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Abstract 

 

WARRANTY COST ANALYSIS UNDER IMPERFECT REPAIR 

Gülay Samatlı 

M.S. in Industrial Engineering 

Supervisor: Asst. Prof. Mehmet Rüştü Taner 

November 2006 

 

Increasing market competition forces manufacturers to offer extensive warranties. 

Faced with the challenge of keeping the associated costs under control, most 

companies seek efficient rectification strategies. In this study, we focus on the repair 

strategies with the intent of minimizing the manufacturer’s expected warranty cost 

expressed as a function of various parameters such as product reliability, structure of 

the cost function and the type of the warranty contract. We consider both one- and 

two-dimensional warranties, and use quasi renewal processes to model the product 

failures along with the associated repair actions. We propose static, improved and 

dynamic repair policies, and develop representative cost functions to evaluate the 

effectiveness of these alternative policies. We consider products with different 

reliability structures under the most commonly observed types of warranty contracts. 

Experimental results indicate that the dynamic policy generally outperforms both 

static and improved policies on highly reliable products, whereas the improved 

policy is the best performer for products with low reliability. Although, the 

increasing number of factors arising in the analysis of two-dimensional policies 

renders generalizations difficult, several insights can be offered for the selection of 

the rectification action based on empirical evidence.        

Keywords: Imperfect repair, quasi renewal processes, two-dimensional warranty, 

warranty cost, numerical methods 
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Özet 

 

NOKSAN ONARIM ALTINDA GARANTİ MALİYETİ ANALİZİ  

 

Gülay Samatlı 

Endüstri Mühendisliği Yüksek Lisans 

Tez Yöneticisi: Yardımcı Doçent Mehmet Rüştü Taner 

Kasım 2006 

 

Artmakta olan pazar rekabeti, üreticileri genişletilmiş garantiler önermeye 

zorlamaktadır. Garantiyle ilgili maliyetleri kontrol altında tutmakla karşı karşıya kalan 

çoğu firma, verimli düzeltme stratejileri aramaktadır.  Bu çalışma, ürün güvenilirliği, 

maliyet fonksiyon yapısı ve garanti sözleşmesi gibi bir takım değişik parametrelerle 

açıklanan üreticinin beklenen garanti maliyetini en küçültmek amacıyla farklı onarım 

stratejileri üzerinde odaklanmaktadır.  Ürün bozulmasıyla ilgili onarım faaliyetlerini 

modellerken hem bir hem de iki boyutlu garantileri göz önünde bulunduruyor ve 

yenilenimsi süreç yaklaşımını kullanıyoruz. Alternatif onarım politikalarını 

değerlendirmek için, statik, iyileştirilmiş ve dinamik onarım politikalarını öneriyor, ve 

hem bir hem de iki boyutlu garantiler için temsili maliyet fonksiyonları geliştiriyoruz. 

Farklı güvenilirlik yapılarına sahip ürünleri en yaygın olarak gözlenen garanti 

sözleşme çeşitleri altında ele alıyoruz. Deneysel sonuçlar yüksek güvenilirliğe sahip 

ürünler için dinamik politikaların genel olarak hem statik hem de iyileştirilmiş 

politikalara baskın geldiğini göstermektedir, iyileştirilmiş politika ise genelde düşük 

güvenirliliğe sahip ürünler için en iyi alternatif olarak öne çıkmaktadır. Her ne kadar 

iki boyutlu politikaların analizindeki artan etkenler genellemeyi zorlaştırsa da, 

deneysel sonuçlara dayanarak düzeltme stratejileri seçmede çeşitli bilgiler 

önerebilmekteyiz.  



 v 

Anahtar sözcükler: Noksan onarım, yenilenimsi süreçler, iki boyutlu garantiler, 

garanti maliyeti, sayısal yöntemler 
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C h a p t e r  1  

 

INTRODUCTION  

  

 

A warranty is a contract made by the seller to the buyer that specifies the 

compensation type for a given product in the event of failure. It plays an important 

role to protect the consumers` interest especially for the complex products such as 

automobiles or electronic devices. Many consumers may be unable to evaluate the 

performance of these products since they do not have enough technical knowledge. 

Similarly, if the product related characteristics of different brands are nearly identical, 

consumers have difficulty deciding which one is better. So, the post-sale 

characteristics such as warranty, service, maintenance, and parts availability, become 

important in purchasing decisions. When consumers have difficulty in selecting a 

product, warranty is used as a signal of quality/reliability. That is, customers usually 

perceive a product with a longer warranty period as more reliable. Additionally, 

warranty reduces consumer’s dissatisfaction in case of a failure through a 

reimbursement by the manufacturer. The type and terms of the reimbursement are 

specified in the warranty contract. Thus, warranty functions as a marketing tool that 

helps to evaluate products and differentiate among them in the competitive 

environments.  
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In addition to the protection for the consumers, warranty also provides 

protection for the manufacturer. It provides the guidelines for the proper use of the 

products by defining the usage conditions. So, it reduces excessive claims about the 

product and possibility of lawsuits caused by misuse of the product. In this way, it 

provides cost savings to the manufacturer. At the same time, it protects the 

manufacturer’s reputation.  

 

 Warranty has also an important role as a promotional device for the 

manufacturer. Since longer warranty gives a message that the product performance is 

good, it can be a good advertising tool like price and other product characteristics. 

This method is very effective especially for a new product that does not exist in the 

market because consumers are generally uncertain about the new product 

performance. Although the level of uncertainty decreases when performance 

information about the product is spread, the dissemination of this information usually 

takes some time, and it may be desirable to take certain precautions to avoid low sales 

early on. Sales may be raised by eliminating the risk related to products, and warranty 

plays an important role to reduce this risk.  

 

On the negative side, offering warranty may result in additional costs to the 

manufacturer over the warranty period due to such expenditures as labor cost and 

repair or replacement cost in case of a failure. Although, warranty increases 

manufacturer’s total cost, it may increase sales when it is used as a marketing tool and 

so it may still provide an increase in profit. The magnitude of the additional cost may 

depend on product characteristics, warranty terms and consumers’ usage patterns. The 

additional profit, on the other hand, depends on competitors’ product characteristics 

such as price and performance as well as warranty terms offered for competitors’ 

products. While assessing the benefit of the warranty, the additional cost should be 

compared with the expected profit. To compare the cost and profit, a detailed analysis 
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related to cost parameters, warranty compensation and limits should be done. After 

the analysis, if the expected profit gained by offering warranty is larger than the 

additional cost, then it may be considered rational to offer warranty.  

 

Warranty policies are defined in several ways in regards to their certain 

characteristics. For example, regarding the compensation types, there are two basic 

types of policies: the free replacement warranty (FRW) and the pro-rata warranty 

(PRW). In the FRW, the cost of the repair or replacement of the failed product is 

reimbursed by the manufacturer at no cost to the buyer, whereas in the PRW, the 

buyer and the manufacturer share the cost of repair or replacement. The 

manufacturer’s responsibility in PRW is determined based on some non-increasing 

function of product age. FRW applies to any kind of repairable and non-repairable 

product, but PRW usually applies to products whose performance is affected by age, 

such as accumulator. In addition, hybrid warranties can be derived by combining the 

FRW and PRW policies.  

 

Examples for structural characterization of warranties can be one- or two-

dimensional policies. In one-dimensional warranty policies, failure models are 

characterized on a single scale. The scale is usually age of the product or the amount 

of usage. Whereas, in the two-dimensional policies, warranty is indexed on two 

scales: usually one representing the usage and the other age. 

 

Another aspect of warranty analysis relates to the extent of repair after failure. 

There exist several repair types but the most widely used ones in the literature are 

perfect (as good as new), minimal and imperfect repair. In the perfect repair type, the 

failed product is brought to the same condition as a new product after the repair. On 

the other hand, if a repair brings the product to a working state without changing its 

failure rate, then it is said to be minimal. In contrast to the minimal repair, if the repair 
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action changes the failure rate of the product, then it is called imperfect repair. An 

imperfect repair can lower or increase the failure rate of the product after the repair 

action. A repair action that lowers the failure rate is essentially an improvement that 

brings the product to a better than new state. In the literature, for repairable products, 

repair action is often modeled with perfect or minimal repair, but most of repair 

actions do not fall into these two categories. For instance, perfect repair may not be 

practical especially for expensive products. On the other hand, minimal repairs 

generally are appropriate for multi-component products where the product failure 

occurs because of a component failure, and the rectification of this component brings 

the product to an operational state. In many realistic situations, the repair action brings 

the product to an intermediate state between perfect and minimal repair. To overcome 

this problem, several imperfect repair models such as a combination of perfect and 

minimal repair and virtual age models are derived.   

 

In this study, we examine the manufacturer’s total expected warranty cost 

under different extents of imperfect repair for products with the different levels of 

reliability on the expected warranty cost. The key factor that motivates the use of 

imperfect repair is that it is more realistic and practical than perfect and minimal 

repair in most cases. Our warranty policies are one- and two-dimensional free 

replacement warranties. We propose a representative cost function which depends on 

the degree of repair. In the analysis part, firstly, we deal with one-dimensional 

warranty policies. In the one-dimensional analysis, we consider the static repair 

policies, in which the repair action is done at the same level after each failure, as well 

as the improved repair policy. In the improved policy, the failed product is replaced 

by an improved one after the first failure. In addition to these policies, we proposed 

the dynamic repair policies. In the dynamic policies, the repair action is determined by 

taking into account the time of failure. We compare the optimal static policy with the 

dynamic policy. Then, we generalize the one-dimensional imperfect repair concept to 
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the two-dimensional case. In the two-dimensional case, we analyze the repair actions 

which are the extent of one-dimensional static and dynamic policies.  

 

         The organization of this thesis report is as follows. In Chapter 2, we give the 

basic concept of warranty policies and modeling issues. In Chapter 3, we present a 

review of literature on one- and two-dimensional warranties with various failure 

models. Chapter 4 presents the definition of our problem. We formulate the problem 

for one- and two-dimensional cases in Chapter 5. Then, we focus on the expected 

number of failures under different types of two-dimensional policies and propose 

three new types of policies. The solution approach for calculating the expected 

warranty cost is given in Chapter 6. Computational results are presented in Chapter 7. 

Finally, concluding remarks and future research directions are given in Chapter 8. 
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C h a p t e r  2  

 

WARRANTY CONCEPT AND SOME 

MODELING ISSUES 
 

A warranty agreement specifies the length of warranty time, the conditions under 

which the warranty applies, and the compensation method in case of unsatisfactory 

performance within the warranty period. In this chapter, we firstly consider different 

types of warranty policies with respect to various criteria such as warranty coverage, 

rectification actions and structure; then we deal with failure modeling techniques.   

 

Firstly, warranty policies can be grouped into two with respect to their period of 

coverage as renewing and non-renewing. In the renewing warranty, the warranty 

period, W, is not fixed. In the case of failure, the product is returned with a new 

warranty after rectification. The terms of this new warranty can be identical to or 

different from the original. In contrast to the renewing policy, the warranty period is 

fixed in the non-renewing warranty, usually beginning on the date of purchase. If the 

product fails during this period, it is replaced or repaired by the manufacturer, but this 

rectification action does not change the duration of the warranty. That is, if the 

product fails at age t, then the remaining warranty period is  W-t time units.  
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Further, these warranty policies can also be classified with respect to the type of 

compensation. With respect to this criterion, there are two basic types of policies. The 

first one is the free replacement warranty (FRW) and the second one is pro rata 

warranty (PRW). Under FRW, the manufacturer covers the cost of repair or 

replacement of the failed products within the warranty period at no cost to the buyer. 

This warranty type applies both to inexpensive products such as house appliances and 

to expensive products such as automobiles and other durable consumer goods. In 

contrast to FRW, the manufacturer promises to cover a fraction of the cost of repair or 

replacement in the PRW. The amount of compensation in PRW is determined based 

on some non-increasing function of the product age. This type of warranty usually 

applies to products whose performance is affected by age, such as car batteries. In 

addition, there exist policies called hybrid warranties which are combination of FRW 

and PRW. Under these policies, the manufacturer initially applies FRW for a certain 

period of time and then switches to the PRW in the remaining time within the 

warranty term. 

 

Another aspect of warranty analysis relates to the extent of repair after failure. 

There exist several repair types in this regard but the most widely used ones in the 

literature are perfect (or as good as new), minimal and imperfect repair. In the perfect 

repair, the failed product is brought to the same condition as a new product after the 

repair. That is, the failure distribution after the repair is the same as that of a new item. 

If the original product’s and the repaired unit’s failure rates and mean times to failure 

are denoted as ri(x) and Ei(x), i=1,2 then  

2 1

2 1

( ) ( )

( ) ( )

r x r x

E x E x

=

=
 

for as good as new repair.  
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If a repair does not affect the performance of the product, then it is said to be 

minimal. In minimal repair, the failure rate after the repair is the same just before the 

failure occurs. Mathematically, if x1 is the realization of the first failure time, the 

failure rate and the mean time to failure are; 

2 1 1

2 1 1

( ) ( )

( ) ( | )

r x r x x

E x E x x

= +

=
 

 

In contrast to the minimal repair, if the repair action changes the failure rate of 

the product, then it is called imperfect repair. Imperfect repair can increase 

(deterioration) or decrease (improvement) the failure rate of the product after the 

repair action. That is;  

)()()(

 )()()(

12

12

xExE

xrxr

<>

><
 

Reasons for deterioration may be to applying inadequate repair to the failed product 

or replacing the failed item with a less reliable secondhand item. To replace the failed 

item with an improved one is an example for the improvement resulted by imperfect 

repair. The deterioration or improvement can be modeled by changing the scale of 

failure distribution. If the time interval between the (n-1)th and nth failure is written 

such that Tn= αnXn, n=1,2,…, then the improvement and deterioration can be 

characterized by using different range of α value. For instance, if α is less than 1, it 

represents the deterioration of the process. Besides these approaches, the combination 

of the perfect and minimal repair is also called imperfect repair. For example, the 

failed product is replaced by a new one, if the expected repair cost is larger than a 

predetermined cost, otherwise it is minimally repaired. Another example for the 

combination of the perfect and minimal repair is that the failed product switches to the 

operational state with probability p or it continues in a failed state with probability 1-p 

after the repair.  
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When we consider the warranty structure, we can group policies as one-, two- 

and multi-dimensional. In the one-dimensional warranty policies, the warranty period 

is defined by an interval. This interval is specified by a single variable such as the 

amount of usage or time until the end of the warranty period. Whereas, in the two-

dimensional policies, warranty is indexed by two scales, one representing the usage 

and the other age. Here, the warranty expires when the product under warranty 

reaches the pre-specified age or usage whichever occurs earlier. If the warranty is 

specified over three or more dimensions, the corresponding policy is referred to as a 

multi-dimensional policy. An example for multi-dimensional policies is warranty 

policies for aircrafts. Total time in the air, number of flights and calendar age are the 

three dimensions of aircraft warranty.  

 

In practice, one- and two-dimensional warranties are frequently used. In the 

two-dimensional policies, based on the structure of the warranty region basically four 

different types have been proposed (Figure 2.2). Each of these policies tends to favor 

customers having different usage rates. The first policy (Contract A) is the one that 

the manufacturer covers the cost of repair or replacement of the product if the failure 

occurs up to a time limit W and usage limit U. The warranty ceases at time limit W or 

at usage limit U whichever occurs earlier. This policy is one of the policies that is in 

favor of the manufacturer. In this policy, if the customer’s usage rate is low, then the 

warranty ceases at time W before the total usage exceeds the usage limit U. Similarly, 

if the rate is high, the warranty ceases at U before the time limit W is reached. This 

policy is very popular especially for automobiles. Under the second type of policy 

(Contract B) the warranty region is specified by two infinite-dimensional strips, each 

one of which is parallel to one axis. This policy guarantees the coverage beyond the 

time limit W for customers with a low usage rate, and it guarantees W units of time 

coverage if the total usage is larger than U. Thus, it protects the low and high usage 

customers. However, this policy does not favor the manufacturer. It can cause 
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excessive warranty cost. To protect the manufacturer from excessive warranty cost 

under the second policy, secondary time and usage limits can be added. Under the 

contract B` policy, the warranty is characterized by two limited strips instead of the 

infinite-dimensional strips. In this type of policy, determination of W2 and U2 is 

important. If these parameters are properly selected, the warranty cost can become the 

same for both heavy and light users. Thus, the manufacturer provides equal coverage 

for both types of users. Contract C also provides a tradeoff between time and usage. It 

is specified by a triangle with a slope (-U/W). Here, the warranty expires if the total 

usage, x, by the failure time t satisfies the inequality x + (U/W)t ≥ U. 

 

 
Figure 2.2: Different two-dimensional warranty policies 
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While modeling the products’ lifetime or failure for one-dimensional policies 

under the rectification actions stated above, the concept of a renewal process is 

frequently used. Ordinary renewal processes are appropriate for as good as new 

repair, since after each failure the product characteristics become same as the initial 

product. If the repair is minimal and initial product’s lifetime is exponentially 

distributed, then a non-homogeneous Poisson process with a cumulative failure rate 

of
0

( ) ( )
x

x r t dtΛ = ∫  can be used since the rectification action does not change the failure 

rate of the product. However, there exist some cases where renewal processes are not 

suitable. For example, imperfect repair brings the failed product to an intermediate 

state between perfect and minimal repair. In the Chapter 5, we consider the imperfect 

repair, which changes the product’s failure rate, in detail.  

 

For two-dimensional warranty policies, the lifetime is modeled by bivariate 

models. These bivariate models may be grouped based on the relationship between 

two variables. In the first approach, the two variables, i.e. age and usage, are 

functionally related. This approach models product failures by using a one-

dimensional point process. In this approach, one dimension is eliminated by using 

relation between dimensions. Instead of having functional relation, variables can be 

correlated. This method models failures by a bivariate distribution. If (Tn, Xn), 

n=1,2,… represent the time interval between the nth and (n-1)st failure and the product 

usage between the two failures, then (Tn, Xn) can be modeled with a bivariate 

distribution function, Fn(t, x)=P(Tn ≤ t, Xn ≤ x). Here, the structure of Fn(t, x) is 

different for different types of rectification actions. For example, if rectification is via 

perfect repair, then Fn(t, x)’s are identical, so this case can be modeled by a two-

dimensional renewal process. The two-dimensional renewal process can be analyzed 

by two univariate renewal processes associated with {Tn} and {Xn} which are the 

sequences of marginal distribution of Fn(t, x) with respect to t and x. If  
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On the other hand, if imperfect repair is applied to a failed product, each Fn(t, x) has 

a different structure and the renewal process can not cover the imperfect repairs. In 

Section 5.1, an alternative method is discussed to model the imperfect repair under 

two-dimensional warranty. Although failure models with correlated random 

variables may be more descriptive for product lifetime, majority of the two-

dimensional warranty literature focus on the failure models in which the variables 

are functionally related. 
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C h a p t e r  3  

 
LITERATURE REVIEW 

 

 

Warranty research dates back to 1960s. Earlier research mainly focused on 

identification of warranty expenses, determination of warranty reserve and usage of 

warranty as a marketing strategy. Issues such as determining different warranty 

policies with respect to repair types, warranty region and compensation 

characteristics, deriving models for analysis of policies and setting maintenance 

actions have become popular in the recent years. This chapter provides a review of the 

literature on one- and two-dimensional warranty policies considering different repair 

actions. Extensive reviews of warranty problems are provided in Blischke and Murthy 

(1992), Thomas and Rao (1999) and Murthy and Djamaludin(2002). Blischke and 

Murthy (1992-1, 2, 3) deal with consumer and manufacturer perspectives on 

warranty, different types of warranty policies and system characterization of warranty. 

In addition, they classify mathematical models for warranty cost. Thomas and Rao 

(1999) cover a summary of the warranty economic models and analysis methods 

along with the related warranty management issues. More recently, Murthy and 

Djamaludin (2002) review the literature over the last decade literature. The paper 

discusses the issues related to warranty for a new product.  

 

In this chapter, we mainly focus on corrective maintenance actions and 

provide a review of these actions. Corrective maintenance refers to all type of 

rectification actions in case of a failure. They are usually characterized with respect to 
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the degree of rectification. These rectification degrees can be grouped as perfect, 

minimal and imperfect repair. Perfect repair denotes the case where the product 

becomes as good as new after a repair. On the other hand, minimal repair refers the 

rectification action that brings the product as bad as old after repair. Perfect and 

minimal repair are the most common models for corrective maintenance seen in the 

literature, but they reflect the two extreme cases concerning to repair actions. 

Imperfect repairs (i.e. general repairs) have become popular in the more recent 

warranty/reliability literature. This type of repair may be more realistic than perfect 

and minimal repair since this repair returns the product to a state between as good as 

new and as bad as old.  

 

3.1 Perfect Repair 

 

           Corrective maintenance is called perfect repair when failure is reimbursed by 

replacing the product with a new one. If product is non-repairable, there is no 

alternative way of rectification. In the perfect repair, the repaired product’s lifetime 

and other characteristics become identical to that of a new product. Thus, perfect 

repair can be modeled as a renewal process ( Blische& Murthy,1994).  

 

            Balcer& Sahin (1986) consider one-dimensional pro-rata and free replacement 

warranty policies in which a failure is rectified by replacement. They characterize the 

moments of the buyer’s total cost under both policies during the product life cycle. In 

addition, they extend the stationary failure time distribution to the time varying failure 

time distribution for pro-rata warranty policy.  

 

            Murthy et al. (1995) analyze four different two-dimensional warranty policies 

(discussed in Chapter 2) with perfect repair. They derive the expected warranty cost 
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per product and the expected life cycle cost for each policy by using a two-

dimensional approach to model the failure distribution. In the numerical analysis, they 

use Beta Stacy distribution as a failure distribution. Kim and Rao (2000) also perform 

a similar study. They analyze the expected cost of two different two-dimensional 

warranty policies (Contract A and B) by using a bivariate exponential failure 

distribution. 

 

           Many reliability/warranty studies consider perfect repairs due to their 

advantage in derivation of analytical results. However, perfect repair may not be 

practical in certain cases. For example, for multi-component products, to replace a 

failed component may not return the product to an as good as new condition. Minimal 

repair may be an alternative modeling assumption in the cases in which perfect repair 

is not realistic. 

 

3.2 Minimal Repair 

 

            Minimal repair is defined as a repair that does not affect product’s failure rate. 

Minimal repair is generally used for products consisting of multiple-components in 

which the failed component does not affect the other components. The repair only 

brings the product to an operational state. Minimal repair is often used in combination 

with perfect repair to make up a repair-replace policy. Such hybrid policies are 

sometimes referred to as imperfect repair.  Barlow and Hunter’s study (1960) is the 

first to introduce the concept of minimal repair. They consider a policy such that 

product is replaced at regular intervals and it is minimally repaired if a failure occurs 

between replacement intervals. Boland and Proschan (1982) also consider the same 

policy. They determine the optimal replacement period over a finite time horizon and 

the total expected cost over an infinite time horizon.  
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            Phelps (1983) compares three types of replacement policies. The first policy is 

to perform minimal repairs up to a certain age, then replace the failed product. The 

second policy sets a threshold on the number of failures. If the number of failures is 

less than the threshold point, product is minimally repaired; otherwise, perfect repair 

is applied. The third policy uses age dependent threshold point, replacement is applied 

only to the first failure after the threshold point and then all other failures are rectified 

by minimal repair. Phelps suggests using semi-Markov decision processes and 

concludes that the third policy is optimal for products with increasing failure rate. 

Jack and Murthy (2001) also study the third policy and conclude that optimality of 

this policy depends on the length of warranty period, replacement and repair cost. 

Iskandar et al. (2005) extend this policy to two-dimensional by using two rectangular 

regions instead of intervals. In the numerical analysis, they see that this policy is 

optimal when ratio of repair and replacement cost is around 0.5. If ratio approaches 

1(0), then always replace (always repair) policy dominates the hybrid policy.  

Iskandar and Murthy (2003) also study the two-dimensional repair-replace strategies. 

They divide the warranty region into two non-overlapping sets and propose two 

policies. In the first policy, if failure occurs in the first region, it is replaced; and if it 

occurs in the second region, it is repaired minimally. On the other hand, in the second 

policy, failures in the first region are minimally repaired; and those in the second 

region are replaced.  

 

           Cleroux et al. (1979) and Nguyen and Murthy (1984) also discuss repair-

replace policies, but they propose a different threshold type. In both papers, if the 

estimated repair cost is greater than a threshold point, then the failed product is 

replaced, otherwise the failures are reimbursed by minimal repair.  Cleroux et al. take 

some percentage of replacement cost as a threshold point, whereas Nguyen and 

Murthy select a threshold point such that it minimizes the expected cost per unit time. 
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             Jack (1991, 1992), Jack et al. (2000), Qian et al. (2003) and Sheu and Yu 

(2005) also discuss one-dimensional repair-replace policies. Jack (1991, 1992) 

considers a policy over a finite time horizon in which failures are repaired minimally 

before the Nth failure and at the Nth failure system is replaced. In addition, Jack et al. 

(2000) suggest replacing all failures before a specified age, then minimally repairing 

all other failures until the end of the warranty period.  

 

            Sandve and Aven (1999) propose different policies based on minimal repair 

for a system comprising of multiple-components. The first one of these policies is 

replacement of the system at fixed time periods. The second one is referred (T, S) 

policy, T ≤ S. In this policy, a replacement is placed at time S or at the first failure 

after time T.  In the third policy, the system is replaced at a time dependent on the 

condition of the system.  

 

            Another form of repair-replace policy is called (p, q) type policy. In this type 

of policy, each time when a failure occurs, the failed product is replaced with 

probability p, or it undergoes minimal repair with probability q=1- p. Block et al. 

(1985) discuss a policy in which the probabilities depend on the age of product at the 

failure time. They model failures between successive replacements by a renewal 

process. Makis and Jardine (1992) include the failure number while calculating (p, q) 

and also incorporate the alternative of scrapping and replacing the product with an 

additional cost if the repair is not successful. This policy is modeled as a semi-Markov 

decision process. 

 

            Some other examples of minimal repair for two-dimensional policies are Yun 

(1997) and Baik et al. (2003). Yun considers the failure-free two-dimensional 

warranty for repairable products. He derives the expected value and variance of the 
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warranty cost of products. Here, the warranty period is taken as a random variable 

because the period is ended at the warranty age limit or the mileage limit, whichever 

occurs first. In the paper, failures are modeled as a non-homogeneous Poisson 

process. Yun derives the expected value and the variance of number of failures by 

conditioning on the number of repairs. Baik et al. focus on the characterization of 

failures under minimal repair. They extend the one-dimensional minimal repair 

concept to the two-dimensional and show that minimal repair over two-dimensional 

policies can be modeled as a non-homogeneous Poisson process. Analysis of minimal 

repairs provides an extension to a broader concept, the imperfect repair. 

 

3.3 Imperfect Repair 

 

            Different ways of modeling imperfect repairs are proposed in the literature. 

One approach is to use a mixture of minimal and perfect repair with a threshold point 

based on the repair cost or the number of failures. Another approach is to use (p, q) 

type policy in which with probability p failed product is rectified by perfect repair and 

otherwise, with probability q=1-p, it is corrected with minimal repair. Examples of 

these two types of imperfect repairs are given in Section 3.3. 

 

            The third type of imperfect repairs changes the failure rate of the product after 

repair. The most widely adopted imperfect repair model is the virtual age model 

proposed by Kijima in1989. In this model, product can return to a state between as 

good as new and as bad as old after repair. Kijima constructs two models according to 

repair effect. The first model (Type 1), is Vn = Vn-1 + An Xn where Vn is the virtual age 

after the nth failure, Xn is the inter-failure time between (n-1)th and nth failure and An is 

the degree of the nth repair. In this model, the nth repair cannot remove the damages 

incurred before the previous repair; it reduces the additional age (Xn) by the degree of 
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repair (Kijima, 1989). On the other hand, the second virtual age model (Type 2) is Vn 

= An (Vn-1 + Xn). In the first model, relationship between virtual age and chronological 

age is obvious, but in the second model it is not. In both models, if An is equal to 1, 

then it means that repair is minimal, whereas if An is equal to 0, rectification action is 

perfect repair. Kijima finds bounds for chronological age of the product with respect 

to two models. By numerical example, he found that difference between the expected 

value of the chronological age under minimal repair and under virtual age models gets 

larger when the degree of repair decreases.  

 

            In addition, Dagpunar (1997) defines the virtual age as a function of virtual 

age plus inter-failure time, i.e. Vn = φ(Vn-1 + Xn). This model is an extension of 

Kijima’s Type 2 model. Dagpunar constructs integral equations for the repair density 

and for the joint density of repairs with respect to chronological age and virtual age. 

In addition, an upgraded repair strategy in which minimal repairs are applied until the 

product reaches a specified age is developed. In the paper, the repair density and 

asymptotic moments for each model are also derived.  

 

            Dimitrov et al. (2004) propose age-dependent repair model along the same 

way as in Kijima’s Type 1 model. They analyze warranty cost for some warranty 

policies such as PRW, a mixture of minimal and imperfect repair and renewing and 

fixed warranty. 

 

            Wang and Pham (1996-1) suggest two imperfect preventive models and a cost 

limit repair model. In the models, preventive maintenance is applied at times kT after 

the kth repair, where T is a non-negative constant. In their models, repair is imperfect 

in the sense that repair action decreases the lifetime of the product, but increases the 

repair time. This reduces the lifetime and increase the repair time. In the paper, repair 

cost also increases with each additional repair. In the first policy, repairs are imperfect 
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between preventive maintenance periods and after preventive maintenance, product 

will be as good as new with probability p and as bad as old with probability 1- p; 

whereas, the second model assumes that after preventive maintenance the age of the 

product becomes x units of time younger (0≤ x≤ T) and the product is replaced by a 

new one if it has operated for a time interval NT (Wang and Pham, 1996-1). In the 

third model, after kth repair a failure is rectified by repair or replacement regarding its 

repair cost, and repair brings to as good as new state with probability p, and to as bad 

as old with probability 1- p. In the paper, Wang and Pham derive the long-run 

expected maintenance cost, asymptotic average availability and find the optimal 

parameters for each model. After this study, Wang and Pham (1996-2) call this repair 

model as a quasi-renewal process and deal with similar policies, but assume 

negligible repair time. In addition, Bai and Pham (2005) suggest repair-limit warranty 

policies such that after a failure, imperfect repair is conducted if the number of repairs 

is less than a threshold point. If not, the failed product is replaced. The threshold point 

is chosen in such a way that after this point repair becomes more costly.  

 

3.4 Two-dimensional Warranty Examples 

       

      Most of the two-dimensional warranties consider policies with different repair 

types such as perfect, minimal or mixture of perfect and minimal repair. However, 

there are some examples that approach warranty problem in a different way. For 

example, Singpurwalla and Wilson (1993) derive expected utility of the manufacturer 

and consumers as a function of product price and warranty region. Due to competition 

in market, manufacturer can not freely choose a price and a warranty structure to 

maximize its expected utility, so Singpurwalla and Wilson handle warranty problem 

by the concept of two person non-zero sum game. In addition, they propose various 

regions for two-dimensional warranty different from the rectangular one. The 
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rectangular warranty region has a disadvantage for the manufacturer if the product is 

used above the normal rate during the initial period of purchase. Other alternative 

regions can be constructed by shaving off some part of the rectangular region. For 

instance, shaving off an upper/lower triangle of the rectangular region renders a more 

manufacturer/consumer friendly warranty region. In order to make the warranty 

policy more consumer friendly, circular or parabolic warranty regions can also be 

adopted instead of a triangular region. The semi-infinite warranty region similar to the 

one suggested by Murthy et al. is not advantageous to normal users but it is so for 

users with an exceptionally high or low rate of usage.  

 

            Gertsbakh& Kordonsky (1998) deal with constructing individual warranties 

for a customer with low or high usage rate since the traditional two-dimensional 

warranties do not provide equal conditions for different types of customers. They 

construct a new time scale which is a combination of usage and mileage. Then, this 

time scale can be used to determine warranty region for each customer by considering 

his usage rate. This type of warranty may increase the number of customers and 

improve the manufacturer’s profit.  

 

            Singpurwalla and Wilson (1998) propose an approach for probabilistic models 

indexed by time and usage. They suggest three different processes to model the usage. 

The first one is Poisson process. It is appropriate when usage is characterized by a 

binary variable: down and up or the amounts of usage up to failures do not affect 

failure inter-arrivals. On the other hand, if using the product continuously causes 

wear, then the gamma process is useful for modeling the usage. Lastly, for modeling 

wear by continuous use with the periods of rest, the Markov additive process is 

suitable.  
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            Chukova et. al. (2004) focus on the transition from the initial lifetime to the 

second lifetime following to the first repair and they compare different types of 

repairs in the case of one repair by using the distribution functions, mean time to 

failure and failure rate functions of the lifetime distributions. Chukova et. al. also 

mention the accelerated lifetime distribution functions. In the accelerated life models, 

the repaired item has a lifetime distribution which generates from the same family 

with the multiplicative scale factor to rescale the original random variable. Here, the 

product’s reaction to failure changes according to the scale multiplier: if it is less than 

1, then the product is less fond of failure than the case with the multiplier greater than 

1.  

 

3.5 Conclusion 

 

            In the literature, there are a vast number of studies which model and analyze 

different warranty polices. Majority of these studies deal with the one-dimensional 

warranty policy. Although one-dimension is enough for describing the failure process 

for most products, there exist some cases for which a single dimension is not 

sufficient to characterize the failure structure of the product. This usually occurs when 

the usage and age of the product affect the lifetime of the associated product such as 

in tires, cars etc. For such products, two-dimensional warranty policies are more 

suitable. However, the studies of two-dimensional warranties are limited. Thus, this 

concept is one of the topics that can be studied in detail. When the rectification types 

under the warranty policies are examined, it is seen that the rectification types are 

generally perfect, minimal and combination of these two. Other than considering a 

combination of perfect and minimal repair, imperfect repair has not received much 

attention. The imperfect models that change the failure rate of product are discussed 

only in a couple of papers. Examples of these types of imperfect repairs are limited by 
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Kijima’s models (1989) and Wang and Pham (1996-1, 2) approaches. On the other 

hand, all the studies related to this type of imperfect repair consider only the 

univariate case. In this thesis, we focus on imperfect repairs under both one- and two-

dimensional warranties. We extend the application of quasi renewal processes to 

model two-dimensional warranties. We then define representative cost functions and 

investigate the effectiveness of several repair policies under a variety of conditions. 
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C h a p t e r  4  

 

PROBLEM DEFINITION 
 

We consider a replacement/repair warranty policy. We focus on both one- and 

two-dimensional cases. For one-dimensional warranties, we describe the product 

lifetime in terms of age. For two-dimensional cases, we characterize it in terms of age 

and usage, and we assume that age and usage are correlated. In the two-dimensional 

warranties, we investigate policies with different degrees of protection for the 

manufacturer and consumer. Our failure model is an imperfect repair model that is 

based on a quasi-renewal process.  We analyze the effect of imperfect repairs on the 

total expected warranty cost for products of different reliability structure. While we 

construct and analyze the failure models, we make the following simplifying 

assumptions:  

• Buyers have similar attitude with respect to usage when they use the 

same product 

• All claims during the warranty period are valid 

• The time to rectify a failed item is negligible 

 

The first assumption above allows considering all the buyers simultaneously. 

The second assumption states that the failure does not occur as a result of improper 

usage. Lastly, the time to rectify a failed item can be assumed negligible, when the 

repair time is too small compared to the product lifetime.  
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With respect to corrective maintenance actions, we study imperfect repairs 

based on a quasi-renewal process. The quasi-renewal process is characterized by a 

scaling parameter that alters the random variable after each renewal. In other words, 

this parameter indicates the deterioration or improvement of process. For example, if 

the scaling parameter is between 0 and 1, it indicates deterioration; whereas if it is 

greater than 1, it indicates an improved policy. In our study, we refer to this parameter 

as extent of repair. The extent of repair also determines the amount of change in the 

mean of the interfailure and failure rate before and after the renewal. The quasi-

renewal process allows for modeling many different extents of repair by varying the 

scale parameter. 

  

To compare various policies, we use the expected total cost over the warranty 

period. Warranty cost includes the rectification cost in case of failure. In the literature, 

these costs are generally aggregated and assumed constant over the warranty period. 

In addition, there exist some examples in which cost depends on the product age. 

However, to the best of our knowledge, there has not been any attempt to model the 

warranty cost as a function of the repair policy adapted throughout the warranty 

period. In this study, we propose new cost functions that address this issue for one- 

and two-dimensional warranty. These functions are composed of two parts: fixed and 

variable components. The fixed component is paid independently of the extent of 

repair and represents the costs such as loss of goodwill or setup. The variable cost 

includes direct labor and direct material costs and it increases in parallel with the 

extent of repair.  

 

The total expected warranty cost is based on the fixed and variable cost 

components and the expected number of failures. The fixed and variable costs are 

determined by the manufacturer, whereas the expected number of failures depends on 

the warranty length, the reliability of the product and the extent of repair. We assume 
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that the warranty length is determined before the product is placed in the market by 

considering various factors such as competition in the sector, marketing strategy and 

product’s characteristics. The reliability of the product is specified by the probability 

density function of the interfailure times. In this study, our aim is to find the optimal 

repair policy which minimizes the warranty cost.  
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C h a p t e r  5  

 

IMPERFECT REPAIR MODEL 
 

 

In this chapter, we firstly introduce the univariate imperfect repair model in 

Section 5.1. Then in Section 5.2, we extend the concept to the multiple dimensions 

and focus on the bivariate case. In Section 5.3, we discuss the representative cost 

functions for one- and two-dimensional warranties. Then, in Section 5.4, we derive 

the expected number of failures under different types of two-dimensional policies. 

Lastly, in Section 5.5, we propose new repair strategies. 

 

5.1 Univariate Imperfect Repair Model 

 

In order to find the expected number of breakdowns, we try to characterize 

failure distribution with a model based upon the quasi-renewal process. The quasi 

renewal process is used as an alternative method for modeling imperfect repairs. 

Other approaches frequently seen in the literature are (p, q) models and combinations 

of minimal and perfect repair. In the (p, q) models, the product after a failure is 

replaced by a new one with probability p or it is repaired by minimally with 

probability q=1-p. Whereas, in the combination models, there is a threshold point 

between minimal and perfect repair. This threshold is characterized by either a 

maximum number of breakdowns or expected cost. That is, if the count of the last 

failure is larger than the maximum allowable failures, than the product is replaced 
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instead of minimal repair. Similarly, if a predetermined limit on the expected cost of 

failure is greater than the threshold point, then the failure is rectified by perfect repair. 

Otherwise, it is corrected by minimal repair. 

 

The quasi renewal process, on the other hand, does not restrict the possibilities 

of repair actions to minimal or perfect repair. Indeed, it may be considered more 

realistic than (p, q) and mixture policies since repair actions do not switch between 

two cases. We focus on the quasi renewal process that represents the deterioration of 

the product after a failure. That means probability of breakdowns increases after a 

failure occurs. Wang and Pham (1996-2) introduce the quasi renewal process for the 

univariate distribution. In this section, the concept of quasi renewal process 

introduced by Wang and Pham is explained. Then, we generalize the concept of 

quasi-renewal processes proposed by Wang and Pham (1996-2) for the univariate 

distribution to the case of the multivariate distribution.  

 

Quasi-Renewal Processes:  

Let {N(t), t > 0} be a counting process and Tn be the time between the (n-1)th 

and nth events of the process(n>0). The counting process {N(t), t > 0} is said to be a 

quasi-renewal process with parameter α, α > 0,  if  

Tn= αn-1
Xn, n=1, 2, 3…                                                                                              (5.1) 

where Xn’s are independently and identically distributed random variables with 

cumulative distribution and density functions F and f , respectively and α is a 

constant. 

 

           The quasi-renewal process describes the case where the successive intervals 

{Tn, n=1, 2, 3…} are modeled as a fraction of the preceding interval. The implication 

of this process is that the distribution of the nth interval is scaled by a factor, αn-1, but 

retains the same shape. This phenomenon is depicted in the Figure 5.1 for α < 1. As it 
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is seen, the likelihood of successive intervals increases. So, this process can model the 

deterioration of a system. On the other hand, the case when α > 1 represents the 

improvement of the system and may be appropriate for a reliability growth model. 

The case α=1 becomes the ordinary renewal process since all the intervals are 

distributed identically.  
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Figure 5.1: Quasi-Renewal Distribution of Successive Intervals 

 

            If Fn and fn are respectively the cumulative and probability density function of 

the new system, then they are defined as follows.  

Fn(t)=F(α1-n
t)                                                                                                    (5.2) 

fn(t)= α
1-n

 f(α1-n
t)                                                                                               (5.3) 

 

           These results are obtained by the cumulative distribution technique for 

functions of random variables. That is:  

1 1 1( ) ( ) ( ) ( ) ( )n n n

n n n nF t P T t P X t P X t F tα α α− − −= ≤ = ≤ = ≤ =                                 (5.4) 
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1 1( )
( ) ( )n nn

n

F t
f t f t

t
α α− −∂

= =
∂

                                                                             (5.5) 

 

           Then, the probability function of N(t) can be derived by using the relationship  

tSntN n ≤⇔≥)( , where Sn is the occurrence time of the nth event.  

1

( ) ( 1)

( ( ) ) ( ) ( )

( ( ) ) ( ) ( )           1,  2,...

n n

n n

P N t n P S t P S t

P N t n F t F t n

+

+

= = ≤ − ≤

= = − =
                                                 (5.6) 

where F(n)(t) is the convolution of the arrival times T1, T2,…,Tn and F(0)(t)=1.  

 

           The form of the renewal function of this process is obtained in a similar way to 

that of the basic renewal process, but the main difference between these two renewal 

functions is that the intervals are not identically distributed in the quasi-renewal 

processes. Let the renewal function, i.e. the number of events until time t, of the 

quasi-renewal process be 1 ( )qM t . Then, it can be written as:  

1 ( )

0 1

( ) [ ( )] ( ( ) ) ( )n

q

n n

M t E N t nP N t n F t
∞ ∞

= =

= = = =∑ ∑                                                     (5.7) 

 

           In order to find expected number of events up to a certain point, we firstly 

investigate the behavior of the convolutions. The first convolution is obviously equal 

to: 

∫=
t

dxxftF
0

11
)1( )()(  

 

           The second convolution is the cumulative distribution function of T1 + T2. To 

find this function, the joint density function of T1 and T2 should be found. Since Xn’s 

are independently distributed random variables, changing the scale of these variables 

does not affect the independency of Xn. Thus, Tn’s are also independently but not 
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identically distributed. In the light of this information, we can write the joint density 

of T1 and T2 as the product of the marginal density functions of T1 and T2. That is: 

1 2 1 2

1 2 1 2
, 1 2 1 2 1 2( , ) ( ) ( ) ( ) ( )T T T Tf t t f t f t f t f tα α− −= =  

 

           Then, the distribution function of T1 + T2 is  

1

1 2 1 2

1 2 1 2

(2)
1 2 1 2 2 1 1 2 2 1

0 0

( ) ( ) ( ) ( ) ( ) ( )
t tt

T T T T

t t t t t

F t P T T t f t f t dt dt f t f t dt dt

−

+ ≤ = =

= + ≤ = =∫∫ ∫ ∫  

 

           Similarly, the third convolution is  

1 2 3

1 2 3

1 1 2

1 2 3

1 2 3

(3)
1 2 3 1 2 3 3 2 1

1 2 3 3 2 1

0 0 0

( ) ( ) ( ) ( ) ( )

( ) ( ) ( )

T T T

t t t t

t t t t tt

T T T

t t t

F t P T T T t f t f t f t dt dt dt

f t f t f t dt dt dt

+ + ≤

− − −

= = =

= + + ≤ =

=

∫∫∫

∫ ∫ ∫
 

 

           Continuing in this way, we can generalize this to the n-fold convolution as 

follows: 

1 2

1 2

1

11 1 2

1 2 3

1 2 3

( )
1 2 1 2 2 1

...

1 2 3 2 1

0 0 0 0

1 1 2
1 2

( ) ( ... ) ... ( ) ( )... ( ) ...
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... ( ) ( ) (

n

n

n

i

i

n

n

n

n T T T n n

t t t t

t t
t t t t tt

T T T T n n

t t t t

F t P T T T t f t f t f t dt dt dt

f t f t f t f t dt dt dt

f t f t fα α α α

−

=

+ + + ≤

−
− − −

= = = =

− − − −

= + + + ≤ =

∑

=

=

∫∫∫ ∫

∫ ∫ ∫ ∫
1

11 1 2

1 2 3

2 1 1
3 2 1

0 0 0 0

)... ( ) ...

n

i

i

n

t t
t t t t tt

n n

n n

t t t t

t f t dt dt dtα α

−

=

−
− − −

− −

= = = =

∑

∫ ∫ ∫ ∫

 

 

           Closed form of analytical expressions for F
(n) can be secured only for a few 

special distributions such as the normal distribution. For this reason, a numerical 
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method is developed to evaluate F
(n). This method will be explained in the next 

chapter. 

 

           In our system, we consider the replacement and deterioration of the system. So, 

the quasi-renewal process, with 0< α ≤1, is suitable for the imperfect repair type. 

Here, the value of α represents the extent of repair. If α is equal to 1, this means that 

the rectification is done by replacement of the failed product by a new one, whereas, a 

smaller alpha value corresponds to the case in which the product switches to an 

operational state inferior to that of a new one. The extent of repair that corresponds to 

the minimal repair is discussed in the following part. 

 

Handling the minimal repair: 

        A repair action is said to be minimal if the product failure rate is the same before  

and after the repair action. If F1(t) is the failure  distribution of the original item and t1 

is the realization of the first failure time, then the time to failure distribution after a 

minimal repair has the following structure.  

1 1
1 1

1 1

1 ( )
( | ) 1

1 ( )

F t t
F t t

F t

− +
= −

−
 

 

If the failure distribution is exponential with the failure rate of λ, then the 

cumulative distribution function of the item after the minimal repair is as follows. 

1

1

1
1

1

( )

1 ( )
( | ) 1

1 ( )

1 (1 )
1

1 (1 )

1

t t

t

t

F t t
F t t

F t

e

e

e

λ

λ

λ

− +

−

−

− +
= −

−

− −
= −

− −

= −

 

Due to the memoryless property of the exponential distribution, the minimal repair 

does not change the failure distribution. In the quasi renewal concept, the extents of 
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repair for perfect and minimal repair are equal if the failure distribution is exponential. 

Now, let the failure process of the item be characterized by normal distribution. 

Finding the extent of repair that corresponds to minimal repair is complex in this case. 

If T1 is normally distributed with mean µ and standard deviation σ, then the 

conditional distribution of T2 given T1 is as follows.  

1 2 1
1 2 1

1 1

2
2 1

22

1 2 1 2
1

22

2 2
2 1 1

1 2 1 2 2
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2 1 2 2

1 2 1 2
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2 2
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µ
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µ
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µ µ

σ σ
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σ

+
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−

=
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−
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Then, the joint distribution function of T1, T2 can be found by the total probability 

rule. That is, 

1,2 1 2 1 2 1 1 1

2 2
2 1 2 2 1

2 22

( , ) ( | ) ( )

( 2 2 ) ( )1
exp( ) exp( )

2 22

f t t f t t f t

t t t t tµ µ

σ σπσ

=

− − −
= − −

 

 

Lastly, the distribution function of T2 is as follows. 

2 1 22 , 1 2 1

2 2
2 1 2 2 1

12 22
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( 2 2 ) ( )1
exp( )

2 22

T T Tf t f t t dt
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µ µ
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∫
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As it is seen above, the determination of the second failure distribution is complex if 

the distribution does not have memoryless property. In addition, in our model after 

each failure, our model behaves like it starts with a new distribution with the shape 

but narrower scale than the previous inter failure. So, the quasi-renewal process 

concept does not incorporate the minimal repair. 

 

           As discussed earlier, in some cases, one dimension may not be enough to 

adequately model the failure characteristics of a system.  For example, breakdowns of 

a car are generally affected by both its age and usage rate. Similarly, failure 

characteristic of a jet engine can be modeled by three factors such as number of 

flights, calendar age and total flight hours. Thus, in the following section, we will 

generalize the concept of quasi-renewal processes to multiple-dimensions.  

 

5.2 Generalization of Quasi-Renewal Processes to Multiple 

Dimensions 

 

           For a failure defined along n dimensions, let Xi=(X1i, X2i,…, Xni), i=1,2,3… 

represent an n-dimensional random vector where Xki denotes the interval of kth 

dimension between the (i-1)th and ith successive renewals with Xk0=0 for all k=1, 

2,…, n. Let {N(x1, x2,…, xn); xk>0 k=1,…, n } be a counting process such that 

XT=АYT where А is a n×n non-negative diagonal matrix and Y is n-dimensional 

independently and identically distributed random vector, then we can say {N(x1, x2,…, 

xn); xk>0 for k=1,…, n } is an n-dimensional quasi-renewal process corresponding to 

А. In other words,  
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           If Yi=(Y1i, Y2i,…, Yni), i=1,2,3… has a distribution function F(y1i, y2i,…, yni), 

then cumulative distribution and density function of Xi can be written as:  

1 1
1 1 1,..., ,  ...,i i

i i ni i n ni
F(x x ) F( x xα α− −= )                                                                  (5.8) 

1 1 1 11
1 1 1 1

1

,...,
,..., ... ,...,  

...

n
i i i ii i ni

i i ni n i n ni

i ni

F(x x )
f x x  f( x x

x x
α α α α− − − −∂

( ) = = )
∂ ∂

                          (5.9) 

 

           The results are again obtained by cumulative distribution technique for 

functions of multivariate random variables. That is;  

1 1 1

1 1
1 1 1

1 1
1 1

,..., ( ,..., )

                 ( ,..., )

                 ,  ...,

i i ni i i ni ni

i i

i i n ni ni

i n

i n ni

F(x x ) P X x X x

P Y x Y x

F( x x

α α

α α

− −

− −

= ≤ ≤

= ≤ ≤

= )

                                                          (5.10)     

 

           The distribution function of counting process N(x1, x2,…, xn) can be found in a 

similar manner as in the univariate process. 

( ) ( 1)
1 1 1( ( ,...,  ) ) ( ,...,  ) ( ,...,  )           1,  2,...k k

n n n
P N x x k F x x F x x k

+= = − =            (5.11) 

where F(k) is the k-fold convolution of F with F(0)( x1, x2,…, xn)=1.   

 

           Now, we can formulate the expected number of renewals over the n-

dimensional plane as follows. 

2 ( )
1 1 1 1

0 1

( ,...,  ) [ ( ,...,  )] ( ( ,...,  ) ) ( ,...,  )k

q n n n n

k k

M x x E N x x kP N x x k F x x
∞ ∞

= =

= = = =∑ ∑ (5.12) 

 

           In the following section, the bivariate quasi renewal process is discussed. 
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5.2.1 Bivariate Quasi-Renewal Processes  

            Let (Tn, Xn), n=1,2,3…, be a two-dimensional random vector, where Tn 

represents the time interval between the nth and (n-1)st failures and Xn represents the 

product usage between the same two failures with Tn=Xn=0. {N(t, x); t, x>0} is a two-

dimensional quasi-renewal process with parameters α1 and α2, α1,α2 >0, if n

n

n YT
1

1
−= α  

and n

n

n ZX
1

2
−= α , n=1, 2, 3…,                                                                              (5.13) 

where the (Yn, Zn)’s are independently and identically distributed random variables 

with the cumulative distribution function F(y, z) and α1, α2 are constants. The 

cumulative distribution and density functions of (Tn, Xn) become as follows. 

1 1
1 2( ) ( ,  n n

n
F t, x F t xα α− −= )                                                                                    (5.14) 

2
1 1 1 1
1 2 1 2

( )
,  n n n nn

n

F t, x
f t, x  f( t x

t x
α α α α− − − −∂

( ) = = )
∂ ∂

                                                (5.15) 

It then follows that           

( ) ( 1)( ( ,  ) ) ( ,  ) ( ,  )           1,  2,...n nP N t x n F t x F t x n+= = − =                                  (5.16) 

where F
(n)(t, x) is the n-fold convolution of F(t, x), F

(0)(t, x)=1, and the expected 

number of failures over ) ,0[) [0, xt × is expressed as  

2 ( )

0 1

( ,  ) [ ( ,  )] ( ( ,  ) ) ( ,  )n

q

n n

M t x E N t x nP N t x n F t x
∞ ∞

= =

= = = =∑ ∑                           (5.17)  

 

           In the above equation, the first convolution is as follows.  

1 1

(1)
1 1 1 1

0 0

( , ) ,  
t x

t x

F t x f(t x dt dx
= =

= )∫ ∫  

          Since the consecutive failures are independent of each other, the joint density of  

(T1, X1) and (T2, X2) is the product of the two marginal density functions. Thus, the 

convolution of (T1, X1) and (T2, X2) is equal to: 
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           The general form of n-fold convolution in the bivariate case can be written as 

follows. 

1
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           In order to calculate the n-fold convolution, we need to take 2n many integrals. 

Hence, finding the expected number of failures over a two-dimensional region is more 

difficult than that in the one-dimension. In the next chapter, we will develop a 

numerical method to serve this purpose.   

 

5.3 Cost Function 

 

As the repair degree improves, the repair cost increases. An appropriate cost 

function that displays these characteristics can be written in the following way:  

 
( )

1 1
1

( , ,..., ) ( )
N W

n i

i

C W c cα α α
=

= +∑                                             (5.18)
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where c and c1 are real constant corresponding to fixed and variable repair cost, 

respectively, αi corresponds to the extent of i
th repair and N(W) is the number of 

failures during warranty. The expected cost is then as follows: 

 
( ( ))

1 1
1

( ( , ,..., )) ( )
E N W

n i

i

EC E C W c cα α α
=

= = +∑                                                            (5.19) 

 
where E(N(W)) is the expected number of failures within the warranty period of 

length W. 

 

For the two-dimensional case, there are two variable components. One 

corresponds to repair cost along the time dimension; the other along the usage 

dimension. Then, the total cost over warranty period (W, U) can be written in equation 

5.20 and the expected total can be formulated in equation 5.21. 

 

( , )

11 1 21 2 1 1 2 2
1

( , , ,... , ,..., ) ( )
N W U

n n i i

i

C W U c c cα α α α α α
=

= + +∑                                        (5.20) 

 

( ( , ))

11 1 21 2 1 1 2 2
1

( , , ,... , ,..., ) ( )
E N W U

n n i i

i

C W U c c cα α α α α α
=

= + +∑                                     (5.21) 

 

where c is a fixed component of the cost, and c1 and c2 are the variable components of 

the repair cost along the time and usage dimensions, respectively with α1i and α2i 

indicating the extent of ith repair in each dimension.   
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5.4 Expected Number of Failures for Different Two-

dimensional Warranty Policies 

 

       The expected number of failures for Contract A can be calculated based on 

equation 5.19. In Contract B, the warranty ceases after a failure if the time of the 

failure and the total usage up to the failure both exceed the warranty limits W and U, 

respectively. This policy is the combination of two one-dimensional policies; one is 

for the time dimension and the other for the usage dimension. So, the expected 

number of failures can be found by using the one and two-dimensional processes. The 

expected number of failures can be written in the following way. 

2 2 2
1 2 1 2 1 2 1 2

( ) ( ) ( )

1 1 1

1 2

( , , , ) ( , , , ) ( , , , ) ( , , , )

( , ) ( , ) ( , )

( ( )) ( ( )) ( ( , ))

B

q q q q

n n n

n n n

M W U M W M U M W U

F W F U F W U

E N W E N U E N W U

α α α α α α α α

∞ ∞ ∞

= = =

= ∞ + ∞ −

= ∞ + ∞ −

= + −

∑ ∑ ∑  

   (5.22) 

where N1(W) and N2(U) are one-dimensional point process corresponding to the 

marginal distribution functions of F(t, x) with respect to time and usage dimension, 

respectively.  

 

In Contract C, if a failure occurs at time t, and the total usage of the product up 

to t is x, then the failure is reimbursed by the manufacturer if K=x+mt ≤ U where 

m=U/W. Let Ki=Xi+mTi, i ≥ 1, then {Ki, i ≥ 1} is a sequence of independent and 

identically distributed random variables with FK such that 
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                                                                    (5.23) 

 

If NK(U) denotes the expected number of failures in [0, U) corresponding to 

renewal process with FK, then the expected number of failures under the warranty 

region is equal to  

( )

1

( ,  ) [ ( ,  )] ( )C n

q K

n
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∞

=

= =∑                                                         (5.24) 

 

In the above expectation, the first convolution is given by 
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       The second convolution is more complicated than the first one due to its bounds.  

It is explicitly  

1 2 1 2
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1 1 1 2 2 2 2 2 1 1( ) ( )
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( , ) ( , )
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and the bounds of the above integrals are  
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Thus, 2-fold convolution is equal to 
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By continuing in this manner, the n-fold convolution can be written as. 
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5.5 Proposed Policies 

 

As we stated, most of the reliability literature deals with the rectification 

actions such as perfect repair, minimal repair and combination of these two repairs. In 

this section, we propose two classes of imperfect repair policies that rely on quasi-

renewal processes. The first class is the “static repair policy”. In the static policy, the 

extent of repair remains constant over the warranty period. Under the static policy, we 

also consider “improved repair policy”. The last class of policies is called “dynamic 
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repair policy” in which the extent of repair varies systematically over the warranty 

period.  

 

5.5.1 Static Policies 

In these policies, all breakdowns seen within the warranty period are rectified in 

the same manner. That is, α in equation 1n

n n
X Yα −=  and α1 and α2 in equations 

n

n

n YT
1

1
−= α  and n

n

n ZX
1

2
−= α  that correspond to the extent of repair are constant over 

the warranty period. In our case, the repair brings the product to an operational state. 

However, it becomes less reliable than before the failure. So, α can take values 

between 0 and 1. A larger α implies a better repair. When α is equal to 1, the repair 

action corresponds to replacement, i.e. perfect repair, of the product. Perfect repair 

decreases the expected number of failures more than any other imperfect repairs, but 

at the same time it increases unit repair cost defined as 
( )

1
1

( , )
N W

i i

i

C W c cα α
=

= +∑  for the 

one-dimensional and 
( , )

1 2 1 1 2 2
1

( , , , )
N W U

i i i i

i

C W U c c cα α α α
=

= + +∑  for two-dimensional 

warranties. On the other hand, for small α, the unit cost is also small, but the expected 

number of failures gets larger. Thus, manufacturer should find a trade-off in the 

degree of repair that minimizes his total cost.  

 

In the two-dimensional warranty policies, the degree of repair is represented by a 

two-dimensional vector (α1, α2). In these policies, α1 and α2 correspond to the degree 

of repair between failures along the time and usage dimensions, respectively. In this 

case, when α1 is equal to α2, the comparison between the repair degree combinations 

is the same as the one-dimensional case. However, α1 does not need to be equal to α2. 

For example, failed component can be replaced with a less used component at the 

same age. In this case, comparison between extents of repair is difficult. 



 

 43 

 

5.5.2 Improved Policies 

In the improved policy, the product is replaced by an improved one after the first 

failure. This applies usually to the high-tech products for which a newer, improved 

version of the product is designed and developed before the failure of the older 

version. Let β be the degree of improvement between these two versions of the 

product. For example, if the newer version has a mean time to failure which is 20% 

larger than that for the failed product, then β is 1.2.  For one-dimensional warranties, 

the inter-failure times under the improved policy can be modeled as follows. 

1 1

2 2

2  for all 3i

i i

T X

T X

T X i

β

α β−

=

=

= ≥

                                                                                  (5.25) 

where 
i

X  and α are defined the same in the univariate quasi-renewal process. The 

total warranty cost of the improved policy is defined as follows. 

(1, )
1 1( ) ( )( ( ) 1)imp

C c c c c N Wβ α= + + + −                                                                           

(5.26) 

and the expected cost over the warranty period is  

(1, )
1 1( ) ( )( ( ( )) 1) imp

EC c c c c E N Wβ α= + + + −                                                     (5.27) 

 

      For the two-dimensional warranties, define βi as the degree of improvement with 

respect to dimension i such as time and usage. Then, the improved policy for the two-

dimensional warranties can be modeled as follows. 

1 1

2 1 2

2
1 1  for all 3i

i i

T Y

T Y

T Y i

β

α β−

=

=

= ≥

     and         
1 1

2 2 2

2
2 2  for all 3i

i i

X Z

X Z

X Z i

β

α β−

=

=

= ≥

                         (5.28) 
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where (Yi, Zi) and (α1, α2) are defined the same in the bivariate quasi-renewal process. 

The total expected warranty cost of the two-dimensional improved policy is 

calculated as follow. 

(2, )
1 1 2 2 1 1 2 2( ) ( )( ( ( , ))-1)imp

EC c c c c c c E N W Uβ β α α= + + + + +                           (5.29) 

 

5.5.3 Dynamic Policies 

      In contrast to static policies, in the dynamic policy, the extent of repair is not 

constant over the warranty period. In the dynamic policy, the extent of each repair 

changes as a decreasing function of the time of the breakdowns. As the time gets 

closer to the end of warranty period, the extent of repair decreases. The motivation for 

this policy is to decrease the expected cost by repairing the product to the extent that 

would carry it in an operational state until the end of the warranty period. We think 

that the dynamic policies may dominate the static policies since in the latter one; the 

failure is rectified with the same level of repair even if there is little time left until the 

end of warranty period. The failure time model under the dynamic policy for one-

dimensional case has the following form. 

2    )(
1

1

11

≥=

=

∑
−

=

iXTT

XT

i

i

k

ki α
                                                                                       (5.30) 

where 
i

X ’s are independently and identically distributed random variables with the 

probability density function f(xi) and )(tα is a non-increasing function of t which 

gives the degree of the repair for a failure that occurs at time t with the following 

general form. 

2( )t a bt ctα = + +  

where a, b and c are constant real numbers. It is preferable for the function )(tα to be 

concave as a good repair becomes increasingly undesirable towards the end of 

warranty period. Thus, the rate of decline in function alpha increases as the time 
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approaches to the end of warranty period. An example repair degree function is given 

in Figure 5.2. This function alters the degree of repair between 1 and 0.75 according 

to the time of failure. In our computational study, we will use this particular function 

for the univariate and bivariate cases.  

 
          Figure 5.2: α(t)=0.991+0.0093t-0.03t

2 

 

The warranty cost of this new policy for one-dimensional warranty is 

calculated as follows: 

 
(1, )

1
1 1

( ) [ * ( )]
i

dyn

k

i k

C W c c Tα
∞

= =

= +∑ ∑                                                                         (5.31) 

and the expected cost over the warranty period is: 

))](([))((
))((

1 1
1

),1(),1( ∑ ∑
= =

+==
WNE

i

i

k

k

dyndyn
TEccWCEEC α                                          (5.32) 

 

For the expected cost defined above, a bound can be found by replacing 

all ∑
=

i

k

kTE
1

))((α , i>3 with ∑
=

2

1

))((
k

kTE α . This bound provides an upper bound since 

)(tα  is a monotone decreasing function with respect to t. If 11 XT =  and 
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21212 )()( XXXTT αα == , then the formulation of ))(( 1TE α and ))(( 21 TTE +α can be 

written in the following way for 2( )t a bt ctα = + +  

))()(()(

)()(

)())(())((

1
2

11

2
11

2
1111

XEXVcXbEa

XcEXbEa

cXbXaEXETE

+++=

++=

++== αα

                                                           (5.33) 

 

and  

� �
1 1

2
1 2 1 2 1 2

2
1 1 22 1 2

2
1 2 1 2 1 2 1 2

( ) ( )

2 2
1 2 1 2 1 2 1 2

( ( )) ( ( ) ( ) )

[ ( ) ( ] [ ) ( ]) ( )

[ ( ) ( )] [ ( ) ( ) 2cov( , ) ( ( ) ( )) ]

[ ( ) ( )] [ ( ) ( ) 2cov( , ) ( ) ( )

E X V X

E T T E a b T T c T T

E E V Ea b T T c T T T T

a b E T E T c V T V T T T E ET T

a b E X E T c V X V T T T E T E T

α + = + + + +

= + ++ + + +

= + + + + + + +

= + + + + + + + 1 22 ( ) ( )]E T E T+

                                                (5.34)

where  

)()()(

))((

))(()(

2
2

1212

2
2

11

212

XXcEXXbEXaE

XcXbXaE

XTETE

++=

++=

= α

 

 

Since X1 and X2 are independent random variables, expectation of two random 

variables product can be written: 

)()()( 2121 XEXEXXE =  

and so, 

))()(())()(()()( 2

)()(

2
12122

1
2

1

XEXEcXEXEbXaETE

XEXV

���
+

++=                              (5.35) 

 

On the other hand,  
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1

1

2 1 2

2
1 1 2

2 2 2 2
2 1 2 1 2 2 1 2
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2 1 2 1 2 1 2

2 2 2 2 2
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a V X b E X E X E X E X

c E X E X E X E X ab X X X

ac X X X bc X X X X

+
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              (5.36) 

Since, 

 1 2 1 1 2 2

1 2 1 2

cov( , ) (( ( ))( ( )))

( ) ( ) ( ),

X X E X E X X E X

E X X E X E X

= − −

= −
 

 

V(T2) can be written as : 

1

1
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Lastly,  
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     In this way, we can write ))(( 1TE α and ))(( 21 TTE +α . Some examples for expected  

repair degree are given in Table 5.1. In Table 5.1, zero expectation means that the 

product quality is so high that the probability of observing the second failure is 

negligible. 

 

Table 5.1: Expected repair degree for the first  
   and second failure 

Mean 
interarrival 
times(µ1) 

Expected 
α for the 

first 
failure 

Expected α 
for the 
second 
failure 

0.8 0.987 1.000 
1.4 0.951 0.903 
2 0.891 0.538 

2.6 0.809 0.000 
3.2 0.703 0.000 
3.8 0.575 0.000 
4.4 0.424 0.000 
5 0.250 0.000 
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In the two-dimensional policies, we first consider the use of the same the 

extent of repair at any given instance in time in both dimensions. Mathematical 

formulation of this method is: 

2    )(
1

1

11

≥=

=

∑
−

=

iYTT

YT

i

i

k

ki α
 and 

2    )(
1

1

11

≥=

=

∑
−

=

iZTX

ZX

i

i

k

ki α
                                            (5.39) 

 

The total expected warranty cost is calculated  

))](())(([)),((
1

2

)),((

1 1
1

),2(),2( ∑∑ ∑
== =

++==
i

k

k

UWNE

i

i

k

k

dyndyn
TEcTEccUWCEEC αα        (5.40) 

 

For this method, the upper bound of the expected cost can be found in a 

similar manner with univariate case. For the second and subsequent failures, we use 

the expected repair degree of the second failure in the cost approximation. To 

determine the repair degree of time dimension, we use the marginal distribution of the 

time in equation 5.33 and 5.34.  

 

        In the second method, both dimensions are rectified with the extent of repair 

such that 1 1

2 2

( )

( )

t

t

α µ

α µ
=  for all t with the condition that 1 2( ),  ( ) 1t tα α ≤ . In this method, 

both dimensions are rectified with the same proportion.  That is, the usage repair 

degree is chosen such that the ratio of the repair degree of time dimension to its first 

interfailure time mean is equal to the ratio of repair degree of usage to its mean. 

Mathematically, the second model is: 

2    )(
1

1

11

≥=

=

∑
−

=

iYTT

YT

i

i

k

ki α
 and 

2    ,2

11

≥=

=

iZX

ZX

iii α
                                                    (5.41) 
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where α2,i is the extent of repair for the usage dimension such that  
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T

T

and (µ1, µ2) is vector that indicates time and 

usage mean until the first failure. The total expected cost is similar to the previous 

case. That is: 
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C h a p t e r  6  

 

SOLUTION APPROACH 
 

 

In order to make comparisons between different extents of repair, we use the 

following cost functions.   

( ( ))
(1)

1
1

( ( , )) ( )
E N W

i i

i

EC E C W c cα α
=

= = +∑  

for one-dimensional warranty and  

( ( , ))
(2) (2)

1 2 1 1 2 2
1

( ( , , , )) ( )
E N W U

i i i i

i

EC E C W U c c cα α α α
=

= = + +∑  

for two-dimensional warranty. To calculate these cost functions, we need to calculate 

the expected number of breakdowns over the warranty region. Note however that, this 

expectation is equal to an infinite sum of a series convolution, i.e. 

∑
∞

=

=
1

)( )()(
n

n

q WFWM  for the one-dimensional case and 2 ( )

1

( ,  ) ( ,  )n

q

n

M W U F W U
∞

=

=∑  

for the two-dimensional case. Due to the intractability of this expectation, we propose 

the use of a numerical integration method to approximate each convolution within the 

expectation. The numerical integration method that we choose for our calculation is 

the Composite Simpson’s rule. It is based on Simpson’s rule which approximates the 

integral of f(x) using a quadratic polynomial. The quadratic polynomial in Simpson’s 

rule is chosen such that it takes the same values as f(x) at the end and midpoint of the 
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integral. If xi’s i=1,2,…,2n are equally spaced points separated by a distance h, then 

the mathematical formulation of  the Simpson’s approximation is given as follows. 

[ ]
0

0

2

0 0 0( ) ( ) 4 ( ) ( 2 )
3

x h

x

h
f x dx f x f x h f x h

+

= + + + +∫   

 

Simpson’s rule provides a good approximation when the interval of 

integration is small. If the interval is not small, the Composite Simpson’s rule is more 

adequate. This method is an extension of Simpson’s rule. In the Composite Simpson, 

the integration interval is divided into equally spaced M intervals. Then, for each 

interval the Simpson’s rule is applied. Thus, the mathematical formulation of the 

Composite Simpson is stated as follows. 

( ) ( )
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h h h
f x f x f x f x

− −

−

−
= =

= + + + + + + + + +  

= + + +

∫

∑ ∑
 

where 2M+1 is the number of equally spaced points, h (h=(x2n-x0)/2M) is length 

between every two consecutive points  and hkxxk += 0  for k=0,1,…,2M. For a single 

integral, the application is rather straightforward. On the other hand, for a 

multidimensional integral, we need to evaluate the integrals in an iterative manner. 

Suppose, we have an n-dimensional integral in the following form: 

∫ ∫ ∫ ∫
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     To approximate this multiple integral, we first apply the Composite Simpson’s 

rule to the last integral, then the second last and so on through the first one at the end. 
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The application of the Composite Simpson rule for the n-dimensional integral in the 

context of our warranty analysis is summarized in the following algorithm. 

 

Algorithm 1: 

W: warranty period 

B: upper limit of the subsequent integral 

h: interval length 

n: number of integral 

n′ : number of integrals left 

fi(xi): density function of xi i=1,2,…,n 

 

1. Initialization: 

Set B=W 

Set n n′ =  

F
(n)(W) = 0: initial value of convolution 

1

2
1

( )
M

k

k

Sumeven f x
−

=

=∑ = 0: sum of even points’ value 

2 1
1

( )
M

k

k

Sumodd f x −
=

=∑ = 0: sum of odd points’ value 

 

2. Evaluate the following function 

Set 
2

B
M

h

 
=   

where a    ( a   ) is the smallest (largest) integer greater (less) 

than a and revise the interval length h= B/ 2M 

Simpson( n′ , B) { 

2.1. If n′ >1 

For k=1 to M–1 Do 
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Sumeven+ = 1n n
f ′− + (2kh)*Simpson( 1n′ − , B –2kh) 

                          Sumodd+ = 1n n
f ′− + ((2k-1) h)*Simpson( 1n′ − , B – (2k–1)h) 

End For 

                        Sumodd+ = 1n n
f ′− + ((2M-1) h)*Simpson( 1n′ − , B – (2M–1)h) 

( )
1 1

0

2 4
(0)* ( 1, ) ( )* ( 1,0)

3 3 3
n

n n n n

h h h
F f Simpson n B f W Simpson n sumeven sumodd′ ′− + − +

 
′ ′= − + − + + 

  
���������

 

    Return F(n) 

2.2. Else 

For k=1 to M–1 Do 

Sumeven+ = fn (2kh) 

Sumodd+ = fn((2k–1)h) 

            End For 

                        Sumodd+ = fn((2M–1)h) 

            Return  [ ]
2 4

(0) ( )
3 3 3n n

h h h
f f y sumeven sumodd+ + +  

} end Simpson( n′ , B) 

 

3. Print F(n) 

 

The above algorithm is instrumental in integrating a convolution with a given 

number of integrals; however, the expectation is stated in the form of an infinite sum. 

Hence, we should truncate this infinite sum for a numerical analysis. The truncated 

summation gives us an approximation for the expectation. One way for truncation is 

to set a limit on the number of integrals at the outset. However, such an approach 

would not allow for a direct control over accuracy. An alternative method is to set the 

desired accuracy and stop when it is achieved. In this thesis, we choose truncation 
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based on accuracy. We assume that if the probability of the n
th failure over the 

warranty region is less than 0.0001, then the probability of occurring n+1 or more 

failures is much smaller. Thus, to calculate further convolutions does not make much 

contribution to the expectation bound. Hence, if the value of the last convolution is 

less than 0.0001, we truncate the summation.  

 

The above algorithm is given for one-dimensional warranties, but it can be 

extended for two-dimensional warranties. For two-dimensional warranties, the n-fold 

convolution is the following form: 

1 1

1 1

1 1

1 1
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1 1

 

, 1 1 , 1 1

0 0 0 0

( , ) ( ... ; ... )

... ( , )... ( , ) ...

n n

i i

i i

n n

n n

n

n n

t t x x
t x

T X T X n n n n

t x t x

F t x P T T t X X x

f t x f t x dx dt dx dt

− −

= =

− −

= = = =

= + + ≤ + + ≤

∑ ∑

= ∫ ∫ ∫ ∫
 

 

The approximation algorithm for F(n)(t, x) is given below. In this algorithm, 

we start applying the numerical method to t1 and revise the upper bound of next 

integral with respect to t (Step 2.1). Then, for each value of t1, we apply the method to 

x1 and revise the upper bound of next integral with respect to x (Step 2.2.2). We repeat 

Step 2.1 and Step 2.2.2 through the last integral to the first integral. For the last 

integral, i.e. integral with respect to xn, we apply Step 2.2.1. and we stop.  

 

Algorithm 2: 

   (W, U): warranty regions 

   K: upper limit of subsequent integral with respect to t 

   L: upper limit of subsequent integral with respect to x 

   h1, h2: interval length for ti and xi 

   n: number of integral 
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   n′ : number of integrals left 

   fi(ti ,xi): joint density function of (ti ,xi) i=1, 2, …, n 

 

1. Initialization:   

   Set K=W 

   Set L=U 

   Set 2n n′ =  

   F(n)(W, U) = 0: initial value of convolution 

   Sumeven = 0: sum of even points’ value 

   Sumodd = 0: sum of odd points’ value 

 

2. Evaluate the following recursive function 

Simpson( n′ , K , t, L){ 

2.1. If mod( n′ , 2) != 1 

Set M1=
12

K

h

 
 
 

 and revise the new interval length h1= K/ 2M1 

     For k=1 to M1–1 Do 

Sumeven+ = Simpson( 1n′ − , K –2kh1, 2kh1, L) 

Sumodd+ = Simpson( 1n′ − , K – (2k–1)h1, (2k–1)h1, L) 

 End For 

 Sumodd+ = Simpson( 1n′ − , K – (2 M1–1)h1, (2 M1–1)h1, L) 

( ) 1 1 1

0

2 4
( 1, ,0, ) ( 1,0, , )

3 3 3
n h h h

F Simpson n K L Simpson n K L sumeven sumodd
 

′ ′= − + − + + 
  

�����������

 

Return F(n) 

 

     2.2. If mod( n′ , 2) = 1 
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            Set M2 = 
22

L

h

 
 
 

 and revise the new interval length h2= L/ 2M2 

  2.2.1 If n′ =1 

       For k=1 to M2 –1 Do 

 Sumeven+ = fn (t, 2k h2) 

            Sumodd+ = fn(t, (2k–1)h2)   

                 End For 

                              Sumodd+ = fn(t ,(2M2 –1) h2) 

                  Return [ ]2 2 22 4
( ,0) ( , )

3 3 3n n

h h h
f t f t L sumeven sumodd+ + +  

   2.2.2 Else  

 For k=1 to M2–1 Do 

                               Sumeven+= 
/ 2n n

f ′−  
(t, 2kh2)*Simpson( 1n′ − , K, t, L-2kh2) 

                              Sumodd+= 
/ 2n n

f ′−  
(t, (2k-1)h2)*Simpson( 1n′ − , K, t, L-(2k-1)h2) 

                        End For 

            Sumodd+= 
/ 2n n

f ′−  
(t, (2M2-1)h2)*Simpson( 1n′ − , K, t, L-(2M2-1)h2) 

 Return  

2 2 2
/ 2

2 4
( ,0)* ( 1, , , )

3 3 3n n

h h h
f t Simpson n K t L sumeven sumodd′−  

′ − + +  

} End Simpson( 1n′ − , K –2kh1, 2kh1, L) 

 

3. Print F(n) 

 

As in the convolution of a univariate distribution, finding the convolution of 

bivariate distribution is a computationally expensive look for large n even with the 

numerical method. Like the one-dimensional case, we use lower bound on the 

expected number of breakdowns for the two-dimensional warranty analysis. The 



 

 58 

lower bound is calculated using accuracy-based truncation rule as in the one-

dimensional case.  

 

To evaluate the performance of our numerical approximation, we use the 

normal distribution to model failure interarrival times. If Xn’s are independent and 

identically distributed with normal distribution, N(µ, σ2), then the distribution of Tn= 

α
n-1

Xn , n=1, 2, 3… also follows a normal distribution with mean αn-1µ and variance 

α
2(n-1)

σ
2. Thus, T1 +…+ Tn has a mean of (1+α+…+αn-1)µ and a variance of 

(1+α2+…+α2(n-1))σ2. That is, the n-fold convolution of F, F
(n), is distributed 

as
2

2

2

1 1
,

1 1

n n

N
α α

µ σ
α α

 − −
 

− − 
. The expected warranty costs under different parameter sets 

calculated with the numerical and analytical method are showed in Table 6.1 and 6.2. 

In both numerical and the analytical method, we use the truncation rule with a desired 

accuracy of 0.0001. The results indicate that the difference between the numerical and 

analytical method is negligible.  

 
 
 
 
Table 6.1: Errors between the numerical and analytical method 

Mean time to 
first failure 

Alpha Expectation 
(Numerical 

Method) 

Expectation 
(Analytical) 

Error 
(Difference) 

1 1 2.56503 2.52058 -0.04 
2 1 1.05602 1.05617 0.00 
3 1 0.50225 0.50234 0.00 
4 1 0.15881 0.15886 0.00 
5 1 0.05480 0.05484 0.00 
1 0.98 2.63949 2.61832 -0.02 
2 0.90 1.09533 1.09602 0.00 
3 0.80 0.50615 0.50630 0.00 
4 0.70 0.15951 0.15958 0.00 
5 0.50 0.05538 0.05544 0.00 
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Table 6.2: Errors between the numerical and analytical method for a given mean time to first failure 

Mean time to 
first failure 

Alpha Expectation 
(Numerical 

Method) 

Expectation 
(Analytical) 

Error 
(Difference) 

2 1 1.05602 1.05617 0.00 
2 0.90 1.09533 1.09602 0.00 
2 0.88 1.10544 1.10649 0.00 
2 0.8 1.15611 1.16238 0.01 
4 1 0.15881 0.15886 0.00 
4 0.90 0.15891 0.15897 0.00 
4 0.70 0.15951 0.15958 0.00 
4 0.50 0.16245 0.16323 0.00 
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C h a p t e r  7  

 

 

COMPUTATIONAL STUDY 
 
 
    In this chapter, we will present computational results with one- and two-

dimensional warranties and discuss the behavior of the expected warranty cost under 

different parameter settings in different types of policies. Firstly, the experimental 

design for the computational study is presented. Then, the results of one- and two-

dimensional warranties are discussed. 

 

7.1 EXPERIMENTAL DESIGN 

 

   The parameters that we vary in the computational study consist of product quality in  

terms of the reliability structure, extent of repair for static policies and the ratio 

between the fixed and variable components of the repair cost. Firstly, we manipulate 

the reliability structure of the product by changing the mean of the interval time 

between the first and second failures, i.e. µ1, for one-dimensional warranties. If this 

mean is large compared to the warranty limit, i.e. ratio of mean to warranty limit is 

larger than 1, then we say that the product is of high quality. If this ratio is less than 

0.5, we say that the product is of low quality. For other values of ratio, we call the 

product is of medium quality. Similarly, for two-dimensional warranties, quality of 

the product is determined for each dimension quality in a similar manner. Secondly, 

the degree of repair, i.e. α, in the computational study can take non-negative real 
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values less than or equal to 1 where α=1 corresponds to perfect repair (replacement). 

In our experiments, we restrict the extent of repair to take the values between 0.5 and 

1 for the static policies. Lastly, as we stated in Chapter 5, we have two components of 

repair cost: one is fixed, c; the other is variable, c1 and c2. For each type of product, 

we examine the effect of different cost ratios (c/c1 in the univariate case, and c/c1, c/c1, 

c1/c2 in the bivariate case) on the preferred cost repair policy. We assume that the 

warranty period is fixed for 3 years for one-dimensional warranty policies and 3 

years, 30,000km (3 yr, 3 km) for two-dimensional policies. In the following, we 

present the computational results. 

 

7.2 COMPUTATIONAL RESULTS 

We discuss the results for one- and two-dimensional warranties in Section 

7.2.1 and 7.2.2, respectively. 

 

7.2.1 One-dimensional Warranties 

In this section, we first discuss the static policies where the interfailure 

distribution is normal and weibull. Then, for each failure distribution the results with 

the improved and dynamic repair policies are compared to the results with the optimal 

static policy. Lastly, these three repair policies are compared simultaneously to give 

insights for different cost components and product reliability settings. 

 

Case 1: Static Policies for Normal and Weibull Failure Distribution 

The following expected number of failures is approximated using Algorithm 1 

given in Chapter 6.  

∑ ∑
∞
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0 1
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If Yi in equation 5.1 is normally distributed with N(µ, σ2), then the distribution 

function of the interval between (i-1)th and ith failures has the following form. 
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Similarly, if Yi is a univariate weibull random variable with Wei(γ, φ), then the 

distribution function of the interval between (i-1)th and ith has the following form. 

1

1

( ) ( ) ( )

1 exp ( )

i

i

X i i i i i

i

i

F x P X x P Y x

x γ

α

α

ϕ

−

−

= ≤ = ≤

 
= − − 

 

 

and the density function is 

11 11

( ) exp ( )
i

i ii

i i
X i

x x
f x

γ

γα αα
γ

ϕ ϕ ϕ

−− −−   
= −   

   
 

where γ is the shape and φ is the scale parameter. 
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      We select various µ1 values between 0.5 and 5 for experimental study. For normal  

distribution case, for each µ1, we assign a σ2 so as to maintain a coefficient of 

variation of ¼. In this way, we force the probability of realizing a negative interfailure 

time to be negligible. For weibull distribution, we set the shape parameter (γ) to 2, 

since the shape parameter greater than 1 is suitable for representing the lifetime of a 

product. To get varies µ1 values between 0.5 and 5, we change the scale parameter 

between 0.56 and 5.66.  

 

Table 7.1 shows the expected number of failures of normal distribution for 

α=0.5, 0.6, 0.7, 0.8, 0.9, 1 with mean interarrival times of 1, 3 and 5. We observe that 

for a given mean (i.e. µ1) as α gets smaller, the expected number of failures increases; 

whereas, for a given α, as mean gets larger, the expected number of failures decreases. 

This should not be surprising since increasing the extent of repair reduces the 

deterioration of the product and so the expected number of failures decreases and as 

the reliability of the product increases, the expected number of failures becomes 

smaller. Table 7.1 shows that if the product quality is low, the effect of repair degree 

is greater than the effect in the high quality product. For example, when the degree of 

repair is halved, the expected number of failure increases approximately by 300% if 

the mean of first interarrival is 1; whereas the change between the expected number of 

failures is about 1% when the mean of first interarrival is 5. Table 7.2 shows the 

relationship between the expected number of failures and the extent of repair for 

weibull failure distribution. The results of weibull distribution are the same as that of 

normal distribution. 
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Table 7.1: Expected number of failures with Normal failure  
   distribution 

Alpha Expected 
failures 

with µ1=1 
 

Expected 
failures 

with µ1=3 
 

Expected 
failures 

with µ1=5 
 

1 2.56503 0.502253 0.054798 
0.9 3.01249 0.503636 0.054814 
0.8 3.84594 0.50615 0.054845 
0.7 5.83678 0.510925 0.054907 
0.6 >8 0.520513 0.055045 
0.5 >8 0.542316 0.055375 

  

Table 7.2: Expected number of failures with Weibull failure  
   distribution  

Alpha Expected 
failures 

with µ1=1 

Expected 
failures 

with µ1=3 
 

Expected 
failures 

with µ1=5 
 

1 2.6034 0.575055 0.256821 
0.9 3.05202 0.590264 0.259569 
0.8 3.97769 0.612159 0.263441 
0.7 5.38634 0.647002 0.269333 
0.6 >6 0.714853 0.279043 
0.5 >6 0.850689 0.299703 

  

The behavior of the expected warranty cost as a function of the reliability 

structure and the repair policy is not as straightforward. The ratio of the fixed and 

variable components (c/c1) of the cost function also affects this behavior. Figures 7.1-

7.16 show the expected warranty cost under different scenarios.  
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Figure 7.1: Expected cost with normal failure distribution (c/c1=0, µ1=1) 
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Figure 7.2: Expected cost with normal failure distribution (c/c1=10, µ1=1) 
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Figure 7.3: Expected cost with weibull failure distribution (c/c1=0, µ1=1) 
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Figure 7.4: Expected cost with weibull failure distribution (c/c1=10, µ1=1) 

 

     Figures 7.1 and 7.2 display the expected cost as a function of extent of repair (α) 

for the product with normal failure distribution with µ1=1 when c/c1=0 and c/c1=10, 

respectively. The expected cost behaves in a similar manner in both cases and it 
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decreases as the extent of repair increases. In the Figure 7.2, the total cost is larger by 

10E(N(W)). From Figures 7.3 and 7.4, we get the same result for a low quality 

product with weibull failure distribution.  
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Figure 7.5: Expected cost with normal failure distribution (c/c1=0, µ1=3) 
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Figure 7.6: Expected cost with normal failure distribution (c/c1=10, µ1=3) 
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Figure 7.7: Expected cost normal failure distribution (c/c1=100, µ1=3) 
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Figure 7.8: Expected cost with weibull failure distribution (c/c1=0, µ1=3) 
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Figure 7.9: Expected cost with weibull failure distribution (c/c1=1, µ1=3) 
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Figure 7.10: Expected cost with weibull failure distribution (c/c1=10, µ1=3) 

 

      Figures 7.5-7.7 show the expected cost vs. the extent of repair for the product with  

normal failure distribution with µ1=3 when c/c1=0, c/c1=10 and c/c1=100, 

respectively. When the ratio between fixed and variable component is small (e.g. 
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c/c1=0), the expected cost shows an increasing linear trend although the expected 

number of failures decreases as α increases. For the product with average quality, the 

change in the expected number of failures between different α is small, so the variable 

component for a given extent of repair, i.e. αc1, governs the behavior of the cost 

function. When the ratio between the cost components gets larger (e.g. c/c1=10), the 

cost function decreases when α is between 0.5 and 0.74. However, as α is between 

0.74 and 1, the cost function shows increasing trend like in the case of c/c1=0. If the 

fixed component is too large compared to variable component (e.g. c/c1=100), then 

the expected cost function behaves in a similar manner as the previous case (c/c1=10) 

in range (0.5, 0.74). For the average quality of product, as the ratio between the fixed 

and variable component increases, the cost function becomes sensitive to even a small 

change in the expected number of failures and so the cost function shows a decreasing 

trend as α increases. Figures 7.8-7.10 show the behavior of the expected cost for an 

average quality product with weibull failure distribution when c/c1=0, c/c1=1 and 

c/c1=10, respectively. When the ratio is small (e.g. c/c1=0), the expected cost shows 

an increasing trend like in the normal distribution case, but this trend is not linear in 

the weibull distribution. For an average quality of product with weibull failure 

distribution, the impact of repair degree is more significant than for that kind of 

product with normal failure distribution. If the fixed component is equal to the 

variable component, then the cost function decreases in the repair range (0.5, 0.74) 

and increases in the range (0.74, 1). This behavior is the same with the case of normal 

failure distribution with c/c1=10. For larger ratios (e.g. c/c1=10), the cost function 

shows a decreasing trend.   
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Figure 7.11: Expected cost normal failure distribution (c/c1=0, µ1=5) 
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Figure 7.12: Expected cost normal failure distribution (c/c1=100, µ1=5) 
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Figure 7.13: Expected cost normal failure distribution (c/c1=1000, µ1=5) 
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Figure 7.14: Expected cost with weibull failure distribution (c/c1=0, µ1=5) 
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Figure 7.15: Expected cost with weibull failure distribution (c/c1=2, µ1=5) 
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Figure 7.16: Expected cost with weibull failure distribution (c/c1=10, µ1=5) 

 

Figures 7.11-7.13 shows the behavior of the expected cost function for the 

exceptionally reliable product with normal failure distribution, i.e. µ1=5, when c/c1=0, 

c/c1=100 and c/c1=1000, respectively. For these products, the cost function shows a 
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similar behavior to the one with the average quality product, but the same trend is 

observed for larger cost ratios. For example, the average quality of product shows 

linear increasing trend for the cost ratios between 0 and 10, whereas the exceptionally 

reliable product shows the same trend for cost ratios less than 100. Similarly, the 

exceptionally reliable product has a monotone decreasing behavior for ratios greater 

than 1000, but this trend is observed for ratios greater than 100 for the average quality 

of product. Figures 7.14-7.16 show the behavior of the cost function for the 

exceptionally reliable product with weibull failure distribution when c/c1=0, c/c1=2 

and c/c1=10, respectively. The results for an exceptionally reliable product with 

weibull failure distribution are similar with the results for the average quality product, 

but in this case, the cost function is more sensitive to the increase in the fixed 

component of the cost than the cost of the average quality product.   

 

In all Figures between 7.1 and 7.16, we observe that as the mean of 

interarrival increases and the cost ratio decreases, the expected cost function shows an 

increasing trend. In addition, we see that even if the cost functions show similar 

trends, the sensitivity of the expected cost to the change in the cost ratio varies for 

different failure distribution. Tables 7.3 and 7.4 show the optimum degree of repair 

corresponding to the minimum warranty cost for cost ratios and different mean time 

to failure with normal and weibull distribution, respectively. For an unreliable product 

with small values of mean time to first failure, perfect repair is the most suitable repair 

type for any cost ratio. The reason for this is the significant impact of the degree of 

repair on the expected number of breakdowns which more than compensates the 

corresponding increase in the cost. On the other hand, for a more reliable product with 

a large mean time to first failure, a smaller degree of repair gives the minimum cost 

when the fixed component of the cost is comparable with the variable component. 

However, if the fixed component is large, then a more extensive repair (larger α) is 

needed to lower the expected cost. In addition, for an average quality product, the 
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extent of repair varies as the cost ratio changes. In particular, a more extensive repair 

is required as c/c1 ratio increases for a given mean time to first failure. Eventually, 

when the fixed component hits a certain threshold, then perfect repair is the most 

preferred option for any type of product.   

 

Table 7.3: Optimum repair degree for various normal first interarrival mean and cost ratios 

Mean time 
to first 
failure 

c/c1=0 c/c1=1 c/c1=10 c/c1=100 c/c1=1000 

0.5 1 1 1 1 1 
0.8 1 1 1 1 1 
1.1 1 1 1 1 1 

1.4 0.88 1 1 1 1 
1.7 0.76 1 1 1 1 

2.0 0.62 0.84 1 1 1 

2.3 0.50 0.68 1 1 1 

2.6 0.50 0.58 0.88 1 1 
2.9 0.50 0.52 0.78 1 1 

3.2 0.50 0.50 0.70 1 1 

3.5 0.50 0.50 0.64 0.98 1 
3.8 0.50 0.50 0.60 0.92 1 
4.1 0.50 0.50 0.58 0.86 1 
4.4 0.50 0.50 0.54 0.82 1 
4.7 0.50 0.50 0.52 0.80 1 

5.0 0.50 0.50 0.50 0.76 1 
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Table 7.4: Optimum repair degree for various weibull first interarrival mean 
   and cost ratios 

Scale 
parameter(β) 

mean time 
to first 
failure 

c/c1=0 c/c1=1 c/c1=10 

0.56 0.50 1 1 1 
0.86 0.76 1 1 1 
1.16 1.03 1 1 1 

1.46 1.29 0.98 1 1 
1.76 1.56 0.88 1 1 
2.06 1.83 0.80 1 1 

2.36 2.09 0.74 0.98 1 
2.66 2.36 0.68 0.90 1 
2.96 2.62 0.64 0.84 1 
3.26 2.89 0.60 0.78 1 
3.56 3.15 0.52 0.74 1 

3.86 3.42 0.50 0.70 1 
4.16 3.69 0.50 0.66 1 
4.46 3.95 0.50 0.64 1 
4.76 4.22 0.50 0.62 1 
5.06 4.48 0.50 0.60 1 
5.66 5.01 0.50 0.56 1 

 

 

Case 2: Improved Repair Policy for Normal and Weibull Failure 

Distribution 

We now focus on the expected number of failures and expected cost under the 

improved repair policy. In this model, we assume that the improvement increases the 

interfailure time by 20%, i.e. β=1.2 in the equation 5.25 and all failures, after the first 

replacement with an improved one, are rectified by replacement, i.e. α=1. Tables 7.5 

and 7.6 show the difference in the expected number of failures between the perfect 

and improved repair policy for normal and weibull failure distribution, respectively. 

As a baseline scenario, we consider the perfect repair, since the perfect repair provides 
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the smallest number of failures whatever the product quality is. Table 7.5 and Table 

7.6 show that the difference increases as the product quality gets worse. That is, the 

performance of the improved policy with respect to the expected number of failures is 

better for unreliable products. When the product reliability is high, then the difference 

between the improved and perfect repair is negligible. Tables 7.7 and 7.8 show the 

performance of the improved repair policy in terms of the expected cost depending on 

various c/c1 ratios for normal and weibull failure distribution, respectively. These 

tables show that if the fixed component of the cost is relatively larger than the variable 

component, then the improved repair policy dominates the optimum static policy for a 

given mean time to first failure. As we said in the static repair policy section, when 

the fixed component is large compared to the variable component, more extensive 

repair is needed, so for large c/c1, the improved repair policy provides more extensive 

repair policy than the perfect repair. On the other hand, for other cost ratios, this 

policy is better than the static repair policy when the product quality is low and 

medium. In brief, for a given mean time to first failure, the performance of the 

improved repair policy increases as the cost ratio increases, and for a given cost ratio, 

it increases as the first interarrival mean decreases.  
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Table 7.5: Expected number of failures under perfect and  

   improved repair policy with normal distribution 

Mean time 
to first 
failure 

Expected 
failures 
(α=1) 

Expected 
failures 

(improved) 

Difference 

0.5 6.89395 4.89210 2.00 
0.8 3.37312 2.99117 0.38 
1.1 2.27289 2.00615 0.27 
1.4 1.68273 1.44779 0.23 
1.7 1.25390 1.13163 0.12 
2.0 1.05602 1.01361 0.04 
2.3 0.91277 0.89911 0.01 
2.6 0.73912 0.73449 0.00 
2.9 0.55792 0.55619 0.00 
3.2 0.40254 0.40181 0.00 
3.5 0.28440 0.28407 0.00 
3.8 0.20011 0.19995 0.00 
4.1 0.14171 0.14163 0.00 
4.4 0.10161 0.10156 0.00 
4.7 0.07399 0.07397 0.00 
5.0 0.05480 0.05478 0.00 
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Table 7.6: Expected number of failures under perfect and improved  

   repair policy with weibull distribution 

Scale 
parameter(β) 

Mean 
time to 

first 
failure 

Expected 
failures 
(α=1) 

Expected 
failures 

(improved) 

Difference 

0.56 0.50 5.99783 5.09965 0.90 
0.86 0.76 3.69571 3.17854 0.52 
1.16 1.03 2.60340 2.26632 0.34 
1.46 1.29 1.97440 1.74682 0.23 
1.76 1.56 1.56824 1.41390 0.15 
2.06 1.83 1.28208 1.17690 0.11 
2.36 2.09 1.06780 0.99526 0.07 
2.66 2.36 0.90127 0.85044 0.05 
2.96 2.62 0.76897 0.73265 0.04 
3.26 2.89 0.66221 0.63577 0.03 
3.56 3.15 0.57506 0.55544 0.02 
3.86 3.42 0.50318 0.48839 0.01 
4.16 3.69 0.44337 0.43202 0.01 
4.46 3.95 0.39317 0.38436 0.01 
4.76 4.22 0.35074 0.34380 0.01 
5.06 4.48 0.31459 0.30905 0.01 
5.36 4.75 0.28359 0.27911 0.00 
5.66 5.01 0.25682 0.25318 0.00 
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Table 7.7: Change in the expected cost under optimal static and improved repair policy with normal  

  distribution 

Mean time 
to first 
failure 

c/c1=0 
(%) 

c/c1=1 
(%) 

c/c1=10 
(%) 

c/c1=100 
(%) 

c/c1=1000 
(%) 

0.5 26.14 27.59 28.77 29.01 29.03 
0.8 5.39 8.36 10.78 11.26 11.32 
1.1 2.94 7.34 10.94 11.65 11.73 
1.4 0.79 8.02 12.88 13.84 13.95 
1.7 -12.29 1.78 8.30 9.59 9.74 
2 -41.29 -7.26 2.29 3.83 4.00 

2.3 -76.56 -17.68 -0.29 1.30 1.48 
2.6 -103.55 -26.62 -1.43 0.43 0.61 
2.9 -118.45 -33.52 -2.43 0.11 0.29 
3.2 -126.31 -38.30 -3.22 -0.02 0.16 
3.5 -130.79 -41.04 -3.83 -0.08 0.10 
3.8 -133.32 -42.58 -4.30 -0.13 0.06 
4.1 -134.93 -43.57 -4.68 -0.18 0.04 
4.4 -136.01 -44.23 -5.00 -0.22 0.03 
4.7 -136.91 -44.78 -5.30 -0.25 0.02 
5 -137.43 -45.10 -5.52 -0.29 0.01 

  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

 81 

Table 7.8: Change in the expected cost under optimal static and improved repair policy with weibull  
  distribution 

Scale 
parameter(β) 

Mean 
time to 

first 
failure 

c/c1=0  
(%) 

c/c1=1 
 (%) 

c/c1=5 
 (%) 

c/c1=10 
 (%) 

c/c1=100 
 (%) 

0.56 0.50 11.64 13.31 14.42 14.67 14.94 
0.86 0.76 8.58 11.29 13.09 13.50 13.94 
1.16 1.03 5.27 9.11 11.67 12.25 12.87 
1.46 1.29 1.39 6.46 9.84 10.61 11.43 
1.76 1.56 -4.70 3.47 7.72 8.68 9.72 
2.06 1.83 -13.36 0.40 5.60 6.79 8.05 
2.36 2.09 -23.66 -2.56 3.67 5.10 6.61 
2.66 2.36 -31.56 -4.48 1.94 3.92 5.45 
2.96 2.62 -39.64 -6.70 0.39 2.99 4.53 
3.26 2.89 -47.97 -9.01 -1.04 2.25 3.80 
3.56 3.15 -56.71 -11.31 -2.39 1.65 3.22 
3.86 3.42 -66.03 -13.56 -3.68 1.18 2.75 
4.16 3.69 -74.33 -15.71 -4.96 0.79 2.37 
4.46 3.95 -81.64 -17.79 -6.29 0.46 2.05 
4.76 4.22 -88.02 -19.77 -7.72 0.20 1.79 
5.06 4.48 -93.55 -21.64 -9.25 -0.02 1.57 
5.36 4.75 -98.35 -23.43 -10.84 -0.21 1.38 
5.66 5.01 -102.74 -25.14 -12.51 -0.37 1.22 

  

 

Case 2: Dynamic Repair Policy for Normal and Weibull Failure 

Distribution 

Now, we focus on the dynamic policy. Figures 7.17 and 7.18 show the change 

in the expected cost as a function of the repair extent for product with normal and 

weibull failure distribution, respectively. When we compare the results of dynamic 

policy with that of optimum degree of repair in static policy for products with normal 

failure distribution, we see that for the comparable cost ratios (e.g.: c/c1<10), the 

dynamic policy performs better when the product quality is low or high. However, 
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when the fixed component becomes fairly large (e.g.: c/c1≥10), then the dynamic 

policy dominates the optimum static repair policy. On the other hand, for products 

with weibull failure distribution, the performance of the dynamic policy decreases as 

the fixed component of the cost increases opposed of the normal case. In addition, in 

the weibull case, the performance of the dynamic policy increases as the quality of 

product increases.  
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  Figure 7.17: Change in the expected cost under dynamic policy with normal failure distribution 
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Figure 7.18: Change in the expected cost under dynamic policy with weibull failure distribution 

 

Comparisons the repair policies under one-dimensional warranties: 

        When we compare the performance of the optimal static, improved and dynamic  

policies, we see that when the failure distribution is normal (Table 7.9), the dynamic 

repair policy outperforms the other two policies as the fixed component of the cost 

function is relatively larger than the variable component. As the fixed component gets 

smaller, the optimal static policy is the best alternative for products with medium 

reliability. Whereas for products with low and high reliability, the dynamic policy 

outweighs the improved repair policy as cost ratio decreases. When the failure process 

is characterized by weibull distribution (Table 7.10), the performance of the improved 

policy outweighs the optimal static and dynamic as the cost ratio increases and/or the 

product reliability decreases. When the fixed component hits the threshold point, the 

improved policy becomes the best among all the repair policies. 
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Table 7.9: Comparisons the repair policies with normal failure distribution 

Mean time 
to first 
failure 

c/c1=0 
(%) 

c/c1=1 
(%) 

c/c1=10 
(%) 

c/c1=100 
(%) 

0.5 Dynamic Dynamic Dynamic Dynamic 
0.8 Dynamic Dynamic Dynamic Dynamic 
1.1 Dynamic Dynamic Dynamic Dynamic 
1.4 Dynamic Dynamic Dynamic Dynamic 
1.7 Dynamic Dynamic Dynamic Dynamic 
2.0 0.62 Dynamic Dynamic Dynamic 
2.3 0.50 Dynamic Dynamic Dynamic 
2.6 0.50 0.58 Dynamic Dynamic 
2.9 0.50 0.52 Dynamic Dynamic 
3.2 0.50 0.50 Dynamic Dynamic 
3.5 0.50 0.50 Dynamic Dynamic 
3.8 0.50 0.50 Dynamic Dynamic 
4.1 Dynamic Dynamic Dynamic Dynamic 
4.4 Dynamic Dynamic Dynamic Dynamic 
4.7 Dynamic Dynamic Dynamic Dynamic 
5.0 Dynamic Dynamic Dynamic Dynamic 

  

Table 7.10: Comparisons the repair policies with weibull failure distribution 

M ean 
tim e to  

first 
failure 

c/c1=0  
(% ) 

c/c1=1 
 (% ) 

c/c1=5 
 (% ) 

c/c1=10 
 (% ) 

0.50 Im proved Im proved Im proved Im proved 
0.76 Im proved Im proved Im proved Im proved 
1.03 Im proved Im proved Im proved Im proved 
1.29 D ynam ic Im proved Im proved Im proved 
1.56 D ynam ic D ynam ic Im proved Im proved 
1.83 D ynam ic D ynam ic Im proved Im proved 
2.09 D ynam ic D ynam ic Im proved Im proved 
2.36 D ynam ic D ynam ic Im proved Im proved 
2.62 D ynam ic D ynam ic Im proved Im proved 
2.89 D ynam ic D ynam ic Im proved Im proved 
3.15 D ynam ic D ynam ic D ynam ic Im proved 
3.42 D ynam ic D ynam ic D ynam ic Im proved 
3.69 D ynam ic D ynam ic D ynam ic Im proved 
3.95 D ynam ic D ynam ic D ynam ic Im proved 
4.22 D ynam ic D ynam ic D ynam ic Im proved 
4.48 D ynam ic D ynam ic D ynam ic Im proved 
4.75 D ynam ic D ynam ic D ynam ic Im proved 
5.01 D ynam ic D ynam ic D ynam ic Im proved 
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7.2.2  Two-dimensional Warranties 

In this section, we analyze three different two-dimensional warranty policies. 

We start with Contract A, then B and C are considered respectively. Firstly, we 

discuss Contract A. Under Contract A, we start with the discussion of the static 

policies with bivariate normal and weibull failure distributions. Then, the results with 

the improved and dynamic repair policies for Contract A are evaluated. We also 

compare these policies with each other. Secondly, we focus on the static repair 

policies for Contract B and lastly, we examine Contract C. 

 

 

Case 1: Static, Improved and Dynamic Repair Policies for Contract A 

       For Contract A, we consider both bivariate normal and weibull failure distribution 

for each repair policy in Case 1.1, 1.2 and 1.3, respectively.  

.  

Case 1.1: Static Policies for Bivariate Normal and Weibull 

Failure Distributions 

For Policy A, the mathematical formulation of the expected number of failures 

is as follows.  

2 ( )

1

( ,  ) ( ,  )n

q

n

M t x F t x
∞

=

=∑  

            If (Yn, Zn)’s in equation 5.13 are normally distributed two-dimensional random  
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variables with 1 11 12

2 12 22
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µ σ σ

    
    
    

, then the distribution of n
th failure becomes 
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. If the distribution of (Yi, Zi)’s is 

bivariate weibull with the following probability density function  
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1 2 1 2
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where γ1, γ 2 are shape; 1 2,  θ θ  are scale  parameters of time and usage dimensions, 

respectively andδ  is a common shape parameter, then the density function of (Ti, Xi) 

is written as follows. 
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where α1 and α2 measure the extent of repair for time and usage, respectively. As in 

the normal case, the mean time and usage to the first failure are µ1 and µ2, 

respectively.  

 

        For the two-dimensional warranties, we first consider the case in which the mean 
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 time and usage to the first failure are equal (µ1=µ2). Then, we consider the case with 

unequal means. In each case, we consider mean values between 1 and 5. For the 

normal case, the variance of each dimension is selected as in the one-dimensional case 

and the covariance is chosen such that the correlation coefficient (ρ) is equal to 0.2, 

0.5 and 0.9. For the weibull case, we set the shape parameters (γ1, γ 2) equal to 2, and 

we assign the scale parameters to set the mean of the dimensions at the desired values. 

As in the normal case, the common shape parameter in the weibull case is selected so 

that the correlation coefficient is equal to 0.2, 0.5 and 0.9. Tables 7.11 and 7.12 show  

the expected number of failures for bivariate normal and weibull distributions with 

equal and unequal mean time and usage to the first failure, respectively. The expected 

numbers of failures are found under different extent of repair combinations when the 

correlation coefficient is 0.2. We observe that for a given mean vector, i.e. (µ1, µ2), 

the expected number of failures increases as the extent of repair decreases on at least 

one dimension. If the product reliability becomes low, the expected number of failures 

increases significantly. So, for these products, we present a lower bound.  Whereas for 

a given extent of repair for each dimension, the expected number of failures decreases 

as the reliability of the product increases. In addition, Table 7.11 suggests that if the 

reliability along both dimensions decreases simultaneously, then the impact of the 

extent of repair gets more significant. For instance, when means are equal to 5, the 

expected numbers of failures are almost the same between the largest and smallest 

combination of repair degree when the failure distribution is normal, but when means 

are 1.5, then it changes more than 16%. The same observation is valid for the weibull 

distribution. For the unequal means case, Table 7.12 shows the similar results with 

Table 7.13. These results are in agreement with the one-dimensional case. Table 7.13 

shows the effect of the correlation coefficient on the expectation. We observe that as 

the time and usage dimension become more dependent to each other, the expected 

number of failures increases. In addition, it is observed that there is no significant 
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interaction between (α1, α2) and the correlation coefficient with respect to the 

expected number of failures. 

 
 
 
 
Table 7.11: Expected number of failures with bivariate normal and weibull failure distribution for 

   equal means under Contract A (ρ=0.2) 

Bivariate Normal Distribution with 
 (µ1, µ2) 

Bivariate Weibull Distribution with 
(µ1, µ2) 

 
(α1, α2) 

(5, 5) (3, 3) (1.5, 1.5) (5, 5) (3, 3) (1.6, 1.6) 
(1.0, 1.0) 0.006120 0.282020 1.30157 0.090153 0.338829 1.15429 
(1.0, 0.8) 0.006120 0.282058 1.42095 0.090466 0.343277 1.22612 
(1.0, 0.5) 0.006120 0.282265 1.52067 0.091333 0.354343 1.34137 
(0.8, 0.8) 0.006120 0.282148 1.61625 0.090917 0.349766 1.34158 
(0.8, 0.5) 0.006120 0.282678 1.83357 0.092233 0.367364 >1.35 
(0.5, 0.5) 0.006123 0.285225 >1.84 0.095038 0.416865 >1.35 

  

 
 
Table 7.12: Expected number of failures with bivariate normal and weibull failure distribution for  
                   unequal means under Contract A (ρ=0.2) 

Bivariate Normal Distribution with 
(µ1, µ2) 

Bivariate Weibull Distribution with 
(µ1, µ2) 

 
(α1, α2) 

(5, 3) (5, 1) (3, 1) (5, 3) (5, 1) (3, 1) 
(1.0, 1.0) 0.035645 0.054791 0.502419 0.16396 0.257874 0.620392 
(1.0, 0.8) 0.036123 0.054793 0.504250 0.16471 0.258058 0.62301 
(1.0, 0.5) 0.036126 0.054810 0.504940 0.166356 0.258111 >0.82 
(0.8, 1.0) 0.036123 0.054840 0.506542 0.165217 0.264394 0.659544 
(0.8, 0.8) 0.036125 0.054847 0.506548 0.166384 0.264819 0.666086 
(0.8, 0.5) 0.036134 0.054849 0.506591 0.168995 0.265148 >0.82 
(0.5, 1.0) 0.03613 0.055404 0.541821 0.169103 0.292529 0.817921 
(0.5, 0.8) 0.036142 0.055510 0.543897 0.17247 0.295131 >0.82 
(0.5, 0.5) 0.036208 0.055614 0.545218 0.180836 0.296013 >0.82 
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Table 7.13: Expected number of failures with equal means for different ρ values under Contract A 

Bivariate Normal Distribution with 
 (µ1, µ2) 

Bivariate Weibull Distribution with 
(µ1, µ2) 

 
(α1, α2) 

 
ρ 

(5, 5) (3, 3) (1.5, 1.5) (5, 5) (3, 3) (1.6, 1.6) 
0.2 0.006120 0.282020 1.301570 0.090153 0.338829 1.154290 
0.5 0.013815 0.333447 1.356080 0.138094 0.409353 1.243220 

 
(1.0, 1.0) 

0.9 0.035227 0.429388 1.463800 0.222465 0.565944 1.565110 
0.2 0.006120 0.282148 1.616250 0.090917 0.349766 1.341580 
0.5 0.013816 0.333965 1.673540 0.140160 0.428501 1.469650 

 
(0.8, 0.8) 

0.9 0.035243 0.431593 1.812550 0.228486 0.608947 1.830538 
0.2 0.006123 0.285225 >1.82 0.095038 0.416865 >1.84 
0.5 0.013841 0.341547 >1.82 0.151606 0.503631 >1.84 

 
(0.5, 0.5) 

0.9 0.035471 0.454591 >1.82 0.25765 0.696287 >1.84 

  
 

Similar to the one-dimensional warranties, the expected warranty cost is a 

function of reliabilities and repair degrees of both dimensions in the two-dimensional 

case. This cost function is also affected by the different cost ratios such as c/c1, c/c2 

and c1/c2. Tables 7.14-7.17 show the optimal extent of repair combination that gives 

the minimum expected warranty cost under different costs formulations. Tables 7.14 

and 7.15 present the results when c1=c2. If µ1=µ2, optimal extent of repair (α1, α2) 

increases as the fixed component of the cost function increases behind the certain 

threshold relative to variable components. When the fixed component becomes too 

large, the optimal extent of repair is the replacement policy for each dimension. If the 

product reliability is low, the optimal extent of repair along each dimension converges 

more quickly to the replacement policy. When µ1≠µ2, we get similar results with the 

previous case. However, note that if the means are not equal, applying better repair to 

the high quality dimension provides smaller expected cost when the variable cost 

components are equal. From Tables 7.14 and 7.15, it is seen that small extent of repair 

is enough for both dimensions if the reliability of at least one dimension is high and 

the fixed cost is comparable with the variable cost components. Tables 7.16 and 7.17 

present the optimal extent of repair when the fixed component is equal to one of the 
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variable components, i.e. c=c1. The results indicate that the extent of repair is larger 

for the dimension with a lower variable cost component. From Tables 7.14-7.17, we 

observe that the correlation coefficient does not affect the optimal repair degree of 

each dimension since the interaction between (α1, α2) and the correlation coefficient 

with respect to the expected number of failures is negligible. 

 
 
Table 7.14: Optimal repair degree combination of equal means for bivariate normal and weibull  
                   distribution under Contract A (c1= c2) 

 
 
 
 
 
 
 
 
 
 
 
 

Bivariate Normal Distribution with 
 (µ1, µ2) 

Bivariate Weibull Distribution with 
(µ1, µ2) 

1 2

c

c c=
 

 
ρ 

(5, 5) (3, 3) (1.5, 1.5) (5, 5) (3, 3) (1.6, 1.6) 
0.2 (0.5, 0.5) (0.5, 0.5) (0.5, 1.0) (0.5, 0.5) (0.5, 0.5) (0.5, 1.0) 
0.5 (0.5, 0.5) (0.5, 0.5) (0.5, 1.0) (0.5, 0.5) (0.5, 0.5) (0.5, 1.0) 

 
0.01 

0.9 (0.5, 0.5) (0.5, 0.5) (0.5, 1.0) (0.5, 0.5) (0.5, 0.5) (0.5, 1.0) 
0.2 (0.5, 0.5) (0.5, 0.5) (0.5, 1.0) (0.5, 0.5) (0.5, 0.5) (0.5, 1.0) 
0.5 (0.5, 0.5) (0.5, 0.5) (0.5, 1.0) (0.5, 0.5) (0.5, 0.5) (0.5, 1.0) 

 
1 

0.9 (0.5, 0.5) (0.5, 0.5) (0.5, 1.0) (0.5, 0.5) (0.5, 0.5) (0.5, 1.0) 

0.2 (0.5, 0.5) (0.5, 0.5) (1.0, 1.0) (0.5, 0.8) (0.8, 1.0) (1.0, 1.0) 
0.5 (0.5, 0.5) (0.5, 0.5) (1.0, 1.0) (0.5, 0.8) (0.8, 1.0) (1.0, 1.0) 

 
10 

0.9 (0.5, 0.5) (0.8, 0.5) (1.0, 1.0) (0.5, 1.0) (0.8, 1.0) (1.0, 1.0) 

0.2 (0.5, 0.5) (0.8, 1.0) (1.0, 1.0) (1.0, 1.0) (1.0, 1.0) (1.0, 1.0) 

0.5 (0.8, 0.5) (1.0, 1.0) (1.0, 1.0) (1.0, 1.0) (1.0, 1.0) (1.0, 1.0) 

 
200 

0.9 (0.8, 0.5) (1.0, 1.0) (1.0, 1.0) (1.0, 1.0) (1.0, 1.0) (1.0, 1.0) 
0.2 (0.8, 0.8) (1.0, 1.0) (1.0, 1.0) (1.0, 1.0) (1.0, 1.0) (1.0, 1.0) 

0.5 (1.0, 1.0) (1.0, 1.0) (1.0, 1.0) (1.0, 1.0) (1.0, 1.0) (1.0, 1.0) 

 
10000 

0.9 (1.0, 1.0) (1.0, 1.0) (1.0, 1.0) (1.0, 1.0) (1.0, 1.0) (1.0, 1.0) 
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Table 7.15: Optimal repair degree combination of unequal means for bivariate normal and weibull  
                   distribution under Contract A (c1= c2) 

Table 7.16: Optimal repair degree combination of equal means for bivariate normal and weibull  
                   distribution under Contract A (c= c1) 

 

Bivariate Normal Distribution with 
 (µ1, µ2) 

Bivariate Weibull Distribution with 
(µ1, µ2) 

1

2

c c

c

=
 

 
ρ 

(5, 5) (3, 3) (1.5, 1.5) (5, 5) (3, 3) (1.6, 1.6) 
0.2 (0.5, 0.5) (0.5, 0.5) (1, 0.5) (0.5, 0.5) (1, 0.5) (1, 0.5) 
0.5 (0.5, 0.5) (0.5, 0.5) (1, 0.5) (0.8, 0.5) (1, 0.5) (1, 0.5) 

 
0.1 

0.9 (0.5, 0.5) (0.5, 0.5) (1, 0.5) (1, 0.5) (1, 0.5) (1, 0.5) 
0.2 (0.5, 0.5) (0.5, 0.5) (1, 0.5) (0.5, 0.5) (0.5, 0.5) (1, 0.5) 
0.5 (0.5, 0.5) (0.5, 0.5) (1, 0.5) (0.5, 0.5) (0.5, 0.5) (1, 0.5) 

 
1 

0.9 (0.5, 0.5) (0.5, 0.5) (1, 0.5) (0.5, 0.5) (0.5, 0.5) (1, 0.5) 
0.2 (0.5, 0.5) (0.5, 0.5) (0.5, 1) (0.5, 0.8) (0.5, 1) (0.5, 1) 
0.5 (0.5, 0.5) (0.5, 0.5) (0.5, 1) (0.5, 1) (0.5, 1) (0.5, 1) 

 
10 

0.9 (0.5, 0.5) (0.5, 0.8) (0.5, 1) (0.5, 1) (0.5, 1) (0.5, 1) 
0.2 (0.5, 0.8) (0.5, 1) (0.5, 1) (0.5, 1) (0.5, 1) (0.5, 1) 
0.5 (0.5, 1) (0.5, 1) (0.5, 1) (0.5, 1) (0.5, 1) (0.5, 1) 

 
1000 

0.9 (0.5, 1) (0.5, 1) (0.5, 1) (0.5, 1) (0.5, 1) (0.5, 1) 
0.2 (0.5, 1) (0.5, 1) (0.5, 1) (0.5, 1) (0.5, 1) (0.5, 1) 
0.5 (0.5, 1) (0.5, 1) (0.5, 1) (0.5, 1) (0.5, 1) (0.5, 1) 

 
10000 

0.9 (0.5, 1) (0.5, 1) (0.5, 1) (0.5, 1) (0.5, 1) (0.5, 1) 

 

Bivariate Normal Distribution with 
 (µ1, µ2) 

Bivariate Weibull Distribution with 
(µ1, µ2) 

1 2

c

c c=
 

 
ρ 

(5, 3) (5, 1) (3, 1) (2,1.5) (5, 3) (5, 1) (3, 1) (2,1.6) 
0.2 (0.5,0.5) (0.5,0.5) (0.5,0.5) (0.8,0.5) (0.5,0.5) (0.5,0.5) (0.8,0.8) (1.0,0.8) 
0.5 (0.5,0.5) (0.5,0.5) (0.5,0.5) (0.8,0.5) (0.5,0.5) (0.5,0.5) (0.8,0.8) (1.0,0.8) 

 
0.01 

0.9 (0.5,0.5) (0.5,0.5) (0.5,0.5) (0.8,0.5) (0.5,0.5) (0.5,0.5) (0.8,0.8) (1.0,0.8) 
0.2 (0.5,0.5) (0.5,0.5) (0.5,0.5) (1.0,0.5) (0.5,0.5) (0.5,0.5) (0.8,0.8) (1.0,0.8) 
0.5 (0.5,0.5) (0.5,0.5) (0.5,0.5) (1.0,0.5) (0.5,0.5) (0.5,0.5) (0.8,0.8) (1.0,0.8) 

 
1 

0.9 (0.5,0.5) (0.5,0.5) (0.5,0.5) (1.0,0.5) (0.5,0.5) (0.5,0.5) (1.0,0.8) (1.0,0.8) 

0.2 (0.5,0.5) (0.5,0.5) (0.8,0.5) (1.0,0.5) (0.8,0.5) (1.0,0.5) (1.0,0.8) (1.0,1.0) 
0.5 (0.5,0.5) (0.5,0.5) (0.8,0.5) (1.0,0.5) (1.0,0.5) (1.0,0.5) (1.0,0.8) (1.0,1.0) 

 
10 

0.9 (0.5,0.5) (0.5,0.5) (0.8,0.5) (1.0,0.5) (1.0,0.5) (1.0,0.5) (1.0,0.8) (1.0,1.0) 

0.2 (1.0,1.0) (1.0,1.0) (1.0,1.0) (1.0,1.0) (1.0,1.0) (1.0,1.0) (1.0,1.0) (1.0,1.0) 
0.5 (1.0,1.0) (1.0,1.0) (1.0,1.0) (1.0,1.0) (1.0,1.0) (1.0,1.0) (1.0,1.0) (1.0,1.0) 

 
10000 

0.9 (1.0,1.0) (1.0,1.0) (1.0,1.0) (1.0,1.0) (1.0,1.0) (1.0,1.0) (1.0,1.0) (1.0,1.0) 
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Table 7.17: Optimal repair degree combination of unequal means for bivariate normal and weibull  
                  distribution under Contract A (c= c1) 

 

Case 1.2: Improved Policy for Bivariate Normal and Weibull 

Failure Distribution 

We now focus on the expected number of failures and expected cost with the 

two-dimensional models under the improved repair policy. In this model, we assume 

that the improvement increases the time and total usage until the first failure by 20%, 

i.e. β1=β2=1.2 in equation 5.28. All failures, after the first replacement, are rectified 

via replacement, i.e. α1= α2=1. Tables 7.18 and 7.19 show the performance of the 

improved policy under bivariate normal and weibull failure distribution with respect 

to the expected number of failures, respectively. As a baseline scenario, we consider 

applying perfect repair to both dimensions. These tables show that failure distribution, 

the difference between the improved and perfect repair policy is negligible when the 

reliability of at least one dimension is high. For other cases, the difference increases as 

the reliability decreases.  

 
 

Bivariate Normal Distribution with 
 (µ1, µ2) 

Bivariate Weibull Distribution with  
(µ1, µ2) 

1

2

c c

c

=
 

 
ρ 

(5, 3) (5, 1) (3, 1) (2,1.5) (5, 3) (5, 1) (3, 1) (2,1.6) 
0.2 (0.5,0.5) (0.5,0.5) (0.5,0.5) (1.0,0.5) (0.8,0.5) (0.8,0.5) (1.0,0.8) (1.0,0.8) 
0.5 (0.5,0.5) (0.5,0.5) (0.5,0.5) (1.0,0.5) (0.8,0.5) (0.8,0.5) (1.0,0.8) (1.0,0.8) 

 
0.1 

0.9 (0.5,0.5) (0.5,0.5) (0.5,0.5) (1.0,0.5) (0.8,0.5) (0.8,0.5) (1.0,0.8) (1.0,0.8) 
0.2 (0.5,0.5) (0.5,0.5) (0.5,0.5) (1.0,0.5) (0.5,0.5) (0.5,0.5) (0.8,0.8) (1.0,0.8) 
0.5 (0.5,0.5) (0.5,0.5) (0.5,0.5) (1.0,0.5) (0.5,0.5) (0.5,0.5) (0.8,0.8) (1.0,0.8) 

 
1 

0.9 (0.5,0.5) (0.5,0.5) (0.5,0.5) (1.0,0.5) (0.5,0.5) (0.5,0.5) (0.8,0.8) (1.0,0.8) 
0.2 (0.5,0.5) (0.5,0.5) (0.5,0.5) (0.5,1.0) (0.5,1.0) (0.5,0.5) (0.8,0.8) (0.5,1.0) 
0.5 (0.5,0.5) (0.5,0.5) (0.5,0.5) (0.5,1.0) (0.5,1.0) (0.5,0.5) (0.8,0.8) (0.5,1.0) 

 
10 

0.9 (0.5,0.5) (0.5,0.5) (0.5,0.5) (0.5,1.0) (0.5,1.0) (0.5,0.5) (0.8,0.8) (0.5,1.0) 
0.2 (0.5,1.0) (0.5,1.0) (0.5,1.0) (0.5,1.0) (0.5,1.0) (0.5,1.0) (0.8,1.0) (0.5,1.0) 
0.5 (0.5,1.0) (0.5,1.0) (0.5,1.0) (0.5,1.0) (0.5,1.0) (0.5,1.0) (0.8,1.0) (0.5,1.0) 

 
1000 

0.9 (0.5,1.0) (0.5,1.0) (0.5,1.0) (0.5,1.0) (0.5,1.0) (0.5,1.0) (0.8,1.0) (0.5,1.0) 
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 Table 7.18: Expected number of failures of perfect and improved repair policy with bivariate 

     normal failure distributions under Contract A  
 expected # of failures with bivariate 

normal distribution 
 

 
ρ 

 
 (µ1, µ2) 

 (α1,α2)=(1.0,1.0) Improved 

 
difference 

0.2 0.006120 0.005591 0.00 
0.5 0.013815 0.012834 0.00 
0.9 

 
(5.0, 5.0) 

0.035227 0.033249 0.00 
0.2 0.035645 0.034421 0.00 
0.5 0.047812 0.046741 0.00 
0.9 

 
(5.0, 3.0) 

0.054762 0.054751 0.00 
0.2 0.054791 0.054782 0.00 
0.5 0.054735 0.054719 0.00 
0.9 

 
(5.0, 1.0) 

0.058268 0.058253 0.00 
0.2 0.282020 0.265386 0.02 
0.5 0.333447 0.316718 0.02 
0.9 

 
(3.0, 3.0) 

0.429388 0.412117 0.02 
0.2 0.502392 0.501069 0.00 
0.5 0.502540 0.501230 0.00 
0.9 

 
(3.0, 1.0) 

0.515219 0.513896 0.00 
0.2 1.060700 1.015620 0.05 
0.5 1.060820 1.015930 0.04 
0.9 

 
(2.0, 1.0) 

1.061460 1.016880 0.04 
0.2 1.301570 1.127020 0.17 
0.5 1.356080 1.171620 0.18 
0.9 

 
(1.5, 1.5) 

1.463800 1.261190 0.20  
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Table 7.21: Expected number of failures of perfect and improved repair policy with bivariate 
     weibull failure distribution under Contract A  

Expected # of failures with bivariate 
weibull distribution 

 

 
ρ 

 
 (µ1, µ2) 

 (α1,α2)=(1.0,1,0) improved 

 
difference 

0.2 0.090153 0.089789 0.00 
0.5 0.138094 0.136997 0.00 
0.9 

 
(5.0, 5.0) 

0.222465 0.219171 0.00 
0.2 0.16396 0.162791 0.00 
0.5 0.209592 0.207164 0.00 
0.9 

 
(5.0, 3.0) 

0.254765 0.251165 0.00 
0.2 0.257874 0.254006 0.00 
0.5 0.258764 0.255008 0.00 
0.9 

 
(5.0, 1.0) 

0.260816 0.256939 0.00 
0.2 0.338829 0.333615 0.01 
0.5 0.409353 0.399727 0.01 
0.9 

 
(3.0, 3.0) 

0.565944 0.544716 0.02 
0.2 0.620392 0.596171 0.02 
0.5 0.625082 0.601337 0.02 
0.9 

 
(3.0, 1.0) 

0.640547 0.615024 0.03 
0.2 1.154290 1.062830 0.09 
0.5 1.243220 1.139150 0.10 
0.9 

 
(1.6, 1.6) 

1.565110 1.402460 0.16 

  

Tables 7.20 and 7.21 show % change between the costs of the optimal static 

policy and improved policy. The improved policy generally dominates the static 

policy when the fixed component of the cost function is very large compared to the 

variable components for any reliability of product. In other words, this policy 

dominates the case in which the perfect repair is optimal among the static policies and 

the improved policy provides significant decline in the expectation.   
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Table 7.20: Change(%) in the expected cost under optimal static and improved repair policy with 
                  bivariate normal and weibull distribution under Contract A (µ1=µ2) 

Table 7.21: Change(%) in the expected cost under optimal static and improved repair policy with  
                   bivariate normal and weibull distribution under Contract A (µ1≠µ2) 

 

Case 1.2: Dynamic Policy for Bivariate Normal and Weibull Failure 

Distribution 

While analyzing the dynamic repair policies for two-dimensional warranties, 

we first focus on the policies with the same the extent of repair at any given instance 

in time in both dimensions. Tables 7.22 and 7.23 show the performance of the 

Bivariate Normal Distribution with 
 (µ1, µ2) 

Bivariate Weibull Distribution with 
(µ1, µ2) 

1 2

c

c c=
 

 
ρ 

(5, 5) (3, 3) (1.5, 1.5) (5, 5) (3, 3) (1.6, 1.6) 
0.2 -55.23 -58.18 0.54 -60.61 -36.05 -7.01 
0.5 -57.62 -57.64 -2.41 -53.62 -34.93 -8.55 

 
1 

0.9 -59.35 -54.11 -9.11 -44.61 -32.99 -3.93 
0.2 -2.93 -4.89 10.85 -6.83 -2.13 5.04 
0.5 -4.52 -4.53 11.14 -5.18 -0.77 5.69 

 
10 

0.9 -5.66 -4.17 11.56 -5.30 0.20 7.78 
0.2 8.64 5.89 13.41 0.40 1.53 7.92 
0.5 7.10 5.01 13.60 0.79 2.35 8.37 

 
10000 

0.9 5.61 4.02 13.84 1.48 3.75 10.39 

 

Bivariate Normal Distribution with 
 (µ 1, µ2) 

Bivariate Weibull 
Distribution with 

(µ 1, µ 2) 
1 2

c

c c=
 

 
ρ 

(5, 3) (5, 1) (3, 1) (2,1.5) (5, 3) (5, 1) (3, 1) 
0.2 -61.61 -68.07 -56.45 -27.82 -53.04 -45.88 -17.04 
0.5 -65.15 -68.20 -56.69 -28.91 -47.45 -46.59 -17.30 

 
1 

0.9 -68.11 -68.41 -56.61 -29.72 -46.03 -45.64 -17.19 
0.2 -7.16 -11.45 -8.54 -1.34 -5.71 -6.23 -0.56 
0.5 -9.51 -11.53 -8.54 -2.25 -5.48 -6.81 -1.06 

 
10 

0.9 -11.48 -11.67 -8.48 -2.98 -6.06 -6.31 -1.41 
0.2 3.22 -0.20 0.05 3.22 0.67 1.46 3.87 
0.5 2.03 -0.23 0.05 4.00 1.12 1.41 3.76 

 
10000 

0.9 -0.20 -0.24 0.04 4.24 1.37 1.45 3.95 
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dynamic policy with respect to the expected number of failures for normal and 

weibull failure distribution, respectively. The performance of this policy decreases as 

the reliability of the product decreases. In this policy, for high reliability of products, 

the difference between the dynamic and perfect repair policy is negligible. 

 
 
 
  Table 7.22: Expected number of failures of perfect and dynamic(1) repair policy with bivariate 

       normal failure distribution under Contract A 
 Expected # of failures with bivariate 

normal distribution 
 

 
ρ 

 
 (µ 1, µ2) 

 (α1,α2)=(1.0,1,0) dynamic(1) 

 
difference 

 

0.2 0.006120 0.005591 0.00 
0.5 0.013815 0.012834 0.00 
0.9 

 
(5.0, 5.0) 

0.035227 0.033258 0.00 
0.2 0.035645 0.032642 0.00 
0.5 0.047812 0.043265 0.00 
0.9 

 
(5.0, 3.0) 

0.054762 0.049244 0.01 
0.2 0.054791 0.049270 0.01 
0.5 0.054713 0.049210 0.01 
0.9 

 
(5.0, 1.0) 

0.058240 0.052561 0.01 
0.2 0.282020 0.265427 0.02 
0.5 0.333447 0.316921 0.02 
0.9 

 
(3.0, 3.0) 

0.429388 0.413178 0.02 
0.2 0.502392 0.470217 0.03 
0.5 0.502540 0.470324 0.03 
0.9 

 
(3.0, 1.0) 

0.515219 0.480948 0.03 
0.2 1.060700 1.075570 -0.01 
0.5 1.060820 1.075300 -0.01 
0.9 

 
(2.0, 1.0) 

1.061460 1.076130 -0.01 
0.2 1.301570 1.337480 -0.04 
0.5 1.356080 1.388390 -0.03 
0.9 

 
(1.5, 1.5) 

1.463800 1.491390 -0.03  
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Table 7.23: Expected number of failures of perfect and dynamic(1) repair policy with bivariate 
     weibull failure distribution under Contract A  

Expected # of failures with bivariate 
weibull distribution 

 

 
ρ 

 
 (µ1, µ2) 

 (α1,α2)=(1.0,1,0) dynamic(1) 

 
difference 

 

0.2 0.090153 0.087849 0.00 
0.5 0.138094 0.135538 0.00 
0.9 

 
(5.0, 5.0) 

0.222465 0.219682 0.00 
0.2 0.16396 0.159191 0.00 
0.5 0.209592 0.204243 0.01 
0.9 

 
(5.0, 3.0) 

0.254765 0.247695 0.01 
0.2 0.257874 0.250329 0.01 
0.5 0.258764 0.250941 0.01 
0.9 

 
(5.0, 1.0) 

0.260816 0.252057 0.01 
0.2 0.338829 0.332922 0.01 
0.5 0.409353 0.405011 0.00 
0.9 

 
(3.0, 3.0) 

0.565944 0.564506 0.00 
0.2 0.620392 0.612879 0.01 
0.5 0.625082 0.616882 0.01 
0.9 

 
(3.0, 1.0) 

0.640547 0.635774 0.00 
0.2 1.154290 1.161230 -0.01 
0.5 1.243220 1.250730 -0.01 
0.9 

 
(1.6, 1.6) 

1.565110 1.573340 -0.01 

  

        Tables 7.24 and 7.25 show the change of the expected cost between the dynamic 

policy with same extents of repair and the optimal static repair policy. This policy 

dominates the static policy when the expected number of breakdowns and the total 

variable cost components of the optimal static policy are both larger than the expected 

number of breakdowns and the total variable cost component of the dynamic policy, 

respectively. For a given high reliability of product, as the fixed component of the 

cost increases, the optimal static policy increases, but the difference between the 

expected number of breakdowns becomes negligible; so the performance of the 

dynamic policy decreases. On the other hand, for a given average quality of product, 

when the fixed component is small, the total variable component of the cost function 
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in the optimal static policy is smaller than the total variable component in the dynamic 

policy. So, when the fixed component is small, the static policy dominates the 

dynamic policy although the expected number of breakdowns in the static policy is 

larger than the expected number in the dynamic. However, for a given average quality 

of product, as the fixed component increases, the total variable cost also increases but 

the difference between the expected number of failures becomes negligible. So, the 

dynamic policy dominates the static policy. 

 
 
 
 
Table 7.24: Change in the expected cost under optimal static and dynamic(1) repair policy with 
                    bivariate normal and weibull distribution under Contract A (µ1=µ2) 

 
 
 
 
 
 
 
 
 
 
 
 
 

Bivariate Normal Distribution with 
 (µ1, µ2) 

Bivariate Weibull Distribution with 
(µ1, µ2) 

1 2

c

c c=
 

 
ρ 

(5, 5) (3, 3) (1.5, 1.5) (5, 5) (3, 3) (1.6, 1.6) 
0.2 31.55 -15.49 1.60 45.23 6.75 3.84 
0.5 30.49 -15.15 -1.24 47.02 8.00 2.12 

 
1 

0.9 29.72 -12.80 -7.75 49.47 6.34 4.70 
0.2 12.84 2.86 -1.02 14.15 6.58 1.27 
0.5 11.50 3.14 -0.57 14.53 6.40 1.48 

 
10 

0.9 10.51 3.29 0.07 13.30 3.21 1.60 
0.2 8.66 5.89 -2.76 2.57 1.75 -0.60 
0.5 7.11 4.96 -2.38 1.87 1.07 -0.60 

 
10000 

0.9 5.60 3.78 -1.88 1.27 0.26 -0.52 
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Table 7.25: Change in the expected cost under optimal static and dynamic(1) repair policy with  
                   bivariate normal and weibull distribution under Contract A (µ1≠µ2) 

 

       Tables 7.26 and 7.27 show the performance of the second type of dynamic policy 

 under normal and weibull failure distribution, respectively. In the second policy, both 

dimensions are rectified so as to set 1 1

2 2

( )

( )

t

t

α µ

α µ
=  for all t with the condition 

that 1 2( ),  ( ) 1t tα α ≤  where t is the time of failure. The performance of this method is 

relatively better than the previous dynamic method. Tables 7.26 and 7.27 show that 

the performance of the second dynamic policy is similar that of the first dynamic 

policy. Table 7.30 shows the change of the expected cost between the second dynamic 

and the optimal static policy. As in the previous dynamic policy, the second dynamic 

policy dominates the optimal static policy as long as the total variable cost and the 

expected number of failures of the dynamic policy are smaller than the total variable 

cost and the expected number of failures of the static policy, respectively. As the fixed 

cost increases, the difference between the expected number of failures of optimal 

static and dynamic policies decreases; so does the performance of the dynamic policy.  

 
 

Bivariate Normal Distribution with 
 (µ1, µ2) 

Bivariate Weibull 
Distribution with 

(µ1, µ2) 
1 2

c

c c=
 

 
ρ 

(5, 3) (5, 1) (3, 1) (2,1.5) (5, 3) (5, 1) (3, 1) 
0.2 32.42 33.34 -7.18 -10.21 47.84 49.89 16.25 
0.5 32.59 33.27 -7.33 -12.13 49.33 49.72 16.24 

 
1 

0.9 33.33 32.96 -7.48 -13.50 49.80 50.20 15.68 
0.2 13.95 15.12 9.67 -1.46 15.09 14.00 5.24 
0.5 14.17 15.04 8.11 -3.23 14.58 13.66 4.97 

 
10 

0.9 15.11 14.64 9.90 -4.49 14.09 14.34 3.90 
0.2 8.44 10.09 6.41 -1.75 2.93 2.94 1.22 
0.5 9.52 10.07 6.42 -1.97 2.57 2.97 1.32 

 
10000 

0.9 10.09 9.77 6.66 -2.20 2.79 3.38 0.75 
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  Table 7.26: Expected number of failures of perfect and dynamic(2) repair policy with bivariate  
                     normal failure distribution under Contract A  

 Expected # of failures with bivariate 
normal distribution 

 

 
ρ 

 
 (µ1, µ2) 

 (α1,α2)=(1.0,1,0) dynamic(2) 

 
difference 

 

0.2 0.035645 0.032641 0.00 
0.5 0.047812 0.043257 0.00 
0.9 

 
(5.0, 3.0) 

0.054762 0.049226 0.01 
0.2 0.493264 0.049222 0.01 
0.5 0.499220 0.049173 0.01 
0.9 

 
(5.0, 1.0) 

0.502293 0.052556 0.01 
0.2 0.502392 0.467735 0.03 
0.5 0.502540 0.468940 0.03 
0.9 

 
(3.0, 1.0) 

0.515219 0.480890 0.03 
0.2 1.060700 1.044020 0.02 
0.5 1.060820 1.061480 0.00 
0.9 

 
(2.0, 1.0) 

1.061460 1.076540 -0.02  

 
 
 
 
 
Table 7.27: Expected number of failures of perfect and dynamic(2) repair policy with bivariate 

     weibull failure distribution under Contract A  

Expected # of failures with bivariate 
weibull distribution 

 

 
ρ 

 
 (µ1, µ2) 

 (α1,α2)=(1.0,1,0) dynamic(2) 

 
difference 

 

0.2 0.16396 0.161141 0.00 
0.5 0.209592 0.206325 0.00 
0.9 

 
(5.0, 3.0) 

0.254765 0.248409 0.01 
0.2 0.257874 0.248006 0.01 
0.5 0.258764 0.243235 0.02 
0.9 

 
(5.0, 1.0) 

0.260816 0.238590 0.02 
0.2 0.620392 0.611649 0.01 
0.5 0.625082 0.607451 0.02 
0.9 

 
(3.0, 1.0) 

0.640547 0.622846 0.02 
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Table 7.28: Change(%) in the expected cost under optimal static and dynamic(2) repair policy with  
                   bivariate normal and weibull distribution under Contract A (µ1≠µ2) 

Bivariate Normal Distribution with 
 (µ1, µ2) 

Bivariate Weibull 
Distribution with 

(µ1, µ2) 
1 2

c

c c=
 

 
ρ 

(5, 3) (5, 1) (3, 1) (2,1.5) (5, 3) (5, 1) (3, 1) 
0.2 36.92 42.27 14.72 2.59 48.84 53.45 32.50 
0.5 37.09 42.20 14.40 1.06 50.41 54.30 33.40 

 
1 

0.9 37.79 41.90 14.31 -1.54 51.23 55.80 33.29 
0.2 14.77 16.81 14.01 4.20 14.37 15.42 9.22 
0.5 15.00 16.72 12.33 2.33 14.02 16.92 10.17 

 
10 

0.9 15.94 16.28 13.79 -0.86 14.15 19.51 9.63 
0.2 8.33 10.13 6.90 2.03 1.74 3.84 1.42 
0.5 9.46 10.09 6.69 8.01 1.58 6.02 2.83 

 
10000 

0.9 10.05 9.73 6.66 -0.88 2.53 8.54 2.77 

  

 

Comparisons of the repair policies under Contract A: 

Table 7.29 and 7.30 show the optimal repair policy for bivariate normal and 

weibull distributions when the fixed components of costs are equal. When the 

reliability of each dimension is very high and equal to each other, the dynamic policy 

1 or 2 performs better the other repair policies. For product with equal dimension 

reliability (Table 7.30), the improved policy generally outperforms, as the cost ratio 

increases and/or the product reliability decreases. When µ1≠µ2 (Table 7.30), the 

dynamic policy outweighs the optimal static and improved policy for most cost ratios 

and product reliability, but the product reliability is low and the fixed component is 

very large, the improved policy performs better than the dynamic policy. When one of 

the variable components is equal to the fixed component, then the dynamic policy 

outperforms when the product reliability is high.  
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Table 7.29: Optimal repair policy under Contract A with equal means for bivariate normal and  
                   weibull distribution (c1=c2) 

Bivariate Normal Distribution with 
 (µ1, µ2) 

Bivariate Weibull Distribution with 
(µ1, µ2) 

1 2

c

c c=
 

 
ρ 

(5, 5) (3, 3) (1.5, 1.5) (5, 5) (3, 3) (1.6, 1.6) 
0.2 Dyn-1,2 Dyn-1,2 (0.5, 1.0) Dyn-1,2 Dyn-1,2 (0.5, 1.0) 
0.5 Dyn-1,2 (0.5, 0.5) (0.5, 1.0) Dyn-1,2 Dyn-1,2 (0.5, 1.0) 

 
0.01 

0.9 Dyn-1,2 (0.5, 0.5) (0.5, 1.0) Dyn-1,2 Dyn-1,2 Dyn-1,2 
0.2 Dyn-1,2 (0.5, 0.5) Dyn-1,2 Dyn-1,2 Dyn-1,2 Dyn-1,2 
0.5 Dyn-1,2 (0.5, 0.5) (0.5, 1.0) Dyn-1,2 Dyn-1,2 Dyn-1,2 

 
1 

0.9 Dyn-1,2 (0.5, 0.5) (0.5, 1.0) Dyn-1,2 Dyn-1,2 Dyn-1,2 
0.2 Dyn-1,2 Dyn-1,2 Improved Dyn-1,2 Dyn-1,2 Improved 
0.5 Dyn-1,2 Dyn-1,2 Improved Dyn-1,2 Dyn-1,2 Improved 

 
10 

0.9 Dyn-1,2 Dyn-1,2 Improved Dyn-1,2 Improved Improved 
0.2 Dyn-1,2 Improved Improved Dyn-1,2 Dyn-1,2 Improved 
0.5 Dyn-1,2 Improved Improved Dyn-1,2 Improved Improved 

 
10000 

0.9 Improved Improved Improved Improved Improved Improved 

  
 
 
Table 7.30: Optimal repair policy under Contract A with unequal means for bivariate normal and  
                    weibull distribution (c1=c2) 

Bivariate Normal Distribution with 
 (µ1, µ2) 

Bivariate Weibull Distribution with  
(µ1, µ2) 

1 2

c

c c=
 

 
ρ 

(5, 3) (5, 1) (3, 1) (2,1.5) (5, 3) (5, 1) (3, 1) 
0.2 Dyn-2 Dyn-2 Dyn-2 (0.8,0.5) Dyn-2 Dyn-2 Dyn-2 
0.5 Dyn-2 Dyn-2 Dyn-2 (0.8,0.5) Dyn-2 Dyn-2 Dyn-2 

 
0.01 

0.9 Dyn-2 Dyn-2 Dyn-2 (0.8,0.5) Dyn-2 Dyn-2 Dyn-2 
0.2 Dyn-2 Dyn-2 Dyn-2 Dyn-2 Dyn-2 Dyn-2 Dyn-2 
0.5 Dyn-2 Dyn-2 Dyn-2 Dyn-2 Dyn-2 Dyn-2 Dyn-2 

 
1 

0.9 Dyn-2 Dyn-2 Dyn-2 (1.0,0.5) Dyn-2 Dyn-2 Dyn-2 
0.2 Dyn-2 Dyn-2 Dyn-2 Dyn-2 Dyn-1 Dyn-2 Dyn-2 
0.5 Dyn-2 Dyn-2 Dyn-2 Dyn-2 Dyn-1 Dyn-2 Dyn-2 

 
10 

0.9 Dyn-2 Dyn-2 Dyn-2 (1.0,0.5) Dyn-2 Dyn-2 Dyn-2 
0.2 Dyn-1 Dyn-2 Dyn-2 Improved Dyn-1 Dyn-2 improved 
0.5 Dyn-1 Dyn-2 Dyn-2 Improved Dyn-1 Dyn-2 improved 

 
10000 

0.9 Dyn-1 Dyn-1 Dyn-2 Improved Dyn-1 Dyn-2 improved 
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Table 7.31: Optimal repair policy under Contract A with equal means for bivariate normal and  
                   weibull distribution (c1=c) 

Bivariate Normal Distribution with 
 (µ1, µ2) 

Bivariate Weibull Distribution with 
(µ1, µ2) 

1

2

c c

c

=
 

 
ρ 

(5, 5) (3, 3) (1.5, 1.5) (5, 5) (3, 3) (1.6, 1.6) 
0.2 Dyn-1,2 (0.5, 0.5) (1, 0.5) Dyn-1,2 (1, 0.5) (1, 0.5) 
0.5 Dyn-1,2 (0.5, 0.5) (1, 0.5) Dyn-1,2 (1, 0.5) (1, 0.5) 

 
0.1 

0.9 Dyn-1,2 (0.5, 0.5) (1, 0.5) Dyn-1,2 (1, 0.5) (1, 0.5) 
0.2 Dyn-1,2 (0.5, 0.5) Dyn-1,2 Dyn-1,2 Dyn-1,2 Dyn-1,2 
0.5 Dyn-1,2 (0.5, 0.5) (0.5, 1.0) Dyn-1,2 Dyn-1,2 Dyn-1,2 

 
1 

0.9 Dyn-1,2 (0.5, 0.5) (0.5, 1.0) Dyn-1,2 Dyn-1,2 Dyn-1,2 
0.2 Dyn-1,2 (0.5, 0.5) (0.5, 1) Dyn-1,2 (0.5, 1) (0.5, 1) 
0.5 Dyn-1,2 (0.5, 0.5) (0.5, 1) Dyn-1,2 (0.5, 1) (0.5, 1) 

 
10 

0.9 Dyn-1,2 (0.5, 0.8) (0.5, 1) Dyn-1,2 (0.5, 1) (0.5, 1) 
0.2 Dyn-1,2 (0.5, 1) (0.5, 1) Dyn-1,2 (0.5, 1) (0.5, 1) 
0.5 Dyn-1,2 (0.5, 1) (0.5, 1) Dyn-1,2 (0.5, 1) (0.5, 1) 

 
10000 

0.9 Dyn-1,2 (0.5, 1) (0.5, 1) Dyn-1,2 (0.5, 1) (0.5, 1) 

  
 

Table 7.32: Optimal repair policy under Contract A with unequal means for bivariate normal and  
                    weibull distribution  (c1=c) 

Bivariate Normal Distribution with 
 (µ1, µ2) 

Bivariate Weibull Distribution with  
(µ1, µ2) 

1

2

c c

c

=
 

 
ρ 

(5, 3) (5, 1) (3, 1) (2,1.5) (5, 3) (5, 1) (3, 1) 
0.2 Dyn-2 Dyn-2 (0.5,0.5) (1.0,0.5) Dyn-2 Dyn-2 Dyn-2 
0.5 Dyn-2 Dyn-2 (0.5,0.5) (1.0,0.5) Dyn-2 Dyn-2 Dyn-2 

 
0.1 

0.9 Dyn-2 Dyn-2 (0.5,0.5) (1.0,0.5) Dyn-2 Dyn-2 Dyn-2 
0.2 Dyn-2 Dyn-2 Dyn-2 Dyn-2 Dyn-2 Dyn-2 Dyn-2 
0.5 Dyn-2 Dyn-2 Dyn-2 Dyn-2 Dyn-2 Dyn-2 Dyn-2 

 
1 

0.9 Dyn-2 Dyn-2 Dyn-2 (1.0,0.5) Dyn-2 Dyn-2 Dyn-2 
0.2 Dyn-2 Dyn-2 Dyn-2 Dyn-2 Dyn-2 Dyn-2 Dyn-2 
0.5 Dyn-2 Dyn-2 Dyn-2 Dyn-2 Dyn-2 Dyn-2 Dyn-2 

 
10 

0.9 Dyn-2 Dyn-2 Dyn-2 Dyn-2 Dyn-2 Dyn-2 Dyn-2 
0.2 Dyn-2 Dyn-2 Dyn-2 (0.5,1.0) Dyn-2 Dyn-2 Dyn-2 
0.5 Dyn-2 Dyn-2 Dyn-2 (0.5,1.0) Dyn-2 Dyn-2 Dyn-2 

 
1000 

0.9 Dyn-2 Dyn-2 Dyn-2 (0.5,1.0) Dyn-2 Dyn-2 Dyn-2 
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Case 2: Static Repair Policies for Contract B 

For Contract B, we consider normal failure distribution to calculate the 

following expected number of failures over the warranty region 

1 2 1 2( , , , ) ( ) ( ) ( , )B

qM W U N W N U N W Uα α = + −  

           Tables 7.33 and 7.34 show the expected number of failures of Contract B under  

bivariate normal failure distribution with a correlation coefficient of 0.2. As in 

Contract A, the expected number of failures increases as the extent of repair of at least 

one dimension decreases and/or the reliability of product decreases. Since, the 

warranty range of this policy is larger than that of Contract A, the expected number of 

breakdowns under this policy are larger than that under Contract A. However, unlike 

Contract A, in this case, we observe that the expected number of failures decreases as 

the correlation coefficient increases (Table 7.35). This phenomenon can be explained 

by the fact that a high correlation coefficient triggers frequent failures motivated by 

the forces at play along both dimensions and results in quick move outside the 

warranty region. On the other hand, when the correlation is low there is more 

likelihood to operate within the warranty region even after coverage expires along one 

of the two-dimensions. 

 
Table 7.33: Expected number of failures with bivariate normal  

     failure distribution under Contract B (ρ=0.2) 

Bivariate Normal Distribution with 
 (µ1, µ2) 

 
(α1, α2) 

(5, 5) (3, 3) (1.5, 1.5) 
(1.0, 1.0) 0.103477 0.722486 1.720690 
(1.0, 0.8) 0.103523 0.726345 1.949780 
(1.0, 0.5) 0.104054 0.762304 4.211240 
(0.8, 0.8) 0.103570 0.730152 2.198530 
(0.8, 0.5) 0.104100 0.765788 4.342390 
(0.5, 0.5) 0.104628 0.799407 >4.35 
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Table 7.34: Expected number of failures with bivariate normal  
     failure distribution under Contract B (ρ =0.2) 

Bivariate Normal Distribution with 
(µ 1, µ 2) 

 
(α1, α2) 

(5, 3) (5, 1.5) (3, 1.5) 
(1.0, 1.0) 0.521407 1.511143 1.511711 
(1.0, 0.8) 0.524826 1.859609 1.859777 
(1.0, 0.5) 0.560988 4.316366 4.316297 
(0.8, 1.0) 0.520975 1.511152 1.512785 
(0.8, 0.8) 0.524870 1.859610 1.860097 
(0.8, 0.5) 0.561027 4.316364 4.316151 
(0.5, 1.0) 0.521498 1.511269 1.528722 
(0.5, 0.8) 0.525384 1.859634 1.868255 
(0.5, 0.5) 0.561484 4.316338 4.317115 

  
 
Table 7.35: Expected number of failures with equal means under  

     different ρ values for Contract B 

Bivariate Normal Distribution with 
 (µ1, µ2) 

 
(α1, α2) 

 
ρ 

(5, 5) (3, 3) (1.5, 1.5) 
0.2 0.103477 0.722486 1.720690 
0.5 0.095782 0.671059 1.666180 

 
(1.0, 1.0) 

0.9 0.074370 0.575118 1.558460 
0.2 0.103570 0.730152 2.102950 
0.5 0.095874 0.678335 2.045660 

 
(0.8, 0.8) 

0.9 0.074446 0.580707 1.906650 
0.2 0.104628 0.799407 >2.11 
0.5 0.096909 0.743085 >2.05 

 
(0.5, 0.5) 

0.9 0.075279 0.630041 >1.91 

  
 

Tables 7.36-7.39 show the optimal extent of repair combination that gives the 

minimum expected warranty cost under different scenarios. Under Contract B, the 

behavior of the expected cost function is similar to the behavior of the cost under 

Contract A. That is, for a given cost ratio, i.e. 1 2c c c= or 1 2c c c= , the extent of 

repair for any dimension increases as the reliability of the dimension decreases and for 

a given reliability the extent increases as the cost ratio increases. Also, the correlation 
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coefficient does not affect the optimal repair degree of each dimension. However, the 

difference between these two policies is that for a given cost structure, under Contract 

B the optimal extent of repair for any dimension is equal or greater than the optimal 

extent under Contract A, since this policy favors the consumers. In addition, in this 

policy if the reliabilities of dimensions are not equal, applying better extent of repair 

to the less reliable dimension provides smaller cost.  

 
 
Table 7.36: Optimal repair degree combination of equal means for  

     bivariate normal distribution under Contract B(c1= c2) 

Bivariate Normal Distribution with 
 (µ 1, µ 2) 

1 2

c

c c=
 

 
ρ 

(5, 5) (3, 3) (1.5, 1.5) 
0.2 (0.5, 0.5) (0.5, 0.5) (1.0, 1.0) 
0.5 (0.5, 0.5) (0.5, 0.5) (1.0, 1.0) 

 
0.01 

0.9 (0.5, 0.5) (0.5, 0.5) (1.0, 1.0) 
0.2 (0.5, 0.5) (0.5, 0.5) (1.0, 1.0) 
0.5 (0.5, 0.5) (0.5, 0.5) (1.0, 1.0) 

 
1 

0.9 (0.5, 0.5) (0.5, 0.5) (1.0, 1.0) 
0.2 (0.5, 0.5) (0.8, 0.8) (1.0, 1.0) 
0.5 (0.5, 0.5) (0.8, 0.8) (1.0, 1.0) 

 
10 

0.9 (0.5, 0.5) (0.8, 0.8) (1.0, 1.0) 
0.2 (0.8, 0.8) (1.0, 1.0) (1.0, 1.0) 
0.5 (0.8, 0.8) (1.0, 1.0) (1.0, 1.0) 

 
200 

0.9 (0.8, 0.8) (1.0, 1.0) (1.0, 1.0) 
0.2 (1.0, 1.0) (1.0, 1.0) (1.0, 1.0) 
0.5 (1.0, 1.0) (1.0, 1.0) (1.0, 1.0) 

 
500 

0.9 (1.0, 1.0) (1.0, 1.0) (1.0, 1.0) 
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Table 7.37: Optimal repair degree combination of unequal means for  
     bivariate normal distribution under Contract B (c1= c2) 

Bivariate Normal Distribution with 
 (µ 1, µ 2) 

1 2

c

c c=
 

 
ρ 

(5, 3) (5, 1.5) (3, 1.5) (2,1.5) 
0.2 (0.5,0.5) (0.5,1.0) (0.5,1.0) (0.8,1.0) 
0.5 (0.5,0.5) (0.5,1.0) (0.5,1.0) (0.8,1.0) 

 
0.01 

0.9 (0.5,0.5) (0.5,1.0)  (0.5,1.0)  (0.8,1.0)  
0.2 (0.5,0.5) (0.5,1.0) (0.5,1.0) (0.8,1.0) 
0.5 (0.5,0.5) (0.5,1.0) (0.5,1.0) (0.8,1.0) 

 
1 

0.9 (0.5,0.5) (0.5,1.0)  (0.5,1.0)  (0.8,1.0)  
0.2 (0.5,1.0) (0.5,1.0) (0.8,1.0) (1.0,1.0) 
0.5 (0.5,1.0) (0.5,1.0) (0.8,1.0) (1.0,1.0) 

 
10 

0.9 (0.5,1.0)  (0.5,1.0)  (0.8,1.0)  (0.8,1.0) 
0.2 (0.8,1.0) (0.5,1.0) (1.0,1.0) (1.0,1.0) 
0.5 (0.8,1.0) (0.5,1.0) (0.8,1.0) (1.0,1.0) 

 
1000 

0.9 (0.8,1.0)  (0.5,1.0)  (0.8,1.0)  (0.8,1.0) 
0.2 (0.8,1.0) (1.0,1.0) (1.0,1.0) (1.0,1.0) 
0.5 (1.0,1.0) (0.5,1.0) (1.0,1.0) (1.0,1.0) 

 
50000 

0.9 (1.0,1.0) (0.5,1.0)  (0.8,1.0) (0.8,1.0) 

  

Table 7.38: Optimal repair degree combination of equal means for  
     bivariate normal distribution under Contract B (c= c1) 

Bivariate Normal Distribution with 
 (µ1, µ2) 

1

2

c c

c

=
 

 
ρ 

(5, 5) (3, 3) (1.5, 1.5) 
0.2 (0.5, 0.5) (0.5, 0.5) (1.0, 1.0) 
0.5 (0.5, 0.5) (0.5, 0.5) (1.0, 1.0) 

 
0.1 

0.9 (0.5, 0.5) (0.5, 0.5) (1.0, 1.0) 
0.2 (0.5, 0.5) (0.5, 0.5) (1.0, 1.0) 
0.5 (0.5, 0.5) (0.5, 0.5) (1.0, 1.0) 

 
1 

0.9 (0.5, 0.5) (0.5, 0.5) (1.0, 1.0) 
0.2 (0.5, 0.5) (0.5, 0.5) (1.0, 1.0) 
0.5 (0.5, 0.5) (0.5, 0.5) (1.0, 1.0) 

 
10 

0.9 (0.5, 0.5) (0.5, 0.5) (1.0, 1.0) 
0.2 (0.5, 0.5) (0.5, 0.5) (1.0, 1.0) 
0.5 (0.5, 0.5) (0.5, 0.5) (1.0, 1.0) 

 
1000 

0.9 (0.5, 0.5) (0.5, 0.5) (1.0, 1.0) 
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Table 7.39: Optimal repair degree combination of unequal means for  
     bivariate normal distribution under Contract B (c= c1) 

Bivariate Normal Distribution with 
 (µ1, µ2) 

1

2

c c

c

=
 

 
ρ 

(5, 3) (5, 1.5) (3, 1.5) (2,1.5) 
0.2 (0.5,0.5) (0.5,1.0) (0.5,1.0) (1.0,1.0) 
0.5 (0.5,0.5) (0.5,1.0) (0.5,1.0) (1.0,1.0) 

 
0.1 

0.9 (0.5,0.5) (0.5,1.0)  (0.5,1.0)  (1.0,1.0) 
0.2 (0.5,0.5) (0.5,1.0) (0.5,1.0) (0.8,1.0) 
0.5 (0.5,0.5) (0.5,1.0) (0.5,1.0) (0.8,1.0) 

 
1 

0.9 (0.5,0.5) (0.5,1.0)  (0.5,1.0)  (0.8,1.0)  
0.2 (0.5,0.8) (0.5,1.0) (0.5,1.0) (0.8,1.0) 
0.5 (0.5,0.8) (0.5,1.0) (0.5,1.0) (0.8,1.0) 

 
10 

0.9 (0.5,0.8) (0.5,1.0)  (0.5,1.0)  (0.8,1.0)  
0.2 (0.5,1.0) (0.5,1.0) (0.5,1.0) (0.8,1.0) 
0.5 (0.5,1.0) (0.5,1.0) (0.5,1.0) (0.8,1.0) 

 
1000 

0.9 (0.5,1.0)  (0.5,1.0)  (0.5,1.0)  (0.8,1.0)  

  

 

Case 3: Static Repair Policies for Contract C 

For Contract C, we consider normal failure distribution with the following 

expected number of failures 

 
( )

1

( ,  ) [ ( ,  )] ( )D n

q K

n

M W U E N W U F U
∞

=

= =∑  

where FK is the distribution function of Ki=Xi+mTi, i ≥ 1. In this contract, we change 

the warranty limits such a way that the areas of coverage in Contract A and C are 

equal. That is, Wc and Uc chosen so as to set 
2
c c

W U
WU = . Since, in Contract A, W 

=U=3, in Contract C, the limits are Wc =Uc=4.24.  

  

Tables 7.40 and 7.41 show the expected number of failures for Contract C 

under bivariate normal failure distribution with a correlation coefficient of 0.2. As in 
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Contract A and B, in this policy the effect of extent of repair is almost negligible 

when the reliability of the product is high. Although, for highly reliable products the 

effect of correlation coefficient on the expected number of failures is similar to the 

effect in Contract A, for products with low reliability, the expected number of 

breakdowns decreases as the correlation between the dimensions increases (Table 

6.42).  

 
Table 7.40: Expected number of failures with bivariate normal  

     failure distribution under Contract C (ρ=0.2) 

Bivariate Normal Distribution with 
 (µ1, µ2) 

 
(α1, α2) 

(5, 5) (3, 3) (1.5, 1.5) 
(1.0, 1.0) 0.000932 0.042527 0.960079 
(1.0, 0.8) 0.000932 0.042527 0.962677 
(1.0, 0.5) 0.000932 0.042529 0.972267 
(0.8, 0.8) 0.000932 0.042528 0.967665 
(0.8, 0.5) 0.000932 0.042531 0.985222 
(0.5, 0.5) 0.000932 0.042551 >0.99 

  
 
Table 7.41: Expected number of failures with bivariate normal  

     failure distribution under Contract C (ρ=0.2) 

Bivariate Normal Distribution with 
(µ1, µ2) 

 
(α1, α2) 

(5, 3) (5, 1.5) (3, 1.5) 
(1.0, 1.0) 0.005653 0.034464 0.289859 
(1.0, 0.8) 0.005653 0.034465 0.289875 
(1.0, 0.5) 0.005653 0.034466 0.289937 
(0.8, 1.0) 0.005653 0.034465 0.289887 
(0.8, 0.8) 0.005653 0.034466 0.289928 
(0.8, 0.5) 0.005653 0.034470 0.290079 
(0.5, 1.0) 0.005653 0.034475 0.290086 
(0.5, 0.8) 0.005654 0.034484 0.290294 
(0.5, 0.5) 0.005655 0.034512 0.291065 
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Table 7.42: Expected number of failures with equal means under  

     different ρ values for Contract C 

Bivariate Normal Distribution with 
 (µ 1, µ2) 

 
(α1, α2) 

 
ρ 

(5, 5) (3, 3) (1.5, 1.5) 
0.2 0.000932 0.042527 0.960079 
0.5 0.002728 0.061763 0.943630 

 
(1.0, 1.0) 

0.9 0.006846 0.085624 0.923835 
0.2 0.000932 0.042528 0.967665 
0.5 0.002728 0.061769 0.954429 

 
(0.8, 0.8) 

0.9 0.006847 0.085663 0.937646 
0.2 0.000932 0.042551 >1.5 
0.5 0.002729 0.061887 >1.5 

 
(0.5, 0.5) 

0.9 0.006856 0.086086 >1.5 

  
 

     Tables 7.43-7.46 show optimal extents of repair for each dimension under different  

cost ratios. Since the effect of repair extent is negligible, minimum extents of repair 

for any dimension give the smallest warranty cost for most cost ratio. Only when the 

fixed cost becomes extremely large, the replacement policies for both dimensions 

provide the smallest cost for medium and low quality products. Like in Contract A, 

the dimension whose variable cost component is high has a smaller extent of repair 

than the dimension with low variable cost component.  
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Table 7.43: Optimal repair degree combination of equal means for  
     bivariate normal distribution under Contract C(c1= c2) 

Bivariate Normal Distribution with 
 (µ1, µ2) 

1 2

c

c c=
 

 
ρ 

(5, 5) (3, 3) (1.5, 1.5) 
0.2 (0.5,0.5) (0.5,0.5) (0.5,0.8) 
0.5 (0.5,0.5) (0.5,0.5) (0.5,0.8) 

 
0.01 

0.9 (0.5,0.5) (0.5,0.5) (0.5,1.0) 
0.2 (0.5,0.5) (0.5,0.5) (0.5,0.8) 
0.5 (0.5,0.5) (0.5,0.5) (0.5,0.8) 

 
1 

0.9 (0.5,0.5) (0.5,0.5) (0.5,1.0) 
0.2 (0.5,0.5) (0.5,0.5) (0.5,0.8) 
0.5 (0.5,0.5) (0.5,0.5) (0.5,0.8) 

 
10 

0.9 (0.5,0.5) (0.5,0.5) (0.5,1.0) 
0.2 (0.5,0.5) (0.5,0.8) (1.0,1.0) 
0.5 (0.5,0.5) (0.5,1.0) (1.0,1.0) 

 
1000 

0.9 (0.5,1.0) (0.8,1.0) (1.0,1.0) 
0.2 (0.5,0.5) (1.0,1.0) (1.0,1.0) 
0.5 (1.0,1.0) (1.0,1.0) (1.0,1.0) 

 
500000 

0.9 (1.0,1.0) (1.0,1.0) (1.0,1.0) 

  
 
Table 7.44: Optimal repair degree combination of unequal means for  

     bivariate normal distribution under Contract C (c1= c2) 

Bivariate Normal Distribution with 
 (µ 1, µ2) 

1 2

c

c c=
 

 
ρ 

(5, 3) (5, 1.5) (3, 1.5) (2,1.5) 
0.2 (0.5,0.5) (0.5,0.5) (0.5,0.5) (0.8,0.5) 
0.5 (0.5,0.5) (0.5,0.5) (0.5,0.5) (0.5,0.5) 

 
0.01 

0.9 (0.5,0.5) (0.5,0.5) (0.5,0.5) (0.5,0.5) 
0.2 (0.5,0.5) (0.5,0.5) (0.5,0.5) (0.5,0.5) 
0.5 (0.5,0.5) (0.5,0.5) (0.5,0.5) (0.5,0.5) 

 
1 

0.9 (0.5,0.5) (0.5,0.5) (0.5,0.5) (0.5,0.5) 
0.2 (0.5,0.5) (0.5,0.5) (0.5,0.5) (0.5,0.5) 
0.5 (0.5,0.5) (0.5,0.5) (0.5,0.5) (0.5,0.5) 

 
10 

0.9 (0.5,0.5) (0.5,0.5) (0.5,0.5) (0.5,0.5) 
0.2 (0.5,0.5) (0.8,0.5) (1.0,0.5) (1.0,0.8) 
0.5 (0.8,0.5) (1.0,0.5) (1.0,0.8) (1.0,1.0) 

 
1000 

0.9 (1.0,0.5) (1.0,0.5) (1.0,1.0) (1.0,1.0) 
0.2 (1.0,1.0) (1.0,1.0) (1.0,1.0) (1.0,1.0) 
0.5 (1.0,1.0) (1.0,1.0) (1.0,1.0) (1.0,1.0) 

 
500000 

0.9 (1.0,1.0) (1.0,1.0) (1.0,1.0) (1.0,1.0) 
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Table 7.45: Optimal repair degree combination of equal means for  
     bivariate normal distribution under Contract C(c= c1) 

Bivariate Normal Distribution with 
 (µ1, µ2) 

1

2

c c

c

=
 

 
ρ 

(5, 5) (3, 3) (1.5, 1.5) 
0.2  (0.5,0.5) (0.5,0.5) (0.5,0.8) 
0.5  (0.5,0.5)  (0.5,0.5) (0.5,0.8) 

 
0.1 

0.9  (0.5,0.5)  (0.5,0.5)  (0.5,0.8) 
0.2 (0.5,0.5) (0.5,0.5) (0.5,0.8) 
0.5 (0.5,0.5) (0.5,0.5) (0.5,0.8) 

 
1 

0.9 (0.5,0.5) (0.5,0.5) (0.5,1.0) 
0.2 (0.5,0.5) (0.5,0.5) (0.5,1.0) 
0.5  (0.5,0.5)  (0.5,0.5) (0.5,1.0) 

 
10 

0.9  (0.5,0.5)  (0.5,0.5) (0.5,1.0) 
0.2 (0.5,0.5) (0.5,1.0) (0.5,1.0) 
0.5  (0.5,1.0)  (0.5,1.0) (0.5,1.0) 

 
10000 

0.9  (0.5,1.0)  (0.5,1.0) (0.5,1.0) 

  
Table 7.46: Optimal repair degree combination of unequal means for  

     bivariate normal distribution under Contract C (c= c1) 

Bivariate Normal Distribution with 
 (µ1, µ2) 

1

2

c c

c

=
 

 
ρ 

(5, 3) (5, 1.5) (3, 1.5) (2,1.5) 
0.2 (0.5,0.5) (0.5,0.5) (0.5,0.5) (0.5,0.5) 
0.5 (0.5,0.5) (0.5,0.5) (0.5,0.5) (0.5,0.5) 

 
0.1 

0.9 (0.5,0.5) (0.5,0.5) (0.5,0.5) (0.5,0.5) 
0.2 (0.5,0.5) (0.5,0.5) (0.5,0.5) (0.5,0.5) 
0.5 (0.5,0.5) (0.5,0.5) (0.5,0.5) (0.5,0.5) 

 
1 

0.9 (0.5,0.5) (0.5,0.5) (0.5,0.5) (0.5,0.5) 
0.2 (0.5,0.5) (0.5,0.5) (0.5,0.5) (0.5,0.5) 
0.5 (0.5,0.5) (0.5,0.5) (0.5,0.5) (0.5,0.8) 

 
10 

0.9 (0.5,0.5) (0.5,0.5) (0.5,0.5) (0.5,0.8) 
0.2 (0.5,1.0) (0.5,1.0) (0.5,1.0) (0.5,1.0) 
0.5 (0.5,1.0) (0.5,1.0) (0.5,1.0) (0.5,1.0) 

 
1000 

0.9 (0.5,1.0) (0.5,1.0) (0.5,1.0) (0.5,1.0) 
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C h a p t e r  8  

 

CONCLUSION AND FUTURE 

RESEARCH DIRECTIONS 
 

 

Increasing market competition forces many manufacturers to offer extensive 

warranties. Faced with the challenge of keeping the associated costs under control, 

most companies seek efficient rectification strategies. Most products are marketed 

with one- or two-dimensional warranties. The one-dimensional warranty is suitable 

for a product whose lifetime is affected only by time or usage. If the lifetime of a 

product is affected by both time and usage, then the two-dimensional warranty is 

more descriptive. In the literature, the problem of warranty cost minimization is 

generally considered by using one-dimensional warranties.  

 

     In this thesis, the repair strategies are investigated with the intent of minimizing the  

expected warranty cost expressed as a function of different parameters such as 

reliability of the product, relationship between cost components and structure of the 

warranty contract. It may be worthwhile to mention that to the best of author’s 

knowledge, this study is the first to consider an age reduction approach to model the 

imperfect repairs under the two-dimensional coverage.  
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We first addressed one-dimensional policies and adopted a quasi renewal 

process to model the product failure and associated repair action. The quasi renewal 

process employs a scaling parameter that reflects the extent of repair. Then, we 

generalized quasi renewal process to multivariate scenarios, and we considered two-

dimensional warranty policies using bivariate quasi renewal process with two scaling 

parameters factors: one for each dimension. In bivariate case, two scaling factors may 

not be equal.  

 

        The warranty related studies in the literature consider either a constant repair cost 

or some functions of the time and/or count the number of failures. Our cost function is 

more realistic as it incorporates both fixed and variable components. The fixed 

component is a constant and it is paid independently from the extent of repair, 

whereas, the variable component increases with the extent of repair. It may be 

important to note that a particular cost function in the study is adopted to provide a 

good representation of different scenarios and the general approach can be repeated 

with other cost functions if necessary.  

 

        Through computational experimentations, we investigated the effects of the 

repair mechanism on the expected warranty cost under different combinations of 

problem parameters. These parameters correspond to product reliability, failure 

distribution, ratio between cost components and type of warranty contract. With 

respect to the mean time to the first failure, we grouped products as of high, medium 

and poor reliability. For each group, we modeled the distribution of failures as 

univariate normal and weibull in the one-dimensional warranties, and bivariate 

normal or weibull in the two-dimensional warranties. We also examined the effect of 

relative magnitude of fixed and variable components under one- and two-dimensional 

warranties. Finally, we examined different contract types offering different degrees of 



 

 115 

protection to the manufacturer and consumer in the case of two-dimensional 

warranties.  

 

Under the static repair, the expected number of failures in the one-dimensional 

policies increases as the extent of repair decreases. When the mean time to failure is 

large, the effect of the extent of repair is negligible, but as the mean gets smaller, the 

effect becomes more significant. Although we can easily characterize the behavior of 

the expected number of failures under different mean values, the behavior of the cost 

function depends on both the cost and reliability structure. In the one-dimensional 

warranties, the cost function shows an increasing trend, as the mean time to the first 

failure increases and the ratio between the fixed and variable components decreases. 

For a less reliable product with a small mean time to the first failure, perfect repair 

tends to be optimal for any value of the cost ratio. On the other hand, for an 

exceptionally reliable product, the smallest extent of repair seems to be preferred 

unless the fixed component is much larger than the variable component. In all of our 

experiments, if the fixed component is large, then a more extensive repair minimizes 

the cost function. When the fixed component reaches a certain threshold, then perfect 

repair becomes the optimal repair policy for any type of product. After the first failure 

if the product is replaced by an improved one and if the succeeding failures are 

rectified via replacement, the expected number of failures is smaller than that of the 

perfect repair. The performance of this policy improves as the product becomes less 

reliable. In our experiments with the dynamic policy, we observe that it dominates the 

static policy when the product is highly reliable and/or the fixed component is much 

larger than the variable component.  

 

In the two-dimensional policies, the behavior of the expected number of 

failures follows a similar pattern in general to that in the univariate case. However, the 

computational experiments suggest several additional insights regarding the expected 
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warranty cost. When the means along the two dimensions are equal with equal 

variable components, the optimal extent of repair increases as the fixed component 

increases beyond a certain threshold. On the other hand, when the means are not 

equal, the extent of repair in the more reliable dimension tends to be more elaborate 

than that of the other. As in the one-dimensional case, when the fixed component 

becomes much larger than the variable components, replacement appears to be the 

optimal policy. If the variable components are not equal, the extent of repair is larger 

in the dimension with a lower variable component. In the case of the improved or 

dynamic policy, we observe in our experiments that these policies dominate the 

optimal static policy when their expected number of failures and total variable cost are 

smaller than that of optimal static policy.   

 

Although, this thesis focuses on one- and two-dimensional warranties, the 

experimentation can be extended for multi-dimensional warranties with the model 

given in Chapter 5.  For example, the three-dimensional quasi renewal process may be 

used to model the warranty policy offered for the flight engines. 

 

Several preventive maintenance methods may be integrated to this model. For 

instance, the original product may be repaired to bring it as god as new state after the 

first year of its purchase. The maintenance may also be applied after a specific 

number of failures or at times kT, k =1,2,… where T is a prevent maintenance interval. 

  

In addition, the negligible repair time assumption can be removed. The repair 

time can be assumed to be either an independently and identically distributed random 

variable or modeled as a quasi renewal process. If the repair time is modeled as a 

quasi renewal process, its corresponding scaling parameter may be greater than 1. 

This scaling factor indicates the increase in the repair time as the number of failures 

increases. 
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This study can be generalized to accommodate multi-component systems. In 

this case, each component failure process may be modeled with the quasi renewal 

process. 

 

Finally, this problem can be approached with a game theoretic method. In this 

case, a repair policy is selected such that under the selected policy, both the 

manufacturer’s and customer’s costs are at a minimum.  
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