends with State 0.

With these observations, we are now ready to proceed with the proof of

Theorem 6.4.

Proof. Hall et al. [43] showed that any n-unit robot move cycle can be

represented by the four robot move sequences: S2
1 , S2

2 , S12 and S21. However,

not all of these sequences can follow any other since otherwise the basic

feasibility assumptions of Crama et al. [21] stating that the robot cannot

load an already loaded machine and cannot unload an already empty machine

may be violated. Figure 6.1 depicts the feasible transitions from one sequence

to another. Now let us consider any n-unit robot move cycle with the optimal

allocation type. In its generality, we assume this cycle to contain at least one

of these four robot move sequences. The allocation of the operations does

not affect the loading/unloading and transportation times but only affects the

processing times which in turn affect the waiting times of the robot in front of

the machines. Let us first analyze one of the S2
1 cycles within this n-unit robot

move cycle. Using Facts E.1 and E.2 above we conclude that the allocation for

this cycle does not affect the remaining part of the cycle. Also, as mentioned

previously, there is no allocation problem for S2
1 cycle, and the waiting time

for S2
1 is P + PM1 + PM2, independent of the allocation. When we remove the

activity sequence A0A1A2, corresponding to S2
1 from the activity sequence of

the n-unit robot move cycle, we get a new feasible (n − 1)-unit robot move

cycle for which the optimal allocation for the remaining parts does not change.

Assume that there are a total of z S2
1 cycles within the n-unit robot move

cycle where z = 0, 1, . . . , n. Let Tn−z be the cycle time of the new (n − z)-

unit robot move cycle, say Cn−z, which is attained by removing the activity

sequences of all S2
1 cycles. Hence, the cycle time of our n-unit robot move cycle
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is:

Tn =
z ∗ TS2

1
+ (n − z) ∗ Tn−z

n
.

This equation states that Tn ≥ min{TS2
1
, Tn−z}.

Now let us consider Cn−z. From Figure 6.1 we see that between two S12

sequences one S21 sequence must be performed. Between one S12 and one S21

any number of S2
2 sequences can be performed. Thus we can partition Cn−z

into sub-cycles each of which starts with S12 performs a number of S2
2 ’s and

ends up with S21. Furthermore, as stated as Fact E.1 above, the allocation for

such cycles does not affect the allocation for the remaining part of the cycle and

is not affected by the allocation of the remaining part of the cycle. The cycle

time of the whole (n− z)-unit robot move cycle is a convex combination of the

cycle times of these sub-cycles. Let Ti be the cycle time of the ith sub-cycle

with the optimal allocation type then, clearly, Tn−z ≥ mini{Ti}. Henceforth,

Tn ≥ min{TS2
1
,mini{Ti}}.

Now let us consider any such cycle which starts with S12, performs a total

of l S2
2 ’s l = 0, 1, . . . and ends up with S21. Note that this is an (l + 2)-

unit cycle. Let us represent this cycle as S12(l − S2
2)S21. Since in every cycle

each machine is loaded and unloaded an equal number of times, the average

loading/unloading time to produce one part for all cycles are equal to each

other, namely, 6ε. Repeating cycle S2
2 l times requires a total of 8lδ. Repeating

S12 one time, which has an activity sequence of A0A1A0, requires 5δ and the

following activity of this sequence can only be A2 which requires an additional

δ to travel between final state of S12 (first machine) to the initial state of the

next sequence (second machine). In a similar way repeating S21 (A2A1A2) one

time requires 5δ and an additional 3δ to travel between the last state of S21

(output buffer) to initial state of the following sequence which must start with

activity A0 (input buffer). Then the average travel time to produce one part
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with the cycle S12(l − S2
2)S21 is:

6δ + 8lδ + 8δ

l + 2
=

8l + 14

l + 2
δ.

The last component in our cycle time representations is the total waiting time

of the robot in front of the machines. We can find the waiting time as follows:

Assume for the cycle S12(l − S2
2)S21 using k allocation types is optimal and

consider the specific allocation matrix Πk. The first part will be produced

according to the cycle S12 which implies a full waiting time in front of the

first machine: PM1 + P11, and will be processed according to S2
2 on the second

machine which means a partial waiting time in front of the second machine:

w12 = max{0, PM2 + P12) − (2ε + 4δ)}. The next l parts will be processed

according to S2
2 cycle on both machines. The partial waiting time for the

second part on the first machine is: w21 = max{0, PM1 +P21−(2ε+4δ+w12)}.
Then we have:

w12 + w21 = max{0, PM1 + P12 − (2ε + 4δ), PM2 + P21 − (2ε + 4δ)}.

Proceeding in the same way for all parts, total waiting time to produce l + 2

parts is:

PM1 + PM2 + P11 + P(l+2)2

+max{0, PM1 + P21 − (2ε + 4δ), PM2 + P12 − (2ε + 4δ)}

+max{0, PM1 + P31 − (2ε + 4δ), PM2 + P22 − (2ε + 4δ)}

+max{0, PM1 + P41 − (2ε + 4δ), PM2 + P32 − (2ε + 4δ)}

+ . . .

+max{0, PM1 + P(l+1)1 − (2ε + 4δ), PM2 + Pl2 − (2ε + 4δ)}

+max{0, PM1 + P(l+2)1 − (2ε + 4δ), PM2 + P(l+1)2 − (2ε + 4δ)}.

In the above equation let us insert P11 and P(l+2)2 into the first and last max

terms respectively. By this change all other max terms remain the same but
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these two become:

max{P11, P
M1 + P21 + P11 − (2ε + 4δ), PM2 + P − (2ε + 4δ)} and

max{P(l+2)2, P
M1 + P − (2ε + 4δ), PM2 + P(l+1)2 + P(l+2)2 − (2ε + 4δ)}.

Under the optimal allocation we must have P ∗
11 = 0 and P(l+2)2 = 0. This

means for the first part allocating all operations that are in set O to the

second machine and for the last part allocating them to the first machine.

Furthermore, since we assumed that PM1 ≥ PM2, letting P(l+1)2 = P does not

change the cycle time. As a result of these, the last max term of the above

equation becomes:

max{0, PM1 + P − (2ε + 4δ), PM2 + P − (2ε + 4δ)} = max{0, PM1 + P − (2ε + 4δ)}.

After including the loading/unloading and travel times, the cycle time of S12(l−
S2

2)S21 under optimal allocation matrix Π∗
k becomes:

6ε + (14+8l)
(l+2)

δ + 1
(l+2)

(PM1 + PM2) (E.1)

+1/(l + 2)(max{0, PM1 + P ∗
21 − (2ε + 4δ), PM2 + P − (2ε + 4δ)}) (E.2)

+1/(l + 2)(max{0, PM1 + P ∗
31 − (2ε + 4δ), PM2 + P ∗

22 − (2ε + 4δ)}) (E.3)

+1/(l + 2)(max{0, PM1 + P ∗
41 − (2ε + 4δ), PM2 + P ∗

32 − (2ε + 4δ)}) (E.4)

+ . . .

+1/(l + 2)(max{0, PM1 − (2ε + 4δ), PM2 + P ∗
l2)) − (2ε + 4δ)}) (E.(l + 1))

+1/(l + 2)(max{0, PM1 + P − (2ε + 4δ)}) (E.(l + 2)).

Let W (S12S21) represent the waiting time of two-allocation for cycle

S12S21 with optimal allocation Π∗, which in equation (6.3) was found to be:

W (S12S21) = 1
2
(max{0, P + PM1 − (2ε + 4δ)}). Then, the (E.(l + 2))nd

component in the above representation is 2
(l+2)

W (S12S21). Consider lines (E.2)

through (E.(l + 1)) above. They share the same pattern as the waiting time
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component corresponding to an l-allocation type for the cycle S2
2 in (D.4). Let

W (S2
2) be this waiting time component in (D.4) when we plug in the respective

allocations from (E.2) through (E.(l +1)). The summation of the components

(E.2) through (E.(l + 1)) is then l
l+2

W (S2)
2. In conclusion,

TS12(l−S2
2)S21

=
2(6ε + 7δ + P M1+P M2

2
+ W (S12S21)) + l(6ε + 8δ + W (S2

2))

l + 2
.

In particular, the cycle time of S12(l − S2
2)S21 is a convex combination of

the cycle times of two-allocation for S12S21 and l-allocation for S2
2 . Clearly,

TS12(l−S2
2)S21

≥ min{TS2
2(Π∗), TS12S21(Π∗)}.

Finally, we have managed to show that the cycle time of the n-unit cycle

we started out with, Tn ≥ min{TS2
1
, TS2

2(Π∗), TS12S21(Π∗)}. 2



Appendix F

1-unit cycles for 3-machine cells

Here we will present the robot activity sequences and the cycle times of the six

feasible 1-unit cycles for a 3-machine robotic cell.

S3
1 : A0A1A2A3 : 8ε + 8δ + P1 + P2 + P3,

S3
2 : A0A2A1A3 : max{8ε + 12δ, P1 + 6ε + 8δ, P2 + 4ε + 4δ, P3 + 6ε + 8δ, (P1 +

P2 + P3)/2 + 4ε + 4δ},
S3

3 : A0A1A3A2 : max{P1 + 8ε + 10δ, P1 + P2 + 6ε + 6δ, P3 + 4ε + 4δ},
S3

4 : A0A3A1A2 : max{P1 + P2 + 6ε + 6δ, P2 + 8ε + 12δ, P2 + P3 + 6ε + 6δ},
S3

5 : A0A2A3A1 : max{P1 + 4ε + 4δ, P2 + P3 + 6ε + 6δ, P3 + 8ε + 10δ},
S3

6 : A0A3A2A1 : max{8ε + 12δ, P1 + 4ε + 4δ, P2 + 4ε + 4δ, P3 + 4ε + 4δ}.

213
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Computational results
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R1

Factors
Rep N = 0 > 0

Avg Case Avg
< 0

Avg Case Avg

B C D (×10−6) (×10−6) (×10−6) (×10−6)

1 20 0 3 0,214 17 -6,378

2 20 0 3 0,159 17 -6,542

0 0 0 3 20 0 3 0,310 0,260 17 -11,708 -6,629

4 20 0 2 0,404 18 -4,175

5 20 0 0 - 20 -4,810

1 20 0 2 0,079 18 -3,323

2 20 0 7 0,400 13 -0,592

1 0 0 3 20 0 7 0,368 0,338 13 -4,542 -3,476

4 20 0 0 - 20 -6,659

5 20 0 2 0,275 18 -1,404

1 20 1 3 1,969 16 -7,752

2 20 0 3 0,317 17 -25,227

0 1 0 3 20 0 6 0,304 0,608 14 -9,843 -12,507

4 20 0 4 0,568 16 -12,986

5 20 0 4 0,301 16 -5,598

1 20 0 2 0,483 18 -6,115

2 20 0 1 0,651 19 -5,787

1 1 0 3 20 0 3 0,396 0,589 17 -4,571 -7,934

4 20 0 1 0,886 19 -9,642

5 20 0 4 0,698 16 -14,073

1 20 0 0 - 20 -5,875

2 20 1 0 - 19 -10,855

0 0 1 3 20 0 1 0,027 0,092 19 -12,914 -9,115

4 20 0 2 0,079 18 -5,938

5 20 0 1 0,182 19 -9,994

1 20 0 1 0,077 19 -1,657

2 20 1 4 0,173 15 -0,214

1 0 1 3 20 0 1 0,068 0,156 19 -1,622 -2,745

4 20 0 1 0,127 19 -4,172

5 20 0 1 0,289 19 -5,529

1 20 0 1 6,721 19 -897,315

2 20 0 0 - 20 -8,403

0 1 1 3 20 1 2 0,229 1,127 17 -13,857 -195,518

4 20 0 5 0,368 15 -3,099

5 20 0 0 - 20 -14,652

1 20 1 3 0,032 16 -2,890

2 20 0 0 - 20 -9,345

1 1 1 3 20 0 3 0,098 0,099 17 -3,364 -7,161

4 20 1 2 0,186 17 -15,743

5 20 0 2 0,115 18 -4,013

Table G.1: Comparison of EFFRONT with DICOPT for 20 operations
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R2

Factors
Rep N = 0 > 0

Avg Case Avg
< 0

Avg Case Avg

B C D (×10−6) (×10−6) (×10−6) (×10−6)

1 20 1 9 0,803 10 -3,060

2 20 0 10 1,024 10 -7,806

0 0 0 3 20 1 12 1,128 1,012 7 -11,580 -5,665

4 20 0 12 0,611 8 -4,601

5 20 0 12 1,447 8 -2,134

1 20 0 9 0,227 11 -4,528

2 20 0 9 0,741 11 -0,597

1 0 0 3 20 0 9 0,599 0,484 11 -5,168 -3,448

4 20 0 7 0,454 13 -6,337

5 20 0 8 0,380 12 -0,365

1 20 0 16 1,472 4 -23,060

2 20 0 15 1,281 5 -65,739

0 1 0 3 20 0 16 1,316 1,287 4 -32,734 -35,440

4 20 0 15 1,265 5 -34,156

5 20 0 16 1,102 4 -14,261

1 20 0 6 0,560 14 -7,652

2 20 0 9 0,819 11 -8,100

1 1 0 3 20 0 12 0,784 0,807 8 -1,278 -8,959

4 20 0 8 0,951 12 -9,068

5 20 0 5 0,905 15 -14,818

1 20 0 10 1,103 10 -6,296

2 20 0 7 0,779 13 -12,234

0 0 1 3 20 0 11 0,531 0,847 9 -25,476 -10,175

4 20 0 9 0,971 11 -3,442

5 20 0 9 0,878 11 -5,482

1 20 0 5 0,290 15 -0,771

2 20 0 5 0,144 15 -0,204

1 0 1 3 20 0 7 0,089 0,170 13 -1,138 -1,526

4 20 0 9 0,139 11 -0,923

5 20 0 9 0,214 11 -5,419

1 20 0 1 8,337 19 -892,034

2 20 0 9 0,904 11 -7,725

0 1 1 3 20 0 10 0,577 0,854 10 -20,499 -306,385

4 20 0 12 0,512 8 -4,048

5 20 0 11 0,756 9 -21,440

1 20 0 13 0,293 7 -4,977

2 20 0 4 0,199 16 -6,256

1 1 1 3 20 0 12 0,347 0,280 8 -3,764 -7,962

4 20 0 5 0,107 15 -15,275

5 20 0 14 0,296 6 -3,317

Table G.2: Comparison of EFFRONT with BARON for 20 operations
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R3

Factors
Rep N = 0 > 0

Avg Case Avg
< 0

Case Avg

B C D (×10−6) (×10−6) (×10−6)

1 20 2 18 4,690 0 -

2 20 3 17 2,524 0 -

0 0 0 3 20 2 18 7,255 4,436 0 -

4 20 1 19 2,361 0 -

5 20 2 18 5,360 0 -

1 20 2 18 0,660 0 -

2 20 4 16 0,312 0 -

1 0 0 3 20 3 17 0,295 1,140 0 -

4 20 2 18 2,999 0 -

5 20 2 18 1,299 0 -

1 20 1 19 2,602 0 -

2 20 2 18 6,580 0 -

0 1 0 3 20 4 16 1,630 3,371 0 -

4 20 3 17 3,159 0 -

5 20 2 18 2,719 0 -

1 20 7 13 0,411 0 -

2 20 2 18 1,532 0 -

1 1 0 3 20 1 19 3,985 2,557 0 -

4 20 2 18 4,506 0 -

5 20 12 8 0,579 0 -

1 20 1 19 3,452 0 -

2 20 1 19 2,772 0 -

0 0 1 3 20 1 19 1,152 3,818 0 -

4 20 3 17 4,565 0 -

5 20 1 19 7,227 0 -

1 20 1 19 1,120 0 -

2 20 10 10 0,018 0 -

1 0 1 3 20 1 19 0,873 1,828 0 -

4 20 1 19 3,697 0 -

5 20 2 18 2,615 0 -

1 20 2 18 5,667 0 -

2 20 2 18 5,068 0 -

0 1 1 3 20 3 17 2,111 3,999 0 -

4 20 3 17 1,082 0 -

5 20 1 19 5,705 0 -

1 20 2 18 0,839 0 -

2 20 1 19 4,610 0 -

1 1 1 3 20 2 18 1,720 2,512 0 -

4 20 2 18 2,149 0 -

5 20 2 18 3,125 0 -

Table G.3: Comparison of DICOPT with BARON for 20 operations
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R1

Factors
Rep N = 0 > 0

Avg Case Avg
< 0

Avg Case Avg

B C D (×10−6) (×10−6) (×10−6) (×10−6)

1 20 1 2 0,027 17 -2,960

2 20 0 3 0,088 17 -1,210

0 0 0 3 20 0 1 0,220 0,088 19 -4,744 -2,603

4 20 0 3 0,081 17 -0,421

5 20 0 1 0,101 19 -3,343

1 20 0 5 0,087 15 -0,269

2 20 0 7 0,131 13 -0,152

1 0 0 3 20 0 7 0,121 0,125 13 -0,122 -0,174

4 20 0 6 0,217 14 -0,139

5 20 0 8 0,079 12 -0,175

1 20 1 2 0,049 17 -0,464

2 20 0 1 0,178 19 -10,434

0 1 0 3 20 0 4 0,178 0,131 16 -1,991 -3,656

4 20 0 2 0,100 18 -2,284

5 20 0 1 0,120 19 -2,435

1 20 0 2 0,247 18 -1,756

2 20 1 1 0,022 18 -5,046

1 1 0 3 20 0 2 0,198 0,162 18 -0,560 -1,864

4 20 0 6 0,120 14 -0,570

5 20 0 12 0,174 8 -0,146

1 20 0 0 - 20 -13,079

2 20 0 1 0,057 19 -4,875

0 0 1 3 20 0 11 0,065 0,054 9 -0,053 -6,334

4 20 0 4 0,045 16 -0,115

5 20 0 3 0,024 17 -9,206

1 20 0 4 0,032 16 -0,392

2 20 0 7 0,070 13 -0,522

1 0 1 3 20 1 6 0,042 0,069 13 -0,119 -0,264

4 20 0 3 0,041 17 -0,143

5 20 0 13 0,098 7 -0,053

1 20 0 0 - 20 -2,628

2 20 0 4 0,070 16 -0,156

0 1 1 3 20 0 1 0,052 0,067 19 -5,439 -3,078

4 20 0 1 0,032 19 -4,075

5 20 0 2 0,088 18 -2,632

1 20 0 10 0,096 10 -0,107

2 20 0 2 0,048 18 -0,189

1 1 1 3 20 0 3 0,073 0,077 17 -0,850 -0,453

4 20 1 1 0,003 18 -0,492

5 20 0 2 0,058 18 -0,496

Table G.4: Comparison of EFFRONT with DICOPT for 50 operations
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R1

Factors
Rep N = 0 > 0

Avg Case Avg
< 0

Avg Case Avg

B C D (×10−6) (×10−6) (×10−6) (×10−6)

1 20 0 6 0,072 14 -761,084

2 20 0 1 0,094 19 -9,120

0 0 0 3 20 0 5 0,093 0,075 15 -0,176 -138,228

4 20 0 3 0,080 17 -5,058

5 20 0 6 0,058 14 -0,208

1 20 0 3 0,089 17 -0,566

2 20 1 4 0,035 15 -0,399

1 0 0 3 20 0 10 0,075 0,078 10 -0,192 -0,329

4 20 0 5 0,078 15 -0,188

5 20 0 14 0,090 6 -0,068

1 20 0 7 0,068 13 -0,189

2 20 0 3 0,093 17 -0,923

0 1 0 3 20 0 5 0,115 0,091 15 -3,022 -2,171

4 20 0 5 0,088 15 -0,193

5 20 0 2 0,119 18 -5,720

1 20 0 5 0,022 15 -0,173

2 20 0 11 0,121 9 -0,114

1 1 0 3 20 0 6 0,100 0,101 14 -0,141 -0,161

4 20 0 6 0,092 14 -0,179

5 20 0 10 0,124 10 -0,186

1 20 0 2 0,012 18 -156,523

2 20 0 1 0,039 19 -0,357

0 0 1 3 20 0 2 0,026 0,023 18 -2,159 -31,942

4 20 1 1 0,037 18 -0,874

5 20 0 1 0,009 19 -3,153

1 20 0 2 0,060 18 -0,500

2 20 1 10 0,058 9 -0,033

1 0 1 3 20 0 12 0,055 0,051 8 -0,054 -0,420

4 20 0 11 0,041 9 -0,057

5 20 0 2 0,033 18 -0,879

1 20 0 9 0,065 11 -0,238

2 20 0 0 - 20 -26,136

0 1 1 3 20 0 2 0,040 0,060 18 -23,952 -12,719

4 20 0 6 0,056 14 -0,089

5 20 0 1 0,080 19 -4,484

1 20 0 9 0,059 11 -0,074

2 20 0 12 0,058 8 -0,041

1 1 1 3 20 2 4 0,047 0,062 14 -0,178 -0,527

4 20 0 3 0,055 17 -1,559

5 20 0 7 0,085 13 -0,234

Table G.5: Comparison of EFFRONT with DICOPT for 80 operations
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Factor Sum of Squares df Mean Square F Sig.

B

Between Groups 421148,621 1 421148,621 7,86 0,005

E-D Within Groups 42756562,86 798 53579,653

Total 43177711,49 799

Between Groups 388350,586 1 388350,586 7,246 0,007

E-B Within Groups 42767898,24 798 53593,857

Total 43156248,83 799

Between Groups 664,829 1 664,829 23,348 0

D-B Within Groups 22723,051 798 28,475

Total 23387,88 799

C

Between Groups 409857,987 1 409857,987 7,647 0,006

E-D Within Groups 42767853,5 798 53593,801

Total 43177711,49 799

Between Groups 406853,733 1 406853,733 7,595 0,006

E-B Within Groups 42749395,09 798 53570,671

Total 43156248,83 799

Between Groups 5,533 1 5,533 0,189 0,664

D-B Within Groups 23382,347 798 29,301

Total 23387,88 799

D

Between Groups 360605,577 1 360605,577 6,721 0,01

E-D Within Groups 42817105,91 798 53655,521

Total 43177711,49 799

Between Groups 356145,59 1 356145,59 6,64 0,01

E-B Within Groups 42800103,24 798 53634,215

Total 43156248,83 799

Between Groups 13,889 1 13,889 0,474 0,491

D-B Within Groups 23373,991 798 29,291

Total 23387,88 799

Table H.1: ANOVA tables for p = 20 operations
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p Factor Sum of Squares df Mean Square F Sig.

50

Between Groups 1663,62 1 1663,62 68,81 0

B Within Groups 19293,329 798 24,177

Total 20956,949 799

Between Groups 0,264 1 0,264 0,01 0,92

C Within Groups 20956,684 798 26,262

Total 20956,949 799

Between Groups 26,185 1 26,185 0,998 0,318

D Within Groups 20930,764 798 26,229

Total 20956,949 799

80

Between Groups 280756,559 1 280756,559 1,854 0,174

B Within Groups 120873263 798 151470,254

Total 121154019,6 799

Between Groups 200116,921 1 200116,921 1,32 0,251

C Within Groups 120953902,7 798 151571,307

Total 121154019,6 799

Between Groups 62555,897 1 62555,897 0,412 0,521

D Within Groups 121091463,7 798 151743,689

Total 121154019,6 799

Table H.2: ANOVA tables for p = 50 and p = 80 operations
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