
ROBUST CAPACITY EXPANSION AND
ROUTING IN NETWORKS

a thesis

submitted to the department of industrial engineering

and the institute of engineering and science

of bilkent university

in partial fulfillment of the requirements

for the degree of

master of science

By
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ABSTRACT

ROBUST CAPACITY EXPANSION AND ROUTING IN
NETWORKS

İbrahim Evren Kahramanoğlu

M.S. in Industrial Engineering

Supervisor: Assoc. Prof. Dr. Oya Ekin Karaşan

September, 2006

In this thesis, we consider a robust capacity expansion-routing problem with

uncertain demand. Given a network with source and demand nodes and a ca-

pacity budget, the capacity expansion problem is related to the determination of

the arcs on which additional capacity will be installed in order to minimize the

overall routing cost while satisfying the demand of the nodes. We make use of

the Robust Counterpart (RC) approach in the literature in order to make capac-

ity installation and routing decisions. RC approach is important since it does

not allow any constraint violation for any realization of the uncertainty and such

approaches are often necessary in engineering applications in real life.

We apply the classical RC formulation to our problem that results in a sim-

ple one-stage model. The two-stage version of the RC formulation, namely the

Adjustable Robust Counterpart (ARC), is also applicable to our problem. The

formulation of the ARC is given but since it is not computationally tractable, an

approximation to ARC developed recently, namely Affinely Adjustable Robust

Counterpart (AARC) formulation, is applied to our problem and solved.

The efficiencies of the RC formulation and AARC formulation are tested via

two different sets of numerical studies in the experimental part. The main model

that allows capacity installation in continuous amounts as well as two extensions

that make use of the modular capacity approach are used in the experimental

study. The computational experiments illustrate that AARC approach provides

robust solutions at a much cheaper cost in terms of objective function value when

compared to RC approach. In addition the loss of optimality due to application

of AARC formulation is minor.

Keywords: Robust Optimization, Capacity Expansion Problem Robust Counter-

part, Adjustable Robust Counterpart, Affinely Adjustable Robust Counterpart.
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ÖZET

SERİMLER ÜZERİNDE DAYANIKLI KAPASİTE
ARTTIRIMI VE ROTALAMA KARARLARI

İbrahim Evren Kahramanoğlu

Endüstri Mühendisliği, Yüksek Lisans

Tez Yöneticisi: Doç. Dr. Oya Ekin Karaşan

Eylül, 2006

Bu tezde talep belirsizliği altında serimlerde dayanıklı kapasite genişletme ve ro-

talama problemi üzerinde çalışılmıştır. Kapasite genişletme problemi, kaynak ve

talep noktaları belirtilen bir ağ üzerinde, verilen bir kapasite bütçesinin toplam

rotalama maliyetini en aza indirgeyecek ve tüm talepleri karşılayacak şekilde

dağıtılması ile ilgilenmektedir. Kapasite bütçesinin dağıtımı ve rotalama kararları

literatürdeki “Robust Counterpart” (RC) yaklaşımı ile verilmiştir. Bu yaklaşım

modeldeki hiç bir kısıtın ihlal edilmesine izin vermemektedir. Söz konusu yaklaşım

gerçek hayat uygulamalarında, özellikle mühendislik alanında, sık karşılaşılan bir

durumu temsil etmesinden dolayı önem arz ermektedir.

Tek aşamada dayanıklı bir çözüm üreten RC yaklaşımının yanı sıra iki

aşamada çözüm üreten ve RC yaklaşımının özel bir şekli olan “Adjustable Robust

Counterpart” (ARC) yaklaşımı da üzerinde çalışılan modele uygulanabilir bu-

lunmuştur. Söz konusu ARC yaklaşımının formülasyonu verilmiş fakat bu uygu-

lamanın genellikle kolay çözülemeyen modellerle sonuçlanmasından dolayı ARC

formülasyonunun bir yaklaşığını sağlayan “Affinely Adjustable Robust Counter-

part” (AARC) yaklaşımı formüle edilip çözülmüştür.

RC ve AARC yaklaşımlarının verimliliği iki farklı sayısal çalışma ile test

edilmiştir. Tam sayı olmayan değerlerde kapasite yüklemeye izin veren ana

model dışında modüler kapasite yaklaşımını benimseyen iki ayrı model daha

kullanılmıştır. Sayısal deneyler sonucunda AARC yaklaşımının RC yaklaşımına

kıyasla çok daha ucuz maliyetlerle dayanıklı sonuçlar ürettiği görülmüştür. Ayrıca

AARC yaklaşımı sonucunda elde edilen sonuçlar belirsizlik olmayan veriler ile elde

edilen optimum sonuçlar ile karşılaştırıldığnda kayıpları oldukça azdır.

Anahtar sözcükler : Dayanıklı Serim Tasarlaması, Kapasite Arttırımı.
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tarıkçılar, Önder and his place for their keen friendship, morale support and

helps.

Finally I would like to express my special thanks and gratitude to TÜBİTAK
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Chapter 1

Introduction

1.1 Uncertain Optimization Problems and Deal-

ing With Uncertainty

Robust optimization has been one of the most interesting branches of the combi-

natorial optimization literature that have emerged over the past twenty to thirty

years. The theory of robustness deals with uncertainty of problem parameters.

It is a fact that an amount of uncertainty in parameters always exists due to the

nature of real world problems. For example, for the network design case, uncer-

tainty in problem parameters may come from many reasons such as breakdown

of a link in the network, uncertainty in the routing or capacity installation costs,

nature and human factors, uncertainty of supply or demand, etc. Therefore it

appears to be important to identify classes of models in which small changes in

problem data lead to small changes in the result under the worst plausible sce-

nario. It can be said that the interest for robust models has been a consequence

of the need for formulations that by design yield solutions that are less sensitive

to the input data than classical formulations.

As mentioned before, in real life data are always subject to change and it is

very hard (if it is not impossible) to obtain exact data related to any system.

1



CHAPTER 1. INTRODUCTION 2

Additionally, even if exact data can be obtained, sometimes the optimal solu-

tions found after modeling cannot be applied due to some constraints in real life.

This fact can also be considered with the use of some uncertain data during the

modeling process. Optimization problems that arise from these uncertain data

are called uncertain optimization problems. The uncertainty may be related to

the objective function coefficients, the coefficients of some or all of the variables

in the constraints, the right hand sides of the constraints, etc.

In operations research, there exist different ways to cope with uncertainty.

One approach can be to ignore uncertainty throughout the optimization process.

The model is developed and solved with the use of some nominal data (perhaps

most likely values obtained via estimates). Afterwards Sensitivity Analysis is

used as a post-optimization tool to give an idea about the affects of uncertainty

(introduced in terms of small disturbances) against the optimal solution found via

nominal data. Here sensitivity analysis is used to test the stability of the nominal

solutions against uncertainty but it does not help to obtain solutions that are

stable. In Stochastic Programming, uncertainty is handled from the beginning of

the model development stage of the process. In order to apply this approach, one

needs information about the underlying probability distributions that describe the

uncertainty of the parameters. In real life applications, this is often very hard

which causes difficulties in using this approach. One other approach is Scenario

Based Robust Programming. In this approach, uncertainty is represented with the

use of several different scenarios. A solution, which optimizes a criterion among

these scenarios, is sought. An important problem about this approach is that the

size of the resulting model gets very large as the number of scenarios increases.

As mentioned above, sensitivity analysis is a post-optimization tool and can-

not be used to find a robust solution. On the other hand, in stochastic program-

ming and scenario based robust programming approaches, a solution obtained is

allowed to be infeasible for some realizations of the uncertain data or some of the

scenarios. In most cases, violated constraints are taken into account by adding

some penalty to the objective. In real life, there exist applications in areas such

as engineering, pharmacology, physics, chemistry, etc. in which even a minor

violation of the constraints cannot be tolerated. Under the existence of such
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constraints, the approaches of stochastic programming and scenario-based robust

programming are not applicable since they allow violation of the constraints un-

der uncertainty. Therefore, there exists a need for an approach that does not

allow any violation of the constraints. Robust Counterpart (RC) approach is the

answer to this need.

Under RC approach, there exist hard constraints which cannot be violated

under any condition therefore results that are feasible for all realizations of the

uncertainty are obtained. Depending on the structure and hardness of the prob-

lem, extensions of the RC model namely Adjustable Robust Counterpart (ARC)

and Affinely Adjustable Robust Counterpart (AARC) are developed and used in

the literature. Detailed information about these concepts will be presented in

Chapter 3.

1.2 Brief Contents of the Study

In this thesis, we consider the capacity expansion-routing problem. In particular,

we are given a capacity budget and asked for how to use this budget in order to

minimize the overall routing cost in the network. One important assumption is

that we can find a feasible solution (i.e. a feasible routing) for every realization

that can come out of the uncertainty set. Therefore we do not try to convert an

initially infeasible problem to a feasible one by installing additional capacity to

edges. Our problem is to find the best allocation of the capacity budget to edges

in the network in order to minimize the routing cost under uncertain demand.

We define a robust solution as the one that minimizes the worst-case cost

under demand uncertainty. Therefore the solution obtained should be feasible for

any realization coming out of the uncertainty set and in addition it should be the

one with the cheapest cost among such solutions.

In each network, there is a single source node and multiple demand nodes

as well as transshipment nodes. The demand is uncertain. The uncertainty is

modeled as follows. We assume that, we have an average demand value for each
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demand node and we use these averages as demand estimates for the demand

nodes. These estimates can vary in both directions with a constant percent error

for all the demand nodes. On the other hand we can supply all the demand from

the single source for any realization of the uncertainty. This means that there is no

constraint on the supply amount. In addition there are coupling constraints that

couple the demands of the two nodes, which imply that if a demand value more

than the estimate is observed at one node than the demand value observed at the

coupling node should be less than its corresponding estimate. Initial capacities

on the edges of the network and routing costs are known and deterministic.

Having described the basic model, we consider three different versions of the

model in this thesis. In the first model, the capacity can be installed in continuous

amounts, that is to say there exists no integrality restrictions. In the second

model, we introduce modular capacity into the model. We have links with a

fixed capacity and can install integer amount of links on the edges in order to

increase the capacity. The capacity constraint is expressed in terms of number

of links that can be installed in this case. The third model is an extension to

the second. In addition to the second model; we introduce fixed and variable

capacity installation costs to our objective function. For each model, we generate

instances with low, medium and high uncertainty and capacity budgets.

The results are reported through two studies in the experimental part. In the

first study we generate different problem instances on each network and evaluate

the average performance of the AARC optimal solution (i.e. an approximation to

the worst-case cost of the ARC) against the RC optimal solution and the optimal

solution of the basic model using deterministic nominal data (i.e. estimates of

the demand). Second experiment is a simulation study. A problem instance from

the first experiment is fixed for each network topology and 2000 random demand

vectors are created from the uncertainty set. Afterwards the costs of the AARC

and RC solutions are calculated for each demand vector and to evaluate the costs

of these solutions, they are compared with the cost coming from the deterministic

solution.

The rest of the thesis is organized as follows: In Chapter 2, we give the general
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definitions and formulations of the concepts of RC, ARC and AARC. Next, in

Chapter 3, a review of the literature on general robust optimization as well as

the robust network design in particular are presented. In the following chapter,

the model used in the thesis as well as the corresponding RC, ARC and AARC

formulations are given. In addition, a small network example is provided in order

to illustrate the formulations. The chapter also includes two propositions that

show the equivalence of RC, ARC and AARC under two different uncertainty

sets. Chapter 5 deals with the detailed results of the experimental study as well

as their interpretation. We conclude in Chapter 6.



Chapter 2

General Definitions and

Formulations

A general linear programming (LP) problem is formulated as:

Min{ctx : Ax ≥ b}. (2.1)

When uncertainty in parameters is introduced into the system, we are faced

with an uncertain linear programming problem. An uncertain linear programming

problem is defined as a family of instances as formulated below where U ⊂ Rn ∗
Rm∗n ∗Rm is defined as the uncertainty set.

Min{ctx : Ax ≥ b} where (c, A, b) ∈ U . (2.2)

In robust optimization methodology, the notion of robust counterpart (RC)

of a problem tries to find an optimal solution to an uncertain LP under the

condition that the solution obtained is feasible for all the realizations of the data

coming from a known uncertainty set. Such solutions are defined as uncertainty-

immunized solutions in [2]. It can be said that the optimal solution of the RC is

the one that gives the best objective function value among the solutions that are

6
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feasible for all realizations of the uncertainty.

The robust counterpart problem is formulated as follows:

Min{ctx : ∃x : Ax ≥ b ∀(c, A, b) ∈ U} (2.3)

Note that we assume there exists a feasible solution (i.e. the problem is not

infeasible).

While solving the robust counterpart of a problem, one important fact is the

following: The decisions about all the variables in the problem should be given at

one stage. This means that the problem should be solved and an optimal solution

should be found in one shot. All decisions about the variables should be taken

before the actual realization of the data. But there are cases in which some of

the variables are decided prior to the realization of the uncertainty and some of

them can be decided after the realization. An example is the capacity expansion-

routing problem. The decision maker should decide how to allocate the capacity

budget to the existing edges before the actual realization of the uncertainty but

the routing decisions can be given after realizing the actual values of the uncertain

parameters.

In [2], the notion of Adjustable Robust Counterpart (ARC) is introduced to

deal with these types of problems. The variables in the problem are divided into

two groups as adjustable and non-adjustable variables. Non-adjustable variables

are the ones that are decided prior to the realization of the uncertainty and the

adjustable variables are the ones that can be adapted to the actual realization of

the data. The benefit of the ARC over the classical RC is that in some cases, the

RC provides solutions that are unjustifiably conservative resulting in high costs

in terms of objective function value.

If we divide the variable vector −→x into two (i.e. divide the variables into

two groups) as the adjustable variable component −→y and non-adjustable variable

component −→z , we can formulate the adjustable robust counterpart problem as:



CHAPTER 2. GENERAL DEFINITIONS AND FORMULATIONS 8

Minz{ctz : ∀(c, A, b) ∈ U ∃ y(c, A, b) : By + Cz ≥ b} (2.4)

Note that, the matrix A is divided into two parts as B and C that correspond

to adjustable and non-adjustable variable coefficients. With this notation, the

formulation of RC becomes:

Minz{ctz : ∃y such that ∀(c, A, b) ∈ U : By + Cz ≥ b} (2.5)

Although the formulations given by (2.4) and (2.5) look similar, there exists a

significant difference. In RC formulation, we are given the uncertainty set and we

want to be sure that there exists a solution that is feasible for every realization

that can come out of the uncertainty set. In this formulation, having adjustable

variables does not bring any advantage. On the other hand, in ARC formulation,

given any point from the uncertainty set, we want to optimize over all values of

the non-adjustable variables for which there exists a feasible adjustable variable

component. This means that the solution vector (i.e. the adjustable part of the

solution vector) can be adjusted after the realization of the uncertain data in

ARC. Therefore the feasible set of ARC is larger than that of RC which results

in a less conservative solution.

Although ARC is far less conservative when compared with the RC, it is known

that the ARC problem is computationally tractable for only a limited number of

cases (see [2] for details). As a result, a need for an approximation of ARC has

emerged. In [2], the notion of Affinely Adjustable Robust Counterpart (AARC)

(see also [21]) is introduced. In AARC, the second-stage variables (i.e. adjustable

variables) are restricted to be affine functions of the uncertain parameters. In fact,

the dependency between the second stage variables and the uncertain parameters

can be expressed via several functional forms. The affine dependency used in

the AARC approach results in computationally tractable problems and therefore

it is preferred against the others. With the restriction imposed by the AARC

approach, only an approximation to the ARC is calculated. On the other hand

tractability of the problem is significantly improved. The affinely adjustable
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robust counterpart problem is formulated as:

Min(z,w,W ){ctz : B[w + Wβ] + Cz ≥ b ∀(c, A, b) ∈ U} (2.6)

Note that in the above formulation, we set y = w+Wβ where β ∼= [c, A, b] ∈
U , therefore we replace the adjustable variables y by an affine function of the

uncertain parameters. In the AARC formulation, if one sets the variable W to

zero, then the obtained formulation is equivalent to that of RC. As mentioned

before, AARC is an approximation to ARC and it is in between ARC and RC in

terms of conservativeness.



Chapter 3

Literature Survey

Although robust optimization is a relatively new area of operations research,

there exists a substantial amount of work worth mentioning in the literature.

In this thesis, we consider robust network design but ideas developed in robust

optimization are applied in a wide range of areas such as scheduling, inventory

control, etc.

In this chapter, literature on robust network design as well as the benchmark

papers related to general robust optimization methodology will be summarized.

The papers by Ben-Tal and Nemirovski ([2], [3], [4], [5], [22] and [23]) are worth

to be mentioned since they contribute a lot to the robust optimization theory.

The concepts of ARC and AARC are first mentioned by these authors. Papers

by Ordonez et. al. ([19] and [21]) as well as the paper by Atamtürk and Zhang

[1] can be seen as the source of the models developed and tested in this thesis.

In the mentioned papers the concept of ARC is investigated in detail.

Bertsimas and Sim ([6], [8] and [9]) are also among the authors who concen-

trate on robust optimization. Yaman, Karaşan and Pınar ([13], [24] and [25]) as

well as Kennington et al.([11] and [12]) are among the important sources in appli-

cations such as robust spanning trees, robust shortest paths and robust DWDM

routing.

10



CHAPTER 3. LITERATURE SURVEY 11

Below, detailed summaries of the mentioned papers as well as some other

important sources are given. To improve the flow of the presentation, the papers

related to each other are summarized one after another.

Ben-Tal, Goryashko, Guslitzer and Nemirovski [2] work on the type of prob-

lems which include uncertain parameters lying in a predefined uncertainty set

and in which some of the variables must be determined before the realization of

the uncertainty while the others can be adjusted after the realization of the un-

certain parameters. The former ones are defined as non-adjustable variables and

the latter ones as adjustable variables. Using these definitions, the notion of “Ad-

justable Robust Counterpart” (ARC) is introduced. The ARC of an uncertain

LP is less conservative than its robust counterpart (RC) which simply minimizes

the guaranteed value of objective of an uncertain LP while staying feasible under

all realizations of the uncertainty set.

After formulating the ARC, the cases where the ARC of a problem is equiva-

lent to its RC are investigated. It turns out that the cases where the uncertainty

affecting every one of the constraints is independent of the uncertainty affect-

ing all other constraints are the ones in which RC and ARC of a problem are

equivalent. Furthermore, it is shown that even in simple situations when two

or more constraints can depend on the same uncertain parameter, the ARC can

significantly improve the solution given by RC. Next it is mentioned that the

ARC is not computationally tractable in many cases and because of this fact the

“Affinely Adjustable Robust Counterpart” (AARC) of a problem is introduced.

It is an approximation to the ARC in which there exists a restriction on how

the adjustable variables are tuned to the data. The main idea is to require the

adjustable variables to be affine functions of the data. Afterwards, the authors

show that the AARC is computationally tractable in many cases in which ARC

is NP-Hard.

Next, a tight computationally tractable approximation applicable to many

cases is developed. The AARC approach is illustrated by considering an inventory

management problem. It was found out that the price paid in terms of objective

function value in exchange for robustness is surprisingly low.



CHAPTER 3. LITERATURE SURVEY 12

Ordonez and Zhao [19] consider a transit network and present a capacity ex-

pansion method that is robust against uncertainties in travel times and demands.

They mention that investments in highway infrastructure are constantly under-

taken and the methods developed in the paper can be useful to give profitable

investment decisions. They define the robust solution as the solution that achieves

the best worst-case objective function value. The authors also talk about robust

counterpart and adjustable robust counterpart problems. Robust counterpart of

a problem simply tries to minimize the objective value considering all instances

that can come out of the uncertainty set. Consequently the objective is minimiz-

ing the worst-case cost. The RC problem for a stochastic problem with recourse

leads to the adjustable robust counterpart problem (ARC). In an ARC problem,

some of the decision variables are decided a priori and the rest can adjust to

the outcome of the uncertainty. It is a fact that optimal objective value of the

ARC formulation (zARC) is less than or equal to optimal objective value of RC

formulation (zRC) [see [19] for details].

The problem considered in the paper is represented by a transportation net-

work using a classic network flow formulation where the flow is routed by the

system to minimize the total travel time. Each arc in the network has an initial

fixed capacity and this capacity can be expanded by using a budget. There exists

a limited budget and the question to answer is how to allocate this limited budget

under uncertainty in demands and travel times while satisfying the demand at

each node. Given uncertainties in demands and travel times, one can separate the

decision variables by deciding capacity expansion variables prior to observation of

the demand and have the traffic flow adapt to the demand while minimizing total

travel time. This means that the robust capacity expansion problem (RCEP) is

an example of ARC problem.

After mentioning the above fact, it was shown that the RCEP problem could

be expressed in a simpler form, which can be seen as a model, which minimizes

the maximum possible cost (i.e. worst case cost). One important assumption

(Assumption 1) in the paper is that the uncertainty sets are closed, convex and

bounded. In addition, the considered network is feasible for every instance that

can come out of the uncertainty set even if the budget is zero (i.e. a feasible flow
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can also be found without installing any capacity other than the initial capacity on

arcs). This means that the budget capacity will be used to improve the objective

function not to convert an initially infeasible network design to a feasible one.

Next, the worst case cost of investment decision y called Θ(y) is defined and

it was shown that under Assumption 1, Θ(y) is a convex function in y. Therefore

RCEP is the minimization of a convex function over a simplex and it can be NP-

Hard only when evaluating Θ(y) cannot be done in polynomial time. Afterwards

two simple examples showing that finding the worst-case demand combination

can indeed be a difficult problem are presented.

The authors also present the cases in which tractable solutions for RCEP can

be obtained. The first case is the case of deterministic demand. Under determin-

istic demand they give a robust counterpart formulation (RC), which was shown

to be tractable for the considered uncertainty sets. The authors show that RCEP

is equivalent to RC problem under certain demand and the mentioned uncertainty

in travel times and therefore RCEP is also tractable. The second tractable case

is the case of uncertain demand. In this case, the conditions on the uncertainty

set under which Θ(y) can be evaluated efficiently, were determined. It was shown

that RCEP is tractable when there exist multiple sinks and a single source or

equivalently multiple sources and a single sink, with demand uncertainty only in

a single source and sink pair. Under these cases, Θ(y) was shown to be a con-

vex optimization problem. With demand uncertainty sets defined as above, the

case of different traveling time uncertainties were investigated. The final case, in

which RCEP is tractable, is a multi-commodity flow problem with a single source

(or sink) per commodity and uncertainty only on a single source-sink pair per

commodity. Once more it was shown that, Θ(y) is a convex optimization prob-

lem under mentioned conditions and fairly general uncertainty sets representing

travel times.

In the computational experiments part, the optimal value of the determin-

istic solution, the optimal value of the robust solution, the worst-case value of

the deterministic solution and the objective value of the robust solution for the

nominal data were calculated. The results indicate that the robust solution can
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reduce the worst case cost by more than 20% while incurring in about a 5% loss

of optimality with respect to the optimal deterministic solution for a nominal un-

certainty data. It is concluded that the robust solution becomes more attractive

as the uncertainty in travel times increases and as the budget to decide capacity

expansions increases. In addition the greatest benefit of a robust solution is ob-

tained for flow in some medium range, as a network with small amounts of flow

is not affected by capacity expansions and a network with large amounts of flow

is forced to send flow through less attractive routes.

Mudchanatongsuk, Ordonez and Liu [21] present a robust optimization based

formulation for the network design problem under transportation cost and de-

mand uncertainty. The considered problem and the ideas developed are exten-

sions of the ones developed in [19]. They work on the topic of network design in

order to make decisions on where to increase arc capacities to reduce the overall

network routing/transmission cost.

In the paper, a classic multi-commodity network design problem (NDP) is

considered. The aim is to find out the arcs on which capacity will be installed in

order to minimize the total routing cost and the capacity installation cost. The

problem is formulated as MIP. The authors assume that the network problem

is always feasible even if no capacity is installed on the arcs. This is provided

by installing incapacitated, high-cost, artificial arcs between all source and sink

nodes for each commodity. As in [2], the robust solution is defined as the solution

that has the best objective value in its worst-case uncertainty scenario.

The robust counterpart (RC) and the adjustable robust counterpart (ARC)

concepts are mentioned as in [19]. The network design problem has a natural

separation between “here and now” decisions and “wait and see” decisions. This

implies that, investment decisions are made before observing the demand and the

routing decisions are made according to actual demand observations. In the study,

the uncertainty sets are defined as deviations from an estimated or nominal value

of the uncertain parameter. It is mentioned that the sets used are quite general

and can represent arbitrary correlation structures in the uncertain parameters.

Since ARC is hard to solve in general the solution approach introduced in [2]
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is used. The approach approximates the problem by limiting the second stage

variables to be some affine functions of the uncertain parameters. At this stage

one key assumption of the authors that leads to an important simplification is

that, each commodity has a single source and a sink.

The authors prove that, their selection of the affine function of the second

stage variables guarantee to solve the approximate problem efficiently. After-

wards, the efficiency of the approximation to the adjusted robust counterpart

problem obtained by limiting the recourse variables to affine functions of uncer-

tain parameters is investigated. One important note is that for affine functions

of the uncertain parameters the optimal objective value of the affinely adjustable

robust counterpart (AARC) is in between the optimal objective value of the ro-

bust counterpart (RC) and the optimal objective value of the adjustable robust

counterpart (ARC). Next, the authors show that for the NDP with single sink and

single source for each commodity and non-negative costs for each arc, the AARC

of the arc-flow formulation is equivalent to the RC of the path-flow formulation.

The authors also develop the path variable based formulation of the problem

and a column generation procedure that is appropriate for the linear relaxation of

a path constrained robust network design problem. Solving the linear relaxation

efficiently leads toward lower bounds and the algorithms for the integer RNDP.

After numerical analysis, the authors conclude that the AARC which is an

approximation to ARC and even its LP relaxation has modest sub-optimality on

any specific deterministic scenario while significantly reducing the worst-case cost,

in particular as the uncertainty increases. In addition, the simulation studies show

that the approximate robust solution reduces the mean and standard deviation

of the total cost, in particular for large problems.

Atamtürk and Zhang [1] describe a two-stage robust optimization approach

for solving network flow and design problems with demand uncertainty. In the

considered types of problems, typically, design and capacity allocation decisions

are made at the first stage and routing decisions are made at the second stage

after the realization of the uncertain demand. They focus on two-stage network

flow and design and characterize the set of robust first stage decisions explicitly
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by exploiting the underlying network structure.

They define the robust first-stage decision set, P(A), as the set of first-stage

decisions for which there exists some feasible second-stage decision for all real-

izations of the uncertain demand. Similarly Q(A) is defined as the set of robust

first-stage decisions when integer design variables are introduced into the model.

Two types of uncertainty sets (budget uncertainty set and cardinality-restricted

uncertainty set) are considered. It is shown that the separation problem for P(A)

is NP-Hard for both uncertainty sets and bipartite graphs and the separation

problem for Q(A) is NP-Hard for both uncertainty sets. The authors also show

that by using a budget of uncertainty for demand, it is possible to give an up-

per bound on the probability of infeasibility of the robust solution for a random

demand vector. Next some computationally tractable cases (namely totally or-

dered graphs, arborescence and examples from production lot-sizing problems)

are considered. Extensions to multi-commodity cases are considered in two cases

namely arc-based stages and commodity-based stages.

In the computational analysis part, two-stage robust optimization framework

is applied to the facility location problem with uncertain demand. The experi-

ments indicate that the proposed approach provides an interesting trade-off be-

tween scenario based stochastic programming and the conservative single-stage

robust optimization.

Ben Tal and Nemirovski [22] study convex optimization problems for which

the data is not specified exactly but known to belong to a given uncertainty set. In

addition the constraints must hold for all possible realizations of the data. In order

to address the uncertainty, the approach of robust counterpart [RC] is utilized

as in [3] and [8]. The primary goal for application of the robust optimization

approach is converting the robust counterparts of generic convex problems to

explicit convex optimization problems accessible for optimization algorithms. In

the paper, it is shown that in several important cases such as linear programming,

the use of ellipsoidal uncertainties leads to explicit robust counterparts, which can

be solved both theoretically and in practice. The mentioned explicit forms are

tried to be derived for general uncertain optimization problems in the paper.
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The main questions answered are: If all instances of an uncertain program are

solvable,

• Under what conditions, is RC solvable?

• When is there no gap between the optimal value of the RC and the worst

of the optimal values of the instances?

• What can be said about the proximity of the robust optimal value and the

optimal value in a nominal instance?

Ben Tal and Nemirovski [3] consider linear programming problems with un-

certain data, which include hard constraints that must be satisfied whatever is

the actual realization of the data (as in [22]). They give a definition of the robust

counterpart (RC) of an LP program and give the assumptions (see [3] for details)

that are necessary to guarantee the following:

• The RC of an LP is infeasible if and only if there exists an infeasible instance

of the original LP

• The optimal value of the RC is equal to the maximum optimal value among

the all possible scenarios of the original LP

Next, they work on the geometries of the uncertainty set which lead to a

computationally tractable RC. They focus on the geometries leading to explicit

RC of nice analytical structure and which can be solved by high-performance

optimization algorithms. They prefer a structure where the uncertainty set is

an intersection of finitely many ellipsoids. For this case, the explicit form of the

RC is developed and it turns out to be a conic-quadratic problem. The robust

solution is illustrated with a simple portfolio selection example.

Ben-Tal and Nemirovski [4] perform an experimental analysis on the effects

of uncertainties in the coefficients of the variables in the constraints of an LP.

Their claim is that, in real life applications, coefficients of the variables cannot

be estimated very accurately and when looked from a practical point of view an
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optimal solution to an LP can be severely infeasible if the nominal data is slightly

perturbed.

In the experiment, they work on 90 LPs from the well-known NETLIB collec-

tion and calculate a reliability index in order to measure the robustness (in terms

of feasibility) of each nominal solution against perturbations in the coefficients of

the variables in the constraints. The result is that in about 50% of the instances,

the nominal solution can easily be infeasible in case of small perturbations.

Next, the authors develop a strategy to find out robust solutions. Two types

of uncertainty cases are considered. The first one is “unknown but bounded

uncertainty” and the second one is “random symmetric uncertainty”. In the first

one the nominal solution is expected to satisfy the constraints with a maximum

error of a specified value (*). To find out such a solution, an interval robust

counterpart problem is solved (a variation of the RC problem defined in [2]). In

the second one, uncertain coefficients are obtained by random perturbations that

are independent random variables within a predefined interval. In this situation,

the deterministic requirement (*) is changed with a probabilistic version.

The experimental analysis shows that when passing from a usual optimal

solution to a reliable one, one does not necessarily lose a lot from optimality. In

addition, in many cases, a robust solution cannot be obtained by a moderately

small correction of the nominal solution, which implies that the methodology

presented in the paper is essential.

Ben-Tal and Nemirovski [23] work on the methodology and applications of

robust optimization. They consider linear, conic quadratic and semi definite

programming problems with an uncertainty set that consists of an intersection of

ellipsoids. They mention that RC of an uncertain LP is equivalent to an explicit

computationally tractable problem if uncertainty set itself is also computationally

tractable (see [3]). As an illustration of RC approach, they give an example about

antenna design. They also mention the study conducted in [4]. Next the authors

talk about robust quadratic programming and mention that even with a simple

uncertainty set the RC can become an NP-Hard problem in contrast to linear

programming (see [22]). Therefore they concentrate on approximations to the
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RC problem. This approach is also illustrated with an example of antenna design

problem. Finally, robust semi definite programming is considered. The cases in

which RC is tractable are investigated and an approximation is developed for the

cases which are not tractable.

Ben Tal, Nemirovski and Roos [5] consider a conic-quadratic optimization

problem with uncertain data lying in some uncertainty set. When RC approach

([4], [9], [22] and [23]) is applied to such a problem, it is mentioned that it

usually leads to an NP-Hard semi definite problem. An example is the case when

uncertainty set is an intersection of ellipsoids. For the mentioned NP-Hard cases

a simple, explicit semi-definite program is developed which approximates the RC.

In addition, an estimate of the quality of the approximation is derived.

Laguna [16] works on the problem of expanding the capacity of a single fa-

cility in telecommunications network. It is mentioned that capacity expansion

problems in telecommunications have changed in nature due to the emergence of

new technology. Different options to increase the capacity of a network are of-

fered and this brings the problem of which option to choose. Simply the problem

under consideration consists of finding the combination of components (each with

a different price and capacity) that should be installed in each period in order to

meet a total demand at a minimum discounted cost.

The key idea used in the paper to find robust solutions is to define a collection

of plausible model representations as a set of scenarios. The resulting large-

scale optimization problem introduces a new objective to ensure that the model

recommendations are close to optimal regardless of which scenario occurs. The

problem is solved in two phases. In the first phase a dynamic programming

recursion is solved and in the second phase a shortest path procedure is applied.

After numerical experiments it was found out that a large number of scenarios

could be handled with the developed technique since the computation times are

more sensitive to the maximum demand across all scenarios than to the number

of scenarios considered.

Riis and Andersen [17] consider a capacity expansion problem in a telecom-

munications network with uncertain demand. The problem is to install additional
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capacity on the edges of a network and route traffic while minimizing the rout-

ing costs and satisfying the demand. The capacity installation can be performed

through the usage of two types of facilities. In the paper, first, a formulation

of the deterministic capacitated network design problem is presented and some

well-known valid inequalities are mentioned. Then the problem is formulated

as a two-stage stochastic problem with integer first stage and continuous second

stage variables. As in [1], [2], [19] and [21], the variables are grouped into two as

first stage (where and how much capacity to install) and second stage (routing

decisions) variables. Next the valid inequalities for the deterministic case are

investigated in order to adapt them to the new formulation. A heuristic based

solution procedure that makes use of these inequalities is developed.

The developed algorithm is tested using two sets of real life data through the

generation of scenarios. The developed method is found as a practical tool for

network design in real-life applications.

Riis and Andersen [18] work on the same problem as Laguna [16] (multiperiod

capacity expansion of a telecommunications connection with uncertain demand).

The problem is to determine the number and type of facilities to install at each

period to satisfy the demand which is uncertain. The uncertainty in demand

is modeled in terms of scenarios that represent different outcomes of random

demand. Two different models are developed. The first model introduces a simple

preprocessing rule that reduces the computation time of the two-stage algorithm

developed in [16]. In contrast to the two-stage approach developed in [16], a

multistage solution procedure is developed in the second model which is viewed

as a more accurate description of the system by the authors. The experiments

show that the second model is practical but needs much more time than the

two-stage approach.

Betsimas and Sim [8] develop an approach to address data uncertainty for

discrete optimization and network flow problems. They consider mixed integer

programming problems and assume (w.l.o.g.) that the uncertainty only affects

the objective function coefficients and the coefficients of the constraint matrix.

Each entry in the constraint matrix is modeled as an independent, symmetric and
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bounded random variable with an unknown distribution. Each cost coefficient is

modeled as variables that have deviations from a nominal value. In order to

control the degree of conservatism of the solution a parameter is introduced for

each constraint (τ) that defines the maximum number of coefficients that are

allowed to deviate in the problem. Therefore it is assumed that only a subset of

the coefficients will change in order to adversely affect the solution. The authors

are interested in finding an optimal solution that optimizes against all scenarios

under which a maximum number of τ coefficients can vary in order to maximally

influence the objective. Next the proposed robust counterpart (RC) formulation

and an equivalent MIP formulation is presented. It is shown that even if more

than τ coefficients are subject to change, the RC solution will still be feasible

with a very high probability.

Afterwards robust combinatorial optimization problems are considered. An

algorithm, which shows that the RC of a polynomially solvable combinatorial

optimization problem is also polynomially solvable, is presented. It is shown that

when only cost coefficients are subject to uncertainty in a polynomially solvable 0-

1 discrete optimization problem, the RC also remains polynomially solvable. The

authors also deal with robust approximation algorithms and finally they give an

algorithm for robust network flows that solves the RC by solving a polynomial

number of nominal minimum cost flow problems in a modified network.

In the experimental study, robust knapsack, robust sorting and robust shortest

path problems are considered. The approach was found practically useful espe-

cially for combinatorial optimization and network flow problems that are subject

to cost uncertainty.

Bertsimas, Pachamanova and Sim [6] develop a method for robust modeling

of linear programming problems using uncertainty sets described by an arbitrary

norm. In the paper, robust counterparts of the linear programming problems

arising from uncertainty sets given by different forms are characterized. In addi-

tion, probabilistic guarantees on the feasibility of an optimal robust solution are

investigated.

Bertsimas and Sim [9] search for methods that can be used to decrease what
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they call as the price of robustness. This study can be considered as an extension

to [8]. They mention the fact that robust optimization methods usually result

in very conservative solutions with objective values far away from the optimal.

Therefore efficient methods that can control the conservatism of the robust so-

lution are needed. They define a parameter related to the maximum number of

coefficients allowed to change in a model. With the help of this parameter, the

conservatism of the solution is kept under control. They find solutions that stay

feasible if no more than the assumed number of parameters are allowed to be

uncertain (controlled by the parameter). In addition, they show that the prob-

ability of the found robust solution to stay feasible in the presence of uncertain

variables more than the assumed value is very high. The developed method pro-

poses a robust formulation that is linear and thus it can be extended to discrete

optimization problems easily.

Yaman, Karaşan and Pınar [25] concentrate on the robust version of the mini-

mum spanning tree problem. In the considered networks, edge costs are specified

as interval numbers which are independent of each other. Two types of robustness

are considered. A spanning tree with a minimum absolute worst case scenario

(i.e. costs of all the edges in the spanning tree are at their upper bounds) is called

an absolute robust spanning tree and it is shown that such a tree can be found in

polynomial time. Secondly, a spanning tree whose total cost minimizes the max-

imum deviation from the optimal spanning tree over all edge cost realizations is

called a relative robust spanning tree. MIP formulation is given to find such a

tree. They define concepts such as weak edge and strong edge which are used to

preprocess the graph efficiently. This preprocessing makes it easier to solve the

MIP formulation developed by the authors.

Yaman, Karaşan and Pınar [24] work on the robust shortest path problem.

They consider directed acyclic graphs and arc lengths that are uncertain parame-

ters represented as interval numbers. As in [25] a min-max regret criterion is used

to find a robust solution. MIP formulation is provided for the problem. Arcs in

the networks are classified into groups. With the help of this classification arcs

that cannot be on a shortest path for any realization of the uncertain parame-

ters are determined. This preprocessing makes it easier to solve the considered
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problems.

Kennington et al. [11] develop a new set of models for the dense wave-

length division-multiplexing (DWDM) problem that combine methods of pro-

tection against a single link failure and robust design strategies. The target is

to find the optimal routing for each demand (given a forecast for each) and to

determine the optimal amounts of equipment to be loaded on the links of the net-

work. Three different protection strategies against failure of a single link, in case

where point-to-point demand is known with certainty, are mentioned. Unknown

demands are taken into account using a discrete probability distribution with a

sample space. Each sample space realization represents a scenario with a corre-

sponding probability. A regret function is used to model robustness, which prefers

solutions that work reasonably well under every scenario considered. Models that

are combinations of the protection strategies against link failures and robust op-

timization approach are developed.

Kennington et al. [12] consider a dense wavelength division-multiplexing

(DWDM) network. They have estimates of the point-to-point demand in the

network and the problem is to determine the routing for each demand and the

least cost capacity installation that will support this routing as in [11]. The de-

mand in the network is uncertain and the forecasts are not reliable. Therefore

they use scenarios to represent the uncertainty. The authors want to develop a

robust solution that will work well under all the scenarios considered. A regret

function is used to find robust solutions. Regret is realized in two ways. The

first way is the installation of capacity that is not utilized fully when demand

is realized. The second way is installation of less capacity than needed so that

some of the demand cannot be satisfied by the system. A second objective other

than the robustness is the cost of the network design (i.e. cost of the equipment

installed). Therefore the authors develop a multicriteria model to take both ob-

jectives into account. A two-phase optimization strategy is developed. In the

first phase a robust solution that minimizes the regret is found but there exists a

budget constraint. In the second phase regret is fixed to the optimal value found

in the first stage and a minimum cost solution is searched under this constraint.
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Another work on DWDM routing and provisioning at minimal cost belongs

to Karaşan, Pınar and Yaman [13]. Different from [12], they use a flow based

formulation instead of path formulation and investigate uncertainty models based

on polyhedral representations of the uncertain demands instead of scenario based

representations. The authors consider both targets of robustness and network de-

sign cost in one single model in contrast to the two-phase model in [12]. Two mod-

els of polyhedral uncertainty (namely hose model and restricted interval model)

are used and MIP formulations of the corresponding robust problem as well as

valid inequalities are provided.

El Ghaoui and Lebret [15] work on least-square problems with uncertain but

bounded coefficient matrices. They provide an algorithm to minimize worst-case

residual error using second-order cone programming. Methods on how to mini-

mize upper bounds for the optimal value of the worst-case residual for different

perturbation vectors on data are developed.

El Ghaoui, Oustry and Lebret [10] consider semi-definite programs in which

data is uncertain due to bounded deterministic perturbations. They look for a ro-

bust solution that remains feasible for all data and that minimizes the worst-case

cost. Sufficient conditions for semi-definite programs to guarantee the existence

of robust solutions are mentioned. In addition conditions under which there ex-

ists a unique robust solution are searched in detail. Results are illustrated using

examples taken from linear programming, integer programming, etc.

Kouvelis and Yu [14] present a comprehensive study that includes detailed

information about the techniques used in discrete optimization concerning ro-

bustness as well as different references about the topic. Most of the results given

in the book correspond to scenario-based modeling of the uncertainty, which

consists of a finite number of scenarios that correspond to different realizations

from the uncertainty set. With scenario based-uncertainty, the authors show that

most solvable combinatorial optimization problems turn out to be NP-Hard when

robustness is considered.

In this thesis, we concentrate on a capacitated network design problem. The

considered model is the same as the one developed in [19]. Unlike [19] which
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considers both demand (i.e. righthand side) and cost(i.e. objective function

coefficient) uncertainty, we consider only demand uncertainty in our study. In

[19], the model is tested for the cases (i.e. uncertainty sets) in which ARC can

be solved efficiently. Therefore there exists no need for the application of AARC

approach. We show that for the uncertainty set considered in [19] for which the

ARC can be solved efficiently, AARC, RC and ARC approaches are all equivalent.

Next, in our main study, we consider an uncertainty set for which the ARC

model cannot be solved efficiently. Therefore we apply the AARC approach

introduced in [2] to our model in order to find an approximation to ARC. We

also solve the RC of the same problem and compare the results obtained from RC

and AARC against the results obtained by solving the model via nominal certain

data (i.e. estimates of the data). Results of a comprehensive simulation study

are also presented in the second part of the experimentation study. The concept

of AARC is also applied by Ordonez et al. to a similar problem in a recent study

([21]). In that study, only a single model is under consideration and the capacity

budget constraint is omitted. In addition the decision to give is whether to install

a pre-specified amount of capacity to an edge or not which is decided by the use

of binary variables. In other words, the decision maker is not allowed to install

any value to an edge. In our study there exist three different extensions of the

model and all of the extensions include a capacity budget constraint. In the first

extension, any value of capacity can be installed on any edge and there exist

no integrality restrictions. In the second extension, modular capacity concept is

introduced and links with a certain capacity can be installed on edges in integer

amounts. In the last extension, modular capacity approach is again used but this

time with fixed and variable capacity installation costs in the objective function.

As far as we know, this study is one of the rare works that concentrate on

the AARC approach developed recently. In addition, it is the first study that

compares a single stage robust solution (RC) with a double stage one (AARC) in

network design.



Chapter 4

Problem Formulation

In this thesis, we work on a robust capacity expansion-routing problem. Given a

network, we have a single source node, transshipment nodes and demand nodes.

The demand of the nodes is uncertain but known to belong to a well-defined

uncertainty set. We are given a capacity budget and we try to determine the best

allocation of the given capacity budget on the arcs of the network in order to

minimize the overall routing cost under the worst-case realization of the uncertain

demand. The problem is feasible for all the realizations of the uncertainty even if

we install no capacity on any of the arcs, that is to say, the initial capacity on the

arcs is enough to send flow to satisfy the demand of the nodes for any realization

of the demand coming from the uncertainty set. Therefore we use the additional

capacity on hand to improve (i.e. decrease) the routing cost for the worst-case

scenario.

In this chapter, notation used in the thesis will be introduced and formulations

of the different models used in the study will be presented. The chapter concludes

with a small example illustrating the generic formulations.

26
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4.1 Notation

In the formulations, G(N,E) represents the underlying network used. N repre-

sents the set of nodes and E represents the set of edges. Let A be the set of arcs

in the network where each edge corresponds to two arcs in opposite directions.

T represents the set of transshipment nodes, s is used to denote the source

node and D is used to represent the demand nodes where D = N \ (T ∪ {s}).

Positive Variables

• xij is the amount of flow on arc (i, j).

• yij is the amount of capacity installed on arc (i, j).

Parameters

• B is the budget (i.e. amount of additional capacity on hand that can be

installed on edges). Three different levels of budget (1000, 3000 and 10000;

tight, medium and loose) are used in the experimental design.

• uij is the initial capacity installed on arcs and it is the same for all the arcs

in a network. For each network, we fine-tune the initial capacity in order

not to make the network tightly or loosely capacitated.

• cij represents the deterministic routing cost on arc (i, j) ∈ A.

• bi represents the demand estimate (i.e. average demand) for node i. bi is

taken as uniformly distributed between 0 and 1000 for demand nodes and

it is equal to zero for transshipment nodes.

For the Extension 1,

• yij represents the number of links installed on arc (i, j) ∈ A and it is forced

to be an integer.
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• In both extensions, the capacity of the links that can be installed is taken

as a constant value of 20.

For the Extension 2,

• zij is a binary variable to determine whether capacity is installed on arc

(i, j) ∈ A or not.

• fij is the fixed capacity installation cost paid once and vij is the variable

capacity installation cost paid each time a link is installed on arc (i, j) ∈ A.

fij is taken as uniformly distributed between 0 and 1000 and vij as uniformly

distributed between 0 and 100 during the experimentation.

4.2 Uncertainty Set

The demand uncertainty set used in the experiments will be denoted as Ul and

it is formed as follows: First, a single source node is determined randomly. Af-

terwards, each node is classified as a demand node or a transshipment node. For

each demand node, we randomly determine a demand estimate (i.e. average de-

mand) represented by bi which is uniformly distributed between 0 and 1000. The

demand estimate for each transshipment node is set to 0. The estimate for each

demand node can vary ±α% where α is a parameter used to control the degree of

uncertainty in the problem. Therefore the realized demand (i.e. demand that will

be actually observed) represented by li can take values in the interval determined

by the parameter α (constraints 4.1). Three different levels of uncertainty (i.e.

α = 5%, 10% and 15%) are used in the experimental part.

Next we randomly couple two demand nodes and introduce the constraints

in the form 4.2 which imply that if an amount more than the estimate (i.e.

the average demand) is actually observed at one of the demand nodes, then the

observed demand at the other coupled node should be less than the estimate (i.e.

the demands of the coupling nodes are negatively correlated).
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(1− α) ∗ bi ≤ li ≤ (1 + α) ∗ bi ∀i ∈ D (4.1)

li + lj ≤ bi + bj ∀(i, j) ∈ C, i 6= j (4.2)

where C is defined as the set of the demand nodes whose demands are coupled

(i.e. pairs).

4.3 Formulation of the Main Model

In this section, the formulation of the main model used throughout the study as

well as the formulations of the two extensions will be presented. The main model

is formulated as:

Minimize
∑

(i,j)∈A

cij ∗ xij (4.3)

subject to:

∑

(s,j)∈A

xsj −
∑

(j,s)∈A

xjs ≥
∑

j 6=s

bj (4.4)

∑

(j,i)∈A

xji −
∑

(i,j)∈A

xij ≥ bi i ∈ N\{s} (4.5)

xij ≤ uij + yij (i, j) ∈ A (4.6)

∑

(i,j)∈A

yij ≤ B (4.7)
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xij ≥ 0 (4.8)

yij ≥ 0 (4.9)

Constraints 4.4 and 4.5 are the flow conservation constraints for the supply

node and the demand-transshipment nodes respectively. The net outflow from

the supply node should be at least as large as the sum of demands in the de-

mand nodes and the demand at each demand-transshipment node (recall that

the demand of the transshipment nodes is equal to 0) should be satisfied.

Constraints 4.6 are the capacity constraints. They express that the total flow

on each arc should be less than or equal to the sum of initial capacity on the arc

and the additional capacity loaded.

Constraint 4.7 is the budget constraint. It guarantees that the total additional

capacity loaded on the arcs is less than or equal to the available budget on hand.

Constraints 4.8 and 4.9 are the non-negativity constraints.

In the first extension, we use modular capacity approach. Rather than in-

stalling continuous amounts of capacity on the edges, we force the model to

install an integer amount of links with a fixed capacity per link which is equal to

20. We have a budget expressed in terms of number of links. For the formulation

of Extension 1, we change the constraints 4.7 with constraints 4.13. This time,

yij is an integer variable representing the number of links installed on arc (i,j).

Therefore the first extension is formulated as:

Minimize
∑

(i,j)∈A

cij ∗ xij (4.10)

subject to:
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∑

(s,j)∈A

xsj −
∑

(j,s)∈A

xjs ≥
∑

j 6=s

bj (4.11)

∑

(j,i)∈A

xji −
∑

(i,j)∈A

xij ≥ bi i ∈ N\{s} (4.12)

xij ≤ uij + 20 ∗ yij ∀(i, j) ∈ A (4.13)

∑

(i,j)∈A

yij ≤ B/20 (4.14)

xij ≥ 0 (4.15)

yij ≥ 0, integer (4.16)

In the second extension, we continue to use the modular capacity approach

developed in Extension 1. We introduce the binary variable zij which is used to

determine whether capacity is installed on an arc or not. In addition, we introduce

fixed and variable capacity installation costs into the objective function. In the

formulation, we add the terms fij ∗ zij and vij ∗ yij to the objective function (4.3)

and introduce the constraints 4.22 in addition to the ones in Extension 1 (recall

that B denotes the budget).

Constraints 4.22 simply express that additional capacity cannot be installed

on any arc without setting the binary variable corresponding to that arc equal to

1 (i.e. without paying the fixed capacity installation cost).

Therefore the second extension is formulated as:

Minimize
∑

(i,j)∈A

(cij ∗ xij + fij ∗ zij + vij ∗ yij) (4.17)
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subject to:

∑

j∈N

xsj −
∑

j∈N

xjs ≥
∑

j 6=s

bj (4.18)

∑

(j,i)∈A

xji −
∑

(i,j)∈A

xij ≥ bi i ∈ N\{s} (4.19)

xij ≤ uij + 20 ∗ yij ∀(i, j) ∈ A (4.20)

∑

(i,j)∈A

yij ≤ B/20 (4.21)

yij ≤ B ∗ zij ∀(i, j) ∈ A (4.22)

xij ≥ 0 (4.23)

yij ≥ 0, integer (4.24)

zij ∈ {0, 1} (4.25)

4.4 Formulation of the RC Model

In order to formulate the RC problem, we set the actual demand values of every

demand node to their upper bounds in the uncertainty set (i.e. (1 + α) ∗ bi) and

route the corresponding amounts of flows to those nodes. By putting all uncertain

demand values to their upper bounds, we guarantee the feasibility of the optimal
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solution for every value coming from the uncertainty set. After this we try to

find the optimal allocation of the capacity budget to the edges and the optimal

routing in order to minimize the total routing cost.

To sum up, the used RC formulation is the same as the formulation of the

main model (i.e. (4.3)-(4.9)) with the exception that the bi values appearing

on the right hand sides of the constraints (4.4) and (4.5) are set to their upper

bounds which are ((1 + α) ∗ bi).

Note that the coupling constraints in the uncertainty set are ignored in the

RC formulation.

4.5 Formulation of the ARC Model

In this part we will make use of the ARC formulation given by Ordonez and

Zhao in [19]. In [19], they show that the ARC model (2.4) can equivalently be

represented as a min-max-min model.

In the corresponding model, we try to minimize the worst case cost which cor-

responds to the max-min part of the formulation. The mentioned representation

applied to our model is as follows (note that e is a |A| ∗ 1 matrix with all the

entries equal to 1):

Min φ(y) (4.26)

s.t.

ety ≤ B (4.27)

y ≥ 0 (4.28)

where φ(y) is defined as
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φ(y) = Max π(l) (4.29)

s.t.

l ∈ Ul (4.30)

where π(l) is defined as

π(l) = Min ctx (4.31)

s.t.

Ax ≥ l (4.32)

x ≤ (u + y) (4.33)

x ≥ 0 (4.34)

Innermost minimization problem (denoted π(l)) is the original formulation

with the adjustable variables (i.e. flow variables) and the constraints involving

them. In the outer part, we maximize the objective with respect to the uncertain

parameter (i.e. demand) and represent the result as the worst-case cost denoted as

φ(y). In other words maximizing π(l) over the uncertain parameter (i.e. demand)

is equivalent to finding the worst-case demand realization which will result in the

maximum cost in terms of objective function value. The outermost minimization

is over the non-adjustable variables (i.e. additional capacity to be installed). By

minimizing φ(y), we try to find the best allocation of the capacity budget to the

edges of the network so that the worst-case cost (i.e. the cost that will be realized

as the result of the worst-case demand realization) is minimized. To sum up, it

can be said that the overall objective of the ARC problem is to minimize φ(y)

(i.e. minimize worst-case cost).
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4.6 Two Cases in Which ARC, RC and AARC

are Equivalent

In this section, we will investigate two uncertainty sets and show that the RC,

ARC and AARC formulations are all equivalent for the model considered in the

thesis. The first uncertainty set is the same as the one defined in section 4.2 but

this time we do not have the coupling constraints (i.e. only the upper and lower

bounds for the uncertain demand). The second uncertainty set is the one used in

[19] by Ordonez and Zhao in order to model demand uncertainty.

4.6.1 Case 1

In this section the uncertainty set used is the same as the one defined in Section

4.2 except the constraints 4.2. In other words each demand has upper and lower

bounds but there exist no coupling between demands of the different nodes.

Before moving on, we need to mention the following fact:

zARC ≤ zAARC ≤ zRC

It is clear that the objective value of the AARC will be greater than or equal

to that of ARC since AARC is an approximation to ARC. In ARC we are not

restricted about how to adjust the variables but in AARC adjustable variables

are forced to be affine functions of the uncertain parameters. Therefore the ARC

formulation has a larger feasible set which corresponds to a better objective value.

On the other hand the objective value of the RC will be greater than or equal to

that of AARC, since the RC approach is the most conservative among all and no

adjustable variables are assumed in RC.

Proposition 1 For the uncertainty set defined as above, RC, ARC and AARC

formulations result in the same objective value when applied to our model.

Proof: Consider the formulation of ARC given in Section 4.5. First we need
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to show that the problem Maxl(π(l)) can be solved by setting all demand values

(i.e.
−→
l ) to their upper bounds (set li = (1 + α) ∗ bi ∀i ∈ D). The claim is

true since we have a network in which all routing costs are positive. Therefore as

we increase the demand on any node, this will add to our cost. Setting demand

values to the upper bounds for every demand node gives us the maximum cost.

It should be noted that this argument does not work when we add the coupling

constraints to our uncertainty set (i.e. constraints 4.2). The reason is that when

we add the coupling constraints, we cannot set, at the same time, both of the

demand values of the two paired nodes to their upper bounds. Because if we

set the demand of one of the nodes at a value more than its estimate, then the

coupling constraint forces us to set the demand value of the other paired node at

a value less than its estimate. Therefore we cannot easily determine the demand

values (i.e.
−→
l ) that will maximize π(l).

Having set the demand values to their upper bounds, we eliminate the max-

imization problem in between the minimizations (i.e. Maxl(π(l)) and combine

the remaining minimization problems. We are left with the following problem

Min ctx (4.35)

s.t.

ety ≤ B (4.36)

Ax ≥ (1 + α) ∗ b (4.37)

x ≤ u + y (4.38)

x, y ≥ 0 (4.39)

This formulation is the same as the formulation of the RC problem mentioned

in Section 4.4. Therefore we have shown that RC and ARC formulations are
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equivalent for our model for the considered uncertainty set which implies that

zRC is equal to zARC . Since we know that zAARC is in between them, we conclude

that zRC = zARC = zAARC for the considered uncertainty set.

4.6.2 Case 2

In this part, we use the uncertainty set definition given in [19]. The uncertainty

set is given by

Ul = {l|l = b + δ ∗ ei, δ ∈ [0, δ̄]} (4.40)

where ei is the ith unit vector and i ∈ D. We have bi > 0 for i ∈ D and

bi = 0 for i ∈ T .

The definition of the uncertainty set implies that there exists uncertainty

in the demand estimate (average demand) of only one of the nodes (i.e. node

i). There exists no problem with the supply, since the supply node can supply

any amount desired. Since δ is a positive parameter, the actual demand of the

uncertain node (node i) cannot be less than the estimate and it can at most be

equal to bi + δ̄.

Proposition 2 For the uncertainty set defined as above, RC, ARC and AARC

formulations result in the same objective value when applied to our model.

Proof: With the same logic in Case 1, we eliminate the maximization problem

(Maxlπ(l)) in between the minimizations by setting li = bi + δ̄. In other words,

we set δ = δ̄ and therefore set the demand at the uncertain node to its maximum

possible value. The problem at hand after eliminating the maximization inside

and combining the inner and outer minimizations is as follows:

Min ctx (4.41)
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s.t.

ety ≤ B (4.42)

Ax ≥ b + δ̄ ∗ ei (4.43)

x ≤ u + y (4.44)

x, y ≥ 0 (4.45)

This formulation is again equivalent to the RC formulation that can be ob-

tained by setting all demand values to their upper limits in the main formulation.

Therefore we can say that zRC is equal to zARC . Since we know that zAARC is

in between them, we conclude that zRC = zARC = zAARC for the considered

uncertainty set.

4.6.3 The Considered Case and the Need for the AARC

Approximation

The uncertainty set considered throughout the thesis study is described in Section

4.2. Unfortunately, with the described uncertainty set, we cannot easily solve the

maximization problem in between the two minimizations (Maxlπ(l)) by simply

setting all demand values (i.e.
−→
l ) to their upper bounds (set li = (1+α)∗ bi ∀i ∈

D) and consequently we cannot combine the two minimization problems into a

single one. The reason is the coupling constraints as mentioned before in Section

4.6.1. Therefore for the uncertainty set considered in the thesis, the formulations

of RC, ARC and AARC are not equivalent which implies that the ARC problem

is not easily solvable as in Cases 1 and 2 mentioned above.

One other approach to solve the ARC problem (see the formulation in Section
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4.5) is to take dual of the innermost minimization problem (i.e. π(l)) and com-

bine it with the outer maximization problem into a single maximization problem.

When we do this, we face a non-linear, non-convex optimization problem. There-

fore, we cannot continue with the same strategy (i.e. take dual of this problem

and combine it with the outermost minimization problem in order to obtain a

single minimization problem).

It can be seen that there exists no way to solve the ARC problem easily with

the considered uncertainty set. Therefore we need a computationally tractable

approximation to the ARC problem. This need is answered by the AARC ap-

proach.

The AARC approach simply takes all the constraints of the main formulation

given in Section 4.3 one by one and makes sure that each constraint is satisfied for

all the realizations that can come out of the uncertainty set (i.e. each constraint

is satisfied for the worst-case).

As a small example, let a constraint of the main formulation be a1 ∗ x1 + a2 ∗
x2 − l1 ≥ 0. In AARC approach, we first change the flow variables x1 and x2

by affine functions of the uncertain parameters
−→
l . Let x1 be converted to x1(l)

and x2 be converted to x2(l). The logic is as follows, if we can guarantee that,

the minimum of a1 ∗ x1(l) + a2 ∗ x2(l)− l1 over the uncertainty set, Ul, is greater

than or equal to 0, then this constraint is satisfied for all the realizations of the

uncertain parameters. This is provided by the use of a procedure that consists

of forming an LP for each constraint, taking the dual of it and generating the

constraints of the AARC formulation. The details of this procedure is the topic

of the next section.

4.7 Formulation of the AARC Model

We start this section with the explanation of the steps that are applied to obtain

the AARC formulation from the main model. The notation used for the AARC

is different than that of the RC and ARC, therefore some new notation will be
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introduced after summarizing the steps to obtain the AARC model. We conclude

this section with the formulation of the AARC model.

4.7.1 Steps to Develop the AARC Model

The key idea in the AARC formulation is to express the adjustable variables (i.e.

arc flow variables) as affine functions of the uncertain parameters (i.e. demand).

In AARC formulation, we let

x(a) =
∑

i∈D

p(i, a) ∗ li + co(a) ∀a ∈ A (4.46)

where p(i, a) is the coefficient of demand i in arc a flow and co(a) is the

constant term in arc a flow.

Therefore, we change the flow variable on arc a, namely x(a), by an affine

function of the uncertain parameter that is actual demand represented by the

vector
−→
l .

AARC formulation is obtained by using a dualization procedure for each con-

straint in the main formulation as well as the objective function (Section 4.3).

The procedure to develop the AARC model is as follows:

For the constraints of the main formulation,

• Take a constraint from the original formulation

• Consider this constraint as the objective function of a model (i.e. if the

constraint is in the form a1 ∗x1 + a2 ∗x2 ≥ b1 then the objective function is

a1 ∗ x1 + a2 ∗ x2− b1) and all the constraints in the uncertainty set (related

to actual demand values) as the constraints of a model

– If the original constraint is in the form of ≥ then the objective is

minimization
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– If the original constraint is in the form of ≤ then the objective is

maximization

• Replace the original adjustable variables in the objective (i.e. flow variables,
−→x ) by the corresponding affine combinations of the uncertain parameters

(i.e. actual demand,
−→
l ). In other words set x = pl + co

• Consider all the demand values (
−→
l ) as variables and non-adjustable vari-

ables (−→y ) as constants. Note that adjustable variables (−→x ) are expressed

in terms of uncertain demand so we only have non-adjustable variables (−→y )

and actual demand variables (
−→
l ) in the formulation.

• Take the dual of the resulting model.

• Add all the constraints as well as the objective function of the obtained

dual as constraints to the AARC model

– if the constraint taken from the original formulation is in the form of

≥, add the objective function as a ≥ constraint (i.e. if the objective

function of the dual is in the form r1 ∗m1 + r2 ∗m2 + co1, then add a

constraint in the form r1 ∗m1 + r2 ∗m2 + co1 ≥ 0 to the AARC model)

– Else add the objective function as a ≤ constraint

For the objective function of the AARC, repeat the procedures above by taking

the objective function of the main formulation. The resulting objective function

of the obtained dual is the objective function of the AARC formulation and the

constraints of the dual are added to the constraints of the AARC.

4.7.2 Notation of the AARC Model

The notation used in the AARC formulation including the variables, matrices,

etc. is summarized below.

• I : node-arc incidence matrix representing our network G
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• R: right hand side matrix of the uncertainty set

• L: constraint matrix of the uncertainty set

• c(a): arc flow cost

Before going on, we want to give detailed information about the I, R and L

matrices. I is an |N | ∗ |A| matrix defined as:

I(i,a)=





1, if arc a has its head in node i;

−1, if arc a has its tail in node i ;

0, otherwise.

Let |K| be the size of the uncertainty set (i.e. number of constraints in the

uncertainty set) which is equal to 2∗|D|+ |C| where D is the set of demand nodes

and C is the set of the demand nodes whose demands are coupled (i.e.pairs).

Let W = {i1, i2, i3, . . . , i|D|} be the ordered set of demand nodes (the set

of the nodes that are neither source nor transshipment nodes ordered in the

increasing order of node number) and let C = {c1, c2, c3, . . . , c|C|} be the set of

the pairs where C ⊂ W ∗W . R is a |K| ∗ 1 matrix defined as:

R(k)=





(1 + α) ∗ bio , if k ≤ 2|K|, k is odd;

−(1− α) ∗ bio , if k ≤ 2|K|, k is even;

bi + bj : (i, j) ∈ Ck−2|K|, k > 2|K|;

where o = dk
2
e

Finally, L is a |K| ∗ |N | matrix defined as:

L(k,n)=





1, if k ≤ 2|K|, k is odd and n = io;

−1, if k ≤ 2|K|, k is even and n = io;

1, if k > 2|K| and n ∈ ck−2|K|;

0, otherwise.

Positive Variables

• r(i,k): dual variable of ith node kth uncertainty constraint (flow conservation
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constraints)

• t(a,k): dual variable of ath arc kth uncertainty constraint (capacity limit

constraint)

• y(a): capacity installed on arc a

• m(k): objective function dual variables

• v(a,k): dual variable of ath arc kth uncertainty constraint (constraints added

in order to guarantee positive flow)

Variables

• p(i,a): demand i arc a coefficient (coefficient of demand i in arc a flow)

• co(a): constant term in arc a flow

4.7.3 The formulation of the AARC Model

The formulation of the AARC model is as follows:

Min− (
|K|∑

k=1

R(k) ∗m(k) +
|A|∑

a=1

c(a) ∗ co(a)) (4.47)

subject to

|K|∑

k=1

R(k) ∗ r(i, k) +
|A|∑

a=1

I(i, a) ∗ co(a) ≥ 0 ∀i ∈ N, i 6= s (4.48)

|K|∑

k=1

R(k) ∗ r(i, k)−
|A|∑

a=1

I(i, a) ∗ co(a) ≥ 0 for i = s (4.49)

|K|∑

k=1

r(i, k) ∗ L(k, j) ≤ ∑

a:I(i,a)6=0

−p(j, a) ∗ I(i, a)− 1 i = s, j ∈ D (4.50)
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|K|∑

k=1

r(i, k) ∗ L(k, j) ≤ ∑

a:I(i,a)6=0

p(j, a) ∗ I(i, a)− 1 i = j 6= s, j ∈ D (4.51)

|K|∑

k=1

r(i, k) ∗ L(k, j) ≤ ∑

a:I(i,a)6=0

p(j, a) ∗ I(i, a) i 6= s, i 6= j, i ∈ N, j ∈ D (4.52)

−
|K|∑

k=1

R(k) ∗ t(a, k) + co(a) ≤ u(a) + y(a) ∀a ∈ A (4.53)

−
|K|∑

k=1

t(a, k) ∗ L(k, j) ≥ p(j, a) a ∈ A, j ∈ D (4.54)

−
|K|∑

k=1

L(k, j) ∗m(k) ≥
|A|∑

a=1

c(a) ∗ p(j, a) ∀j ∈ D (4.55)

|A|∑

a=1

y(a) ≤ B (4.56)

|K|∑

k=1

v(a, k) ∗ L(k, j) ≤ p(j, a) a ∈ A, j ∈ D (4.57)

|K|∑

k=1

R(k) ∗ v(a, k) + co(a) ≥ 0 ∀a ∈ A (4.58)

r(i, k) ≥ 0 (4.59)

t(a, k) ≥ 0 (4.60)
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v(a, k) ≥ 0 (4.61)

m(k) ≥ 0 (4.62)

y(a) ≥ 0 (4.63)

In the above formulation, constraint 4.56 is the capacity budget constraint. All

the constraints other than the constraint 4.56 are obtained through the procedure

described in Section 4.7.1 (recall that the capacity budget constraint is over the

non-adjustable variables and we can use it as it is in the AARC formulation). Each

constraint as well as the objective function of the main formulation is processed

one by one using the described procedure and the AARC formulation presented

above is obtained.

4.8 Illustration with an Example

In this section, the approaches of RC and AARC will be illustrated using a small

network example. Consider the network given by Figure 4.1 and described by the

node-arc incidence matrix (I) in Table 4.1.

Nodes/Arcs 1 2 3 4 5 6 7
1 -1 1 0 -1 0 0 0
2 1 0 -1 0 0 0 1
3 0 -1 1 0 -1 0 0
4 0 0 0 1 1 -1 0
5 0 0 0 0 0 1 -1

Table 4.1: Node-Arc Incidence Matrix

The arcs are numbered as shown in Table 4.1. The source node is 3 and

the demand nodes are 1, 2 and 4. Node 5 acts as a transshipment node. The
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Figure 4.1: Network Used in the Illustration

uncertainty level α is taken as 10% and the paired demand nodes are (1, 4) and

(2, 4). We have a capacity budget of B = 2000 and an initial arc capacity of

u = 1025 units for every arc. Table 4.2 gives the demand estimates (average

demands) (bi) as well as upper and lower bounds for the nodes and Table 4.3

gives the routing costs for the arcs.

Node Demand Estimate Lower Bound Upper Bound
1 686 618 754
2 259 234 284

3(source) - - -
4 891 802 980

5(transshipment) - - -

Table 4.2: Demand Estimates

The ordered set of demand nodes W and the set of demand pairs C are given

by:

W = {1, 2, 4} and C = {(1, 4), (2, 4)}

For this example, the R (right hand side matrix of the uncertainty set) and L

(constraint matrix of the uncertainty set) matrices are as follows:
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Rt =
(

754 −686 284 −259 980 −891 1420 1036
)

L =




1 0 0 0 0

−1 0 0 0 0

0 1 0 0 0

0 −1 0 0 0

0 0 0 1 0

0 0 0 −1 0

1 0 0 1 0

0 1 0 1 0




Arc(a) 1 2 3 4 5 6 7
Routing Cost(c(a)) 100 100 190 60 90 100 100

Table 4.3: Routing Costs

At this stage, we will illustrate how to form the constraints used in the AARC

model from the constraints in the main formulation. The flow conservation con-

straint for the node 1 in the main formulation is as follows:

x31 − x14 − x12 ≥ l1 (4.64)

Now we apply the steps given in subsection 4.6.1 to obtain the AARC formu-

lation constraints.

• Take a constraint from the original formulation

x31 − x14 − x12 ≥ l1

• Consider this constraint as the objective function of a model and all the

constraints in the uncertainty set (related to actual demand values) as the

constraints of a model
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– If the original constraint is in the form of ≥ then the objective is

minimization

– If the original constraint is in the form of ≤ then the objective is

maximization

Min (x31 − x14 − x12 − l1) (4.65)

s.t.

l1 ≤ 754 (4.66)

−l1 ≤ −686 (4.67)

l2 ≤ 284 (4.68)

−l2 ≤ −259 (4.69)

l4 ≤ 980 (4.70)

−l4 ≤ −891 (4.71)

l1 + l4 ≤ 1420 (4.72)

l2 + l4 ≤ 1036 (4.73)

• Replace the original adjustable variables in the objective (i.e. flow

variables=−→x ) by the corresponding affine combinations of the uncertain

parameters (i.e. actual demand=
−→
l ).

x31 = x2 = p(1, 2) ∗ l1 + p(2, 2) ∗ l2 + p(4, 2) ∗ l4 + co(2)

x14 = x4 = p(1, 4) ∗ l1 + p(2, 4) ∗ l2 + p(4, 4) ∗ l4 + co(4)

x12 = x1 = p(1, 1) ∗ l1 + p(2, 1) ∗ l2 + p(4, 1) ∗ l4 + co(1)
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• Consider all the demand values (
−→
l ) as variables and non-adjustable vari-

ables (−→y ) as constants. Note that adjustable variables (−→x ) are expressed

in terms of uncertain demand so we only have non-adjustable variables (−→y )

and actual demand variables (
−→
l ) in the formulation.

Min (l1 ∗ (p(1, 2)− p(1, 4)− p(1, 1)− 1) + l2 ∗ (p(2, 2)− p(2, 4)− p(2, 1)) +

l4 ∗ (p(4, 2)− p(4, 4)− p(4, 1)) + co(2)− co(4)− co(1))

s.t.

l1 ≤ 754 (4.74)

−l1 ≤ −686 (4.75)

l2 ≤ 284 (4.76)

−l2 ≤ −259 (4.77)

l4 ≤ 980 (4.78)

−l4 ≤ −891 (4.79)

l1 + l4 ≤ 1420 (4.80)

l2 + l4 ≤ 1036 (4.81)

• Take the dual of the resulting model.

Max (−754 ∗ r(1, 1) + 686 ∗ r(1, 2) − 284 ∗ r(1, 3) + 259 ∗ r(1, 4) − 980 ∗
r(1, 5)+891∗r(1, 6)−1420∗r(1, 7)+−1036∗r(1, 8)+co(2)−co(4)−co(1))

s.t.

−r(1, 1) + r(1, 2)− r(1, 7) ≤ p(1, 2)− p(1, 4)− p(1, 1)− 1 (4.82)
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−r(1, 3) + r(1, 4)− r(1, 8) ≤ p(2, 2)− p(2, 4)− p(2, 1) (4.83)

−r(1, 5) + r(1, 6)− r(1, 7)− r(1, 8) ≤ p(4, 2)− p(4, 4)− p(4, 1) (4.84)

• Add all the constraints as well as the objective function of the obtained

dual as constraints to the AARC model

– if the constraint taken from the original formulation is in the form of

≥, add the objective function as a ≥ constraint

– Else add the objective function as a ≤ constraint

Finally, add to the AARC model the following constraints:

−754 ∗ r(1, 1) + 686 ∗ r(1, 2)− 284 ∗ r(1, 3) + 259 ∗ r(1, 4)− 980 ∗ r(1, 5) +

891 ∗ r(1, 6)− 1420 ∗ r(1, 7)− 1036 ∗ r(1, 8) + co(2)− co(4)− co(1) ≥ 0

−r(1, 1) + r(1, 2)− r(1, 7) ≤ p(1, 2)− p(1, 4)− p(1, 1)− 1 (4.85)

−r(1, 3) + r(1, 4)− r(1, 8) ≤ p(2, 2)− p(2, 4)− p(2, 1) (4.86)

−r(1, 5) + r(1, 6)− r(1, 7)− r(1, 8) ≤ p(4, 2)− p(4, 4)− p(4, 1) (4.87)

When we solve the AARC model for this problem, we install 13 units of

capacity to arc number 2 and 1987 units of capacity to arc number 3. The

objective of the AARC model is 206.270 and this value is the maximum cost

that can be paid for any realization of the uncertain demand if AARC model is

used. In addition, it is an upper bound for the ARC model since AARC is an

approximation to ARC. The optimal values of the coefficients of the uncertain

demand parameters as well as the constant term that are used to find arc flow

values are given in Table 4.4.
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p(1,2) 1
p(2,2) 1
p(2,1) 1
p(4,5) 1
co(i) All 0

Table 4.4: Optimal Values of the Coefficients

Having solved the AARC problem, we can find the flows on every arc for any

given demand vector from the uncertainty set. As an example, let l1 be 677, l2 be

259 and l4 be 891. The routing on the arcs for this demand realization is given

in Table 4.5.

As an example the flow on arc 2 is calculated as:

x(2) =
∑

i∈D

p(i, 2) ∗ li + co(2) = p(1, 2) ∗ 677 + p(2, 2) ∗ 259 = 936 (4.88)

The RC for this problem is solved by setting all the demand values li =

(1 + α) ∗ bi. In other words setting

l1 = (1 + 0, 1) ∗ 686 = 754

l2 = (1 + 0, 1) ∗ 259 = 284

l4 = (1 + 0, 1) ∗ 891 = 980

and solving the main model for this data.

When we solve the RC model for this problem, we install 13 units of capacity

to arc number 2 and 1987 units of capacity to arc number 7. The routing offered

by the RC formulation is the same for any demand realization coming from the

predefined uncertainty set. The mentioned routing is given in Table 4.5.

As seen in Table 4.5, the AARC approach is much cheaper than the RC

approach. The reason is that under RC approach we do not wait for the realization

of the uncertain demand. We set the demand value at each demand node to its

upper bound and send flows at corresponding amounts. Therefore, we send flow
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Arc Number Flow with AARC Flow with RC
1 259 284
2 936 1038
3 0 0
4 0 0
5 891 980
6 0 0
7 0 0

Total Routing Cost 199.690 220.400

Table 4.5: Routings with AARC and ARC

more than the realized demand to each demand node which results in high routing

cost. On the other hand, under AARC approach, we solve the AARC model to

find the optimal coefficients for the given uncertainty set. Afterwards, we wait till

the realization of the uncertain demand and send flows at exactly the demanded

amounts to the demand nodes after realizing the uncertain demand.

In Chapter 5, detailed experimental study comparing the performances of RC

and AARC will be presented.



Chapter 5

Experimental Results

5.1 Test Problems

In order to test the models developed in the thesis, 13 different networks are used

in the experimental design. The properties of the networks are summarized in

Table 5.1.

Network Name Network Number Number of Nodes Number of Edges
arpa2 1 21 26
bhvbc 2 14 18
nsf2 3 14 22

bhv1c 4 14 19
bhvac 5 19 23
bhvcc 6 27 39
eon 7 19 37

metro 8 11 42
njlata 9 11 23

arpanet 10 24 50
atlanta 11 15 22

new york 12 16 49
norway 13 27 51

Table 5.1: Properties of the Networks

bhv problems are instances of a multicommodity flow problem studied in [7];

53
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arpa2, arpanet, eon, nsf, njlata and metro are topologies of well-known

backbone networks studied in [20] ;

atlanta, new york and norway are network topologies known as Gunluk

instances studied in [21].

5.2 Experiment 1

In this experiment, we generate 5 different problem instances for each network

topology. For each instance, a single source node and multiple demand nodes

are determined randomly. The nodes that are neither source nor demand nodes

are used as transshipment nodes. The demand estimates (i.e. average demands)

at each demand node is uniformly distributed between 0 and 1000. There exist

box uncertainties of 5, 10 or 15% for the demand estimates of each node. The

estimate of demand for each demand node can vary upwards or downwards a

constant percentage of the estimate. In addition, the nodes are coupled randomly

for each instance. If two nodes are coupled than a constraint is added to the

uncertainty set related to these nodes. The sum of the actual demand values at

these nodes should be less than or equal to the sum of the estimates of the demand

for the corresponding nodes. Three different capacity budget values (1000=(low),

3000=(medium) and (10000=high)) are used in order to evaluate the effects of

the capacity budget.

In this experiment the results (i.e. optimal values obtained) mean the follow-

ing:

The optimal value of the AARC formulation: In fact the optimal value is the

worst-case cost (the maximum value that can be attained via AARC) of the

AARC approach for the corresponding uncertainty set. In addition, it is an

upper bound for the ARC optimum solution since AARC is an approximation to

ARC.

The optimal value of the RC formulation: It is the optimal value of the most
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conservative approach. On the other hand it is easier to formulate and solve when

compared to AARC.

The optimal value of the formulation obtained via estimates: It gives us the

optimal solution if we use the estimates of the demand (i.e. average demand

values) as deterministic values and solve the corresponding deterministic problem.

When we compare the optimal solutions of the AARC and formulation with

the estimates (call it EF), the difference between the objective values give us

the cost of applying AARC and accounting for uncertainty (the cost paid for

robustness). If we ignore uncertainty and use estimates of data and send flow

according to these estimates, we pay less than the AARC but we are not protected

against the uncertainty. The same comments are also true for the RC approach.

Using RC approach, again we are protected against uncertainty but we have

to pay more than the solution obtained via estimates. One important point to

mention here is that the RC approach is far more conservative than the AARC

approach and we pay more than the AARC approach as it can be seen from the

numerical results.

For the RC approach and the solution obtained via estimates of the demand

(EF), we do not have to wait till the realization of the uncertain demand in or-

der to determine the routing. We set the demand values to their estimates (EF

approach) or to their upper bounds (RC approach) and find the corresponding

optimal routing and capacity allocation. On the other hand, for the AARC solu-

tion, we determine the capacity allocation before the realization of the demand

but we have to wait till the realization of the uncertainty in order to find the rout-

ing. Solving AARC gives us a tool (optimal coefficients of the affine dependency)

to calculate routing values and as soon as we realize the uncertain demand, we

are able to find the routing offered by the AARC solution.

In Tables 5.2, 5.3 and 5.7, results of the numerical study are presented for the

main model (continuous variables), extension 1 (modular capacity) and extension

2 (modular capacity with fixed and variable capacity installation costs). The

results presented are the averages computed over the 13 network topologies used

in the experiment with 5 instances for each network topology. The results in the
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tables are normalized in the sense that the average RC optimal value is set to

100 for each combination of the uncertainty value and capacity budget and the

average optimal values of AARC and EF are presented with regard to that of

RC.

The terms RC, AFF and CER give the normalized average optimal values of

the RC, AARC and EF in the same order. The terms PLR and PLA are percent

losses of the RC and AARC over the optimal objective value of EF (they show

us by how much the objectives of RC and AARC differ than that of EF as a

percentage of objective value of EF). The term URV shows by how many times

the percent losses of the RC and AARC increase when uncertainty is increased

from 5% to 15%. Therefore, it can be said that the smaller the value of URV, the

less uncertainty affects the percent loss of the formulation considered. Similar to

URV, the term CRV shows by how many times the percent losses of the RC and

AARC increase when capacity is decreased from 10000 to 1000. Therefore, it can

be said that the smaller the value of CRV, the less decrease in capacity budget

affects the percent loss of the formulation considered.

As it can be seen from Tables 5.2, 5.3 and 5.7, AARC gives solutions better

than the RC for every uncertainty value considered as expected. As the uncer-

tainty in demand increases, the advantage of the AARC solution over the RC

increases.

Another observation is that the CRV value (last two rows of the Tables 5.2,

5.3 and 5.7) of the AARC is smaller than that of RC for any uncertainty value

considered. This observation is true for all of the three models considered. This

means that the percent loss of the RC model grows faster than the AARC model.

Therefore, it can be said that, with a fixed uncertainty level, the relative perfor-

mance of the AARC with respect to the RC increases as the capacity budget is

tightened. It can also be said that the AARC is more stable in terms of loss in

the objective value with respect to RC against the changes in the capacity budget

.

From Table 5.2, we see that the URV values (the last column) of the AARC

formulation are smaller then those of RC which can be commented as follows:
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High Capacity 5% 10% 15% URV
RC 100 100 100 -
AFF 96.52 93.16 90.09 -
CER 95.34 91.00 87.04 -
PLR 4.89 9.89 14.89 3.05
PLA 1.23 2.37 3.51 2.84

Medium Capacity 5% 10% 15% URV
RC 100 100 100 -
AFF 96.46 93.03 89.70 -
CER 95.27 90.87 86.64 -
PLR 4.96 10.05 15.43 3.11
PLA 1.25 2.39 3.54 2.84

Low Capacity 5% 10% 15% URV
RC 100 100 100 -
AFF 96.27 92.28 89.05 -
CER 95.08 89.98 85.94 -
PLR 5.17 11.14 16.36 3.16
PLA 1.25 2.56 3.61 2.89

CRV(AARC) 1.00 1.08 1.03 -
CRV(RC) 1.06 1.13 1.10 -

Table 5.2: Results-Main Model
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With a fixed capacity budget, the relative performance of the AARC with respect

to the RC increases as the uncertainty in the demand is increased. However

the same is not true for every capacity budget value for the modular capacity

case (see the last column of Table 5.3). One interesting result is that, when

we introduce fixed and variable capacity installation costs into the model with

modular capacity, the mentioned result starts to hold for every budget option

(the last column of Table 5.7).

High Capacity 5% 10% 15% URV
RC 100 100 100 -
AFF 96.34 92.90 89.79 -
CER 95.26 90.82 86.79 -
PLR 4.97 10.11 15.23 3.06
PLA 1.13 2.30 3.46 3.07

Medium Capacity 5% 10% 15% URV
RC 100 100 100 -
AFF 96.18 92.64 89.42 -
CER 95.09 90.53 86.39 -
PLR 5.16 10.46 15.75 3.05
PLA 1.15 2.32 3.50 3.05

Low Capacity 5% 10% 15% URV
RC 100 100 100 -
AFF 95.58 91.33 87.45 -
CER 94.40 89.07 84.21 -
PLR 5.93 12.27 18.76 3.16
PLA 1.25 2.53 3.85 3.08

CRV(AARC) 1.11 1.10 1.11 -
CRV(RC) 1.19 1.21 1.23 -

Table 5.3: Results-Extension 1

When we compare the main model with the extension 1 (i.e. Table 5.2 with

Table 5.3), we observe the following results due to the change from continuous

capacity assumption to the modular capacity approach:

1. The average (over capacity budgets) percent loss (with respect to the opti-

mal solution obtained via estimates=EF) of the RC formulation increases

for every uncertainty level when integer modular capacity is used. On the
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other hand we see decreases in the loss of AARC formulation for the un-

certainty levels of 5% and 10% uncertainty levels and an increase for the

15% uncertainty level. Table 5.4 summarizes the percent losses of RC and

AARC against EF calculated as the average of the PLR rows among differ-

ent capacity budgets for a fixed uncertainty level.

Case/Unc. Level 5% 10% 15%
RC-Main Model 5.01 10.36 15.56
RC-Extension 1 5.35 10.95 16.58

AARC-Main Model 1.24 2.44 3.55
AARC-Extension 1 1.18 2.38 3.60

Table 5.4: Percent Losses of RC and AARC with Main Model and Extension 1

2. For the tightest capacity budget, AARC is more stable against changes in

the uncertainty level (in terms of change in the percent loss with respect to

EF) when compared with RC. When uncertainty level is increased from 5%

to 15%, the RC percent loss increases 3.16 times while the corresponding

number for AARC is 3.08. However, the same comment is not true for the

medium and loose capacity budgets (see the last column of Table 5.3).

3. For both continuous and integer capacity variables, it can be concluded

that AARC is more stable when compared with RC against changes in the

capacity budget (in terms of change in the percent loss with respect to the

certain optimal solution). Table 5.5 shows how many times the percent

loss increases when capacity is decreased from 10000 to 1000 (i.e. the CRV

values) for EF and Extension 1 formulations.

Case/Unc. Level 5% 10% 15%
RC-Main Model 1.06 1.13 1.10

AARC-Main Model 1.00 1.08 1.03
RC-Extension 1 1.19 1.21 1.23

AARC-Extension 1 1.11 1.10 1.11

Table 5.5: Increase in Percent Losses of RC and AARC with Main Model and
Extension 1
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4. We see an improvement in the relative percent improvement of the AARC

against RC when integer modular capacity is used. Table 5.6 summarizes

the average percent improvement of the AARC formulation against RC

calculated over different capacity budget options for fixed uncertainty levels.

Case/Unc. Level 5% 10% 15%
Main Model 3.98 7.90 11.40
Extension 1 4.33 8.40 12.11

Table 5.6: Relative Percent Improvement of the AARC against RC

High Capacity 5% 10% 15% URV
RC 100 100 100 -
AFF 96.48 93.08 89.97 -
CER 95.29 90.69 86.89 -
PLR 4.95 10.27 15.08 3.05
PLA 1.25 2.64 3.54 2.82

Medium Capacity 5% 10% 15% URV
RC 100 100 100 -
AFF 96.45 93.00 89.87 -
CER 95.25 90.61 86.78 -
PLR 4.98 10.37 15.23 3.06
PLA 1.25 2.65 3.56 2.84

Low Capacity 5% 10% 15% URV
RC 100 100 100 -
AFF 96.28 92.52 89.07 -
CER 95.08 90.11 85.97 -
PLR 5.17 10.97 16.32 3.16
PLA 1.26 2.67 3.61 2.87

CRV(AARC) 1.00 1.01 1.02 -
CRV(RC) 1.05 1.07 1.08 -

Table 5.7: Results-Extension 2
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5.3 Experiment 2

The second experiment is a simulation study developed to evaluate the efficiency

of the AARC model. In this experiment we fix one problem instance for each

network topology and generate 2000 random demand vectors coming from the

uncertainty set. For each demand vector, cost of the AARC solution is calculated

using the optimal coefficients found for the considered uncertainty set. In addition

initial network flow model (i.e. main model) is solved using the demand vectors

as nominal deterministic data. The solution shows us the optimal solution that

could be obtained if we knew the demand in advance. The difference between

the cost of the AARC and certain model is the loss of the AARC against the

certain model. It shows us how much we lose from optimality by using AARC

formulation (i.e. the cost of robustness).

A second comparison is made between the cost of the AARC model and the

optimal cost of the RC model for each demand vector. It should be mentioned that

the solution of the RC model is the same for every realized demand vector since

it is calculated in advance to the realization of the uncertain data. Therefore

the cost of the RC model is fixed. In this comparison, we show the percent

improvement of the AARC against the RC in terms of objective function value.

Although both of them provide protection against the uncertain data, AARC is

able to do this job with a much less cost than that of RC.

Results of the simulation study will be presented for three models (namely

main model, extension 1 and extension 2) under three different uncertainty

levels (5%, 10% and 15%) and three different capacity budgets (1000=tight,

3000=medium and 10000=loose).

In the tables that summarize the results of the simulation study,for each net-

work topology, the average, maximum and minimum percent losses of the AARC

formulation (when compared with the solution of the main model with nomi-

nal data) are presented. In addition, the values of the average maximum and

minimum percent improvements of the AARC formulation (when compared with

the solution of the RC) are given. In the last rows, the average of the network
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averages is given to give an idea of the overall performance of the formulations.

Tables 5.8, 5.9 and 5.10 are related to the results of the simulation study

for the main model (i.e. continuous capacity) for different capacity budgets.

From Table 5.8, we see that as the uncertainty increases from 5% to 15% for the

tightest capacity (i.e. 1.000), the average loss of the AARC formulation against

the optimal solution obtained via certain nominal data increases from 1.61% to

5.26% (see the rows named average in the second column of Table 5.8). For an

uncertainty level of 5%, the maximum loss of the AARC formulation is 7.29% (see

network 9 in the third column of Table 5.8). The corresponding value is 26.22%

for an uncertainty value of 15% (see network 6 in the third column of Table 5.8).

On the other hand, the cost of the AARC formulation is 4.36% cheaper than

that of RC formulation for an uncertainty level of 5% and 12.17% cheaper for an

uncertainty level of 15% on the average for the tightest capacity budget (see the

rows named average in the fifth column of Table 5.8). The corresponding values

are 4.16% and 11.56% for the maximum capacity budget (see the rows named

average in the fifth column of Table 5.10). We think that the improvement of the

AARC over the RC is significant and the loss from optimality is minor.

As we increase the capacity budget from 1000 to 10000, the average loss of the

AARC against the optimal solution obtained via certain nominal data decreases

from 1.61% to 1.55% for an uncertainty level of 5% and from 5.26% to 4.83%

for an uncertainty level of 15% (see the first rows named average in the second

columns of the Tables 5.8 and 5.10). This shows us that as the capacity budget

increases, the performance of the AARC formulation improves. The improvement

of the AARC over RC decreases from 4.36% to 4.16% for an uncertainty level of

5% (see the first rows named average in the fifth columns of the Tables 5.8 and

5.10) and from 12.17% to 11.56% for an uncertainty level of 15% (see the last rows

named average in the fifth columns of the Tables 5.8 and 5.10). It can be said

that as the capacity budget is increased, the relative performance of the AARC

against the RC decreases.

Tables 5.11, 5.12 and 5.13 show the results of the simulation study for the

Extension 1 which uses modular capacity approach. In Table 5.11, we see that
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UNC=5% Loss of AARC(%) Improvement of AARC(%)
Network Average Max Min Average Max Min

1 1.26 4.45 0.20 6.66 9.88 5.95
2 2.48 5.89 0.29 2.9 3.46 2.4
3 1.11 3.21 0.21 4.32 5.95 2.63
4 0.93 2.98 0.01 4.89 6.27 4.21
5 1.96 5.43 0.30 3.73 5.10 2.42
6 1.77 4.58 0.40 5.04 5.07 4.99
7 2.84 4.93 1.18 2.96 3.44 2.67
8 0.44 1.57 0.04 4.90 7.72 2.54
9 3.12 7.29 0.05 2.32 2.4 2.26
10 1.14 3.17 0.09 4.78 5.43 4.56
11 1.61 4.41 0.25 4.32 4.47 4.27
12 1.40 3.82 0.05 4.98 4.70 5.20
13 0.93 2.73 0.00 4.94 5.78 4.61

Average 1.61 4.19 0.24 4.36 5.36 3.75
UNC=10% Loss of AARC(%) Improvement of AARC(%)
Network Average Max Min Average Max Min

1 4.05 9.12 0.64 11.31 11.41 11.27
2 5.01 11.56 0.59 5.51 6.38 4.65
3 4.90 11.71 0.50 6.08 7.15 5.19
4 3.22 8.73 0.73 8.46 8.69 8.16
5 2.87 7.22 0.58 8.20 10.58 7.22
6 3.57 7.55 0.91 10.49 10.64 10.43
7 2.30 3.68 1.08 8.70 12.39 6.72
8 6.01 15.35 0.26 4.97 5.11 4.84
9 5.95 14.87 0.23 4.91 5.44 4.38
10 2.88 5.80 0.24 9.22 10.63 8.76
11 2.61 7.83 0.26 8.89 10.55 8.21
12 2.67 7.69 0.03 9.81 10.05 9.72
13 2.60 7.57 0.00 9.41 10.50 8.90

Average 3.74 9.13 0.47 8.15 9.19 7.57
UNC=15% Loss of AARC(%) Improvement of AARC(%)
Network Average Max Min Average Max Min

1 6.27 13.72 0.97 16.19 17.00 15.00
2 6.71 18.60 0.00 8.89 10.81 6.71
3 6.64 17.48 0.00 9.32 11.27 7.52
4 4.44 13.91 0.48 12.78 13.79 11.94
5 6.13 18.18 0.91 10.35 11.00 10.00
6 4.43 26.22 0.20 16.25 24.82 6.45
7 6.99 13.02 1.87 9.62 13.01 8.36
8 9.27 24.36 0.36 6.98 7.00 6.00
9 3.04 10.36 0.20 11.98 17.75 6.32
10 3.32 10.70 0.37 13.40 15.43 12.58
11 4.35 13.70 0.62 12.51 13.10 11.89
12 4.19 11.91 0.05 13.88 14.00 13.00
13 2.63 8.25 0.00 16.04 18.44 14.96

Average 5.26 15.42 0.46 12.17 14.42 10.06

Table 5.8: Simulation Results-Main Model-Budget=1000
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UNC=5% Loss of AARC(%) Improvement of AARC(%)
Network Average Max Min Average Max Min

1 0.88 3.36 0.20 5.42 8.56 4.77
2 2.48 5.89 0.29 2.9 3.46 2.4
3 1.11 3.21 0.21 4.32 5.95 2.63
4 1.41 4.25 0.10 4.43 4.87 4.09
5 1.96 5.43 0.30 3.73 4.00 3.00
6 1.67 4.32 0.37 4.85 5.03 4.72
7 2.33 3.87 0.90 3.43 5.03 2.82
8 0.44 1.57 0.04 4.90 7.72 2.54
9 3.12 7.29 0.05 2.32 2.40 2.26
10 1.34 3.61 0.13 4.59 4.68 4.56
11 1.61 4.41 0.25 4.32 4.47 4.27
12 1.33 3.56 0.09 4.59 4.62 4.58
13 1.28 3.68 0.00 4.61 5.00 4.00

Average 1.61 4.19 0.23 4.19 5.06 3.59
UNC=10% Loss of AARC(%) Improvement of AARC(%)
Network Average Max Min Average Max Min

1 2.92 7.18 0.45 9.82 10.53 9.57
2 5.17 12.76 0.59 5.54 6.41 4.62
3 4.83 11.71 0.23 6.07 7.15 5.04
4 2.77 7.93 0.54 8.68 10.43 7.91
5 2.87 7.50 0.58 8.21 10.72 7.22
6 3.58 9.09 0.92 9.10 9.28 9.03
7 3.30 5.40 0.92 7.85 11.37 5.97
8 5.93 15.35 0.15 4.97 5.11 4.84
9 5.86 14.87 0.12 4.91 5.44 4.38
10 2.28 6.45 0.14 9.23 10.63 8.76
11 2.61 7.83 0.26 8.89 10.55 8.21
12 2.72 7.44 0.18 8.86 9.00 8.00
13 2.60 7.57 0.00 8.97 9.00 8.00

Average 3.65 9.31 0.39 7.78 8.89 7.04
UNC=15% Loss of AARC(%) Improvement of AARC(%)
Network Average Max Min Average Max Min

1 4.89 11.43 0.73 14.37 15.00 14.00
2 6.58 18.14 0.00 9.00 11.08 6.76
3 6.64 17.48 0.00 9.32 11.27 7.52
4 5.06 14.72 0.92 11.83 12.11 11.47
5 6.13 18.18 0.91 10.35 11.00 10.00
6 4.17 28.13 0.20 14.04 24.71 1.82
7 6.14 11.47 1.50 10.34 14.53 8.67
8 9.27 24.36 0.00 6.98 7.00 6.00
9 3.04 10.36 0.20 11.98 17.75 6.32
10 3.26 10.70 0.37 13.45 15.62 12.58
11 4.35 13.70 0.62 12.51 13.10 11.89
12 2.83 8.70 0.27 13.82 16.59 12.73
13 2.41 7.30 0.00 14.21 17.13 12.91

Average 4.98 14.97 0.44 11.71 14.38 9.44

Table 5.9: Simulation Results-Main Model-Budget=3000
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UNC=5% Loss of AARC(%) Improvement of AARC(%)
Network Average Max Min Average Max Min

1 0.81 3.03 0.20 5.12 8.09 4.48
2 2.48 5.89 0.29 2.90 3.46 2.40
3 1.11 3.21 0.21 4.32 5.95 2.63
4 1.41 4.25 0.10 4.43 4.87 4.09
5 1.96 5.43 0.30 3.73 4.00 3.00
6 1.42 3.61 0.36 4.48 4.96 4.24
7 2.33 3.87 0.90 3.43 5.03 2.82
8 0.44 1.57 0.04 4.90 7.72 2.54
9 3.12 7.29 0.05 2.32 2.40 2.26
10 1.14 3.17 0.09 4.78 5.43 4.56
11 1.61 4.41 0.25 4.32 4.47 4.27
12 1.18 3.11 0.09 4.72 5.09 4.58
13 1.19 3.55 0.00 4.69 4.92 4.61

Average 1.55 4.03 0.22 4.16 5.11 3.58
UNC=10% Loss of AARC(%) Improvement of AARC(%)
Network Average Max Min Average Max Min

1 2.46 6.09 0.09 9.13 9.86 8.62
2 5.17 12.76 0.59 5.54 6.41 4.62
3 2.12 6.74 0.26 8.47 11.53 5.12
4 2.77 7.93 0.54 8.86 10.43 7.91
5 2.87 7.50 0.58 8.21 10.72 7.22
6 3.27 8.33 0.88 8.31 8.71 8.18
7 2.46 3.88 0.78 8.60 12.66 5.96
8 5.93 15.35 0.15 4.97 5.11 4.84
9 5.86 14.87 0.12 4.91 5.44 4.38
10 2.28 6.45 0.14 9.23 10.63 8.76
11 2.61 7.83 0.26 8.89 10.55 8.21
12 2.29 6.05 0.18 9.24 10.19 8.86
13 2.39 6.77 0.00 9.16 9.72 8.97

Average 3.27 8.50 0.35 7.95 9.38 7.05
UNC=15% Loss of AARC(%) Improvement of AARC(%)
Network Average Max Min Average Max Min

1 4.22 10.27 0.74 12.73 13.37 12.39
2 6.58 18.14 0.00 9.00 11.08 6.76
3 6.93 17.70 0.24 9.07 10.97 7.31
4 5.06 14.72 0.92 11.83 12.11 11.47
5 6.13 18.18 0.91 10.35 11.00 10.00
6 3.96 31.84 0.20 12.81 26.62 9.00
7 3.55 6.28 0.84 12.51 18.04 8.88
8 9.27 24.36 0.36 6.98 7.00 6.00
9 3.04 10.36 0.20 11.98 17.75 6.32
10 3.26 10.70 0.37 13.45 15.62 12.58
11 4.35 13.70 0.62 12.51 13.10 11.89
12 3.78 10.65 0.27 13.03 13.81 12.73
13 2.60 7.84 0.00 14.05 16.75 12.91

Average 4.83 14.98 0.44 11.56 14.40 9.86

Table 5.10: Simulation Results-Main Model-Budget=10000
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the maximum loss realized for the AARC approach is 7.17% (network 9) with

an average loss of 1.73% for an uncertainty level of 5% (see the first row named

average in the second column of Table 5.11). When the uncertainty level is

increased to 15%, the average loss is 4.92% (see the last row named average in

the second column of Table 5.11) with a maximum loss of 28.48% observed in

network 6.

The improvement of the AARC over the objective of RC is 4.26% on the

average for an uncertainty level of 5% and 12.72% for an uncertainty level of 15%

(see the rows named average in the fifth column of Table 5.11). Again it can be

said that the loss from optimality observed due to usage of AARC formulation

is minor and the AARC approach is much more cheaper than the RC approach

when one needs to obtain robust solutions.

As capacity budget is increased from 1000 to 10000, the loss of the AARC

formulation from optimality decreases from 1.73% to 1.63% for an uncertainty

level of 5% and increases from 4.92% to 4.99% for an uncertainty level of 15%

(see the rows named average in the second columns of the Tables 5.11 and 5.13).

For the most loose capacity budget, the improvement of the AARC formu-

lation over the RC is 4.10% for an uncertainty level of 5% and 9.93% for an

uncertainty level of 15% (see the rows named average in the fifth column of Table

5.13). The corresponding values for the tightest case were 4.26% and 12.72% (see

the same values in Table 5.11) which implies that the relative performance of the

AARC against RC decreases when capacity budget is increased for the modular

capacity case.

In Tables 5.14, 5.15 and 5.16, the simulation results for the Extension 2 are

presented. As it can be seen from the tables, for the tightest capacity budget,

the improvement of the AARC over the RC is 4.17% for 5% uncertainty level

and 12.66% for the 15% uncertainty level (see the rows named average in the

fifth column of Table 5.14). As the budget is increased to the loosest option,

the mentioned values fall to 4% and 11.87% respectively (see the same values in

Table 5.16).
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For the tightest capacity option, the average loss from optimality is 1.83% for

5% uncertainty level and 5.02% for 15% uncertainty level (see the rows named

average in the second column of Table 5.14). The corresponding values are 1.76%

and 5.04% for the maximum capacity budget (see the same values in Table 5.16).
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UNC=5% Loss of AARC(%) Improvement of AARC(%)
Network Average Max Min Average Max Min

1 1.26 4.61 0.20 6.65 10.08 5.93
2 2.28 5.57 0.31 3.09 3.77 2.39
3 1.90 4.44 0.00 3.58 5.05 2.72
4 1.29 3.70 0.19 4.55 5.23 4.15
5 1.19 4.18 0.13 4.46 5.10 3.81
6 1.65 4.45 0.23 5.21 5.26 5.04
7 2.29 3.93 1.05 3.28 4.93 2.63
8 2.87 7.14 0.02 2.61 2.75 2.50
9 3.02 7.17 0.12 2.41 2.56 2.26
10 1.14 3.17 0.09 4.78 5.43 4.56
11 1.32 3.64 0.13 4.61 4.77 4.56
12 1.02 3.18 0.00 5.35 6.17 5.04
13 0.91 2.79 0.00 4.98 5.87 4.63

Average 1.73 4.52 0.20 4.26 5.14 3.84
UNC=10% Loss of AARC(%) Improvement of AARC(%)
Network Average Max Min Average Max Min

1 3.66 8.34 0.64 16.80 17.41 16.43
2 3.62 9.68 0.00 6.81 8.53 4.80
3 4.90 11.71 0.50 6.08 7.15 5.19
4 2.96 7.62 0.87 8.68 10.30 8.13
5 2.87 9.70 0.55 8.21 9.05 7.28
6 3.51 7.40 0.90 10.59 10.82 10.47
7 4.72 8.88 2.11 6.55 8.54 5.78
8 1.54 6.12 0.15 8.93 12.80 4.94
9 1.84 6.29 0.04 8.55 12.55 4.45
10 2.22 5.91 0.24 9.27 10.52 8.76
11 2.20 7.55 0.15 9.26 10.38 8.29
12 2.76 7.75 0.02 9.69 10.00 9.00
13 2.41 7.35 0.00 9.59 10.08 9.42

Average 3.02 8.02 0.47 9.15 10.63 7.92
UNC=15% Loss of AARC(%) Improvement of AARC(%)
Network Average Max Min Average Max Min

1 6.27 13.73 0.97 16.20 16.25 16.18
2 6.58 18.41 0.00 9.00 11.08 6.76
3 6.66 17.49 0.02 9.30 11.25 7.51
4 4.80 12.92 1.19 12.47 14.02 11.03
5 6.13 18.18 0.91 10.35 11.00 10.00
6 4.28 28.48 0.20 16.36 27.25 4.45
7 7.49 13.89 1.87 9.20 11.66 8.35
8 4.16 26.00 0.80 14.69 25.20 7.31
9 3.04 10.36 0.20 11.98 17.75 6.32
10 2.67 9.07 0.00 13.94 16.82 12.64
11 5.16 14.62 0.78 11.83 12.00 11.00
12 3.85 11.30 0.05 14.17 14.90 13.89
13 2.88 8.89 0.00 15.85 17.91 14.97

Average 4.92 15.62 0.54 12.72 15.93 10.03

Table 5.11: Simulation Results-Extension 1-Budget=1000
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UNC=5% Loss of AARC(%) Improvement of AARC(%)
Network Average Max Min Average Max Min

1 1.05 3.55 0.20 5.28 7.81 4.78
2 2.28 5.57 0.31 3.09 3.77 2.39
3 1.90 4.44 0.00 3.58 5.05 2.72
4 0.92 3.53 0.03 4.90 6.13 4.23
5 1.19 4.18 0.13 4.46 5.10 3.81
6 1.67 4.44 0.27 4.85 4.90 4.69
7 1.70 2.64 0.75 4.02 6.05 2.78
8 2.87 7.14 0.02 2.61 2.75 2.50
9 3.02 7.17 0.12 2.41 2.56 2.26
10 1.37 3.70 0.13 4.56 5.00 4.00
11 1.30 3.90 0.23 4.60 5.31 4.27
12 1.20 3.34 0.09 4.71 5.05 4.58
13 1.03 2.94 0.00 4.84 5.43 4.61

Average 1.65 4.35 0.18 4.15 4.99 3.66
UNC=10% Loss of AARC(%) Improvement of AARC(%)
Network Average Max Min Average Max Min

1 2.59 6.13 0.46 10.12 11.28 9.59
2 4.35 11.58 0.00 6.27 7.70 4.52
3 4.83 11.71 0.23 6.07 7.15 5.04
4 3.46 9.31 0.65 8.07 8.51 7.91
5 3.28 10.15 0.65 7.85 8.55 7.18
6 3.43 8.89 0.74 9.23 9.48 9.03
7 4.74 8.80 1.92 6.57 9.10 5.64
8 1.58 6.13 0.08 8.82 12.83 4.86
9 1.87 6.36 0.00 8.44 12.55 4.38
10 2.16 5.91 0.23 9.33 10.68 8.76
11 2.20 7.55 0.15 9.26 10.38 8.39
12 2.68 7.31 0.18 8.89 8.98 8.86
13 2.42 7.45 0.00 9.13 9.60 8.97

Average 3.05 8.25 0.41 8.31 9.75 8.16
UNC=15% Loss of AARC(%) Improvement of AARC(%)
Network Average Max Min Average Max Min

1 4.64 11.07 0.71 14.60 15.05 14.40
2 8.08 20.61 1.08 7.73 8.84 6.60
3 6.66 17.49 0.02 9.30 11.25 7.51
4 4.76 13.93 0.86 12.08 12.90 11.48
5 5.20 16.70 0.57 11.13 11.67 10.38
6 4.27 29.43 1.00 13.96 25.13 1.19
7 8.45 16.44 2.84 8.40 9.00 8.00
8 7.50 15.00 1.50 14.69 25.20 7.31
9 3.04 10.36 0.20 11.98 17.75 6.32
10 3.16 10.15 0.10 13.37 14.79 12.64
11 5.16 14.62 0.78 11.83 12.00 11.00
12 3.94 11.47 0.21 12.90 13.20 12.73
13 2.88 8.89 0.00 13.81 15.92 12.91

Average 5.21 15.09 0.76 11.98 14.82 9.42

Table 5.12: Simulation Results-Extension 1-Budget=3000
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UNC=5% Loss of AARC(%) Improvement of AARC(%)
Network Average Max Min Average Max Min

1 0.77 3.07 0.10 5.17 8.08 4.48
2 2.28 5.57 0.31 3.09 3.77 2.39
3 1.90 4.44 0.00 3.58 5.05 2.72
4 0.92 3.53 0.03 4.55 5.23 4.15
5 1.19 4.18 0.13 4.90 6.13 4.23
6 1.64 4.22 0.41 4.28 4.31 4.24
7 1.70 2.64 0.75 4.02 6.05 2.78
8 2.87 7.14 0.02 2.61 2.75 2.50
9 3.02 7.17 0.12 2.41 2.56 2.26
10 1.37 3.70 0.13 4.56 5.00 4.00
11 1.30 3.90 0.23 4.60 5.31 4.27
12 1.02 2.70 0.09 4.88 5.63 4.58
13 1.19 3.56 0.00 4.70 4.93 4.61

Average 1.63 4.29 0.18 4.10 4.97 3.61
UNC=10% Loss of AARC(%) Improvement of AARC(%)
Network Average Max Min Average Max Min

1 2.65 6.25 0.48 9.12 10.05 8.78
2 4.35 11.58 0.00 6.27 7.70 4.72
3 4.83 11.71 0.23 6.07 7.15 5.04
4 3.46 9.31 0.65 8.07 8.51 7.91
5 3.28 10.15 0.65 7.85 8.55 7.18
6 3.13 8.13 0.89 8.44 9.09 8.18
7 2.43 4.64 0.90 8.63 11.16 6.61
8 1.58 6.13 0.08 8.82 12.83 4.86
9 1.87 6.36 0.00 8.44 12.55 4.38
10 2.16 5.91 0.23 9.33 10.68 8.76
11 2.20 7.55 0.15 9.26 10.38 8.39
12 1.86 5.30 0.18 9.61 11.63 8.86
13 2.12 5.97 0.00 9.40 10.55 8.97

Average 2.76 7.61 0.34 8.41 10.06 7.13
UNC=15% Loss of AARC(%) Improvement of AARC(%)
Network Average Max Min Average Max Min

1 4.49 10.55 0.73 12.96 13.25 12.85
2 8.08 20.61 1.08 7.73 8.84 6.60
3 6.66 17.49 0.02 9.30 11.25 7.51
4 4.76 13.93 0.86 12.08 12.90 11.48
5 5.20 16.70 0.57 11.13 11.67 10.38
6 4.25 22.84 1.00 12.57 19.53 4.64
7 6.85 13.28 2.60 9.74 13.34 8.40
8 6.00 15.00 0.60 14.69 25.20 7.31
9 3.04 10.36 0.20 11.98 17.75 6.32
10 4.30 11.91 0.40 12.58 13.00 12.00
11 5.16 14.72 0.78 3.47 4.00 3.00
12 3.14 8.48 0.27 5.31 7.59 4.40
13 2.92 9.05 0.00 5.56 8.05 4.61

Average 4.99 14.22 0.70 9.93 12.80 7.65

Table 5.13: Simulation Results-Extension 1-Budget=10000
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UNC=5% Loss of AARC(%) Improvement of AARC(%)
Network Average Max Min Average Max Min

1 1.26 4.60 0.20 6.63 10.05 5.91
2 2.29 5.58 0.31 3.09 3.77 2.39
3 1.90 4.44 0.00 3.58 5.05 2.72
4 1.51 4.37 0.22 4.34 4.65 4.10
5 1.27 4.32 0.19 4.38 4.97 3.80
6 1.56 4.21 0.23 5.29 5.58 5.03
7 3.22 5.13 1.41 2.60 3.50 2.29
8 2.87 7.14 0.02 2.61 2.75 2.50
9 3.02 7.17 0.12 2.41 2.56 2.26
10 1.14 3.17 0.09 4.78 5.43 4.56
11 1.30 3.90 0.23 4.60 5.31 4.27
12 1.00 3.13 0.00 5.29 6.10 4.98
13 1.29 4.07 0.00 4.83 5.03 4.75

Average 1.83 4.75 0.24 4.17 4.93 3.81
UNC=10% Loss of AARC(%) Improvement of AARC(%)
Network Average Max Min Average Max Min

1 3.68 8.51 0.62 11.60 12.49 11.21
2 3.70 10.24 0.00 6.86 8.80 4.80
3 4.83 11.71 0.23 6.07 7.15 5.04
4 3.43 9.59 0.72 8.32 8.59 8.12
5 2.89 9.70 0.55 8.20 9.11 7.27
6 3.69 9.65 0.90 10.47 11.00 10.00
7 4.21 8.25 1.48 7.14 9.14 5.59
8 1.58 6.13 0.08 8.82 12.83 4.86
9 1.87 6.36 0.00 8.44 12.55 4.38
10 2.21 5.91 0.24 9.30 10.64 8.76
11 2.20 7.55 0.15 9.26 10.38 8.39
12 2.73 7.73 0.03 9.57 10.00 9.00
13 1.99 5.72 0.00 10.20 11.82 9.47

Average 3.00 8.23 0.38 8.79 10.35 7.45
UNC=15% Loss of AARC(%) Improvement of AARC(%)
Network Average Max Min Average Max Min

1 6.25 13.69 0.97 16.15 16.20 16.13
2 8.08 20.62 1.08 7.73 8.84 6.60
3 6.66 17.49 0.02 9.30 11.25 7.51
4 4.03 11.36 0.86 13.11 15.69 12.00
5 5.20 16.71 0.57 11.13 11.67 10.38
6 4.28 28.48 1.00 16.36 27.24 4.45
7 7.83 14.33 3.00 8.97 11.43 8.12
8 4.50 14.00 0.90 14.69 25.20 7.31
9 3.04 10.36 0.20 11.98 17.75 6.32
10 3.67 9.07 0.00 13.95 16.83 12.65
11 5.16 14.62 0.78 11.83 12.00 11.00
12 4.19 12.13 0.06 13.72 14.00 13.00
13 3.32 9.84 0.01 15.63 17.85 14.88

Average 5.02 14.82 0.73 12.66 15.84 10.03

Table 5.14: Simulation Results-Extension 2-Budget=1000
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UNC=5% Loss of AARC(%) Improvement of AARC(%)
Network Average Max Min Average Max Min

1 1.04 3.53 0.10 5.25 7.77 4.76
2 2.29 5.58 0.31 3.09 3.77 2.39
3 1.90 4.44 0.00 3.58 5.05 2.72
4 1.51 4.37 0.22 4.34 4.65 4.10
5 1.27 4.32 0.19 4.38 4.97 3.80
6 1.67 4.44 0.27 4.83 4.88 4.68
7 3.22 5.13 1.41 2.60 3.50 2.29
8 2.87 7.14 0.02 2.61 2.75 2.50
9 3.02 7.17 0.12 2.41 2.56 2.26
10 1.32 3.64 0.13 4.61 4.77 4.56
11 1.30 3.90 0.23 4.60 5.31 4.27
12 0.52 1.58 0.05 5.45 6.83 4.70
13 1.29 4.07 0.00 4.82 5.02 4.75

Average 1.79 4.56 0.23 4.04 4.76 3.68
UNC=10% Loss of AARC(%) Improvement of AARC(%)
Network Average Max Min Average Max Min

1 2.57 6.09 0.46 10.06 11.22 9.53
2 3.70 10.24 0.00 6.86 8.80 4.80
3 4.83 11.71 0.23 6.07 7.15 5.04
4 3.43 9.59 0.72 8.10 8.37 7.90
5 2.89 9.70 0.55 8.20 9.11 7.27
6 3.43 8.89 0.74 9.22 9.47 9.02
7 4.21 8.25 1.48 7.14 9.14 5.59
8 1.58 6.13 0.08 8.82 12.83 4.86
9 1.87 6.36 0.00 8.44 12.55 4.38
10 2.21 5.91 0.24 9.30 10.64 8.76
11 2.20 7.55 0.15 9.26 10.38 8.39
12 2.72 7.56 0.13 9.08 10.00 9.00
13 1.99 5.72 0.00 9.95 11.58 9.22

Average 2.89 7.98 0.37 8.50 10.10 7.21
UNC=15% Loss of AARC(%) Improvement of AARC(%)
Network Average Max Min Average Max Min

1 4.61 11.05 0.71 14.57 15.02 14.37
2 8.08 20.62 1.08 7.73 8.84 6.60
3 6.66 17.49 0.02 9.30 11.25 7.51
4 4.03 11.36 0.86 12.68 15.27 11.56
5 5.20 16.71 0.57 11.13 11.67 10.38
6 4.27 29.43 1.02 13.95 25.12 1.18
7 8.89 16.92 3.17 8.14 9.00 8.00
8 6.00 12.00 1.00 14.69 25.20 7.31
9 3.04 10.36 0.20 11.98 17.75 6.32
10 2.67 9.07 0.00 13.95 16.83 12.65
11 5.16 14.62 0.78 11.83 12.00 11.00
12 4.14 11.97 0.18 13.05 14.00 13.00
13 3.32 9.84 0.01 14.02 16.28 13.25

Average 5.08 14.73 0.74 12.08 15.25 9.47

Table 5.15: Simulation Results-Extension 2-Budget=3000
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UNC=5% Loss of AARC(%) Improvement of AARC(%)
Network Average Max Min Average Max Min

1 0.83 3.15 0.05 5.17 7.93 4.53
2 2.29 5.58 0.31 3.09 3.77 2.39
3 1.90 4.44 0.00 3.58 5.05 2.72
4 1.51 4.37 0.22 4.34 4.65 4.10
5 1.27 4.32 0.19 4.38 4.97 3.80
6 1.58 3.91 0.44 4.32 4.58 4.23
7 3.22 5.13 1.41 2.60 3.50 2.29
8 2.87 7.14 0.02 2.61 2.75 2.50
9 3.02 7.17 0.12 2.41 2.56 2.26
10 1.32 3.64 0.13 4.61 4.77 4.56
11 1.30 3.90 0.23 4.60 5.31 4.27
12 0.52 1.58 0.05 5.45 6.83 4.70
13 1.29 4.07 0.00 4.82 5.02 4.75

Average 1.76 4.49 0.24 4.00 4.75 3.62
UNC=10% Loss of AARC(%) Improvement of AARC(%)
Network Average Max Min Average Max Min

1 2.52 5.96 0.46 9.30 10.26 8.83
2 3.70 10.24 0.00 6.86 8.80 4.80
3 4.83 11.71 0.23 6.07 7.15 5.04
4 3.43 9.59 0.72 8.10 8.37 7.90
5 2.89 9.70 0.55 8.20 9.11 7.27
6 3.05 8.35 0.54 8.49 8.75 8.17
7 4.21 8.25 1.48 7.14 9.14 5.59
8 1.58 6.13 0.08 8.82 12.83 4.86
9 1.87 6.36 0.00 8.44 12.55 4.38
10 2.21 5.91 0.24 9.30 10.64 8.76
11 2.20 7.55 0.15 9.26 10.38 8.39
12 2.72 7.56 0.13 9.08 10.00 9.00
13 1.99 5.72 0.00 9.95 11.58 9.22

Average 2.86 7.93 0.35 8.39 9.97 7.09
UNC=15% Loss of AARC(%) Improvement of AARC(%)
Network Average Max Min Average Max Min

1 4.50 10.88 0.71 13.04 13.37 12.91
2 8.08 20.62 1.08 7.73 8.84 6.60
3 6.66 17.49 0.02 9.30 11.25 7.51
4 4.03 11.36 0.86 12.68 15.27 11.56
5 5.20 16.71 0.57 11.13 11.67 10.38
6 3.93 29.01 1.00 12.82 24.23 9.00
7 8.89 16.92 3.17 8.14 9.00 8.00
8 5.90 17.57 1.06 14.69 25.20 7.31
9 3.04 10.36 0.20 11.98 17.75 6.32
10 2.67 9.07 0.00 13.95 16.83 12.65
11 5.16 14.62 0.78 11.83 12.00 11.00
12 4.14 11.97 0.18 13.05 14.00 13.00
13 3.32 9.84 0.01 14.02 16.28 13.25

Average 5.04 15.11 0.74 11.87 15.05 9.96

Table 5.16: Simulation Results-Extension 2-Budget=10000



Chapter 6

Conclusion

In this thesis, a robust capacity expansion-routing problem under demand uncer-

tainty is considered. Given a budget of capacity that can be installed on the arcs,

we look for optimal allocation of this additional capacity to the edges as well as

the optimal routing to satisfy the demand. As mentioned, the demand is uncer-

tain but known to belong to a well-defined uncertainty set (i.e. a polyhedron).

There are many different approaches that deal with uncertainty in robust

optimization methodology like stochastic programming and scenario-based pro-

gramming. In the mentioned approaches, violation of constraints is tolerated for

some of the outcomes of the uncertainty. In this study, we concentrate on Ro-

bust Counterpart (RC) approach which includes hard constraints that should be

satisfied for any realization of the uncertain parameters (i.e. demand).

In RC approach, decisions about the variables are given at one stage, on the

other hand there are cases in which some of the variables are decided prior to

the realization of the uncertainty and some of them can be decided after the

realization. The capacity expansion-routing problem considered in this thesis is

an example of this type of problem. In order to formulate this type of problems,

Adjustable Robust Counterpart (ARC) that makes use of adjustable variables

(i.e. variables that can be adjusted after the realization of the uncertainty) and

non-adjustable variables is used in the literature. The ARC formulation is more
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advantageous over the classical RC formulation since the RC provides solutions

that are unjustifiably conservative which results in high costs in terms of objective

function value. Since ARC is often very hard to solve, we solve an approxima-

tion of the ARC formulation namely Affinely Adjustable Robust Counterpart

(AARC) in our study. In AARC, the adjustable variables are restricted to be

affine functions of the uncertain parameters.

We formulate two different extensions other than the main formulation used.

The main formulation allows continuous amounts of capacity installations. The

first extension uses modular capacity approach that allows installing an integer

amount of links with a constant capacity. The second extension also uses modular

capacity and has fixed and variable installation costs for the additional capacity

to be installed.

Experimental results imply that AARC provides robust solutions at a much

cheaper cost than that of RC. As uncertainty increases, the attractiveness of the

AARC over RC improves. In addition the percent loss of the AARC is more

stable than RC against factors such as changes in the uncertainty level and in

the capacity budget.

We think that, the loss observed in terms of increase in the objective value due

to application of AARC approach is not very large and the protection obtained

against the uncertainty can compensate for the realized loss. Under AARC ap-

proach, one can find a feasible solution for any demand value coming from the

uncertainty set and the realized loss is not very large as evidenced by the simu-

lation study.
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