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ABSTRACT

WEB-SITE-BASED PARTITIONING TECHNIQUES
FOR EFFICIENT PARALLELIZATION OF THE

PAGERANK COMPUTATION

Ali Cevahir

M.S. in Computer Engineering

Supervisor: Prof. Dr. Cevdet Aykanat

September, 2006

Web search engines use ranking techniques to order Web pages in query results.

PageRank is an important technique, which orders Web pages according to the

linkage structure of the Web. The efficiency of the PageRank computation is im-

portant since the constantly evolving nature of the Web requires this computation

to be repeated many times. PageRank computation includes repeated iterative

sparse matrix-vector multiplications. Due to the enormous size of the Web ma-

trix to be multiplied, PageRank computations are usually carried out on parallel

systems. However, efficiently parallelizing PageRank is not an easy task, because

of the irregular sparsity pattern of the Web matrix. Graph and hypergraph-

partitioning-based techniques are widely used for efficiently parallelizing matrix-

vector multiplications. Recently, a hypergraph-partitioning-based decomposition

technique for fast parallel computation of PageRank is proposed. This technique

aims to minimize the communication overhead of the parallel matrix-vector mul-

tiplication. However, the proposed technique has a high prepropocessing time,

which makes the technique impractical. In this work, we propose 1D (rowwise

and columnwise) and 2D (fine-grain and checkerboard) decomposition models

using web-site-based graph and hypergraph-partitioning techniques. Proposed

models minimize the communication overhead of the parallel PageRank compu-

tations with a reasonable preprocessing time. The models encapsulate not only

the matrix-vector multiplication, but the overall iterative algorithm. Conducted

experiments show that the proposed models achieve fast PageRank computation

with low preprocessing time, compared with those in the literature.

Keywords: PageRank, Parallel Sparse-Matrix Vector Multiplication, Graph and

Hypergraph Partitioning.
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ÖZET

SAYFADEĞERİ HESAPLAMASININ ETKİN OLARAK
PARALELLEŞTİRİLMESİ İÇİN AĞ SİTESİ TABANLI

BÖLÜMLEME YÖNTEMLERİ

Ali Cevahir

Bilgisayar Mühendisliği, Yüksek Lisans

Tez Yöneticisi: Prof. Dr. Cevdet Aykanat

Eylül, 2006

Ağ arama motorları, sorgu sonucunda gelen sayfaları sıralamak için birtakım

sıralama yöntemleri uygular. SayfaDeğeri, ağ sayfalarını Ağ’ın bağ yapısına göre

sıraya koyan önemli bir yöntemdir. SayfaDeğeri hesaplamasının etkin olması

önemlidir, çünkü Ağ’ın sürekli değişen doğası bu hesaplamanın sıklıkla tekrar-

lanmasını gerektirir. SayfaDeğeri hesaplaması tekrarlayan seyrek matris-vektör

çarpımları içerir. Matris-vektör çarpımı, SayfaDeğeri hesaplamasının anahtar

işlemidir. Çarpılan matrisin çok büyük olmasından dolayı SayfaDeğeri genellikle

paralel sistemlerde hesaplanır. Fakat bu çok büyük matrisin düzensiz yapısından

dolayı SayfaDeğeri hesaplamasının verimli bir şekilde paralelleştirilmesi kolay bir

iş değildir. Çizge ve hiperçizge bölümleme yöntemleri matris-vektör çarpımlarını

etkin olarak paralelleştirilmesinde sıkça kullanılan yöntemlerdir. Yakın zamanda

matris-vektör çarpımından kaynaklanan haberleşme yükünü azaltarak hızlı par-

alel SayfaDeğeri hesaplamak için hiperçizge bölümleme tabanlı bir yöntem öne

sürülmüştür. Fakat sunulan yöntem yüksek ön işleme zamanı gerektirir. Bu da

yöntemi sürekli değişen Ağ için pratikte elverişsiz kılar. Bu çalışmada, makul bir

ön işlemeyle paralel SayfaDeğeri hesaplamasının haberleşme yükünü azaltacak Ağ

sitesi tabanlı çizge ve hiperçizge bölümleme modelleri sunuyoruz. Sunduğumuz

modeller tek boyutlu (satır sıralı ve sütun sıralı) ve iki boyutlu (ince taneli ve

dama tahtası) bölümleme modelleridir. Modeller sadece matris-vektör çarpımını

kapsamakla kalmayıp, bütün dolaylı algoritmayı kapsar. Yürütülen deneyler,

sunulan modellerin, şu ana kadar yapılan çalışmalarla kıyaslandığında, düşük

bir ön işleme zamanıyla beraber hızlı SayfaDeğeri hesaplamasını başardığını göz

önüne koyar.

Anahtar sözcükler : SayfaDeğeri, Paralel Seyrek Matris-Vektör Çarpımı, Çizge ve

Hiperçizge Bölümleme.
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Akgül for reading and commenting on my thesis.

I am thankful to Ata Türk and Berkant Barla Cambazoğlu for their contri-
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Chapter 1

Introduction

The World Wide Web (WWW) is one of the most important achievements in

computer technology. It is a dynamic global library which includes vast amount

of information. There are billions of Web pages (pages) in this library, which are

linked by hyperlinks. In order to reach necessary information in this library, the

existence of index searching systems is inevitable. Such searching systems are

called search engines. Because of the huge size of the WWW, search queries may

result with thousands of pages, most of which may be irrelevant to the query or

less important. It is unwise to force Internet users extract relevant information

within thousands of pages. Hence it is important to bring more relevant pages

on top of the query results. State-of-the-art search engines, such as GoogleTM,

use ranking techniques to list query results in the order of relevance to the query.

A ranking among the query results may be achieved through a combination of

an analysis of the page contents and the hyperlink structure existing within the

WWW. This structure is called the Web graph.

PageRank computation is one of the most effective and widely used query-

independent way of ranking pages by utilizing the Web graph information.

PageRank is first introduced by Google’s founders Page and Brin at Stanford

University [14]. Google claims that the heart of their software is PageRank [3].

In PageRank, every incoming link to a page contributes to its rank value. PageR-

ank also takes the rank value of referring pages into account.

1



CHAPTER 1. INTRODUCTION 2

PageRank is an iterative computation, based on a random surfer model [14].

Many researchers proposed different acceleration techniques after the proposal of

the basic model. Algorithmic/numeric optimizations that try to reduce the num-

ber of iterations [30, 31, 38] and I/O efficient out-of-core algorithms for reducing

the disk swapping time for single processor [22, 26] are some of the proposed tech-

niques for improving the PageRank computation performance. We will provide

the background information about the basics of PageRank algorithm and some

important improvement techniques in Section 2.

PageRank should be calculated repeatedly with the change of the Web graph.

Unfortunately, computing PageRank is not an easy task for billions and even

millions of pages. It is expensive in both time and space. Hence, it is inevitable

to use efficient parallel algorithms for PageRank calculation. Various approaches

are proposed on parallel and distributed PageRank computations [21, 43, 46, 54].

Some issues related to parallelization of PageRank and some of the techniques in

the current literature are presented in Section 3.

PageRank algorithms iteratively solve the eigenvector of a linear system. The

core operation of PageRank calculation is sparse matrix-vector multiplication.

The matrix in this multiplication is called the transition matrix which is a matrix

representation of the Web-graph. Since each page in the Web links only a small

subset of the Web, Web graph is sparse, hence the transition matrix. In order to

efficiently parallelize PageRank computation, efficient parallelization of matrix-

vector multiplication is necessary. Various hypergraph-partitioning-based (HP-

based) models [17, 51] are effective for workload partitioning of parallel sparse

matrix-vector multiplications, correctly encapsulating total inter-processor com-

munication volume. Graph-partitioning-based (GP-based) models which can also

be used for workload partitioning of parallel sparse matrix-vector multiplications,

try to minimize wrong metric for total communication volume. In Section 4, we

give the definition of the GP and HP problems and some background informa-

tion about GP and HP. Then, we review hypergraph-partitioning-based models

for parallel matrix-vector multiplications in this section.
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Recently there is a study which utilize the HP-based models directly for par-

allel PageRank computation [13]. Unfortunately, because of the huge size of the

Web graph, HP-based models are not scalable, when applied directly over the Web

matrix. Even though the computations reported in [13] are fairly fast; the pre-

processing time for partitioning takes even longer than the sequential PageRank

computation. To avoid this problem, we suggest site-based graph and hyper-

graph partitioning models which reduces the sizes of the graphs and hypergraphs

used in partitioning, considerably. In addition to reduced preprocessing time,

we consider the overall iterative algorithm including the linear vector operations

and norm operations as well as matrix-vector multiplications for load balancing

in the partitioning model, whereas [13] only consider matrix-vector multiplies.

Furthermore, our models correctly handles pages without in-links to reduce com-

munication overhead and obtain better imbalance. One more contribution in

this work is we propose 2D-Checkerboard partitioning model and 1D columnwise

model in addition to 1D rowwise and 2D fine-grain partitioning models which

were analyzed in [13] as well.

As anticipated, experimental results on different datasets indicate that our

site-based approach reduces the preprocessing time drastically. In some cases,

site-based approach also reduces the parallel computation time by reducing the

communication volume. Also, the newly applied 1D columnwise model reduce the

communication volume better than the 1D rowwise model and the 2D checker-

board model minimizes the number of communications which may be significant

for large number of processors. In Section 6, dataset properties are explained,

experimental results regarding the proposed models are presented and trade-offs

between the models are discussed.

Our methods for computing PageRank provide faster computation time with

little preprocessing time when compared to available methods in current liter-

ature. However, there is still room for improvement. In Section 7, we make a

conclusion and make a discussion on some future work for further improvements.



Chapter 2

Background

Following the first proposal of the PageRank in 1998 [14], numerous works con-

cerning methods for optimization of the basic model were published. We explain

the basics of the PageRank computation in Section 2.1 and survey the literature

on improvements of PageRank algorithm in Section 2.2.

2.1 Basics of the PageRank

PageRank basically assigns authority scores for each page, independent of the

page content. The ranking is discovered from the topological structure of the

Web. The idea of PageRank was taken from academic citation literature. A

hyperlink from page i to page j is counted as a vote from page i to page j. Every

vote does not have the same score. The importance of a vote is proportional to

the score of referring page i and inversely proportional to the total number of

votes (i.e., hyperlinks) originated from page i.

PageRank can be explained with another probabilistic model, called random

surfer model [14]. Consider an Internet user randomly visiting pages by following

hyperlinks within pages or typing a random URL to the browser. Let the surfer

visit page i at any step. On the next click, the probability of the surfer to visit the

4



CHAPTER 2. BACKGROUND 5

page j, which is referred by page i, is proportional to the probability of visiting i

and inversely proportional to total number of hyperlinks in page i. Let there are n

pages in total. When the surfer gets bored with following hyperlinks, every page

can be visited with a probability of 1
n assuming uniform probability distribution

for visiting a random page. The probability of following hyperlinks is d, which

is called damping factor, and visiting a random page is 1-d. Damping factor is a

constant that is usually chosen between 0.85 and 0.99.

We can now give the basic PageRank formulation after explanations of above

intuitive models. PageRank values can be iteratively calculated as follows. At

iteration k, rank Rk
i of page i is

Rk
i =

(1− d)

n
+ d

∑

j∈Ni

Rk−1
j

deg(j)
, (2.1)

where d is the damping factor, Ni is the set of pages, that contain outgoing links

to page i, and deg(j ) is the number of outgoing links of page j.

Actually, PageRank algorithm solves eigenvector of the adjacency matrix rep-

resentation of the Web-graph. Equation 2.1 can be rewritten in terms of matrix-

vector multiplication as

pk =
(1− d)e

n
+ dA · pk−1, (2.2)

where pk is the vector of PageRank scores of size n. Matrix A is called transition

matrix and A = PT, where P is the adjacency matrix representation of the Web-

graph. d is the damping factor as explained above and e is a vector of all 1’s

with size n. The adjacency matrix P contains entries:

Pij =





1
deg(i)

if there is a link from page i to page j

0 otherwise

Figure 2.1 shows the adjacency matrix representation of a sample Web-graph.



CHAPTER 2. BACKGROUND 6
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Figure 2.1: Sample Web-graph and its adjacency matrix representation

The PageRank vector p converges to a stationary solution after repeated

iterations, provided that d < 1. In practice, p0 is chosen to be a vector of size n

and all entries are equal to 1
n
. Actually, the basic model explained by Google [14]

and defined in Equation 2.2 is the Jacobi algorithm for solving linear systems [12].

The pages without outgoing links are called dangling pages. In order to find

a probability distribution, dangling pages need special attention in PageRank

computation, since they cause existence of zero-columns in transition matrix [11].

Some efforts to handle dangling pages include simply getting rid of them [14],

getting rid of them but considering them in final iterations [32] and adding an

ideal sink to the Web-graph which all pages points to it [12]. The most popular

approach is to uniformly connect dangling pages to all pages in the graph [31,

39, 45]. The latter approach requires a great change in the Web-graph. As a

result, adjacency matrix changes and becomes much denser. Fortunately, the

original sparse transition matrix can be used instead of the denser matrix for

computing PageRank. A power method solution for PageRank computation is

presented in Figure 2.1 [31]. v is the personalization vector which contains the

probabilities of visiting pages without following hyperlinks. Since v contains

entries of a probability distribution, the sum of the entries in v is equal to 1.
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PageRank(A, v)
p← v
repeat

q ← dAp
γ ← ||p||1 − ||q||1
q← q + γv
δ ← ||q− p||1
p← q

until δ < ε
return p

Figure 2.2: Power method solution for PageRank

2.2 PageRank Algorithms for Faster Computa-

tion

Iterative algorithms are used for computing PageRank. Hence, there are two

considerations in faster computing of PageRank: reducing per-iteration time and

reducing number of iterations.

One of the most widely used methods to compute PageRank is the power

method. There are several reasons for popularity of the power method, despite its

slow convergence. First of all, it is a simple method which makes computation on

a sparse matrix, rather than a dense matrix. The original sparse transition matrix

can be used in power method while handling dangling pages (see Figure 2.1). This

ensures faster per-iteration time. Power method requires less memory with a few

number of vectors and a sparse transition matrix.

The BlockRank algorithm proposed by Kamvar et al. [32] use pre-computed

values for p0 instead of v. BlockRank algorithm utilizes the block structure

of the Web for faster convergence of PageRank vector. In the WWW, most of

the links within pages are to the pages within the same host (site). Authors

observe that more than 80% of the hyperlinks in the Web are intra-site links.

This means that the rank of a page is mostly determined by the links from the

same site. Considering this fact, BlockRank algorithm first computes a ranking
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between Web-sites, called HostRank and use this ranking as initial approximation

for PageRank. Computing HostRank is much faster than computing PageRank,

since the host graph is much smaller than Web-page graph.

Other iterative methods for computing PageRank such as GMRES, BiCG and

BiCGSTAB are discussed in [23]. We will discuss this work in Chapter 3. Iterative

aggregation is applied to PageRank in [37]. Directed acyclic graph structure of the

Web is utilized in [8] for faster convergence of PageRank computation. Adaptive

methods which utilize quick convergence of most of the Web are introduced in [30].

The huge size of the Web-graph emerges I/O efficient techniques for sequential

calculations of PageRank. These techniques mostly aim to reduce per-iteration

time rather than the number of iterations. Efficient encoding techniques are

presented in [27]. Block-based disk access approach is considered in [26]. Based

on the work in [26], Chen et al. introduce I/O efficient techniques in [22].

In literature, some less popular alternative methods are introduced for ranking

Web-pages, such as HITS (Hyperlink-Induced Topic Search) [36] and SALSA

(Stochastic Approach for Link Structure Analysis) [40, 41]. These two methods

iteratively compute two scores for each page, namely hubs and authorities, and

runs at query time on the query sub-graph of the Web.



Chapter 3

Parallel PageRank

PageRank citation ranking is rather a simple problem which can be solved using

old methods. What makes it extremely difficult is the size of the problem. PageR-

ank computation is claimed to be “the World’s largest matrix computation” by

Cleve Moler [44]. Most of the time, the matrix to be computed, as a whole, is too

large to be stored in the main memory of a single machine. Only the PageRank

vector itself with a billion entries requires 4 gigabytes of main memory. This

fact enforces researchers to discover efficient parallel and distributed algorithms.

However, it is not easy to come up with an efficient parallel algorithm because of

the issues related to parallel PageRank computation, which will be discussed in

Section 3.1. Some attempts on parallelizing PageRank in current literature are

explained in Section 3.2.

3.1 Issues in Parallel PageRank Computation

As explained in Section 2.2, PageRank can be computed by various algorithms,

which have many common features. In order to efficiently parallelize any PageR-

ank algorithm, there are several issues to be considered. Some of the important

issues can be listed as follows:

9
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• Irregularly sparse and huge Web adjacency matrices

• Load balancing

• High communication volume

• Fine-grain computations

• Handling zero-rows in transition matrix A (rank computations of pages

without incoming links)

Sparse matrix-vector multiplication is the core operation in PageRank com-

putations. Several state-of-the-art techniques are recently proposed for efficient

parallelization of sparse matrix-vector multiplications [17, 19, 51]. However, it is

not very practical to directly apply this techniques to enormous size Web-matrices

due to the space limitations and high preprocessing time required. On the other

hand, because of the irregularity in the sparse transition matrix, it is not easy to

find intelligent distribution of the matrix and the PageRank vector to processors

without applying state-of-the-art techniques.

Load balancing in PageRank computation corresponds to balancing computa-

tional load for each processor. This computational load is mostly originated from

matrix-vector multiplication. In order to balance computation in matrix-vector

multiplication, non-zeros of the matrix should be evenly distributed among the

processors. Furthermore, linear vector operations and norm operations should

also be considered for load balancing of PageRank computation. Without con-

sidering communication overhead, load balancing is relative easy to be provided.

However, considering only load balancing in partitions may lead to high commu-

nication volume. High communication volume slows down the parallel execution

time seriously, since there is a fine-grain computation between two consecutive

communication phases.

Another consideration of parallel PageRank computation is handling zero-

rows (rows without non-zeros) in transition matrix. This problem is specific to

the PageRank problem. In most of the matrix-vector multiplication applications,
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there exists no such rows. This problem originates from the pages without in-

coming links in the Web-graph. Those pages are different from dangling pages

(see Section 2.2). Note that, we do not need to have information about other

pages’ ranking scores for computing PageRank values of those pages, since they

have no incoming link. For this reason, in parallel implementations of PageRank

algorithms, those pages may be utilized for reducing communication volume and

obtaining better load balancing. To the best of our knowledge, in current lit-

erature, there has been no effort for handling zero-rows in parallelization of the

PageRank. We will explain how we handle zero-rows in Chapter 5.

3.2 Survey on Parallel and Distributed Algo-

rithms

There are mainly two types of approaches in parallelization of PageRank: dis-

tributed approximation algorithms and massively parallel implementations of

original algorithms. Approximate methods target to reduce the number of itera-

tions by some numerical techniques, allowing tolerable errors in ranking. Latter

approach tries to implement sequential algorithms in parallel without allowing

any numerical differences in PageRank vector.

Wang and DeWitt [53] propose a distributed algorithm for an architecture

where every Web-server answers queries on its own data. Algorithm, basically,

first computes PageRank values for each server and by exchanging links across

servers adjusts local PageRank values. Local PageRank is computed by the power

method. ServerRank concept is proposed in this work, which corresponds to a

ranking among servers. ServerRank is also computed by the power method.

Then, using local PageRank and ServerRank information together with inter-

server link information, local PageRank values are approximated. This approxi-

mate, architecture dependent method does not have any strategy to reduce the

communication volume while exchanging inter-server links.



CHAPTER 3. PARALLEL PAGERANK 12

Another distributed PageRank algorithm applies iterative aggregation-

disaggregation methods for reducing the number of iterations [54]. This work

is similar to [53] in the point that they both first compute local PageRank vec-

tors, then approximate the result using inter-server link information. Iterative

aggregation-disaggregation method reduces the number of iterations, but it in-

creases per-iteration time, since each iteration requires several matrix-vector mul-

tiplications. At the end of each iteration, local PageRank values are sent to global

coordinator to check for convergence.

In 2002, Gürdağ [25] parallelized PageRank and experimented the perfor-

mance on a distributed memory PC cluster with different network interfaces. In

this work, although the author explains the graph partitioning based approach,

because of the high preprocessing overhead and high imbalance, Gürdağ refrains

implementing graph partitioning based parallel PageRank. Unfortunately, there

is no special attempt to reduce the communication volume; instead, pages are

simply assigned to the processors using uniform block partitioning. That is first
n
p

rows are assigned to processor 1, second n
p

rows are assigned to processor 2 and

so on, where n is the total number of rows and p is the number of processors.

Another deficiency of this work is, although there are lots of experiments and

performance comparisons with different settings, the experiments are carried out

with randomly generated Web graphs, instead of real datasets.

In a similar work, Manaskasemsak and Rungsawang propose a massively par-

allel PageRank algorithm to be run on gigabit PC clusters [43]. The authors

parallelize the basic PageRank algorithm proposed by Brin and Page [14]. The

algorithm suffers from the high communication volume, since transition matrix

is distributed to processors using uniform block partitioning. The algorithm re-

quires communication of all inter-processor PageRank scores. To overcome this

problem, authors suggest to do communication for every x iterations. However,

this approach results with error in computation of rank values.

Another parallelization effort of PageRank is explained in [23]. As in [43],

authors do not try to minimize the communication volume. They refrain apply-

ing graph partitioning based models for PageRank computation, claiming that
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graph partitioning does not perform well for huge, power-law Web data. They

parallelize PageRank using different iterative methods such as Jacobi, GMRES,

BiCG and BiCGSTAB. This work is important in the sense that it shows the rel-

ative performances of different iterative methods for computing PageRank, such

as number of iterations and per-iteration times.



Chapter 4

Graph Theoretical Models for

Sparse Matrix Partitioning

Graph and hypergraph partitioning based models are widely used to obtain better

matrix decompositions for parallel matrix-vector multiplications. Both models

are used as a preprocessing to minimize inter-processor communication volume

while obtaining load balance. Graph partitioning (GP) based models minimize

wrong metric for communication [17, 29], whereas hypergraph partitioning (HP)

based models correctly encapsulate the minimization of communication volume,

hence find better quality solutions (see Section 4.4).

This chapter aims to give some background information on GP and HP. We

review applications of HP-based models to PageRank problem at the end of this

chapter. We explain GP and HP problems in Sections 4.1 and 4.2, respectively.

Widely used multilevel paradigm to find a solution to GP and HP is explained in

Section 4.3. HP-based models for parallelization of matrix-vector multiplication

are reviewed in Section 4.4. A recently proposed work on HP-based models for

PageRank computation is reviewed in Section 4.5.

14
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4.1 Graph Partitioning Problem

An undirected graph G=(V , E) is defined as a set of vertices V and a set of edges

E . Each edge eij ∈E connects two distinct vertices vi and vj in V . Weight wi or

multiple weights w1
i , w

2
i , . . . , w

M
i may be associated with a vertex vi ∈ V . cij is

called as the cost of the edge eij∈E .

Π={V1,V2, . . . ,VK} is said to be a K-way partition of G where each part Vk

is a nonempty subset of V , parts are pairwise disjoint, and the union of the K

parts is equal to V . For each part Vk ∈ E , a balanced partition Π satisfies the

balance criteria

Wm
k ≤ (1 + ε)Wm

avg, for k=1, 2, . . . , K and m=1, 2, . . . , M. (4.1)

In Equation 4.1, each weight Wm
k of a part Vk is defined as the sum of the

weights wm
i of the vertices in that part. Wm

avg is the average weight of all parts. ε

is the maximum imbalance ratio allowed.

In a partition Π of G, an edge is cut if its vertices are in different parts, uncut

otherwise. The cutsize which represents the cost χ(Π) of a partition Π is

χ(Π) =
∑

eij∈E
cij (4.2)

A K-way graph partitioning problem is dividing a graph into K parts such

that cutsize is minimized (Equation 4.2) while obtaining the balance on weights

(Equation 4.1). This problem is known to be NP-hard. If multiple weights are

associated with vertices (i.e. M > 1 in Equation 4.1), the problem is called

multiconstraint graph partitioning.
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4.2 Hypergraph Partitioning Problem

A hypergraph H= (V ,N ) is defined as a set of vertices V and a set of nets N .

Each net nj ∈N is a subset of vertices in V . The vertices of a net nj are called

as the pins of net nj. Weight wi or multiple weights w1
i , w

2
i , . . . , w

M
i may be

associated with a vertex vi∈V . cj is called as the cost of the net nj∈N .

Π={V1,V2, . . . ,VK} is said to be a K-way partition of H where each part Vk

is a nonempty subset of V , parts are pairwise disjoint, and the union of the K

parts is equal to V . For each part Vk ∈N , a balanced partition Π satisfies the

balance criteria

Wm
k ≤ (1 + ε)Wm

avg, for k=1, 2, . . . , K and m=1, 2, . . . , M. (4.3)

In Equation 4.3, each weight Wm
k of a part Vk is defined as the sum of the

weights wm
i of the vertices in that part. Wm

avg is the average weight of all parts. ε

is the maximum imbalance ratio allowed.

In a partition Π of H, a net connects a part, if it has at least one pin in that

part. Connectivity set Λj of a net nj is the set of parts that the net nj connects.

Connectivity λj = |Λj| of a net nj is the number of parts connected by nj. A net

is cut if it connects more than one part (λj > 1), uncut otherwise. Cut-nets are

called external nets and uncut-nets are called internal nets of the parts that they

connect.

A K-way hypergraph partitioning problem is dividing a hypergraph into K

parts such that a partitioning objective defined over the nets is minimized while

obtaining the balance on weights (Equation 4.3). This problem is known to be

NP-hard [42]. If multiple weights are associated with vertices (i.e. M > 1 in

Equation 4.3), the problem is called multiconstraint hypergraph partitioning.

The objective function to be minimized defined over the nets are called cutsize.

Most widely used partitioning objective is called connectivity-1 cutsize metric:
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χ(Π) =
∑

ni∈N
ci(λi − 1), (4.4)

in which each net contributes ci(λi − 1) to the cost χ(Π) of a partition Π. This

cutsize metric is widely used in VLSI [42] and sparse matrix community [17, 19,

51]. In this work, we will concentrate on minimizing this definition of cutsize.

Another definition of cutsize is called cut-net metric and defined as

χ(Π) =
∑

ni∈N
ci, (4.5)

in which the cutsize is equal to the sum of costs of the cut-nets. This objective

is less used than the connectivity-1 metric, however there are cases in which this

metric is useful [10].

4.3 Multilevel Paradigm for Graph and Hyper-

graph Partitioning

Heuristic methods are used for partitioning graphs and hypergraphs, since GP

and HP problems are NP-complete. The most widely used technique is multi-

level partitioning paradigm [15]. Multilevel approach consists of three phases:

coarsening, initial partitioning, uncoarsening with refinement.

In the coarsening phase, vertices are visited in a random order and matched

or clustered by a given vertex matching criteria. Vertices might be matched

according to the number of nets connecting them, various distance definitions

between them or randomly. Matched vertices form a super vertex of the next

level. The weight of a super vertex is the sum of the weights of vertices that

form the super vertex. This matching continues until the number of vertices falls

below a predetermined threshold.
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The coarsest graph or hypergraph is easy to be partitioned. In the initial

partitioning phase, the coarsest graph or hypergraph is partitioned by one of the

various heuristics.

After the initial partitioning phase, the quality of partitioning by means of cut-

size and imbalance may be improved. The last phase of the multilevel partitioning

is uncoarsening. In this phase, the coarsest graph or hypergraph is uncoarsened

in the reverse direction of the coarsening phase. During each uncoarsening level,

cutsize is refined using one of the various heuristics. This refinement is realized by

trying to change partitions of the vertices so that the cutsize across the partitions

are reduced.

There are two main approaches to K-way partition a graph or hypergraph

using multilevel paradigm: recursive bisection and direct K-way partitioning.

Recursive bisection approach recursively partitions a graph or hypergraph into

two until K-partitions are generated. Direct K-way partitioning applies multilevel

phases once and directly generates K-partitions. Figure 4.1 depicts direct K-

way approach to multilevel paradigm for graph and hypergraph partitioning.

Multilevel paradigm enabled implementations of powerful graph and hypergraph

partitioning tools [9, 16, 18, 33, 34, 35, 47].

4.4 Hypergraph Partitioning Models for Paral-

lel Matrix-Vector Multiplication

For efficient parallelization of repetitive matrix vector multiplications (y = Ax),

it is required to evenly distribute non-zeros in the sparse matrix to processors

while achieving small amount of communication. This is a hard problem which

requires a permutation of rows and columns of the matrix A. To find a good

permutation, several HP-based models are proposed in the literature [17, 19, 20].

Hypergraph models are used to assign non-zero entries of matrix A together

with vectors x and y to processors. If vectors x and y undergo linear vector



CHAPTER 4. GRAPH THEORETICAL MODELS 19

Multi−level K−way refinementMulti−level coarsening

Initial Partitioning

Figure 4.1: 4-way multilevel graph or hypergraph partitioning [16]

operations in an iterative method (which is the case in PageRank computation),

than each processor should obtain same portions of input vector x and output

vector y. This type of partitioning is called symmetric partitioning.

In this section, we are going to explain four HP-based models for different

parallelization techniques of matrix vector multiplications. Rowwise and colum-

nwise decomposition techniques are referred as 1D partitioning, in which matrix

A is assigned to processors according to its rows or columns, respectively. In

2D fine-grain partitioning, non-zeros are individually assigned to processors. 2D

checkerboard partitioning, as the name implies, is an assignment of non-zero en-

tries to the processors in a checkerboard pattern.



CHAPTER 4. GRAPH THEORETICAL MODELS 20

514 6 9 133 4 716158 10 12 1 2 11

=

16
15

3
8

11
14

5

2
1

6
9

13

4
7

10
12

xy A

P1

P2

P3

P4

Shaded areas indicate assignment for the matrix and vectors to processors. For
example, rows 3, 8, 15 and 16 are assigned to one processor together with

corresponding x and y vector entries.

Figure 4.2: Rowwise partitioning of y=Ax.

4.4.1 1D Rowwise Partitioning

In row-parallel multiplication y=Ax, each processor is responsible for multiplica-

tion of different rows. Rowwise partitioning assigns rows of the matrix and vector

entries to processors (see Figure 4.2). In this scheme, if row j is assigned to pro-

cessor Pi, then Pi is responsible for calculating yj. To calculate yj, Pi should

have the x vector entries that correspond to the non-zeros in row j. Otherwise,

the x vector entry should be requested from the processor that holds this entry.

Figure 4.2 depicts a symmetric partitioning on input and output vectors. For

computing y16, P1 should have x3, x8, x16, x2 and x9. x vector entries 3, 8 and

16 is already assigned to P1. However, for calculating y16, x2 is requested from

P3 and x9 is requested from P4. Hence, in order to reduce total communication

volume, non-zeros in the matrix should be gathered to the diagonal blocks. Off-

diagonal blocks incur communication. Note that, there is no dependency between

processors on y vector entries in row-parallel multiplication, hence they are never

communicated.
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Figure 4.3: 4 way decomposition of column-net hypergraph of matrix A.

The column-net hypergraph partitioning model is proposed by Çatalyürek

and Aykanat [17] for reducing total communication in row-parallel matrix-vector

multiplications. In column-net model, for each row, there exists a vertex and for

each column, there exists a net (see Figure 4.3). Vertices are weighted with the

number of non-zeros in corresponding row, to denote the workload of that row.

Each net has a unit cost. nj contains the pin vi, if matrix A contains non-zero

aij. In other words, each net nj connects non-zeros associated with xj (i.e. non-

zeros in column j ). During multiplication, if non-zeros that are multiplied with

the same x vector entry are not in the same processor, then the vector entry

should be communicated. Hence, partitioning the column-net hypergraph while

minimizing the cutsize using connectivity-1 metric, minimizes the communication

volume of row-parallel matrix-vector multiplication.

4.4.2 1D Columnwise Partitioning

Column-parallel matrix-vector multiplication y=Ax is similar to row-parallel

multiplication, but in this case columns are distributed among processors (see

Figure 4.4). Hence, each processor is now responsible for doing multiplications

incurred from local x vector entries. At the end of the local multiplications, each

processor contains partial y vector results. These results are communicated to
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Figure 4.4: Columnwise partitioning of y=Ax.

compute actual y vector. For example, in Figure 4.4, for y16, multiplication in-

curred by x3, x8 and x16 done by P1, x2 is done by P3 and x9 is done by P4. Partial

results computed by P3 and P4 are sent to P1, which is responsible for computing

y16. In column-parallel multiplication, dependency between processors are on y

vector entries, instead of x.

The row-net hypergraph partitioning model is proposed by Çatalyürek and

Aykanat [17] for reducing total communication in column-parallel matrix-vector

multiplications. Row-net hypergraph is dual of column-net hypergraph. In a

row-net hypergraph, each column of the matrix corresponds to a vertex with

weight is equal to the number of non-zeros in the corresponding column and each

unit-cost net corresponds to a row which contains the vertices that correspond

to the non-zero columns in that row. Hence, each vertex denotes workload of a

column and each net denotes dependencies on a y vector entry. For partitioning,

connectivity-1 metric is used, since an external net ni refers a communication

of partial y vector results to the owner of yi from the other processors which

contributes the result of yi.
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Figure 4.5: Fine-grain partitioning of y=Ax [48]

4.4.3 2D Partitioning Models

2D partitioning models are applicable to row-column-parallel matrix-vector multi-

plications y=Ax. In a 2D partition of the matrix, non-zeros in a row or a column

may be assigned to different processors. Hence, processors require communication

for both x and y vector entries. In row-column-parallel multiplication, processors

first communicate on x vector entries. After receiving necessary x vector entries,

each processor can do multiplications with local non-zeros. Finally, processors

communicate partial y vector entries to compute actual y vector. Figure 4.5

depicts a sample 2D partitioning. For the partitioning represented in the figure,

in order to compute y5, P2 receives x1 from P1 and partial result a51x1 + a54x4

computed by P2 is sent to P3.

Minimization of total communication volume for 2D fine-grain partitioning

and 2D checkerboard partitioning can be modeled by HP-based approach. Fine-

grain model tries to reduce the total communication volume by reducing depen-

dencies on x and y vector entries [19]. Checkerboard partitioning model proposed

by Çatalyürek and Aykanat [20] correctly encapsulates minimization of total com-

munication volume with smaller number of inter-processor communications.
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4.4.3.1 2D Fine-Grain Partitioning

1D partitioning schemes try to assign rows or columns to processors, as a whole.

According to the partitioned dimension, communication occurs before or after the

local multiplication. Another approach to parallel matrix-vector multiplication

may be assignment of non-zeros to processors individually, instead of coarse grain

assignment of rows or columns. This type of partitioning is called fine-grain

partitioning. 2D partitioning represented in Figure 4.5 is a fine-grain partitioning.

For fine grain decomposition of the matrix A in y=Ax, Çatalyürek and

Aykanat [19] propose a HP-based model. The hypergraph in the model con-

tains a vertex for each non-zero in A and two nets connected to each vertex.

Each vertex denotes one multiplication incurred by its corresponding non-zero,

therefore has unit weight. For each row and for each column, there is a net which

contains vertices corresponding to the non-zeros in the row or column, indicating

the dependencies of non-zeros to the x and y vector entries.

4.4.3.2 2D Checkerboard Partitioning

Checkerboard partitioning is a 2D coarse grain partitioning scheme for matrix-

vector multiplication y=Ax. There are several methods for checkerboard par-

titioning [28]; but we will concentrate on a more elegant method proposed by

Çatalyürek and Aykanat [20].

In checkerboard partitioning scheme, matrix A is first partitioned into r row

blocks, using column-net hypergraph model for rowwise decomposition. Then,

each row block is partitioned into c column blocks. As a result, matrix is parti-

tioned into r× c parts, which naturally maps to r× c mesh of processors. c-way

columnwise partitioning is applied on a row-net hypergraph with multiweights.

Each vertex of row-net hypergraph has r weights, where jth multiweight of vertex

i (vertex corresponding to ith column), wj
i , is equal to number of non-zeros of

column i in row-block j. This assignment of multiweights ensures balanced par-

titioning of c loads in each of r row-blocks. Partitioning column-net hypergraph
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reduces the communication volume on x and partitioning row-net hypergraph

reduces the communication volume on y.

4.5 Page-Based Models

Matrix-vector multiplication is the kernel operation of many iterative methods.

HP-based models effectively address the problem of parallelizing matrix-vector

multiplication and hence is very powerful for parallelization of many iterative

methods [49]. PageRank algorithms are iterative methods based on repetitive

matrix-vector multiplications. With this motivation, Bradley et al. [13] utilized

HP-based models for PageRank computation. We will refer their work as page-

based approach from now on, since they partition model hypergraphs for the

page-to-page transition matrix.

In their work, Bradley et al., uses the power method formulation represented

in Figure 2.1 for computing PageRank. 1D rowwise and 2D fine-grain HP-based

models are applied to the matrix-vector multiplication in the power method

for fast parallel computing of PageRank. Parallel hypergraph partitioning tool

Parkway [47] is used for partitioning hypergraphs. As a result, hypergraph par-

titioning approach reduced the per-iteration time of the PageRank computation

by a factor of two, compared with the most effective approach until this work.

Despite halving the per iteration time, page-based approach has an important

deficiency. Hypergraph partitioning is a preprocessing for matrix-vector multi-

plications. For PageRank calculation, the transition matrix to be partitioned is

very big in size, which requires more time and space for partitioning. Hence,

even with a parallel partitioning tool, it may take quite long time to partition

such matrices. For example, the data provided by Bradley et al. reveals that

in some cases, partitioning takes 10,000 times longer than one iteration. On the

other hand, computing PageRank takes 80-90 iterations for their method and

convergence criteria. Hence, it can only be used for calculating values of many

PageRank vectors which shares the same partitioning.



Chapter 5

Site-Based Models

As discussed in the previous chapter, hypergraph-partitioning-based models for

the parallelization of PageRank computations are quite successful in minimizing

the total communication volume during the parallel PageRank computations. On

the other hand, the preprocessing overhead incurred due to the partitioning of

the page-to-page (P2P) transition matrix A is quite significant.

In this chapter, we investigate the ways to reduce the preprocessing over-

head before the parallelization of PageRank computation without degrading the

parallel computation performance. For this purpose, we propose to partition

the compressed version of the transition matrix. Using the observation that

Web sites form natural clustering of pages [8, 32], we compress the page-to-page

transition matrix to site-to-page (S2P), page-to-site (P2S) and site-to-site (S2S)

matrices and partition them employing the hypergraph and graph partitioning

based models. Partitioning a compressed matrix corresponds to partitioning a

coarser hypergraph or graph. Besides reducing the preprocessing time, parti-

tioning coarser site hypergraph or graph has an advantage of finding comparable

cutsize to page-based partitioning, since natural clustering of pages provide high

quality coarsening. We also utilize zero-rows in the transition matrix for better

load balancing and reducing the communication overhead.

26
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In this chapter, we explain our contributions to parallel PageRank computa-

tion problem. In Section 5.1, we propose a technique to decrease the number of

global synchronization points for parallelization of the power method. In Sec-

tion 5.2, site-based HP models for 1D and 2D decomposition of transition matrix

are introduced. In Section 5.3, graph models for 1D decomposition are explained.

5.1 Coarse-Grain Power Method

In Chapter 2, we discussed a power method formulation for computing PageRank.

Power method is popular for computing PageRank, because of the low memory

requirements and fast per-iteration time. In this work, our main focus is to

decrease the per iteration time of PageRank algorithms. Although our approach

is applicable to other alternative iterative methods, we choose power method for

parallelization, since it is simple yet efficient for computing PageRank. In [23],

performance of several iterative methods are presented. The cited work reveals

that despite the number of iterations are less for other iterative methods, the

power method has very little per-iteration time. As a result, overall completion

time of power method is smaller than alternative methods.

Figure 2.1 depicts the power method that is used for computing PageRank.

When the power method is parallelized in this form, there are two global syn-

chronization points. To assign global γ and δ values, processors exchange their

local γ and δ values. It is possible to compute global values for scalars γ and δ

with only one all-to-all communication.

To reduce the number of global synchronization points to one, we delay com-

putation of δ for one iteration. By doing so, processors can exchange local γ

and δ values in one all-to-all communication. The coarse-grain power method for

parallel PageRank computation is represented in Figure 5.1.
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Parallel-PageRank(A, v)
q← v
repeat

r ← dAq
γlocal ← ‖q‖1 − ‖r‖1
δlocal ← ‖q− p‖1
〈γ, δ〉 ← Allreduce sum(〈γlocal, δlocal〉) //Sync. point
r← r + γv
p← q
q← r

until δ < ε
return q

Figure 5.1: Coarse-grain power method for parallel PageRank computation

5.2 Site-Based HP Models

In this section, we introduce several site-based HP models for faster decomposition

of the transition matrix. As the original models, site-based HP models correctly

capture the total communication volume.

General framework of site-based hypergraph models is as follows. Rows and

columns corresponding to the pages without in-links of the transition matrix

A are moved to the end for handling zero-rows (see Figure 5.2 for reordering

of matrix A). After reordering, the new matrix B, which does not contain any

rows and columns corresponding to the pages without in-links, is compressed.

This corresponds to one level coarsening of the page hypergraph, where each

supervertex maps to a site. After compression, number of vertices decreases from

number of pages to number of sites. However, there is no decrease in the number

of nets. To decrease the number of nets, we first eliminate nets which have no

vertices or connect only one vertex, since they do not affect the cutsize of any

partition. This reduces the number of nets drastically, because most of the pages

include hyperlinks only to pages in the same site and most of them have no links.

Remaining hypergraph has many nets which connect to same set of vertices. The

number of nets are further reduced by combining identical nets together, which
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A =
B C

Z (Zero−rows)

Figure 5.2: Ordering of matrix A

also reduces the number of nets significantly. As the last step of preprocessing, the

resulting hypergraph is partitioned and part vectors for A are generated mapping

the sites in B and pages without in-links to the partitions. Site-based models for

each partitioning scheme are explained in detail in the following subsections.

5.2.1 Rowwise Partitioning

In this section, each step of rowwise decomposition of transition matrix A, that

are mentioned above, is explained in detail. We use x and y to denote input and

output vectors to be partitioned for matrix-vector multiplication, respectively.

5.2.1.1 Handling Pages without In-links

Zero-rows in A corresponds to pages that have no incoming links in Web graph G.
Therefore, their PageRank values are γv for each iteration (see Figure 5.1). To

compute their PageRank values, processors do not need to exchange their local x

vector entries, since each processor can calculate γ and may store the value of v.

Hypergraph partitioning naturally prevents communication on x for zero-rows.

However, pages without in-links affect the PageRank values of the pages that

they have hyperlinks to. Therefore, they require communication for computing

PageRank values of the pages they link, if they are assigned to different processors.

Nevertheless, this communication can be avoided, since their PageRank values,

γv, can be calculated by any processor. Hence, we let HP-based model find

partitions for only nonzero-rows and assign zero-rows to under-loaded processors.
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Figure 5.3: Sample Web graph

In order to exclude zero-rows from the column-net hypergraph, we reorder

the transition matrix, so that rows and columns corresponding to the no-in-link

pages are moved to the end. Figure 5.4 represents the ordering of the A matrix

of the sample Web graph in Figure 5.3. In Figure 5.4, the upper left matrix

bordered with thick lines, B, contains no zero-row. Shaded diagonal blocks inside

B represents the intra-site links. Columns representing the links given by no-in-

link pages forms the sub-matrix C.

5.2.1.2 Site-to-Page Compression and Identical Net Elimination

Even after zero-row elimination, the matrix B is still too big to be partitioned by

HP-based models. To reduce the size of the hypergraph to be partitioned, B is

compressed on its rows in linear time with the number of non-zeros in B. In the

site-to-page (S2P) compressed matrix Bcomp, each row represents a site and each

column represents a page. There is a non-zero in Bcomp
ij if there is a link from site i

to page j in G. During compression, if page j belongs to site i and Bcomp
ij does not

exist, we add non-zero Bcomp
ij to correctly encapsulate the communication volume

for symmetric partitioning of x and y vectors [17]. Compression of P2P matrix to

S2P matrix corresponds to coarsening the vertices of the column-net hypergraph

of B by clustering pages into their sites. Figure 5.5 depicts compression of B.
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Figure 5.4: Ordered transition matrix A of the sample Web graph in fig. 5.3
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Figure 5.6: Removal of columns that contain single non-zero

After compression, many columns have only one non-zero. These columns

represent the pages that contain only intra-site links. In the column net hyper-

graph, these columns are represented with nets that contain one vertex. Such

nets are called one-pin nets. One-pin nets do not affect the cutsize, in other

words they are always internal nets. Hence, we may remove these nets from the

site hypergraph. Removal of columns that contain only one non-zero is depicted

in Figure 5.6.

In the compressed matrix, many columns have the same non-zero pattern.

This means that in the site hypergraph, many nets contain same set of vertices.

In any partition, cutsize of the identical nets are also identical. Hence, we may

gather identical nets into a single net with its cost set equal to the number of

identical nets gathered together. Identical net elimination can be realized with

a linear time algorithm as described in [9]. Figure 5.7 pictures the elimination

of identical columns in S2P matrix, which corresponds to elimination of identical

nets in column-net hypergraph of the S2P matrix with proper cost assignment.
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5.2.1.3 Vertex Weighting and Partitioning

For rowwise partitioning of matrices with column-net hypergraph model, ver-

tices are generally weighted with the number of non-zeros in the corresponding

row. This type of weighting considers only the workload of matrix-vector mul-

tiplication. However, in PageRank algorithm, we have linear vector and norm

operations, which also incur computational load. While weighting vertices of

site-based hypergraph, we consider the linear vector operations as well as the

matrix-vector multiplication.

In calculation of computational load, we assume the time taken for scalar

multiplication and addition operations are identical. Under this assumption, for

each iteration, the cost of computing PageRank for a page i is 2x+7 flops, where

x is the number of non-zeros in the ith row of transition matrix A. We calculate

this cost as follows:
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• Each non-zero in matrix-vector multiplication requires one multiplication

and one addition (yi ← yi + Aijxj),

• Dampening factor requires one scalar multiplication (yi ← dyi),

• Calculation of γ and δ requires one subtraction and one addition, for each

(see Figure 5.1),

• Addition of γv with r requires one addition and one multiplication.

For the site-based model, vertices of the coarse hypergraph denote sites, in-

stead of individual pages. Hence, each vertex in coarse hypergraph is weighted

with the sum of weights of the pages in the corresponding site. For our sam-

ple Web matrix represented in Figure 5.4, the weight of vertex v1 in column-

net site hypergraph (which corresponds to the site M:www.microsoft.com) is

2 × 8 + 4 × 7 = 44. There are totally 8 non-zeros in rows 2, 3, 4 and 5, which

requires 16 flops for matrix-vector multiplication. These four pages require 28

flops for linear vector operations. After weighting vertices, the site hypergraph

is partitioned. The matrix excluding zero-rows is partitioned according to vertex

partition found by the hypergraph partitioning. x and y vectors are symmetri-

cally partitioned according to the row distribution.

While weighting vertices, we do not count zero-rows, since they are not repre-

sented as vertices in site-hypergraph. Zero rows do not necessitate computation

for matrix-vector multiplication, but they require computation for linear vector

operations. PageRank value for a no-in-link page is γv. δ is calculated for these

pages as usual. γ is equal to ‖q‖1, since ‖r‖1 is 0. Hence, computational load of

zero-rows is 4 flops. We assign the responsibility of computing PageRank values

for no-in-link pages to processors after hypergraph partitioning. Zero-rows can

be thought as disconnected small vertices in site-based hypergraph. We assign

zero-rows with a greedy bin-packing approach. For each zero-row, we assign it to

the least loaded processor.

The x vector entries corresponding to the no-in-link pages are not assigned

to processors, as they can be easily computed by any processor. This causes
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Figure 5.8: Rowwise partitioning of S2P matrix and its projection on A.

a small amount of computational redundancy on these vector entries to avoid

expensive communication. The partitioning of S2P matrix and its projection to

the transition matrix A and vectors x and y is presented in Figure 5.8.

5.2.2 Columnwise Partitioning

Site-based HP model for columnwise decomposition is similar to the rowwise

model. In columnwise partitioning, the treatment for zero-rows and, as a result,

vertex weighting differs. In columnwise model, the transition matrix is com-

pressed on its columns, i.e., the row-net hypergraph of A is coarsened, while in

rowwise partitioning, we compress the matrix B on its rows. In previous section,
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Figure 5.9: Columnwise partitioning of A.

we discussed that rowwise decomposition of sub-matrix C does not require com-

munication on x, because PageRanks of no-in-link pages can be computed by any

processor. However, columnwise partitioning of C may incur communication on

output vector during parallel execution, since C is used to calculate PageRank

values for pages with in-links. Hence, page-to-site matrix of A, including C, is

partitioned on its columns by row-net site-hypergraph model.

Since PageRank values can be computed by any processor for no-in-link pages,

symmetric partitioning is not required for input and output vectors of A. Un-

der these circumstances, each no-in-link page contributes 2x units of weight and

others contribute 2x+7 units of weight in row-net hypergraph. Weights are calcu-

lated in the same manner with the rowwise model. We do not consider the linear

vector operations for no-in-link pages in hypergraph model, using the flexibility of

unsymmetric partitioning. Required linear vector operations on PageRank vector

corresponding to the zero-rows may be assigned independent of the column dis-

tribution of C. PageRank calculation for no-in-link pages and vector operations

cost 4 flops for each iteration. After columnwise decomposition of B and C by

partitioning site-based coarse row-net hypergraph of A, PageRank computation
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Figure 5.10: Columnwise partitioning of A while avoiding communication for
sub-matrix C.

of no-in-link pages are assigned to processors by greedy bin packing. Columnwise

decomposition of sample Web matrix in Figure 5.4 is represented in Figure 5.9.

This approach for columnwise partitioning has an advantage of finding better

load imbalance. However, on the contrary to the rowwise model, columnwise

model does not avoid the communication incurred by the sub-matrix C. To avoid

communication for C, it should be partitioned rowwise, because of the reasons

discussed above. Another approach to obtain lower communication volume may

be partitioning B columnwise and partitioning C rowwise, accordingly. If column

i of B is assigned to processor p, then row i of C should also be assigned to

processor p. This can be achieved by partitioning row-net hypergraph of B

considering the row weights of C. Hence, each vertex vi of site-hypergraph to be

partitioned is weighted 2(cBi + rCi) + 7ni, where cBi is the number of non-zeros

in columns of B corresponding to site i, rCi is the number of non-zeros in rows

of C corresponding to site i and ni is the number of pages with in-links in site i.

Columnwise partitioning of B in accordance with the rowwise partitioning of C

is depicted in Figure 5.10.
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Figure 5.11: Site HP-based fine-grain partitioning of A.

5.2.3 Fine-Grain Partitioning

Fine-grain model is expected to find partitions with lower communication volume

and better imbalance than other HP-based models. However, partitioning time

for fine-grain hypergraph is longer.

In page-based fine-grain HP model, each non-zero in transition matrix A is

considered as a vertex and each vertex is connected to two nets, one for its row and

one for its column. For a Web-graph containing billions of links, it is very difficult

to partition fine-grain hypergraph with current hypergraph partitioning tools,

because of time and space complexity of the problem. Therefore, we compress

the transition matrix site-to-site and each non-zero in S2S matrix is considered

as a vertex in site-based fine-grain hypergraph.

To correctly encapsulate the communication volume, a vertex vij, which cor-

responds to the non-zero aij in the S2S matrix, is a pin of net nr for all pages r in

site i and net nc for all page c in site j which has at least one in-link. Note that,

the sub-matrix C require communication on y, but not require on x. Hence, we

do not consider column-nets for C. One-pin nets and identical nets are eliminated

in a similar fashion as discussed in Section 5.2.1.2.
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Figure 5.12: Fine-grain partitioning of A while avoiding communication for sub-
matrix C.

A vertex vij has a weight of 2x, where x is the number of links from site j to site

i if i 6= j. Vertex vii is weighted as 2x+7y, where x is the number of internal links

in site i and y is the number of pages in site i which has at least one in-link. By

doing so, we add the weights of vector operations to viis. Therefore, processors

which consists of vertices vii is responsible for computing PageRank values of

pages in site i, excluding no-in-link pages. PageRank computation for no-in-link

pages can be assigned to any processor without incurring any communication,

with 4 units of weight for each. A sample fine-grain partitioning is represented

in Figure 5.11 for matrix A in Figure 5.4.

To avoid communication for multiplication of C completely, it should be par-

titioned rowwise. Fine-grain partitioning of B in accordance with rowwise par-

titioning of C can be achieved by adding weights of rows on C to the vertices of

B which corresponds to the diagonal entries in S2S compressed matrix of B. In

this case, vii of site-based fine-grain hypergraph of B has an extra weight of 2z,

where z is the total number of non-zeros in rows of C, corresponding to the pages

in site i. Fine-grain partitioning of B in accordance with rowwise partitioning of

C is illustrated in figure 5.12.
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5.2.4 Checkerboard Partitioning

Checkerboard partitioning is a 2D partitioning scheme, which has an advantage of

reducing the number of inter-processor communications. Recall from the Section

4.4.3.2 that HP-based checkerboard partitioning is a two phase method, where

two consecutive 1D partitionings generate a 2D partitioning.

Without loss of generality, assume a k -way partitioning, where k = r × c.

Matrix A is first r -way partitioned rowwise. This r -way partitioning is carried

out with the same way as explained in Section 5.2.1. The only difference is,

distribution of zero-rows to processors is delayed after partitioning on the other

dimension. After partitioning rowwise, each r parts are c-way partitioned colum-

nwise by multiconstraint hypergraph partitioning with r weights on each vertex.

This is also done by a similar way as explained in Section 5.2.2. A vertex vi,

which corresponds to site i has r multi-weights, such that

wj
i =





2x + 7y if vi is in part j in rowwise partitioning of A

2x otherwise

for all 1 ≤ j ≤ r, where x is the number of non-zeros in j th rowwise part of

columns corresponding to site i and y is the number of pages in site i which

has at least one in-link. Namely, vector operations for pages other than no-

in-link pages are considered in their rowwise parts. Columnwise partitioning

with multiconstraints finds c balanced partitions for each r rowwise partition.

PageRank computation of no-in-link pages are assigned to processors as usual

after checkerboard partitioning of A, excluding zero-rows. A sample checkerboard

partitioning is represented in Figure 5.13.

Note that, checkerboard partitioning described above does not require com-

munication for input vector of C, like other models. Rowwise partitioning of C

in accordance with columnwise partitioning of B for avoiding communication on

output vector of C can be achieved by modifying multiweights during columnwise

partitioning. In this case, during columnwise multiconstraint partitioning of B,

if site i is assigned to processor j after rowwise partitioning, then wj
i has an extra
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Figure 5.13: Site HP-based checkerboard partitioning of A.

weight of 2z, where z is the number of non-zeros in rows of C, which corresponds

to site i.

In this section, we have explained rowwise partitioning followed by a multicon-

straint columnwise partitioning for checkerboard partitioning. First columnwise

partitioning and then multiconstraint rowwise partitioning is possible with ap-

propriate vertex weighting.

5.3 Site-Based GP Models

Site-based compression drastically reduces the partitioning overhead before the

parallel PageRank computation. In HP models, hypergraphs are coarsened by

site-based clustering. As a result of coarsening, one-pin nets and identical nets

occur. Eliminating such nets drastically reduce the number of nets, too.

In 1D models, site-based coarsening of row-net or column-net hypergraph

corresponds to S2P or P2S compression of the transition matrix. S2S compression
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further reduces the preprocessing overhead. However, it is impossible to correctly

encapsulate the total communication volume with row- or column-net hypergraph

of S2S matrix.

S2S compression may be applicable to GP-based models, which try to min-

imize an approximation on total communication volume. The objective of GP-

based models is to minimize the total number of non-zeros that require commu-

nication for multiplication, which does not mean to minimize the total commu-

nication volume. Standard GP-models that assign unit weight for each edge is

for structurally symmetric matrices. Çatalyürek and Aykanat [17] propose GP-

based models for structurally unsymmetric matrices. Our models are based on

this work, since Web-matrices are structurally unsymmetric.

In this work, we propose site-based GP-based models for 1D rowwise and

columnwise partitioning. Our approach is similar with 1D HP-based models. We

compress the matrix B S2S to avoid communication for C. Each site is represented

as vertices and weighted with the same weights with HP-models (Sections 5.2.1

and 5.2.2). S2S matrix corresponds to the site-link graph of G, where each vertex

represents a site and each undirected edge represents link(s) between sites. The

cost of each undirected edge eij is the total number of links from site i to site

j and site j to site i. Partitioning of site-link graph assigns sites to processors

which corresponds to partitioning of transition matrix rowwise or columnwise,

according to weight assignment to sites.

GP-based models require shorter time for partitioning. On the other hand,

HP-based models require less communication during parallel PageRank compu-

tation. Statistics and performance comparisons of GP- and HP-based models are

presented in the next section.



Chapter 6

Experimental Results

In previous chapters, we have discussed the difficulties of parallelizing the PageR-

ank and some shortcomings of parallelization efforts in the current literature. In

the previous chapter, we have proposed six models for efficient parallelization

of the PageRank computation. Site-based approach makes GP- and HP-based

models applicable to huge-size Web data for parallel PageRank computation while

providing comparable per-iteration time with the page-based approach.

In this chapter, we first provide the information on dataset properties and ex-

perimental environment, and then we will make performance comparisons of var-

ious models. Performance comparisons include preprocessing times, per-iteration

times, communication volumes and load imbalances of page- and site-based GP

and HP models.

6.1 Dataset Properties

We have used four Web-graph data with different sizes for our experiments. One

of the datasets, which we will refer as the Google dataset, is provided by Google

that includes .edu domain pages in the US [2]. Google dataset includes 913,569

pages and 15,819 sites with 4,480,218 links. Another dataset is a result of crawling

43
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.de and .fr domains by Larbin [1], which we will refer as the de-fr dataset [5, 24].

de-fr dataset contains 8,212,782 pages, 69,129 sites and 39,330,881 unique links.

Other two datasets, in-2004 and indochina, are crawled by UbiCrawler [4] and

uncompressed using WebGraph software [6]. Since in-2004 and indochina are

crawling results of restricted domains, they contain some sites that dominate

datasets. For example, there is a site in indochina dataset which has nearly 7,500

pages and 50 million internal links. We have removed several such extraordinary

sites from these two datasets. After removal of one site from indochina and four

sites from in-2004, we have 7,407,256 pages, 18,984 sites and 145,877,411 links

for indochina and 1,347,446 pages, 4,376 sites and 13,416,945 links for in-2004.

The detailed information for datasets is provided in table 6.1. The properties for

the transition matrix A can be extracted from the Web-graph information. Since

we compress and partition the sub-matrix B instead of the transition matrix

itself, our main focus is the matrix B. Properties of B is presented in table

6.2. In-2004 and indochina datasets are raw results for single crawl. Therefore,

there are only a few zero-rows for those pages. For this reason, we do not reorder

the transition matrix and handle zero-rows for them. For these two datasets, B

is equal to the transition matrix A.

Table 6.3 tabulates the site-based compression statistics for GP-based 1D

partitionings. Tables 6.4, 6.5 and 6.6 presents the site-based column-net, row-

net and fine-grain hypergraph properties, respectively. As can be seen from the

tables, one-pin net and identical net eliminations drastically reduces the number

nets. As a result, number of nets become comparable to number of vertices. For

example, for column-net site-based hypergraph of de-fr dataset in table 6.4, 6.6

million of 8.1 million nets are one-pin nets, after compression. After removal of

one-pin nets, there remains only 1.5 million nets. 1.3 million of 1.5 million nets

are identical. Eliminating identical nets, we have only 0.2 million nets, which is

roughly six times the number of vertices.
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6.2 Experimental Setup

We conducted our experiments on a 32-node PC cluster interconnected with a

100 Mb/s Fast Ethernet switch. Each node contains an Intel Pentium IV 3.0 GHz

processor with 1 GB of RAM. For partitioning Web matrices, we used an Intel

Pentium IV 3.0 GHz machine with 2 GBs of RAM. The parallel PageRank algo-

rithm is implemented using the MPI-based ParMxvLib C library [50, 52]. Direct

k-way multilevel hypergraph partitioning tool kPaToH [9] is used for partition-

ing hypergraphs and graph partitioning tool METIS is used for multilevel k-way

partitioning of graphs [34]. Imbalance tolerance is set to 3% for both graph and

hypergraph partitioning.

The Web-matrices we work on, have unusual properties. As can be seen from

the tables provided in previous section, datasets are highly irregular. Hence,

state-of-the art techniques for partitioning the Web data may not provide the

expected results. In a recent work, Abou-rjeili and Karypis [7] state that the par-

titioning quality for power-law graphs depends on the matching and clustering

scheme used in the coarsening phase. During our experiments, we also observed

that partitioning quality in HP-based models highly depends on the coarsen-

ing scheme in kPaToH. Hence, instead of default vertex based matching scheme

for coarsening, we prefer absorption clustering scheme using nets. For multi-

constraint partitioning, we use scaled heavy connectivity matching. In METIS,

default parameters perform quite well, so we use default parameters for graph

partitioning.

In our experiments, we always partition the sub-matrix C rowwise in accor-

dance with partitioning of B in order to reduce the total communication volume

avoiding the communication incurred by C. Convergence parameter is set to 10−8.

With this settings, Google matrix converges in 91 iterations, in-2004 converges

in 90 iterations, de-fr converges in 83 iterations and indochina converges in 84

iterations.
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6.3 Performance Evaluation

In this section, we compare preprocessing times, communication volumes, load

imbalances and speedups of page-based and site-based approaches. We discuss

trade-offs between various site GP- and HP-based models.

6.3.1 Preprocessing Times

Graph or hypergraph partitioning is the preprocessing for page-based models. For

site-based GP, before partitioning the model graph, there is a compression. For

site-based HP models, preprocessing refers to compression, identical net elimina-

tion and hypergraph partitioning. By employing site-based partitioning schemes,

we become able to reduce the preprocessing overhead before the parallel PageR-

ank computations. In this section, we provide preprocessing times for page- and

site-based partitioning models to justify our arguments.

6.3.1.1 Page-Based Partitioning

As the size of the transition matrix increases, page-based partitioning becomes in-

feasible because of the time and space limitations. We have been able to partition

two matrices in our dataset with page-based approach. The smallest dataset can

be partitioned using 1D and 2D partitioning schemes by page-based HP and GP.

However, with the hardware settings and sequential partitioning tools described

in Section 6.2, it is only possible to 1D partition the second smallest matrix in our

dataset using page-based approach. As in site-based models described in Chapter

5, we partition matrices by partitioning the sub-matrix B, to handle zero-rows.

Figures 6.1 and 6.2 display page-based partitioning times for Google and

in-2004 Web-matrices. The numbers annotated with the bars represent the

ratio of partitioning times to sequential per iteration time of PageRank computa-

tion. In the chart, the letter K stands for number of partitions. rw, cw, fine and
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Figure 6.1: Page-based partitioning times for Google data
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chkb are abbreviations for rowwise, columnwise, fine-grain and checkerboard par-

titionings, respectively. Partitionings are HP-based, unless otherwise stated. We

append “-gp” to denote GP-based models. The statistics presented in the figures

reveals that, at least 45 iterations are needed to amortize the preprocessing over-

head of PageRank computation for Google data. For 2D partitioning schemes,

hundreds of iterations can amortize preprocessing. It is not even possible to 2D

partition in-2004 matrix. On the other hand, PageRank vector for these two

matrices stabilize in 90-91 iterations, by setting the convergence criteria to 10−8.

6.3.1.2 Site-Based Partitioning

Site-based partitioning reduces the problem size, hence makes partitioning fea-

sible for parallel PageRank computing. Figures 6.3 through 6.6 depicts the pre-

processing times for test matrices we use in this work. It can be observed from

the results that only several power iterations are required to amortize the pre-

processing overhead for site-based partitioning schemes. For GP-based methods,

preprocessing costs nearly one sequential power iteration. For in-2004, the slow-

est partitioning costs only 4.1 times per-iteration time.

HP-based models better minimize communication volume, as will be discussed

in Section 6.3. However, GP-based models outperform HP-based models in pre-

processing time. 2D models require relatively high preprocessing times, since

fine-grain hypergraph has more vertices and checkerboard partitioning is two

phase and require multiconstraint partitioning.

To construct site-based graph or hypergraph to be partitioned, compression of

the transition matrix (i.e., coarsening the graph/hypergraph) is required. Iden-

tical net elimination from the coarser hypergraph makes the hypergraph to be

partitioned smaller. Table 6.7 tabulates preprocessing times of site-based mod-

els for 16-way partitioning of Web-matrices. Figure 6.7 represents the percent

dissections of preprocessing times of site-based models for 16-way partitioning.

Compression time dominates the total preprocessing time for GP-based models.

For HP-based models, dominating preprocessing step is the partitioning.
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Figure 6.3: Site-based partitioning times for Google data
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Figure 6.4: Site-based partitioning times for in-2004 data
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Figure 6.5: Site-based partitioning times for de-fr data
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Figure 6.6: Site-based partitioning times for indochina data
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Times in milliseconds
Partitioning Iden. Net

Dataset Scheme Compression Elim. Partitioning
Google Rowwise GP 136 - 88

Columnwise GP 136 - 84
Rowwise HP 148 88 685

Columnwise HP 116 32 628
Fine-grain HP 576 140 2,361

Checkerboard HP 260 116 2,061
In-2004 Rowwise GP 168 - 44

Columnwise GP 168 - 48
Rowwise HP 200 36 150

Columnwise HP 156 8 108
Fine-grain HP 752 40 470

Checkerboard HP 348 40 527
de-fr Rowwise GP 1,072 - 564

Columnwise GP 1,072 - 556
Rowwise HP 1,028 484 6,605

Columnwise HP 1,072 628 7,919
Fine-grain HP 7,008 1,040 5,745

Checkerboard HP 2,036 1,104 21,131
Indochina Rowwise GP 1,516 - 306

Columnwise GP 1,516 - 298
Rowwise HP 1,944 464 4,249

Columnwise HP 1,468 72 2,447
Fine-grain HP 8,728 544 15,581

Checkerboard HP 3,368 520 6,751

Table 6.7: Preprocessing times for 16-way partitioning with site-based partition-
ing schemes

6.3.2 Partition Statistics and Speedups

In this section, we compare parallel speedups of different partitioning schemes.

Total communication volume, maximum communication volume per processor

and load imbalance are some of important factors that affect the parallel com-

putation time. These three factors should be smaller for better partitions. We

provide partitioning results and speedups for page- and site-based models and jus-

tify that parallel computation performance do not degrade with the achievement

of low preprocessing time.

Number of communications is another factor that affects the parallel perfor-

mance of the iterative algorithm. We do not tabulate the number of communica-

tions in this section, since almost all processors communicate each other. Usually,
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Figure 6.7: Percent dissections of preprocessing times of site-based models for
16-way partitioning.

maximum number of communications per processor is K − 1 for 1D partitioning

schemes, where K is the number of processors. For fine-grain partitioning, maxi-

mum number of communications per processor is 2(K − 1) and for checkerboard

partitioning it is (r − 1) + (c − 1), where K = r × c, r is the number of row

blocks and c is the number of column blocks of checkerboard-partitioned itera-

tion matrix. For parallel applications with high communication volume and high

computation time, number of communications become insignificant.

Figures 6.8 to 6.15 depicts page-based partitioning statistics and Figures 6.16

to 6.31 depicts the site-based partitioning statistics, in bar charts. We provide

page-based partitioning statistics for only two datasets, since others are too big

to be partitioned using page-based approach. Total communication volumes and

maximum sending communication volumes per-processor are given in number of

double-words exchanged. Load imbalance of a partition is defined as the ratio
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of difference between maximum load and average load to average load. Imbal-

ances are given in percentages. Speedup is the ratio of sequential running time

to parallel running time. Ideal speed up for k-way parallel execution is k. For

indochina dataset, speed up is measured with comparison to 2-way parallel run-

ning time, since sequential implementation for this data requires disk swapping.

As the figures provided in Section 6.3.1, K indicates the number of partitions and

suffix “-gp” indicates the GP-based partitioning.

6.3.2.1 Page-based vs. Site-based Performance

As seen in the figures 6.8 to 6.23, site-based models achieves comparable perfor-

mance to page-based models. In general, page-based partitioning obtains better

load imbalance(Figures 6.10, 6.14, 6.18 and 6.22). For GP-based partitioning,

site-based models achieve lower total communication volume (Figures 6.8, 6.12,

6.16 and 6.20), hence better speedup values (Figures 6.11, 6.15, 6.19 and 6.23).

For HP-based partitioning, in some cases site-based models achieve better cut-size

(lower total communication volume) and in some cases page-based models achieve

better cut-size. For example, site-based partitioning for rowwise and checkerboard

models of Google Data has lower communication volume than page-based par-

titioning, but for columnwise model, page-based partitioning performs slightly

better.

The results obtained support the observations that sites are natural clusters

for pages and site-based clustering provides a good coarsening for GP and HP.

6.3.2.2 Comparisons of Site-based Models

We observe that HP-based partitioning always provides lower total communi-

cation volume than GP-based partitioning. This is natural since GP tries to

minimize a different metric, whereas HP tries to minimize correct metric for to-

tal communication volume. However, in some cases maximum communication

volumes of GP-based partitions are close to HP-based partitions (columnwise
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partitioning of in-2004, Figure 6.21). GP-based partitioning generally provides

better load imbalance. As a result, GP-based partitioning rarely achieves better

speedup values over HP-based partitioning (columnwise partitioning of in-2004,

Figure 6.23).

In general, columnwise partitioning provides lower communication volume

than rowwise partitioning, since columns are more similar than rows. Recall that

columns of the transition matrix A corresponds to hyperlinks inside a page. For

indochina dataset, there is a big difference between total volumes of columnwise

and rowwise decomposition (Figure 6.28). Hence, columnwise model provides

nearly two times better speedup (Figure 6.31). Parallel matrix-vector multipli-

cation based on columnwise partitioning requires extra addition operations on y

vector entries after communication (see Section 4.4.2). This may have a negative

effect on speedup values of columnwise decomposition, especially for sparser ma-

trices (see HP-based rowwise and columnwise speedups for Google data in Figure

6.19).

In general, the smallest communication volume and load imbalance is provided

by 2D fine-grain partitioning model. Lower communication volume and better

imbalance make fine-grain model to perform best for indochina data (Figure

6.31). On the other hand, fine-grain model requires communication before and

after computation for matrix-vector multiplication. Number of communications

for fine-grain model is more than the other models. For this reason, better re-

duction on total communication volume for fine-grain model, does not always

reflect to speed-up values, especially for reduction of small communication vol-

umes (Figure 6.19).

Checkerboard model mostly provides worse load imbalance and total commu-

nication volume is relatively high, compared to other models. However, checker-

board model reduces the number of communications. Especially, for large number

of processors and lower total communication volume, this reduction on number

of communications is significant. For example, checkerboard model performs best

for 32-way site-based decomposition of in-2004 data (Figure 6.23).
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Figure 6.8: Average total communication volumes for page-based partitionings of
Google data.
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Figure 6.9: Average maximum per-processor communication volumes for page-
based partitionings of Google data.
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Figure 6.10: Average load imbalances for page-based partitionings of Google

data.
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Figure 6.12: Average total communication volumes for page-based partitionings
of in-2004 data.
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Figure 6.13: Average maximum per-processor communication volumes for page-
based partitionings of in-2004 data.
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Figure 6.14: Average load imbalances for page-based partitionings of in-2004

data.
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Figure 6.15: Average speedups for page-based partitionings of in-2004 data.
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Figure 6.16: Average total communication volumes for site-based partitionings
of Google data.
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Figure 6.17: Average maximum per-processor communication volumes for site-
based partitionings of Google data.
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Figure 6.18: Average load imbalances for site-based partitionings of Google data.
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Figure 6.19: Average speedups for site-based partitionings of Google data.
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Figure 6.20: Average total communication volumes for site-based partitionings
of in-2004 data.
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Figure 6.21: Average maximum per-processor communication volumes for site-
based partitionings of in-2004 data.
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Figure 6.22: Average load imbalances for site-based partitionings of in-2004

data.
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Figure 6.23: Average speedups for site-based partitionings of in-2004 data.
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Figure 6.24: Average total communication volumes for site-based partitionings
of de-fr data.
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Figure 6.25: Average maximum per-processor communication volumes for site-
based partitionings of de-fr data.
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Figure 6.26: Average load imbalances for site-based partitionings of de-fr data.
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Figure 6.27: Average speedups for site-based partitionings of de-fr data.
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Figure 6.28: Average total communication volumes for site-based partitionings
of indochina data.
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Figure 6.29: Average maximum per-processor communication volumes for site-
based partitionings of indochina data.
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Figure 6.30: Average load imbalances for site-based partitionings of indochina
data.
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Figure 6.31: Average speedups for site-based partitionings of indochina data.
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Figure 6.32: Upper-left corner of site-ordered Google data transition matrix.

6.3.3 Site-based ordering and Cache Coherency

Cache coherency is an important factor that dramatically affects the running time

of PageRank computation. Since most of the links are intra-site links for the Web,

site-based ordering of the transition matrix increases the cache coherency, hence

reduces the running time of PageRank computation. By site-based ordering, we

mean the ordering of transition matrix, so that pages inside a site corresponds

to consecutive rows and columns of the matrix. Figure 6.32 shows the upper-

left corner non-zero pattern of the site-ordered transition matrix of Google data.

Diagonal blocks of site-ordered matrix, which corresponds to intra-site links, is

denser.

Parallel computation of PageRank with an unordered matrix may cause ob-

serving superlinear speedup values, since sequential execution with unordered ma-

trix is slower. As the number of processors increase, cache becomes more coherent

for site-based partitioning. Figure 6.33 depicts the superlinear speedups obtained

by multiplication of random ordered matrix and speedups for site-ordered ma-

trix for HP-based rowwise decomposition of Google data transition matrix. The

speedups we provided in previous pages are obtained by multiplying site-ordered

matrices. We do not report superlinear speedups for this work.
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Figure 6.33: Speedups for HP-based rowwise model of Google data with site-
ordered and unordered transition matrices.



Chapter 7

Conclusion and Future Work

In this thesis, we have mainly focused on reducing the preprocessing overhead

before the parallel PageRank computations without degrading the parallel com-

putation time. To achieve this goal, we have proposed Web-site-based graph and

hypergraph partitioning models for rowwise, columnwise, fine-grain and checker-

board workload partitioning. We do not only partition the workload incurred by

matrix-vector multiplication, which is the key operation for PageRank compu-

tation, but we partition the workload of overall iterative PageRank algorithm.

The models correctly handle the pages without incoming links, for which we pre-

vent extra communication. We have presented our models for the power method,

which is most widely used for computing PageRank, but models can be applied

to other iterative PageRank computation methods.

Compared with a previous work which employs rowwise and fine-grain hy-

pergraph partitioning models for parallel PageRank computation [13], our site-

based hypergraph partitioning models provide much smaller preprocessing over-

head with comparable parallel PageRank computation time. Graph-partitioning-

based models achieve even smaller preprocessing time, with higher communica-

tion overhead during parallel PageRank computation. Columnwise partitioning

models usually obtain lower communication volume than rowwise models. Fine-

grain partitioning models are well-suited for PageRank transition matrices which

require high communication volume during parallel computation. Checkerboard
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partitioning is advisable for PageRank computation on large number of proces-

sors.

Although the proposed models achieve fast parallel PageRank computation

with a low preprocessing time, there is still room for improvement. We restrict

the solution space with sites in site-based models. Hence, sites containing large

number of pages may cause load imbalance. We work on models to cope with the

load imbalance problem caused by large-size sites.

State-of-the-art graph and hypergraph partitioning algorithms may fail to

achieve desired performance for power-law graphs, such as Web graphs [7, 23].

This is mostly caused by the failure of coarsening algorithms in multilevel parti-

tioning paradigm [7]. During our experiments, we observed that partitioning qual-

ity dramatically changes according to the coarsening algorithm used in kPaToH.

Site-based clustering performs better than most of the coarsening algorithms.

In other words, for most the coarsening algorithms used for hypergraph parti-

tioning, site-based models provide lower communication volume than page-based

models. For better partitioning of large power-law transition matrix, coarsening

algorithms for hypergraph partitioning may be improved.
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[50] B. Uçar and C. Aykanat. Parmxvlib: A parallel library for sparse-matrix

vector multiplies. In Proc. 7th World Multiconference on Systemics, Cyber-

netics and Informatics, pages 393–398, 2003.
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