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ABSTRACT

EXAMPLE BASED MACHINE TRANSLATION WITH
TYPE ASSOCIATED TRANSLATION EXAMPLES

Hande DOĞAN

M.S. in Computer Engineering

Supervisor: Assist. Prof. Dr. İlyas Çiçekli

January, 2007

Example based machine translation is a translation technique that leans on

machine learning paradigm. This technique had been modeled by the learning

process as: a man is given short and simple sentences in language A with their

correspondences in language B; he memorizes these pairs and then becomes able

to translate new sentences via these pairs in the memory. In our system the

translation pairs are kept as translation templates. A translation template is

induced from given two translation examples by replacing differing parts in these

examples by variables. A variable replacing a difference that consists of two

differing parts (one from the first example, and the other one from the second

example) is a generalization of those two differing parts and these variables are

supported with part-of-speech tag information in order to deteriorate incorrect

translations. After the learning phase, translation is achieved by finding the

appropriate template(s) and replacing the variables.

Keywords: Example Based Machine Translation, Type Associated Translation

Template Induction, Machine Learning.
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ÖZET

TİP DESTEKLİ ÇEVİRİ KALIPLARI İLE ÖRNEK

TABANLI OTOMATİK ÇEVİRİ

Hande DOĞAN

Bilgisayar Mühendisliği, Yüksek Lisans

Tez Yöneticisi: Yard. Doç. Dr. İlyas Çiçekli

Ocak, 2007

Örnek tabanlı otomatik çeviri sistemleri makine öğrenmesine dayanan

yöntemlerden yararlanarak çeviri yaparlar. Bu çeviri süreci şöyle özetlenebilir:

Bir insan birinci dilde basit ve kısa cümleleri ikinci dildeki karşılıkları ile bir-

likte ezberledikten sonra muhakeme ile yeni verilen cümleleri daha önceden

öğrendikleri aracılığıyla çevirebilir. Bizim sistemimizde çeviri örnekleri çeviri

kalıpları olarak tutulmaktadır. Çeviri kalıpları, iki çeviri örneğinden, örneklerin

farklı kısımlarınının yerine değişkenler koyularak öğrenilmektedir. Değişik

kısımların yerine geçen değişkenler, çeviri örneklerinin herbirinden gelen değişik

kısımları genelleştirmektedir. Bu sistemde değişkenlerin genelleştirdikleri

kısımların tip bilgilerini de çeviri kalıplarının yapısına ekleyerek yanlış çeviri

sonuçlarının sistemce üretilmesinin engellenmesi amaçlanmaktadır.

Anahtar sözcükler : Örnek Tabanlı Otomatik Çeviri, Tip Destekli Çeviri Kalıpları,

Makine Öğrenmesi.
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I would like to thank to Mehmet Köseoğlu for his great support, encourage-

ment and understanding while writing this thesis.

And I would like thank also to Sami Ezercan for his help and great support.

For their moral support I would like to thank to my colleagues at Aselsan Inc.

vi



Contents

1 Introduction 1

1.1 Rule Based Machine Translation . . . . . . . . . . . . . . . . . . . 3

1.2 Statistical Machine Translation . . . . . . . . . . . . . . . . . . . 4

1.3 Example Based Machine Translation . . . . . . . . . . . . . . . . 5

1.3.1 Translation Process within EBMT . . . . . . . . . . . . . . 7

1.3.2 Problems of the Approach . . . . . . . . . . . . . . . . . . 9

1.3.3 Matching Phase of EBMT . . . . . . . . . . . . . . . . . . 15

1.3.4 Adaptation Phase of EBMT . . . . . . . . . . . . . . . . . 17

1.3.5 Recombination Phase of EBMT . . . . . . . . . . . . . . . 17

1.4 Thesis Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2 Translation Template Extraction 20

2.1 Inferring Translation Templates . . . . . . . . . . . . . . . . . . . 22

2.1.1 Learning Similarity Translation Templates . . . . . . . . . 24

2.1.2 Learning Difference Translation Templates . . . . . . . . . 27

vii



CONTENTS viii

2.2 Problem Description . . . . . . . . . . . . . . . . . . . . . . . . . 29

3 Type Associated Translation Templates 33

3.1 Modification of Similarity Translation Template Extraction Algo-

rithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.2 Learning Process . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3.3 Lattice . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

3.4 Empty String Insertion . . . . . . . . . . . . . . . . . . . . . . . . 39

3.5 Learning From Learned Templates . . . . . . . . . . . . . . . . . 44

3.6 Learning Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . 46

4 Confidence Factor Assignment 49

4.1 Assigning Confidence Factors to Facts . . . . . . . . . . . . . . . . 50

4.2 Assigning Confidence Factors to Type Associated Translation

Templates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

5 System Architecture 59

5.1 Storage of Examples . . . . . . . . . . . . . . . . . . . . . . . . . 61

5.2 Lattice Structure for Languages . . . . . . . . . . . . . . . . . . . 62

5.3 Performance Analysis of Learning Component . . . . . . . . . . . 62

5.4 Sample Run of the Learning Component . . . . . . . . . . . . . . 63

5.4.1 Incremental Learning . . . . . . . . . . . . . . . . . . . . . 63

5.5 Translation Component . . . . . . . . . . . . . . . . . . . . . . . . 69



CONTENTS ix

5.5.1 Morphological Analysis Operations . . . . . . . . . . . . . 70

5.5.2 Matching Phase . . . . . . . . . . . . . . . . . . . . . . . . 70

6 Tests and Evaluation 83

6.1 BLEU Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

6.2 Tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

7 Conclusion and Future Work 93

A Lattice Structure for Turkish 99

B Lattice Structure for English 105

C Sample Training File Subset 108

D Sample Test File Subset 111



List of Figures

1.1 Paradigms for Machine Translation . . . . . . . . . . . . . . . . . 3

1.2 Statistical Machine Translation Overview . . . . . . . . . . . . . . 6

1.3 The Vauquois pyramid adopted for EBMT . . . . . . . . . . . . . 8

1.4 Correspondence Link Representation for Example Pairs . . . . . . 12

1.5 Annotated Tree Structure for she have long hair . . . . . . . . . . 12

1.6 Parse trees belonging to John likes Mary . . . . . . . . . . . . . . 13

1.7 Translation of Mary likes Susan using subtrees . . . . . . . . . . . 13

2.1 Basic Principles of the TTL System described in [9] . . . . . . . . 21

3.1 Structure of the lattice . . . . . . . . . . . . . . . . . . . . . . . . 36

3.2 Common type assignment for constituents c and e . . . . . . . . . 37

3.3 Sample English lattice for the examples 3.6 . . . . . . . . . . . . . 38

3.4 A part of English Lattice . . . . . . . . . . . . . . . . . . . . . . . 41

3.5 Lattice Part for Turkish . . . . . . . . . . . . . . . . . . . . . . . 43

3.6 Flowchart for Learning Algorithm . . . . . . . . . . . . . . . . . . 47

x



LIST OF FIGURES xi

5.1 Components of the System . . . . . . . . . . . . . . . . . . . . . . 60

5.2 Sample Training File . . . . . . . . . . . . . . . . . . . . . . . . . 65

5.3 Translation Templates Learned from Sample Training File 1 of 3 . 66

5.4 Translation Templates Learned from Sample Training File 2 of 3 . 67

5.5 Translation Templates Learned from Sample Training File 3 of 3 . 68

5.6 Generated Parse Tree for the sentence John comes . . . . . . . . . 73

5.7 Translation Process from Parse Tree . . . . . . . . . . . . . . . . 77



List of Tables

1.1 Experiment results taken from MT systems with Japanese ad nom-

inal particle construction . . . . . . . . . . . . . . . . . . . . . . . 10

2.1 Similarity Translation Template Extraction Algorithm . . . . . . 26

2.2 Difference Translation Template Extraction Algorithm . . . . . . 28

3.1 Similarity Translation Template Extraction Algorithm with Type

Association . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

4.1 Confidence Factor Assignment to Type Associated Translation

Templates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

5.1 Performance Measures of Learning Component . . . . . . . . . . . 64

5.2 Earley Parser Demo . . . . . . . . . . . . . . . . . . . . . . . . . . 72

5.3 Earley Parser for Matching . . . . . . . . . . . . . . . . . . . . . . 76

5.4 Modified Earley Parser 1 of 2 . . . . . . . . . . . . . . . . . . . . 79

5.5 Modified Earley Parser 2 of 2 (extra functions) . . . . . . . . . . . 80

5.6 Modified Earley Parser for Matching . . . . . . . . . . . . . . . . 82

xii



LIST OF TABLES xiii

6.1 BLEU Score Results for Experiments from English to Turkish . . 87

6.2 BLEU Score Results for Experiments from English to Turkish with-

out Confidence Factors . . . . . . . . . . . . . . . . . . . . . . . . 88

6.3 BLEU Score Results for Experiments from Turkish to English . . 89

6.4 BLEU Score Results for Experiments from Turkish to English with-

out Confidence Factors . . . . . . . . . . . . . . . . . . . . . . . . 89

6.5 Average BLEU Score Results for Experiments from English to

Turkish with Confidence Factors (10-fold cross validation) . . . . 89

6.6 Average BLEU Score Results for Experiments from English to

Turkish without Confidence Factors (10-fold cross validation) . . . 90

6.7 Average BLEU Score Results for Experiments from Turkish to En-

glish with Confidence Factors (10-fold cross validation) . . . . . . 90

6.8 Average BLEU Score Results for Experiments from Turkish to En-

glish without Confidence Factors (10-fold cross validation) . . . . 90

6.9 Correct Result Position for Translations from English to Turkish . 91

6.10 Correct Result Position for Translations from Turkish to English . 91

A.1 Lexical Category List for Turkish . . . . . . . . . . . . . . . . . . 104

B.1 Lexical Category List for English . . . . . . . . . . . . . . . . . . 107



Chapter 1

Introduction

Translation had always been a complex cognitive progress, so computational (au-

tomatic) translation does. It involves detailed information on language, world,

and culture, so automatic translation process involves every aspect of Natural

Language Processing. Machine translation is simply defined as translation of

texts from one natural language to another using computers [15]. In other words,

machine translation is a sub-field of computational linguistics that investigates

the use of computer software to translate text from one language to another.

Machine translation has a social contribution, since every day it is becom-

ing more vital to communicate between the people who do not speak a common

language. One of the very earliest pursuits in computer science, machine transla-

tion was seen as a subtle computational process, but today a number of systems

are available which produce translation results that have sufficient quality to be

useful in a number of specific domains.

According to European Association of Machine Translation (EAMT), some

of current machine translation systems often allow for customization by domain

or profession - improving output by limiting the scope of allowable substitutions.

Improved output quality is one of the most important features of machine trans-

lation systems which can also be achieved by human intervention: for example,

some systems are able to translate more accurately if the user has unambiguously

1
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identified which words in the text are names, cities etc.. With the assistance of

these techniques, machine translation has proven useful as a tool to assist human

translators, and in some cases can even produce output that can be used ”as is”

[2].

The history of machine translation starts in the 1950s after the second world

war. The Georgetown experiment in 1954 involved fully automatic translation

of more than sixty Russian sentences into English. In this demonstration, there

were 6 linguistic rules and 250 items in dictionary list (English-Russian) and the

system was specialized in the area of organic chemistry [16].

As stated in [31], machine translation requires a lot of knowledge about the

language like dictionaries, grammar rules, rewriting rules. So the paradigms are

grouped according to the behavior of the systems to acquire knowledge about the

languages.

There are various paradigms for machine translation. In [29], Somers classified

different machine translation paradigms according to their possession of knowl-

edge (whether from a corpus or hand-driven linguistic rules), these groups are

shown as Rule Based Machine Translation and Corpus Based Machine

Translation in Figure 1.1, along with their theoretical foundation (statistical or

example-driven) for achieving translation process, Statistical Machine Trans-

lation and Example Based Machine Translation.

In the following sections, different approaches for machine translation are dis-

cussed by citing example systems, and lastly Example Based Machine Translation

details are given. The system explained in this thesis covers extensions made for

the learning and translation phases of an Example Based machine translation

system.
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Machine Translation
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Figure 1.1: Paradigms for Machine Translation

1.1 Rule Based Machine Translation

Rule based machine translation (RBMT) is based on linguistic rules. Translation

process consists of:

• analyze input text morphologically, syntactically and semantically

• generate text via structural conversions based on internal structure

Steps mentioned above uses a dictionary and a grammar which must be ob-

tained by linguist(s) and this requirement is the main problem of RBMT as it is

a time-consuming process, often referred as knowledge acquisition problem. Yet

this feature makes RBMT diverge from automatic translation, since it needs a

serious amount of linguistic knowledge. In this type of systems development and

maintenance of rules are very hard, and we are not guaranteed to get the system

operate as well as before addition of a new rule.

RBMT systems are large scale rule based systems, so their computational cost

is really high, as they must implement every aspect of rules for a natural language

(syntactic, semantic, structural transfer etc.)[31].
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A Danish translation agency [3] is using a rule based machine translation

system called PaTrans (stands for patent translator)[21] to translate patent ap-

plications.

In [18], Mahesh and Nirenburg has proposed a text meaning representation

model (TMR) to be used in the rule based machine translation system Mikrokos-

mos. In this study, the representation model is seen as a way of knowledge sharing

and it has been implemented for Spanish and Japanese lexicons in Mikrokosmos.

Carl et. al. [7], developed an advanced plug-in software module called Case-

Based Analysis and Generation Module. This module serves as a front-end for

conventional rule-based machine translation systems, the system is based on rule

based machine translation whereas it also uses translation memory, so it is not

wrong to say that this module is a linkage between rule based machine translation

and example based machine translation.

Nagao, when he first started to work on the translation problem, tried to

adopt his work to rule based machine translation, but he got pretty poor results,

like the generated sentences were not readable, so he proposed another approach,

which in advance leaded to example based machine translation [20].

1.2 Statistical Machine Translation

Corpus based machine translation (also referred as data driven machine transla-

tion) is an alternative approach for machine translation to overcome the problem

of knowledge acquisition problem of rule based machine translation. Corpus

Based Machine Translation (CBMT) uses, as it name points, a bilingual parallel

corpus to obtain knowledge for new incoming translation. There are two different

branches in Corpus Based Machine Translation as shown in Figure 1.1: Statistical

Machine Translation and Example Based Machine Translation.

Systems using Statistical Machine Translation (SMT) paradigm uses bilingual

corpus to learn translation models and monolingual corpus to learn the grammar
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of the target language. The SMT processes as seen in the Figure 1.2: the best

translation is looked up according to the maximized probabilities got from two

models (translation model derived from bilingual corpus and language model

derived from monolingual corpus).

The statistical machine translation systems are rooted from the study of

Brown et.al.[4]. In [4], they assign a probability Pr(S, T ) to every pair of sen-

tences. This probability is the probability of S in source language interpreted as

T, in the target language. They expect that this probability will be very small

for the translations that are not correct. They view translation as given S they

are seeking for T in order to maximize Pr(S, T ) as shown in Figure 1.2.

The project Apertium uses a statistical approach based on text-to-text trans-

lation for machine translation [10], actually this system is based on the previous

systems interNOSTRUM and Traductor Universia which take the benefit of finite-

state transducers and statistical techniques [13].

The Carabao Do-It-Yourself Machine Translation Kit [1] also uses statistical

techniques where n-grams are used for translation, this system allows the users

to build up their own dictionary, and do the translation between the languages

that they can support input.

SMT like RBMT generates results from translations of single words and elim-

inating these results by probabilistic rules and linguistic rules respectively, which

causes these approaches to yield the floor to example based machine translation.

1.3 Example Based Machine Translation

Example Based Machine Translation (EBMT) is an alternative model for rule

based systems in machine translation world. In rule based systems linguistic

knowledge is established by rules, but in EBMT, the linguistic knowledge is ex-

tracted from previous ”examples” of translations [28].

Makato Nagao, who had first proposed, example based machine translation
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Bilingual Corpus

Monolingual Corpus

Translation Model
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models
Translation Result

SMT Overview

Figure 1.2: Statistical Machine Translation Overview

(he had actually proposed as machine translation by analogy), inspired this idea

from the necessity to help Japanese people learn a second language like English.

He had modeled the learning process as: a Japanese man is given short and simple

English sentences with their Japanese correspondences; he memorizes these pairs

and then becomes able to translate new sentences via these pairs in the memory.

Actually this learning pattern summarizes the basic principles of example based

machine translation.

Example based machine translation (also called as analogy based, memory

based, case based and experience guided) stands somewhere between RBMT and

SMT, as it integrates both data driven and rule based techniques.

In [28], Somers and Collins regards EBMT process as case-based reasoning.

This paradigm has been evolved as an alternative to rule based systems. In this

paradigm the experience is derived from past ’cases’, and the problem is solved

using this experience. A new translation (which corresponds to ”new problem” in

Case-Based Reasoning) is achieved by finding the most appropriate example from

the translation database and using this example as a model for that sentence’s

translation.
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Actually the difference between rule based systems and case-based systems is

summarized in the following quote of Riesbeck and Schank taken from [28]:

”A rule based system will be flexible and produce nearly optimal an-

swers but it will be slow and prone to error. A case based system will

be restricted to variations on known situations and produce approx-

imate answers but it will be quick and its answers will be grounded

in actual experience. In very limited domains the tradeoffs favor the

rule based reasoner but the balance changes as domains become more

realistically complex.” (Riesbeck & Schank, 1989)

In the following subsections, complete translation process within EBMT and

the variations of the up-to-date developed EBMT systems according to differences

in these process steps are discussed.

1.3.1 Translation Process within EBMT

It will be suitable first to define the steps of EBMT with the famous quote of

Nagao, who is thought to be the inventor of EBMT, taken from [29]:

”Man does not translate a simple sentence by doing deep linguistic

analysis, rather, man does translation, first, by properly decomposing

an input sentence into certain fragmental phrases,then by translating

these phrases into other language phrases, and finally by properly

composing these fragmental translations into one long sentence. The

translation of each fragmental phrase will be done by the analogy

translation principle with proper examples as its reference.” (Nagao,

1984)

Nagao’s this statement identifies the translation process using EBMT ap-

proach:
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Figure 1.3: The Vauquois pyramid adopted for EBMT

• Matching fragments in database of examples (translation pairs)

• Specifying corresponding translation fragments

• Recombine results from previous steps to get the target text

Figure 1.3 shows the famous pyramid that identifies these three steps of exam-

ple based machine translation. Labels in italics are the traditional labels, whereas

labels in CAPITALS are the terms for EBMT [29]. Although different techniques

are used by researchers at each step, what all have in common is the same work

is done at the end.

I will briefly illustrate the translation process via an example from [27]. We

want to translate the English sentence in 1.1 to the Japanese correspondent:

He buys a book on international politics. (1.1)

If we know the following translation examples 1.2 and 1.3, we can translate

sentence 1.1 into sentence 1.4 by imitating examples and combining fragments of

them:

He buys a notebook (1.2)

Kare ha nouto wo kau
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I read a book on international politics (1.3)

Wattashi ha kokusaiseiji nitsuite kakareta hon wo yomu

Kare ha kokusaiseiji nitsuite kakareta hon wo yomu (1.4)

1.3.2 Problems of the Approach

Before going on with the details of the translation process, I will briefly mention

the problems arising from the data requirements of the EBMT approach. As the

system is example based, gathering examples, number of examples, suitability of

them and lastly storage of examples builds up the main problems and divergence

point of example based machine translation systems.

1.3.2.1 Parallel Corpora

As mentioned earlier, one of the most important knowledge base that EBMT uses

is parallel aligned corpora. Here parallel stands for the text and its correspondent

translation kept together. Aligned corpus is the two texts that have been analyzed

into corresponding segments. Alignment problem can be overcome by building

the corpora by hand, but this is an error-prone and time-consuming process.

In some domains there are specialized studies for building up parallel corpora

like Canadian and Hong Kong parliaments provide bilingual corpora for parlia-

ment proceedings [29]. World Wide Web can be an excellent resource for an

example based machine translation system, so some systems make use of web

pages that have versions for multi-languages as bilingual corpus. But for the

resources that are driven from these type of resources (world wide web etc.) the

parallel corpora problem arises, as there is a probability that sentence and its

translation can be in different orders.
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Example Size Translation Accuracy

Construction 1
100 30%
774 65 %

Construction 2
100 75%
689 100 %

Table 1.1: Experiment results taken from MT systems with Japanese ad nominal
particle construction

1.3.2.2 Example Size

After gathering examples from a resource, there remains yet another problem:

”Are these examples enough for a translation system?”. As the system is ”ex-

ample” based, another important point for a system’s performance is how many

examples will be used. Although not only the example size but also the way that

they are stored affects the results together, results that are taken from machine

translation systems show that example size affects the performance dramatically

as seen in Table 1.1 composed from [29]. In this experiment, adding examples

to the database improved the system performance, starting from 100 adding 100

examples each time (till 774) enhanced the performance from 35% to 65%. In

another experiment, the system’s performance was about 75% with 100 examples,

and reached to 100% with 689 examples.[29]

1.3.2.3 Suitability of Examples

Even though we have a lot of examples, the system would still be not accurate

enough. Another important point is that the examples must be suitable. By

suitability it is meant that: a lot of examples will lead to the same translation

example, or examples can be in conflict the same phrases can lead to different

translations.

Öz & Çiçekli [22], involved a similarity metric to count the frequency of ex-

amples, so large number of similar examples will have a high score.

One of the most frequently used techniques is distinguishing exceptional and
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general examples. This approach causes EBMT to behave more like RBMT.

1.3.2.4 Example Storage

Storage of examples directly changes the paradigm for the matching phase of an

EBMT system. Actually there is a fact that the simpler the examples are kept,

the harder is the matching phase. The simplest way to keep examples is to keep

the source text and its correspondence in the target language, but in this case

the matching for an incoming text is pretty hard.

There are several methods to keep the examples:

• Annotated Tree Structure

This data structure is used by Sato&Nagao [27], Sadler et.al [25].

In Sato&Nagao’s system, a translation example consists of 3 parts:

– An English word-dependency tree

– A Japanese word-dependency tree

– Correspondence links

As can be seen from Figure 1.4, the representation of an example, building

this type of a corpus is very time-consuming and demanding.

A similar method is used by Watanabe,[33] , in that system examples are

stored in a tree structure as seen in Figure 1.5 , with parse information.

A related way is used by Poutsma, 1998 and Way,1999 [24], in this case

examples are stored parsed by a data-oriented parsing technique and for

matching case, subtrees are combined for whole translation process.

Sample storage of example 1.5 is seen in Figure 1.6.

John likes Mary (1.5)
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ewd_e({e1,[buy,v],
         [e2,[he,pron]],
         [e3,[notebook,n],
            [e4,[a,det]]]]).

%% Sample storage of: He buys a notebook 

jwd_e([j1,[kau,v],
          [j2,[ha,p]],
             [j3,[kare,pron]]],
          [j4,[wo,p],
               [j5,[nouto,n]]]]).

%% Sample storage of: Kare ho nouto wo kau.

clinks([[e1,j1],[e2,j3],[e3,j5]]).

%% e1 <-> j1, e2 <-> j3, e3 <-> j5

Figure 1.4: Correspondence Link Representation for Example Pairs

nagai

kanojo kami

have

she hair

long

wa ga
subj obj

mod

Figure 1.5: Annotated Tree Structure for she have long hair
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S

N P V P

V N P
Jo h n

like s M a ry

S

V P

V
Jo hn

N P

N P

V P

V N P

like s

Figure 1.6: Parse trees belonging to John likes Mary

S

NP VP

V NP

likes

NP

Mary

NP

Susan

S

NP VP

V NP
Mary

likes Susan

=

Figure 1.7: Translation of Mary likes Susan using subtrees

So with this example, the system will be able to translate the sentence 1.6,

by combining subtrees 2 and 3 as seen in Figure 1.7.

Mary likes Susan (1.6)

Zhao & Tsuji, 1999, used a multi-dimensional feature graph where features

are speech acts, semantic roles, syntactic categories, functions etc.[34]

• Generalized Examples

In this type of example storage, similar examples are stored as a single

generalized example.[29]

There are three methods for example generalization [6]:

– Manual generation of equivalence classes (generalized parts in an ex-

ample)
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– Automatic extraction of equivalence classes

– Transfer rule induction

The most applicable and accepted generalization technique is transfer rule

induction.

In [9], Çiçekli&Güvenir used this technique to derive translation templates

from bilingual examples in the system called TTL. In this system, gener-

alized form of two examples is called translation template. A translation

template is inferred from two examples briefly by replacing different parts

of sentences by variables. This algorithm will be explained in detail in

Chapter 2.

From examples 1.7 and 1.8, we can learn template 1.9, if the different part

of these sentences correspond to each other [9]:

I will drink orange juice ↔ Portakal suyu içeceğim (1.7)

I will drink coffee ↔ Kahve içeceğim (1.8)

I will drink X1 ↔ X2 içeceğim (1.9)

orange juice ↔ portakal suyu

coffee ↔ kahve

In [6] Brown used the technique similar to Çiçekli&Güvenir,2001, for gen-

eralizing the different parts of the sentences with category names instead of

variables as in [9].

Using this type of example storage, examples 1.10 and 1.11, can be stored

in form of 1.12. [6]

205 delegates met in London (1.10)
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200 delegates met in Paris (1.11)

<number>delegates met in <city> (1.12)

• Statistical Approaches

In this method, precomputed probabilities of bilingual word pairs (transla-

tional models) are stored instead of examples. The language and transla-

tional models are optimized to get the target string.

1.3.3 Matching Phase of EBMT

Matching phase is the most important step of translation. In this step, the

database is searched for the source sentence, to find the best match example

for it. All of the methods used to solve the problems described in the previous

section, directly influences the matching step and so the overall performance of

the system. Below are the common methods for matching:

• Character Based: It is used by Sato, 1992 [26]. A distance or similarity

measure is kept and matching depends only on that measure. Unfortunately

this method cannot produce right results for the cases of the indirectly

related words. For example the system cannot translate ”Give me the big

ball” using the example ”Give me the small ball”, as relation between big

and small is not kept.

• Word Based: It is used by Nagao, Sumita and Iida [30]. In word based

matching method, matching is said to be done when the words in the source

string can be replaced by near synonyms in the example. Examples 1.13

and 1.14 are from the Nagao’s system [20].

A man eats vegetables ↔ Hito wa yasai o taberu (1.13)
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Acid eats metal ↔ San wa kinzoku o okasu (1.14)

Assume that the input 1.15 is given:

He eats potatoes (1.15)

The system correctly matches to the first example as potatoes are more

similar to vegetables than acid.

• Annotated Word Based: This technique goes further in linguistic knowl-

edge. It uses the part of speech tags. It can be said that examples are kept

partially parsed. This methodology is spreadly used by Cranias et.al. [11]

[12], Veale&Way [32]. This kind of matching makes use of annotated tree

structure (described in the previous section) where explicit links are kept

for correspondences. Usage of part of speech tags, really contributes a lot to

the sentence composition phase which will be explained in the next section.

• Parsing Based: In case of example storage with generalization, this

method is used to match the best example (generalized example) to trans-

late the given text.

With generalized example 1.16, we have the given sentence 1.17, where it

is assumed that X1 and Y 1 are two variables and they are translations of

each other:

I will drink X1 ↔ Y1 içeceğim (1.16)

I will drink tea (1.17)

The given sentence 1.17 can be parsed using generalized example 1.16, so

it will be possible to get the translated sentence 1.18, if we know the corre-

spondence 1.19:
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Çay içeceğim (1.18)

tea ↔ çay (1.19)

The details of this type of matching will be given in detail in the next

chapter.

1.3.4 Adaptation Phase of EBMT

From the previous step we have the correct examples that will be used for trans-

lation, but which part(s) of these examples will be used. Adaptation clarifies

this question and specifies the fragments of the examples that are to be used for

translation.

Assume that we have the sentence 1.20 to be translated into some language.

From matching step we have correctly found two examples in 1.21 that suits our

input string. After adaptation we will have the underlined fragments that are to

be recombined to get the target sentence.

He buys a book on politics (1.20)

He buys a notebook (1.21)

I read a book on politics

1.3.5 Recombination Phase of EBMT

As we have the fragments that are to be combined to get the translated string,

it seems pretty easy to get just by concatenation. For the example above we
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get the correct result for English, because English is a little or no inflectional

language. For other languages like Japanese and Turkish which carry strong

inflection property, yet remains some problems.

In German, nearly all words are inflected due to verb, like in 1.22 :

Der schöne Junge ass seinen Frühstück (1.22)

Ich sah den schönen Jungen

Both of the sentences include the handsome boy (der schöne Junge), but

in different cases (nominative and accusative respectively). After we got the

fragments to be used for translation, we still have a problem to be solved: Which

of these cases will be used?

To solve this problem Grefenstette, 1999 [14] uses a statistical technique. He

extracts n-grams (generally trigrams or bigrams) and uses the most probable

case (nominative or accusative) according to n-grams result. The results can be

extracted from corpora or just from world wide web. The results that he has

taken when he searched AltaVista for ”ich sah den” and ”ich sah der”: 341 is for

the former case, and only 17 is for the latter case.

If you ping a search for Turkish, ”seni gördüm”, ”sen gördüm”, ”sende

gördüm” and the results were 940, 201 and 458, respectively. Furthermore to test

the trigram case I have searched for ”ben seni gördüm” and ”ben sen gördüm”

the results were 24 and 0 respectively. This is not a reliable result as the subject

can be extracted from the verb, the subject ”ben” need not to be used, but it

gives a sense for the power of statistical approach.

1.4 Thesis Outline

In this thesis we propose a method to prevent the incorrect translations that the

previous system, explained in the next chapter, produces. The previous system
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learns structures called translation templates from the bilingual corpus and keeps

this templates to be used in the translation phase. The templates learned in the

previous system contains variables and these variables do not contain the type

information (noun, verb etc.) of the words that these variables replace. We

propose a learning algorithm that associates the type information while replacing

the differing words with variables. In this manner, the type associated template

learning algorithm prevents the system to produce incorrect translation results.

The remaining part of the thesis contains the detailed information about the

previous system that we have made extensions on and the enhancements that are

done. In the next chapter, previous version of the system is explained. Chapter

3, gives the details of type associated translation templates, confidence factor

assignment to type associated translation templates are described in Chapter 4.

Whole system architecture with learning and translation components is given

in Chapter 5. After giving the test results in Chapter 6, the thesis ends with

Conclusion and Future Work composing Chapter 7.



Chapter 2

Translation Template Extraction

The system explained in this thesis is based on the previous system developed by

Çiçekli and Güvenir. This system is described in [9].

The system in [9], uses English-Turkish pairs as it has been used for English

- Turkish translation. As stated in [5], the usage of templates in example based

machine translation, decreases the number of examples needed for translation

process as the examples are kept in a generalized manner, so in the TTL system

the translation templates are learned from the bilingual corpus to be used in the

translation time. For the learning process the inductive learning hypothesis is

taken as principle. The inductive learning hypothesis approximates the target

function well over a sufficiently large set of examples (bilingual corpus) that will

also approximate the target function (translation) well over other unobserved

examples [19].

The working principle of the system is illustrated in Figure 2.1. Firstly, exam-

ples are generalized using bilingual corpus (translation template extraction) and

when a source sentence is fed to the system, the appropriate templates are chosen

(matching) and translation process is completed with the recombination of these

templates to get the target sentence.

In order to summarize the process, I will use the following examples from [9].

20



CHAPTER 2. TRANSLATION TEMPLATE EXTRACTION 21
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Figure 2.1: Basic Principles of the TTL System described in [9]
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I will drink orange juice ↔ portakal suyu içeceğim (2.1)

I will drink coffee ↔ kahve içeceğim

In examples 2.1, there are similar parts in both languages (I will drink and

içeceğim, respectively) and there are differing parts (orange juice, portakal suyu

and coffee, kahve). The first heuristic to build up a translation template is to

replace differing parts with variables. So in the system the examples 2.1, will be

kept as in 2.2:

I will drink X1 ↔ Y 1 içeceğim (2.2)

Here along with the translation template 2.2, the templates 2.3 are learned:

orange juice ↔ portakal suyu (2.3)

coffee ↔ kahve

In translation templates 2.3, there are no variables, in [9], these type of trans-

lation templates are called atomic translation templates (also called as facts),

whereas translation templates with one or more number of variables are called

similarity translation template or difference translation template classi-

fied according to the part that the variables replace.

2.1 Inferring Translation Templates

The algorithm defined in [9] derives translation templates using two different

substitution methods. Similarity (similarity between Ea and Eb where Ea and Eb

are two different examples from aligned corpus) substitution and difference (D1
∗
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and D2
∗ are differences belonging to lang1 and lang2 respectively, and they do not

contain any common string) substitution.

For each pair of examples in the corpus a match sequence is generated. The

structure of the a match sequence Mab extracted from examples Ea and Eb is as

in 2.4. [9]

S1
0 ,D

1
0,S

1
1 ,.....,D

1
n−1,S

1
n ↔ S2

0 ,D
2
0,S

2
1 ,.....,D

2
m−1,S

2
m (2.4)

where n, m >= 1

Here S represents similar parts for the examples where D represents the differ-

ent parts. If the number of differences or similarities are zero, then no template

is learned from these two examples.

2.6 shows an example match sequence for examples 2.5.

black book +PL ↔ siyah kitap +PL (2.5)

black car +PL ↔ siyah araba +PL

black (book,car) +PL ↔ siyah (kitap,araba) +PL (2.6)

So the elements of the match sequence are:

S1
0 = black

D1
0 = (book,car)

S1
1 = +PL

S2
0 = siyah

D2
0 = (kitap,araba)

S2
1 = +PL
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So after that match sequence is found, the translation templates are found

using similarity or difference substitution methods.

2.1.1 Learning Similarity Translation Templates

In this method all different parts of the examples are substituted with variables.

The most important point for forming this kind of translation template is to

have enough number of facts (atomic templates) that proves the template to be

correct. Assume that the number of differences in a match sequence Mab is n.

Then n-1 different parts must correspond to each other. In match sequence 2.7,

there is only 1 difference, so we need 0 facts learned earlier, in other words, we

are sure that these differing constituents are translations of each other as in 2.7.

book ↔ kitap (2.7)

car ↔ araba

So we can infer that:

black X1 +PL ↔ siyah Y 1 +PL (2.8)

In a translation template the variables that replace English differences are de-

noted by X, and for Turkish parts variables are denoted by Y. The superscripted

numbers show which variables are correspondences of each other in English and

Turkish, so having the same number superscripted means, these variables corre-

spond to each other.

For examples in 2.9, we infer the match sequence 2.10.

at least three notebook +PL ↔ en az üç defter (2.9)

at most three book +PL ↔ en fazla üç kitap



CHAPTER 2. TRANSLATION TEMPLATE EXTRACTION 25

at (least, most) three (notebook,book) +PL ↔

en (az,fazla) üç (defter, kitap)
(2.10)

In match sequence 2.10, there are 2 differences, so we must previously know

one of the following combination of facts 2.11 in order to infer a translation

template from these examples.

least ↔ az , most ↔ fazla (2.11)

least ↔ defter , most ↔ kitap

notebook ↔ defter , book ↔ kitap

notebook ↔ az , book ↔ fazla

Assume that before obtaining match sequence 2.10, we have learned the facts

in 2.12:

least ↔ az (2.12)

most ↔ fazla

So for the match sequence 2.10, the number of unknown differences for both

languages decreases to 1, and we can infer translation template 2.13 along with

facts in 2.14:

at X1 three X2 ↔ en Y 1 üç Y 2 (2.13)

notebook ↔ defter (2.14)

book ↔ kitap
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procedure similarityTT(Mab)
Mab is the match sequence of examples Ea and Eb and defined as:
Mab = S1

0 ,D
1
0,....,D

1
n−1,S

1
n ↔ S2

0 ,D
2
0,....,D

2
m−1,S

2
m

if( n = m = 1)
learnedTranslationTemplate = S1

0 ,X
1,S1

1 ↔ S2
0 ,Y

1,S2
1

learnedFact1 = D1
0,ea ↔ D2

0,ea

learnedFact2 = D1
0,eb ↔ D2

0,eb

else if(n = m >1)
here we assume that n-1 correspondences are known previously as facts
assume that unmatched difference pairs are:
((D1

kn,ea, D
1
kn,eb), (D

2
ln,ea, D

2
ln,eb))

replacing all matched pairs with X1..n−1 and Y 1..n−1 we get
match sequence Mab as: MabWDV
learnedTranslationTemplate =

MabWDV if X1 ↔ Y 1 and .... and Xn ↔ Y n

learnedFact1 = D1
kn,ea ↔ D2

ln,ea

learnedFact2 = D1
kn,eb ↔ D2

ln,eb

Table 2.1: Similarity Translation Template Extraction Algorithm

At this point we can say that learning a translation template yields learning

of zero or two facts, as long as we must have the appropriate ground (previ-

ously learned facts) for completion of learning process of a similarity translation

template.

As you can see in Table 2.1, the algorithm works for equal number of differ-

ences in both languages, La and Lb. Assume that there are two examples like in

2.15. [9]

I come+PAST ↔ gel+PAST+1SG (2.15)

you go+PAST ↔ git+PAST+2SG

(I come,you go) +PAST ↔ (gel,git) +PAST (+1SG,+2SG) (2.16)

In this case the number of differences for La is 1, while the number of differ-

ences for Lb is 2. This type of situations are faced frequently, as the linguistic
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structure of the languages are so different from many aspects.

The Similarity TTL algorithm defined in Table 2.1, cannot learn a translation

template from these two examples as they have different number of differing

parts. To overcome this problem, the algorithm is fed with all possibilities of

match sequences. In other words, if the number of differing constituents are

different from each other like in 2.16, differing parts are pieced in order to get

appropriate match sequence like in 2.17.

(I,you),(come,go) +PAST ↔ (gel,git) +PAST (+1SG,+2SG) (2.17)

So by piecing the match sequence 2.16, we get 2.17. This time the STTL

algorithm can learn a translation template from these examples.

2.1.2 Learning Difference Translation Templates

In previous section, we were focused on inferring a translation template by replac-

ing the differing parts with variables and remaining the similar parts, as stated

earlier this type of templates are called similarity translation templates, now we

will try to infer translation templates by keeping the different parts and replacing

the similar parts with variables, this time the learned translation template will

be called difference translation template.

For difference template learning, the similarities are replaced with variables,

and the difference pairs are splitted in order to get two match sequences with

similarity variables. Assume that there are two examples as in 2.18.

I break+PAST the window ↔ pencere +ACC kır+PAST+1SG (2.18)

You break+PAST the door ↔ kapı+ACC kır+PAST+2SG (2.19)

The match sequence for 2.18 is given in 2.20.
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procedure differenceTT(Mab)
Mab is the match sequence of examples Ea and Eb and defined as:
Mab = S1

0 ,D
1
0,....,D

1
n−1,S

1
n ↔ S2

0 ,D
2
0,....,D

2
m−1,S

2
m

if( n = m > 1)
if( number of corresponding similarities = n-1 )

Assume that unmatched similarity is: (S1
kn

,S2
ln

)

Replace all corresponding similarities Slang1
ki

,Slang2
li

with X i for English and Y i for Turkish
Split the match sequence MabWSV into two match sequences
with respect to differences
learnedTranslationTemplate1 = MaWDV
learnedTranslationTemplate2 = MbWDV
fact = S1

kn
↔ S2

ln

Table 2.2: Difference Translation Template Extraction Algorithm

(I,you) break+PAST the (window,door) ↔

(pencere, kapı) +ACC kır+PAST (+1SG,+2SG)
(2.20)

In order to infer a difference translation template, we need at least one non-

empty difference and similarity on both sides. From 2.20, we can infer two dif-

ference translation templates and an atomic template (fact), like in 2.21.

I X1 window ↔ pencere Y 1 +1SG (2.21)

You X1 door ↔ kapı Y 1 +2SG

break+PAST the ↔ +ACC kır+PAST

If the number of similarities is equal to n > 1, like inferring a similarity

template, we need a prior knowledge of n − 1 corresponding similarities.

The difference translation template algorithm is defined in Table 2.2. If we

apply the algorithm to 2.22, firstly we get the match sequence as shown in 2.23.

We have only one similar string on both sides, that means we do not need any prior

knowledge. So by splitting the match sequence in 2.23, we learn the difference
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translation templates as shown in 2.24 and additionally an atomic template in

2.25.

I bring+PAST my blue notebook ↔

mavi defter+1SGPoss+ACC getir+PAST+1SG

she bring+PAST my green book ↔

yeşil kitap+1SGPoss+ACC getir+PAST+3SG

(2.22)

(I,she) bring+PAST my (blue notebook, green book) ↔

(mavi defter, yeşil kitap) +1SGPoss+ACC getir+PAST (+1SG,+3SG)
(2.23)

I X1 blue notebook ↔ mavi defter Y 1 +1SG (2.24)

she X1 green book ↔ yeşil kitap Y 1 +3SG

bring+PAST my ↔ +1SGPoss+ACC getir+PAST (2.25)

Like in similarity translation template extraction algorithm in case of unequal

similarity parts in the match sequence, we fed the algorithm with proper possi-

bilities of pieced similar parts, to get equal number of similarities on both sides

of the sequence.

2.2 Problem Description

In the previous section, I have explained the previous work that forms the basis

of the system described in this thesis. There is a weak point in the previously

described translation template extraction method. After the translation tem-

plate is inferred either by difference replacing or by similarity replacing, all the

information about the variables are lost.
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Let me explain the problem with an example: assume that we have the train-

ing examples as shown in 2.26. The match sequence for the examples will be like

in 2.27 and the output of the similarity translation template algorithm is shown

in 2.28.

I come +PAST ↔ gel+PAST+1SG (2.26)

I go +PAST ↔ git+PAST+1SG

I (come,go) +PAST ↔ (gel,git)+PAST+1SG (2.27)

I X1 +PAST ↔ Y 1 +PAST+1SG (2.28)

come ↔ gel

go ↔ git

For the sake of example, we are assuming that we have the prior knowledge

(fact) described in 2.29.

shy ↔ utangaç (2.29)

Assume that the translation system with prior knowledge given above, is fed

with the Turkish input utangaçtım whose lexical form is given in 2.30.

utangaç +PAST+1SG (2.30)

The system’s matching component will correctly choose the translation tem-

plate given in 2.31 as the second part of the template matches with the sentence
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to be translated. After finding the appropriate template there remains process

of filling the variable part of the template. We know that the system knows the

fact 2.29.

I X1 +PAST ↔ Y 1 +PAST+1SG (2.31)

Using the templates given in 2.29 and 2.31, we translate the sentence 2.30 as

given in 2.32.

I shy +PAST ↔ utangaç +PAST+1SG (2.32)

As can be seen in 2.32, the answer of the system for the input utangaçtım is

I shy +PAST which is grammatically incorrect.

The reason of this failure is, as I stated earlier in this section, the informa-

tion about the variables (differences or similarities) are lost while replacing them

with variables, this observation points out that we need to hold an additional

information about the replaced variables in a translation template.

From a linguistic point of view the most characteristic information about

a word is its part-of-speech (POS) tag. A part-of-speech tag is the linguistic

category of words. It describes the type
¯

of a word. Common linguistic categories

include nouns, verbs, adjectives etc.

Assume that we have hold the type (POS tag) information of the words that

we have replaced with variables, the translation template in 2.31 will look like as

in 2.33. The type information associated with the variable in 2.33 is verb as it is

the type of replaced variables gel and git.

I X1
verb +PAST ↔ Y 1

verb +PAST+1SG (2.33)
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So if we turn back to our translation problem, we fed the system again with

the sentence utangaçtım, now the system finds the same template again but this

time it fails to produce result in 2.32 as the type of utangaç (adjective) does not

match with the type expectation of the translation template (verb).

In our system, we aim to eliminate the results that the system produces, by

the help of type information associated with the translation templates.

The details of associating the type information to the translation templates

will be explained in the next chapter.



Chapter 3

Type Associated Translation

Templates

In this chapter, I will describe the learning process of type associated (supported)

translation templates in detail. Our study is based on [8] with modifications for

the whole translation process. In the first section, I will emphasize the modifi-

cation of the similarity translation template algorithm, the second part will be

about getting the type information of variables.

3.1 Modification of Similarity Translation Tem-

plate Extraction Algorithm

In this part, I will explain the type associated similarity translation template

extraction in detail. This system is based on learning of similarity translation

templates, while associating the type information difference translation template

learning is left out of the scope.

Before giving the pseudo code of the algorithm, I will explain the algorithm

by giving examples. All of the examples will be given as an English-Turkish pair

like used in the system.

33
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Assume that we have the examples as shown in 3.1 as used in previous chapter,

so the match sequence will be just like in 3.2.

I come +PAST ↔ gel+PAST+1SG (3.1)

I go +PAST ↔ git+PAST+1SG

I (come,go) +PAST ↔ (gel,git)+PAST+1SG (3.2)

We realize that the different parts in the match sequence 3.2 is (come,gel)

and (go,git) respectively. In order to keep the translation template with type

information, firstly we must get the type (part-of-speech tag) of the words in the

differing parts.

There are multiple ways to get the type information of a word, including

getting the type information via a morphological analyzer interface. In this case,

every time we want to learn a translation template from the same word we will

access the interface and get the type information. We have chosen a different

way to store the training examples. The training set (examples) are stored in

their lexical levels this representation’s details will be given in Chapter 5, System

architecture.

To intensify the whole learning process I will give one more example after each

step of the learning algorithm is explained. The translation pairs that I will use

for this exemplification are (boys are coming, oğlanlar geliyorlar) and (boys are

not going, oğlanlar gitmiyorlar), whose match sequences are:

boy+Noun +Pl be+Verb +Pres +Pl (come+Verb,not+Adv go+Verb) +Prog ↔

oğlan+Noun +A3pl +Pnon +Nom (gel+Verb +Pos,git+Verb +Neg) +Prog1 +A3pl)
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3.2 Learning Process

To illustrate the learning process, I will use the example given in 3.1. According

to our example storage paradigm the match sequence is as shown:

I+Pron+Pers +Nom +1P +Sg (come+Verb, go+Verb) +PastTense +123SP ↔

(gel+Verb,git+Verb) +Pos +Past +A1sg

According to the similarity translation template extraction algorithm, the

inferred templates will be just like in 3.3.

I+Pron+Pers +Nom +1P +Sg X1
verb +PastTense +123SP ↔

Y 1
verb +Pos +Past +A1sg

come+Verb ↔ gel+Verb

go+Verb ↔ git+Verb

(3.3)

In the previous example we have inferred the type of the variable as verb as

both examples contained the same type of variables, in case of having examples

like in 3.4 the scenario changes.

black+Adj notebook+Noun +Sg ↔

siyah+Adj defter+Noun +A3sg +Pnon +Nom

one+Num+Ord notebook+Noun +Sg ↔

bir+Num+Ord defter+Noun +A3sg +Pnon +Nom

(3.4)

(black+Adj,one+Num+Ord) notebook+Noun +Sg ↔

(siyah+Adj,bir+Num+Ord) defter+Noun +A3sg +Pnon +Nom
(3.5)

The match sequence 3.5, contains one difference but this time we are faced

with two different variable types Adj and Num in both sides. So now we need to
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Figure 3.1: Structure of the lattice

somehow generalize these types and associate that type with translation template.

In the next section, I will explain the details for inferring a type sequence from

two different type sequences.

3.3 Lattice

Lattice means arrangement
¯

of crossing
¯

thin strips of a material. We have chosen

our linguistic part-of-speech tag arrangement model as a lattice. The main reason

beyond this analogy is the requirement that we have to arrange the part-of-speech

tags hierarchically and there can be some cross-cutting types that belongs to more

than one category.

To find a common category for two different types we developed a lattice like

structure which resembles an undirected acyclic graph. Figure 3.1, shows the

structure of the lattice that we have used in our system.

Here the leafs are the constituents whose type is the first parent of that leaf.

As can be seen from the figure, a type can be thought as a subtype of more than

one category like in case of T4 is subtype of both T1 and T2.
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Figure 3.2: Common type assignment for constituents c and e

The next step is to decide how to figure out a common type for two different

types using this lattice. Assume that the differences in our match sequence is c

and e, so their type sequence are T4 and T5, respectively.

At this point out algorithm assigns a common type for two different types,

the root of the sub tree formed by the shortest path from leaf c to leaf e, by this

method we infer the most specialized type information for these two types.

Turning back to our example, Figure 3.2 shows the shortest path from node

c to node e. Here the root belonging to sub tree is T2, so the common type is

assigned as T2.

There is another point for type assignment, assume that examples are like in

3.6 will have the match sequence as shown in 3.7.

I am go +PROG ↔ git+PROG+1SG (3.6)

I come +PAST ↔ gel+PAST+1SG
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ANY

VERBNOUN TENSE
PRO

NOUN

book come go I you +PAST+PROG

Figure 3.3: Sample English lattice for the examples 3.6

I (am go +PROG,come +PAST) ↔

(git +PROG,gel +PAST) +1SG
(3.7)

For the English part we have the difference sequences am go +PROG and

come +PAST. As you can see, there are different number of constituents in both

sides. We infer the type of a variable by pair-wise searching a type in the lattice.

Now the problem is how we will decide the pairs, since there are different number

of constituents.

The part of the lattice needed for the examples given in 3.6 is given in Figure

3.3. Since there are 3 constituents in example Ea and 2 constituents in Eb, there

will be one empty string insertion for Eb. In the next section I will explain how

the empty string will be inserted in detail.

The main lattice structures used for Turkish and English are given in Appen-

dices A and B, respectively.

The categorization for both languages are taken from the morphological an-

alyzers. For Turkish, the morphological analysis operations are done using a

Turkish lexicon file implemented for PC-KIMMO, and in English case Xerox’s

English morphological analysis tools results are kept in the system, and used

from an interface in the system.

As Turkish is an agglutinative language, the main categorization is dependent

on the affixes, in general the main categories like noun,verb etc. are directly under
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the root ANY, but for affixes they are grouped according to the main categories

that an affix can follow. For example an ACC (accusative) affix can follow nouns

and adjectives in Turkish, so this affix is under the category NOUN-SUFFIX

and ADJ-SUFFIX. Another significant categorization principle for Turkish is the

categorization of the affixes causing derivation. Derivative words are frequently

seen type of words in Turkish. Derivation is the process of creating new lexemes

from other lexemes by adding a derivational affix. So this kind of affixes are

grouped according to the main categories that they can follow and the category of

the word that they yield after the derivation process. For example the ”li” whose

lexical equivalent is ˆDB+Adj+Without affix in Turkish follows a noun and turns

it to an adjective like ses to sesli, so the ˆDB+Adj+Without category’s parent is

NOUN-DB-ADJ.

For English, the lexical categories are structured according to the main cate-

gories and a few sub-categories for affixes are created and the affixes are for noun

and verb categories.

3.4 Empty String Insertion

If we turn back to our example in 3.7, firstly we will try the all possible places of

an empty string can be inserted as in 3.8.

(am go +PROG , ǫ come +PAST) (3.8)

(am go +PROG , come ǫ +PAST)

(am go +PROG , come +PAST ǫ)

For every possibility, we calculate the shortest distance of the types pair-

wise and chose the possibility with the minimum value. This value is called

generalization score
¯

. The generalization score calculation for the possibilities in

3.8 is shown in 3.9.
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genScore1 = minDist(am,ǫ) + minDist(go,come) + minDist(+PROG,+PAST)

genScore2 = minDist(am,come) + minDist(go,ǫ) + minDist(+PROG,+PAST)

genScore3 = minDist(am,come) + minDist(go,+PAST) + minDist(+PROG,ǫ)

genScore1 = 2 + 2 + 2 = 6 (3.9)

genScore2 = 4 + 2 + 4 = 10

genScore3 = 4 + 4 + 2 = 10

Minimum distance between an empty string (ǫ) and any category is always

taken as 2. As you can see, the most appropriate possibility is the first one since

it has the smallest generalization score. So the induced translation template for

the match sequence 3.10, will be as shown in 3.11.

I (am go +PROG,come +PAST) ↔

(git +PROG,gel +PAST) +1SG (3.10)

I X1
nullor(am) V erb Tense ↔ Y 1

V erb Tense +1SG (3.11)

Now it is the time for finding the empty matches in differing parts of the

match sequence in 3.12.

boy+Noun +Pl be+Verb +Pres +Pl (come+Verb,not+Adv go+Verb) +Prog ↔

oğlan+Noun +A3pl +Pnon +Nom (gel+Verb +Pos,git+Verb +Neg) +Prog1 +A3pl)
(3.12)

For the English part, the differing constituents are as in 3.13, and they contain

unequal number of strings.
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ANY

VerbAdv

Figure 3.4: A part of English Lattice

come+Verb (3.13)

not+Adv go+Verb

All of the possible locations that the empty string can match are to be found,

and these possibilities are as in 3.14.

come+Verb → not+Adv , ǫ → go+Verb (3.14)

ǫ → not+Adv , come+Verb → go+Verb

From the lattice piece in Figure 3.4 the generalization scores for the possibil-

ities are:

genScore1 = minDist(come + V erb, not + Adv) + minDist(empty, go + V erb)

genScore2 = minDist(empty, not + Adv) + minDist(come + V erb, go + V erb)

genScore1 = 4 + 2 = 6

genScore2 = 2 + 2 = 4
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As the second possibility has the smallest generalization score, the correct

empty matching is to be done using that possibility. So the differing parts for

English becomes:

(ǫ,not+Adv) (3.15)

(come+Verb,go+Verb)

So the type sequence extraction for the English part is shown in 3.16 and the

translation template’s English part becomes:

nearestParent(ǫ,not+Adv) nearestParent(come+Verb,go+Verb) (3.16)

= nullor(Adv) Verb

boy+Noun +Pl be+Verb +Pres +Pl X1
nullor(Adv) V erb +Prog (3.17)

To extract the Turkish part of the template, the same processes should be

applied to Turkish part of the match sequence. The differing parts for Turkish in

match sequence 3.12 are:

gel+Verb +Pos (3.18)

git+Verb +Neg

The number of strings in the differing parts are equal so we can by-pass the

empty string matching part. According to Figure 3.5, we can infer the type

sequence for differing part in 3.18, as shown in 3.19.

nearestParent(gel+Verb,git+Verb) nearestParent(+Pos,+Neg) =

Verb VERB-SUFFIX-SENSE
(3.19)
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Figure 3.5: Lattice Part for Turkish

So the template’s Turkish part becomes:

oğlan+Noun +A3pl +Pnon +Nom Y 1
V erb V ERB−SUFFIX−SENSE +Prog1 +A3pl

Finally, we can say that from examples boys are going ↔ oğlanlar gidiyor-

lar and boys are not coming ↔ oğlanlar gelmiyorlar, we learn the translation

template:

boy+Noun +Pl be+Verb +Pres +Pl X1
nullor(Adv) V erb +Prog ↔

oğlan+Noun +A3pl +Pnon +Nom Y 1
V erb V ERB−SUFFIX−SENSE +Prog1 +A3pl

Along with this template the following facts are also learned:

come+Verb ↔ gel+Verb

not+Adv go+Verb ↔ git+Verb +Neg
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3.5 Learning From Learned Templates

As an advantage of type association we can take learning further from extraction

from examples. After learning process has been completed, we go on learning with

learning from the learned translation templates. Actually this process can

be seen as generalization of two similar translation templates into one template.

At the end the newly learned and more general translation template will be able

to match with the both of sentences that match with translation templates that

are generalized to form it.

Assume that we have the following translation templates learned from the

examples:

at least X1
Num book+Noun ↔ en az Y 1

Num kitap+Noun (3.20)

at least one+Num X1
Noun ↔ en az bir Y 1

Noun

Using these templates we can derive another more generalized template like:

at least X1
Num X2

Noun ↔ en az Y 1
Num Y 2

Noun (3.21)

So the templates in 3.20 are merged to form this new generalized template in

3.21. For generalization the algorithm defined in Table 3.1 is used but there is a

difference in finding the match sequences, we feed the match sequence algorithm

with replacing the variables with their type sequences as in 3.22.

at least Num book+Noun ↔ en az Num kitap+Noun (3.22)

at least one+Num Noun ↔ en az bir Noun

The learning process goes on merging the templates into one more general

translation template in 3.21.
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In the previous section, I have exemplified the learning process using the

examples boys are going and boys are not coming. Now suppose that in the

training set, there exists the examples girls are going and girls are not coming,

the lexical level representation is shown in 3.23.

girl+Noun +Pl be+Verb +Pres +Pl come+Verb +Prog ↔

kız+Noun +A3pl +Pnon +Nom gel+Verb +Pos +Prog1 +A3pl

girl+Noun +Pl be+Verb +Pres +Pl not+Adv go+Verb +Prog ↔

kız+Noun +A3pl +Pnon +Nom git+Verb +Neg +Prog1 +A3pl

(3.23)

From the previous example we can doubtlessly say from these two translation

examples we can learn the translation template:

girl+Noun +Pl be+Verb +Pres +Pl X1
nullor(Adv) V erb +Prog ↔

kız+Noun +A3pl +Pnon +Nom Y 1
V erb V ERB−SUFFIX−SENSE +Prog1 +A3pl

Now, we have the following two templates:

boy+Noun +Pl be+Verb +Pres +Pl X1
nullor(Adv) V erb +Prog ↔

oğlan+Noun +A3pl +Pnon +Nom Y 1
V erb V ERB−SUFFIX−SENSE +Prog1 +A3pl

girl+Noun +Pl be+Verb +Pres +Pl X1
nullor(Adv) V erb +Prog ↔

kız+Noun +A3pl +Pnon +Nom Y 1
V erb V ERB−SUFFIX−SENSE +Prog1 +A3pl

Now if we feed these two templates to the learning algorithm the match se-

quence will be as in 3.24.

(boy+Noun,girl+Noun) +Pl be+Verb +Pres +Pl X1
nullor(Adv) V erb +Prog ↔

(oğlan+Noun,kız+Noun) +A3pl +Pnon +Nom

Y 1
V erb V ERB−SUFFIX−SENSE +Prog1 +A3pl
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As the number of differences is equal to 1, we do not need any prior knowl-

edge to extract a translation template.In both sides the differing parts has equal

number of strings so no empty string matching is needed. As types for both sides

are the same (Noun) the new variable will have the type of Noun. So keeping the

old variables, the re-learned translation template will be as in 7.1.

X1
Noun +Pl be+Verb +Pres +Pl X2

nullor(Adv) V erb +Prog ↔

Y 1
Noun +A3pl +Pnon +Nom Y 2

V erb V ERB−SUFFIX−SENSE +Prog1 +A3pl

3.6 Learning Algorithm

So far I have defined the whole learning process in detail. The learning mechanism

of the system is summarized by the flowchart seen in Figure 3.6. Firstly, given two

translation examples, the match sequences are extracted. If correspondence of the

different parts of the sequences can be induces from the facts, these differing parts

are replaces with variables. The variables need to carry the type information.

To infer the types of the variables, we firstly need the lattice structure of the

languages separately, then if the corresponding different parts contain unequal

number of constituents the constituents(s) that will match empty strings are

found. After the type sequence is inferred it is associated with the variables.

Finally the previous version of the similarity translation template learning

algorithm given in Table 2.1 will be modified as in Table 3.1 to achieve the type

association to translation templates.
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procedure similarityTTWithType(Mab)
Mab is the match sequence of examples Ea and Eb and defined as:
Mab = S1

0 ,D
1
0,....,D

1
n−1,S

1
n ↔ S2

0 ,D
2
0,....,D

2
m−1,S

2
m

if( n = m = 1)
learnedTranslationTemplate = S1

0 ,X
1,S1

1 ↔ S2
0 ,X

2,S2
1

learnedFact1 = D1
0,ea ↔ D2

0,ea

learnedFact2 = D1
0,eb ↔ D2

0,eb

else if(n = m >1)
here we assume that n-1 differences are known previously as facts
assume that unmatched difference pairs are:
((D1

kn,ea, D
1
kn,eb), (D

2
ln,ea, D

2
ln,eb))

replacing all matched pairs in English with XgetTypeOf(Dkn,e∗)1..n−1

replacing all matched pairs in Turkish with YgetTypeOf(Dln,e∗)1..n−1

we get match sequence Mab as:
MabWDV
learnedTranslationTemplate = MabWDV

if X1 ↔ Y 1 and .... and Xn ↔ Y n

learnedFact1 = D1
kn,ea ↔ D2

ln,ea

learnedFact2 = D1
kn,eb ↔ D2

ln,eb

end

procedure getTypeOf(differencePart1, differencePart2)
if(lengths of differencePart1 and differencePart2 are not equal)

matchWithEmptyString(differencePart1, differencePart2);
foreach(token in differencePart1 and differencePart2)
{

typeSequence += nearestParentOf(differencePart1[i], differencePart2[i]);
}

return typeSequence;

procedure matchWithEmptyString(differencePart1, differencePart2)
foreach(possibility of the empty matches in the shorter string)
{

generalizationScores[i] = calculate the total of the lengths
between the types of possibility[i] and longer string

}
return possibility which has the smallest generalization score;

Table 3.1: Similarity Translation Template Extraction Algorithm with Type As-
sociation



Chapter 4

Confidence Factor Assignment

The learned translation templates are used in translation process and frequently

for one source sentence the system produces more than one result, some of these

results are produced directly from the training set i.e.: the sentence itself exists

in the training data as a fact, doubtlessly this result is the most confident one.

Some of the results are produced using more than one translation template, that

means the result is generated by substituting one or more variables with the real

translations, so this type of results are less confident than the ones generated by

the first group.

In our system we want to sort the results according to their confidence factors.

Confidence factor is the similarity of a translation template within the subset that

is formed from the training set elements that matches the translation template.

As translation is bidirectional, there are two confidence factors assigned to each

translation template, one for the weight from lang1 to lang2, and the other for

the reverse direction.

In the previous version of this system, Öz & Çiçekli [22] have used several

different methods to assign confidence factors to the translation templates. In

this work, a different approach is used while calculating the confidence factors. In

[22], along with the confidence factors of the individual translation templates, the

concurrent usage possibility of translation templates with the other translation

49
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templates are calculated. This method is not covered in the current version of

confidence factor assignment.

4.1 Assigning Confidence Factors to Facts

In [22], for weighting the facts (atomic translation templates) Öz & Çiçekli have

used a naive method.

Assume that we will calculate the confidence factor of X → Y. In equation

4.1:

confidence factor =
N1

N1 + N2
(4.1)

• N1 is the number of example pairs where the pairs both contain X and Y

as a substring

• N2 is the number of example pairs where the pairs contain X and do not

contain Y as a substring

In order to make it clear assume that, the confidence factor of atomic trans-

lation template in 4.2 is to be calculated.

letter → harf (4.2)

As stated earlier, the confidence factors are assigned according to the training

set. In 4.3, the training pairs are given.
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it is a letter ↔ bu bir mektup +Cop (4.3)

she write +PAST a letter ↔ bir mektup yaz +PAST +3SG

it is not a letter ↔ o bir harf değil +Cop

letter +s ↔ mektup +PL

boys will not write letter +s ↔ oğlanlar mektup yaz+NEG+FUT+3PL

character ↔ harf

So for the example 4.2, the confidence factor from English to Turkish is:

• letter occurring as harf in lang2 → N1 = 1

• letter not occurring as harf in lang2 → N2 = 4

confidence factor1 =
1

1 + 4
= 0.2 (4.4)

And for confidence factor from Turkish to English for the same example is:

• harf occurring as letter in lang1 → N1 = 1

• harf not occurring as letter in lang1 → N2 = 1

confidence factor2 =
1

1 + 1
= 0.5 (4.5)

4.2 Assigning Confidence Factors to Type As-

sociated Translation Templates

Confidence factor assignment to a type associated translation template is different

from the correspondent algorithm defined in [22].
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confidence factor =
N1

N1 + N2
(4.6)

• N1 is the number of example pairs which are matched by the translation

template for both sides

• N2 is the number of example pairs in which one pair matches the translation

template while the other does not match

A sentence matches a translation template, when that template can be learned

from the substring of the sentence.

Let me explain the calculation method via an example. Assume that we will

calculate the confidence factors of translation template 4.7 from the training set

in 4.8.

at least X1
number noun ↔ en az Y 1

number noun (4.7)

at least one apple ↔ en az bir elma (4.8)

at least one green apple ↔ en az bir yeşil elma

at least two notebook +s ↔ en az iki defter

at least three beautiful girl +s ↔ en az üç güzel kız

For the confidence factor from English to Turkish:

• Example pair 1, matches the translation template for both languages so N1

increases by 1

• Example pair 2,does not match the translation template
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• Example pair 3,the substring at least two notebook and en az iki defter

matches the template so N1 increases by 1

• Example pair 4,does not match the translation template

confidence factor1 =
2

2 + 0
= 1.0 (4.9)

For the confidence factor from Turkish to English:

• Example pair 1, matches the translation template for both languages so N1

increases by 1

• Example pair 2,does not match the translation template

• Example pair 3,the substring at least two notebook and en az iki defter

matches the template so N1 increases by 1

• Example pair 4,does not match the translation template

confidence factor2 =
2

2 + 0
= 1.0 (4.10)

The major point of the confidence factor assignment for translation templates

is to find a substring in the example pairs that can infer the given translation

template.

For types containing nullor the type patterns are checked for the all possi-

bilities of the type patterns. Assume that the translation template is as in 4.11.

So the type patterns declared in 4.12 will be searched in the examples for this

translation template’s English part.

I X1
nullor(am) V erb Tense to X2

nullor(Det) Noun ↔ Y 2
Noun+YE Y 1

V erb Tense +1SG (4.11)
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am Verb Tense ... Det Noun (4.12)

Verb Tense ... Det Noun

am Verb Tense ... Noun

Verb Tense ... Noun

For the completeness of the example that I have used to describe learning

algorithm, I will assign confidence factors to the translation templates shown in

4.13 and 4.14.

come+Verb ↔ gel+Verb (4.13)

not+Adv go+Verb ↔ git+Verb +Neg

X1
Noun +Pl be+Verb +Pres +Pl X2

nullor(Adv) V erb +Prog ↔

Y 1
Noun +A3pl +Pnon +Nom Y 2

V erb V ERB−SUFFIX−SENSE +Prog1 +A3pl
(4.14)

As stated earlier, the main resource for confidence factors of translation tem-

plates is the training set. For the sake of the example, suppose that the training

set contains the following examples:

girl+Noun +Pl be+Verb +Pres +Pl come+Verb +Prog ↔

kız+Noun +A3pl +Pnon +Nom gel+Verb +Pos +Prog1 +A3pl

girl+Noun +Pl be+Verb +Pres +Pl not+Adv go+Verb +Prog ↔

kız+Noun +A3pl +Pnon +Nom git+Verb +Neg +Prog1 +A3pl

boy+Noun +Pl be+Verb +Pres +Pl come+Verb +Prog ↔

oğlan+Noun +A3pl +Pnon +Nom gel+Verb +Pos +Prog1 +A3pl

boy+Noun +Pl be+Verb +Pres +Pl not+Adv go+Verb +Prog ↔

oğlan+Noun +A3pl +Pnon +Nom git+Verb +Neg +Prog1 +A3pl

(4.15)
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The template in 4.13 is an atomic template (fact). As stated earlier the

method for assigning confidence factors to facts is naive, the template is searched

as a substring in the examples and if both sides contain the template’s both sides

confidence raises, but if the template is contained only in one side of the example

confidence deteriorates.

Using the example set in 4.15, the confidence factors for fact in 4.13 is as

follows:

confidencefactoren−tr =
N1

N1 + N2
=

2

2 + 0
= 1.0 (4.16)

Confidence factor from English to Turkish is calculated as 1.0, the used source

sentences are the examples 1 and 3 in the example set. The same things are done

for the other direction (Turkish to English):

confidencefactortr−en =
N1

N1 + N2
=

2

2 + 0
= 1.0 (4.17)

Now I will demonstrate how the confidence factor of 4.14 will be calculated.

To compute the confidence factor of a translation template, the same logic is

applied as in the fact confidence factor assignment but this time the substring

match algorithm is different. For 4.14 we will search for the pattern in 4.18.

Noun +Pl be+Verb +Pres +Pl nullor(Adv) Verb +Prog ↔

Noun +A3pl +Pnon +Nom Verb VERB-SUFFIX-SENSE +Prog1 +A3pl
(4.18)

As mentioned in the previous chapter, the nullor types in the type sequence,

increases the number of the patterns to be searched, as there are two versions

of type sequence (one with the type written next to nullor, the other one is the

empty type) for each nullor type. As we have only one nullor in the pattern, the

patterns to be searched will be as in 4.19.
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Noun +Pl be+Verb +Pres +Pl Adv Verb +Prog ↔

Noun +A3pl +Pnon +Nom Verb VERB-SUFFIX-SENSE +Prog1 +A3pl

Noun +Pl be+Verb +Pres +Pl Verb +Prog ↔

Noun +A3pl +Pnon +Nom Verb VERB-SUFFIX-SENSE +Prog1 +A3pl

(4.19)

So while looking for a pattern in an example, the main point is the translation

template’s variable or constant information. In other words, while iterating over

an example, the suitability with the translation template is decided whether they

have the same string(s) or they have the same type of string(s), in constant and

variable case, respectively.

So when seeking for the first pattern in 4.19 in first example of 4.15, as the

first token is a variable we will search for a token in the example with type Noun.

Token is found in the first position, so the process goes on with the next token

of the template, as the strings +Pl be+Verb +Pres +Pl are all constants, in the

example next to the constituent with the type Noun these strings are tried to

be matched and the example qualifies our expectation. Similarly for the second

variable we seek the type sequence Adv Verb, but this time the example does not

meet our expectation as it has the constituent with type Verb next to the constant

strings instead of Adv. The type matching algorithm returns false for the English

part, but if we apply the same steps to the Turkish part the algorithm returns

true. For the second pattern, both sides of the example will match the template

so this example is said to prove the translation template. When searching for

sentences to match the templates containing nullor types, the sentence is said to

match, when one of the patterns fits the sentence.

So if we calculate the confidence factors for 4.14, the results are:

confidencefactoren−tr =
N1

N1 + N2
=

4

4 + 0
= 1.0 (4.20)

confidencefactortr−en =
N1

N1 + N2
=

4

4 + 0
= 1.0 (4.21)
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The whole confidence factor assignment algorithm is defined in Table 4.1.

So far, I have put the extraction of type associated translation templates

across. After the templates are learned, the calculation of confidence factors of

learned templates are described. So the system now yields the floor to translate

sentences using these templates. In the next chapter translation process within

system architecture will be given.
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procedure confidenceFactor(template)
foreach(example pair in training set)
{

valueForLang1 = matches(example’s lang1 part, template’s lang1 part);
valueForLang2 = matches(example’s lang2 part, template’s lang2 part);
if(valueForLang1 = true and valueForLang2 = true)

//only the lang1 and lang2 parts match
N1 = N1+1;

if(valueForLang1 = true and valueForLang2 = false)
//only the lang1 part matches
N2lang1

= N2lang1
+ 1;

if(valueForLang1 = false and valueForLang2 = true)
//only the lang2 part matches
N2lang2

= N2lang2
+ 1;

}
confidence factorlang1

= N1 / (N1 + N2lang1
)

confidence factorlang2
= N1 / (N1 + N2lang2

)
end

procedure matches(sentence, template)
foreach(pattern of template (templatelength = n))
{

foreach(substring S of length n)
{

flag = true;
if(pattern[i] is variable)
{

if(type of S[i] and pattern[i] are different)
flag = false;

}
else if(S[i] and pattern[i] are different)

flag = false;
}
if(flag = true)

return flag;
i = i+1;

}
return flag;

Table 4.1: Confidence Factor Assignment to Type Associated Translation Tem-
plates



Chapter 5

System Architecture

In this chapter, the whole architecture of the system will be described in de-

tail. The system is developed with Java programming language (JDK 1.5) using

Eclipse 3.1 integrated development environment.

The components of the system is shown in Figure 5.1. The system is com-

posed of two main components learning and translation. Firstly the learning

component is fed with bilingual translation examples and lattice structures for

languages. The learning component produces type associated translation tem-

plates.

The translation component takes this learned templates as rules. When a

sentence is given in language1 that sentence is fed to the morphological analyzer

belonging to language1, and combinations of all results are generated and given

as input to the translation component, here the matching templates that are to

be used in translation, are found and sentence is generated in lexical form in

language2, the lexical results are fed into morphological generator of language2

and all possible results are composed. Results are given in decreasing order of

confidence factors. The same process is valid for reverse direction.

Our system uses English as language1 and Turkish as language2. We make

use of training files containing Turkish-English translation pairs. These pairs are

59
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Figure 5.1: Components of the System
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stored in their lexical levels. So before giving the sample run for the learning

component, I will describe the storage of examples in the next section.

5.1 Storage of Examples

In 5.1 the storage of the examples boys are coming ↔ oğlanlar geliyorlar and

boys are not going ↔ oğlanlar gitmiyorlar is shown. For English sentences the

sentences are analyzed using a built-in morphological analyzer whose category

list is taken from Xerox’s English Morphological Analysis, and for Turkish ones

sentences are analyzed using Turkish morphological analyzer implemented in PC-

KIMMO environment.

As you can see in 5.1, the affixes are separated, this is done in order to learn

more specific templates from the examples. Some kind of affixes and some part-

of-speech tag of the words are not separated among to the specification level.

boy+Noun +Pl be+Verb +Pres +Pl come+Verb +Prog ↔

oğlan+Noun +A3pl +Pnon +Nom gel+Verb +Pos +Prog1 +A3pl

boy+Noun +Pl be+Verb +Pres +Pl not+Adv go+Verb +Prog ↔

oğlan+Noun +A3pl +Pnon +Nom git+Verb +Neg +Prog1 +A3pl

(5.1)

So we can say that examples are stored with their type information so when-

ever we need type of a word we extract it from the word itself like in 5.2.

I+Pron+Pers ↔ type is: Pron (5.2)

+Nom ↔ type is: Nom
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5.2 Lattice Structure for Languages

The lattice structure for Turkish and English are given in Appendix A and B,

respectively. In these structures, the root is always the type ANY.

The Turkish lattice contains total number of 101 categories, and to arrange

these categories in a lattice structure 39 main categories are added. A big part

of these main categories arranges the structure for affixes. The affixes are cate-

gorized in 4 levels, so the deepest level of the lattice is 4.

The English lattice is not so crowded as Turkish lattice, as this language does

not need so many categories for affixes required by an agglutinative language.

This lattice contains 46 categories and 19 main categories to arrange the lattice.

And the deepest level in the lattice is 3.

5.3 Performance Analysis of Learning Compo-

nent

Before giving a sample run for the learning component, I will give the time mea-

surements of the learning component for several training sets.

The running time measures of the learning components with different number

of translation pairs (N ) is given in Table 5.1. In this table first column gives

the time measure per iteration, learning component iterates over the example set

till it learns no more translation templates. Iterating till no extra translation

template learning provides to opportunity to the new templates to be learned.

Last three columns show the number of templates learned from examples, learned

from learned translation templates and total number of translation templates

learned, respectively.

Learning component consumes most of the time where computations are done

according to the possible combinations like in feeding match sequences that do
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not have equal number of differences on both sides, calculating the string that

matches with empty string and lastly computing confidence factor of type se-

quences including nullor.

5.4 Sample Run of the Learning Component

After giving the example storage and lattice details of the system. I can now go

on with giving a sample run of the whole learning component.

The training file seen in Figure 5.2, is fed with the lattices described in the

appendices.

With these translation pairs, the learning component produces the translation

templates as in Figures 5.3, 5.4 and 5.5.

As seen from the learned templates, the structure of a translation template is

like as:

tt([English translation template],[Turkish translation template],[correspondence

list of variables],[type sequence for English variable, type sequence for correspond-

ing Turkish variable],[confidence factor for English, confidence factor for Turkish])

For atomic templates, fields related with variables (correspondence and type)

are left empty. For translation templates the number of fields related with vari-

ables are related with variable count, in other words if there are two variables

in a translation template, there should be two correspondence lists and two type

sequence lists.

5.4.1 Incremental Learning

So far we have learned from a single training file, after the learning process has

been completed we translate the incoming sentences according to the templates

generated by that training file. But what if we want to expand the scope of the
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Table 5.1: Performance Measures of Learning Component
N Time Number Of Learning Re-learning Confidence Factor # Templates # Templates # Templates

per Iteration Iterations Time Time Assignment Time from examples from templates (total)

970 554 4 2218.020 243.920 1015.430 2940 169 3109

100 1.776 3 5.328 0.591 42.341 316 18 334

50 0.445 2 0.891 0.15 13.059 167 9 176

20 0.111 2 0.221 0.1 1.712 44 0 44
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1 train_pair([it+Pron+Pers,+NomObl,+3P,+Sg,be+Verb,+Pres,+3sg,brown+Adj,car+Noun,+Sg],[o+Pron,+A3sg,+Pnon,+Nom,
kahverengi+Adj,araba+Noun,+A3sg,+Pnon,+Nom]). [it is brown car , o kahverengi araba]

2 train_pair([it+Pron+Pers,+NomObl,+3P,+Sg,be+Verb,+Pres,+3sg,green+Adj,car+Noun,+Sg],[o+Pron,+A3sg,+Pnon,+Nom,yesil+Adj,ara
ba+Noun,+A3sg,+Pnon,+Nom]). [it is green car , o yesil araba]

3 train_pair([it+Pron+Pers,+NomObl,+3P,+Sg,be+Verb,+Pres,+3sg,I+Pron+Pers,+Gen,+1P,+Sg,car+Noun,+Sg],[o+Pron,+A3sg,+Pnon,
+Nom,ben+Pron,+A1sg,+Pnon,+Gen,araba+Noun,+A3sg,+P1sg,+Nom]). [it is my car ,  o benim arabam]

4 train_pair([at+Prep,least+Adv,one+Num+Card,letter+Noun,+Sg],[en+Adverb,+AdjMdfy,az+Adj,bir+Num+Card,mektup+Noun,+A3sg,
+Pnon,+Nom]).  [at least one letter , en az bir mektup]

5 train_pair([at+Prep,least+Adv,two+Num+Card,notebook+Noun,+Pl],[en+Adverb,+AdjMdfy,az+Adj,iki+Num+Card,defter+Noun,
+A3sg,+Pnon,+Nom]). [at least two notebooks , en az iki defter]

6 train_pair([at+Prep,most+Adv,one+Num+Card,letter+Noun,+Sg],[en+Adverb,+AdjMdfy,çok+Adj,bir+Num+Card,harf+Noun,+A3sg,
+Pnon,+Nom]).  [at most one letter ,  en çok bir harf]

7 train_pair([at+Prep,most+Adv,one+Num+Card,letter+Noun,+Sg],[en+Adverb,+AdjMdfy,çok+Adj,bir+Num+Card,mektup+Noun,
+A3sg,+Pnon,+Nom]). [at most one letter ,  en çok bir mektup]

8 train_pair([at+Prep,most+Adv,three+Num+Card,notebook+Noun,+Pl],[en+Adverb,+AdjMdfy,çok+Adj,üç+Num+Card,
defter+Noun,+A3sg,+Pnon,+Nom]). [at most three notebooks ,  en çok üç defter]

9 train_pair([blue+Adj],[mavi+Adj]). [blue ,  mavi]
10 train_pair([I+Pron+Pers,+Gen,+1P,+Sg],[ben+Pron,+A1sg,+Pnon,+Gen]). [my ,  benim]
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tt([[it+Pron+Pers,+NomObl,+3P,+Sg,be+Verb,+Pres,+3sg,brown+Adj,car+Noun,+Sg]],[[o+Pron,+A3sg,+Pnon,+Nom,kahverengi+Adj,
araba+Noun,+A3sg,+Pnon,+Nom]],[],[]).[ 1.0 , 1.0 ] learned from 1-2

tt([[it+Pron+Pers,+NomObl,+3P,+Sg,be+Verb,+Pres,+3sg,green+Adj,car+Noun,+Sg]],[[o+Pron,+A3sg,+Pnon,+Nom,yesl+Adj,araba+Noun
,+A3sg,+Pnon,+Nom]],[],[] ).[1.0 , 1.0 ] learned from 1-2

tt([[brown+Adj]],[[kahverengi+Adj]],[],[]).[ 1.0 , 1.0 ] learned from 1-2
tt([[green+Adj]],[[yesil+Adj]],[],[]).[ 1.0 , 1.0 ] learned from 1-2
tt([[it+Pron+Pers,+NomObl,+3P,+Sg,be+Verb,+Pres,+3sg,I+Pron+Pers,+Gen,+1P,+Sg,car+Noun,+Sg]],[[o+Pron,+A3sg,+Pnon,+Nom,

ben+Pron,+A1sg,+Pnon,+Gen,araba+Noun,+A3sg,+P1sg,+Nom]],[],[]).[ 1.0 , 1.0 ] learned from 1-3
tt([[at+Prep,least+Adv,one+Num+Card,letter+Noun,+Sg]],[[en+Adverb,+AdjMdfy,az+Adj,bir+Num+Card,mektup+Noun,+A3sg,

+Pnon,+Nom]],[],[]).[ 1.0 , 1.0 ] learned from 1-4
tt([[at+Prep,least+Adv,two+Num+Card,notebook+Noun,+Pl]],[[en+Adverb,+AdjMdfy,az+Adj,iki+Num+Card,defter+Noun,+A3sg,

+Pnon,+Nom]],[],[]).[ 1.0 , 1.0 ] learned from 1-5
tt([[at+Prep,most+Adv,one+Num+Card,letter+Noun,+Sg]],[[en+Adverb,+AdjMdfy,çok+Adj,bir+Num+Card,harf+Noun,+A3sg,

+Pnon,+Nom]],[],[]).[ 0.5 , 1.0 ] learned from 1-6
tt([[at+Prep,most+Adv,one+Num+Card,letter+Noun,+Sg]],[[en+Adverb,+AdjMdfy,çok+Adj,bir+Num+Card,mektup+Noun,+A3sg,

+Pnon,+Nom]],[],[]).[ 0.5 , 1.0 ] learned from 1-7
tt([[at+Prep,most+Adv,three+Num+Card,notebook+Noun,+Pl]],[[en+Adverb,+AdjMdfy,çok+Adj,üç+Num+Card,defter+Noun,

+A3sg,+Pnon,+Nom]],[],[]).[ 1.0 , 1.0 ] learned from 1-8
tt([[blue+Adj]],[[mavi+Adj]],[],[]).[ 1.0 , 1.0 ] learned from 1-9
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tt([[I+Pron+Pers,+Gen,+1P,+Sg]],[[ben+Pron,+A1sg,+Pnon,+Gen]],[],[]).[ 1.0 , 1.0 ] learned from 1-10
tt([[one+Num+Card,letter+Noun,+Sg]],[[bir+Num+Card,mektup+Noun]],[],[]).[ 0.6666667 , 1.0 ] learned from 4-5
tt([[one+Num+Card,letter+Noun,+Sg]],[[bir+Num+Card harf+Noun]],[],[]).[ 0.33333334 , 1.0 ] learned from 6-8
tt([[two+Num+Card,notebook+Noun,+Pl]],[[iki+Num+Card,defter+Noun]],[],[]).[ 1.0 , 1.0 ]learned from 4-5
tt([[least+Adv]],[[az+Adj]],[],[]).[ 1.0 , 1.0 ] learned from 4-7
tt([[most+Adv]],[[çok+Adj]],[],[]).[ 1.0 , 1.0 ] learned from 4-7
tt([[least+Adv,one+Num+Card,letter+Noun,+Sg]],[[az+Adj,bir+Num+Card,mektup+Noun]],[],[]).[ 1.0 , 1.0 ] learned from 4-8
tt([[most+Adv,three+Num+Card,notebook+Noun,+Pl]],[[çok+Adj,üç+Num+Card,defter+Noun]],[],[]).[ 1.0 , 1.0 ] learned from 4-8
tt([[least+Adv,two+Num+Card,notebook+Noun,+Pl]],[[az+Adj,iki+Num+Card,defter+Noun]],[],[]).[ 1.0 , 1.0 ] learned from 5-6
tt([[most+Adv,one+Num+Card,letter+Noun,+Sg]],[[çok+Adj,bir+Num+Card,harf+Noun]],[],[]).[ 0.5 , 1.0 ] learned from 5-6
tt([[most+Adv,one+Num+Card,letter+Noun,+Sg]],[[çok+Adj bir+Num+Card mektup+Noun]],[],[]).[ 0.5 , 1.0 ] learned from 5-7
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tt([[least+Adv,two+Num+Card]],[[az+Adj,iki+Num+Card]],[],[]).[ 1.0 , 1.0 ] learned from 5-8
tt([[most+Adv,three+Num+Card]],[[çok+Adj,üç+Num+Card]],[],[]).[ 1.0 , 1.0 ] learned from 5-8
tt([[three+Num+Card,notebook+Noun,+Pl]],[[üç+Num+Card,defter+Noun]],[],[]).[ 1.0 , 1.0 ] learned from 6-8
tt([[it+Pron+Pers,+NomObl,+3P,+Sg,be+Verb,+Pres,+3sg],1,[car+Noun,+Sg]],[[o+Pron,+A3sg,+Pnon,+Nom],1,

[araba+Noun,+A3sg,+Pnon,+Nom]],[1,1],[Adj ,Adj ]).[1.0 , 1.0] learned from 1-2
tt([[at+Prep,least+Adv],1],[[en+Adverb,+AdjMdfy,az+Adj],1,[+A3sg,+Pnon,+Nom]],[1,1],[Num Noun VERB-SUF-COUNT ,Num Noun ],).

[ 1.0 , 1.0]learned from 4-5 
tt([[at+Prep],1,[one+Num+Card,letter+Noun,+Sg]],[[en+Adverb,+AdjMdfy],1,[bir+Num+Card,mektup+Noun,+A3sg,+Pnon,+Nom]],[1,1],

[Adv ,Adj ],).[ 0.6666667 ,1.0] learned from 4-7
tt([[at+Prep],1],[[en+Adverb,+AdjMdfy],1,[+A3sg,+Pnon,+Nom]],[1,1],[Adv Num Noun VERB-SUF-COUNT ,Adj Num Noun ]).

[ 1.0 , 1.0] learned from 4-8
tt([[at+Prep],1,[notebook+Noun,+Pl]],[[en+Adverb,+AdjMdfy],1,[defter+Noun,+A3sg,+Pnon,+Nom]],[1,1],[Adv Num ,Adj Num ]).

[ 1.0 , 1.0] learned from 5-8
tt([[at+Prep,most+Adv],1],[[en+Adverb,+AdjMdfy,çok+Adj],1,[+A3sg,+Pnon,+Nom]],[1,1],[Num Noun VERB-SUF-COUNT ,Num Noun 

]). [ 1.0 , 1.0] learned from 6-8
tt([[at+Prep],1,2],[[en+Adverb,+AdjMdfy],1,2,[+A3sg,+Pnon,+Nom]],[1,1],[2,2],[Adv ,Adj ],[Num Noun VERB-SUF-COUNT ,Num Noun 

]). [ 1.0 , 1.0] learned again from translation template 2-6
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templates. In the older version, the training file is expanded with the proper

examples and the learning process is repeated, this would be time consuming.

If we want to add new examples to the learned file, we execute the learn-

ing component with merge option. Merge option loads the learned templates

(as previous knowledge) and learns from the new file with that prior knowledge

and produces a single rule file which contains the previous learned translation

templates and the new ones.

We have used an example set of 970 examples for learning and after merged

this learned templates with nearly 1000 words containing dictionary like training

file. This option makes the system to translate the sentence templates in the first

training set with the words included in the dictionary training file.

Now we have acquired the output of learning component as translation tem-

plates, in the next section I will exemplify the translation process via these learned

pairs.

5.5 Translation Component

So far I have explained the translation template the extraction and confidence

factor assignment algorithms in detail, the translation component is the other

main component of the system along with learning.

As mentioned in the Example Storage part, the examples are stored therefore

learned in their lexical forms, in order to translate the sentence we have to obtain

the lexical level representation of the sentence. In the following section, I will

explain the details of the morphological analysis operations.
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5.5.1 Morphological Analysis Operations

Morphological analysis and generation arranges the input and output of the trans-

lation component. As our system is making translations between Turkish and

English, we have used the morphological analyzer for these languages.

For Turkish, we have used the PC-KIMMO system integrated into our system

via interprocess communication. The rule and lexicon files written for Turkish

are loaded at the beginning and when a sentence is wanted to be translated,

the sentence is recognized by the PC-KIMMO system and all combinations of

lexical representations are listed to the user, to choose the correct combination

(disambiguate the different types of a word). After the translation, again the

system is wanted to synthesize the generated sentence and the result is given

again in the surface form.

For English, the lexical level representations of Online Xerox Morphological

Analyzer tool is used, all lexical level representations of encountered words are

kept and this data is used for both recognition and synthesize processes as in

Turkish part.

5.5.2 Matching Phase

The heart of the translation component is the matching (finding appropriate

templates for a sentence) part.

In order to translate the sentence, we have used a modified version of the

Earley Parsing algorithm.

5.5.2.1 Earley Parser

The Earley parser is a type of parser mainly used for parsing in computational

linguistics. The algorithm uses dynamic programming. Since Earley parser makes

use of a chart to eliminate backtracking, it is classified as a chart parser. This
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feature of the parser makes it distinguished from the other conventional parsing

algorithms as it eliminates the reparsing problem [17]. It parses the sentence,

according to the grammar given as input.

Before going on with the details of the Earley parser, let me briefly describe

the notation that it uses called dot notation. The notation in 5.3 means that in

the sentence A B C, the parser has already parsed A, now waits for B and C.

S → A . B C (5.3)

The main operation of an Earley parser is seeking through the N + 1 sets of

states (where N is the number of words in the input) and processing the state in

its set in order. [17]

The algorithm is composed of three main steps:

• Prediction: Adds new states to the chart, if the examined state contains

a variable (non-terminal) just after its dot position.

• Scanning: Enhances the dot position if the expected terminal has been

detected

• Completion: If dot has reached to the end of the state (S → A b.) in

chartk, then this step goes to chartdotPositionk
and enhances the dot position

of states having dots just before S.

It is really hard to understand the parsing algorithm without an example ,so

for the sake of clarity I will explain the algorithm using the simple grammar given

in 5.4.
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Chart 0
State0 = . John comes
(1) γ → . S 0 (starter rule)
(2) S → . NP VP 0 (predicted from 1)
(3) S → . VP 0 (predicted from 1)
(4) NP → . Noun 0 (predicted from 2)
(5) VP → . Verb 0 (predicted from 3)
(6) Noun → . John 0 (predicted from 4)
(7) Verb → . comes 0(predicted from 5)
Chart 1
State1 = John. comes
(8) Noun → John . 0 (scanner from chart(0)(6))
(9) NP → Noun . 0 (completed from chart(0)(4) by 8)
(10) S → NP . VP 0 (completed from chart(0)(2) by 9)
(11) VP → . Verb 1 (predicted by 10)
(12) Verb → . comes 1 (predicted by 11)
Chart 2
State2 = John comes.
(13) Verb → comes . 1(scanner from chart(1)(12))
(14) VP → Verb . 1(completed from chart(1)(11) by 13)
(15) S → NP VP . 0 (completed from chart(1)(10) by 14)
(16) γ → S . 0 (completed from chart(0)(1) by 15)

Table 5.2: Earley Parser Demo

S → NP VP (5.4)

S → VP

NP → Noun

Noun → John

VP → Verb

Verb → comes

Suppose that we want to parse the sentence John comes using these grammar

rules. Firstly the length of the chart will be 3 since the sentence has 2 words.

If the chart(n+1) contains at least one rule with the dot at the end of the rule

and encloses the whole sentence in other words start position is 0. As you can
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S

NP VP

Noun Verb

John comes

Figure 5.6: Generated Parse Tree for the sentence John comes

see from the example that the sentence John comes is a legal sentence according

to the grammar given in 5.4. Along with the information that the sentence is

an appropriate sentence for the grammar, we are able to extract the parse tree

as we have the trace information from the completer. The chart generated by

the Earley parser is seen in Table 5.2. The parse tree for the sentence is seen in

Figure 5.6.

5.5.2.2 Modification of Earley Parser

In this system the Earley parser is used to find the appropriate templates for a

given source sentence (matching). To accomplish the matching part some modi-

fications are needed in the Earley parser.

As stated in the previous section the grammatical rules are needed for an

Earley parser, in our system the grammatical rules correspond to the translation

templates.

First modification is that the structure of the rule that is kept in the chart. As

translation is bidirectional process, translation template structure is embedded

into the rule structure. For example a translation template as shown in 5.5 is
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represented as a rules as seen in 5.5.

X1
Noun +Pl be+Verb +Pres +Pl X2

nullor(Adv) V erb +Prog ↔

Y 1
Noun +A3pl +Pnon +Nom Y 2

V erb V ERB−SUFFIX−SENSE +Prog1 +A3pl

S → S +Pl be+Verb +Pres +Pl S +Prog

[ S +A3pl +Pnon +Nom S +Prog1 +A3pl ]

correspondence [1,1] [2,2]

types [Noun,nullor(Adv) Verb] [Noun,Verb VERB-SUFFIX-SENSE]

confidence factor [1.0,1.0]

(5.5)

These rules are generated in both languages, the example shows a rule that

can be used for translation of a sentence from English to Turkish, so the main

rule (that the dot will march through) is in English, beyond that the Turkish

component of the rule is to be kept with the information which variable corre-

sponds which one, type information of both languages and the confidence factors.

For atomic templates the correspondence and type areas are kept empty.

Actually at this level the parser is ready to be used for matching. Let me give

an example for the usage. Assume that there are rules as shown in 5.6.
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S → S +Pl be+Verb +Pres +Pl S +Prog

[ S +A3pl +Pnon +Nom S +Prog1 +A3pl ]

correspondence [1,1] [2,2]

types [Noun,nullor(Adv) Verb] [Noun,Verb VERB-SUFFIX-SENSE]

confidence factor [1.0,1.0]

S → man+Noun

[ adam+Noun ]

correspondence

types

confidence factor [1.0,1.0]

S → go+Verb

[ git+Verb +Pos ]

correspondence

types

confidence factor [1.0,1.0]

(5.6)

We want to translate sentence men are going whose lexical representation is

given at 5.7.

man+Noun +Pl be+Verb +Pres +Pl go+Verb +Prog (5.7)

So the resulting chart for this example is given in Table 5.3.

To complete the translation process the enclosing rules (with the dot at the

end) parse tree is extracted.

To extract the parse tree we simply follow the pointers (data given in paren-

thesis) of the enclosing rule, and get the rules added by completer:

Rule number 16 is the enclosing rule, it is scanned by rule 14 and this rule

is completed by 13, 13 is scanned by 12 and 12 is predicted by 9, 9 is scanned

by 8, 8 is scanned by 7 and 7 is scanned by 6, 6 is scanned by 5 and lastly 5 is

completed by 4. So our parse tree is composed of rules 16, 13 and 4.
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Chart 0
State0 = . man+Noun +Pl be+Verb +Pres +Pl go+Verb +Prog
(1) S → .S +Pl +be+Verb +Pres +Pl S +Prog 0 (predicted from main)
(2) S → . man+Noun 0 (predicted from main)
(3) S → . go+Verb 0 (predicted from main)
Chart 1
State1 = man+Noun . +Pl be+Verb +Pres +Pl go+Verb +Prog
(4) S → man+Noun . 0 (scanner from chart(0)(2))
(5) S → S . +Pl +be+Verb +Pres +Pl S +Prog 0

(completed from chart(0)(2) by 4)
Chart 2
State2 = man+Noun +Pl . be+Verb +Pres +Pl go+Verb +Prog
(6) S → S +Pl . +be+Verb +Pres +Pl S +Prog 0

(scanner from chart(1)(5))
Chart 3
State3 = man+Noun +Pl be+Verb . +Pres +Pl go+Verb +Prog
(7) S → S +Pl +be+Verb . +Pres +Pl S +Prog 0

(scanner from chart(2)(6))
Chart 4
State4 = man+Noun +Pl be+Verb +Pres . +Pl go+Verb +Prog
(8) S → S +Pl +be+Verb +Pres . +Pl S +Prog 0

(scanner from chart(3)(7))
Chart 5
State5 = man+Noun +Pl be+Verb +Pres +Pl . go+Verb +Prog
(9) S → S +Pl +be+Verb +Pres +Pl . S +Prog 0

(scanner from chart(4)(8))
(10) S → .S +Pl +be+Verb +Pres +Pl S +Prog 5 (predicted from 9)
(11) S → . man+Noun 5 (predicted from 9)
(12) S → . go+Verb 5 (predicted from 9)
Chart 6
State6 = man+Noun +Pl be+Verb +Pres +Pl go+Verb . +Prog
(13) S → go+Verb . (scanner from chart(5)(12))
(14) S → S +Pl +be+Verb +Pres +Pl S . +Prog 0

(completed chart(5)(12) by 13)
(15) S → S . +Pl +be+Verb +Pres +Pl S +Prog 5

(completed chart(5)(12) by 13)
Chart 7
State6 = man+Noun +Pl be+Verb +Pres +Pl go+Verb +Prog .
(16) S → S +Pl +be+Verb +Pres +Pl S +Prog . 0

(scanner by chart(6)(14))

Table 5.3: Earley Parser for Matching
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Variable 1
(type: Noun) +A3pl +Pnon +Nom

Variable 2
(type: Verb VERB-
SUFFIX-SENSE)

+Prog1 +A3pl

adam +Noun git+Verb +Pos

Type expectations 
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adam+Noun +A3pl +Pnon +Nom git+Verb +Pos +Prog1 +A3pl

Figure 5.7: Translation Process from Parse Tree

After finding the parse tree, the Turkish correspondent of the rules are filled

by the element in the same hierarchy. the remaining process is shown in Figure

5.7.

Confidence factor of the resulting sentence is equal to the multiplication of

confidence factorsrc−dest of all rules acted in the translation process, for this

example the confidence factor is:

confidencefactorresult = 1.0 × 1.0 × 1.0 = 1.0 (5.8)

At the last step type compliance is checked. At this point, to underline the

significance of the type association for the templates, suppose that among the

rules there exists another rule like in 5.9 1.

1assume the word go stands for the game GO in Turkish
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S → go+Verb

[ go+Noun ]

correspondence

types

confidence factor [1.0,1.0]

(5.9)

At this point the previous version of the system will locate the template in

place of the second variable, but now we are able to eliminate this wrong result.

So far the Earley algorithm is adequate for translation, but when this system

is operated on a realistic dataset (containing templates more than 3000), the

operation time increases dramatically. In order to get response from the system

in a short time, we have to somehow decrease the rules that are enqueued in the

chart. We have used two modifications to eliminate useless rules:

• Look forward and eliminate: In prediction phase, if the rules are start-

ing with a terminal, the system looks-a-head (looks a head for two strings

if not applicable looks a head for one string) and if the following terminals

are not equal eliminate the rule. The look-a-head elimination is bounded

with 2 because adding a 3 look-a-head elimination did not improve the per-

formance very much and the elimination stopped at 2 look-a-head in order

to prevent non-promising elimination controls.

• Grouping the rules: Before the Earley parser starts, a pool is composed

of the rules starting with the words of the source sentence. And the rules

are added as a group to the Chart0 and Chart1, so the iteration over the

first two elements of the chart decreases.

The whole modified Earley parse algorithm is given in Table 5.4.

The chart in Table 5.3 is generated according to the classical Earley parser,

Table 5.6 gives the results according to the modified version of the algorithm

as you can see among only four grammar rules addition of two useless rules
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procedure EarleyTranslate(rulePool, sentence)
rule pool contains rule groups starting with the words of

the sentence and S
put all rules starting with S and sentence[0]
foreach(word in sentence)
{

foreach(state in chart[wordIndex])
{

if(state is grouped)
{

if(rule starts with S)
predictor(wordIndex);

else
ungroupIfApplicable(state, wordIndex);

}
else if(state is incomplete and element after dot is S)

predictor(wordIndex);
else if(state is incomplete and element after dot is a terminal)

scanner(state,wordIndex);
else

completer(state);
}

}

procedure predictor(i)
enqueue(i,rules starting with S as a group);
enqueue(i,rules starting with sentence[i] as a group);

procedure scanner(state,wordIndex)
if(sentence[wordIndex] and element after dot in state are equal)

if(1 or 2 elements further from the wordIndex in state match
with sentence from point wordIndex)

enqueue(state’s dot position, state dot enhanced by 1);

procedure completer(state)
foreach(rule in chart[state’s start position])

if(element after dot in rule is S)
enqueue(state dot position, rule with dot position

enhanced by 1)

Table 5.4: Modified Earley Parser 1 of 2
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procedure enqueue(index,state)
add the state to the chart[index] if not previously added

procedure ungroupIfApplicable(index,state)
if(state’s group header and the question’s word at the state’s

index are the same)
{

scanner(state,index);
}

Table 5.5: Modified Earley Parser 2 of 2 (extra functions)

are prevented, thinking among thousands of rules these modifications makes the

system usable as the working time decreases.

In order to show system’s output assume that we have fed the unseen example

it is my car in the training set given in Figure 5.2.

Firstly all possibilities of the output of English morphological analyzer is

composed:

it+Pron+Pers +NomObl +3P +Sg be+Verb +Pres +3sg I+Pron+Pers +Gen

+1P +Sg car+Noun +Sg

At this point there can be different combinations for the lexical level repre-

sentation of the sentence, we can send all of the possibilities to the translating

component and get the best result.

The system produces only one result:

o+Pron +A3sg +Pnon +Nom ben+Pron +A1sg +Pnon +Gen araba+Noun

+A3sg +P1sg +Nom CONFIDENCE: 1.0

o benim arabam

But when type compliance is not checked system produces one more result

which is grammatically wrong:
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o+Pron +A3sg +Pnon +Nom ben+Pron +A1sg +Pnon +Gen araba+Noun

+A3sg +Pnon +Nom CONFIDENCE: 1.0

o benim araba

As you can see both translations have 100% confidence, but the second result

is wrong, and its wrongness can only be understood by type checking.

As stated before the confidence of a translation result is calculated by multi-

plication of all of the translation templates confidence factors used in translation.

At the last step the produced lexical level sentence is fed into the Turkish

generator giving the surface form of the result.
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Chart 0
State0 = . man+Noun +Pl be+Verb +Pres +Pl go+Verb +Prog
(1) S → .S α 0 (predicted from main)
(2) S → . man+Noun α 0 (predicted from main)
Chart 1
State1 = man+Noun . +Pl be+Verb +Pres +Pl go+Verb +Prog
(3) S → man+Noun . 0 (scanner from chart(0)(2))
(4) S → S . +Pl +be+Verb +Pres +Pl S +Prog 0

(completed from chart(0)(2) by 3)
Chart 2
State2 = man+Noun +Pl . be+Verb +Pres +Pl go+Verb +Prog
(5) S → S +Pl . +be+Verb +Pres +Pl S +Prog 0(scanner from chart(1)(4))
Chart 3
State3 = man+Noun +Pl be+Verb . +Pres +Pl go+Verb +Prog
(6) S → S +Pl +be+Verb . +Pres +Pl S +Prog 0(scanner from chart(2)(5))
Chart 4
State4 = man+Noun +Pl be+Verb +Pres . +Pl go+Verb +Prog
(7) S → S +Pl +be+Verb +Pres . +Pl S +Prog 0(scanner from chart(3)(6))
Chart 5
State5 = man+Noun +Pl be+Verb +Pres +Pl . go+Verb +Prog
(8) S → S +Pl +be+Verb +Pres +Pl . S +Prog 0(scanner from chart(4)(7))
(9) S → .S α 5 (predicted from 8)
(10) S → . go+Verb α 5 (predicted from 8)
Chart 6
State6 = man+Noun +Pl be+Verb +Pres +Pl go+Verb . +Prog
(11) S → go+Verb . (scanner from chart(5)(10))
(12) S → S +Pl +be+Verb +Pres +Pl S . +Prog 0

(completed chart(5)(10) by 11)
(13) S → S . +Pl +be+Verb +Pres +Pl S +Prog 5

(completed chart(5)(10) by 11)
Chart 7
State6 = man+Noun +Pl be+Verb +Pres +Pl go+Verb +Prog .
(14) S → S +Pl +be+Verb +Pres +Pl S +Prog . 0

(scanner by chart(6)(12))

Table 5.6: Modified Earley Parser for Matching



Chapter 6

Tests and Evaluation

So far I have explained the system and its components in detail. The performance

analysis of the system comes next.

Human intervention was one the most popular techniques to verify the re-

sults of machine translation systems. But as we can guess, human verification

is very expensive and time-consuming. In [23] Papineni et. al. offers an auto-

matic method for evaluation of these systems: BiLingual Evaluation Understudy

(BLEU) method.

6.1 BLEU Method

Bleu is an evaluation method that gives scores to the results that are generated by

machine translation systems. It states for BiLingual Evaluation Understudy, and

it is capable of evaluating of any bilingual machine translation system independent

from language.

As stated in [23], the closer a machine translation is to a professional human

translation, the better it is. The quality of translation is a number between 0 and

1, and this measurement is a statistical closeness to a set of perfect translations.

83
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The first computational phase of BLEU method is n-gram comparison of the

candidate sentences. If we take the example from [23]:

Candidate: the the the the the the the.

Reference 1: The cat is on the mat.

Reference 2: There is a cat on the mat.

The machine translation system has produced the absurd result in Candidate.

If we compute the n-gram value (taking n as 1) for the candidate according to

Reference 1 the unigram value will be 7 / 7, which leads to a high score for that

wrong candidate, so we must somehow modify the computation of n-grams.

The best method for modification of n-gram computation is to a word in

the reference is exhausted after it has been matched with a word in candidate

sentence. To compute the modified unigram precision, first the maximum number

of times a word occurs in any single reference translation is counted, then the total

count of each candidate word is clipped by its maximum reference count. Finally,

these clipped counts are added and divided by total number of candidate words.

According to the formula, the modified unigram precision will be 2 / 7 (the

clipped words are underlined in the candidate sentence).

The problem is to decide the value n to be used. The experiments in [23]

show that the best results are taken when n = 4, so when the value of n is greater

than 1 the n-gram precisions are calculated for n = 1..n and the geometric mean

of these precisions is taken as resulting n-gram precision:

pn =

∑
C∈{Candidates}

∑
n−gram∈C Countclip(n − gram)

∑
C′∈{Candidates}{

∑
n−gram′∈C′ Count(n − gram′)

(6.1)

Experiments show that the modified n-gram precision for most cases can dis-

tinguish a bad translation and a good translation. The n-gram precision penalizes

the non-existing words in the reference sentence, at this point Papineni et. al.

has added another penalty for the candidate sentences that are longer than the
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reference sentences. This penalty is called Brevity Penalty and calculated as:

BP = {
1 if c > r

e(1−r/c) if c ≤ r
(6.2)

Finally the BLEU score is calculated as shown in Equation 6.3, where the

positive weights of n-grams wn sums up to 1.

BLEU = BP · exp (

N∑

n=1

wn log pn) (6.3)

Let me explain the algorithm with an example, assume that our system has

generated the result the cat is on mat and the reference sentence is the cat is on

the mat.

I have chosen n to be 4, so the modified n-gram precisions of the candidate

sentence will be:

Precision 1-gram: 1.0

Precision 2-gram: 0.75

Precision 3-gram: 0.6666666666666666

Precision 4-gram: 0.5

And now the weighted precision is to be calculated, with equal weights for

n = 4 so w = 0.25, for i from 1 to n.

weighted precision = (

N∑

n=1

wn log pn) (6.4)

So applying the formula in 6.4:

Weighted Precision: 0.7071067811865475
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After this point the Brevity Penalty is calculated according to the equation

6.5.

BP = e(1−6/5) = 0.8187307530779819 (6.5)

Lastly the BLEU score is the multiplication of the brevity penalty and the

weighted precision:

BLEU Score = WP × BP = 0.5789300674674098 (6.6)

6.2 Tests

As stated earlier, we have made use a 970 pairs training set for learning, and for

testing, 100 unseen examples in the training set is used. The English sentence

and its correct Turkish correspondent are given in the test file.

The BLEU score calculation is implemented in Java. I have used n = 4 for

n-gram precision where the sentence length allows me to do, if the sentence length

is shorter than 4 then the total length of the sentence is taken as n. The weight

for each n is taken equal, wn = 1/n. The candidate sentence is the first result

that the system returns (the sentence having the biggest confidence factor).

The system is tested for the following cases:

• Experiment 1-Translation negating type constraints: This experi-

ment is done to underline the enhancement of the system by addition of

type constraints. After translation no type checking is done.

• Experiment 2-Translation using main lattice: In this experiment, the

system is tested in its normal case. The type constraints are composed by

the main lattice structure given in appendices.
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Experiment Average BLEU Score
Experiment 1 76 %
Experiment 2 93 %
Experiment 3 88 %
Experiment 4 93 %
Experiment 5 93 %

Table 6.1: BLEU Score Results for Experiments from English to Turkish

• Experiment 3-Translation using a single node lattice: This experi-

ment makes use of a lattice containing only ANY as root node and all of

the lexical categories are bound to directly to that root without any sub-

categorization. Actually learning from this type of lattice, constraints the

number of constituents that a variable can be replaced, instead of the types.

• Experiment 4-Translation using a single node for affix sub-

categorization in lattice: As stated earlier, while designing the lattice

especially for Turkish we have taken the affix categorization into account.

In this experiment all kinds of suffixes are bound to a single SUFFIX node.

The remaining part of the categorization is left the same.

• Experiment 5-Translation using a single node for type specific affix

sub-categorization in lattice: In this lattice structure, the type specific

suffixes (adjective suffixes, noun suffixes etc.) are not sub-categorized as in

the main lattice structure. Instead only one type-suffix node is used as a

parent for all suffixes belonging to this type. For example in the main lattice

verb suffixes were divided into two groups like VERB-TENSE and VERB-

SENSE, but in the lattice that this experiment has used, does no divide the

verb suffixes, instead it binds all of the verb suffixes to VERB-SUFFIX.

The enhancement that the type association has incorporated to the system

can be seen from the Table 6.1. Without type constraints the performance of the

system is 76%, with the addition of type constraints using the main lattice the

system’s performance is 93%. By looking at the results of Experiment 2 after the

addition of types, the system does not produce wrong results, the deviation from

100% comes from the different translations of the sentences like: it is a pencil
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Experiment Average BLEU Score
Experiment 1 75 %
Experiment 2 92.5 %
Experiment 3 85 %
Experiment 4 92.5 %
Experiment 5 92.5 %

Table 6.2: BLEU Score Results for Experiments from English to Turkish without
Confidence Factors

can be translated as o bir kalemdir and bir kalemdir.

In Experiment 3, we have shrank the lattice structure into one node ANY,

and bound all of the categories to that node. So all the type patterns do not

contain a type different from ANY. The difference of this setup from a typeless

fashion is that the number of constituents that a variable can replace is restricted

by he count of ANYs in the type sequence. Count restriction causes the system

performance enhance to 88% from 76%.

As stated above, in experiments 4 and 5, we have changed the categorization

of affixes and learned the templates according to these lattices. The result does

not deviate from the main structure of the lattice, but these results depends

upon the translation pairs. It is obvious that the system performs better under

a detailed structure of lattice.

Experiments are repeated for the same experiment sets without sorting the

results according to the confidence factors, in other words the first candidate

sentence given is the first sentence is the sentence that the translation component

has firstly produces. The results are given in Table 6.2.

From the results we can see that scores decrease about 1% for each experiment

set, so usage of confidence factors enhances the systems overall performance.

In Table 6.3, the results of the experiments repeated over the same test set

in reverse direction, from Turkish to English. Again the deviation of the type

associated system from 100% is sourced from equivalent translations like bir siyah

araba is translated as one black car instead of a black car.
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Experiment Average BLEU Score
Experiment 1 70.2 %
Experiment 2 86.78 %
Experiment 3 80.3 %
Experiment 4 86.78 %
Experiment 5 86.78 %

Table 6.3: BLEU Score Results for Experiments from Turkish to English

Experiment Average BLEU Score
Experiment 1 63.3 %
Experiment 2 76.4 %
Experiment 3 70.5 %
Experiment 4 76.4 %
Experiment 5 76.4 %

Table 6.4: BLEU Score Results for Experiments from Turkish to English without
Confidence Factors

Table 6.4 shows the performance of the system over the same test from Turkish

to English when the confidence factors of the results are ignored. In Turkish to

English case confidence factor of a result becomes significant as there is a decrease

about 10%.

The same tests are repeated with 10 fold cross validation. The test set is

added to the training set and the resulting set is pieced into 10. The results for

English to Turkish translations can be seen in Tables 6.5 and 6.6. The results are

parallel with the main test set results.

The results for Turkish to English are given in Tables 6.7 and 6.8, again the

significance of confidence factor usage is seen as the results decrease without

Experiment Average BLEU Score
Experiment 1 83.64 %
Experiment 2 95.07 %
Experiment 3 93.47 %
Experiment 4 95.07 %
Experiment 5 95.07 %

Table 6.5: Average BLEU Score Results for Experiments from English to Turkish
with Confidence Factors (10-fold cross validation)
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Experiment Average BLEU Score
Experiment 1 82.52 %
Experiment 2 92.91 %
Experiment 3 92.23 %
Experiment 4 92.91 %
Experiment 5 92.91 %

Table 6.6: Average BLEU Score Results for Experiments from English to Turkish
without Confidence Factors (10-fold cross validation)

Experiment Average BLEU Score
Experiment 1 73.48 %
Experiment 2 96.30 %
Experiment 3 89.58 %
Experiment 4 96.30 %
Experiment 5 96.30 %

Table 6.7: Average BLEU Score Results for Experiments from Turkish to English
with Confidence Factors (10-fold cross validation)

Experiment Average BLEU Score
Experiment 1 65.72 %
Experiment 2 93.28 %
Experiment 3 88.01 %
Experiment 4 93.28 %
Experiment 5 93.28 %

Table 6.8: Average BLEU Score Results for Experiments from Turkish to English
without Confidence Factors (10-fold cross validation)
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Experiment First 1 First 3 First 5 First 10
Experiment 1 47.2 % 41.1% 11.7% 0%
Experiment 2 86 % 13% 1% 0%
Experiment 3 78 % 20% 2% 0%
Experiment 4 86 % 13% 1% 0%
Experiment 5 86 % 13% 1% 0%

Table 6.9: Correct Result Position for Translations from English to Turkish

Experiment First 1 First 3 First 5 First 10
Experiment 1 35.4 % 52% 8% 4.6%
Experiment 2 86 % 14% 0% 0%
Experiment 3 61.2 % 26.5% 12.3% 0%
Experiment 4 86 % 14% 0% 0%
Experiment 5 86 % 14% 0% 0%

Table 6.10: Correct Result Position for Translations from Turkish to English

confidence factors.

The performance results from Turkish to English is not as good as the trans-

lation performance from English to Turkish, the reason beyond this deterioration

is mainly sourced from pronoun differences in Turkish and English like, o gitti is

translated as it went, this translation is correct but the test set waits the result

as he went, so this type of translations have yielded poor BLEU scores.

Tables 6.9 and 6.10 show the distribution of the correct result position among

the generated results. First column means the frequency of the correct result

generated at the first location, the second columns stands for the frequencies

that the correct result is among the first three results but not in the first position.

Third column shows the correct result is in the first five results but not in first

three, similarly the last column points that the correct result is in the first ten

results but not in first five.

As you can see from the tables 6.9 and 6.10 the addition of the type infor-

mation has also increased the probability that the system generates the waited

result at the top of all the results. These tests are run on the same test set with

confidence factors taken into account. Actually the generated results from the

system are all correct but not same with the waited one, so the divergence from
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a 100% comes from this difference.

As a result, the performance results of the system is satisfactory, as the system

is capable of eliminating nearly all of the wrong results.



Chapter 7

Conclusion and Future Work

In this thesis, I have presented modified version of translation template extraction

algorithm developed by Çiçekli&Güvenir [9]. In this version type information of

the constituents are associated with variables in the translation templates. Also

I have presented modification of the confidence factor assignment methods given

in Öz&Çiçekli [22].

In the previous version of the system, the results were given according to their

confidence factors, adding this kind of metric gives the appropriate result at the

top of the results, but it does not eliminate the incorrect results. In order to

give the best result among the correct results, the confidence factor assignment

is re-implemented.

I have used English-Turkish pairs to exemplify the system, but keep in mind

that the system is language independent. As I have reported in Chapter 1, there

are multiple means for a corpus based machine translation system to use as a

bilingual corpus like World Wide Web etc. I have tagged the existing large corpus

in their lexical levels and built up another corpus in a fashion of a dictionary to

enlarge the scope of the sentences that can be generated by the system. The

learning time for this large corpus is considerable but as this process is done once

for the system it can be tolerated.
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The test results are satisfactory, as we can see that for some translations

nearly 90% of the results are eliminated and the remaining ones were all correct.

The system is accurate enough, that it does not generate a wrong result, as

long as a semantic behavior does not come into the scene. Assume that we have

the following translation template extracted from the examples I ate the orange

↔ Portakalı yedim and I ate the apple ↔ Elmayı yedim:

I eat+PAST the X1
Noun ↔ Y 1

Noun +ACC ye+PAST+1sg

Whenever we want to translate the Turkish sentence kafa+Noun +ACC yedim

to its English correspondent, the system will generate I ate the head. The gener-

ated result is grammatically correct but semantically it is not.

In the future along with types the variables in the translation templates can

also be associated with semantic information to eliminate the sentences that are

not valid in the language. So the system will not produce any result grammatically

and semantically incorrect.
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Appendix A

Lattice Structure for Turkish

The lattice structure for Turkish is given in Table A.1, the main categories that

come from Turkish PC-KIMMO system is written in normal case whereas the

subcategories that are added to arrange the lattice is written in capitals.

Category Name Parent Category in Lattice

ANY

AdjMdfy ANY

Pron ANY

Noun ANY

Prop Noun

ADJ-SUF ANY

PRON-SUF ANY

ADVERB-SUF ANY

VERB-SUF ANY

VERB-TENSE VERB-SUF

NOUN-SUF
ADJ-SUF

ANY

NOUN-AGREEMENT NOUN-SUF

VERB-AGREEMENT VERB-SUF

A3pl
NOUN-AGREEMENT
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VERB-AGREEMENT

A3sg
NOUN-AGREEMENT

VERB-AGREEMENT

NOUN-POSSESIVE NOUN-SUF

Pnon NOUN-POSSESIVE

P1sg NOUN-POSSESIVE

P2sg NOUN-POSSESIVE

P3sg NOUN-POSSESIVE

P1pl NOUN-POSSESIVE

P2pl NOUN-POSSESIVE

P3pl NOUN-POSSESIVE

NOUN-CASE NOUN-SUF

Acc NOUN-CASE

Dat NOUN-CASE

Loc NOUN-CASE

Abl NOUN-CASE

Gen NOUN-CASE

Ins NOUN-CASE

Nom NOUN-CASE

Adj ANY

Conj ANY

Verb ANY

Pres VERB-TENSE

Past VERB-TENSE

Aor VERB-TENSE

Fut VERB-TENSE

Narr VERB-TENSE

Prog1 VERB-TENSE

Prog2 VERB-TENSE

Neces VERB-TENSE

Opt VERB-TENSE

Imp VERB-TENSE
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Desr VERB-TENSE

Cond VERB-TENSE

Cop VERB-TENSE

ASPECT*PR-CONT VERB-TENSE

A1sg VERB-AGREEMENT

A2sg VERB-AGREEMENT

A1pl VERB-AGREEMENT

A2pl VERB-AGREEMENT

VERB-SENSE VERB-SUF

Pos VERB-SENSE

Neg VERB-SENSE

Punc ANY

Interj ANY

NUMBER ANY

Num NUMBER

Num+Card NUMBER

Num+Ord NUMBER

Num+Dist NUMBER

NOUN-DB ANY

POSTP ANY

Postp+PCNom POSTP

Postp+PCAbl POSTP

Postp+PCDat POSTP

Postp+PCIns POSTP

Postp+PCGen POSTP

Adverb ANY

PRON-DB ANY

PRON-DB-ADJ PRON-DB

Ques ANY

ADJ-DB ANY

ADJ-DB-NOUN ADJ-DB
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NOUN-DB ANY

NOUN-DB-NOUN NOUN-DB

NOUN-DB-PRON NOUN-DB

NOUN-DB-ADJ NOUN-DB

NOUN-DB-ADVERB NOUN-DB

NOUN-DB-VERB NOUN-DB

PRON-DB-NOUN PRON-DB

PRON-DB-PRON PRON-DB

PRON-DB-VERB PRON-DB

ADVERB-DB ANY

ADVERB-DB-ADVERB ADVERB-DB

VERB-DB ANY

VERB-DB-ADVERB VERB-DB

VERB-DB-VERB VERB-DB

VERB-DB-NOUN VERB-DB

VERB-DB-ADJ VERB-DB

ADJ-DB-ADJ ADJ-DB

ADJ-DB-ADVERB ADJ-DB

ADJ-DB-VERB ADJ-DB

D̂B+Noun+Zero ADJ-DB-NOUN

D̂B+Adverb+Ly ADJ-DB-ADVERB

D̂B+Verb+Zero

ADJ-DB-VERB

NOUN-DB-VERB

PRON-DB-VERB

D̂B+Adj+Rel

PRON-DB-ADJ

NOUN-DB-ADJ

PRON-DB-ADJ

D̂B+Adj+FitFor
ADJ-DB-ADJ

NOUN-DB-ADJ

D̂B+Noun+Ness
NOUN-DB-NOUN

ADJ-DB-NOUN

D̂B+Noun+Agt
ADJ-DB-NOUN
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NOUN-DB-NOUN

D̂B+Adj+Agt

ADJ-DB-ADJ

NOUN-DB-ADJ

VERB-DB-ADJ

D̂B+Noun+Dim ADJ-DB-NOUN

D̂B+Verb+Become
ADJ-DB-VERB

NOUN-DB-VERB

D̂B+Verb+Acquire
ADJ-DB-VERB

NOUN-DB-VERB

D̂B+Adj+Without

ADJ-DB-ADJ

NOUN-DB-ADJ

PRON-DB-ADJ

D̂B+Adj+With

ADJ-DB-ADJ

NOUN-DB-ADJ

PRON-DB-ADJ

D̂B+Adverb+AsIf
NOUN-DB-ADVERB

VERB-DB-ADVERB

D̂B+Adverb+Ly NOUN-DB-ADVERB

D̂B+Noun+Dim NOUN-DB-NOUN

D̂B+Pron+Rel
PRON-DB-PRON

NOUN-DB-PRON

D̂B+Adverb+While
ADVERB-DB-ADVERB

VERB-DB-ADVERB

D̂B+Verb+Caus VERB-DB-VERB

D̂B+Verb+Pass VERB-DB-VERB

D̂B+Verb+Recip VERB-DB-VERB

D̂B+Verb+AbleNeg VERB-DB-VERB

D̂B+Verb+Repeat VERB-DB-VERB

D̂B+Verb+Hastily VERB-DB-VERB

D̂B+Verb+EverSince VERB-DB-VERB

D̂B+Verb+Able VERB-DB-VERB

D̂B+Verb+Almost VERB-DB-VERB
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D̂B+Verb+Stay VERB-DB-VERB

D̂B+Verb+Start VERB-DB-VERB

D̂B+Noun+NotState VERB-DB-NOUN

D̂B+Adverb+”maksizin” VERB-DB-ADVERB

D̂B+Adverb+WithoutHavingDone VERB-DB-ADVERB

D̂B+Noun+Inf1 VERB-DB-NOUN

D̂B+Noun+Inf2 VERB-DB-NOUN

D̂B+Noun+Inf3 VERB-DB-NOUN

D̂B+Noun+FeelLike VERB-DB-NOUN

D̂B+Adj+Zero VERB-DB-ADJ

D̂B+Adj+PresPart VERB-DB-ADJ

D̂B+Adj+FutPart VERB-DB-ADJ

D̂B+Adj+FeelLike VERB-DB-ADJ

D̂B+Adj+PastPart VERB-DB-ADJ

D̂B+Adverb+AsLongAs VERB-DB-ADVERB

D̂B+Adverb+When VERB-DB-ADVERB

D̂B+Adverb+ByDoingSo VERB-DB-ADVERB

D̂B+Adverb+AfterDoingSo VERB-DB-ADVERB

D̂B+Adverb+SinceDoingSo VERB-DB-ADVERB

Table A.1: Lexical Category List for Turkish



Appendix B

Lattice Structure for English

The lattice structure for English is given in Table B.1, the main categories that

have been used by Xerox morphological analyzer is written in normal case whereas

the subcategories that are added to arrange the lattice is written in capitals.

Category Name Parent Category in Lattice

ANY

Verb ANY

Quant ANY

Prep ANY

NOUN-SUF ANY

NOUN-SUF-COUNT NOUN-SUF

ADJ-SUF ANY

VERB-SUF ANY

VERB-SUF-AGGR VERB-SUF

VERB-SUF-TENSE VERB-SUF

VERB-SUF-COUNT VERB-SUF

VERB-SUF-COUNT-AGR VERB-SUF

Pl
NOUN-SUF-COUNT

VERB-SUF-COUNT

Sg
NOUN-SUF-COUNT

105



APPENDIX B. LATTICE STRUCTURE FOR ENGLISH 106

VERB-SUF-COUNT

SP
NOUN-SUF-COUNT

VERB-SUF-COUNT

VProg
NOUN-SUF

ADJ-SUF

Pron ANY

Part ANY

Meas ANY

Let ANY

Interj ANY

Non3sg VERB-SUF-AGGR

1P VERB-SUF-AGGR

2P VERB-SUF-AGGR

3P VERB-SUF-AGGR

Inf VERB-SUF-TENSE

PastBoth VERB-SUF-TENSE

PastPerf VERB-SUF-TENSE

PastTense VERB-SUF-TENSE

Pres VERB-SUF-TENSE

Prog VERB-SUF-TENSE

1sg VERB-SUF-COUNT-AGR

123SP VERB-SUF-COUNT-AGR

2sg VERB-SUF-COUNT-AGR

3sg VERB-SUF-COUNT-AGR

PRON-SUF ANY

PRON-SUF-CASE PRON-SUF

Gen PRON-SUF-CASE

Nom PRON-SUF-CASE

Obl PRON-SUF-CASE

NomObl PRON-SUF-CASE

Det ANY

DET-SUF ANY
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Def DET-SUF

Indef DET-SUF

Conj ANY

Comp ADJ-SUF

Sup ADJ-SUF

VPap ADJ-SUF

NUMBER ANY

Num NUMBER

Dec NUMBER

Dig NUMBER

Noun ANY

Prop Noun

City Noun

Bus Noun

Continent Noun

Country Noun

Deg Noun

Init Noun

Title Noun

Adj ANY

Adv ANY

Aux ANY

Table B.1: Lexical Category List for English
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Sample Training File Subset

A subset of the training set used in this system is given:

train pair([a+Det +Indef +Sg brown+Adj car+Noun +Sg] [bir+Num+Card

kahverengi+Adj araba+Noun +A3sg +Pnon +Nom]).

train pair([a+Det +Indef +Sg cat+Noun +Sg come+Verb +Pres +3sg]

[bir+Num +Card kedi+Noun +A3sg +Pnon +Nom gel+Verb +Pos +Aor

+A3sg]).

train pair([a+Det +Indef +Sg cat+Noun +Sg go+Verb +Pres +3sg]

[bir+Num +Card kedi+Noun +A3sg +Pnon +Nom git+Verb +Pos +Aor

+A3sg]).

train pair([a+Det +Indef +Sg green+Adj apple+Noun +Sg] [bir+Num+Card

yeşil+Adj elma+Noun +A3sg +Pnon +Nom]).

train pair([a+Det +Indef +Sg pig+Noun +Sg go+Verb +Pres +3sg]

[bir+Num +Card domuz+Noun +A3sg +Pnon +Nom git+Verb +Pos +Aor

+A3sg]).

train pair([a+Det +Indef +Sg red+Adj apple+Noun +Sg] [bir+Num+Card

kırmızı+Adj elma+Noun +A3sg +Pnon +Nom]).
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train pair([a+Det +Indef +Sg white+Adj car+Noun +Sg] [bir+Num+Card

beyaz+Adj araba+Noun +A3sg +Pnon +Nom]).

train pair([a+Det +Indef +Sg yellow+Adj apple+Noun +Sg] [bir+Num+Card

sarı+Adj elma+Noun +A3sg +Pnon +Nom]).

train pair([ali+Prop+Masc +Sg go+Verb +Pres +3sg] [ali+Noun +Prop

+A3sg +Pnon +Nom git+Verb +Pos +Aor +A3sg]).

train pair([all+Det +Pl book+Noun +Pl] [bütün+Adj kitap+Noun +A3pl

+Pnon +Nom]).

train pair([all+Det +Pl house+Noun +Pl] [bütün+Adj ev+Noun +A3pl

+Pnon +Nom]).

train pair([all+Det +Pl notebook+Noun +Pl] [bütn+Adj defter+Noun

+A3pl +Pnon +Nom]).

train pair([apple+Noun +Pl be+Verb +Pres +Pl fruit+Noun +Sg] [elma+Noun

+A3pl +Pnon +Nom meyve+Noun +A3sg +Pnon +Nom D̂B+Verb+Zero +Pres

+Cop +A3sg]).

train pair([apple+Noun +Pl be+Verb +Pres +Pl not+Adv fruit+Noun

+Sg] [elma+Noun +A3pl +Pnon +Nom meyve+Noun +A3sg +Pnon +Nom

değil+Noun +A3sg +Pnon +Nom D̂B+Verb+Zero +Pres +Cop +A3sg]).

train pair([apple+Noun +Sg be+Verb +Pres +3sg a+Det +Indef +Sg

fruit+Noun +Sg] [elma+Noun +A3sg +Pnon +Nom bir+Num+Card meyve+Noun

+A3sg +Pnon +Nom D̂B+Verb+Zero +Pres +Cop +A3sg]).

train pair([approximately+Adv two+Num+Card liter+Noun +Pl] [yaklaşık+Noun

+A3sg +Pnon +Nom iki+Num+Card litre+Noun +A3sg +Pnon +Nom]).

train pair([boy+Noun +Pl be+Verb +Pres +Pl not+Adv go+Verb +Prog]

[oğlan+Noun +A3pl +Pnon +Nom git+Verb +Neg +Prog1 +A3pl]).

train pair([that+Det +Sg man+Noun +Sg be+Verb +Pres +3sg a+Det
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+Indef +Sg tailor+Noun +Sg] [şu+Adj adam+Noun +A3sg +Pnon +Nom

bir+Num+Card terzi+Noun +A3sg +Pnon +Nom D̂B+Verb+Zero +Pres +Cop

+A3sg]).

train pair([the+Det +Def +SP funny+Noun +Sg boy+Noun +Pl do+Aux

+PastTense +123SP not+Adv go+Verb +Pres +Non3sg to+Prep the+Det +Def

+SP mountain+Noun +Sg yesterday+Adv] [komik+Adj oğlan+Noun +A3pl

+Pnon +Nom dün+Adverb dağ+Noun +A3sg Pnon +Dat git+Verb +Neg +Past

+A3pl]).

train pair([I+Pron+Pers +Nom +1P +Sg do+Aux +PastTense +123SP

not+Adv write+Verb +Pres +Non3sg a+Det +Indef +Sg letter+Noun +Sg]

[bir+Num+Card mektup+Noun +A3sg +Pnon +Nom yaz+Verb +Neg +Past

+A1sg]).

train pair([Mary+Prop+Fem +Sg do+Aux +PastTense +123SP not+Adv

go+Verb +Pres +Non3sg] [mary+Noun +Prop +A3sg +Pnon +Nom git+Verb

+Neg +Past +A3sg]).

train pair([it+Pron+Pers +NomObl +3P +Sg be+Verb +Pres +3sg

rain+Verb +Prog] [yağmur+Noun +A3sg +Pnon +Nom yağ+Verb +Pos +Prog1

+A3sg]).

train pair([if+Conj+Sub a+Det +Indef +Sg pen+Noun +Sg be+Verb +Pres

+3sg drop+Verb +PastBoth +123SP then+Adv it+Pron+Pers +NomObl +3P

+Sg fall+Verb +Pres +3sg] [bir+Num+Card kalem+Noun +A3sg +Pnon +Nom

bırak+Verb D̂B+Verb+Pass +Pos +Aor +Cond +A3sg düş+Verb +Pos +Aor

+A3sg]).

train pair([girl+Noun +Pl will+Aux write+Verb +Pres +Non3sg a+Det +In-

def +Sg message+Noun +Sg tomorrow+Adv] [kız+Noun +A3pl +Pnon +Nom

yarın+Adverb bir+Num+Card mesaj+Noun +A3sg +Pnon +Nom yaz+Verb

+Pos +Fut +A3pl]).
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Sample Test File Subset

A subset of the test set used in this system is given:

train pair([a+Det +Indef +Sg black+Adj car+Noun +Sg],[bir+Num+Card

siyah+Adj araba+Noun +A3sg +Pnon +Nom]).

train pair([interesting+Adj red+Adj book+Noun +Sg],[ilgin+Adj kırmızı+Adj

kitap+Noun +A3sg +Pnon +Nom]).

train pair([it+Pron+Pers +NomObl +3P +Sg be+Verb +Pres +3sg

a+Det +Indef +Sg red+Adj car+Noun +Sg],[o+Pron +A3sg +Pnon +Nom

bir+Num+Card kırmızı+Adj araba+Noun +A3sg +Pnon +Nom D̂B+Verb+Zero

+Pres +Cop +A3sg]).

train pair([I+Pron+Pers +Nom +1P +Sg be+Verb +Pres +1sg a+Det +In-

def +Sg teacher+Noun +Sg],[bir+Num+Card öğretmen+Noun +A3sg +Pnon

+Nom D̂B+Verb+Zero +Pres +A1sg +Cop]).

train pair([I+Pron+Pers +Nom +1P +Sg do+Aux +PastTense +123SP

not+Adv come+Verb +Pres +Non3sg],[gel+Verb +Neg +Past +A1sg]).

train pair([I+Pron+Pers +Nom +1P +Sg will+Aux write+Verb +Pres

+Non3sg a+Det +Indef +Sg message+Noun +Sg],[bir+Num+Card mesaj+Noun
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+A3sg +Pnon +Nom yaz+Verb +Pos +Fut +A1sg]).

train pair([it+Pron+Pers +NomObl +3P +Sg be+Verb +Pres +3sg

not+Adv an+Det +Indef +Sg artificial+Adj tree+Noun +Sg],[o+Pron +A3sg

+Pnon +Nom bir+Num+Card yapay+Adj ağa+Noun +A3sg +Pnon +Nom

değil+Noun +A3sg +Pnon +Nom D̂B+Verb+Zero +Pres +Cop +A3sg]).

train pair([four+Num+Card brown+Adj car+Noun +Pl],[dört+Num+Card

kahverengi+Adj araba+Noun +A3sg +Pnon +Nom]).

train pair([boy+Noun +Pl be+Verb +Pres +Pl go+Verb +Prog],[oğlan+Noun

+A3pl +Pnon +Nom git+Verb +Pos +Prog1 +A3pl]).

train pair([ayşe+Noun +Sg +Part +Gen book+Noun +Sg],[ayşe+Noun

+Prop +A3sg +P2sg +Gen kitap+Noun +A3sg +P3sg +Nom]).

train pair([she+Pron+Pers +Nom +3P +Sg be+Verb +Pres +3sg a+Det

+Indef +Sg tailor+Noun +Sg],[bir+Num+Card terzi+Noun +A3sg +Pnon

+Nom D̂B+Verb+Zero +Pres +Cop +A3sg]).

train pair([I+Pron+Pers +Nom +1P +Sg will+Aux come+Verb +Pres

+Non3sg tomorrow+Adv],[yarın+Adverb gel+Verb +Pos +Fut +A1sg]).

train pair([ayşe+Noun +Sg be+Verb +Pres +3sg not+Adv a+Det +In-

def +Sg teacher+Noun +Sg],[ayşe+Noun +Prop +A3sg +Pnon +Nom

bir+Num+Card retmen+Noun +A3sg +Pnon +Nom deil+Noun +A3sg +Pnon

+Nom D̂B+Verb+Zero +Pres +Cop +A3sg]).


