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ABSTRACT

A DYNAMIC DRR SCHEDULING ALGORITHM FOR

FLOW LEVEL QOS ASSURANCES FOR ELASTIC

TRAFFIC

Sıla Kurugöl

M.S. in Electrical and Electronics Engineering

Supervisor: Assoc. Prof. Dr. Nail Akar

September 2006

Best effort service, used to transport the Internet traffic today, does not provide

any QoS assurances. Intserv, DiffServ and recently proposed Proportional Diff-

Serv architectures have been introduced to provide QoS. In these architectures,

some applications with more stringent QoS requirement such as real time traffic

are prioritized, while elastic flows share the remaining bandwidth. As opposed

to the well studied differential treatment of delay and/or loss sensitive traffic to

satisfy QoS constraints, our aim is satisfy QoS requirements of elastic traffic at

the flow level. We intend to maintain different average rate levels for different

classes of elastic traffic. For differential treatment of elastic flows, a dynamic vari-

ant of Deficit Round Robin Scheduler (DRR) is used as oppose to a FIFO queue.

In this scheduling algorithm, all classes are served in a round robin fashion in

proportion to their weights at each round. The main difference of our scheduler

from the original DRR scheduler is that, we update the weights, which are called

quantums of the scheduler at each round in response to the feedback from the

network, which is in terms of the rate of phantom connection sharing capacity

fairly with the other flows in the same queue. According to the rate measured in
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the last time interval, the controller updates the weights in proportion with the

bandwidth requirements of each class to satisfy their QoS requirements, while

the remaining bandwidth will be used by the best effort traffic. In order to find

an optimal policy for the controller a simulation-based learning algorithm is per-

formed using a processor sharing model of TCP, then the resultant policies are

applied to a more realistic scenario to solve Dynamic DRR scheduling problem

through ns-2 simulations.

Keywords: Dynamic Deficit Round Robin Scheduling, Reinforcement Learning,

QoS, Elastic Traffic

iv



ÖZET

ESNEK TRAFİK İÇİN AKIŞ SEVİYESINDE DİNAMİK

ÇİZELGELEME ALGORİTMASI

Sıla Kurugöl

Elektrik ve Elektronik Mühendisliği Bölümü Yüksek Lisans

Tez Yöneticisi: Doç. Dr. Nail Akar

Eylül 2006

En iyi çaba servisi bugün internet trafiğini taşımada kullanılmaktadır fakat bu

servis hiçbir hizmet niteliği sağlamamaktadır. Hizmet niteliği sağlamak için,

Tümleşik Hizmetler, Sınıflandırılmış Hizmetler ve daha yakın zamanlı Orantılı

Sınıflandırılmış Hizmetler mimarileri önerilmiştir. Bu mimarilerde, gerçek za-

manlı trafik gibi uyulması daha zorunlu hizmet ihtiyaci olan bazı uygulamalara

öncelik tanınmıştır. Bu öncelıkli uygulamalardan geriye kalan kapasite ise es-

nek trafik akışları tarafından paylaşılır. Biz bu tezde, üzerinde daha önceden

çok çalışma yapılmış olan gecikme ve kayıba hassas trafiğin farklı muame-

lesi konusu yerine, esnek trafiğin akış seviyesinde hizmet ihtiyacını karşılama

konusu üzerinde durmaktayız. Bu tezdeki amacımız, esnek trafiğin değişik

sınıflarının farklı ihtiyaçlarına göre istenen ortalama hız seviyelerini sağlamaktır.

Bu amaç için, Önce Giren Önce Çıkar kuyruğu yerine Kalanın Sırayla Servisi

(KSS) çizelgelemesi algoritmasının değişken ağırlıklı bir versiyonunu kullanmak-

tayız. Bu çizelgeleme algorıtmasında bütün sınıflar ağırlıklarıyla orantılı olarak

sırayla hizmet görmektedir. Bizim önerdiğimiz çizelgeleme algoritmasının özgün

KSS algoritmasından temel farkı, bizim algoritmamızın, her dönüşte her sıranın
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ağırlığını ağdan gelen geri beslemeye göre tekrar ayarlayan bir kontrol birimi kul-

lanmasıdır. Bu kontrol birimi önceden öğrenilmiş kurallara göre ve ağdan gelen

hız bilgisi şeklindeki geri beslemeye göre her sınıfın ağırlıklarını güncellemektedir.

Öncelikli üst sınıfların ağırlıkları onlara gereken kapasitelerle orantılı şekilde

değiştirildikten sonra, hizmet kalitesi talep etmeyen en iyi hizmet trafiği geri

kalan kapasiteyi almaktadır. Her sınıfın ağırlığını her dönüşte ağdan aldığı geri

beslemeye göre güncelleyen en iyi kuralları bulmak için benzetim tabanlı bir

öğrenme algoritması kullanılmıştır. Ilk olarak, bu algoritmanın Transfer Kon-

trol Protokolünün (TCP) basit bir modeli olan işlemci paylaşma modeli üzerinde

benzetimi yapılmıştır. Bu benzetimden elde edilen sonuçlar, daha gerçekçi bir

çizelgeleme senaryosunda kullanılmış ve bu senaryonun ns-2 programında benze-

timi yapılmıştır.

Anahtar Kelimeler: Dinamik Kalanin Sirayla Servisi Çizelgelemesi Algoritmasi,

oğrenme, hizmet kalitesi, esnek trafik
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Chapter 1

Introduction

Best Effort (BE) service is used to transport the Internet traffic today. In best

effort delivery, the traffic is transported without commitments to users and with

no additional Quality of Service (QoS) technologies implemented at edge and core

nodes. With this kind of delivery, there is no guarantee of QoS. However today’s

applications and users require different levels of service quality to be ensured

by network providers. Moreover, commercially, service providers may need to

provide different QoS alternatives to users in order to increase their revenues.

QoS refers to prioritizing certain traffic types, i.e. it is necessary to prioritize

vital network traffic. In QoS architectures, network resources are shared accord-

ing to the need of applications that make use of network resources. Moreover,

since different users require different levels of QoS, service providers need to differ-

entiate between network traffic to satisfy different user demands and application

requirements. The capacity that the customer gets can be limited by the QoS

technology and users buy the necessary amount of capacity for their applications.

A formal document called the Service Level Agreement (SLA) is prepared by the

service providers for a service level. SLA includes service providers’ commitment

in terms of bandwidth, throughput, jitter, delay and methods of measurement.
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The need for QoS was first discussed by IP designers when RFC791 was

written in 1981 [31]. IP designers included an 8 bit field called the type of service

byte that would be useful to provide QoS at layer 3 at that time.

On the other hand, the opponents of QoS technologies foresee that the band-

width will be so inexpensive that the labor of managing complex QoS algorithms

will be more expensive than just assigning more bandwidth to the users. In order

for this view to be true, there should be no bottlenecks in the whole end-to-end

network. Additionally, such kind of a network is very costly today and would be

a new point of interest for hackers who could flood the network with extensive

and therefore harmful traffic. Another point is that, even if great innovations

have been made in optical networking technologies with Wavelength Division

Multiplexing (WDM) technologies, video phones and on-demand high quality

HDTV television are still not implemented today due to lack of capacity in the

last mile. These examples demonstrate that there is still a need for deploying

QoS at certain levels.

Internet Engineering Task Force (IETF) developed models to satisfy QoS for

some applications that have more stringent QoS requirements like real time ap-

plications. Integrated Services (IntServ) model and Differentiated Services (Diff-

Serv) model are proposed with similar objectives, i.e supporting prioritization

and different levels of service. IntServ relies on QoS guarantees made on a per

flow basis. Consequently, IntServ has some scalability problems even if IntServ

is applied at the edge of the network where the number of flows are less than

those in core nodes. Another mechanism is Diffserv, in which aggregates of flows

are differentiated rather than micro-flows, hence solving the scalability problems.

Despite considerable research efforts, it is still hardly used in operational envi-

ronments. Also, there are some algorithms that perform relative differentiation,

which means that a privileged class will have a better delay (or higher band-

width or lower loss) compared to the best effort class. One example of relative
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differentiation is Proportional Differentiated Services (PDS)[12]. In PDS, differ-

entiation between classes is controllable and predictable, providing higher classes

with better service than lower classes independent of the load conditions. One

of the models of PDS depends on delay differentiation and the other on loss

differentiation. In both delay and loss differentiation models, specific scheduler

and dropper mechanisms are proposed in order to adjust the scheduler weights

given to a traffic class such that average delay or loss ratios between classes are

maintained at a desired level. The disadvantage is that there are no absolute

guarantees. However, it is easier to deploy PDS since no signalling and admis-

sion control is performed as would be required in networks with absolute QoS

guarantees.

The above mentioned models aim to satisfy the QoS requirements of stream-

ing traffic by giving priority to these classes. Packets of streaming flows have

priority in network queues to minimize their delay while elastic flows dynami-

cally share the remaining bandwidth. Our aim is to satisfy some QoS assurances

for elastic flows at flow level. We intend to maintain different average rate levels

for different classes of elastic traffic. For the differential treatment of flows be-

longing to different classes, a scheduling algorithm called Deficit Round Robin

(DRR) [32] is used. The reason is that, with FIFO queueing, the QoS assurance

cannot be guaranteed for different classes of traffic. In FIFO queueing, when the

load of the best effort traffic increases, the rates of all classes of traffic decrease

simultaneously. However, using DRR scheduling, some weight, i.e. portion of

bandwidth, is allocated to each class in proportion with its QoS requirement.

All queues belonging to different classes are served in a round-robin fashion.

Each class is served with a rate in proportion to its weight in each round. In this

case, when the load of the best effort traffic increases, the rate of the other classes

are not adversely affected and we obtain an average mean rate. In order to use

the bandwidth resource more efficiently, the weights of the DRR algorithm are

updated dynamically. By this way, when the constraints of higher class traffic
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are satisfied, the rest of the bandwidth can be assigned to the best effort traffic.

Therefore, the resources are more efficiently used compared to the static case.

Figure 1.1: Round Robin Scheduling

In our model, we have N different service classes in addition to the best effort

class. Our model describes how network resources are shared among these classes

according to their QoS requirements. We aim to have a mean rate assurance ri

for the class of traffic i. In order to satisfy the QoS needs we use a dynamic

scheduling algorithm at the router. In our model, we use a variant of Deficit

Round Robin(DRR) scheduling algorithm but dynamically update the weights

of the deficit round robin queues according to our constraints. The method is

called Dynamic DRR (DDRR), hereafter. The available bandwidth resources

are shared between N different classes joining the N different queues and each

queue is served in a round robin fashion. However at each round, new weights are

determined for each queue according to the feedback obtained from the network.

By this way, optimal utilization of available resources are obtained, while assuring

a rate ri for a class i.

For the feedback mechanism, we use a feedback loop and a suboptimal policy

is found to minimize the error between the current measurement and the QoS

constraint ri for each class. The QoS constraint is the desired average flow

rate for each class of traffic. By using the reinforcement learning techniques
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and simulating the behavior of TCP using M/G/1- PS Model, we first obtain a

policy in which each class of traffic i gets an average rate of ri. According to

our control loop and using the policy obtained, the weight of the scheduler is

dynamically updated at each predetermined time interval and the rate of each

traffic class is observed. In order to observe the rate of each class of traffic,

a phantom connection is used [2]. Flows belonging to each class of traffic join

the same queue and share the resources dedicated to that queue. To measure

the rate each flow gets, we add an infinite phantom connection sharing capacity

fairly with other active flows of the same class. Unlike other flows, the phantom

connection continuously sends dummy packets. Since phantom connections share

the capacity fairly with the other currently active flows due to the way TCP

operates, the rate of each flow entering a queue can be determined by observing

the rate of its phantom connection. According to the rate observed for each class

through phantom connections, the control loop updates the weights according to

the controller parameters of the suboptimal policy obtained before. Simulations

are performed and the mean rates of flows from different classes as well as the

mean rates of the phantom connections belonging to these classes are observed.

Different QoS constraints for different classes of traffic are satisfied while utilizing

the resources more efficiently compared to a FIFO queue and static DRR cases.

The rest of the thesis is organized as follows. In Chapter 2, we present an

overview of the QoS concept and different QoS algorithms proposed in the liter-

ature. Moreover, we describe different scheduling algorithms and some improved

versions of these algorithms that are present in the literature. A brief overview

of elastic flows and TCP mechanisms are given as well in Chapter 2. Link Provi-

sioning using M/G/1- PS Model in conjunction with Reinforcement Learning is

studied in Chapter 3. The parameters of the controller are determined by these

policies. The Dynamic Deficit Round Robin algorithm is studied in Chapter 4

and the results of simulations from the previous chapter (i.e suboptimal policies)

5



are used to test our proposed scheduler DDRR. The final chapter is devoted to

the conclusions.
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Chapter 2

Background and Related Work

In this chapter we present a summary of the concept of Quality of Service (QoS),

architectures for QoS and related topics such as IP traffic modelling. In the

following chapters, we will present our contribution.

Services and applications over IP networks have been diversifying along with

the expansion of the Internet. ISPs (Internet Service Providers) need to satisfy

different QoS (Quality of Service) requirements. The users require different lev-

els of guaranteed QoS in contrast to the best effort service, where there is no

performance guarantees.

QoS technologies are developed in order to overcome the weaknesses of the

best effort IP networks [4], these weaknesses can be summarized as follows:

• In case of congestion, routers response unpredictably.

• Routers can not support priority service to different service classes; all

classes are treated equally.

• End-to-end service quality cannot be supported and dynamically modified.
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Some algorithms are implemented at the source and at the routers to sat-

isfy user requirements and to prevent congestion. Flow control algorithms are

implemented at the source to limit the amount of traffic admitted to the net-

work. Various algorithms are also implemented at the routers to satisfy QoS

requirements using a number of queueing algorithms.

Routers play an important role for transporting packets to their destinations.

Sometimes simultaneously arriving bursts may cause the resources of the router

to suffer from delivering the packets immediately, so the packets are buffered

at the router and delayed. The routers response in case of congestion is impor-

tant to support QoS. Different packets should be treated differently in case of

congestion.

2.1 QoS Architectures

2.1.1 What is QoS ?

Quality of service is a multi-aspect concept and that is why it is hard to define.

According to ITU-T recommendation E.800 [19], QoS is formally defined as:“The

collective effect of service performance which determines the degree of satisfaction

of a user of the service”. According to this definition QoS is trying to implement

a service model which aims to satisfy the demands of the user or which can assure

a predictable service to the users from the network. However, the demand of the

users can differ with respect to different applications and users, so the attempt

to satisfy these demands also needs to be differentiated.
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2.1.2 Motivation for QoS

While most traffic on the Internet is delivered on a “best effort” basis, i.e., with-

out guaranteed service, many applications require service differentiation. For

instance, time sensitive applications are less tolerant to delay and delay varia-

tion and critical data traffic that requires some QoS assurances like a certain

average throughout. Differentiation of service requires the ability to separate

IP traffic into separate classes and then treat each class differently. It is also

possible to provide bandwidth reservations for users using applications that re-

quired a specific amount of bandwidth for a particular period of time. For in-

stance, an agency administrator might reserve the bandwidth needed to establish

a video conference on a new policy development with staff located throughout

the state. Another motivation for establishing QoS in the state’s network is to

enable greater control over traffic congestion.

2.1.3 QoS Models for IP Networks

Integrated Services (IntServ) Model

The Integrated Services (IntServ) architecture [9] is based on allocations of re-

sources so as to meet the user and application QoS requirements. The reserva-

tions are made on per-flow basis so that assured bandwidth and delay can be

guaranteed to each application.

The IntServ model can be described in two planes of implementation: the

control plane and the data plane. The control plane is responsible of setting

up the reservations. The data plane sends the data packets according to the

reservations made for that flow.
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The Resource Reservation Protocol(RSVP) [40], [10] is a network control

protocol for establishing and maintaining Internet integrated service reservations

that allows Internet applications to obtain both best-effort and real-time QoS

for their data flows. Hosts and routers use RSVP to deliver QoS requests to all

nodes along the path of the data stream, typically resulting in a reservation of

bandwidth for that particular data flow.

One of the key components of the architecture is a set of service definitions;

the current set of services consists of the controlled load and guaranteed services.

Guaranteed service provides strict end-to-end latency bounds for intolerant real

time traffic whereas controlled load supports nominal end-to-end latency bounds

for tolerant real time and elastic traffic.

Firstly, the traffic flow is characterized on the basis of its QoS requirements.

Then resource reservations are handled with a specific signaling protocol, RSVP.

After the reservation set up, the reservation setup information is sent to the

first router on the path. Admission is performed at the router by the routing

module. Routing module determines the next hop for the reservation forwarding.

Admission control process is applied by each network element along the route.

Each one checks whether there are enough resources to admit the flow into its

shortest path route. After a flow is admitted, the network elements at the edge

of the network impose policing functions (and possibly rate shaping) on the flow.

The information for the reserved flow is stored into the resource reservation

table. The information in the resource reservation table is used in the data

plane to configure packet scheduling and the flow identification module. The

flow identification module filters packets belonging to flows with reservation and

passes them to appropriate queues. The packet scheduler shares the resources to

the flows based on the reservation information.

The integrated services model is not deployed in practice today. One of the

reasons that have impeded the wide-scale deployment of integrated services with
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RSVP is the excessive cost of per-flow state and per-flow processing that are

required for integrated services. The setting of state in all routers along a path

is non- scalable and non-workable administratively. In addition to the scalability

problem, another problem of intserv is that it assumes that reservation state can

be delivered across administrative boundaries without any problems. However,

it requires complex peering arrangements among network providers.

Differentiated Services (DiffServ) Model

IntServ model, which was not feasible for implementation when there are millions

of flows traversing through the network simultaneously, is simplified by pushing

the complex decisions like classification of flows to edges and by restricting the

set of behaviors in core routers in DiffServ model [7]. DiffServ model, which is

later constructed, proposes a coarser notion of QoS. In this model, packets are

marked at the edge of the network according to the performance level that they

requested. Then, according to their marks, the packets are treated differently at

the core nodes.

Individual flows with similar QoS requirements can be aggregated into larger

sets of flows called macroflows. All packets in a macroflow receive the same Per

Hop Behavior (PHB) in routers. A PHB is identified by a Differentiated Services

Code Point (DSCP) carried within the DS field (the old IPv4 ToS Byte) in every

packet. DSCP (6 bytes of DS) determines the type of service class.

Flows are aggregated into macroflows at the edge routers of a DiffServ net-

work. One of the benefits that the aggregation provides is the scalability issue,

since state is only required for a few service classes. If the number of classes is

small, the per queue operations of classification, scheduling, buffer management

or shaping/policing becomes simpler and faster. In addition, aggregation sim-

plifies the network management, since the operator needs to control the service
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Figure 2.1: DiffServ Architecture

level of a few classes, rather than millions of flows in IntServ. However, in case of

aggregation, the network is unable to guarantee a certain QoS to an individual

flow.

At the edge routers, in addition to classification, marking (turning on priori-

tization bit values in the layer 2 and/or layer 3 headers to signify the importance

of traffic), policing or rate shaping (limiting the bandwidth used on a link by

queueing traffic that exceeds set rate) is also performed.

Per Hop Behavior (PHB) PHB specifies queueing, queue management

such as packet drop and scheduling mechanisms. The implementer can choose

different possible versions of these algorithms. For example Weighted Fair Queue-

ing (WFQ), Weighted Round Robin (WRR) or one of the other scheduling mech-

anisms can be used. The PHBs in DiffServ architecture have strictly local (per

hop) characteristics. So even an individual router may deploy service differenti-

ation.
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A number of PHBs were suggested for the DiffServ architecture. Best Effort

is the default PHB. Other than the Best Effort two PHBs, namely, Assured

Forwarding (AF) and Expedited Forwarding (EF) are standardized.

Assured Forwarding Assured Forwarding (AF) PHB is used for applica-

tions requiring better reliability than Best Effort service. AF allows more flexible

and dynamic sharing of network resources, supporting the “soft” bandwidth and

loss guarantees appropriate for bursty traffic. Two different classification types

can be provided in the DSCP: Service class and Drop precedence of the packet.

According to the service class of the packet an appropriate queue is selected for

that packet and, hence, a particular bandwidth share is received from the sched-

uler. In AF, a packet belonging to a flow may receive three possible priority levels

within the flow, which may be called drop precedences. For example sync pack-

ets must have lower loss probability since losses of sync packets result very long

time-outs. Drop precedence determines the weight if the RED like queues. AF

can be implemented as follows: First, classification and policing are performed

at the edge routers and if the assured service traffic does not exceed the bit rate

specified by the SLA, they are considered inprofile otherwise excess packet are

considered as out of profile. Then, all packets, in and out, are inserted into an

assured queue to avoid an out of order delivery. After that, the queue is managed

by a queue management scheme like RED or RIO. Finally, queue management

scheme drops or forwards the packets.

Expedited Forwarding Expedited Forwarding(EF) PHB is suggested

for applications that require a hard QoS guarantee like delay and jitter. Mission

critical application set a good example for this kind of service.

DiffServ Building Blocks DiffServ model includes two conceptual elements

in the edge point of the network: classification and conditioning shown in figure.
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Conditioning includes numerous functional elements that are used to implement

conditioning actions.

Classification Packet classification identifies the packets and separates

them for further processing based on the information in the packet header (See

Fig. 2.3). Behavior Aggregate (BA) classifier uses only the DSCP field for

classification whereas the Multi-Field (MF) classifier uses a combination of fields

of the IP header (e.g. source address and source port). MF is usually used at the

edges of the network for packet classification and BA in the core of the network

due to its simplicity.

Conditioning Conditioning mechanisms such as metering, marking,

shaping and dropping are important parts of the DiffServ Model. Condition-

ing is used to ensure that on average each behavior aggregate will obtain the

agreed service level.

Figure 2.2: DiffServ QoS Traffic Conditioning Flow Chart

Metering is a process to determine whether the behavior of a packet stream is

within the profile, i.e in profile or out of profile. There are various estimators for

metering but the most known and widely used estimator in the packet networks is

the “token bucket” estimator. Token bucket can be described by two parameters:

token generation rate (R) and size of the token bucket (S). Each token represents
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some number of bytes and the packet can be sent if enough tokens exist in the

bucket. If there are not enough tokens in the bucket, the packet is either shaped

or simply dropped.

Marking is a process done at the network edges where packets are marked to

belong to a certain service class by setting some predefined DSCP value to the

packet header to signify the importance of traffic.

Shaping limits the bandwidth used on a link by queueing the traffic that

exceeds the set rate. Dropping has similar objective as shaping, but it discards

out of profile packets in order to get the traffic stream to fit to a specific profile.

Active Queue Management In the routers, queues are essential as

they smooth bursty traffic in order to avoid packet loss. Queue management

defines the policy in which packets are dropped in case of congestion. The

simplest dropping policy is drop-tail which drops incoming packets when the

buffer is full. However, in case of persistent congestion drop-tail performs ineffec-

tively and leads to higher delays, bursty packet drops and bandwidth unfairness.

Hence, various active queue management (AQM) algorithms have been proposed

to overcome these problems. Active queue management is a pro-active approach

of informing the sender about the congestion before the buffers overflow.

Random Early Detection (RED) [13] is the most studied active queue manage-

ment algorithm in the Internet, which was developed to provide better fairness,

maximize the link utilization and to avoid global synchronization. RED uses the

average queue size as the indication of emerging congestion. In RED, packets

are dropped probabilistically as a function of the average queue size.

Scheduling Scheduling is a phenomena of deciding the order of packets

to be served from different queues. Scheduling algorithms can be categorized in
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number of ways. Some schedulers have the properties that make them suitable

for QoS capable networks. The most important advantages of these schedulers

are control over delay and jitter and rate control, when they are compared to

other schedulers which serve packets whenever there is a resource available. Con-

trolled delay and jitter is important for certain applications with hard real-time

requirements (e.g. Voice over IP). Rate control enforces a traffic stream to be

within its profile before forwarding it.

Scheduling mechanism alone and also as part of DiffServ architecture is very

important as part of traffic differentiation and to ensure the required QoS for

each class of traffic, see Fig. 2.3. Details of different schedulers will be explained

later in this chapter. In addition, our contribution by proposing an alternative

scheduler will be explained later in the thesis.

Figure 2.3: DiffServ Classification and Scheduling

Proportional Differentiated Services(PDS) Model

A more recent DiffServ model is Proportional Differentiated Services (PDS),

which provides proportional services between different classes. In PDS, the dif-

ferentiation between classes is controllable and predictable. Being controllable

allows the network provider to adjust the QoS spacing between classes and being

predictable provides higher classes with better service than lower classes inde-

pendent of load conditions.
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The Rate Proportional Differentiation (RPD) Model

In all of these QoS models, delay and loss requirements of streaming traffic flows

are desired to be met using prioritization techniques for these flows. However

our aim is to satisfy QoS requirements for elastic traffic at the flow level. One

approach is [11] Differentiated End-to-End Internet Services using a Weighted

Proportional Fair Sharing TCP algorithm. Weighted proportional fairness pro-

vides selective quality of service without the need for connection acceptance

control, reservations or multiple queues in gateways. Moreover, as the network

makes no explicit promises to the user (other than who pays more gets more )

there is no need for over provisioning. The total capacity of the network is always

available to its users and the price per bandwidth depends of the instantaneous

demand. We have seen that the management of the receive buffers is one way to

implement weighted proportional fairness when all the flows share a bottleneck

and are terminated at the same host. This can be the case for example in a sys-

tem of Web cache servers. Weighted proportional fairness can also be achieved

by modifying TCPs congestion control algorithm. In that case the range of the

weight factor seems to be limited when TCPs do not use advanced techniques

like selective acknowledgement to avoid timeouts due to bursts of errors. The ad-

vantage of using the congestion control algorithm as a means to achieve weighted

proportional fairness is that it can be done in a completely distributed manner

and independently of where the bottlenecks are located.

2.2 Scheduling Algorithms

2.2.1 First In First Out Queueing

First in First out (FIFO) queueing is the most basic queue scheduling discipline.

In FIFO queuing, all packets are treated equally by placing them into a single
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queue, and then servicing them in the same order that they were placed into the

queue. A bursty flow can consume the entire buffer space of a FIFO queue which

causes all other flows to suffer from loss of service. Thus, FIFO queueing is not

adequate; more discriminating queueing algorithms must be used in conjunction

with source flow control algorithms to satisfy QoS requirements.

In order to provide QoS (Quality of Service) in high speed networks a con-

trol method at the router is needed being i.per-flow queueing, ii.Round Robin

Scheduling.

Figure 2.4: FIFO Queue

2.2.2 Fair Queueing

For the same purpose, Nagle [21] proposed a fair queueing (FQ) algorithm and

Demers, Keshav and Shenker used Nagle’s ideas to propose an algorithm and

analyzed its performance [?]. In this scheduling algorithm, there exists separate

queues for packets arriving from individual sources. The queues are serviced in

a round robin manner. This prevents a bursty flow from arbitrarily increasing

its share of bandwidth and causing other flows to suffer from congestion. When

a source sends packets in a moment, it increases the length of its own queue and

more packets will be dropped from that queue. The reason is that, in per-flow

queueing packets belonging to different flows are isolated from each other and

flows do not have impact on each other. Theoretically, one bit is sent from each

flow at each round. Since this is impractical, it is suggested to calculate the time

when a packet would have left the router using the FQ algorithm. After that the
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packets are sorted by departure times and inserted into a queue. This algorithm

can accurately guarantee fair queueing but it causes high processor loads, since

it is computationally too expensive.

2.2.3 Stochastic Fair Queueing

Stochastic Fair Queueing (SFQ) is proposed in order to reduce the computational

cost of FQ [28]. In SFQ, hashing is used to map the packets coming from different

sources to a fixed number of queues that is fewer than the number of source-

destination pairs. SFQ doesn’t have a separate queue for each source destination

pair with the assumption that the number of active flows at the router are much

less than the total number of possible flows. Some flows are hashed into the

same queue causing two connections to collide, which results in unfair share of

bandwidth. If the same hash function is used, the colliding flow will collide

again and get less bandwidth than they should get. In order to prevent this,

the hash function is updated. Moreover, if the number of queues are larger than

the number of active flows, each flow will most likely be mapped to a different

queue. Therefore a relatively large number of queues will be required in order to

achieve fairness.

2.2.4 Weighted Round Robin Scheduling

In weighted round robin(WRR) scheduling algorithm, there are multiple queues,

each of which is serviced in a round robin fashion in proportion to its weight.

In each round, each queue is visited and a number of packets, which is equal to

the weight of the queue is serviced from that queue if it is nonempty. When the

packet size of the flow is unknown, the weights of the wrr scheduling algorithm

cannot be normalized. Therefore, the algorithm becomes unfair. Deficit round

robin scheduling is used instead to overcome this problem.
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Figure 2.5: Round Robin Scheduling

2.2.5 Deficit Round Robin Scheduling

Round robin scheduling can be unfair if the flows from different queues use

different packet sizes. In deficit round robin (DRR) scheduling [32], each queue

gets a quantum of service in a round robin fashion. There is a deficit counter for

each queue which keeps track of the portion of the quantum which is not served

in that round due to the fact that the size of the forthcoming packet was larger

than permitted value of bytes. The remaining bytes left from the quantum are

kept at the deficit counter and in the next round, quantum is added to deficit

counter and the bytes to be served are calculated.

2.3 Internet Traffic Modelling

2.3.1 Internet Traffic Differentiation

In communication networks, there are different services of traffic which belong to

different applications and have different characteristics. Thus they have different

performance requirements with respect to difference measures of QoS. In general

some QoS measures like transparency, accessibility and throughput can be defined

and used to distinguish different services of traffic. Transparency is time versus

data thoroughness. For data traffic, data thoroughness is important rather than

per packet delay. Accessibility refers to the situation of being admitted to network
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or being blocked. In the internet no admission control is currently implemented.

If the transfers requires a certain minimum throughput, accessibility must be

considered. For data traffic the most important QoS measure is the realized

throughput. Realized throughput depends on the provided capacity and how the

capacity is shared between different flows according to the service model. In

order to satisfy these QoS measures different classes of traffic, namely streaming

and elastic, are defined and different service models are implemented.

Streaming Traffic

Streaming traffic is composed of flows having an intrinsic duration and rate,

which is generally variable. Streaming traffic applications like audio and video

require certain QoS measures to be satisfied. For example videoconferencing or

voice applications are sensitive to delay.

The characteristics of streaming traffic should be known to design service

models. The bit rate of long video sequences exhibits long range dependence

due to the fact that the duration of scenes in the sequence has a heavy tailed

distribution.

The essential traffic characteristics of the streaming flows are their rate and

duration. While certain streaming applications produce constant rate flows, most

audio and video applications have variable rate. Variable rate video coding pro-

duce extreme rate variations at multiple time scales. Those flows are self similar

at packet level.

The number of active streaming flows depends on the time of the day. But if

we take a certain busy period for example and model the arriving flows at that

time as a stationary stochastic process, the traffic demand is the expected total

rate of all flows in progress. This may be computed as the product of the arrival

rate, mean duration and mean rate of a flow.
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Streaming traffic flow durations have a heavy tailed distribution and the

number of flows in progress and their combined rate are self similar processes.

The QoS of streaming traffic is frequently expressed at packet level, in terms

of packet end-to-end delay and jitter. However, a flow level model can also

be constructed to show some statistical bounds on end-to-end delay and jitter

knowing the load induced by streaming traffic, shaping the traffic to a certain

peak rate at ingress router and using preemptive priority queueing. Therefore, it

is possible to provide statistical performance bounds at packet level by applying

admission control at the flow level to ensure that the total load does not exceed

a certain threshold [5].

Elastic Traffic

Elastic traffic is referred to as documents like data files, web page, pictures,

texts,video sequences carried over TCP and stored completely before being

viewed. Examples of elastic applications include e-mail, IP-based fax, appli-

cations using File Transfer Protocol (FTP) and Domain Name System (DNS).

Elastic flows are mainly characterized by the size of the document to be trans-

ferred. The size of the elastic flows is extremely variable and has a so-called

heavy tailed distribution, i.e. most documents are small (a few kilobytes), while

the longer ones which are fewer tend to contribute more to traffic. Elastic flows

care more about the average end-to-end latency. The time required to transfer

a flow depends on the number of active flows on all paths that the flow passes

through.

In the current Internet, elastic flows share bandwidth dynamically under the

control of the TCP. The rate of a flow may vary according to the available

bandwidth at that instance. Bandwidth is shared as fairly as possible among

the active flows. Degree of fairness achieved by TCP depends on certain factors
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like connection round trip time (RTT) and maximum window size. Bandwidth

achieved by a flow depends on its size. The throughput of small flows are severely

limited by the slow start algorithm of TCP. The main QoS constraint is rate,

which is necessary to transfer the documents as fast as possible.

In case of normal load conditions, negligible throughput degradation can be

achieved for elastic flows by fair sharing of bandwidth resources among elastic

flows. In overload situations control of performance is required to avoid conges-

tion collapse. Some techniques like admission control or other control techniques

at the edge and core routers are applied to obtain a controlled performance.

2.3.2 TCP Mechanism

The TCP mechanism is described in RFC-793 [30], dating back to 1981. The

transport protocol is a connection oriented and end-to-end reliable protocol de-

signed to fit into a layered hierarchy of protocols that support Internet applica-

tions.

Connection Establishment

TCP three-way handshake mechanism is used to synchronize sender and receiver.

The connection requesting instance (usually some sort of client) sends a SYN

segment to the server. The server responds to the request by sending its own SYN

segment and at the same time acknowledging the SYN of the client. To conclude

connection setup, the client acknowledges the SYN of the server. Random initial

sequence numbers are sent by both sender and receiver to synchronize sequence

numbers between the endpoints. A TCP connection is uniquely identified by the

4-tuple of source and destination ports and addresses. The TCP header includes

also the sequence number field for reliability. The receiver advertised window

(rwnd) and the acknowledgment(ACK) fields are needed for flow control.
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Flow Control

One of the most important features of TCP is flow control mechanism. Flow

control prevents sender from swamping receiver with data, for example a fast

server sending to a slow client. Flow control is performed by varying the size

of the sliding window. Sliding window limits the amount of data that a TCP

instance is allowed to send into the network without having received correspond-

ing ACKs. The receiver advertises it receiver window (rwnd) size in ACKs. This

size specifies how many more bytes the receiver is willing to accept. The sender

adjusts the size of its sliding window in accordance with the size of the rwnd.

The sender’s sending rate is also determined by reception of ACKs sent by the

receiver.

Slow Start Mechanism

The Slow Start Mechanism is a means to probe the network for available band-

width when a new TCP connection is set up and the sender starts transmitting

data. Instead of utilizing the maximum possible window size and thus injecting

a larger amount of data into the network just after the connection is set up, the

sender starts out slowly. First, the sender transmits only one segment. For each

received ACK it increments the initial window size by one segment. This leads

to an exponential increase of the window in case the receiver acknowledges every

received packet.

Congestion Control

Congestion control mechanisms [3] make TCP respond to congestion in the net-

work. The basic signal of congestion is a dropped packet which causes the host

to stop or slow down.
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Normally, when a host receives a packet (or set of packets), it sends an ACK

(acknowledgement) to the sender. A window mechanism allows the host to send

multiple packets with a single ACK as discussed under Flow-Control Mechanisms

section of [3]. Failure to receive an ACK indicates that the receiving host may

be overflowing or that the network is congested. In either case, the sender slows

down or stops.

A strategy called additive increase/multiplicative decrease regulates the num-

ber of packets that are sent at one time. If the flow was graphed, one would see a

sawtooth pattern where the number of packets increases (additive increase) until

congestion occurs and then drops off when packets start to drop (multiplicative

decrease). The window size is typically halved when a congestion signal occurs.

What the host is doing is finding the optimal transmission rate by constantly

testing the network with a higher rate. Sometimes, the higher rate is allowed,

but if the network is busy, packets start to drop and the host scales back. This

scheme sees the network as a ”black box” that drops packets when it is congested.

Therefore, congestion controls are run by the end systems that see dropped

packets as the only indication of network congestion.

At the beginning of a new connection, the TCP transmitter sets congestion

window (cwnd) to one segment and sets the slow start threshold (ssthresh) equal

to receiver window (rwnd). The reason is that, no other information is available

about the network path at that point. The size of rwnd is an indicative of

the receiver’s current buffering and processing capacity. TCP grows congestion

window as segments are successfully transferred to the receiver. There are two

distinct growth modes; the first one is slow start (SS) and the second one is

congestion avoidance (CA). In SS mode, cwnd is incremented by 1 segment for

every ACK received by the transmitter. In CA mode, cwnd is incremented on

the average by 1/cwnd segment. TCP connections use SS mode to ramp up
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the window relatively quickly and then switch to CA mode when cwnd reaches

ssthresh.

TCP has an adaptive mechanism that tries to utilize the free bandwidth on

a link which is determined by the network parameters and background traffic.

Full adaptation, meaning the complete utilization of the free bandwidth is not

possible. The reason is that the network does not provide prompt and explicit

information about the amount of free resources. TCP tests the link continuously

by increasing its sending rate gradually until congestion is detected, which is

signalled by a packet loss, and then TCP adjusts its internal state variables

accordingly.

2.3.3 Modelling Elastic IP Traffic

TCP connections adapt their transmission rate according to the network con-

gestion state. The TCP feedback mechanism is assumed to be ideal (i.e instan-

taneous feedback), then all elastic flows share link capacity equally. In [15],

statistical bandwidth sharing is used to denote a form of statistical multiplexing

where the rate of concurrent traffic streams is adjusted automatically to make op-

timal use of available bandwidth. Such sharing is achieved with a certain degree

of fairness when all users implement TCP. Massoulie and Roberts [27] propose

a model for a fixed number of homogeneous sources sharing a bottleneck link

and alternately emitting documents. Their flow arrival process is Poisson. They

identify the underlying fluid flow model as an M/G/1 Processor Sharing (PS)

queue. The Poisson arrival assumption is more appropriate when the considered

link receives traffic from a very large population of users. Using their approach,

TCP flows sharing a link can be modelled using M/G/1 Processor Sharing. The

perceived quality of service received by these TCP flows can be measured by

the response time of a given document transfer, or equivalently, by the realized

throughput, which is equal to the document size divided by the response time.
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M/G/1 PS Model

Consider a single bottleneck link of capacity C dedicated to handle elastic flows.

The elastic flows are controlled by a closed loop controller in order use the avail-

able bandwidth maximally. Assuming that the bandwidth is shared perfectly

fairly by the flows in progress, a performance model is developed. In this model,

it is assumed that flows arrive according to a Poisson process of rate λ and that

when N flows are in progress each is served at rate C/N . Flow sizes are assumed

to be independently drawn from a general distribution of mean σ bytes. With

these assumptions the considered system can be recognized as an M/G/1 proces-

sor sharing queue for which a number of performance results are well known. [24]

The link utilization is denoted by ρ, i.e., ρ = λσ/C and assume ρ < 1. Then, the

number of flows in progress has a geometric distribution, Pr[nflows] = ρn∗(1−ρ)

and in particular average number of flows in progress is given by E[N ] = ρ
1−ρ

, the

expected response time of a flow of size s is R(s) = E[response time] = s
C(1−ρ)

,

it is proportional to the flow size. The ratio s/R(s) constitutes a useful size-

independent measure of flow throughput. Using Little’s law, the formula for

throughput can be written as γ = C(1 − ρ). When ρ is not too close to unity,

the throughput is generally satisfactory for the users. The average throughput

of a flow transfer can be easily expressed in analytical form and only depends on

the load. Theferore, for a stable system, performance is insensitive to the flow

size distribution.

Previous work on flow level QoS mechanisms for elastic traffic

In various previous work, flow level behaviour of elastic flows is analyzed and

some mechanisms for QoS are proposed. The QoS mechanisms IntServ and

DiffServ which were explained in the beginning of this chapter have some dis-

advantages. For example IntServ is not succesful in large-scale networks due to

scalability and heterogeneity problems. In particular, the number of per flow
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states become too large, which is the sclability issue. In addition, all nodes in

the end-to-edn path must implement the same reservation protocol. An alterna-

tive protocol to overcome these problems of Intserv is DiffServ, which delivers

a coarse level of QoS on a per-node, per-aggregate basis such that scalability

problem is solved. However, DiffServ only provides some relative or qualitative

QoS differentiation like high bandwidth, low delay or low loss by allocating more

bandwidth to certain aggregates than others, or using some dropping preferences

among different aggregates. The missing part of this approach is that it does not

offer a quantitative QoS guarantees.

The quantitative QoS guarantees in the flow level are satisfied by static allo-

cation methods by modelling the stochastic behaviour of flows, like flow arrivals

and statistical properties of resource sharing. However, the static allocations are

inefficient.

28



Chapter 3

Reinforcement Learning

In the next chapter the link provisioning problem will be formulated as a Markov

Decision Problem (MDP) and Reinforcement Learning algorithm used to solve

this problem will be discussed. Therefore, in this chapter, we provide an introduc-

tion to MDPs, their solutions via traditional dynamic programming approaches

and the simulation based RL approach is given.

3.1 Markov Decision Problem(MDP)

A Markov decision process is a discrete time stochastic control process charac-

terized by a set of states; in each state there are several actions from which the

decision maker must choose. A state transition function Pa(s) determines the

transition probabilities to the next state by taking action a. After moving to

next state, the decision maker earns a reward which depends on the new state.

These states of a MDP possess the Markov property. MDP framework includes

the following elements:

States: A parameter or set of parameters that are used to describe the system.
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For example each location of the moving robot can be a state, or the number

of people in the queue in a bank counter can be the state of the system. The

transition from one state to another is random. The state space of the MDP S

is composed of finite number of states {x1, x2, ..., xN}.

Actions: The system moves from one state to another by performing an action.

For each state s, finite number of actions are defined A(s) = {as
1, a

s
2, ..., a

s
M}

State Transition Probability: At each state and for each action that can be

performed from that state, a transition probability of moving from that state

i to the next state j by taking action a in one step is defined and denoted as

p(i, j, a).

Immediate Reward (or Cost): An immediate reward or cost is defined for

moving from a current state to the next state under an action taken: r(i, j, a) or

c(i, j, a).

Policy: Policy π is the rule that assigns a certain action to be taken for each

state.

State Transition Time: State transition time of discrete MDPs are one. In the

semi-markov decision problems, time spent in each state is another parameter

t(i, a, j).

Performance Metric: Each policy has an associated performance metric. Pol-

icy which has the best performance metric is is required to be found for an MDP.

The performance metric can be the long run average reward (or the average cost)

or the total discounted cost (or reward) calculated using a discount factor γ. The

objective of the MDP is to find the policy that minimizes the average cost or

discounted cost. The average cost of policy π starting at state i is defined as
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follows:

ρi = lim
k→∞

E[
∑k

s=1 c(xs, xs+1) | x1 = i]

k
(3.1)

The average cost is the sum of all immediate costs divided by number of steps

taken and it is calculated on a long run. In the limit, the average cost is same

for all initial states if a number of conditions are satisfied and ρi becomes ρ.

The policy that optimizes the value of the performance metric is the optimal

policy. The optimal control is performed by the decision maker by selecting the

optimal decision of that policy at each state.

Bellman optimality equation is one of the fundamental results showing the

existence of an optimal policy for an MDP when certain conditions are met. The

Bellman optimality equation is given by

V ∗(i) + ρ∗ = min
a

[c(i, a) +
∑

j

p(i, a, j)V (j)] (3.2)

Selecting the action that minimizes the right hand side is average cost optimal.

In the equation V ∗(i) is the value of state i, i.e. the total minimum average

cost(or maximum average reward) one can get beginning from that state and

c(i, a) is the expected immediate cost of taking action a at state i. ρ∗ is the

average one step cost (reward). The value of the current state plus the cost for

one step should be equal to immediate costs plus the expected value of next

state.

The Bellman Theorem is given as follows:

Theorem 1. Considering average cost for an infinite time horizon for any finite

unichain MDP, there exists a value function V ∗ and a scalar ρ∗ satisfying the

system of Bellman equations for all i ∈ S, such that the greedy policy π∗ resulting

from V ∗ achieves the optimal average cost ρ∗ = ρπ∗
, where ρπ∗ ≥ ρπ over all

policies π.
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Greedy policy mentioned in Theorem 1 is the policy constructed by choosing

the actions minimizing the right hand side of Bellman’s equation.

3.2 Dynamic Programming

The systems modelled as Markov Decision problem (MDP) can be solved by

Dynamic Programming (DP) methods. There are two approaches in this frame-

work. The first one is iteratively solving the linear system of Bellman’s equations,

which is called the policy iteration method. The second one is using the Bell-

man transformation in an iterative style to compute the optimal value function,

which is called value iteration. These methods require the exact computation of

transition probabilities. A detailed analysis of these algorithms can be found in

[6].

The algorithms to solve MDPs has the following two kinds of steps, which

are repeated in some order for all the states until no further changes take place:

π(i) = arg min
a

[c(i, a) +
∑

j

p(i, a, j)V (j)] (3.3)

V (i) + ρ = c(i) +
∑

j

pπ(i, j)V (j) (3.4)

3.2.1 Policy iteration

In policy iteration (Howard 1960), step one is performed once, and then step

two is repeated until it converges. Then step one is again performed once and

this goes on until convergence. Instead of repeating step two to convergence, it

may be formulated and solved as a set of linear equations. This variant has the

advantage that there is a definite stopping condition: when the array π does not

change in the course of applying step 1 to all states, the algorithm is completed.

The algorithm can be summarized as follows:
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1. Initialize number of iterations k = 0 and set initial policy π0 to some

arbitrary policy.

2. Given a policy πk, solve the set of |S| linear equations of above equation 3.4

for the average reward ρπk
and relative values V πk

(i). This step is called

policy evaluation.

3. Given a value function V πk
(i), compute an improved policy πk+1 by select-

ing an action minimizing the right hand side of equation 3.3 above. This

step is called policy improvement.

4. If πk+1 is different from πk go to step 2, otherwise stop.

3.2.2 Value iteration

The policy iteration algorithm requires solution of |S| linear equations at every

iteration, which becomes computationally complex when |S| is large. An alter-

native solution methodology is to iteratively solve for the relative values and

average reward, which is called value iteration method.

In value iteration (Bellman 1957), the two steps of calculation of π(i) and

calculation of V (i) are combined by substituting the equation of π(i) into the

calculation of V (i). The algorithm can be summarized as follows:

1. Initialize V 0(i) = 0 for all states i, specify an ε > 0 and set k = 0.

2. For each i ∈ S, compute V k+1(i) by

V k+1(i) = min
a

[c(i, a) +
∑

j

p(i, a, j)V k(j)] (3.5)

3. If sp(V k+1 − V k) > ε, increment k and go back to step 2. Here sp denotes

span, which is defined as follows for a vector x: sp(x) = maxi∈S x(i) −
mini∈S x(i).
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4. For each i ∈ S, choose π(i) = a that minimizes [c(i, a)+
∑

j p(i, a, j)V k(j)]

and stop.

In value iteration algorithm, the values V (i) can grow very large and cause

numerical instabilities. A more stable version, called relative value iteration

algorithm is used in practice. This algorithm chooses one reference state and

value of that reference state is subtracted from value of all other states in each

step 2.

3.3 Reinforcement Learning

Reinforcement Learning [16] is a simulation-based technique for solving MDPs

where the optimal value function is approximated using simulation. Classical dy-

namic programming algorithms, such as value iteration and policy iteration, can

be used to solve these problems if their state-space is small and the system under

study is not very complex. Otherwise, these algorithms can not be used since

these algorithms require the computation of the one-step transition probabilities.

If the system stochastics are very complex, it is difficult to obtain expressions for

these transition probabilities. If the state space is large, the number of transition

probabilities is too large, therefore it is not possible to even store them.

Reinforcement learning (RL) is a simulation-based method to solve large-scale

or complex MDPs since, in RL, the transition probabilities are not computed.

When the state-space is large, function approximation scheme such as regression

or a neural network algorithm can be used in RL to approximate the value

function.

In RL, there is a learning agent, that makes the decisions and there is an

environment which gives responds to the these decisions or actions of the agent.
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Figure 3.1: Agent Environment Interaction

RL [36] is learning what to do, how to map situations to actions so as to max-

imize a certain reward. By trial-and-error, the learning agent finds the actions

that yields the largest reward. In the most interesting and challenging cases, ac-

tions may affect not only the immediate reward but also the next situation and,

through that, all subsequent rewards. Trial-and-error search and delayed reward

are the two most important characteristics of RL. RL model can be summarized

as follows: The agent is connected to the environment via actions and after each

step of choosing an action, the agent receives a feedback from the environment

about the current state of the environment and a scalar reinforcement signal

that is a result of its action. The agent’s aim is to choose actions so as to maxi-

mize the long run average of values of this reinforcement signal. The knowledge

base is made up of values called Q-factors for each state-action pair, shown as

Q(i, a). These Q-factors may be in terms of cost or reward. Before learning

begins all Q-factors are initialized to the same value. In each decision making

step i, the agent checks Q(i, a) values for all a and selects the action a∗ with the

minimum cost (or maximum reward). Then the response of the system to this

action is simulated and the system moves up to another decision making state

j. During this transition from state i to j, the system gathers information from

the environment which will be given as a feedback in terms of the immediate

costs incurred to the agent. The agent uses this feedback information to update
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Q(i, a∗). However, choosing the minimum cost action at each state may lead to

a wrong policy since, a short term effect of an action may shadow or emphasize

the other possibly better or worse actions. So it is necessary to try all actions of

that state. For this purpose, the agent sometimes diverts from its most preferred

action to another action, which is called exploration. After a large number of

iterations, the most preferred action becomes clearer and the others divert from

it. So a near optimal policy is obtained.

3.3.1 Relating RL to Dynamic Programming

In Dynamic programming, the state transition probabilities are needed to be

calculated to find the optimal solution. In RL formulation, we want to eliminate

these probabilities.

3.3.2 Q-Learning

Q-Learning algorithm is basically solving the Bellman equation iteratively in an

asynchronous style so as to obtain the optimal value function. In the Q-Learning

algorithm by Watkin [38], the state transition probabilities are eliminated. The

cost function is defined as discounted reward. The average cost version of the

algorithm is given as follows: All the Q(i, a) values are initialized to some value.

At iteration t, the learner either chooses the action a with the maximum Qt(i, a)

value or selects a random exploratory action. This action results of transition

from state i to state j and the agent receives an immediate reward rimm(i, a, j),

and the current Qt(i, a) values are updated as follows:

Qt+1(i, a)← (1− α)Qt(i, a) + α(rimm(i, a) + min
a

(Qt(j, a))] (3.6)

where 0 ≤ a ≤ 1 is the learning rate controlling the contribution of new knowl-

edge to the old one. Q-learning asymptotically converges to the optimal policy
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for a finite MDP. The convergence conditions are given in [37] and can be sum-

marized as follows: All state action pairs must be visited infinitely often, and

the learning rate must slowly decay to zero.

3.3.3 Gosavi’s RL Algorithm

Gosavi’s RL algorithm can be applied to Semi Markov Decision Processes as well.

So there is an additional variable, which is the state transition time t(i, a, j).

For the proof of convergence and details, refer to [16]. The algorithm can be

summarized as follows from the Gosavi’s tutorial [17] :

• Step 1 : Set Q-factors to some arbitrary values, e.g to 0:

Q(i, a)← 0 for all i and a . (3.7)

Set iteration count k = 0, cumulative cost ccum = 0, total time T = 0. ρk is

the average cost in the kth iteration. Set ρ0 = 0 or set to a guessed value of

optimal average cost. Select a first state i to start the simulation. Let αk

denote the main learning rate in the kth iteration. Set α0 to some arbitrary

value. Let βk denote the secondary learning rate. Set β0 to a value smaller

than α0. ITERMAX is the number of iterations, and it should be set to a

large number. βk and αk are positive decreasing functions of k.

• Step 2 : With probability (1−p), choose an action a ∈ A(i) that minimizes

the cost Q(i, a), otherwise choose a random(exploratory) action from the

set A(i) different from a.

• Step 3 : Simulate the chosen action. Let the system state at the next

decision epoch be j. t(i, a, j) is the transition time to the next state j, and

cinc(i, a, j) is the immediate cost incurred in the transition resulting from

performing action a in state i.
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• Step 4 : Perform the update:

Q(i, a)← (1−α)Q(i, a) + α{cinc(i, a, j)− ρit(i, a, j) + minaQ(j, a)} (3.8)

• Step 5 : If an exploratory action was chosen in step 2, go to step 2, go to

step 6, otherwise perform:

– Update total cost: C ← (1− β)C + βcinc(i, a, j)

– Update total time: T ← (1− β)T + βt(i, a, j)

– Update the average cost as: ρk+1 ← (1− βk)ρk + βk C
T

• Step 6 : Set current state i to new state j, and increment k by 1. Stop if

k = ITERMAX, else go to Step 2.

For MDPs set all t(i, a, j) = 1. When the algorithm terminates, policy is

evaluated from the relation:

π(i) = arg min
a

Q(i, a) (3.9)

The learning rates α, β should decay to 0 in order for the algorithm to

converge.

3.3.4 Exploration

Exploration is very important for guaranteeing the convergence of RL algorithms

[36]. Especially it is required that all of the state-action pairs (s, a) are infinitely

often visited for convergence of the algorithms. Therefore, optimal (minimum

cost) action is not chosen at each state, instead an exploratory action is chosen

according to the exploration method. There are different exploration methods,

which can be found in [36].

In our simulations we use the basic ε−greedy exploration: Instead of selecting

the action with the smallest Q value, select a random action with probability ε.
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Chapter 4

Link Provisioning using M/G/1-

PS Model in conjunction with

Reinforcement Learning

4.1 Introduction

In this thesis, our main objective is to adapt the allocated resources according

to the different demands of different users automatically, i.e. different QoS re-

quirements. Therefore classification of traffic according to the requirements of

the users is necessary. Thus a subscriber that is willing to pay more could benefit

smaller delays and larger throughput. Our objective is to guarantee a certain av-

erage throughput for each class of traffic entering different queues at the router.

We will propose an optimal scheduling algorithm to satisfy our objective. We use

an adaptive version of deficit round robin scheduling algorithm for this purpose.

As an introductory problem, we study a link provisioning problem and use the

results obtained from this problem to determine the weights of the scheduler for

our main problem. These connections will be presented in the following chapter.
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This chapter is devoted to introductory Link Provisioning problem. MDP

formulation of the problem will be explained. In the formulation of the problem,

modelling of TCP using processor sharing approach is used and this model will be

explained. The solution approach constructed based on Gosavi’s RL Algorithm

using simulations will be described as well. Finally, RL simulations that are

performed to obtain the suboptimal policies and their results will be presented.

4.2 Link Provisioning

Link Provisioning problem is assigning certain bandwidth resources to a user

according to the QoS requirements of that user. In static bandwidth provisioning,

a user purchases a fixed amount of bandwidth a priori from the service provider

for each pipe used to connect to the service gateways. In dynamic bandwidth

provisioning, in addition to purchase bandwidth a priori, it is also possible to

dynamically request for additional bandwidth to meet QoS demands, and pay

for the dynamically allocated bandwidth accordingly.

Our aim is to meet some QoS demands at the flow level, while using the

bandwidth resources most efficiently. The QoS constraint of the users is to obtain

a certain average rate at the flow level. A certain fixed amount of resource can

be allocated to the user according to the demand. However, this static allocation

causes the best effort traffic to starve even when the higher priority class is not

utilizing the resources. Also, fixed allocation causes the rate of higher priority

class to fluctuate excessively. Therefore, dynamic bandwidth provisioning will

be performed. In order to use the bandwidth resources efficiently while meeting

QoS constraint of higher priority user, we need to solve an optimization problem.

The capacity allocated to the link is needed to be optimized so as to satisfy the

QoS constraints with minimum amount of capacity. The remaining capacity can

be used by the others using that link.
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The dynamic link provisioning problem needs to be formulated and solved.

The system is modelled as in Fig. 4.1. The bottleneck link (access line) connects

the customer lines to the core network via the router. Since the majority of

internet traffic is TCP, we assume that the link is carrying only TCP traffic.

Assuming that the TCP feedback mechanism is ideal, a network link carrying

only TCP traffic can be modelled using M/G/1 Processor Sharing (PS) Model as

described at the end of Chapter 2. Therefore, assuming elastic traffic is entering

the router at the bottleneck link, our system can be modelled by an M/G/1-PS

model.

Figure 4.1: System Model

4.3 Scenario

The scenario for dynamic bandwidth provisioning problem is explained as fol-

lows: We consider a single bottleneck link with certain number of TCP connec-

tions transported over this link. Our objective is to guarantee a certain average

throughput for each connection while minimizing the dynamic capacity allocated
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to bottleneck link. The bottleneck link capacity is updated using a closed loop

control system. According to the feedback obtained from the network, the capac-

ity of the link is updated. This feedback is of the form of the rate of an additional

connection, called the infinite phantom connection, sharing capacity fairly with

other connections according to the M/G/1-PS model [23]. This feedback from

the network is the measure of flow rate at that moment. So the phantom connec-

tion proposed by Afek [2] is used as a method to measure the flow rate of TCP

flows sharing the capacity equally according to M/G/1-PS model. Phantom con-

nection sends a continuous stream of dummy packets and reacts to packet loss

exactly as a regular TCP connection. Since all TCP flows share capacity fairly

according to M/G/1-PS model, the rate that each flow gets can be obtained by

calculating the rate of phantom connection. Its rate is measured by counting

the number of packets arriving from phantom connection in fixed time intervals

of length δ seconds and multiplying the number of packets by packet size and

dividing this number by δ.

A suitable but simple control algorithm, Proportional (P ) controller [35] can

be used for dynamic capacity adaptation. P controller works in a closed-loop

system shown in Fig. 4.2. The variable (e) represents the tracking error, the

difference between the desired input value Tset and the actual output (T ). This

error signal (e) will be sent to the P controller, and the controller computes the

input to the system. The relationship between the variable (e) and (u) is that

u = Kpe + D , i.e., proportional controller plus a fixed control. With regards

to the dynamic bandwidth provisioning problem, the variable (u) is the capacity

allocated to the aggregate of flows, (T ) is the measured smoothed throughput of

the phantom connection, and (Tset) is the desired throughput for individual TCP

connections. Performance of the closed loop control system using a proportional

controller is studied by simulations using the M/G/1-PS model. However, first

fine tuning of the controller parameters are necessary in order to achieve improved
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Figure 4.2: Control Loop

performance using closed-loop control. We propose to use reinforcement learning-

based systematic methods to obtain suboptimal values for the control parameters.

For this purpose, first RL simulations are performed using M/G/1-PS Model. So,

this model will be explained and after that details of RL simulations will be given.

4.3.1 Modelling TCP flows with M/G/1-PS

Vast majority of internet traffic is transported over TCP, therefore the traffic is

mostly elastic. Most internet applications such as FTP, HTTP and Telnet use

TCP. TCP adapts its transfer rate to the current network status. By applying

certain congestion avoidance mechanisms TCP achieves fair capacity sharing

among active flows. TCP protocol uses packet losses as indications of congestion

and responds to congestion by decreasing(typically halving) its rate. If no packet

losses is observed, TCP increases its sending rate. Assuming that the TCP

feedback mechanism is ideal and using these properties of TCP, a network link

carrying only TCP traffic can be modelled as an M/G/1 Processor Sharing(PS)

queue. In the M/G/1- PS Model, all active flows in the system get a fair share of

the capacity. All active flows are served on a round robin fashion whereas in each

round of service, each active flow receives a fixed quantum of service. Our reason

of using this model is using a simple model for practical purposes. However,

this model is not always a very accurate model and has some limitations since it

does not take queueing and RTT into account. A useful measure of performance
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which is the flow throughput(γ) is given by the formula γ = E[σ]
E[R]

, where σ is the

flow size and R is the response time of an arbitrary flow.

In M/G/1-PS Model that we use, flows arrive according to a certain dis-

tribution with rate λ flows/sec. The arrival process may be approximated as

Poisson when the number of sources are large. The mean flow size is σ bits.

Link capacity is C bits/sec. Flow size distribution has a heavy-tailed nature

which means that most flows are very small (mice) but majority of traffic is

contained in very long flows (elephants). According to M/G/1-PS Model, dis-

tribution of number of flows in progress is geometric. Main performance mea-

sure for elastic traffic carried by TCP is in terms of throughput and delay. In

this model, the expected response time of a flow of size s can be calculated as

R(s) = E[response time] = s
C(1−ρ)

.

4.3.2 Reinforcement Learning Formulation

A controller with a feedback loop from the network will be used to set the average

rate that the TCP flows get to the desired level, say rdesired. The feedback

from the network is the measurement result of the average rate that the flows

achieved in the last period of measurement (T ). Using the weighted result of this

measurement with the previous measurements, the feedback value at time n (rn)

is calculated. The controller determines the new value of the capacity (Cn+1)

that will be allocated to the TCP flows so as to obtain the desired average rate

rdesired. The desired value of the average rate should be satisfied with minimal

variance from mean (rdesired) while using the capacity resource efficiently. In

order to determine the parameters of the controller the system with uncertainty

should be modelled using a discrete approach and solved to find the optimal

values of the parameters.
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4.3.3 SMDP Formulation

The problem is formulated as a Semi Markov Decision Process (SMDP). The

feedback from the network which is the rate of the infinite phantom connection

(r) is the state of the system. The rate values are discretized in order to obtain

a small finite number of states. The actions are the discretized capacity values

(C) allocated to the link. In MDP formulation, there is an associated probability

of going from state i to state j under a certain action a, denoted as p(i, a, j).

According to the current state, the learning agent decides to select the next action

so as to minimize the long run average cost. The immediate cost (Cinc) is defined

as the error (e), which is the squared difference between the desired rate (rset) and

the current rate (r), i.e., e = (rset−r)2 multiplied by a constant. According to the

feedback from the network about the current state of the system, the bandwidth

allocated to the system is updated by taking the next action accordingly. The

value of cost function determines how close the current action is to the optimal

one that meets the rate constraint. If the current state is closer to the desired

one , the cost is smaller. Gosavi’s Reinforcement Learning algorithm explained

in the previous chapter will be used to obtain a suboptimal policy π(s). Using

this policy, the decision maker chooses the action to take in each state. The

simulations are performed to test the resultant rates obtained by the policy.

4.3.4 Gosavi’s RL algorithm to solve SMDP

The Gosavi’s Reinforcement Learning algorithm is used to learn a suboptimal

policy. The general learning scheme can be summarized as follows: Let the

system be in state st at time step t. The learning agent chooses an action a and

receives an immediate feedback in terms of an immediate cost or reward. This

action and the arrival of new flows change the network status and the system

moves to a new state st+1. The learning agent selects another action from this
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new state. This can be an either minimum cost action or an exploratory action

to discover states that are not yet visited or visited a few times. If minimum

cost action is chosen, the Q factors corresponding to the chosen action and the

previous state are updated according to the rules of learning algorithm based on

Bellman equation and using the values of the average cost and minimum cost

from that state. The performance of an action in a state serves as an experience

to the learning agent which is used to update its knowledge. The current choice

of an action effects the following states, therefore a return concept is needed.

Hence, picking action a at state s will give an total return R(s, a), which is the

weighted sum of future rewards from that state. In RL, the aim is to minimize

the expected return Q(s, a) given in terms of costs (or maximize Q(s, a) if it is in

terms of rewards). Thus, the performance metric that we use in the simulation

is average cost (ρ) calculated by summing the immediate rewards earned and

dividing this sum by the number of transitions. Since the number of states and

actions are finite and small in our simulations, we keep a matrix for Q(s, a) values.

Depending on the choice of performing either exploration or exploitation, either

a random exploratory less visited action is chosen or the action with minimum

cost is chosen from this matrix.

Gosavi’s RL algorithm that is explained in the previous chapter needs some

learning parameters to be set to proper values. The learning parameters α and

β are initialized to 0.5 and updated during the simulations. α is the averag-

ing parameter for updating the cost (Q(s, a)) for a certain state action pair,

and determines the ratio of the old value of Q(s, a) that will be used to cal-

culate the new value. β is the averaging parameter for updating the average

cost ρ. The parameter α is updated using the number of visits of that state

action pair (visit(s, a)) as follows: alpha = 0.5/(int(visit(s, a)/100) + 1), which

means α is halved for every 100 visits to that state. At each state either an

action with minimum Q(s, a) value is chosen (exploitation) or a random ex-

ploratory action is performed. A constant p is randomly chosen between (0,1)
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and if p ≤ pexplore, exploitation is performed, otherwise exploration is performed.

The parameter pexplore is updated according to the current time step n and the

maximum number of steps in the simulation, which is 100 million as follows:

pexplore = 0.9/int(steps/(0.1 ∗MAX STEPS)) + 1). The parameter β is also

updated using the same formula as pexplore.

4.3.5 RL Simulation Results

We modelled the system by an M/G/1-PS model where the elastic flows arrive

according to a Poisson process with mean interarrival time Tf and have the

following distribution given in [14]. 90% of the flows are mice with size uniformly

distributed between 1 and 9 Kbytes; 10% of the packets are elephants with size

uniformly distributed between 10 Kbytes and 400 Kbytes. The mean flow volume

in Kbytes is denoted by β which is 25 Kbytes for this example. We use a infinite

phantom connection to monitor the throughput of an arbitrary active flow.

Long-run RL simulations are performed for different values of the mean flow

interarrival time Tf and a suboptimal policy is found for each Tf . The RL

simulations are executed 100 million steps so that each state is visited large

number of times and each state action pair is performed a large number of times as

well. We then apply a linear regression on the obtained policies so as to determine

a proportional control law in the form u = Kpe + D for each Tf by calculating

the parameters of the proportional controller Kp and D. However, evaluation of

suboptimal policy show that, using linear regression includes additional error to

the policy so it is better to keep a look up table of policies for each state action

pair.

The traffic model is summarized in Table 4.5. For different values of arrival

rates the RL simulations are performed. In addition RL simulations are also per-

formed for different value of desired average throughput(Tset) being 200 Kb/s and
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500 Kb/s. The resultant suboptimal policies obtained using Gosavi’s Algorithm

are given in Tables 4.3 and 4.2.

Traffic Model
Arrival rate (flows/s) E[Tf ](ms) ρ
λ1 = 157.48 6.35 0.7
λ2 = 135 7.41 0.6
λ3 = 112.49 8.89 0.5
λ4 = 90 11.1 0.4
λ5 = 67.5 14.81 0.3
Cmax 45 Mb/s
β 25 packets
packet size 1 Kbyte

Table 4.1: Traffic Model: The arrival rates, mean flow size β, maximum avail-
able capacity Cmax and loads calculated using these values wrt Cmax are given.

Suboptimal Policies Obtained Through RL Simulations Tset = 500Kb/s
States(rate)(Kb/s) Actions(C)(Mb/s)
Arrival Rate (Flows/s) λ1 =

157.48
λ2 =
135

λ3 =
112.49

λ4 =
90

λ5 =
67.5

0(rate < 100 ) 45 43 38 28 24
1(100 ≤ rate < 200 ) 45 43 38 27 23
2(200 ≤ rate < 300 ) 45 41 38 26 22
3(300 ≤ rate < 400 ) 41 39 36 26 21
4(400 ≤ rate < 450 ) 41 37 34 25 20
5(450 ≤ rate < 470 ) 39 35 33 24 19
6(470 ≤ rate < 480 ) 38 33 30 24 18
7(480 ≤ rate < 490 ) 37 32 28 24 17
8(490 ≤ rate < 495 ) 36 31 27.5 23 16
9(495 ≤ rate < 500 ) 36 30 27 23 15
10(500 ≤ rate < 505 ) 36 30 26.5 23 15
11(505 ≤ rate < 510 ) 36 30 26 23 15
12(510 ≤ rate < 520 ) 35 29.5 25.5 22 14
13(520 ≤ rate < 530 ) 35 29 25 21 13
14(530 ≤ rate < 550 ) 34 28 24 20 13
15(550 ≤ rate < 600 ) 31 27 23 19 12
16(600 ≤ rate < 800 ) 30 27 23 18 12
17(rate ≥ 800) 30 26 22 17 12

Table 4.2: Look up Table Versions of Suboptimal Policies Obtained Through RL
Simulations for Tset = 500Kb/s using M/G/1-PS Model of the TCP simulated
in C++ for different arrival rates

The policies are fitted to a line using linear regression and the parameters of

the controller are determined from this line. So the proportional controller may

be applied for a certain capacity ranges. However, if the limits of capacity are

exceeded, if the controller calculates the capacity larger than maximum capacity

in the policy, capacity is set to the upper limit, if it is smaller than minimum
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Suboptimal Policies Obtained Through RL Simulations Tset = 200Kb/s
States(rate)(Kb/s) Actions(C)(Mb/s)
Arrival Rate (Flows/s) λ1 =

157.48
λ2 =
112.49

λ3 = 90 λ4 =
67.5

0(rate < 80 ) 39 28 28 21
1(80 ≤ rate < 110 ) 39 27.5 27 21
2(110 ≤ rate < 130 ) 37 27 26 20
3(130 ≤ rate < 150 ) 37 27 25 19
4(150 ≤ rate < 160 ) 37 27 24 18
5(160 ≤ rate < 170 ) 37 26 23 17
6(170 ≤ rate < 180 ) 37 26 22 16
7(180 ≤ rate < 190 ) 35 26 21 15
8(190 ≤ rate < 195 ) 35 25 20.5 14
9(195 ≤ rate < 200 ) 34 24.5 20 14
10(200 ≤ rate < 205 ) 33.5 24 19.5 13.5
11(205 ≤ rate < 210 ) 33 23 19 13
12(210 ≤ rate < 220 ) 32 22.5 18.5 13
13(220 ≤ rate < 230 ) 30.5 22 18 12
14(230 ≤ rate < 250 ) 30 21 17.5 12
15(250 ≤ rate < 300 ) 29 21 17 11
16(300 ≤ rate < 500 ) 29 20 16 11
17(rate ≥ 500) 29 20 15 10

Table 4.3: Look up Table Versions of Suboptimal Policies Obtained Through RL
Simulations for Tset = 200Kb/s using M/G/1-PS Model of the TCP simulated
in C++ for different arrival rates

value it is set to the lower limit. However, using the suboptimal policies in a

lookup table form gives better results that are close to the desired rate. Therefore

the experiments are performed using a look up table version. In addition, as a

future work, different controllers can be used to improve the results, such as

derivative controller. This controller uses the difference between current rate

and the previous rate as input and calculates the output by multiplying this

difference by a constant control parameter.

RL results: Proportional Controller Parameters
Tset (Kb/s) 200 500
Arrival Rate
(Flows/s)

Kp D Kp D

λ1 = 157.48 -17.5 42259.5 -26.3 49549.1
λ2 = 112.49 -13.1 29800 -29.6 43021.1
λ3 = 90 -21.1 30865 -16.5 30711.5
λ4 = 67.5 -19.2 24032.2 -21.2 26660.7

Table 4.4: Proportional controller parameters determined by applying linear
regression to the policies obtained for different arrival rates and Tset values.
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After the learning simulations are performed and the suboptimal policies are

obtained, these policies are evaluated using both M/G/1-PS model of TCP and

using ns-2 simulator [33]. The results are given in the following tables and figures.

The rate of the flows are measured using a phantom connection. The rate versus

time graphs for desired rate (Tset) value of 200 Kb/s and for 2 different arrival

rates of 112.49 flows/s and 157.48 flows/s are shown in Fig. 4.3 and 4.4.
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Rate of phantom connection vs time using PS Model
 for Tset=200 Kb/s and lambda = 112.49 flows/s 

mean(rate) = 203.74 Kb/s
std(rate) = 16.01 Kb/s

Figure 4.3: Evaluation of policies using PS Model: Rate of phantom connection
vs time for Rset = 200Kb/s for λ = 112.49 flows/s .

The results of the linear regression performed on the policies obtained for 2

different values of Rset and for different arrival rates are shown in Fig. 4.5 and

4.6.

The results of performing the obtained policies using M/G/1-PS model are

tabulated in Table 4.5. The dynamic link provisioning results are compared

with the static case. The average of capacity used (Cavg) in the dynamic link

provisioning simulations are calculated from the recorded capacity values.
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mean(rate) = 205.12 Kb/sec
std (rate) = 18.03 Kb/s

Figure 4.4: Evaluation of policies using PS Model: Rate of phantom connection
vs time for Rset = 200Kb/s for λ = 157.48 flows/s .

The suboptimal policies obtained from the RL simulations are also tested

using ns. According to the feedback from the network, which is obtained by

monitoring the rate that the infinite phantom connection gets in the last time

interval, the bandwidth required is found from the look up table of the obtained

policy. However since this rate values fluctuate, exponentially weighted moving

average of previous rate and the current rate is calculated using the equation:

βrcurrent + (1 − β)rprev, where β is taken to be 0.6 in these simulations. The

dynamic link provisioning simulations in ns results in mean rates values which

are close to the desired mean rates. However, standard deviations are much

larger in ns. The results are given in Table 4.6.

The results of dynamic link provisioning are compared with the static case,

and it is observed that dynamic link provisioning results in much smaller stan-

dard deviations from the desired mean when compared with the static case. In

static provisioning simulation, the capacity of the link is chosen based on the
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Figure 4.5: Suboptimal Policies for Rset = 200Kb/s for different λ’s

mean values of the capacities calculated from the dynamic provisioning simu-

lation results. In addition, we tried to obtain Tset = 200Kb/s in average in

static case to compare the results with the static case. This value cannot be

obtained through processor sharing (PS) formulas since there is an additional

infinite phantom connection, the effect of which is not included in the PS formu-

las. Resultantly, it is observed that, rate in the static simulations oscillates too

much and takes very small values in case burst of flows arrive.

The rate versus time plots for the phantom connection is plotted in Fig. 4.7

and 4.8 for two different arrival rates and Tset values using their correspond-

ing policies obtained previously. The values are calculated by dividing the total

amount of bytes received by the receiver divided by the time interval of measure-

ment. Here time interval is 0.4 sec.
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Figure 4.6: Suboptimal Policies for Rset = 200Kb/s for different λ’s

PS Model Results ( Dynamic Link Provisioning )
Rset (Kb/s) 200 500
Arrival Rate
(Flows/s)

λ1 = 157.48 λ2 = 112.49 λ1 = 157.48 λ2 = 112.49

Mean(T)
(Kb/s)

205.11 203.74 469.18 475.29

σ(T ) (Kb/s) 18.02 16.01 42.35 62.62
Mean(C)
(Mb/s)

33.186 23.824 38.336 29.649

Table 4.5: Dynamic Link Provisioning: The results of suboptimal policies ob-
tained through RL simulations and evaluated using M/G/1-PS Model of the TCP
simulated in C++ for two different arrival rates and two different desired mean
rate values (Rset)
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NS Results ( Dynamic Link Provisioning )
Tset (Kb/s) 200 500
Arrival Rate
(Flows/s)

λ1 = 157.48 λ2 = 112.49 λ1 = 157.48 λ2 = 112.49

Mean(T)
(Kb/s)

199.19 201.05 498.04 516.47

σ(T ) (Kb/s) 112.20 131.53 181.80 121.02
Mean(C)
(Mb/s)

33.691 24.235 33.948 24.463

Table 4.6: Dynamic Link Provisioning: The results of suboptimal policies ob-
tained through RL simulations and evaluated using NS for two different arrival
rates and two different desired mean rate values (Tset)

NS Results ( Static Link Provisioning )
Arrival Rate
(Flows/s)

λ1 = 157.48 λ2 = 112.49

constant C
(Mb/s)

33.400 33.500 33.700 24.000 24.200 24.280

Mean(T)
(Kb/s)

79.61 167.99 201.10 98.11 184.92 195.91

σ(T ) (Kb/s) 63.60 138.56 164.51 171.67 174.55 181.13

Table 4.7: Static Link Provisioning: The static link provisioning simulated using
NS for two different arrival rates and for desired mean rate value (Tset) being 200
Kb/s
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Figure 4.7: Rate of phantom connection vs time for Tset = 200Kb/s for λ =
112.49flows/s in NS simulations.
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Chapter 5

Dynamic Selection of Weights in

Deficit Round Robin Scheduling

5.1 Related Work

To support multiple classes with different service requirements, different ap-

proaches were used in the literature. As explained in chapter 2, DiffServ ar-

chitecture is used for serving different QoS requirements of a small number of

classes. In the recent literature as opposed to the more complex QoS models

such as IntServ and DiffServ, simpler QoS mechanism such as flow aware net-

working are proposed [34] [22]. These traffic control and QoS schemes are local

and independent from the other parts of the network. The user defined flows

are identified from their packet headers and the QoS mechanisms such as admis-

sion control and scheduling are applied to these flows at the individual routers

independently.

At the core routers, the key problem is to decide how to allocate resources

to each class to satisfy their QoS requirements. In this context, different classes

usually belong to different applications like video, voice, data that have different
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QoS requirements. Most of the present literature prioritize certain traffic types

such as delay and loss sensitive traffic. So streaming traffic applications have

higher priority then data traffic. However, there is also a need to satisfy different

QoS requirements of elastic traffic. The most common measure of QoS for elastic

traffic is the throughput. Thus, using this measure different QoS requirements

of different classes of users need to be satisfied.

In order to give different treatment to different classes of traffic according

to their requirements, each class of traffic is inserted into a different queue and

a scheduler decides which queue to serve next and what portion of capacity is

needed to be allocated to that queue. The second method to control traffic and

satisfy QoS at the routers is to control queue length [8] using different schemes

such as Random Early Detection (RED) [13].

There are various scheduling algorithms proposed in literature. Some of these

are explained in the scheduling section of Chapter 2 like FIFO, Fair Queueing,

Stochastic Fair Queueing, Weighted Fair Queueing(WFQ). FIFO is the simplest

scheduler which does not implement different treatment of classes. Some of these

schedulers are fair but computationally expensive. For example, WFQ uses the

packet slice concept and precisely guarantees bandwidth and delay. However,

a large amount of packet processing is required since packet sorting and other

mechanisms are used in WFQ. Therefore, these schedulers are not suitable for

high speed links. In Priority Queueing (PQ), the lower priority queue is served

only if all queues that are of higher priority have already been served. This causes

lower priority classes to starve. In Weighted Round Robin (WRR) algorithm and

some different versions of it, fairness is traded off for computational speed. In

this scheduler, the determination of weights is an important issue. In the WRR

scheme, at each round, the scheduler dequeues and transmits a number of packets

from each queue that is equal to its weight. However, these algorithms require

exact knowledge of packet lengths, since the amount of bandwidth allocated
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for each class depends on packet lengths. Otherwise fairness between different

classes depends on packet length and WRR scheme becomes unfair when packet

lengths are different. Deficit Round Robin (DRR) Scheduler is used to solve

this problem, and it will be explained in details in the following sections of this

chapter.

In order to solve the fairness problem of WRR scheduler, Variably Weighted

Round Robin(VWRR) Scheduler is proposed in [18]. The weights of the VWRR

scheduler are updated adaptively depending on the average packet length. The

average packet lengths of the flows of each queue (pi) are calculated. Then,

maximum of these packet lengths are found (pmax). The weights required by

each queue (wi) are first determined according to their bandwidth requirements,

then these weights are scaled by a ratio given by pmax/pi to take the packet

length into account. The amount of fairness achieved depends on measurement

intervals.

When bursty traffic arrives, WRR scheme causes further delays. There are

several different proposed schemes to deal with bursty traffic by updating weights

according to the network status. However, in some of these schemes, only queue

length is considered to update weights. Therefore, the lower priority classes also

receive large weights, which is undesirable in the DiffServ architecture, since fair-

ness among different priority classes is not preserved. However, in Fair Weighted

Round Robin Scheme (FWRR) [26] the weight of each service class changes but

the fairness among different priority classes are preserved. In FWRR, an ordi-

nary WRR scheme is used when the network is not congested. When network

is congested and there are significant bursts of data, the queue length increases.

When the queue length of one of the priority classes exceeds a predefined thresh-

old, the weight update mechanism starts. The weight of the congested queue is

increased by a fraction β ∈ (0, 1) and all the other priority classed update their

weight by the same amount to preserve the fairness among queues. When queue
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length of priority queues drop below the threshold queue weights are changed

back to their original values. This mechanism preserve fairness among queues.

The problem with different schedulers like WRR or PQ is that, the per-

formance is highly dependent on control parameters. Optimal choice of these

parameters is difficult. In [20], a Learning Based Scheduling algorithm is pro-

posed. Their objective is to schedule packets with the aim of providing sufficient

service to each traffic stream so that their objectives are just satisfied, thus max-

imizing resources left for other streams. In other words, the delay of the best

effort traffic is minimized while satisfying QoS goals for upper classes. A learning

automaton which has finite number of actions is used. The automaton, chooses

an action, which is choosing the queue to be serviced in the next interval. So

each action corresponds to one of the queues. Each action has a probability of

being chosen and the probability of selecting a queue is updated after p packets

are served from that queue. The probability of selecting a queue is increased

if its performance is less than the desired performance. If its performance is

better than desired, the opposite is done. Different performance measures may

be used but this work uses mean delay. Mi is the measured delay and Ri is the

desired delay. If the performance is less (or greater) than desired the probability

of choosing that queue is increased (or decreased) by an amount βia, where βi

is the difference between Mi and Ri divided by a normalization constant and a

is a constant. This performance update is the feedback from the network for

the action chosen in the form of an immediate reward. The limitations of this

algorithm are that, this algorithm still depends on the choice of certain param-

eters and the scheduling policy does not take into account the current state of

the system such as the state of each queue, when choosing an action.

The weights of the schedulers can be set statically to satisfy a worst case de-

lay bound, however, this causes fixed allocation of bandwidth and when higher

priority classes are not utilizing their bandwidth, best effort traffic still starves
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from resources. In [1], Reinforcement Learning is used to learn a scheduling pol-

icy in response to the feedback from the network about the delay experienced.

According to the changing traffic conditions, the scheduler is updated. In ad-

dition to [20], this paper uses the system state information as a feedback from

the network to update the probabilities of each queue. In the Reinforcement

learning formulation, the states, the reward(or cost) function and the learning

algorithm must be determined first. The states are defined as binary variables

corresponding to each queue qi and take value 1 if the that queue is meeting its

mean delay requirement or take 0 else. The reward function aims to provide a

positive feedback when the delay requirements are met or a negative feedback

else, and this reward is proportional to the value given by measured delay di-

vided by the required delay . The Q-learning algorithm [38] is used to learn

the scheduling policy. The results show that the requirements of the queues are

satisfied while not starving the best effort traffic.

In the recent literature there are many proposed approaches to provide QoS

through different scheduling algorithms based on DiffServ architecture. Some of

these are explained above. However, there is another approach called Relative

Differentiated Services (RDS) which is proposed to fill the gap between best effort

service and DiffServ. In RDS model, the admission control and resource reser-

vation tasks are not performed. Hence, RDS model does not provide absolute

service guarantee but packets with higher priority will receive better service than

that of low priority. There are several different schedulers proposed to support

the RDS model [25]. In [12] , some former methods based on time stamping each

arriving packet and computing the waiting time of head-of-line packets, then de-

termining the scheduling priority starting from the smallest time stamped ones

are explained. However, [25] argues that serving the packet with the smallest

time step leads to bottlenecks. Hence, many other approaches are proposed that

depend on monitoring the arrival rates and queue lengths [25], [29], [43] ,[39],

[41]. In these approaches, the service rates or parameters to determine priorities
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are updated at each interval depending on the feedback obtained from network.

One other issue for prioritizing the traffic is considering the packet lengths. Serv-

ing the shortest packets first policy decreases the queueing delay, especially for

VoIP traffic that includes many small packets with delay requirements. However,

all these approaches emphasize the delay differentiation between different classes

of delay sensitive traffic. In our case, we want to differentiate TCP flows with

different QoS requirements using a dynamic version of DRR scheduler, which

will be explained next.

5.2 Deficit Round Robin Scheduler (DRR)

The mostly used queueing mechanism in routers is FIFO queue. In a FIFO

queue, packets are queued on the order of their arrivals. Then, congestion control

is implemented by the source, which decreases sending rate in case of congestion.

However an ill behaved flow can keep increasing its share causing other flows to

suffer. This is the reason of using separate queues for flows coming from different

source destination pairs and serving these queues in a round robin fashion. The

router prevents the ill behaved source from increasing its share of bandwidth

because its queue length will increase and packets will be dropped. However, this

mechanism ignores packet lengths, therefore a flow can get max/min times the

bandwidth of other flow, where max is the maximum, min is the minimum packet

size. Fair Queueing (FQ) is proposed as a solution to this problem, that is sending

one bit at a time in a round robin fashion. This is not possible to implement so

the time that the packet would left the router if this scheme were implemented is

calculated. The packets are then inserted into the queue of packets sorted based

on their time of departure. This sorting algorithm takes O(log(n)) times where n

is the number of flows. This computational loads causes this scheme to be hard to

implement at high speeds. Hence, Stochastic Fair Queueing Scheme is proposed

to decrease the computations for the enqueue process to constant time (O(1))
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by using hashing to map the packets to the corresponding queues. In addition,

since, using a separate queue for each flow with same source destination pair

causes the number of queues to be very large, in SFQ, less number of queues

then the number of flows are used and hashing function determines the queue

that each flow will be assigned. However, this causes some flows collide with

others and colliding flows will be treated unfairly. Therefore fairness guarantees

are probabilistic.

DRR [32] is most popular due to its low O(1) complexity compared with

other high complexity fair queuing schemes. The flows arriving at the router

are queued and wait to be enqueued to their corresponding queue according to

their source destination pair based on the hashing function. DRR is proposed to

overcome the fairness problem of WRR. DRR can guarantee fairness in terms of

throughput. In DRR, a state variable called Deficit Counter is used to control

the amount of bytes that is not served in that round due to the fact that packet

length is larger than the bytes that is needed to be served from that queue at

that round. The amount of bytes served from each queue is kept in a variable

called Quantum. Hence, at each round Quantum is added to the value in Deficit

Counter and for each queue, the amount of bytes to be served in the next round

is calculated. If the length of the packet at the head of the queue is smaller than

this value, that packet is dequeued and transmitted. The length of that packet

is subtracted from the Deficit Counter. Otherwise, the packet is not served and

the turn passes to the next queue. This mechanism is demonstrated in the Fig.

5.1 taken from the original paper [32]. In this example, there are three queues

served on a RR fashion. Initially all Deficit Counter variables for each queue

are set to zero and round robin pointer points to the top of Active List, which

is list of queues that are nonempty. The Quantum is set to 500, so this value is

added to Deficit Counter. After serving the head of line packet of size 200, the

remainder 300 is left in the Deficit Counter since the next packet in line is larger

than 300. Then the remaining queues are served similarly.
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Figure 5.1: Deficit Round Robin Scheduling

The DRR queuing mechanism is also used to differentiate traffic with different

service requirements. In DiffServ architecture, the packets are classified at the

edge nodes and different priorities of traffic are inserted into different queues

based on their DS field in their IP header. Each priority class have different

service requirements. In most applications delay sensitive traffic is prioritized

according to it minimum delay requirement. At the core nodes DRR scheduling

can be used to serve these different priority queues. The latency and fairness

of DRR queue are not optimal, therefore there are variants of DRR queue to

satisfy different requirements of various applications. For example, Dynamic

DRR by Yamokoshi et. al. [42] provide delay differentiation according to the

packet lengths, resulting in shorter delays for smaller packets. This is achieved by

changing the granularity (Quantum) of Deficit Counters instead of using fixed

granularity. At each round, firstly the head-of-line packet with smallest size

is served, then the granularity is set to its size, and then the queue with the

minimum value of difference between head-of-line packet length and the value

of its deficit counter is served. After that, the deficit counter of the unserved

queues are increased by this difference.

Most of the literature concentrates on the QoS requirements of loss and de-

lay sensitive traffic. In our work, we emphasize the QoS requirement of elastic

traffic, which is measured in terms of the average throughput that TCP flows
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receive. The traffic is separated into different queues with different QoS require-

ments. There is also a best effort queue in addition to these service classes. The

bandwidth is allocated to these queues according to their requirements. Static

allocation of bandwidths to each queue causes the best effort traffic to starve even

when the higher priority classes do not utilize their allocated capacity. There-

fore, a dynamic version of Deficit Round Robin Scheduler is used with the aim of

allocating the smallest capacity to just satisfy the requirements of higher priority

queues and the rest of the capacity will be used by the rest of the traffic which

is taken to be best effort traffic in our scenario.

5.3 Dynamic Deficit Round Robin Scheduler

(DDRR)

Consider an output link of a given router that implements Dynamic Deficit Round

Robin(DDRR) Scheduling. There are n queues, that are numbered from 1 to n

and served in a round robin fashion as shown in Fig. 5.2. Queue i is the ith

queue which stores packets with flow id i. There is an associated Deficit Counter

i for each queue i that stores the amount of bytes that queue i did not use in

the previous round. Initially all Deficit Counters are set to 0. In addition, for

each queue i, there is a Quantum i in terms of bytes which shows the amount of

capacity that each queue can use at each round of service. In order not to keep

examining empty queues, there is an auxiliary list called the Active List, which

is a list of indices of queues that contain at least one packet. Each queue i from 1

to n− 1 has a different QoS requirement in terms of desired average throughput.

A controller is used for each queue to monitor the current rate by calculating

the rate of the infinite phantom connection sharing capacity fairly with other

active flows and change the bandwidth allocated to that queue according to a

previously learned policy.
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Figure 5.2: Round Robin Scheduling

The results of the introductory link provisioning problem are used for the

DDRR Scheduling problem. In the previous chapter, learning simulations are

performed for a single link to allocate the capacity dynamically so as to just

satisfy the QoS needs in terms of the desired average throughput. A suboptimal

policy for the controller is found using learning simulation for different arrival

rates and different desired average throughput of flows. In DDRR, for each

queue with different QoS requirements and arrival rates, the previously obtained

policies will be used.

For each queue of the DDRR scheduler, there is an associated infinite phantom

connection. Throughput of the flows are monitored by calculating the throughput

of the infinite phantom connection at each interval t by dividing the amount of

bytes of flow delivered to destination by the phantom connection to the time

interval of measurement t. This is the performance measure for the TCP flows.

According to the throughput of the phantom connection, which is continuously

monitored, the resources are allocated to each queue according to the previously

learned policy.

In our simulations, the system is composed of n = 3 queues, which are served

in a round robin fashion. First queue serves class 1 traffic, which has a mean

rate requirement of Tset(1) = 500Kb/s, while second queue serves class 2 traffic,

which has a mean rate requirement of Tset(2) = 200Kb/s. Third queue is the

best effort traffic which receives the capacity left from the other queues. Each
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queue has an infinite phantom connection sharing capacity fairly with the flows

of that queue, shown in Fig. 5.3. In addition, each queue also has a controller

with a policy obtained previously using learning simulations. The aim of the

controller is to keep the rate close to the desired mean rate which is Tset(i) for

queue i.

Figure 5.3: Round Robin Scheduling with Phantom Connection

The proposed DDRR algorithm shown in Fig. 5.4 can be summarized as

follows: It is the same as DRR algorithm with only difference that Quantum of

each queue are updated after each round in DDRR whereas the Quantums are

constant in DRR. In order to update the Quantum of each queue, firstly, the

capacity required for each queue called Ci is assigned by the controller of each

queue. If the total capacity for queue 1 and queue 2 (Ctot=C1 + C2) is less than

or equal to the total bandwidth of the link, say C Kb/s, then the Quantums

of queue 1 and queue 2 are set in proportion to C1 and C2 and the remaining

capacity is allocated to best effort traffic. For example if the required capacity

is found to be 29000 Kb/s for queue 1 and 23000 Kb/s for queue 2, since total of

two being 52000Kb/s, is smaller than C, say 65000Kb/s, the quantum of queue

1 will be set to 2900 bytes and that of queue 2 will be set to 2300 bytes and

the remaining 1200 will be given to the best effort queue. If the total required

capacity of first 2 queues are greater than C, a very small Quantum is assigned

to the best effort queue and the remaining large amount of capacity is allocated
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to class 1 and 2 queues in proportion to their requirements. However, in the

second case, which is the overload situation, the amount of capacity allocated

to each queue is less than the required capacity to satisfy its QoS constraint.

Therefore, the desired rate cannot be obtained for the flows in this overload

situation. However, still, the flow are expected to receive rate proportional to

their required capacity according to the policy applied by the controller. The

proposed DDRR algorithm is simulated in ns-2.

Figure 5.4: Dynamic DRR schematic

5.4 Simulation Scenario

There is a large number of hosts connected to a single router serving for an output

link. Since the number of hosts is large, the arriving traffic can be modelled by

a Poisson distribution. So from each host generating TCP flows, flows arrive

with a total mean arrival rate of λ flows/sec. The size of the flows have the

following distribution given in [14]. 90% of the flows are mice with size uniformly

distributed between 1 and 9 Kbytes; 10% of the packets are elephants with size

uniformly distributed between 10 Kbytes and 400 Kbytes. The mean flow volume

in Kbytes is denoted by β which is 25 Kbytes in our simulations. The router
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runs the DDRR algorithm. At the router, the flows are queued in the input

buffer and wait for an enqueue action which finds the right queue for each flow

according to its flow id. In the simulations, when the flows are generated, they

are assigned a flow number and each flow is inserted in the appropriate queue

according to this number. Therefore each packet arrives to each queue with a

certain arrival rate λq(i). There are two different queues with different average

rate requirements, i.e, 500 Kbits/sec and 200 Kbits/sec and one more queue

which is for best effort. According to the arrival rate for each queue, previously

calculated policies are executed and the capacities allocated to each queue are

updated during the simulation based on the feedback from the network and using

the policies stored in the look-up tables.

5.5 Simulation Results

The proposed DDRR algorithm is tested using the ns-2 simulator by adding our

proposed scheduler to the standard ns-2 distribution. The policies obtained for

each queue and for different arrival rates using the learning algorithm described

in the previous chapter are inserted to the scheduler and the weights of the

scheduler are updated dynamically. Since our scheduler is a dynamic version of

the DRR scheduler, instead of weights, which are in terms of number of packets

to be served in each round, Quantums, which are in terms of bytes are used.

In the first simulation scenario, each three class of flow arrives to the queue

with the same arrival rate, 112.49 flows/sec and they are enqueued their corre-

sponding queues based on their flow numbers. The rate of the phantom connec-

tion is monitored. The policies obtained for the given arrival rate and for two

different queues are tabulated in the previous chapter. In this simulation, the

total capacity requirement of the first two queues Ctot is always smaller than the

link capacity, which is set to C = 65Kb/s. The results of the simulation are
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Queues Queue 1 Queue 2 Queue 3 (Best Effort)
Tset (Kb/s) 500 200 N/A
Mean(T) (Kb/s) 508.88 195.39 45.19
σ(T ) (Kb/s) 84.88 88.83 40.11

Table 5.1: Results Dynamic DRR Scheduler: Mean rates of phantom connection
for each queue, the standard deviation of rates are given for arrival rate λ =
112.49Flows/secforeachqueueandtotalcapacityofthelinkC = 65 Mb/s

tabulated in table 5.1. The mean rates for phantom connection for each queue

and the standard deviation from the mean are given as well. The results show

that, the policies obtained through learning simulations satisfy the average rate

requirements for the phantom connection of each queue.

In addition to the tabulated statistics of phantom connection rate for each

queue, the rate versus time behavior of phantom connection for queue 1 with a

mean rate requirement of 500 Kb/s and queue 2 with a mean rate requirement of

200 Kb/s are given. The rate of phantom connection is recorded at each period,

which is set to be 0.4 s in these simulations. The resultant figures are given in

Fig. 5.5 and Fig. 5.6.

In addition to the rate of the phantom connection for each queue, which

is controlled by the policy executed by the controller, the rate statistics of the

individual flows are also recorded during ns simulations. One issue with the

individual flows is that, throughput of small flows (mices) are severely limited

by the slow start mechanism of the TCP. Throughput of large flows depend

more on TCP congestion avoidance and tends to that of phantom connection.

Therefore, the rate statistics of the flows whose length are greater than a certain

value are recorded. This value is set to be 100 Kbytes as shown in Figs. 5.7 and

5.9 below. Since, for the second queue smaller flows may receive 200 Kbits/s,

another histogram showing flows with length greater than 20 Kbytes is shown in

Fig. 5.8. These flows whose length are greater than a certain amount , which is

taken to be 100Kbytes in these simulations, are in bytes 97% of the total volume

of the traffic transmitted.
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Figure 5.5: Rate of phantom connection vs time for queue 1 with Tset = 500Kb/s
for λ = 112.49 flows/s in Dynamic DRR ns simulations.
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Figure 5.6: Rate of phantom connection vs time for queue 2 with Tset = 200Kb/s
for λ = 112.49 flows/s in Dynamic DRR ns simulations.
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Figure 5.7: Histogram of rate of flows of queue 1 ( with length > 100 Kbytes )
with Tset = 500Kb/s for λ = 112.49 flows/s in Dynamic DRR simulations in ns.
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Figure 5.8: Histogram of rate of flows of queue 2 ( with length > 20 Kbytes )
with Tset = 200Kb/s for λ = 112.49 flows/s in Dynamic DRR simulations in ns.
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Figure 5.9: Histogram of rate of flows of queue 2 ( with length > 100 Kbytes )
with Tset = 200Kb/s for λ = 112.49 flows/s in Dynamic DRR simulations in ns.

The second simulation scenario aims to compare the DDRR queue with the

FIFO queue, which is mostly implemented in the current network routers. How-

ever, when the load of best effort connection increases, the rate received by the

other connections decreases due to the behavior of TCP. However, when DDRR

queue is used, the flows with different QoS requirements are inserted into dif-

ferent queues, hence, they are not effected by the increase in the load of best

effort traffic. In the simulations, the flow rates of class 1 and class 2 traffic are

constant but the rate of best effort traffic is increased and the simulations are

performed for different loads of best effort traffic. The simulation parameters are

tabulated in Table 5.2. The rate statistics of the DDRR queue, when the arrival

rate of best effort traffic traffic increases, are given in Table 5.3. Mean rate of

FIFO queue when the total load increases is tabulated in 5.4. The rate versus

load graph for DDRR queues and for FIFO queue are plotted in Fig. 5.10. The

DDRR queue 1 and 2 are not effected by the increase in the load of the best ef-

fort queue. However, in FIFO queue, the rates of flows belonging to other classes

decrease as the load increases.
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Simulation Parameters
Total Arrival Rate
(flows/s)

Arrival Rate of
Best Effort Traffic
(flows/s)

Arrival Rate of
Class 1 or Class 2
(flows/s)

load (ρ = λ× β/C)

λ1 = 405 180 112.49 0.9
λ2 = 421.872 196.875 112.49 0.9375
λ3 = 427.5 202.5 112.49 0.95
λ4 = 438.75 213.75 112.49 0.975

Table 5.2: Increasing arrival rates of best effort traffic corresponding to 4 dif-
ferent system load values for fixed arrival rates of class 1 and class 2 traffic.

DDRR Results
Total Arrival Rate λ1 λ2 λ3 λ4

mean(rate) of Queue 1
(Tset = 500Kb/s)

509.65 506.89 506.72 509.06

mean(rate) of Queue 2
(Tset = 200Kb/s)

199.89 198.77 198.04 198.54

mean(rate) of Queue 3
(Best Effort)

3050.70 94.37 87.06 86.14

std(rate) of Queue 1 83.52 82.91 84.93 86.31
std(rate) of Queue 2 75.9 77.8 77.83 77.32

Table 5.3: Rate statistics of DDRR Queue when the arrival rate of best effort
traffic increases.

FIFO Queue Results
Total Arrival Rate λ1 λ2 λ3 λ4

Mean(rate) of FIFO Queue 2966.6 141.73 105.96 92.75

Table 5.4: Mean rates of FIFO Queue when the arrival rate of best effort traffic,
thus the total load increases.
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In our simulations, we assumed that the propagation delay on the links is

almost zero, which is not the case in the realistic scenarios. In real case, each

flow in the network will receive a different total delay, which is composed of

queueing delay plus the propagation delay, since, each flow traverse different

links until the destination. Therefore, the rate of each flow receiving different

delays, will be different from the rate of phantom connection.

In our simulations, the QoS criteria is the mean rate obtained in average for

each queue. The policy of the controller is determined according to the criteria

that is based on minimizing the error between the desired average rate and

the current rate of the phantom connection. Therefore, finding the minimum

capacity required to meet these requirements is the objective of the learning

simulations. However, according to our criteria of setting the rate to desired

average, in certain cases, best effort traffic may receive more rate for light load

conditions of the upper classes, than the rates received by upper classes. We

can deal with these situations by proposing different scenarios for these cases.

For example, the rate that the best effort traffic may receive can be limited by

a certain higher limit such that best effort traffic rate is always smaller than

the rates of upper classes in average. Resultantly, the remaining capacity left

by limiting the rate of best effort traffic can be distributed to the upper classes,

which will increase the rate of upper classes. However, this scenario, which can

be used as an alternative, is different from our scenario, which aims to set the

rate to the desired level.

We performed the learning simulations for different arrival rates and for dif-

ferent mean rate values. However, DDRR simulations in ns are performed for

fixed arrival rate for each queue, hence a fixed policy is used for each queue. As a

future work, the arrival rate of each queue can be detected and policy switching

can be performed when the arrival rate of a queue changes.
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Chapter 6

Conclusions

For flow level QoS assurances, different classes of elastic traffic are inserted into

different queues. These queues are served using Dynamic DRR algorithm whose

weights or Quantum parameters are adjusted according to the previously ob-

tained policies. These policies use the feedback obtained from the network at

each time interval to calculate the capacity required for the next time interval.

The policies for different arrival rates and mean throughput requirements are

obtained using the M/G/1-PS model of TCP through reinforcement learning

simulations and tested using the ns-2 simulator. The rate of each queue are

measured by monitoring the throughput of infinite phantom connection at each

time interval and average of these measurements are found to be consistent with

the average throughput requirements of each traffic class. The capacity left from

upper class queues is used by the best effort traffic so that best effort traffic can

get more resources when the upper classes are lightly loaded as opposed to static

case where the best effort queue uses fewer resources even when there are unused

resources.

In the simulations, DDRR scheduler is compared with the FIFO queue as

the load of the best effort traffic increases. The first and second class queues of
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the DDRR scheduler are not effected from the increase in the load of best effort

queue and the average rates remain constant. However, when all classes and best

effort traffic are inserted into the FIFO queue, the increase in the arrival rate

of the FIFO queue increases the total load causing the average rates of upper

classes to decrease.

The policies are obtained for fixed arrival rates therefore, when the arrival

rate of a class of flows increase, policy used for the previous policy must be

switched to a new policy, which can be simulated as a future work. TCP flows

entering a single bottleneck link are modelled using M/G/1-PS model, which is

a simple but inaccurate model, since it does not take propagation or processing

delay into account. A more accurate model of the system may be used for

RL simulations. Moreover, although Gosavi’s RL algorithm is simple, certain

difficulties are experienced during these simulations such as proper choice of

learning parameters. In addition, long run simulations should be executed for the

learning algorithm to converge by visiting every possible state a large number of

times. Therefore, simpler heuristics may be used to find the controller parameters

as a future work.
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