
A Lagrangian Heuristic for a Variant of Capacitated Facility Location with 

Single Source Constraints  

 

 

 

 

 

A THESIS 

SUBMITTED TO THE DEPARTMENT OF INDUSTRIAL 

ENGINEERING 

AND THE INSTITUTE OF ENGINEERING AND SCIENCES 

OF BILKENT UNIVERSITY 

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS 

FOR THE DEGREE OF 

MASTER OF SCIENCE 

 

 

 

 

by 

Yusuf  Ziya Ayrım 

September 2006

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Bilkent University Institutional Repository

https://core.ac.uk/display/52940224?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


 ii 

I certify that I have read this thesis and that in my opinion it is fully adequate, 

in scope and in quality, as a thesis for the degree of Master of Science. 

 

 

                     Assoc. Prof. Osman Oğuz (Principal Advisor) 

 

 

I certify that I have read this thesis and that in my opinion it is fully adequate, 

in scope and in quality, as a thesis for the degree of Master of Science. 

 

 

                                      Prof. Mustafa Ç. Pınar 

 

 

I certify that I have read this thesis and that in my opinion it is fully adequate, 

in scope and in quality, as a thesis for the degree of Master of Science. 

 

 

                                    Asst. Prof. Bahar Y. Kara 

 

 

 

             Approved for the Institute of Engineering and Sciences: 

 

 

                                          Prof. Mehmet Baray  

                  Director of Institute of Engineering and Sciences
 



 iii 

ABSTRACT 

A Lagrangian Heuristic for a Variant of Capacitated Facility Location with 

Single Source Constraints 

 

Yusuf Ziya Ayrım 

M.S. in Industrial Engineering 

Supervisor: Assoc. Prof. Osman Oğuz 

September 2006 

 

Facility location problems (FLP) are extensively studied in the literature in the 

context of supply chain management. Wide variety of real life situations are 

analyzed and modeled using techniques developed for FLP. In this thesis we 

take a comparably new model, Capacitated Facility Location with Single 

Source constraints (CFLPSS) from the literature and add an additional feature 

of Minimum Supply (MM) requirements (CFLPSSMM). Then we devise a 

Lagrangian Heuristic, which is highly efficient for CFLPSS models and for this 

new variant of CFLPSS. This heuristic, which is modified from the heuristics 

devised for CFLPSS, is then tested both on data from the literature and on new 

data set. Results indicate that it can be a resourceful alternative; especially the 

lower bounds provided by the heuristic are quite effective both for CFLPSS 

and CFLPSSMM. 
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ÖZET 

Tek Kaynak Kısıtlı Kapasiteli Bina Yeri Seçimi Varyasyonu için bir Lagranj 

Sezgisel Programlaması 

 

Yusuf Ziya Ayrım 

M.S. Endüstri Mühendisliği 

Süpervizor: Assoc. Prof. Osman Oğuz 

Eylül 2006 

 

Bina yer seçimi problemleri literatürde sıkça tedarik zinciri işletimi bağlamında 

işlenmiştir. Gerçek yaşamda karşılaşılan pek çok durum BYSP için geliştirilmiş 

tekniklerle analiz edilip, modellenmektedir. Bu tezde göreceli olarak yeni olan 

bir modeli, Tek Kaynak Sınırlı Kapasiteli Bina Yer Seçimi Problemini 

(TKKBYSP) ele alarak, bu modele yeni bir özellik olan En Az Tedarik (ET) 

kısıtını eklemekteyiz (TKKBYSFET). Daha sonra TKKBYSP ve bu 

varyasyonu için yüksek etkinlikte bir Lagranj Sezgisel Programı geliştirilmiştir. 

TKKBYSP için geliştirilmiş olan sezgisel programlardan uyarladığımız bu 

sezgisel programı, hem literatürdeki bir bilgi kümesi üzerinde hem de yeni bir 

bilgi kümesi üzerinde denemiş bulunmaktayız. Sonuçlar bu programın uygun 

bir alternatif olabileceğini işaret etmekte, özellikle TKKBYSF ve 

TKKBYSFET için çok etkin alt sınırlar verebileceğini göstermektedir. 

 

Anahtar Kelimeler: KBYSP, Lagranj Sezgisel Programlama  
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Chap t e r  1  

INTRODUCTION 

 

Efficiency is an important concept for doing business in the competitive 

markets of modern times, and its importance increases with the globalization 

of these markets. The key to the success is making correct choices and 

companies strive to choose the best option that maximize their profits or 

minimize their costs.  As establishing facilities is a major cost component 

and companies incur billions of dollars to establish new facilities each year, 

it is very crucial for companies to make good choices in this area. Facility 

location decisions are probably one of the most important determinants for 

success or failure of the related business in the long run. 

Facility location decision is an issue companies face in many areas. As its 

name implies the most common usage is for plant, warehouse or distribution 

channel. However it is not limited to these aspects only; it is a problem that 

may be encountered in most sectors including telecommunications, location 

of emergency services etc. Facility in its broadest sense may be any thing 

that must be built or established to supply the markets or to serve a need.  

Given a set of facility locations and a set of customers who are supposed to 

be served by these facilities; the general facility location problem is to 

determine which facilities should be open and which customers should be 

served from which facilities so as to minimize total cost for the company 
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(Selçuk[23]). By opening facilities we incur some fixed costs to open/operate 

these facilities. Only after opening facilities, we can assign the retailers to the 

opened facilities to serve the demands. A second cost is incurred when we 

assign these retailers/demand points to facilities.  This is the cost to satisfy 

the demand of customers from the facilities or assignment costs; which may 

cover production and transportation costs. 

Facility location problem (FLP), in its most simple form, is a balancing 

decision between these fixed costs and assignment costs. By increasing the 

number of facilities you will decrease the assignment costs as the more 

facilities opened, the distance between facility and demand points will 

decrease and so are the assignment costs. However, opening more facilities 

will increase the fixed costs. So there is a tradeoff between fixed costs and 

transportation costs. In more complex models there are also other costs 

included beside these two main cost components, such as the inventory costs. 

The basic FLP is known as Uncapacitated Facility Location Problem (UFLP) 

or Simple Plant Location Problem. It only consists of fixed and 

transportation costs. Facilities in this model have no capacity limits, as its 

name implies. Although, it is an NP-hard problem as it will be discussed 

later, it is a relatively easy problem to solve due to its tight LP relaxations. 

Capacitated Facility Location problem (CFLP) is the problem obtained when 

we add capacity constraints to UFLP. In CFLP, facilities can supply only a 

limited amount of demand. Although it seems like a simple modification, it 

makes the problem much more difficult to solve. This is due to the fact that 

in CFLP the demand of a single retailer can be divided across multiple 

facilities and this destroys the tightness of LP relaxations of the problem. As 

it will be discussed later, there are numerous research results in this area.  



CHAPTER 1 INTRODUCTION 

 3 

A less investigated area in FLP is Capacitated Facility Location Problems 

with Single Source constraints (CFLPSS).  The only difference between its 

predecessor (CFLP), is the single source constraints, meaning demands of 

customers can not be divided across facilities and each must be served by 

exactly one facility. It is an extension of CFLP and as CFLP, it is NP-Hard. 

Unlike previous two problems (UFLP, CFLP), there is not much work out in 

literature about CFLPSS. It is also the main problem we based our research 

upon. Another feature of CFLPSS is that its branch and bound tree gets too 

large too quickly compared to UFLP and CFLP. It is a complete integer 

problem that requires too much memory and time to be solved by direct 

approaches like a straight forward branch and bound (B&B).  

So as in other similar problems, it may be a good idea to try to achieve a 

meaningful solution in an acceptable time, rather then to strive for optimum 

at the cost of an excessive computational time. The main motivation behind 

our thesis is this main fact mentioned: Devising an efficient heuristic that 

would give a close to optimum solution. This solution can either be used as a 

decision tool to go for an optimum solution, or providing an applicable 

solution between acceptable limits.  

Lagrangian Heuristics (LH) are favored by many researchers in the literature 

as a tool of obtaining effective solutions for facility location problems, 

especially for CFLPSS and CFLP. This is due to several facts: 

• They work fairly quickly 

• They provide generally better lower bounds than LP relaxations (will 

be discussed later in detail) 

• They can be embedded into B&B methods to obtain optimal 
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solutions 

These characteristics mentioned above make LH’s good candidates for 

facility location problems. 

In this study, we consider a CFLPSS with an additional feature. This feature 

is based upon the assumption that some of the facilities in the CFLPSS 

model are not standard production facilities, instead they represent 

subcontractor firms. It is not uncommon for subcontracting firms imposing 

restrictions on the amount of minimum supply. This assumption results in 

another set of constraints, namely “minimum supply” constraints in addition 

to the basic CFLPSS constraints. These constraints will be same as capacity 

constraints, but rather being upper bounding, they will provide lower bounds 

on the amount of supply from facilities. 

Then we devise a LH based upon prior work of Holmberg et al. [21] and 

Sridharan [26] on CFLPSS. Their heuristics are modified to be able to solve 

this new variant. Another approach to solve this problem would be by using 

a commercial software like Xpress-MP, GAMS, Lindo or CPLEX. We 

preferred state of the art software CPLEX, because of its robust and efficient 

framework. Also CPLEX includes a MIP (mixed integer programming) 

module including preprocessing and aggregation to decrease problem size. 

Moreover CPLEX uses a Branch and Cut (B&C) approach to aid solving 

MIP’s which can generate several general cut classes including cover, 

Gomory, clique, flow and etc. These specifications of CPLEX are the 

reasons of its being considered as one of the best of general case MIP 

solvers. Another reason for choice of CPLEX is its high compatibility with 

C/C++ programming language (as it’s also written in this language), in 

which our heuristic and the CPLEX caller is also coded. 
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We applied both approaches (LH and CPLEX) on 2 data sets. One of them is 

also the data set that Holmberg et al [21] used in his CFLPSS computational 

experiments. The other is generated according to Holmberg’s [21] 

distributions for demand, capacity etc. Even though CPLEX gave 

considerably good results as expected, our LH is shown to be an efficient 

alternative to be considered solving this CFLPSS variant (CFLPSSMM, 

Capacitated Facility Location with Single Source and Minimum Supply 

Constraints) both with respect to solution quality and computational time. It 

is also shown that, the lower bounds of this heuristic are quite good, that may 

even give dual optimum for small cases and quite tight solutions for larger 

cases. It is noteworthy to mention that, in large cases the lower bounds of 

LH, are better than CPLEX, even with the large processing times of CPLEX.  

The remainder of this thesis can be outlined as follows. In chapter 2, we 

review the prior work in the area of FLP, especially in the context of CFLP 

and CFLPSS. We also include a brief classification of FLPs and their 

solution approaches in this part. In the following chapter we outline our 

model. Chapter 4 is about the structure of our Lagrangian Heuristic. Then in 

chapter 5 we continue with computational results of our LH applied to 

CFLPSS and CFLPSSMM. Finally in 6
th
 chapter conclusions and remarks 

are discussed. 
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Chap t e r  2  

 

CFLP/CFLPSS STRUCTURE AND 
SOLUTION PROCEDURES 

Supply chain management is “the management of the entire value-added 

chain, from the supplier to manufacturer right through to the retailer and the 

final customer.” (x-solutions, [35]). As it constitute %10 of gross domestic 

product of USA ( Daskin [14] ), it is a major cost component and an area 

covering essential decisions for companies. These essential decisions are 

composed of wide range of interrelated areas; including supply contracts, 

information sharing and distribution networks design. Facility location, which 

is the main subject of this thesis, is a sub branch of supply chain management 

that covers the core topics of distribution system design.  

Annually, 500 billion dollars are spent on establishing new facilities in USA 

(Selçuk [23]). Moreover, unlike most other supply chain decisions, it is quite 

hard if not impossible to reverse these decisions especially in short term. In 

medium horizon, it may be possible to change facility location decisions, but 

generally only at the expense of a vast amount of money. Only in strategic 

horizon (long term), it may be profitable to change the facility location (FL) 

decisions. These facts make FL decisions quite crucial for companies and 

extra precaution must be taken into consideration as it may be quite hard to 

change these later. 
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The term “facility” refers to an object that supplies goods or services to satisfy 

the demand. That is why we prefer the “facility location” name over other 

synonyms for this set of problems. “Plant location” imposes the production 

plants like manufacturing, assembly or energy. Another common usage is 

“warehouse location”, which focus on the warehouses and distribution centers 

(DCs) as facilities. On the contrary, “facility” is a very broad definition and it 

covers all the aspects of possible sectors, like telecommunication and 

emergency. In electronic networks, a router is the object you establish to 

satisfy the customer demand, which in this case is packets of information 

transmitted. In emergency sector facilities are the hospitals, fire stations and 

police stations. Obviously, these sets of problems are no different than “plant” 

or “warehouse” location in terms of model structure and solution procedures. 

Therefore, we will use the more general “facility location problem” or “FLP” 

from now on to address these set of problems. 

Facility location mainly consists of two important strategic decisions for 

companies: locating facilities and allocation of goods or services to these 

facilities. Location part of the problem involves opening enough facilities to 

supply the demand. Allocation part is about assigning customers to the opened 

facilities in order to satisfy their demand. As these two main problems are 

interrelated, there must be a combined solution procedure that optimizes both 

sub problems together. 

As FLP includes a wide range of problems, we start by giving some brief 

definition and classification of FLPs. Then we review some of the mainstream 

work in the literature on FLP, which will help the reader to understand the 

basics and motivation behind this thesis.  



CHAPTER 2 CFLP/CFLPSS STRUCTURE and SOLUTION PROCEDURES 

 8 

 2.1 Definition and Classification of FLP’s 

 

Location theory is an extensively studied topic in the literature and it dates 

back to 1900’s. It found its first formal introduction by Weber in 1909. 

Numerous applications of FLPs were already researched in these years, but it 

was not until mid of 19602s that these applications were tied together by a 

unified theory (Brandeu[6]). 

Since mid 1960’s, wide range of models and applications have been developed 

under context of location theory. Location theory is a vast field and our main 

focus will be on a much smaller branch of FLPs, family of CFLP/CFLPSS. To 

ease further reading and understanding we include some basic terminology 

and try to make a brief classification of FLP family.  

Although there is no common classification of FLPs, it is easy to obtain one 

based on the type of objectives, cost terms and on the constraint sets. 

There are several main objectives in FLPs in general case: 

� Determining optimal number of facilities (A) 

� Determining optimal location of facilities (B) 

� Allocation of demands to these facilities optimally (C) 

� Optimal inventory policies (where to stock, how many to stock)   (D) 

� Optimal vehicle routing considerations  (E) 

� Optimal network design (F) 
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(A) and (B) together constitute the location sub-problem of FLP. (C) is 

referred as allocation sub-problem. These first three parts are found in most of 

FLPs. On the other hand (D) and (E) are included only in some other more 

complex integrated models. Addition of (D) turns the standard FLP into a FLP 

with integrated inventory location and addition of (E) gives us a FLP with 

vehicle routing considerations. Finally addition of (F) brings out a FLP with 

network design. Obviously; (D),(E) and (F) are optional considerations and 

they increase the complexity of the problem.  

Erlebacher [15] provides an integral approach to FLP. He illustrates the impact 

of FL decisions on inventory costs like holding costs and risk pooling effects. 

Selçuk [23] illustrates the cases where vehicle routing ought to be taken into 

consideration. He points out that, if LTL (less than truck load) systems are 

considered; integrating vehicle routing considerations are beneficial for 

creating a more realistic model.  And Daskin et al.([12] and [13]) marks the 

benefits of considering a FL/network design integrated approach. They point 

out that, for LTL distribution systems, pipeline systems, telecommunications 

systems etc “it may be more economical to change the configuration of the 

underlying network instead of locating new facilities”(pg 481, Daskin [13] ). 

They formulate the FLP in a network design model to incorporate this 

structure to their model. 

Objectives of the models are interrelated with the cost structure of FLPs in 

general. There are several main cost structures in FLP models: 

� Fixed costs                                                                                             (i) 

� Production, transportation, assignment etc costs                                 (ii) 

� Inventory costs (iii) 
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� Arc (link) building costs (iv) 

First of all, cost terms (i) are the fixed costs of opening and operating facilities. 

It is the cost of opening facility, and it is incurred in full, even if facility is 

open just to satisfy a single demand. Secondly, we see cost terms (ii), which 

are a main cost component of general case FLPs. Term (ii) includes costs of 

assigning/transporting a demand point (retailer etc) to/from a facility. Cost 

term (iii) is taken into account in joint inventory/location models as in 

Erlebacher’s[15]. Lastly, cost term (iv) is found in network design-FL 

integrated approaches. 

Other than these basic classifications, more extensive classifications can be 

found in Francis et al [18] where they classify FL under facility location and 

layout problems according to a 6 element criteria (pg 20). A vast amount of 

classifications exist in literature besides those mentioned above. One of the 

newest and a quite extensive one is those of Klose et al.’s ([30], pg. 5). 

Klose [30] classifies FLP according to 9 aspects of the problem and model 

structure (examples are provided to briefly illustrate): 

� Shape or topography of the facility, demand sets (Network, Planar, 

Discrete) 

� Objectives (minisum, minmax) 

� Capacity restrictions (Uncapacitated, Capacitated) 

� Number of stages (Single, Multi) 

� Number of commodities/products (Single, Multi) 
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� Demand relation with other decisions (Spatial, Correlated) 

� Static versus Dynamic models (single period plan horizon, multi 

period plan horizon) 

� Demand certainty (Deterministic, Stochastic) 

� Quality of demand allocation and aggregation of demand  

Obviously, the combination of these aspects results in many different models. 

These models generally try to capture different aspects of particular real life 

situations and complexities. However, in general such complexities may not 

exist or may be negligible due to the structure of problem. For instance in  the 

models which demands are always multiples of TL (truck loads), we can 

neglect vehicle routing considerations as they may be only significant for LTL 

systems. Also, if demands are deterministic inventory costs, will not have a 

significant impact on facility location decisions, so they can be dropped out of 

the model. Moreover, for a simple distribution network design; using network 

topology may result in extravagant use of computational time.  

The simple approaches can still be useful even if some complexities exist for a 

particular situation. They can still be used as decisions tools or approximations 

for complex integrated approaches. It is a well known fact that as the 

complexity increases, the probability of errors and miscalculations increases. 

Therefore, in most cases using simple approaches that capture essential 

structure of the problem is better than to devise a complex error prone model. 

So we restrict our attention to a basic approach in FLPs, without optional 

objective and cost structures. We will only consider the general case of 

including (A),(B),(C) as its objectives and (i),(ii) as its cost structure. In other 
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words, the objective is to find a tradeoff between fixed and assignment costs 

that will minimize the total cost. Solution of this problem will result in an 

optimal location of facilities and allocation of the customers to these facilities. 

This problem is referred as General Warehouse Location Problem (GWLP) by 

Beasley [5] and it is the predecessor of 4 well known FLP problems: UFLP 

(uncapacitated), CFLP (capacitated), CFLPSS (capacitated with single 

sourcing constraints) and p-median).  

These are 4 sets of problems that can be derived from GWLP. As 

CFLP/CFLPSS of these 4 are the ancestors of our problem, review of the  

literature in this context may clarify our model and solution approach. 

For further information on location theory reader is referred to Klose [30] and 

Brandeu[6] in which about 50 different problems are classified in location 

theory. There also can be found a selective bibliography of location theory 

between 60s and 70s in Francis[17]. 

 2.2 About the Structure of CFLP/CFLPSS 

 

Structure of CFLP/CFLPSS will be further discussed in the next chapters, 

however to be able to clarify things better we include some basic structure and 

notation concepts of CFLP/CFLPSS. As we repeat this name a lot in 

successive chapters, from now on we will refer to these family of problems as 

“problems” as a short hand notation, unless noted otherwise. 

There are several important features of these problems. First of all these 

problems are based upon a “minisum” objective function, which is composed 

of a summation of fixed costs and transportation costs. There are 2 decision 
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variables, opened facilities ( yj ) and assignment of demands ( xij ), in these 

problems. The basic form of problems includes only 2 constraint sets (except 

integrality and binary requirements). First one is demand constraints that 

ensures all the demand is served (Σi xij = 1). Second one is capacity constraints 

that ensure capacity of the facilities do not get exceeded (Σi di xij ≤ sj yj). 

In addition to these basic constraint sets, 2 supplementary constraint sets are 

also included in some of the related literature. “Surrogate constraint” is an 

optional constraint that ensures total capacity of opened plants exceeds the 

total demand (Σi di < Σj sj). This constraint primarily used for improving lower 

bounds obtained from lagrangian relaxations. Other optional constraint set is 

xij ≤ yj.  Problems are referred as in “strong form”, when xij ≤ yj constraints are 

included and “weak form” otherwise. This constraint set strengthens especially 

the LP relaxation of the problems. 

As there are 2 complicating sets of constraints, either demand constraints or 

capacity constraints are relaxed in lagrangian solution procedures in the 

literature (there are other relaxations too but not widely used, for detailed info 

please refer to Cornuejols [8]). We will adopt  Cornuejols [8] et al’s notation 

and use subscript in the place of  a lagrangian relaxation and superscript in the 

place of a complete relaxation. Meaning ZD and ZC stand for demand 

constraint and capacity constraint lagrangian relaxation. Z
T
 stands for problem 

without surrogate constraint (total demand constraint). 

The structure of problems is an interesting one that is interrelated with many 

discrete optimization problems. ZC relaxation will result in a UFLP sub 

problem that can easily be solved by methods like Erlenkotter [16]. ZD 

relaxation will reduce into knapsack problems for CFLP and a trivial problem. 

For CFLPSS same relaxation will result in 0-1 knapsacks as sub problems and 
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a continuous knapsack. Moreover, these problems are closely related with 

problems such as transportation, general assignment (GAP) or matching. 

These structures are highly exploited in a lot of work in the literature (like 

Baker[4] exploiting TP and Holmberg [21] using rapid matching ). 

 2.3 Solution Procedures 

 

Facility location problems are defined and briefly classified in previous part of 

the section. As mentioned previously our work is built upon a small branch of 

FLPs, which are CFLP and CFLPSS. Moreover, our solution procedure is an 

extension of those in CFLP and CFLPSS. So we review the work in this area 

in this section.  

Uncapacitated Facility Location Problem (UFLP) or “simple plant location 

problem” is a basic problem, which represents the foundation on which other 

FLP are based. It was formally formulated by Balinski in 1965 ( see 

Harkness[19] ). In this problem there is a set of candidate sites for facility 

locations and demand points. Unlike facility locations, demand points are not 

decision variables and they are fixed. Moreover, there exist two kinds of costs 

in the formulation: one fixed and other transportation costs. The objective is 

minimizing the sum of all costs (minsum objective), while serving all demand 

points. To serve demand points one must first incur fixed costs to open 

facilities to serve the demand, then by incurring transportation costs he must 

transport the products from facilities to demand points. Facilities in this 

problem have no capacity limits, under assumption that they can supply any 

amount of demand. Although this problem is NP-Hard, as its structure is 

“integer friendly”, one can easily solve by LP relaxations with little or no 
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resort to branch and bound (B&B). In the literature there are several efficient 

models to solve UFLPs. One of them is the well known Erlenkotter’s [16] 

dual-based procedure. 

 2.3.1 Solution Procedures of CFLP 

CFLP (capacitated facility location problem) is a problem derived from the 

basic UFLP. In this case, facilities can supply no more than a defined capacity 

limit. Unlike its predecessor, it is a much harder problem to solve. One of the 

earliest researches is work of Sa [22], in which he investigates B&B and 

approximate solutions to CFLP. 

One of the mile stone papers in this area is those of Akinc&Khumawala [2]. 

They devised an efficient algorithm for CFLP based on a B&B algorithm, 

employing powerful penalty tests, that are used to fix facilities open (inclusion 

test) or closed. By this way problem size and complexity is decreased. These 

penalty tests also inspired many other researchers in the area (as they are 

cheap in computational time to employ). They also devised good UB and LB 

algorithms. Finally by establishing good node and branch selection criteria 

they formed an efficient B&B algorithm. They also tested these problems on 

Kuehn& Hamburger’s [28] data set. This data set is also widely used in FLP 

literature and it is ranging from 20v10 (10 facility, 20 demand point) to 50v25 

in its largest case. 

Nauss [33] in 1978 proposed an “improved algorithm” for CFLP. He used the 

lagrangian relaxation, which is devised by Geoffrion to compute lower 

bounds. This relaxation in fact is the relaxation of demand constraints in a 

lagrangian fashion. He observed that lagrangian relaxation may give stronger 

lower bounds than LP relaxation by adding a constraint set, which is also 
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known as “surrogate constraints” in the literature. (These constraints improve 

the quality of lower bounds and are used in many such relaxations. They are 

also used in the relaxation part of our model.) As a result, based on his 

computational results he claimed that his algorithm is at least as effective as 

Akinc & Khumawala’s [2] in worst case and can be up to 3 times effective in 

others. 

Another well known algorithm is Van Roy’s [35] cross decomposition 

algorithm. In his paper he unified “Bender’s decomposition and lagrangian 

relaxation into a single framework” (pg. 145). He preferred the strong 

formulation of the problem. His work is based on the observation that for a 

fixed set of facilities, location problem turns into a transportation problem. 

Then he fixes facility locations to turn the problem into a transportation 

problem (TP). Subsequently, solution of TP is used to generate lagrangian 

multipliers. Then lagrangian relaxation is used to get the next fixed facility 

locations. This primal structure is then embedded into a decomposition scheme 

to ensure progress towards optimum. He also tested his procedure in Kuehn & 

Hamburger data set. His results are found out to be 10 times faster than other 

existing algorithms. His algorithm works very fast for small duality gap 

problems. 

Sridharan’s[27] work is a good review of solution methodology in CFLP 

literature, in which he also contributed with works like [25] and [26]. First of 

all, he formulates the CFLP. In addition to standard formulation with demand 

and capacity constraints; he also included “surrogate constraints” in his 

formulation and preferred strong formulation. As he refers to Geoffrion & 

McBrides work in 1978( [25], pg. 307 ), the lagrangian relaxation of CFLP 

without surrogate constraints is only as strong as LP relaxation with strong 

formulation. Then he reviews  the common solution methodology for the 
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problem: greedy heuristics (ADD&DROP), interchange heuristics, lagrangian 

heuristics, lagrangian or LP relaxations embedded in B&B, dual ascent 

method (extended from Erlenkotter’s [16]), Benders decomposition and Cross 

Decomposition (as in Van Roy [36]). 

Cornuejols [8] et al provided another useful review. Unlike Sridharan[27], 

they did not review the solutions but reviewed the bounds. They mainly 

compared strengths of different relaxations used throughout the literature. 

They proved many relations between qualities of the bounds. Most 

importantly, they proved that lagrangian relaxation of capacity constraints 

yield at least as tight as lagrangian relaxation of demand constraints ( ZC≥ZD). 

Moreover, they found out that “variable splitting does not yield stronger 

bounds than best lagrangian relaxation” (pg. 282). Then they computed the 

quality of several main relaxations on a problem set. It is found at that ZC and 

ZD with surrogate constraints provide tight (at most %1 -%3 respectively) 

lower bounds. ZC is better as expected but at the cost of the computational 

complexity. 

There are also several important works that is worth to mention in the area. 

Baker [3] provides a generalized constraint that can be used to create efficient 

valid inequalities. Unfortunately, the strength of the cut generated by this 

inequality largely depends on the parameters of the inequality and they could 

not provide a way to obtaining good parameters. Mateus [32] investigates the 

relation between fixed and assignment costs in a weak formulation of CFLP. 

This observation leads to a solution procedure involving exact tests and greedy 

heuristics (ADD&DROP heuristic). In addition to these many different 

methods are devised to solve CFLPs, like branch&price algorithm of Klose et 

al [31] and partial dual algorithm of Baker[4].  
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Some of the work in the field, is based on simple variations of CFLP. Shulman 

[24] investigates the CFLP with dynamic expansion sizes and describes a 

solution procedure based on a lagrangian technique. Sridharan [25] 

investigates the CFLP with side constraints. He bounds the number of open 

facilities from above and below. He then employs a lagrangian relaxation 

based heuristic to solve this variation of CFLP.  

 2.3.2 Solution Procedures of CFLPSS 

Standard CFLP is same as CFLPSS, except for its single source constraints. 

These constraints force xij values to take binary variables (0-1). Obviously 

problem structure remains unaltered, however the number of integer variables 

increases greatly. For example in a 200v30 CFLP there exist only 30 integer 

variables (yj), an easy target for direct brute force approaches (even a simple 

B&B will suffice most of the time). However with the addition of SS, number 

of integer variables will become 6030! (30 yj + 6000 xij) This will greatly 

increase the problem size, memory requirements and computational 

complexity. As a result, heuristics are favored instead of exact procedures 

most of the time. Lagrangian heuristics are found out to be efficient for this 

case of problems so most of the related literature embodies lagrangian 

approaches. Moreover, lagrangian heuristics provide a readily available lower 

bound at each step as Klincewicz remarked [29]. 

Klincewicz et al’s [29] work is one of the earliest works in CFLPSS. They 

relaxed capacity constraints in a lagrangian fashion and did not take “surrogate 

constraints” into account ( ZC
T
 in short notation). The resulting sub-problems 

are solved by Erlenkotter’s [16] dual based method. Then they used ADD 

heuristic (a greedy approach in FLP literature) to create initial solutions. Later, 

they tested the problem with K&H data set [27], which is at most 50v25-
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50v26. Darby-Dowman and Lewis[11] investigated this same case based upon 

the observation that for some set of problems ZC
T
 is infeasible and ADD 

heuristic does not guarantee to yield feasible solutions. They found that for 

some set of problems ZC
T 
is of no value. They conclude that, although it “is 

tempting to relax ‘hard’ constraints” (they refer to capacity constraints) in 

lagrangian fashion, “it may be worthwhile carrying out a preliminary analysis” 

(pg. 1039). In other words, relaxing capacity constraints may fail in some 

cases. 

A different approach came from Sridharan [26]. Sridharan pointed that by 

relaxing capacity constraints (ZC
T
), resulting sub-problem will be UFLP, 

which is also known to be NP-Hard. Therefore, unlike Klincewicz et al [29], 

he preferred relaxing demand constraints. He also incorporated “surrogate 

constraints” to achieve better lower bounds (ZD). He extended the Nauss’s 

algorithm to solve CFLPSS. He devised a lagrangian heuristic that ping pongs 

between a single source transportation problem and ZD. Unfortunately, data set 

he tested his algorithm is quite inadequate and small (35*20 at maximum ).  

Beasley in his work [5] also employed a lagrangian heuristic. He formulated 

GWLP(general warehouse location), and upon this formulation he built a 

general case lagrangian heuristic that both relaxes demand and capacity 

constraints (ZCD). Despite being an insightful work and inspiring some further 

work (check Agar[1]), because it is a general case framework it is inefficient 

for CFLPSS in particular. This algorithm is a multi purpose algorithm that can 

be also used to solve CFLP, UFLP and p-median. The maximum size problem 

of data set is also 50v25-50v26 for CFLPSS. 

Hindi and Pienkosz [20] follow the same approach as Sridharan. They also 

used ZD as the lagrangian relaxation. However, their algorithm differs in terms 
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of finding feasible solutions. They combine a greedy constructive search with 

restricted neighbor search to find better feasible solutions. In addition, to data 

from the literature they tested their algorithm on larger scale problems. 

Corthinhal et al.[9] used the same popular approach for lower bounds:  ZD. 

Upper bounds are created by using search methods and tabu metaheuristic.  

Correia and Captivo [7] investigate a variant of CFLPSS where multiple 

possible capacities exist in a discrete space. They named this problem as 

CFLPSS modular. They provided lower and upper bounds by the use of 

demand constraint relaxation in lagrangian fashion. Then they enhanced this 

procedure by tabu and local search. In joint work of Cortinhal and Captivo [9], 

upper and lower bounds are provided by lagrangian relaxation and tabu 

metaheuristics. . Agar and Salhi [1] proposed a lagrangian heuristic build upon 

framework of Beasley [5], which can be used to solve large instances of 

several CFLP variants including CFLPSS. C 

Holmberg et al. [21] proposed an ingenious algorithm based upon lagrangian 

relaxation. As the most of other researchers in this field, they relaxed demand 

constraints (ZD) in a lagrangian fashion as a lower bound procedure. They 

created feasible solutions from the output of lagrangian relaxation and then 

empower these results with dual-based penalty tests (like A&K[2]) and a rapid 

matching algorithm. They provided a comparably large sized problem set, 

except for those of Agar&Salhi[1] and Hindi et al [20]. The largest problem 

size in this set is as large as 200v30, which is considerably good for testing 

purposes. Moreover, they embedded their heuristic in a B&B framework; so 

that it can be used as an exact procedure. 
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 2.4 Remarks 

 

Obviously, relaxing demand constraints in a lagrangian fashion is quite 

popular in CFLPSS. This is mainly because its sub-problems are relatively 

easy to solve and lower bounds obtained by lagrangian relaxations are better 

than those of LP relaxations. As you may recall from CFLP solution 

procedures, ZD
T (without surrogate constraints) is no better than LP relaxation. 

However, this is not the case for CFLPSS, it is at least as tight as LP relaxation 

(Sridharan [26] pg.307) even without surrogate constraints (only for a limited 

set of extremely restrictive problems it can be equal to LP relaxation). 

Moreover, the sub -problems ZD are knapsacks which can efficiently solved by 

dynamic programming approach. On the contrary sub-problem ZC is 

computationally hard to solve.  

Note that solution procedures for CFLPSS are extension of those of UFLP and 

CFLP. However, unlike CFLP and UFLP there are not much different solution 

approaches in the field. The main approach of solution is heuristics. This is 

quite intuitive as CFLPSS is IP, therefore its memory and computational 

requirements are very high. Two main types of heuristics are employed: 

exchange heuristics and lagrangian heuristics. 

As our problem is an extension of CFLPSS and its structure is not altered 

much, obviously algorithms that work well with CFLPSS will work well with 

this new variant. Therefore we mainly based our algorithm upon the existing 

literature of CFLPSS. Our algorithm is an adaptation of Holmberg et al’s [21] 

and Sridharan’s [26] brilliant works. So we preferred a lagrangian heuristic 

based on ZD, to solve this new variant.  
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Chap t e r  3  

MODEL 

In this chapter we will introduce a problem that stems from CFLP/CFLPSS 

problems. In fact, this problem can be thought as a general case for CFLPSS.  

This chapter is organized as follows. In first section, we define our problem 

and discuss the main motivation behind it. Then in section 3.2., we will 

formulate our model as a mathematical model and state its parameters, 

variables and set notations.  

 3.1 Problem Definition 

 

Our model is an extension of well known CFLP with single source constraints. 

It has the same basic objective and cost structure, where the only difference is 

the addition of minimum supply requirements to its constraint set. As other 

FLPs, CFLPSS has a large application area and its results may be interrelated 

to the other supply chain decisions. 

In traditional FL approach, all demands must be supplied. We build our model 

upon the observation that the model can also be used to cover lost sales and 

sub-contract cases to the model without altering the structure of the model. 

This will allow seeing opportunities more clearly in the supply chain. For lost 

sales cases we assign the state of “lost sale” to a dummy facility. Then we can 
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assign penalty costs in same manner as transportation costs.  Then even the if 

the total demand exceeds capacity, model will work fine reflecting which 

demand should not be supplied (lost sales) in its optimal solution. The same 

things apply for a subcontractor situation. We could replace ordering costs 

with  fixed costs, and their fees of production and transportation as assignment 

costs.  

In the worst case of such a situation with N*M size (N retailers, M facilities) 

with addition of such R subcontractors, the problem complexity will not be 

more than N*(M+R) (N retailers, M+R facilities).  

However, it is not uncommon for subcontractors to employ minimum supply 

constraints. One of the reasons of such a thing is that demands could be LTL 

for subcontractors. Secondly, the order amount could not be less than break-

even point of subcontractor. Then they will not want to sell or produce less 

than some amount, as they can not profit from such an agreement.  

Another such situation may arouse for real facilities too. Generally the fixed 

costs of facilities are calculated based on some expectations and assumptions. 

However, under some production volume it may be inefficient to use that 

facility or below some volume fixed and assignment costs related to facility 

may increase beyond the expected rates. 

Cases mentioned above can easily be integrated into CFLPSS with a single 

addition of minimum supply constraints (MM). This constraint is very similar 

to capacity constraints, except for the direction of inequality. For capacity 

constraints the total demand assigned from (or produced at) that facility could 

not be larger than capacity (Σj di xij ≤ Kj yj). However, for MM the total 
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demand supplied from that facility should be larger than some predetermined 

amount (Σj di xij ≥ Lj yj) if the production of facility is positive. 

Although one can model sub-contractors case with assigning a different set of 

decision variables, we preferred not to change the normal formulation. This is 

due to the fact that, by this way we can take advantage of the highly efficient 

algorithms devised for CFLPSS and vast information in the literature 

regarding CFLP and CFLPSS. 

Besides these cases mentioned above, such problems (CFLPSSMM) may exist 

in many real life circumstances. For instance in community service sector like 

school, hospital, police station and fire station location problems. In these 

sectors serving community is the real objective. So it may decrease the quality 

of service if the facilities serve less than some plausible amount. For instance, 

it may be less costly to open several hospitals rather than few central hospitals; 

however this may decrease the patient satisfaction as it is more probable that 

equipment in these hospitals are scarce or worse. Another possible sector 

could be waste incineration. 

 3.2 Model Formulation  

 

The mathematical model and notations that are formulated below represent the 

capacitated facility location with single sourcing constraints and minimum 

supply requirements (CFLPSSMM): 

Sets 

N        number of retailer/demand-point locations 
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M       number of facility/supply-point locations  

 

Subscripts 

i         subscript for retailer location, I Є [1….N] 

j         subscript for facility location, J Є [1….M] 

Decision Variables 

xij        =         1        if demand i is satisfied from facility j 

                                       0       o.w. 

yj        =             1        if facility j is opened 

                          0        o.w. 

Parameters 

cij         costs of producing and transporting all the demand i from facility j.  

Fj         fixed cost of opening facility j 

di         demand of retailer i 

Kj         capacity of facility j 

Lj          minimum supply limit on facility j 
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Assumptions 

� Facility locations are a discrete finite set (topology) 

� There is only one commodity(or service) to be provided in a single 

planning horizon 

� It is a single stage distribution system with single facility types 

� All demands must be satisfied  

� Demands are deterministic 

� Each demand can only be satisfied by a single facility (no splitting 

allowed) 

� Facilities can not supply beyond their capacities and capacities are 

constant 

� If a facility supplies at least one demand, then it must supply more than 

MM 

� Facilities are either opened or closed (no partially opened facilities) 

� Objective is to minimize total cost 

 

Mathematical Model 

In the light of the previous notations and considering the assumptions, our 

model can be formulated as follows: 
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=

≤∑           j∀ ,                                                                    (3) 
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N

i ij j j

i

d x L y
=

≥∑         j∀ ,                                                                   (4) 

               j  yijx ≤                  ,i j∀ ,                                                               (5) 

               { }  0,1jy ∈              j∀ ,                                                                 (6) 

              { }  0,1ijx ∈             ,i j∀ ,                                                             (7) 

 

Explanations of the Objective Function and Constraints 

As discussed previously, objective function of FLP (1) is composed of 2 cost 

terms. First part of the objective, with the double summation, represents the 

assignment costs of allocating customers to facilities. On the other hand, 

second part with the single summation is the fixed costs of opening facilities. 
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The objective function minimizes total costs, which include these assignment 

and fixed costs. 

Constraint set (2) is known as “demand constraints”. It ensures the demands of 

all customers are satisfied.  

“Capacity constraints” or constraint set (3) limits the amount of goods or 

services, which can be supplied by facilities. “Kj” is the capacity limits of the 

respective facility “j”. No facility can produce than its capacity limit K.  

Constraint set (4) is minimum supply requirements. They work much similar 

like capacity constraints, except for the fact that they impose limits on the 

amount supplied by facilities in a reverse fashion. Capacity constraints limit 

the total amount supplied by a facility from above. On the contrary, minimum 

supply requirements (MM) limit the minimum amount of supply for an open 

facility. In other words, capacity constraints act as an upper bound and MM 

act as a lower bound on the amount of supply of open facilities. If this 

constraint is omitted resulting problem will be same as CFLPSS. 

Constraint set (5) is a supplementary set of constraints that is also known as 

“strong formulation” constraints. They originate from UFLP. It is possible to 

deduce them from other constraint sets, so removal of these constraints will 

not affect the main aspects of the model. The main reason of their inclusion 

into the model is due to their beneficial effect on the LP relaxation of the 

model. Also from experimentation it is observed that they reduce the memory 

requirements in direct approach (in CPLEX solutions we have used) by 

preventing branch and bound tree getting larger. This fact reduces the 

possibility of a memory overflow and getting an abrupt termination.  
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Constraint set (6) ensures, the facilities are either opened or closed. Finally, the 

constraint set (7) is single source constraints (SS). This set forces each demand 

to be served by exactly one facility. Without (4) and replacing (6) with a 

continuous range from 0 to 1 will result in CFLP. 
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Chap t e r  4  

HEURISTIC 

In previous chapter we discussed briefly about a new problem, CFLPSSMM, 

derived from CFLPSS. We also provided a mathematical model for this 

problem. In this chapter we discuss our proposed solution approach and 

subsequently, our algorithm will be provided. 

 4.1. Lagrangian Heuristic (LH) 

 

In CFLPSS all variables are integer valued. An important consequence of this 

fact is a large branch and bound tree. As the number of facilities and retailers 

increases in polynomial fashion, the solution space grows in a exponential 

fashion. Therefore, heuristic approaches are common in context of CFLPSS. 

As reader may recall from section 2.3.2 (solution procedures for CFLPSS), 

nearly all of the work in this area are based on lagrangian procedures. 

Agar & Salhi in their work ([1]) remarks that: “LR (lagrangian relaxation) was 

inspired from an important observation that the formulation of many hard 

combinatorial problems consists of an easy problem made difficult by the 

addition of a set of constraints.” (pg. 1074). Transfer of this constraint set into 

objective function with penalty coefficients is the main idea behind lagrangian 

relaxation. Then the value obtained from the objective function of this relaxed 
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problem will provide us a lower bound of the main problem. Moreover, this 

solution can be adjusted to provide an upper bound (feasible solution). 

Subsequently, the method which is known as subgradient search can be 

employed to obtain a new set of penalty coefficients (lagrangian multipliers) 

and hence a new lower bound. Finally, this framework can be repeated until an 

acceptable solution is found or time/iteration limit is reached. Three main 

components of a LH is lagrangian relaxation, primal heuristic and subgradient 

search as mentioned above.  

The initial step of devising a LH is to decide, which constraint shall be 

relaxed. In the lagrangian heuristics in the literature of CFLPSS, demand 

constraints (Sridharan [26] , Holmberg [21]), capacity constraints (Hindi [20]) 

or both of these constraints at the same time (Agar & Salhi [1]) are relaxed.   

Relaxing both constraints at the same time will provide worst lower bounds 

but it also results in the easiest sub-problems to solve. A&S ([1]) and Beasley 

([5]) used this method, in the purpose of devising general heuristics that can be 

applied to a wide variety of FLPs. Nevertheless, our intentions are to devise a 

heuristic for a particular set of problems, CFLPSS and CFLPSSMM (Note that 

CFLPSSMM is a general case of CFLPSS so it is quite intuitive that any 

algorithm that can solve CFLPSSMM, will also solve CFLPSS). Therefore, it 

is obvious that this is not a perfect choice for a specific heuristic. 

Relaxing capacity constraint in lagrangian fashion is proved to give better 

lower bounds than relaxing demand constraints (Cornuejols [8]). Nonetheless, 

as acknowledged by many researchers, the excessive computational effort 

required to solve its sub-problem is not worth the minimal increase in the 

lower bounds. As a matter of fact its sub-problem is NP-Hard too, so in worst 

case a heuristic for this kind may be very unproductive. 
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The research in this field has shown that the most plausible choice would be 

relaxing demand constraints, as it results in quite good lower bounds in 

reasonable amounts of time. Holmberg et al. [21] and Sridharan [26] used this 

method and achieved comparably good results. 

Our LH is also based up on relaxing demand constraints. We preferred the 

same methodical line as in Holmberg et al. and Sridharan. By relaxing demand 

constraints the lagrangian sub-problem reduces to 0-1 Knapsacks for CFLPSS 

and interval Knapsacks for CFLPSSMM. Although, these problems are also 

NP-Hard there exist quite efficient algorithms in the field to solve these. In 

addition to these sub-problems are much smaller than the main problem in 

terms of variable and constraint numbers, so B&C approaches seem to 

efficiently solve these small instance problems. 

Our LH consists of 4 main parts: 

� Lagrangian Relaxation (ZD) 

� Primal Heuristic  

� Subgradient Search 

� An improvement procedure (SSTP) 

In the successive parts of this chapter, Sridharan’s notation from his work [26] 

is used for mathematical models and subgradient search. The reader can refer 

to his work for more extensive information. 
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 4.1.1 Lagrangian Relaxation ( ZD ) 

As reader may recall from previous section, the main idea behind the 

lagrangian relaxation is transferring a complicating set of constraints to the 

objective function by assigning penalty coefficients. The problem which is 

relaxed in this manner is also known as the “lagrangian relaxation” of the 

problem. Obviously, the solution space of lagrangian relaxation is at least as 

large as main problem as it has a set of relaxed constraints.  

Our main problem, CFLPSSMM, is (1) subject to the constraint sets (2) – (7). 

From now on, we will refer the main problem as “Z”. In this thesis we apply 

lagrangian relaxation to the demand constraints (2)  in Z. The resulting 

objective function is: 

min (1 )ij ij j j i ij

i j j i j

c x F y u x+ + −∑∑ ∑ ∑ ∑  (8)   

where ui are respective lagrangian multipliers for each relaxed demand 

constraints in the form (1-∑j xij). This new cost term, the third term, stems 

from the lagrangian relaxation of (2). This problem is known as the lagrangian 

relaxation of Z with lagrangian multipliers “u”. With the proper adjustments 

this problem can be formulated as follows: 

( Z[LR(u)] ): “Z” s “L”agrangian “R”elaxation with lgr. multipliers “u” 

min ( )ij i ij j j i

i j j i

c u x F y u− + +∑∑ ∑ ∑  (9) 

s.t. 
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(3), (4), (5), (6) and (7) 

As demand constraints are relaxed in this formulation, there is no constraint 

left to relate xij variables of different facilities. Therefore, Z[LR(u)] can now 

be divided into “M” independent sub-problems Zj[LR(u)], one sub-problem 

for each facility. It is the same relaxation of Sridharan [26], except for the 

addition of minimum supply constraints (12) in Z(LR(u)) and addition of 

lower bound Lj in (14) of sub-problems Zj(LR(u)): 

 

( ( )) min [ ( )]j i

j i

Z LR u Z LR u u= +∑ ∑ ,  (10) 

s.t. 

j j i

j i

K y d≥∑ ∑  (11) 

j j i

j i

L y d≤∑ ∑  (12) 

where , 

 

( ( )) min ( )j ij i ij j j

i

Z LR u c u x F y= − +∑  (13) 

s.t. 
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j i ij j

i

L d x K≤ ≤∑  (14) 

 j  yijx ≤  for all i,j (15) 

(6) and (7). 

Note that it is trivial for solution of Zj[LR(u)] that: 

- It is equal to “0” if respective yj value is “0” as all xij will also 

take value “0” to satisfy constraint set (15) 

- It is equal to solution of Zj(LR(u)) = Zj(LR(u))
*
   

So the Z[LR(u)] and Zj(LR(u)) can be reformulated as following according to 

this relation  with corresponding yj values: 

( ( )) min [ ( )]j j i

j i

Z LR u Z LR u y u= +∑ ∑                                                    (16) 

s.t. 

j j i

j i

K y d≥∑ ∑                                                                                           (17)         

j j i

j i

L y d≤∑ ∑                                                                                           (18) 

{ }  0,1jy ∈              j∀ ,                                                                              (19) 

and,  
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[ ( )] min ( )j ij i ij j

i

Z LR u c u x f= − +∑                                                              (20) 

s.t. 

j i ij j

i

L d x K≤ ≤∑                                                                                           (21) 

{ }  0,1ijx ∈             ,i j∀ ,                                                                         (22) 

Zj (LR(u)) are solved by CPLEX’s MIP solver module. These will give 

coefficients of the yj variables in Z(LR(u)). Then Z(LR(u)) is solved by 

CPLEX’s same module to obtain the solution of Z(LR(u)). 

Note that the constraint (15) is discarded from the Zj (LR(u)). So xij  values of 

closed facilities can be “1” in the resulting solution. Therefore, after obtaining 

a solution from the Z(LR(u)), we set xij  values of closed facilities as “0”: 

xij =        xij
*  if yj

* =1 (which is obtained from solution of Z(LR(u))) 

                0 otherwise 

This modification will not alter the objective value of Z(LR(u)) as none of 

closed facilities’ costs are added in Z(LR(u)), it just ensures feasibility. As a 

result the resulting solution is feasible for Z(LR(u)) and optimal for its relaxed 

counterpart (the one without the constraint set (15) ). This same application is 

used in Sridharan’s [26], reader can check Theorem 1 in his work to check the 

same principals. 

 (ZD) 
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max [ ( )]D UZ Z LR u=                                                                                      (23) 

ZD is the lagrangian dual problem, with demand constraints relaxed in a 

lagrangian fashion. It is the maximum value that can be attained by sub-

problems we formulated previously as [ ( )]Z LR u . As Z[LR(u)] are relaxations, 

their optimal solution can be at most equal to the main problems optimal (Z
*
). 

So the maximum of these problems, namely ZD, theoretically provide the same 

solution with main problem Z. The complication is that we do not know for 

which values of “u”, ZD is maximized. Consequently, we solve [ ( )]Z LR u  as 

the lagrangian sub-problem to achieve tighter lower bounds.  Selection of 

lagrangian multipliers is a different issue and will be discussed later in 

“subgradient search” section.  

Our lagrangian sub-problem is [ ( )]Z LR u , which is a knapsack problem. Its 

sub-problems Zj[LR(u)] are interval knapsack problems. 

We used the general B&C procedure of CPLEX to solve interval knapsacks  

and the main knapsack problem. Even though it is a general case algorithm, it 

has impressive results in solving knapsacks. More extensive information on 

lagrangian relaxation can be found in chapter 10 of Wolsey [37] and for 

application of lagrangian relaxation to CFLPSS problems with relaxing 

demand constraints, reader can check A & S [1] , Holmberg [21] and 

Sridharan [26] . 

 4.1.2 Primal Heuristic 

After creating lower bounds in previous step, we aim to obtain good feasible 

solutions in next step. We employ a very basic greedy heuristic that is 

modified from Holmberg et al’s [21] to create a feasible solution from the 
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result of lagrangian relaxation. The solution from the lagrangian sub-problem 

is known to satisfy capacity constraints, single source constraints and 

minimum supply requirements. It satisfies all the necessary requirements of a 

feasible solution, except for the demand constraints. Therefore, the main point 

is, if we modify the solution to satisfy demand constraints without violating 

feasibility. 

Three possible scenarios can take place for a demand “i” assignment in the 

solution of lagrangian sub-problem. First of all, the demand “i” can be 

assigned exactly to one facility (∑j xij=1), in which case there is no violation of 

demand constraint for this particular demand “i”. This demand is “normally 

supplied”. Secondly, it may be supplied from more than one facility at the 

same time (∑j xij > 1), causing an “over supply”. Finally, the demand may be 

not satisfied at all (∑j xij =0), “no supply”. 

The set of demands that are assigned to single facilities, form the initial basis 

of our primal heuristic. Then the set of  “over supplied” demands are 

investigated and the extra supplies are removed until only one facility supplies 

these demands. These reductions are based on a greedy approach that removes 

the one with the highest assignment cost value first. After this iteration, the 

remaining demands are either supplied by a single facility or by no facility at 

all. Then, we start to assign unsupplied demands. The algorithm prefers 

opened facilities over to the non opened ones for assignment of demands. If 

there is enough capacity in opened plants to satisfy a non supplied demand, the 

algorithm chooses the one with the lowest assignment costs. Otherwise, 

algorithm opens a plant and assigns the demand based on the lowest cost 

alternative, where the total cost is  fixed cost of opening facility plus the 

assignment cost to that facility. 
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Note that this algorithm does not guarantee a feasible solution. Based on 

experimentation the most common violation, that prevents primal heuristic 

from producing feasible solutions is minimum supply requirements. Such an 

infeasibility is expected to occur especially when the last few demands are 

assigned to a newly opened facility. So we apply a procedure that increases the 

chances of getting a feasible solution, by reassigning some of the demands to 

ensure minimum supply requirements met. 

Besides this case, it is also possible that some demands could not be assigned. 

However, this is a possibility for cases where capacity is very tight compared 

to demands. In general case, as the total capacity is quite larger than total 

demand, so it is an uncommon thing to encounter. In none of our experiments 

such a case is encountered. To sum, the primal heuristic in combination with 

the feasibility improving procedure does not guarantee to yield feasible results. 

Although this fact, this is a very rare occurrence and may occur only for cases 

where capacity constraints are very tight. At the end of the chapter, the exact 

algorithm which is coded in C for primal heuristic and its feasibility improver 

is given. 

 4.1.3 Subgradient Search 

The subgradient search is similar to that of Holmberg. By experimentation it is 

observed that Holmberg’s subgradient search can effectively be implemented 

to give tight lower bounds. Lagrangian multipliers are calculated according to 

the following procedure, where “k” stands for the iteration number, “i” for the 

customers and “j” for facilities. 

 
*

*( ) 1 ij

j J

NU i x
∈

= −∑                                                                                          (24) 
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NU are the subgradients, to the concave function Z(LR(u)), this same 

subgradient is used both in Holmberg [21 ] and Sridharan [26] in CFLPSS. As 

the objective function Z(LR(u)) are same for both CFLPSS and CFLPSSMM 

(only constraint sets differ by extra MM constraints in CFLPSSMM), it is 

trivial that it can be used as a plausible subgradient in CFLPSSMM.  

The lagrangian multipliers for iteration k+1 can be calculated by the following 

formula. 

1
( )

k k

i i ku u t NU i
+ = +                                                                                          (25) 

where, ui
k are lagrangian multipliers found in k th iteration and ui

1 (initial 

lagrangean multipliers) are selected as: 

ui
1
 = minj (cij) (26) 

This particular initial multiplier values are selected according to Sridharan’s 

[26] method. 

tk is the step length calculated according to the following formula. 

2

( ( ( )))UB

k
k

Z Z LR u
t

Norm

λ −
=                                                                                 (27) 

ZUB is the best feasible solution found so far and Z(LR(u)) is the most recent 

objective value obtained from lagrangian sub-problem (see lagrangian 

relaxations section). “Norm” value is the Euclidean norm of subgradients 

NU(i) , can be formulated as: 

2 2 2(1) (2) .... ( )kNorm NU NU NU NU N= = + + +  (28) 
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All the respective NU(i) are calculated based on the formula given in the 

beginning of this section and on the most recent lagrangian relaxation solution 

(Z(LR(u))). 

0 2kλ≤ ≤                                                                                                         (29) 

kλ is taken as 1, and it is halved each time the lower bound does not improve 

for 5 iterations. Norm is taken as the Euclidean norm as in Sridharan’s work 

[26]. If norm drops to “0” at any iteration we stop the LH, as it means an 

optimal solution is found. Note that, sub-problem Z(LR(u)) satisfies all the 

conditions of CFLPSSMM except the demand constraint. 

Norm can only be “0” if and only if exactly one xij per each “i” is 1.  In other 

words, Norm takes the value “0” only when all the demands are exactly 

satisfied. As the resulting solution satisfies all the constraints now and as we 

know that value of ZD can not exceed the value of original problem (comes 

from the definition of relaxation), the resulting solution must be optimal 

solution.  

Subgradient search is done by a code of the author that is written in C. 

 4.1.4 SSTP  

Fixing subset of y j  open (for j Є J
*) in a CFLPSS results in a single source 

transportation problem (SSTP). This is the main primal method Sridharan [26] 

used to obtain feasible solutions for his lagrangian heuristic. There are several 

weaknesses of this method. The first of all it is an IP, so it  may require large 

computational times to calculate at each step. Additionally, it does not 

guarantee to yield a feasible solution.  



CHAPTER 4 - HEURISTIC 
 
 

 42 

A modification of SSTP that is derived from CFLPSSMM is described as 

follows: 

(SSTP) 

( ) min
ij ij

i j

Z TP c x= ∑∑                                                                                  (30) 

s.t. 

1
ij

i

x =∑                      i∀  ,                                                                            (31) 

i ij j

i

d x K≤∑               *:j j J∀ ∈                                                                    (32) 

i ij j

i

d x L≥∑               *:j j J∀ ∈                                                                     (33) 

{ }  0,1ijx ∈             i∀ , *:j j J∀ ∈                                                             (34) 

where   * *{ : 1}jJ j y= =   

Set J
* 
 represents the set of open facilities. This approach divides main 

problem into two sub-problems. The first part is decision of the set J* and the 

second part is SSTP. The key remark is that if the optimal yj values are fixed 

open, the problem will provide the optimum solution. Unfortunately, finding 

optimal yj  itself is a difficult problem on its own. 

It is observed that, SSTP could be an inefficient algorithm to use as a primal 

heuristic. On the contrary, it is a very good aid as a primal heuristic supporter. 

Sridharan used SSTP directly after lagrangian sub-problem, but this method 
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does not guarantee yielding feasible results. We approach the subject from a 

different perspective. 

Primal Heuristic produces feasible results based on a greedy approach. 

However, such approaches are known to give different solutions than optimal 

solutions most of the time. So, they are used commonly in conjunction of 

methods as exchange heuristics to improve the solutions of greedy approaches. 

We noticed that primal heuristic forms a perfect starting basis for SSTP.  The 

yj values found by primal heuristic guarantees that at least one feasible 

solution exists in the solution space of SSTP. By fixing this set of yj ‘s from 

primal heuristic, we ensure the respective SSTP formed will not turn out to be 

infeasible. The solution from SSTP will provide a upper bound at least as tight 

as the primal heuristic, which it is created from. Due to it’s computational 

complexity, it may not be a good idea to apply this improvement procedure 

SSTP every step the primal heuristic finds a feasible solution. So this method  

is applied at most a given number of times. By experimentation, applying 

SSTP 4 times during the heuristic and 1 time in the end is found out to be quite 

effective. The final SSTP is formed on the yj values of best feasible solution 

found. We used CPLEX to solve SSTP’s. 

 4.1.5 Remarks  

Our heuristic is composed of these 4 routines that were outlined in previous 

chapters. The lagrangian relaxations are used to find lower bounds and primal 

heuristics in conjunction with SSTP provides feasible solutions. Then 

subgradient search is employed to calculate new set of lagrange multipliers so 

a new lower bound.  
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This is an iterative procedure and unless optimality conditions are satisfied, 

400 iterations are done before termination. There are 2 optimality conditions 

for our heuristic. First one is the norm value taking 0 as mentioned in 

subgradient search. Second one is getting a lower bound ( ZLB ), upper bound 

(Z
UB
) that satisfy the following constraint: 

ZUB  < ZLB +1, 

This result is derived from the observation that; as all decision variables and 

costs are integer, the resulting feasible solution will be integer as well. As the 

ZLB exceeds the next smallest integer value of Z
UB
, Z
UB 
must be optimum.  

Reader can check figures 4.1 and 4.2, to obtain brief information about 

heuristic. Figure 4.1 provides a flowchart of the heuristic and figure 4.2 is the 

pseudo-code of the heuristic. The LH is a C code that solves knapsack 

problems in the lagrangian relaxations and SSTP problem by using callable 

libraries of CPLEX. Main frame of our algorithm, Primal Heuristic and 

Subgradient Search are employed by C coding. 

Lagrangian relaxations are based upon observations of Hindi[20] ,Holmberg 

[21] and Sridharan [26]. Primal heuristic is modified from Holmberg et al’s 

[21] simple primal heuristic, modifications are done to tackle this general case 

of CFLPSS (CFLPSSMM). To improve feasibility a small greedy heuristic 

that exchanges demands across facilities to decrease MM violations is 

included. Subgradient search is modified from Sridharan [26] and Holmberg 

[21]. Initial lagrangian multiplier selection is based on Sridharan [26] and step 

size is calculated according to Holmberg [21]. SSTP is also used in Sridharan 

[26] but he used it as a primal heuristic. We modified it and it is used to 

improve the existing feasible solutions obtained from primal heuristic. By this 
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way we decreased the amount of time spend to create feasible solutions and 

guarantee to get feasible solutions from SSTP.  

 4.2 Direct B&C approach by CPLEX  

 

Rather than employing a heuristic, a second approach that could be plausible 

to solve such a problem is a Branch and Cut (B&C) approach. A B&C 

algorithm is a B&B algorithm with cutting planes generated throughout its 

B&B tree. (Wolsey [37]).  

CPLEX, the state of art software, employs efficient methods for general case 

MIPs. CPLEX uses an efficient B&C procedure where several sets of cutting 

planes are generated as clique, Gomory and cover (refer to CPLEX user guide 

[10]).  Therefore, it provides a good basis to compare our results from the 

heuristic. Callable library functions of CPLEX are used to operate CPLEX.  
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STEP1: Take the xij values and yj values from the last lagrangian iteration.  

STEP2: Group customers into 3 sets according to their demand constraint 

violations.  

- Assign to set1 if for that customer i, 1
ij

j

x =∑ ,  “normal supply” 

- Assign to set2 if for that customer i, 1
ij

j

x >∑ ,  “over supply” 

- Assign to set3 if for that customer i, 0
ij

j

x =∑ ,  “over supply” 

STEP3: Select a customer from set2 , randomly. Select among the xij 

(assignment variables) of this customer that is “1” with highest cij.  

-Remove it if its removal does not violate minimum supply requirements. If its 

removal closes a facility, set corresponding facility closed.  

-If its removal violates MM constraints, pass to the next possible assignment 

variable.  

STEP3: Repeat this procedure until the demand of customer i is assigned by 

only 1 facility. If its not possible to remove one or more of these extra supply 

assignments without violating MM, remove the one (s) with highest cij values 

and increase the MM violation count by 1 for each removal that violates a new 

MM requirement. 

STEP4: Return to STEP2 as long as set2 has elements. 
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STEP5: Select a customer from set3, randomly. Assign it to one of the open 

facilities with enough demand. If there is a MM violation from previous steps, 

assign it to the facility with MM violation if there is enough capacity to assign 

it. Otherwise, select the one with lowest  cij. If there is no enough capacity in 

open facilities pass to STEP6. 

STEP6: If the customer can not be assigned to one of opened facilities, open 

the facility among the facilities that have enough capacity to supply demand  

with lowest (cij + Fj) assignment plus fixed cost. 

STEP7: Return to STEP5 until all the elements of set3 are assigned. If there is 

no enough capacity to assign any one of set3 members, terminate the 

algorithm with infeasibility. 

STEP8: If there is MM violations, select a random facility with MM violation. 

Assign remove a demand among from another facility that will not violate an 

MM violation itself and close the facility if it was its last demand supplied. 

The selection of demand and facility that will be reassigned is based on the 

minimum increase or maximum decrease (whichever is the case) in the cost 

that will be caused by this move. Repeat until all MM violations are restored. 

If no such reassignment can take place without violating a MM for the facility 

that the demand will be removed, terminate the program with infeasibility. 

TERMINATE: If there is no capacity or MM violation , solution is primal 

feasible and return the solution to main program. Otherwise return  

infeasibility to main program, which will result discarding of this solution of 

Primal Heuristic. 

Figure 4-1: Primal Heuristic algorithm
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STEP1: Initialize u
0
[i] = minj (cij) , ZUB = ∑j fj + ∑i maxj cij , ZLB = -∞,try to 

use primal to obtain a better ZUB; 

STEP2: Solve Knapsack sub-problems for a LB (CPLEX is used), if LB > 

ZLB, modify ZLB = LB; 

STEP3: If lower bound improved in previous step or per each 10 iteration 

apply primal heuristic (coded in C) else goto STEP5; 

STEP4: Set UB=primal heuristic solution, if UB < ZUB modify upper bound 

ZUB=UB. Store yj of best incumbent solution; 

STEP5: If ZUB < ZLB + 1 terminate algorithm, found optimum else go to 

STEP6 

STEP6: Apply subgradient search (coded in C), update uk[i]  

STEP7: If Norm = 0, terminate found optimum (ZLB is optimum in this case) 

STEP8: Increase iteration count by 1, if iteration count > 400, terminate. Best 

feasible solution found is ZUB. Else go to step2 

Terminate: Use CPLEX to solve SSTP for best incumbent solution’s yj values. 

Return ZUB, ZLB, Time 

 

 FIGURE 4.3: Pseudo-code of the Heuristic 
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Chap t e r  5  

COMPUTATIONAL 
EXPERIMENTS 

In this chapter, we will discuss our computational experiments. We start the 

chapter by introducing our experimental setting, and then we will continue 

with the results of the computational experiments. Finally we will analyze the 

results. 

 5.1 Settings 

 

The algorithm we devised is intended to work on CFLPSSMM. As this 

problem is a general case of CFLPSS from the literature, it is also expected to 

give good solutions for CFLPSS. Therefore, we tested our algorithm both on 

CFLPSS and CFLPSSMM. 

We used 2 different data sets to test our heuristics. The first data set is from the 

literature. It is the data set that Holmberg et al used to test their algorithms in 

their work [20]. The structure of the problems showed that they are not 

reasonable alternatives to test CFLPSSMM. This is due to the fact that in 

optimal solutions, nearly all of the capacities of open facilities are used. 

Therefore, unless added minimum supply requirements are very tight it will 

not change the optimality of the existing solutions. Consequently, we only 
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tested CFLPSS with this data set. This data set, which is available at OR 

Library ([34]), consists of 4 smaller data sets. They range from 50v10 (N=50, 

M=10) to 200v30. Their sizes can be checked from the Appendix -1.  

70 instances exist in this data set. Note that in original data set there are 71 

instances. The missing instance is the problem 67, whose data was corrupted. 

The second data set we used is a generated data set. Its generation procedure is 

very similar to Holmberg’s [21] except for assignment costs. The capacities 

(Kj) and fixed costs (Fj) are in the range of 500 to 800 and 500-1500, 

respectively. The demands are uniformly distributed across the range 30 to 80. 

The assignment costs range from 1 to 4 per unit of demand. The respective 

distributions of parameters are tabulated in Appendix-2.  

For 2
nd
 data set, we tested 4 different scenarios based on the stringency of 

minimum supply requirements. The stringency of minimum supply 

requirements range from %0 to %40. The stringency value (Sj) shows the ratio 

of minimum supply (Lj) to capacity (Kj). A problem instance with %40 

stringency must supply at least %40 of its capacity, if it is open. Or we can say 

that Lj = Kj * Sj. The scenario for %0 stringency is the standard CFLPSS. 

There are 4 sizes of problem instances,  that range from 40v10 to 160v40 (40 

and 160 customers respectively; 10 and 40 possible facility sites respectively). 

A group of problems exist for each combination of 4 scenarios and problem 

sizes, with each group having 10 instances. It makes a total of 160 instances. 

In addition to our LH, a direct CPLEX approach is also tested on this 160 

instances. CPLEX version 8.1 is used to test these data and this is done via a C 

code interacting with callable libraries of this commercial software. As the 

problem in hand is IP, the memory requirements and computational time is an 

important issue. Therefore, a time limit is imposed on the CPLEX. This time 
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limit is 1000 seconds for small, medium and large sizes. For the problem 

instances of X-large size (160v40), this time limit is increased to 2000 

seconds. 

Both our LH and the CPLEX approach is tested on  the “Pascal” server of 

Bilkent University. It is a UNIX server with 2.6 Ghz dual AMD CPU and 

2GB RAM . During calculations only 1 CPU is assigned to CPLEX and LH. 

5.2 Computational Results 

 

The computational results of the experiments and interpretation of tables will 

be discussed in this part. As the computational experiments are performed on 

two separate data sets, we will discuss their results under two separate 

headings.  

5.2.1 Computational Results of Data Set 1 (Literature Data) 

The first data set we performed experiments was taken from Holmberg et al. 

There are 4 subsets in this data set. The first subset instances range from p1 to 

p24. They can be considered small sized problems. They have 50 customers to 

be satisfied and 10 possible locations of facilities. In table 5-1, we present the 

computational results for problem instances p1 to p12 from data set 1. Based 

on this table, we provide some brief explanations about data set 1 tables from 

Appendix 1. 
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Optimum LH Gap 

Problem Zopt ZUB ZLB Time Opt LH 

p1 8848 8848 8848 0,16 0,0000 0,0000 

p2 7913 7913 7913 1,75 0,0000 0,0000 

p3 9314 9314 9313,7 0,11 0,0000 0,0000 

p4 10714 10714 10695,9 2,74 0,0000 0,0017 

p5 8838 8838 8837,1 0,31 0,0000 0,0000 

p6 7777 7777 7776,42 0,13 0,0000 0,0000 

p7 9488 9488 9479,39 2,58 0,0000 0,0009 

p8 11088 11088 11079,44 2,54 0,0000 0,0008 

p9 8462 8477 8453 0,93 0,0018 0,0028 

p10 7617 7617 7610 0,78 0,0000 0,0009 

p11 8932 8932 8932 0,15 0,0000 0,0000 

p12 10132 10132 10114 1,32 0,0000 0,0018 

     Average= 1,13 0,0001 0,0007 

    Total= 13,50 0,0018 0,0089 

       

Table 5-1: Computational Results for Data Set 1 instances 

 

Under the heading of “Optimum” there is Zopt. These values are the optimum 

values of corresponding problem instances, which are taken from literature. 

The next heading from the table is “LH” with 3 sub-headings beneath: “ZUB”, 

“ZLB” and “Time”. These are three main results of our LH. Under ZUB and 

ZLB the best feasible solution and the best lower bound values found from our 

LH  is stored respectively. “Time” is the total run time for our heuristic for that 

particular instance in CPU seconds. In next column of the table, the gaps are 

stored. The first gap value gives : 
UBZopt Z

Zopt

−
 under the heading “Opt”. The 

second one gives the duality gap between ZUB and ZLB (
UB LB

LB

Z Z

Z

−
).  Other 

tables of the data set 1 can be found in Appendix 1. 
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We observed that our algorithm is quite effective in CFLPSS. As a matter of 

fact, it is an expected result, because our algorithm is an extension of  CFLPSS 

heuristics. In a significant number of cases our heuristic found the optimal 

value, even verified the optimality of the solution in considerable amount of 

these. And for %79 per cent of the time the solution of LH returned quite 

impressive solutions in terms of duality gap (<%1). Only %11 per cent of the 

solutions have more gap than %3 of optimal solution. For the rest of the 

solutions the worst solution of LH did not exceed %5.5 of the lower bound 

found (in p31), and even for this case the real duality gap was less then %4 per 

cent. Distributions of solutions are illustrated in the figure below. “Optimum” 

is the number of optimum solutions found. “Verified” stands for the LH 

solutions that are optimal and LH was able to verify the optimality by the 

lower bounds obtained. 

Figure 5-1 
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The computational times of our LH in data set 1, range from 0.11 CPU second 

in p3 to 15.42 CPU seconds in p70. The total and average run times for data 

set 1 are tabulated below in Table 5-2. 

 

Problems Set1(p1-p24) Set2(p25-p40) Set3(p41-p55) Set(p56-p71) 

Total CPU Time 29,86 72,18 40,29 98,24 

Average CPU time 1,24 4,51 2,69 6,56 

Table 5-2: CPU times of Data Set 1 (in CPU seconds) 

 

We observe that average run times are pretty good considering the sizes of the 

problems. LH solves small cases with 50v10 in an average time of 1,24 and it 

can find a solution for a large problem with 200v30 in an average time of 6,56. 

Despite the LH seeming a bit slower than its counterparts (A&S[1]), note that 

it is  general case solver that is initially intended to solve CFLPSSMM. 

Therefore, it has some extra procedures and more complex sub-problems than 

CFLPSS. Regarding this factor, it is obvious that it can be a resourceful 

CFLPSS solver. 
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5.2.2 Computational Results of Data Set 2 (Generated Data) 

The CFLPSS with MM is the general case of CFLPSS. To the best of the 

author’s knowledge, there is no prior work in this context. In addition, the data 

available in the literature is inadequate to test this new feature of CFLPSSMM. 

Therefore, a new set of data is generated according to Holmberg [21] et al.’s 

distribution of parameters.  

This data consists 4 different sizes of problems, varying from 40v10 to 

160v40. Each set is tested with 4 different minimum supply scenarios: 

%20,%30,%40 and %0 minimum supply . For instance in %20 minimum 

supply case, the minimum supply value of a facility is one fifth of its capacity 

value. In this case, any open facility must supply at least one fifth of its 

capacity.  We apply our LH and  CPLEX approach on a total of 160 instances  

from data set 2. The results are tabulated in tables in Appendix -2. 

In the table 5-3 below we will discuss the results of a case with problem size 

“small” and minimum supply stringency “low”. Each table is consisted of 10 

problem instances with the same characteristics and distribution parameters 

that can be found in A2-ii. Problem size small corresponds to 40v10 in our 

notation. MM stringency “low” in this example corresponds to %20. These 

notation can be found in Table A2-i. Shortly, this table corresponds to a case 

with 40 demands and 10 possible locations. Moreover, each open facility must 

supply at least %20 of its capacity value. 
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CPLEX LH Gap 
Problem 

Z* Time UB LB Time Z*/UB UB/LB Time 

P1 6681 6.87 6681 6635.9 3.12 0.0000 0.0068 1.20 

P2 6051 0.39 6051 6051.0 0.15 0.0000 0.0000 1.60 

P3 6993 7.94 6993 6932.4 0.39 0.0000 0.0087 19.36 

P4 6446 1.67 6446 6445.2 0.08 0.0000 0.0000 19.88 

P5 5890 0.53 5890 5889.5 0.36 0.0000 0.0000 0.47 

P6 6256 0.52 6256 6256.0 0.12 0.0000 0.0000 3.33 

P7* 5695 1000.00 5695 5624.2 3.42 0.0000 0.0126 291.40 

P8 6362 7.33 6382 6382.0 2.78 0.0031 0.0000 1.64 

P9 6082 0.30 6090 6077.3 3.10 0.0013 0.0021 -0.90 

P10 6332 2.04 6332 6332.0 0.20 0.0000 0.0000 9.20 

Total 62788 1027.59 62816 62625.5 13.72 0.0045 0.0302 347.17 

Average 6278.8 102.76 6281.6 6262.5 1.37 0.0004 0.0030 34.72 

            

Table 5-3: Computational Results for Data Set 2 instances 

    Problem size: Small    

    MM: Low    

 

The table can be partitioned into three main columns. In the first one CPLEX 

results can be found. In the second one best UB,LB and time values of LH can 

be found. Finally, in the last column gap values are notated. Notice that Z
*
/UB 

and Time gaps can be turn out to be negative like Time gap turning out to be 

negative in p9 of this table. Negative Time gap imply CPLEX performed 

faster than our algorithm. In this case CPLEX performed 10 times faster than 

our algorithm, it may seem a bad result but it is not as we will discuss later. 

Unlike data set 1, optimal values of problem instances are not known 

beforehand. Therefore, problems are first approached by CPLEX. CPLEX 

solutions under heading Z
*
 are optimal values, unless that particular CPLEX 

run exceeds the time limit without a verified optimal solution. Such cases are 

marked with an asterisk (“*”) next to the problem instances. For example, 
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problem 7 could not been solved in the time limit of 1000 CPU seconds so the 

solution provided may not be the optimum solution. On the other hand our 

algorithm may beat the CPLEX in terms of quality of the solution especially in 

large instances where CPLEX fails to yield optimal results in plausible times. 

For such cases Z*/UB gap will turn out to be negative indicating that solution 

of LH is better. The solution value of CPLEX can be found under Z
*
 and the 

computation time of CPLEX run is found under “time” heading under 

CPLEX.  

Our heuristic provides 3 main values. First of all it provides an upper bound or 

a best feasible solution, that is store below heading “UB”. Then it provides a 

lower bound, which is achieved via lagrangian relaxations. The respective 

values of this lower bounds can be found under “LB”. Finally run times of our 

LH is stored under “time”.   

Gap column provides the relative differences. They are calculated according to 

following formulas: 

*
*

*
/

UB Z
Z UB

Z

−
= , 

/
UB LB

UB LB
LB

−
= , 

CPLEX LH

LH

Time Time
Time

Time

−
= ,  

where  CPLEXTime  is the run time of CPLEX and LHTime  is the run time of our 

heuristic. From this table we can see that 8 out of 10 solutions of our heuristic 

is same as CPLEX, which 7 of them are proved to be optimal by CPLEX. In 
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addition, our algorithm performed 34 times faster on average than CPLEX. 

Even with p7 removed,  LH performs approximately 6 times faster. By 

checking Z*/UB column, it is found that the average percentage error is %0.04 

for this case. This value is the amount we deviated from CPLEX solutions 

(which are 9 optimal out of 10). In other words, to reach solutions 34 times 

faster, we sacrificed approximately (as the solution to p7 could not be proved 

to be optimal by CPLEX) %0.04 deviation of optimality. That can be 

considered a good trade-off. The rest of the computational results of data set 2 

can be found in Appendix 2. 

 

  
Relative Error w.rt. CPLEX 

solutions 
Relative Error w.r.t Lower 

Bounds 
Cmp. Time Relation btw. LH 

and CPLEX 

40v10 0,0006 0,0032 18,43 

60v15 0,0037 0,0058 5,91 

80v20 0,0007 0,0028 128,11 

160v40 0,0081 0,0191 43,78 

Avg 0,0033 0,0077 49,06 

 

Table 5-4: Relative Differences of Data Set 2 According to Problem Sizes 

 

In table 5-4, the average gaps Z*/UB , Z*/LB and Time and are given. They 

are average values of the gap values formulated below the table 5-3. 

Tabulation in table 5-4 is done according to the problem size of the sets. Each 
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of the problem sets is composed of 40 instances with same problem size. We 

observe that as the problem size increases, the average error margin of LH also 

increases. Although, it does not exceed %0.4 of the CPLEX solutions and 

%0.8 of the lower bounds provided by lagrangian relaxation. Time statistics 

show that LH performs between 2499 times faster than CPLEX in best case 

(p2 of table A2-3d) and 15 times worse than CPLEX in worst case (p1 of table 

A2-1d). In the worst case, CPLEX solved at a time of 0.04 seconds, where it 

took LH to solve 0.63 seconds. So “15 times” worse does not indicate 

significant amount of time; as such cases mostly exist in small sized problems, 

the time difference is not noticeable at all. On the other side, for large 

problems the LH performs seemingly 40 times better than CPLEX. However, 

this 50 times corresponds to 50 CPU seconds of LH run and 2000 CPU 

seconds of CPLEX run. This makes a difference of 1950 seconds, which 

would be probably much more if the time limit of 2000 seconds had not 

existed. As a last remark for this table, while analyzing time statistics we must 

take the time limits into consideration. From experimentation, it is observed 

that for 160v40 instances, CPLEX runs may exceed 25000 seconds, without 

verifying optimality. However as the time limit is just 2000 seconds, it may 

seem the efficiency of LH decreases as the problem size increases. 
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Relative Error w.rt. CPLEX 

solutions 
Relative Error w.r.t Lower 

Bounds 
Cmp. Time Relation btw LH 

and CPLEX 

20% 0,0033 0,0080 60,15 

30% 0,0047 0,0090 15,99 

40% 0,0027 0,0066 21,86 

0% 0,0025 0,0075 98,22 

Avg 0,0033 0,0077 49,06 

 

Table 5-5: Relative Differences of Data Set 2 According to MM Requirements 

Table 5-5, demonstrates the results gathered from data set 2 from a different 

perspective. In this table, results are classified based on their minimum supply 

requirements. As in table 5-4, all the problem sets in table 5-5 consists of 40 

problem instances. Table demonstrates that in none of respective sets the 

duality gap exceeds %0.9. Another interesting result is about time statistics. 

For “%0” case, problem turns out to be a CFLPSS and LH performed 

approximately 100 times faster than CPLEX for this case. In addition, in set 

“%20” LH performs 60 times faster. On the other side, for “%30” and “%40” 

efficiency of LH seems to decrease. This is quite natural, as for %0 LH do not 

have to employ extra procedures to ensure to avoid MM violations and its sub-

problems are easier in lagrangian relaxation. Also, “%20” minimum supply 

requirement is not a very tight one. Therefore, structure of the problem does 

not change much. As for other cases the MM are tight and LH has to spend 

extra time on solving its harder sub-problems and keep solutions without MM 

violations. 
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Figure 5-2 

In figure 5-2, we present the overall results of LH solutions in terms of 

CPLEX results. Out of 160 instances in total, our LH performed better than 

CPLEX runs in 18 instances or %11 of total instances. In an additional 65 of 

the instances both approaches resulted in same solutions, in %40 of total 

instances. Moreover, difference between CPLEX and LH results less than only 

%1 per cent for a further %37 of the solutions 61 instances total. Only for %13 

of the results the relative error is worse, and just %2 of these exceed %3. 

According to these computational experiments, LH on average provides %98 

of its results with a small error margin with CPLEX results or better than 
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CPLEX results. Only 4 out of 160 instances the relative error is more than %3 

and in none of the instances this margin exceeds %4. 

For small instances CPLEX may prove optimal results within a very short 

time. However, even for small instances there is a possibility of very high 

computational times compared to LH. For instance as in p7 of Table A2-1a, 

CPLEX failed to prove optimality in 1000 seconds, whereas LH found the 

same solution with CPLEX, in less than 5 seconds. As for large cases, CPLEX 

has a significant probability of exceeding 8 or more hours (25000 seconds) of 

computational time, based on our observations. In other words, it is very hard 

to guess if CPLEX will return the optimal solution in an acceptable amount of 

time. As for x-large setting (160v40), CPLEX returned verified optimal 

solutions in less than 2000 seconds for only 2 out of 40 problems. Moreover, 

with this setting 12 solutions of LH out of 40 was better than CPLEX and LH 

was able to verify an optimal solution in 35,73 seconds, which the CPLEX can 

not (see p9 in A2-4c). 

Another important aspect of LH is its computational time. It grows more like a 

polynomial fashion, where as CPLEX solution times increase out of bounds. 

Sets Avg. Times 

40v10 1,16 

60v15 5,55 

80v20 9,59 

160v40 49,30 

Table 5-6: Avg. Times for Data Set 2 (in CPU seconds) 
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It can be seen from Table 5-6, that run times of LH is quite modest compared 

to CPLEX. CPLEX exceeded 1000 second time limit in 10 instances out of 40 

in large setting (80v20) and exceeded 2000 second time limit in 38 of 40 

instances in x-large setting (160v40) (see Appendix 2 Tables 3a to 4d).  

CPLEX has better run times in 34 instances, in which only 7 of them in large 

problem size setting and “none” in x-large problem size setting. The worst 

case LH solution in terms of difference between run times is instance p9 from 

Table A2-2a, in which LH solved the problem in 9,62 seconds and CPLEX in 

1,60 seconds, resulting in a time difference of approximately 8 seconds. 

 

  Time Gained Time Spent in CPLEX % gain 

Small 1216 1263 0,96 

Medium  1144 1365 0,84 

Large 12138 12521 0,97 

X-large 76340 78312 0,97 

total 90837 93461 0,97 

Table 5-7: Computational Times for Data Set 2 (in CPU seconds) 

Table 5-7 provides the total time run in CPLEX and the time gains of using 

LH instead of CPLEX. As it can be seen CPLEX operations in a total of 160 

instances took a time of 93461 CPU seconds. By using LH we spend only %3 

of this time to solve same set of problems. Obviously, CPLEX run time 

increases too fast when compared to the increase in problem size. 
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Figure 5-3 

Figure 5-3, also shows the comparison of time statistics in a visual manner. 
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Chap t e r  6  

CONCLUSIONS 

 

In this study, we introduce a new facility location problem that is an extension 

of capacitated facility location problem with single source constraints 

(CFLPSS). This problem is applicable to several situations including sub-

contractors case and to cases where facilities have very large setup costs. In 

our problem all variables are binary, so solving it to optimality will be 

computationally inefficient. Therefore, we aim to devise a heuristic that would 

solve the problem with a small error margin and with fast computational times. 

First, we described our problem and formulated it mathematically. Then, as 

the problem is the general case of CFLPSS, we focused our research on 

previous work on CFLPSS. Based on lagrangian heuristics of Holmberg [21] 

and Sridharan [25], we introduced an improvement of their heuristics that can 

cope with this general case CFLPSS. In this heuristic, we relaxed demand 

constraints of the problem in a lagrangian fashion and solved the resulting sub-

problem (ZD) with a general case B&C algorithm, CPLEX. We also devised a 

primal heuristic to obtain feasible solutions with short duality gaps. The lower 

bounds obtained from lagrangian relaxation and upper bounds obtained from 

primal heuristics then embedded into an iterative procedure of a subgradient 

search. Finally, best feasible solutions were improved through solving SSTP 

problems.  
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We tested our model and heuristics on 2 different data sets. The first data set 

was taken from literature and it was consisted of 70. We tested our heuristics 

efficiency as CFLPSS solver for these instances. It was found out that for %89 

of the cases the solution had less duality gap then %3, %78 of which had less 

then %1 duality gap. It was shown also that our LH is quite efficient as it has 

an average run time of 6,56 seconds at most. 

The first data set was not suitable to test our LH in terms of our main problem, 

CFLPSSMM. Therefore, we used a second data set that consisted of 160 

instances. These were generated according to a similar procedure as Holmberg 

et al’s [21]. Then we applied both our LH and a direct approach using CPLEX 

with time limits. It had parallel results with the previous data set, %77 of the 

solutions had less than %1 duality gap or were better than CPLEX results. 

Moreover, only %2 of the solutions were more than %3 of CPLEX results and 

none of the solutions exceeded %4. The average error margin at most was in 

160v40 setting and it was %2 and %0,8 when compared to lower bounds of 

lagrangian relaxation and compared to CPLEX results respectively. On the 

average duality gap between lower bounds and feasible solutions was %0,8.  

In addition of LH being an efficient heuristic in terms of solution quality, we 

observed that it had also very competitive run times. It was shown that even 

for large cases as 160v40, run time of heuristics did not exceed 50 seconds on 

average. It is shown that a significant time gain can be achieved by using LH 

instead of the general B&C approach of CPLEX. LH solved 160 instances in a 

time of approximately 3000 seconds, where as the same problems were solved 

in a time more than 93000 seconds by CPLEX. The time gain was a 

considerable amount : %97. 
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Our LH is shown to be an effective tool for solving both CFLPSS and 

CFLPSSMM problems. By using a knapsack specific B&B code in lagrangian 

sub-problem, the computational times may be further reduced.  
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Appendix - 1  

Tables of Computational Experiments with 

Data Set 1 
 

 

 

  

Set Problems 
Demands 

(N) 
Facilities 

(M) T.Capacity/T.Demand 

1 p1-p12 50 10 1.37-2.06 

1 p13-p24 50 10 2.77-3.50 

2 p25-p40 150 30 3.03-6.06 

3 p41-p55 70-100 10-30 1.52-8.28 

4 p56-p71 200 30 1.97-3.95 

     

Table A1-I 
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Optimum LH Gap 

Problem Zopt ZUB ZLB Time Opt LH 

p1 8848 8848 8848 0,16 0,0000 0,0000 

p2 7913 7913 7913 1,75 0,0000 0,0000 

p3 9314 9314 9313,7 0,11 0,0000 0,0000 

p4 10714 10714 10695,9 2,74 0,0000 0,0017 

p5 8838 8838 8837,1 0,31 0,0000 0,0000 

p6 7777 7777 7776,42 0,13 0,0000 0,0000 

p7 9488 9488 9479,39 2,58 0,0000 0,0009 

p8 11088 11088 11079,44 2,54 0,0000 0,0008 

p9 8462 8477 8453 0,93 0,0018 0,0028 

p10 7617 7617 7610 0,78 0,0000 0,0009 

p11 8932 8932 8932 0,15 0,0000 0,0000 

p12 10132 10132 10114 1,32 0,0000 0,0018 

     Average= 1,13 0,0001 0,0007 

    Total= 13,50 0,0018 0,0089 

       

  Table A1-1a   

       

       

       

       

       

Optimum LH Gap 

Problem Zopt ZUB ZLB Time Opt LH 

p13 8252 8252 8251,82 1,46 0,0000 0,0000 

p14 7137 7137 7137 0,44 0,0000 0,0000 

p15 8808 8808 8808 0,52 0,0000 0,0000 

p16 10408 10435 10382,63 3,75 0,0026 0,0050 

p17 8227 8227 8225,93 1,98 0,0000 0,0000 

p18 7125 7125 7125 0,3 0,0000 0,0000 

p19 8886 8907 8849,14 2,27 0,0024 0,0065 

p20 10486 10486 10467,19 2,78 0,0000 0,0018 

p21 8068 8068 8067,1 0,28 0,0000 0,0000 

p22 7092 7092 7092 0,22 0,0000 0,0000 

p23 8746 8746 8740,42 1,33 0,0000 0,0006 

p24 10273 10273 10202,98 1,03 0,0000 0,0069 

     Average= 1,36 0,0004 0,0017 

    Total= 16,36 0,0050 0,0209 

       

  Table A1-1b   
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Optimum LH Gap 

Problem Zopt ZUB ZLB Time Opt LH 

p25 11630 11632 11560,25 6,1 0,0002 0,0062 

p26 10771 10791 10720,14 5,39 0,0019 0,0066 

p27 12322 12373 12189,47 6,32 0,0041 0,0151 

p28 13722 13730 13589,68 7 0,0006 0,0103 

p29 12371 12391 12313,13 11,29 0,0016 0,0063 

p30 11331 11604 11107,99 6,86 0,0241 0,0447 

p31 13331 13834 13113,51 7,66 0,0377 0,0549 

p32 15331 15351 15109,18 8,58 0,0013 0,0160 

p33 11629 11632 11614,8 5,86 0,0003 0,0015 

p34 10632 10632 10631,67 1,69 0,0000 0,0000 

p35 12232 12232 12231,1 0,65 0,0000 0,0000 

p36 13832 13832 13831,54 0,63 0,0000 0,0000 

p37 11258 11258 11257,04 2,1 0,0000 0,0000 

p38 10551 10551 10550,54 1,22 0,0000 0,0000 

p39 11824 11824 11823,27 0,32 0,0000 0,0000 

p40 13024 13024 13023,4 0,51 0,0000 0,0000 

   Average= 4,51 0,0045 0,0101 

   Total= 72,18 0,0718 0,1616 

       

  Table A1-2   

       

Optimum LH Gap 

Problem Zopt ZUB ZLB Time Opt LH 

p41 6589 6590 6577,88 3,25 0,0002 0,0018 

p42 5663 5666 5624,32 3,03 0,0005 0,0074 

p43 5214 5214 5213,3 2,12 0,0000 0,0000 

p44 7028 7028 7026,11 2,74 0,0000 0,0003 

p45 6251 6251 6250 1,48 0,0000 0,0002 

p46 5651 5803 5636,3 4,57 0,0269 0,0296 

p47 6228 6228 6227,48 0,19 0,0000 0,0000 

p48 5596 5596 5583,96 2,48 0,0000 0,0022 

p49 5302 5364 5301,98 2,89 0,0117 0,0117 

p50 8741 8756 8659,73 4,04 0,0017 0,0111 

p51 7414 7481 7265,3 4,82 0,0090 0,0297 

p52 9178 9178 9174,48 4,68 0,0000 0,0004 

p53 8531 8531 8530,28 0,27 0,0000 0,0000 

p54 8777 8777 8776,15 0,32 0,0000 0,0000 

p55 7654 7685 7616,23 3,41 0,0041 0,0090 

   Average= 2,69 0,0036 0,0069 

   Total= 40,29 0,0541 0,1033 

       

  Table A1-3   



APPENDIX 

 78 

 

 

Optimum LH Gap 

Problem Zopt ZUB ZLB Time Opt LH 

p56 21103 21331 20950,89 8,39 0,0108 0,0181 

p57 26039 26214 25832,31 11,22 0,0067 0,0148 

p58 37239 37414 37035,26 11,64 0,0047 0,0102 

p59 27282 27556 27113,73 11,22 0,0100 0,0163 

p60 20534 20534 20533,24 0,81 0,0000 0,0000 

p61 24454 24454 24453,58 2,14 0,0000 0,0000 

p62 32643 32919 32385,12 8,63 0,0085 0,0165 

p63 25105 25105 25083,89 6,96 0,0000 0,0008 

p64 20530 20530 20529,75 0,68 0,0000 0,0000 

p65 24445 24445 24445 1,22 0,0000 0,0000 

p66 31415 31642 31175,59 7,81 0,0072 0,0150 

p67 - - - 0 0,0000 0,0000 

p68 20538 20538 20537,6 0,59 0,0000 0,0000 

p69 24532 24532 24531,3 2,77 0,0000 0,0000 

p70 32321 32403 32227,6 15,42 0,0025 0,0054 

p71 25540 25540 25539,56 8,84 0,0000 0,0000 

   Average= 6,56 0,0034 0,0065 

   Total= 98,34 0,0505 0,0972 

       

  Table A1-4   
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Appendix - 2  

Tables of Computational Experiments with 

Data Set 2 
Problem Size 

Small  N=40 M=10 

Medium N=65 M=15 

Large  N=80 M=20 

X-Large N=160 M=40 

 

 

 

 

 

Table A2-i 

 

Distribution of Parameters 

Kj U(500,800) 

Fj U(500,1500) 

Di U(30,80) 

Cij U(1,4) 

    

*Cij is per 1 unit of demand 

    
Distribution of Parameters 

 
Table A2-ii 

Minimum Supply Requirements 
(in % capacity) 

  Low 20% 

Medium 30% 

High 40% 

No 0% 
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CPLEX LH Gap 
Problem 

Z* Time UB LB Time Z*/UB UB/LB Time 

p1 6681 6,87 6681 6635,9 3,12 0,0000 0,0068 1,20 

p2 6051 0,39 6051 6051,0 0,15 0,0000 0,0000 1,60 

p3 6993 7,94 6993 6932,4 0,39 0,0000 0,0087 19,36 

p4 6446 1,67 6446 6445,2 0,08 0,0000 0,0000 19,88 

p5 5890 0,53 5890 5889,5 0,36 0,0000 0,0000 0,47 

p6 6256 0,52 6256 6256,0 0,12 0,0000 0,0000 3,33 

p7* 5695 1000,00 5695 5624,2 3,42 0,0000 0,0126 291,40 

p8 6362 7,33 6382 6382,0 2,78 0,0031 0,0000 1,64 

p9 6082 0,30 6090 6077,3 3,10 0,0013 0,0021 -0,90 

p10 6332 2,04 6332 6332,0 0,20 0,0000 0,0000 9,20 

Total 62788 1027,59 62816 62625,5 13,72 0,0045 0,0302 347,17 

Average 6278,8 102,76 6281,6 6262,5 1,37 0,0004 0,0030 34,72 

            

          

  Table A2-1a Problem size: Small    

    MM: Low    

          

          

          

            

CPLEX LH Gap 
Problem 

Z* Time UB LB Time Z*/UB UB/LB Time 

p1 6575 1,23 6575 6574,4 0,21 0,0000 0,0000 4,86 

p2 5907 0,53 5907 5906,2 0,05 0,0000 0,0000 9,60 

p3 6174 0,84 6174 6173,8 0,11 0,0000 0,0000 6,64 

p4 6578 0,77 6578 6578,0 0,10 0,0000 0,0000 6,70 

p5 5418 0,31 5418 5417,3 0,42 0,0000 0,0000 -0,26 

p6 5807 0,15 5807 5806,9 0,24 0,0000 0,0000 -0,38 

p7 5953 1,13 5953 5952,6 0,07 0,0000 0,0000 15,14 

p8 6170 1,11 6170 6169,3 0,10 0,0000 0,0000 10,10 

p9 6920 136,33 6920 6831,1 3,24 0,0000 0,0130 41,08 

p10 5583 0,70 5585 5568,0 3,68 0,0004 0,0031 -0,81 

Total 61085 143,10 61087 60977,6 8,22 0,0004 0,0161 92,67 

Average 6108,5 14,31 6108,7 6097,8 0,82 0,0000 0,0016 9,27 

            

          

  Table A2-1b Problem size: Small    

    MM: Medium    
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CPLEX LH Gap 
Problem 

Z* Time UB LB Time Z*/UB UB/LB Time 

p1 5875 0,21 5875 5874,9 0,22 0,0000 0,0000 -0,05 

p2 6590 0,37 6590 6590,0 0,93 0,0000 0,0000 -0,60 

p3 6038 21,57 6038 5994,5 2,97 0,0000 0,0073 6,26 

p4 6013 1,10 6091 5939,4 4,25 0,0130 0,0255 -0,74 

p5 5957 0,49 5957 5956,0 0,11 0,0000 0,0000 3,45 

p6 6234 0,42 6234 6233,1 0,75 0,0000 0,0000 -0,44 

p7 6433 8,25 6433 6432,0 0,12 0,0000 0,0000 67,75 

p8 6814 5,63 6814 6804,7 2,91 0,0000 0,0014 0,93 

p9 6468 5,77 6468 6467,6 0,36 0,0000 0,0000 15,03 

p10 6657 20,54 6657 6657,0 0,11 0,0000 0,0000 185,73 

Total 63079 64,35 63157 62949,1 12,73 0,0130 0,0342 277,33 

Average 6307,9 6,44 6315,7 6294,9 1,27 0,0013 0,0034 27,73 

          

          

  Table A2-1c Problem size: Small    

    MM: High    

          

          

          

          

CPLEX LH Gap 
Problem 

Z* Time UB LB Time Z*/UB UB/LB Time 

p1 6249 0,04 6249 6248,5 0,63 0,0000 0,0000 -0,94 

p2 6145 0,38 6145 6145,0 0,69 0,0000 0,0000 -0,45 

p3 6344 0,27 6344 6344,0 0,10 0,0000 0,0000 1,70 

p4 6330 11,33 6351 6177,6 3,69 0,0033 0,0281 2,07 

p5 7122 1,67 7122 7122,0 0,26 0,0000 0,0000 5,42 

p6 5202 0,03 5202 5201,7 0,06 0,0000 0,0000 -0,50 

p7 6844 1,46 6844 6843,3 0,69 0,0000 0,0000 1,12 

p8 6345 11,36 6357 6229,9 2,39 0,0019 0,0204 3,75 

p9 5619 0,57 5619 5618,0 0,06 0,0000 0,0000 8,50 

p10 6358 0,84 6361 6354,4 3,34 0,0005 0,0010 -0,75 

Total 62558 27,95 62594 62284,5 11,91 0,0057 0,0495 19,93 

Average 6255,8 2,80 6259,4 6228,5 1,19 0,0006 0,0049 1,99 

          

          

  Table A2-1d Problem size: Small    

    MM: No    
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CPLEX LH Gap 
Problem 

Z* Time UB LB Time Z*/UB UB/LB Time 

p1 8789 1,29 8789 8788,3 2,87 0,0000 0,0000 -0,55 

p2 8029 6,35 8038 8013,6 5,53 0,0011 0,0030 0,15 

p3 7818 16,23 7818 7718,1 7,77 0,0000 0,0129 1,09 

p4 8680 2,76 8711 8667,8 6,88 0,0036 0,0050 -0,60 

p5 8363 1,29 8373 8361,2 6,89 0,0012 0,0014 -0,81 

p6 8344 0,86 8346 8343,5 6,32 0,0002 0,0003 -0,86 

p7 8946 5,12 8946 8945,6 0,80 0,0000 0,0000 5,40 

p8 9210 5,18 9210 9209,4 1,70 0,0000 0,0000 2,05 

p9 8659 1,60 8683 8647,2 9,62 0,0028 0,0041 -0,83 

p10 8369 1,34 8369 8368,9 0,57 0,0000 0,0000 1,35 

Total 85207 42,02 85283 85063,6 48,95 0,0089 0,0268 6,38 

Average 8520,7 4,20 8528,3 8506,4 4,90 0,0009 0,0027 0,64 

          

          

  Table A2-2a Problem size: Medium    

    MM: Low    

          

          

          

CPLEX LH Gap 
Problem 

Z* Time UB LB Time Z*/UB UB/LB Time 

p1 8720 17,73 8720 8719,7 0,60 0,0000 0,0000 28,55 

p2 9124 294,57 9190 9100,2 9,97 0,0072 0,0099 28,55 

p3 9339 148,46 9513 9284,3 9,35 0,0186 0,0246 14,88 

p4 8023 10,73 8028 7980,6 5,12 0,0006 0,0059 1,10 

p5 7681 26,44 7684 7679,5 7,55 0,0004 0,0006 2,50 

p6 7942 1,90 7942 7941,6 2,55 0,0000 0,0000 -0,25 

p7 8985 23,10 9003 8965,3 8,63 0,0020 0,0042 1,68 

p8 8546 105,32 8558 8470,0 10,42 0,0014 0,0104 9,11 

p9 8443 77,86 8541 8421,7 7,74 0,0116 0,0142 9,06 

p10 7901 3,60 7923 7897,9 9,47 0,0028 0,0032 -0,62 

Total 84704 709,71 85102 84460,7 71,40 0,0447 0,0730 94,54 

Average 8470,4 70,97 8510,2 8446,1 7,14 0,0045 0,0073 9,45 

          

          

  Table A2-2b Problem size: Medium    

    MM: Medium    
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CPLEX LH Gap 
Problem 

Z* Time UB LB Time Z*/UB UB/LB Time 

p1 8497 3,48 8497 8496,8 4,18 0,0000 0,0000 -0,17 

p2 8708 13,10 8860 8696,9 8,08 0,0175 0,0188 0,62 

p3 8403 0,86 8403 8402,4 0,89 0,0000 0,0000 -0,03 

p4 8651 1,17 8651 8651,0 1,83 0,0000 0,0000 -0,36 

p5 8333 4,57 8333 8333,0 2,92 0,0000 0,0000 0,57 

p6 9380 60,21 9382 9354,7 11,40 0,0002 0,0029 4,28 

p7 8579 14,83 8580 8565,3 9,82 0,0001 0,0017 0,51 

p8 8716 10,24 8719 8666,2 9,67 0,0003 0,0061 0,06 

p9 8409 0,92 8409 8408,0 0,57 0,0000 0,0000 0,61 

p10 7868 2,20 7868 7867,7 5,23 0,0000 0,0000 -0,58 

Total 85544 111,58 85702 85442,0 54,59 0,0181 0,0295 5,51 

Average 8554,4 11,16 8570,2 8544,2 5,46 0,0018 0,0029 0,55 

          

          

  Table A2-2c Problem size: Medium    

    MM: High    

          

          

          

CPLEX LH Gap 
Problem 

Z* Time UB LB Time Z*/UB UB/LB Time 

p1 8559 31,04 8559 8558,1 0,67 0,0000 0,0000 45,33 

p2 8638 10,25 8704 8597,3 7,10 0,0076 0,0124 0,44 

p3 7690 4,60 7690 7689,6 6,68 0,0000 0,0000 -0,31 

p4 8729 271,92 8774 8696,5 6,18 0,0052 0,0089 43,00 

p5 8707 1,71 8728 8689,8 7,13 0,0024 0,0044 -0,76 

p6 8623 2,51 8752 8611,1 6,35 0,0150 0,0164 -0,60 

p7 8105 0,75 8105 8104,3 0,09 0,0000 0,0000 7,33 

p8 7766 0,10 7766 7765,1 0,55 0,0000 0,0000 -0,82 

p9 8925 22,52 9296 8820,2 7,69 0,0416 0,0539 1,93 

p10 8699 156,64 8747 8676,2 4,42 0,0055 0,0082 34,44 

Total 84441 502,04 85121 84208,0 46,86 0,0773 0,1042 129,98 

Average 8444,1 50,20 8512,1 8420,8 4,69 0,0077 0,0104 13,00 

          

          

  Table A2-2d Problem size: Medium    

    MM: No    

 

 



APPENDIX 

 84 

 

 

CPLEX LH Gap 
Problem 

Z* Time UB LB Time Z*/UB UB/LB Time 

p1 10420 5,69 10420 10420,0 3,37 0,0000 0,0000 0,69 

p2 11025 4,75 11035 11023,0 12,63 0,0009 0,0011 -0,62 

p3* 11106 1000,00 11150 11043,7 13,66 0,0040 0,0096 72,21 

p4* 11139 1000,00 11116 11094,1 14,93 -0,0021 0,0020 65,98 

p5 11918 615,40 11957 11879,9 16,53 0,0033 0,0065 36,23 

p6 10189 20,91 10235 10138,4 10,91 0,0045 0,0095 0,92 

p7 10657 7,90 10657 10656,4 11,65 0,0000 0,0000 -0,32 

p8* 10308 1000,00 10310 10230,3 11,65 0,0002 0,0078 84,84 

p9* 11222 1000,00 11222 11221,2 0,69 0,0000 0,0000 1448,28 

p10 11796 52,98 11804 11794,7 16,11 0,0007 0,0008 2,29 

Total 109780 4707,63 109906 109501,5 112,13 0,0115 0,0373 1710,48 

Average 10978 470,76 10990,6 10950,2 11,21 0,0011 0,0037 171,05 

          

          

  Table A2-3a Problem size: Large    

    MM: Low    

          

          

          

CPLEX LH Gap 
Problem 

Z* Time UB LB Time Z*/UB UB/LB Time 

p1* 10356 1000,00 10356 10306,1 13,69 0,0000 0,0048 72,05 

p2 10243 76,52 10251 10188,5 12,13 0,0008 0,0061 5,31 

p3 9960 11,30 10040 9940,9 15,24 0,0080 0,0100 -0,26 

p4 11370 8,90 11370 11370,0 10,06 0,0000 0,0000 -0,12 

p5 10553 147,05 10572 10539,7 12,09 0,0018 0,0031 11,16 

p6 11743 6,34 11752 11742,1 11,32 0,0008 0,0008 -0,44 

p7 9974 27,04 9974 9974,0 9,65 0,0000 0,0000 1,80 

p8 10144 111,01 10150 10131,1 11,34 0,0006 0,0019 8,79 

p9 10840 105,48 10850 10763,0 14,36 0,0009 0,0081 6,35 

p10 10820 21,16 10820 10820,0 4,94 0,0000 0,0000 3,28 

Total 106003 1514,80 106135 105775,3 114,82 0,0129 0,0348 107,92 

Average 10600,3 151,48 10613,5 10577,5 11,48 0,0013 0,0035 10,79 

          

          

  Table A2-3b Problem size: Large    

    MM: Medium    
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CPLEX LH Gap 
Problem 

Z* Time UB LB Time Z*/UB UB/LB Time 

p1 10842 623,74 10868 10768,5 13,88 0,0024 0,0092 43,94 

p2 10587 39,61 10587 10586,8 2,62 0,0000 0,0000 14,12 

p3 10465 7,08 10465 10464,3 5,56 0,0000 0,0000 0,27 

p4* 10969 1000,00 10977 10965,2 10,29 0,0007 0,0011 96,18 

p5 10331 20,39 10332 10330,9 13,10 0,0001 0,0001 0,56 

p6* 11098 1000,00 11097 11062,9 13,25 -0,0001 0,0031 74,47 

p7 11288 8,63 11293 11285,1 9,74 0,0004 0,0007 -0,11 

p8 10726 57,47 10726 10725,8 2,64 0,0000 0,0000 20,77 

p9 10319 40,28 10367 10299,1 13,92 0,0047 0,0066 1,89 

p10 10192 22,94 10195 10189,0 12,21 0,0003 0,0006 0,88 

Total 106817 2820,14 106907 106677,6 97,21 0,0085 0,0214 252,97 

Average 10681,7 282,01 10690,7 10667,8 9,72 0,0009 0,0021 25,30 

          

          

  Table A2-3c Problem size: Large    

    MM: High    

          

          

          

CPLEX LH Gap 
Problem 

Z* Time UB LB Time Z*/UB UB/LB Time 

p1 10951 326,32 10955 10950,8 8,23 0,0004 0,0004 38,65 

p2* 11353 1000,00 11338 11337,4 0,40 -0,0013 0,0000 2499,00 

p3 10260 6,58 10260 10259,1 0,82 0,0000 0,0000 7,02 

p4* 11863 1000,00 11812 11692,0 7,17 -0,0043 0,0103 138,47 

p5* 10817 1000,00 10814 10813,8 2,78 -0,0003 0,0000 358,71 

p6 10440 18,93 10440 10439,1 10,29 0,0000 0,0000 0,84 

p7 9449 25,42 9454 9442,3 8,24 0,0005 0,0012 2,08 

p8 10012 93,03 10033 10002,3 10,49 0,0021 0,0031 7,87 

p9 10177 6,07 10177 10177,0 2,73 0,0000 0,0000 1,22 

p10 11011 2,18 11011 10990,0 8,19 0,0000 0,0019 -0,73 

Total 106333 3478,53 106294 106103,8 59,34 -0,0029 0,0169 3053,14 

Average 10633,3 347,85 10629,4 10610,4 5,93 -0,0003 0,0017 305,31 

          

          

  Table A2-3d Problem size: Large    

    MM: No    
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CPLEX LH Gap 
Problem 

Z* Time UB LB Time Z*/UB UB/LB Time 

p1* 20437 2000,00 20923 20270,1 56,56 0,0238 0,0322 34,36 

p2* 20261 2000,00 20208 20140,2 50,80 -0,0026 0,0034 38,37 

p3* 19747 2000,00 19650 19124,3 55,30 -0,0049 0,0275 35,17 

p4 19206 2000,00 19703 19167,6 53,78 0,0259 0,0279 36,19 

p5* 18725 1262,57 19272 18722,1 51,65 0,0292 0,0294 23,44 

p6* 19602 2000,00 19645 19593,2 50,54 0,0022 0,0026 38,57 

p7* 20731 2000,00 21081 20403,7 54,89 0,0169 0,0332 35,44 

p8* 20790 2000,00 20759 20144,4 56,81 -0,0015 0,0305 34,21 

p9* 19256 2000,00 19694 19117,0 56,06 0,0227 0,0302 34,68 

p10* 19050 2000,00 18987 18856,0 61,19 -0,0033 0,0070 31,69 

Total 197805 19262,57 199922 195538,4 547,58 0,1084 0,2239 342,11 

Average 19780,5 1926,26 19992,2 19553,8 54,76 0,0108 0,0224 34,21 

          

          

  Table A2-4a Problem size: X-large    

    MM: Low    

          

          

          

          

CPLEX LH Gap 
Problem 

Z* Time UB LB Time Z*/UB UB/LB Time 

p1* 21035 2000,00 21022 20904,9 68,62 -0,0006 0,0056 28,15 

p2* 19417 2000,00 20062 19330,9 54,27 0,0332 0,0378 35,85 

p3* 19755 2000,00 20429 19661,5 53,39 0,0341 0,0390 36,46 

p4* 20034 2000,00 20108 19640,5 51,71 0,0037 0,0238 37,68 

p5* 19387 2000,00 19650 19085,0 54,08 0,0136 0,0296 35,98 

p6* 19179 2000,00 19276 18813,3 65,73 0,0051 0,0246 29,43 

p7* 18744 2000,00 19027 18482,2 55,74 0,0151 0,0295 34,88 

p8* 20028 2000,00 20614 19927,0 54,85 0,0293 0,0345 35,46 

p9* 20086 2000,00 20024 19823,8 54,17 -0,0031 0,0101 35,92 

p10* 18553 2000,00 18540 18535,5 55,96 -0,0007 0,0002 34,74 

Total 196218 20000,00 198752 194204,6 568,52 0,1296 0,2348 344,55 

Average 19621,8 2000,00 19875,2 19420,5 56,85 0,0130 0,0235 34,46 

          

          

  Table A2-4b Problem size: X-large    

    MM: Medium    
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CPLEX LH Gap 
Problem 

Z* Time UB LB Time Z*/UB UB/LB Time 

p1* 20066 2000,00 20177 19760,9 70,18 0,0055 0,0211 27,50 

p2* 18470 2000,00 18494 18450,7 55,99 0,0013 0,0023 34,72 

p3* 19126 2000,00 19138 19068,0 67,03 0,0006 0,0037 28,84 

p4* 19362 2000,00 19304 19040,8 63,99 -0,0030 0,0138 30,25 

p5* 19606 2000,00 20032 19447,2 55,11 0,0217 0,0301 35,29 

p6* 20242 2000,00 20583 20033,5 53,91 0,0168 0,0274 36,10 

p7* 19118 2000,00 19129 18987,6 64,62 0,0006 0,0074 29,95 

p8* 20176 2000,00 20034 19421,7 71,97 -0,0070 0,0315 26,79 

p9* 18370 2000,00 18370 18369,6 35,73 0,0000 0,0000 54,98 

p10* 21867 2000,00 22560 21694,0 56,98 0,0317 0,0399 34,10 

Total 196403 20000,00 197821 194274,0 595,51 0,0683 0,1773 338,52 

Average 19640,3 2000,00 19782,1 19427,4 59,55 0,0068 0,0177 33,85 

          

          

  Table A2-4c Problem size: X-large    

    MM: High    

          

          

          

CPLEX LH Gap 
Problem 

Z* Time UB LB Time Z*/UB UB/LB Time 

p1* 20630 2000,00 20621 19964,6 29,07 -0,0004 0,0329 67,80 

p2* 19229 2000,00 19314 18854,8 28,27 0,0044 0,0244 69,75 

p3* 19072 2000,00 18989 18808,1 27,07 -0,0044 0,0096 72,88 

p4* 18907 2000,00 18819 18681,5 26,53 -0,0047 0,0074 74,39 

p5 18050 1049,20 18109 18043,0 23,60 0,0033 0,0037 43,46 

p6* 19577 2000,00 19920 19343,2 27,31 0,0175 0,0298 72,23 

p7* 20200 2000,00 20187 20006,7 29,60 -0,0006 0,0090 66,57 

p8* 18623 2000,00 18634 18527,9 22,90 0,0006 0,0057 86,34 

p9* 20031 2000,00 20098 20021,4 21,36 0,0033 0,0038 92,63 

p10* 18760 2000,00 18749 18711,9 24,73 -0,0006 0,0020 79,87 

Total 193079 19049,20 193440 190962,9 260,44 0,0185 0,1282 725,92 

Average 19307,9 1904,92 19344 19096,3 26,04 0,0018 0,0128 72,59 

          

          

  Table A2-4d Problem size: X-large    

    MM: No    
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Appendix – 3 

Abbreviations for Common Terminology 

 

B&B: Branch and Bound 

B&C: Branch and Cut 

CFLP: Capacitated Facility Location Problems 

CFLPSS: Capacitated Facility Location Problem with Single Source constraints 

CFLPSSMM: Facility Location Problem with Single Source constraints and Minimum 

Supply Requirements 

FLP: Facility Location Problems 

IP: Integer Programming 

MIP: Mixed Integer Programming 

Surrogate constraint: A constraint that imposes total capacity of open plants must 

exceed the total demand. Supplementary, used as a valid inequality to increase lower 

bounds 

Strong Formulation: Indicates that the corresponding FLP includes xij ≤ yj type of 

constraints. Supplementary, used as a valid inequality to increase lower bounds 

UFLP: Uncapacitated Facility Location Problems 

ZC: The lagrangian sub-problem where the “Capacity” constraint is relaxed in 

lagrangian fashion 

ZD: The lagrangian sub-problem where the “Demand” constraint is relaxed in 

lagrangian fashion 


