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İBRAHİM BARIS ESMEROK

Department of
Economics

Bilkent University
Ankara

September 2006

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Bilkent University Institutional Repository

https://core.ac.uk/display/52940215?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


To Tarık Kara



CHARACTERIZATION OF ENVY FREE
SOLUTIONS FOR QUEUING PROBLEMS

The Institute of Economics and Social Sciences
of

Bilkent university

by
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Examining Committee Member

Approval of the Institute of Economics and Social Sciences

Prof. Dr. Erdal Erel

Director



ABSTRACT

CHARACTERIZATION OF ENVY FREE

SOLUTIONS FOR QUEUING PROBLEMS

Esmerok, İbrahim Barıs

M.A., Department of Economics

Supervisors: Assist. Prof. Dr. Tarık Kara

September 2006

In this study we are working on queuing problems. In our model a solution

to a queuing problem is an ordering of agents and a transfer vector where the

sum of the transfers of agents is equal to zero. Hence a queuing problem is a

double, where we have a finite set of agents and a profile of payoff functions of

agents which represent their preferences on their orderings and transfers. We

are assuming that the payoff functions of agents are quasi-linear on transfers.

Our main aim is to find envy free solutions for queuing problems. Since payoff

functions of agents are quasi-linear envy freeness implies Pareto efficiency. For

problems where there are less than five agents, we show that the set of envy

free solutions is not empty and we are able to characterize the envy free

solutions. We conjecture that our results may be extended to general case

similar to our extension from three person case to four person case. When

we assume that a queuing problem satisfies order preservation property we

are able to characterize envy free solutions with a solution concept that we

introduce in this study.

Keywords: Queuing Problems, No-envy.
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ÖZET

SIRALAMA PROBLEMLERİNDE KISKANÇLIGI

ÖNLEYEN ÇÖZÜMLERİN KARAKTERİZASYONU

Esmerok, İbrahim Barıs

Yüksek Lisans, Ekonomi Bölümü

Tez Yöneticisi: Yrd. Doç. Dr. Tarık Kara

Eylül 2006

Bu çalısmada sıralama problemlerinde kişiler arasında kıskançlığı önleyen

çözümler üzerinde çalışılmıştır. Bizim çalışmamızda kişi kümeleri sabit tu-

tulmuş ve kişilerin sıralamalar ve transferler üzerinde ki tercihlerini gösteren

değer fonksiyonları transferlerde quasi-linear kabul edilmiştir. Değer fonksiy-

onları transferlerde quasi-linear varsayıldığı için bir çözümün kıskançlığı

önleyen bir çözüm olması onun Pareto en iyi olmasını da yanında ge-

tirmektedir. Bu çalışmada dört ya da dörtten daha az kişinin ele alındığı

problemlerde kıskançlığı önleyen çözümler kümesinin boş olmadığı ve bu

çözümlerin karakterize edilebileceği gösterilmektedir. Ele alınan problem-

lerin sıralamayı koruma özelliğini sağlaması durumunda ise kıskançlığı önleyen

çözümlerin karaterizaysonu bu çalışmada önerilen çözüm kavramı sayesinde

sağlanabilmektedir.

Anahtar Kelimeler: Sıralama Problemleri, kıskançlığı önleyen çözümler
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Chapter 1

INTRODUCTION

Getting into queues and waiting for other people to complete their jobs to be

able to execute one’s own job is a familiar phenomenon to every one. Think

of a facility which is capable of processing a certain job. People apply to

the facility with jobs which last for a a certain amount of time. The total

amount of time needed to execute jobs of all applicants could be greater than

the capacity of the facility. So a facility may fail to process all of the jobs,

or some of the jobs would be partially processed by the facility. Everyone

would like to have their jobs processed as much as possible. For example in

libraries there are some materials which students would like to use extensively

especially when examinations are coming, but libraries usually do have a copy

or two. In such cases libraries usually make this material available only in

library use and put time quotas to students. Most of the students in such

times are able to use the material less than they have planned. Thus whenever

a group of people aim to use such facility the available usage time for each

individual should be indicated. Most of the time facilities process jobs one by

one so one may have to wait for other person’s job to be processed. Everyone

would like to wait as little as possible. Most of the computer laboratories has

only one super computer. Students in laboratory sessions would like to use

the super computer but the length of the session would be less than the total
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amount of time that students request to use the computer. In this case an

arrangement of computer usage times is necessary. Since there is only one

computer, students should use the computer one by one. Hence, besides an

arrangement of computer usage times a computer using schedule, an ordering,

is needed too. Whenever such a problem is faced, the planner of the facility

should come up with how much of the requested jobs of each agent will be

processed and in which order they will be processed.

The scenarios in the previous paragraph are examples of queuing problems.

A problem is considered as a queuing problem whenever there is a facility

which is capable of processing jobs one by one and there is a group of agents

who has requested jobs from the facility. In the literature queuing problems

are studied under different models. The difference between these models are

usually on whether the facility has a limited capacity or not, and whether

individuals have identical job lengths or not. In the model that Maniquet

(2003), Chun (2004a), and Kayi & Ramaekers (2006) studies the capacity of

the facility is unlimited, and job lengths of agents are identical. In Moulin

(2004), Moulin (2005), and Özsoy (2005)’s model again the capacity of the

facility is unlimited, but this time agents may have different job lengths. At

first glance the first class of problems may be perceived as the subset of the

second one, but the assumptions on preferences of agents in these two models

are not in line with this perception. In the second model agents account for

the time they wait similarly, it costs a dollar for each unit of time that they

wait for. In the first model waiting cost of a unit of time could be different

for the agents. Hence the first model considers more general preferences than

the second one. Another important aspect of both of the models is that all

jobs should be fully processed.

As an example to the first model we can think of a group of tourists who

joins to a travel agency’s trip to a certain touristic site. When this group

arrives to their hotel they should be checked in to the hotel. Checking in
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procedure is more or less a standard procedure, so all tourists’ requested job

lengths are identical. Even though their requested job lengths are equal some

individuals may think that after a long trip to the destination waiting for

others to check in is more costly than others think, so waiting cost of a unit

of time is different for everyone. An uncompleted checking in procedure is

meaningless hence everyone’s job should be fully processed.

A situation where a group of wounded men are brought to a hospital from

a combat zone can be thought of an example for the second model. The time

needed for minimal amount of medical treatment for each soldier would differ

so requested job lengths of agents are different than each other. Not even

getting the minimal amount of medical treatment does not mean much for a

wounded soldier so partially processing a job is meaningless. Since all agents

are in an urgent situation it can be considered that they should all get the

treatment as quick as possible so they account the time they wait similarly.

Moulin (2004), Moulin (2005), and Özsoy (2005) characterize solution

concepts which are immune to certain maneuvers by a group or groups of

agents. The motivation behind these maneuvers are agents’ aim to get higher

benefits. Merging, splitting, and partial transferring of jobs are among these

maneuvers. Before preceding to the results of their articles an understanding

of these maneuvers is beneficial.

Merging is the case where a group of people choose an individual from

their group; that individual declares a job length which is equal to the sum

of the job lengths of the individuals in that group. Obviously if a scheduling

rule favors longer jobs in ordering the agents, merging will be beneficial.

Splitting is the converse of merging. If an agent with a positive job length

finds a group of agents who does not have any jobs to do or in other words

who have job lengths equal to zero, the agent with the positive job length

divides his job length into smaller time slots and distributes them to agents

who have job lengths equal to zero. They all declare that they have such jobs
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to do. In this case if a scheduling rule favors shorter jobs, splitting would be

beneficial under that rule.

Partial transferring of jobs is sort of in between merging and splitting.

In this case a group of agents reallocate their job lengths, and try to benefit

from it. It is clear that some agents can take more advantegous positions in

the queue by using such maneuvers. Thus characterizing a scheduling rule

which is invulnerable to such maneuvers is desirable.

Moulin (2004), Moulin (2005), focuses on these maneuvers. Before dis-

cussing Moulin’s findings it would be wise to make a distinction between his

works on this subject. Moulin makes a main distinction between types of

scheduling rules. A scheduling rule is deterministic if a planner assigns a

schedule to each problem. Under deterministic rules agents know their exact

places in the queue. A scheduling rule is non-deterministic or randomized if

a planner assigns a probability distribution over all possible orderings. Under

randomized rules agents do not know their exact places in the queue but they

know with which probability they will be in any place of the queue.

Moulin (2005) deals with deterministic rules. He assumes that users have

identical linear waiting costs. In this context, if an ordering minimizes the

sum of waiting times of agents it is called an efficient schedule. To minimize

the sum of waiting times an ordering should schedule shorter jobs earlier than

longer jobs. Moulin points out that any efficient deterministic scheduling

rule will fail to satisfy merge-proofness or split-proofness. To overcome this

drawback he introduces scheduling fees or in other words monetary transfers

to the model.

Moulin defines monetary transfers as taking money from some individuals

and giving money to others. He designs this transfers in a way that sum of

tranfers is equal to zero, hence situations where money collected is greater

than money allocated or vice versa are ruled out. After adding possibility

of transfers to the model agents start to consider the time they will wait
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until their job is executed and their monetary transfer. To be able to form

a link between waiting times of individuals and their transfers Moulin makes

further assumptions. He assumes that each individual is incuring a waiting

cost of a dollar per unit of time until his job is completed. Thus the cost of

an individual is his waiting time minus his transfer.

Moulin introduces the concepts of scheduling mechanisms and scheduling

methods. A mechanism assigns an ordering of the agents and a tranfer vector

to each problem. A method assigns a profile of net waiting costs to each

problem. The sum of the waiting costs is equal to the sum of the requested

job lengths of agents plus sum of the net waiting times of each agents. Net

waiting time of an agent in a certain ordering is the sum of the job lengths

of agents who preceed him in that ordering. Since a mechanism assigns an

ordering of the agents and a tranfer vector, by adding the transfer of an

agent to his waiting time we can find his waiting cost and by subtracting his

requested job length from his waiting cost we reach to his net waiting cost.

So to any given mechanism a method can be associated.

Equal treatment of equals, and continuity are among nice properties which

a scheduling rule may satisfy. A mechanism satisfies equal treatment of equals

(ETE) if the requested job lengths of any two agents are equal then their

induced waiting costs are equal. A mechanism is continuous if mapping from

requested job lengths to waiting costs is continuous.

Moulin shows that when there are more than four agents any efficient

mechanism satisfying equal treatment of equals cannot be both merge-proof

and split-proof. Replacing equal treatment of equals with continuoutiy leads

to the same outcome. In other words if one wants a mechanism to be both

merge-proof and split-proof then this mechanism will fail to satisfy both equal

treament of equals and continuity.

Another contribution of this paper is about relationships between merge-

proofness, split-proofness and some equity conditions. These equity condi-
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tions are:

Stand alone bound ; A method satisfies stand alone bound if for any agent,

the total waiting cost plus his transfer is greater than or equal to his

requested job length.

Ranking : A method satisfies ranking if agent i’s requested job length is less

than or equal to agent j’s requested job length then agent i’s cost is

less than or equal to agent j’s cost.

Monotonicity : A method satisfies monotonicity if requested job length of

an agent increases, his cost increases or stays the same.

No charge for null jobs: A method satisfies no charge for null jobs if an

agent’s requested job length approaches to zero his cost approaches to

zero.

Finite liability : A method satisfies finite liability if all agents’ costs are

strictly less than infinity.

Moulin states that whenever there are more than four potential users; any

efficient, continuous, split-proof mechanism which satisfies equal treatment

of equals fails to satisfy stand alone bound, ranking, and monotonicity. Fur-

thermore, if the set of potential users is infinite it fails to satisfy no charge

for null jobs and finite liability.

Moulin defines a continuous function Θ : R2
++ → R for all a, b ∈ R+

Θ(a, b) + Θ(b, a) = min{a, b}. He designs two methods named S+ and S−.

These two methods are Θ-separable scheduling methods. Respectively they

are associated with Θ+ and Θ− which we define as : for all a, b ∈ R+

Θ+(a, b) =
1

2
min{a, b}

Θ−(a, b) =
1

2
max{a, b}.
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It turns out that S+ is merge-proof, and S− is split-proof. Hence S− violates

the equity tests which are stated above, but S+ satisfies all of them.

Moulin works on partial transfer of jobs mainly by taking into account

the cases where transfers are only between two agents. He first defines ε-

shrink and ε-spread of a problem. In forming the ε-shrink of a problem, take

two agents and keep the requested job lengths of the other agents constant,

partially transfer some job from the one of the two agents who has a higher

job length to the other one in a way that the one who has a higher job length

in the beginning still has a higher job length. The ε-spread of a problem is

similar to the ε-shrink of a problem. In ε-spread of a problem the transfer

is from the agent with a smaller job length to the one who has a higher

job length. A mechanism is pairwise shrink-proof whenever for all problems,

and for all ε-shrinks of that problem, total waiting costs of agents in the

original problem is less than or equal to the total waiting costs of individuals

in the transformed problem minus ε. A mechanism is pairwise spread-proof

whenever for all problems, and for all ε-spreads of that problem, total waiting

costs of agents in the original problem is less than or equal to the total

waiting costs of agents in the transformed problem plus ε plus sum of the

requested job lengths of agnets in between agents who has created ε-spread.

A mechanism is called pairwise transfer-proof if it is both pairwise shrink-

proof and pairwise transfer-proof. Moulin characterizes the mechanism S+

by efficiency, continuity, pairwise transfer-proofness, and by the stand alone

bound or no charge for null jobs. As a final contribution he states that if there

are more than three users any efficient and continuos mechanism is vulnerable

to job transfers involving two or three agents.

Moulin (2004) studies randomized rules. Just like Moulin (2005) there are

infinite number of potential users, and a group of people from that group uses

the facility. Each agent has a non-negative requested job length. The crucial

difference between Moulin (2004) and Moulin (2005) is that in Moulin (2005)
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there are no transfers in the model instead there is a probability distribution

over the set of possible orderings. A scheduling rule assigns a probability

distribution over the set of orderings to every problem. Naturally agents in

this model consider the expected completion time of their jobs. For each

agent having a smaller expected waiting time is better than a longer one. A

scheduling method assigns a profile of expected waiting times to each problem.

Moulin defines quasi-proportional rules. He defines ω which is a function

on R+ such that ω(0) = 0 and for all a > 0 ω(a) > 0. Let x be the vector of

requested job lengths of agents, for a requested job length vector such that all

of the agents have job lengths greater than zero and for all z ≥ 0 a ω-quasi-

proportional rule draws as many as the cardinalty of the users independent

random variables Zi with respective cumulative distribution functions Fi(z) =

min{zω(xi), 1} for all z ≥ 0 and orders jobs accordingly to the realization of

these variables by breaking ties arbitrarly with uniform probability. When

x ≥ 0 and there are some components of x equal to 0 these agents with zero

requested job lengths are ordered before the ones with positive requested job

lengths.

If for all a > 0 we have ω(a) = a then this ω-quasi-proportional rule is

the proportional rule. Proportional rule assigns a probability distribution to

set of orderings. The probability of agent i being last ordered is calculated

by dividing the requested job length of agent i to the sum of requested job

lengths of all agents. The probability that agent j ordered just before last

ordered agent i is equal to the requested job length of agent j over sum of

the requested job lengths of all agents besides agent i. Hence for a given

ordering the probability that agent l being in his place in that given ordering

is equal to the requested job length of agent l over the sum of requested job

lengths of agents preceding agent l plus the requested job length of agent l.

So the probability of occurance of an ordering is calculated by multiplying

probabilities of each agent being in his position in that ordering. Other well
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known rules can also be expressed as special cases of ω-quasi-proportional

rules. If for all a > 0 we have ω(a) = 1 then this ω-quasi-proportional rule

is the uniform rule where probability of each ordering is equal. If for all

a > 0 we have ω(a) = aα, where α ∈ R. When the limit of α goes to +∞

then this ω-quasi-proportional rule is the shortest job first rule where only

possible orderings are the ones in which jobs are ordered from shortest job

to longest one with equal probability. When the limit of α goes to −∞ then

this ω-quasi-proportional rule is the longest job first rule where only possible

orderings are the ones in which jobs are ordered from longest job to shortest

one with equal probability.

Moulin defines recursivity, a scheduling rule is recursive if for all prob-

lems there exists a probability distribution over set of possible orderings such

that probability of an order is equal to probability that last ordered agent is

ordered last times the porbabilty of occurance of the rest of the queue. The

second one is seperability, a scheduling rule is separable if for all problems and

all subsets of the set of users of the facility the random ordering of the jobs

in the subset of users is independent of the jobs outside the subset. The third

one is the well known anonymity axiom. A scheduling rule is anonoymous

if agents’ names are not important, i.e., the only important characteristic of

a participant is his requested job length, the last one is the positivity prop-

erty which may be interpreted as: for any requested job length profile any

agent has a chance to precede any other agent. Moulin characterizes quasi-

proportional rules by a combination of seperability, recursivity, anonymity,

and the positivity property

In Moulin (2005) merge-proofness and split-proofness were the main ob-

jects of attention. Just like Moulin (2005), Moulin (2004) handles these ma-

neuvers. Moulin defines demand monotonicity and explores merge-proofness

in terms of demand monotonicity and previously defined properties. A

scheduling method is demand monotonic if for all problems and for all agents
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expected wait of an agent minus his requested job length is non decresing in

his requested job length. In other words whenever an agent’s requested job

length increses his net expected waiting time does not decrease. A scheduling

rule is called demand monotonic whenever the associated method is demand

monotonic. Moulin proposes that:

1. An ω-separable scheduling method is demand monotonic if and only if

the probability that agent i follows agent j where agent j has a positive

requested job length is non decreasing in agent i’s requested job length.

2. An ω-separable scheduling rule is demand monotonic if and only if ω is

nondecreasing.

As his main result Moulin states that an anonymous, demand monotonic,

and separable scheduling method is merge-proof, so a demand monotonic

quasi-proportional rule is merge-proof.

A method is merge-invariant if for all problems expected waiting times of

agents before merging is equal to the expected waiting times of agents after

merging. Uniform method is the only merge-invariant scheduling method.

Moulin explores split-proofness, and he makes characterizations of sepa-

rable split-proof scheduling rules, and recursive scheduling rules. He states

that a separables scheduling rule is split-proof if and only if the corresponding

method is split-proof and a technical property is satisfied. Moulin adds that

a ω-quasi-proportional rule is split-proof if and only if ω is subadditive. A

recursive scheduling rule is split-proof when one of the agents splits his job

into pieces the probability that another job is scheduled last does not become

greater.

Moulin defines a new property, ranking. A scheduling method meets rank-

ing if an agent i’s requested job length is greater than or equal to agent j’s

requested job length then agent i’s expected net waiting time is greater than

or equal to agent j’s expected net waiting time. Moulin states that an anony-
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mous ω-separable method meets ranking if and only if the probability that

agent i follows agent j where agent j has a positive requested job length is

non decreasing in agent i’s job length and it is less than or equal to agent

i’s requested job length over agent i’s requested job length plus other agent’s

requested job length.

As a final contribution Moulin introduces split-invariance property, a

scheduling rule is split-invariant if for all problems and all agents the agent

who splits his job does not gain or lose with respect to not splitting his job.

Moulin states that

1. If a separable scheduling rule is split-invariant then its method is pro-

portional.

2. The proportional rule is the only recursive and split-invariant scheduling

rule.

Özsoy (2005) considers another maneuver named coordinated splitting.

By coordinated splitting it is meant that at least two different agents split their

jobs and make a contract between themselves. This contract may be imagined

as agents switch their places in the queue with a certain probability in favor

of one of the agents. Whenever only two agents take action in coordinated

splitting it is called pairwise splitting.

The main result of this article is that whenever there are infinite number

of potential users. A separable and anonymous scheduling rule is demand

monotonic and coordinated split-proof if and only if its corresponding method

is uniform. zsoy introduces a new property named population monotonicity.

By population monotonicity it is ment that for all problems and for all agents

if a new agent joins to the group the expected costs of all agents in the

original problem are less than or equal to their costs in the new problem. She

states another theorem: an anonymous, separable, and population monotonic

scheduling rule is demand monotonic and coordinated split-proof if and only
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if its associated method is uniform.

No-envy is a well known criterion of fairness. By no-envy it is meant that

non of the agents prefer the the ordering and the transfer of another agent to

his own ordering and transfer. The concept of no-envy is applicable to queuing

problems. Youngsub Chun in Chun (2004b) works on this subject. Before

discussing this article mentioning Maniquet (2003) will be enlightening.

In Maniquet (2003) just like the models in previous articles there is a

group of agents who wants to use a facility which has an unlimited capacity

and transfers are designed in the same way. Agents should use the facility one

by one. Hence the planner of the facility should order the agents and assign

monetary transfers between them. Unlike the previous models job lengths of

agents are same, and each person is identified with an impatience level. The

impatience level of an agent is the cost he incurs while waiting for another

agent. The waiting cost of an agent is the number of people he waits times

his impatience level. A solution to a queuing problem in this model is an

ordering of agents and a profile of transfers. Each agent’s payoff is linear and

accounted by subtracting his waiting cost from his transfer.

An allocation is an ordering of agents and a profile of transfers. An allo-

cation is feasible if no two people get the same place in the queue and sum of

transfers is less than or equal to zero. It is efficient if the sum of waiting costs

of individuals in the induced ordering is less than or equal to waiting costs

of individuals in any other possible ordering and sum of transfers is equal to

zero. Hence for an allocation to be efficient the induced ordering should order

agents starting from the one who has the greatest impatience level to the one

who has the lowest impatience level by breaking ties arbitrarily.

Maniquet forms a link between well-known concept from cooperative

games Shapley value and queuing problems. The spirit of Shapley value is

to account an agent’s marginal contribution to a coalition. Take a group of

people if they are producing something. Their production is the value of their
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group, and this value can be distributed between the individuals forming the

group. Shapley value for a member of the group is the weighted sum of that

agent’s marginal contribution to each coalition. A coalition is a subgroup of

agents in that group.

Maniquet defines valuations for coalitions to be able to use Shapley value

concept. There would be different valuations for coalitions. He introduces

two different valuation methods. First he takes a coalition and assumes that

this coalition is served earlier than the rest of the agents. He takes an efficient

queue in that coalition and sums up the waiting costs of the agents in that

coalition according that efficient queue. He calls that sum the value of that

coalition. In his second approach, he orders the entire group efficiently then

sums up the waiting costs of the agents in the colaition according to that

efficient ordering and he adds the incremental cost that coalition imposes on

non-members. He calls this sum the value of the coalition. The cost incre-

mented by a coalition to a nonmember of a coalition is sum of the requested

job lengths of coalition members that preceed that nonmember. The sum of

that costs is the incremental cost that coalition imposes on non-members. By

using this valuations of coalitions Maniquet finds Shapley values of agents.

Maniquet shows that this two approaches of valuation is dual hence Shapley

values will be equal for each agent in both approaches. He states that if an al-

location gives agents the payoffs corresponding to Shapley value then induced

ordering will be efficient and induced transfer for each agent will be equal to

half of his own waiting cost minus sum of half of the impatience levels of the

agents that follow him.

As a final contribution Maniquet defines nine axioms and characterizes

Shapley value in queuing problems in terms of those axioms. Effciency and

feasibility are in those nine axioms. The others are:

Pareto indifference: A solution concept satisfies Pareto indifference if it

selects all the allocations which give the same payoff to all agents with
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an allocation which that solution concept has already chosen.

Anonymity : A solution concept satisfies anonymity if changing the names

of agents does not effect the selection of that concept.

Equal treatment of equals: A solution concept satisfies equal treatment of

equals whenever the payoffs of the agents with same impatience levels

are equal.

Identical preferences lower bound : A solution concept satisfies identi-

cal preferences lower bound if for any queuing problem agent i’s payoff is

greater than or equal to the payoff he gets under the problem where all

other agents’ impatience levels are equal to agent i’s impatience level.

Negative cost monotonicity : A solution concept satisfies negative cost

monotonicity if agent i becomes more impatient while other agents’

impatience levels stays the same then all the agents besides agent i gets

better-off.

Independence of preceding costs: A solution concept satisfies indepen-

dence of preceding costs if agent i’s impatience level increases while the

other agents’ impatience levels stays the same, the payoffs of the agents

who are queued after agent i in the original problem are not effected.

Last agent equal responsibility : A solution concept satisfies last agent

equal responsibility if the agent who is queued last in the original prob-

lem leaves the set of users of the facility, the remaining agents’ relative

place in the queue stays the same and they share his transfer equally in

the solution of the new problem.

Maniquet’s charaterizetion result is the equivalance of the statements for a

solution concept:
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i. For all problems, solution concept Θ selects all the allocations assigning

to the agents payoffs corresponding to the Shapley value of the queuing

problem where coaltions are valued in Maniquet’s way.

ii. Θ satisfies efficiency, anonymity, equal treatment of equals, and inde-

pendence of preceding costs.

iii. Θ satisfies feasibility, Pareto indifference, identical preferences lower

bound, negative cost monotonicity, and last agent equal responsibility.

iv. Among the solution concepts satisfying feasibility, Pareto indifference,

identical preferences lower bound, and last agent equal responsibility,

Θ minimizes the sum of absolute values of the transfers.

In Chun (2004a) the model in Maniquet (2003) is used but different val-

uation of coalitions is introduced. Chun takes a coalition and assumes that

the coalition is served later than rest of the group. He considers that the

coalition in itself is queued efficiently then he sums up the waiting costs of

the agents who are in coalition. Like in Maniquet’s approach this sum is

used as the value of a coalition to find Shapley values of the agents. Similar

to previous paper if an allocation gives agents the payoffs corresponding to

Shapley value then induced ordering is efficient and this time induced transfer

for each agent will be equal to sum of the half of impatience levels of agents

that precede him minus number of people waiting him times half of his own

impatience level. The only diffence between these two papers is whether the

coalition is served first or last. Again like Maniquet, Chun characterizes his

rule with nine axioms which are similar to Maniquet’s. Like his approach his

axioms are in a way reverse of Maniquet’s. The first six axioms of Chun are

same as Maniquet’s first six axioms but he uses positive cost monotonicity

instead of negative cost monotonicity, independence of following costs instead

of indepence of preceding costs, first agent equal responsibility instead of last

agent equal responsibility.
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Positive cost monotonicity : A solution concept satisfies positive cost

monotonicity if agent i becomes more impatient while other agents’

impatience levels stays the same then all the agents besides agent i gets

worse-off.

Independence of following costs: A solution concept satisfies indepen-

dence of following costs if agent i’s impatience level increases while the

other agents’ impatience levels stays the same, the payoffs of the agents

who are queued before agent i in the original problem are not effected.

First agent equal responsibility : A solution concept satisfies first agent

equal responsibility if the agent who is queued first in the original prob-

lem leaves the set of users of the facility, the remaining agents’ relative

place in the queue stays the same and they share his transfer equally in

the solution of the new problem.

Maniquet’s charaterizetion result is the equivalance of the statements for a

solution concept:

i. For all problems, solution concept Θ selects all the allocations assigning

to the agents payoffs corresponding to the Shapley value of the queuing

problem where coaltions are valued in Chun’s way.

ii. Θ satisfies efficiency, Pareto indifference, equal treatment of equals, and

independence of following costs.

iii. Θ satisfies feasibility, Pareto indifference, identical preferences lower

bound, positive cost monotonicity, and first agent equal responsibility.

iv. Among the solution concepts satisfying feasibility, Pareto indifference,

identical preferences lower bound, and first agent equal responsibility,

Θ maximizes the sum of absolute values of the transfers.
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Chun (2004b) considers the same model as in Maniquet (2003), and Chun

(2004a). Chun characterizes solution concepts satisfying Pareto efficiency,

and envy freeness. Due to simplicity of payoff functions in this setup, they

are characterized by ordering agents starting from the one with the highest

impatience level to the one with lowest impatience level; and arranging trans-

fers in a way that difference between transfers of two agents where one follows

the other is less than or equal to the impatience level of the one who is ahead

and greater than or equal to the one who is behind.

The other contributions of Chun in this article are negative results. It

is stated in Chun that when there are more than two agents there is no

solution concept which is Pareto efficient, envy-free, negative or positive cost

monotonic. Again when there are more than two agents there is no solution

concept satisfying Pareto efficiency, no-envy, and independence of following

or preceding costs.

After reaching such negative results Chun modificates the concept of no-

envy as backward, and forward no envy. A solution concept satisfies backward

no-envy if none of the agents envy another agent who has a lower impatience

level. A solution concept satidfies forward no-envy if none of the agents envy

another agent who has higher impatience level. Chun states that Maniquet

rule satisfies backward no-envy and his rule satisfies forward no-envy.

Kayi & Ramaekers (2006) concetrates on strategy-proffness in queuing

problem. A solution concept satidfies strategy-proofness if an agent revels a

different impatience level instead of his real impatience level he does not get

better-off.

Kayi & Ramaekers (2006) introduces non-bossiness. A solution concept

satisfies non-bossiness if there is no agent who can effect the allocation of

other agents by announcing a different impatiance level for himself without

affecting his own allocation. They state that there is no solution concept

satisfying Pareto efficiency, strategy proofness, and non-bossiness.
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Besides this negative result Kayi & Ramaekers (2006) revisits Mitra and

Sen’s rule which is proposing efficient orderings and letting transfer of agent

i equal to sum of impatience levels of agents who are ordered before agent i

times number of people they wait for divided by number of agents minus two

minus sum of impatience levels of agents who are ordered after agent i times

number of agents they wait starting from agent i divided by number of agents

minus two. Mitra and Sen’s rule is strategy-proof. Kayi and Ramaekers

concetrates on properties of Mitra and Sen’s rule in the rest of the paper.

I am considering a different model than the models that has been discussed

above. Under my model the capacity of the facility is unlimited. This is in line

with all of the models that we have discussed so far. Like Maniquet (2003)’s,

Chun (2004a)’s, and Kayi & Ramaekers (2006)’s articles the job lengths of

agents are identical. The difference in my model is about the preferences of

agents. I am only assuming that all of the agents prefer being in an earlier

position in an ordering to being in later position. Hence, waiting cost of

a unit of time may be different for all agents, and for an agent the cost of

waiting the same amount of time in a different place in the queue may be

different.(for example an agent may think that, waiting the first ordered agent

while being second ordered is more costly than waiting the fourth ordered

agent while being fifth ordered) I am adding transfers to the model just like

the previous authors has done. My main aim in my study is to characterize

the envy free solutions. Besides I am imposing a another assumption on

preferences of agents ,namely order preservation property, which still keeps

the preferences of the agents more general than previous papers’ models.

Order preservation property says that if agent i values the difference between

two consecutive positions more than agent j does, then agent i will keep

valuing the difference between consecutive positions which come later in the

queue greater than or equal to agent j values. In the set of problems where

order preservation property is satisfied I again search for the characterization
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of envy free solutions.
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Chapter 2

MODEL AND RESULTS

2.1 THE MODEL AND BASIC DEFINI-

TIONS

Let N = {1, . . . , n} be a finite set of agents where n = |N |. The agents in the

set N request from a facility to process their jobs. We will assume that the

job lengths of all agents are equal, the facility has unlimited capacity, and it

can process jobs one at a time. Let Nn denote the positive integers up to n.

An ordering of the agents in N is one-to-one function σ : N → Nn. Let Π(N)

denote the of set orderings of N . For any i ∈ N and for any σ ∈ Π(N), σi is

the position of agent i in the ordering σ. For any a ∈ Nn, σ−1(a) denotes the

agent who is placed in the ath position in the ordering σ. Let t ∈ Rn denote

the vector of transfers. If for some i ∈ N we have ti > 0, then it means that

agent i is receiving ti units of money; if ti < 0, then it means that agent i

is paying ti units of money. The sum of the transfers of the agents,
∑

i∈N ti,

is the budget of the facility. If
∑

i∈N ti = 0, then we say that the budget is

balanced, hence in total money collected is equal to money distributed. Let
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BB denote the set of budget balanced transfer vectors, i.e.,

BB = {t ∈ Rn|
∑
i∈N

ti = 0}.

Now we are faced with the problem of ordering agents and arranging

transfers between them. Hence a pair (σ, t) ∈ Π(N)×BB is a solution to the

problem faced by the group N . We are assuming that agents only care about

their positions in the queue and their transfers. For any i ∈ N , let ui denote

the payoff function of agent i on Nn×R. We will assume that ui : Nn×R → R

is such that ui(σi, ti) = vi(σi) + ti. Where for any i ∈ N , vi : Nn → R is such

that, for any a, b ∈ Nn if a ≤ b, then vi(a) ≥ vi(b). Thus for any i ∈ N , ui is

quasi-linear in transfers and all of the agents weakly prefer an earlier position

to a later position. For any i ∈ N define di : Nn × Nn → R as: for any

a, b ∈ Nn, di(a, b) = vi(a) − vi(b). Thus di(a, b) gives the difference between

the valuation of agent i from being in position a and being in position b.

Hence (N, u) is a queuing problem where N is a finite set of agents and

u = (ui)i∈N is a profile of payoff functions. A pair (σ, t) ∈ Π(N) × BB is a

solution to a queuing problem. Let Q be the set of all queuing problems. A

solution concept F is defined as F : Q → 2Π(N)×Rn
.

At a given solution if an agent i prefers the ordering and transfer of agent

j to his own ordering and transfer then it means that agent i envies agent j.

If for a given solution none of the agents envy any other agent then we say

that this solution is an envy free solution.

Definition 1 (Envy freeness, NE) For any (N, u) ∈ Q, a solution (σ, t) ∈

Π(N)×BB is envy free if and only if for any i, j ∈ N , ui(σi, ti) ≥ ui(σj, tj).

We use NE(N, u) to denote the set of envy free solutions of the problem

(N, u).

A solution (σ, t) Pareto dominates another solution (σ′, t′), if all of the

agents weakly prefer their orderings and transfers under (σ, t) to their order-
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ings and transfers under (σ′, t′), and there is at least one agent who strictly

prefers his ordering and transfer under (σ, t) to his ordering and transfer un-

der (σ′, t′). If a solution is not Pareto dominated by any other solution then

it is a Pareto efficient solution.

Definition 2 (Pareto efficiency, PE) For any (N, u) ∈ Q, a solution

(σ, t) ∈ Π(N) × BB is Pareto efficient if and only if there does not exist

(σ′, t′) ∈ Π(N)×BB such that for any i ∈ N , ui(σ
′
i, t

′
i) ≥ ui(σi, ti) and there

exists j ∈ N with ui(σ
′
j, t

′
j) > ui(σj, tj). We use PE(N, u) to denote the

Pareto efficient solutions of the problem (N, u).

For any given problem, an ordering is a maximal ordering if it maximizes

the sum of valuations of agents over the set of orderings. The set of maximal

orderings for the problem (N, u) will be denoted with Σmax(N, u), i.e.,

Σmax(N, u) = {σ ∈ Π(N)|∀σ′ ∈ Π(N) :
∑
i∈N

vi(σi) ≥
∑
i∈N

vi(σ
′
i)}.

Maximal orderings will play crucial roles in our results.

2.2 RESULTS

In the next lemma we will show that for any given problem, if a solution is an

envy free solution then the ordering of agents should be a maximal ordering.

Lemma 1 For all (N, u) ∈ Q, if σ ∈ Π(N)\Σmax(N, u), then for all t ∈ BB,

(σ, t) /∈ NE(N, u).

Proof Let σ ∈ Π(N) be such that, there exists σ′ ∈ Π(N) where∑
i∈N vi(σi) <

∑
i∈N vi(σ

′
i). Assume that there exists t ∈ BB such that

(σ, t) ∈ NE(N, u). So

∀i, j ∈ N ui(σi, ti) ≥ ui(σj, tj) .
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Therefore

∀i, j ∈ N vi(σi) + ti ≥ vi(σj) + tj .

Note that for all i ∈ N there exists j ∈ N such that σ′i = σj, which is given

by σ−1(σ′i). Hence

∀i ∈ N vi(σi) + ti ≥ vi(σ
′
i) + tσ−1(σ′i)

.

Which implies

∑
i∈N

vi(σi) +
∑
i∈N

ti ≥
∑
i∈N

vi(σ
′
i) +

∑
i∈N

tσ−1(σ′i)
.

Note that ∑
i∈N

tσ−1(σ′i)
=

∑
i∈N

ti .

So ∑
i∈N

vi(σi) +
∑
i∈N

ti ≥
∑
i∈N

vi(σ
′
i) +

∑
i∈N

ti .

Hence ∑
i∈N

vi(σi) ≥
∑
i∈N

vi(σ
′
i) .

Which contradicts with
∑

i∈N vi(σi) <
∑

i∈N vi(σ
′
i). Hence (σ, t) /∈ NE(N, u).

�

By previous lemma we have seen that any envy free solution uses a max-

imal ordering to order the agents. By using this fact in the next lemma we

will show that any envy free solution is also a Pareto efficient solution.

Lemma 2 For all (N, u) ∈ Q, if (σ, t) ∈ NE(N, u) then (σ, t) ∈ PE(N, u)

Proof Let (σ, t) ∈ NE(N, u) by Lemma 1

∀σ′ ∈ Π(N)
∑
i∈N

vi(σi) ≥
∑
i∈N

vi(σ
′
i).
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Assume that there exists (σ, t) ∈ Π(N)×BB which Pareto dominates (σ, t).

So

∀i ∈ N vi(σi) + ti ≥ vi(σi) + ti ,

and

∃j ∈ N : vj(σj) + tj ≥ vj(σj) + tj .

Hence ∑
i∈N

vi(σi) +
∑
i∈N

ti >
∑
i∈N

vi(σi) +
∑
i∈N

ti.

Note that ∑
i∈N

ti =
∑
i∈N

ti = 0 .

So ∑
i∈N

vi(σi) >
∑
i∈N

vi(σi) .

Which contradicts with
∑

i∈N vi(σi) ≤
∑

i∈N vi(σi), concludes the proof. �

The next lemma states that if a solution is an envy free solution, then there

is a link between the difference between the transfers of agents and their

valuations on orderings. This result is due to payoff functions of agents being

quasi-linear in transfers.

Lemma 3 If (σ, t) ∈ NE(N, u) then for all i, j ∈ N such that σi < σj

di(σi, σj) ≥ tj − ti ≥ dj(σi, σj)

Proof Let (σ, t) ∈ NE(N, u), then for all i, j ∈ N such that σi < σj we have

vi(σi) + ti − vi(σj)− tj ≥ 0 ,

vj(σj) + tj − vj(σi)− ti ≥ 0 .

These two inequalities imply

vi(σi)− vi(σj) ≥ tj − ti ≥ vj(σi)− vj(σj) .
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Hence

di(σi, σj) ≥ tj − ti ≥ dj(σi, σj) .

�

As the previous lemma underlines the difference between the valuations of

agents on different positions in the queue is very curicial in constructing

the transfers. The next property is a restriction on the payoff functions of

the individuals. It says that, if agent i values the difference between two

consecutive positions more than the agent j does, then agent i will keep

valuing the difference between consecutive positions which come later in the

queue greater than or equal to agent j values these consecutive positions.

Definition 3 (Order Preservation Property, OPP ) A problem

(N, u) ∈ Q is said to satisfy order preservation property, if and only if

for all k ∈ Nn and for all i, j ∈ N if vi(k)− vi(k +1) ≥ vj(k)− vj(k +1) then

for all l ∈ Nn such that l ≥ k we have vi(l)− vi(l + 1) ≥ vj(l)− vj(l + 1).

Next we define a solution concept F . With F we order agents recursively,

by placing an agent in the first position if this agent’s difference between his

valuation on being in the first position and being in the second position is

greater than or equal to other agents’ differences between their valuations on

being in the first position and being in the second position. We keep placing

agents to the next positions by consulting the same reasoning. After arrang-

ing an ordering we construct transfers according to chosen ordering, while

constructing transfers we are keeping in mind the wisdom from Lemma 3.

25



Define F : Q → 2Π(N)×Rn
such that first order agents recursively by the

following algorithm:

σ−1(1) ∈ S1 = {i ∈ N |∀j ∈ N : di(1, 2) ≥ dj(1, 2)} ,

σ−1(2) ∈ S2 = {i ∈ N \ {σ−1(1)}|∀j ∈ N \ {σ−1(1)} :

di(2, 3) ≥ dj(2, 3)} ,

...
...

σ−1(k) ∈ Sk = {i ∈ N \ {σ−1(1), . . . , σ−1(k − 1)}|

∀j ∈ N \ {σ−1(1), . . . , σ−1(k − 1)} :

di(k, k + 1) ≥ dj(k, k + 1)} ,

...
...

σ−1(n− 1) ∈ Sn−1 = {i ∈ N \ {σ−1(1), . . . , σ−1(n− 2)}|

∀j ∈ N \ {σ−1(1), . . . , σ−1(n− 2)} :

di(n− 1, n) ≥ dj(n− 1, n)} ,

σ−1(n) ∈ Sn = {i ∈ N |N \ {σ−1(1), . . . , σ−1(n− 1)}} .

Note that there might be more than one ordering.

Without loss of generality assume that for any i ∈ N , σi = i.

Transfers are designed as: for k ∈ {1, . . . , n− 1}

if |Sk| > 1, then

tk+1 − tk = dk(k, k + 1);

if |Sk| = 1, then

tk+1 − tk ∈ [ max
l∈Sk+1

dl(k, k + 1), dk(k, k + 1))];

and
∑

i∈N ti = 0.

The next theorem states that, if a queuing problem satisfies the order

preservation property, then we are able to find all of the envy free solutions of
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this problem by using the solution concept F , furthermore all of the solutions

of F are envy free solutions of this problem.

Theorem 1 For all (N, u) ∈ Q, if (N, u) satisfies order preservation prop-

erty, then (σ, t) ∈ NE(N, u) if and only if (σ, t) ∈ F (N, u).

Proof (⇐) First we will prove that if (σ, t) ∈ F (N, u), then (σ, t) ∈

NE(N, u). Let (σ, t) ∈ F (N, u). Let i, j ∈ N and assume that σi < σj.

Without loss of generality let σi = i, σj = j. So

tj − ti =

j−i−1∑
l=0

(ti+l+1 − ti+l) .

We know from the construction of transfers via F that for all l ∈ {0, . . . , j −

i− 1},

ti+j+1 − ti+l ≤ di+l(i + l, i + l + 1) .

Which implies

tj − ti ≤
j−i−1∑

l=0

di+l(i + l, i + l + 1).

By using the definition of di(·, ·) we reach to

vi(i)− vi(j) =

j−i−1∑
l=0

(vi(i + l)− vi(i + l + 1)) =

j−i−1∑
l=0

di(i + l, i + l + 1).

From the construction of F we know that i ∈ Si so for all l ∈ {0, . . . , j−i−1},

di(i, i + 1) ≥ di+l(i, i + 1) .

Since order preservation property is satisfied for all l ∈ {0, . . . , j − i− 1},

di(i + l, i + l + 1) ≥ di+l(i + l, i + l + 1) .
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So

vi(i)− vi(j) =

j−i−1∑
l=0

di(i + l, i + l + 1) ≥
j−i−1∑

l=0

di+l(i + l, i + l + 1) ≥ tj − ti .

Therefore

ui(i, ti)− ui(j, tj) = vi(i)− vi(j)− (tj − ti) ≥ 0 .

Hence agent i does not envy agent j, i.e., None of the agents envy any other

agent who is ordered after himself.

Now we will show that agent j does not envy agent i. Recall that

tj − ti =

j−i−1∑
l=0

(ti+l+1 − ti+l).

For l ∈ {0, . . . , j − i− 1},

if |Si+l| > 1, then

ti+l+1 − ti+l = di+l(i + l, i + l + 1) .

If j ∈ Si+l, then

di+l(i + l, i + l + 1) = dj(i + l, i + l + 1) .

If j /∈ Si+l, then

di+l(i + l, i + l + 1) > dj(i + l, i + l + 1) .

If |Si+l| = 1, then i + l = Si+l and j > i + l hence i + l 6= j. Then

ti+l+1 − ti+l ∈ [ max
k∈Si+l+1

dk(i + l, i + l + 1), di+l(i + l, i + l + 1)] .
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If j ∈ Si+l+1, then

max
k∈Si+l+1

dk(i + l, i + l + 1) ≥ dj(i + l, i + l + 1) .

If j /∈ Si+l+1, then assume that

dj(i + l, i + l + 1) > max
k∈Si+l+1

dk(i + l, i + l + 1) .

Since order preservation property is satisfied, for all k ∈ Si+l+1,

dj(i + l + 1, i + l + 2) ≥ dk(i + l + 1, i + l + 2) .

Then by definition j ∈ Si+l+1 which contradicts with j /∈ Si+l+1 . So

max
k∈Si+l+1

dk(i + l, i + l + 1) ≥ dj(i + l, i + l + 1) .

Therefore

tj − ti =

j−i−1∑
l=0

(ti+l+1 − ti+l) ≥
j−i−1∑

l=0

dj(i + l, i + l + 1).

By definition

vj(i)− vj(j) =

j−i−1∑
l=0

dj(i + l, i + l + 1) .

Which implies

vj(i)− vj(j) =

j−i−1∑
l=0

dj(i + l, i + l + 1) ≤ tj − ti .

Therefore

uj(j, tj)− uj(i, ti) = −(vj(i)− vj(j)) + tj − ti ≥ 0 .
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Hence agent j does not envy agent i, i.e., none of the agents envy any other

agent who is ordered before himself. So (σ, t) ∈ NE(N, u).

(⇒) Now we will prove that if (σ, t) ∈ NE(N, u), then (σ, t) ∈ F (N, u).

Let (σ, t) ∈ NE(N, u). Assume that (σ, t) /∈ F (N, u).

Part 1) Assume that we cannot construct σ with the ordering algorithm

which is defined in page 26. So there exists i, j ∈ N such that for some

k ∈ {1, . . . , n − 1} i ∈ Sk, j /∈ Sk but σj = k hence σi = l > k. Since

i ∈ Sk, j /∈ Sk we have di(k, k + 1) > dj(k, k + 1). Order preservation

property is satisfied, so for any n ∈ {1, . . . , l − k − 1}

di(k + n, k + n + 1) ≥ dj(k + n, k + n + 1) .

Which implies

di(k, l) =
l−k−1∑
n=0

di(k + n, k + n + 1) >
l−k−1∑
n=0

dj(k + n, k + n + 1) = dj(k, l) .

Hence di(k, l) > dj(k, l). Since (σ, t) ∈ NE(N, u) we have

vi(l) + ti − vi(k)− tj ≥ 0 ,

and

vj(k) + tj − vj(l)− ti ≥ 0 .

Therefore

vj(k)− vj(l) ≥ ti − tj ≥ vi(k)− vi(l) .

Hence

dj(k, l) ≥ di(k, l) .

Which contradicts with di(k, l) > dj(k, l). So we can construct σ with the

ordering algorithm which is defined in page 26.
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Part 2) Even though the ordering of agents is constructed by the algorithm

which is defined in page 26, the transfers are not defined as it is defined in

page 26.

A) For some k ∈ {1, . . . , n− 1} if |Sk| > 1.

Assume that tk+1 − tk 6= dk(k, k + 1), let i, j ∈ Sk and with out loss of

generality let σj = k so σi = l > k. For sake of simplicity rename agent j as

agent k and agent i as agent l. Since k, l ∈ Sk

dk(k, k + 1) = dl(k, k + 1) .

By order preservation property for any n ∈ {1, . . . , |N | − k − 1},

dk(k + n, k + n + 1) = dl(k + n, k + n + 1) .

So

dk(k, l) =
l−k−1∑
n=0

dk(k + n, k + n + 1) =
l−k−1∑
n=0

dl(k + n, k + n + 1) = dl(k, l) .

Since (σ, t) ∈ NE(N, u), by Lemma 3 we have

dk(k, l) ≥ tl − tk ≥ dl(k, l) .

Therefore

tl − tk =
l−k−1∑
n=0

dk(k + n, k + n + 1) .

Hence

tl − tk−1 − tk = dk(k, k + 1) +
l−k−1∑
n=1

dk(k + n, k + n + 1) .

But by assumption

tk+1 − tk 6= dk(k, k + 1) .
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And by Lemma 3

tk+1 − tk < dk(k, k + 1) .

Then

tl − tk+1 >
l−k−1∑
n=1

dk(k + n, k + n + 1).

i) If k + 1 = l then 0 > 0 is a contradiction.

ii) If k + 1 < l by order preservation property

l−k−1∑
n=1

dk+n(k + n, k + n + 1) ≤
l−k−1∑
n=1

dk(k + n, k + n + 1) .

Therefore

tl − tk+1 >
l−k−1∑
n=1

dk+n(k + n, k + n + 1) .

Then there exists m ∈ {k + 1, . . . , l − 1} such that

tm+1 − tm > dm(m, m + 1) .

But by Lemma 3

tm+1 − tm ≤ dm(m, m + 1) .

Since (σ, t) ∈ NE(N, u) we have

tm+1 − tm > dm(m, m + 1) .

Which contradicts with

tm+1 − tm ≤ dm(m,m + 1).

Hence tk+1 − tk = dk(k, k + 1).
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B) If |Sk| = 1. Assume that

tk+1 − tk /∈ [ max
j∈Sk+1

dj(k, k + 1), dk(k, k + 1)] .

By Lemma 3

tk+1 − tk ≤ dk(k, k + 1) .

Hence it should be the case that

tk+1 − tk < max
j∈Sk+1

dj(k, k + 1) .

Take

l ∈ {i ∈ Sk+1|∀j ∈ Sk+1 di(k, k + 1) ≥ dj(k, k + 1)} .

If l = k + 1, then

tk+1 − tk < dk+1(k, k + 1) .

Since (σ, t) ∈ NE(N, u) and again by Lemma 3

tk+1 − tk ≥ dk+1(k, k + 1) .

Which is a contradiction.

If l > k + 1, then k + 1, l ∈ Sk+1 so

dl(k + 1, k + 2) = dk+1(k + 1, k + 2) .

Since order preservation property is satisfied for all n ∈ {0, . . . , l − k − 2}

dl(k + 1 + n, k + n + 2) = dk+1(k + 1 + n, k + n + 2) .
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Hence

dl(k+1, l) =
l−k−2∑
n=0

dl(k+n+1, k+n+2) =
l−k−2∑
n=0

dk+1(k+n+1, k+n+2) = dk+1(k+1, l) .

By no envy

tl − tk+1 = dl(k + 1, l) .

Therefore

tl − tk < dl(k, l) .

Since (σ, t) ∈ NE(N, u) again by Lemma 3

tl − tk ≥ dl(k, l) .

which contradicts with

tl − tk < dl(k, l) .

Hence tk+1− tk ∈ [maxj∈Sk+1
dj(k, k +1), dk(k, k +1)]. So (σ, t) ∈ F (N, u). �

In the rest of the paper we are not assuming order preservation property

any more. The next lemma is a trivial statement but it will be very useful in

finding further results

Lemma 4 For all (N, u) ∈ Q σ ∈ Σmax(N, u) if and only if for all σ′ ∈

Π(N
∑

i∈N di(σi, σ
′
i) ≥ 0.

Proof Let σ ∈ Σmax(N, u) and σ′ ∈ Π(N) then

∑
i∈N

vi(σi) ≥
∑
i∈N

vi(σ
′
i) .

Hence ∑
i∈N

(vi(σi)− vi(σ
′
i)) ≥ 0 .

By definition

∀i ∈ N di(σi, σ
′
i) = vi(σi)− vi(σ

′
i) .
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Therefore ∑
i∈N

di(σi, σ
′
i) =

∑
i∈N

(vi(σi)− vi(σ
′
i)) ≥ 0 .

Let σ ∈ Π(N) be such that for all σ′ ∈ Π(N, u) we have
∑

i∈N di(σi, σ
′
i) ≥

0. Assume that there exists σ′ ∈ Π(N, u) such that
∑

i∈N vi(σ
′
i) >∑

i∈N vi(σi). So ∑
i∈N

(vi(σ
′
i)− vi(σi)) > 0.

Thus ∑
i∈N

di(σ
′
i, σi) > 0.

Which implies ∑
i∈N

di(σi, σ
′
i) < 0.

But it contradicts with ∑
i∈N

di(σi, σ
′
i) ≥ 0.

This concludes the proof.

�

The next lemma states that for any queuing problem if we take a maximal

ordering and change the positions of agents, then the total losses of agents

who move to a later position in the queue is greater than the total gains of

the agents who move to an earlier position in the queu.

Lemma 5 For all (N, u) ∈ Q if σ ∈ Σmax(N, u) then for any sequence of

agents (ir)
k
i=1 such that i1 = ik and for any l, j ∈ {1, . . . , k − 1} il 6= ij we

have
k−1∑
r=1:

σir <σir+1

dir(σir , σir+1) ≥
k−1∑
r=1:

σir≥σir+1

dir(σir+1 , σir)

Proof Let σ ∈ Σmax(N, u) and let (ir)
k
i=1 be a sequence of agents such that

i1 = ik and for all l, j ∈ {1, . . . , k − 1}, il 6= ij. Construct the ordering σ′

as: l ∈ {1, . . . , k − 1}, σ′l = σ1+l and for all i ∈ N \ {(ir) : r ∈ {1, . . . , k}},
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σ′i = σi. Now σ′ is another ordering. Since σ ∈ Σmax(N, u) by Lemma 4

∑
i∈N

di(σi, σ
′
i) ≥ 0 .

Which implies
n∑

i=1:
σi<σ′

i

di(σi, σ
′
i) ≥

n∑
i=1:

σi≥σ′
i

di(σ
′
i, σi) .

Due to the construction of σ′

n∑
i=1:

σi<σ′
i

di(σi, σ
′
i) =

k−1∑
r=1:

σir <σir+1

dir(σir , σir+1) ,

and
n∑

i=1:
σi≥σ′

i

di(σ
′
i, σi) =

k−1∑
r=1:

σir≥σir+1

dir(σir+1 , σir) .

Hence
k−1∑
r=1:

σir <σir+1

dir(σir , σir+1) ≥
k−1∑
r=1:

σir≥σir+1

dir(σir+1 , σir) .

This concludes the proof. �

Lemma 6 For any (N, u) ∈ Q if |N | = 3, then NE(N, u) 6= ∅

and (σ, t) ∈ NE(N, u) if and only if σ ∈ Σmax(N, u) and t2 − t1 ∈

[d2(1, 2), d1(1, 2)], t3 − t2 ∈ [d3(2, 3), d2(2, 3)], t3 − t1 ∈ [max{d2(1, 2) +

d3(2, 3), d3(1, 3)}, min{d1(1, 2) + d2(2, 3), d1(1, 3)}], and t1 + t2 + t3 = 0.

Proof Let σ ∈ Σmax(N, u) and without loss of generality let σ = (1, 2, 3).

From Lemma 5 we know that

i) d2(1, 2) ≤ d1(1, 2)

ii) d3(2, 3) ≤ d2(2, 3)
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iii) d3(1, 3) ≤ d1(1, 3)

If we add i to ii we obtain

iv) d2(1, 2) + d3(2, 3) ≤ d1(1, 2) + d2(2, 3)

Again from Lemma 5

d3(1, 3) ≤ d1(1, 2) + d2(2, 3) and d2(1, 2) + d3(2, 3) ≤ d1(1, 3)

Hence

[d3(1, 3), d1(1, 3)]
⋂

[d2(1, 2) + d3(2, 3), d1(1, 2) + d2(2, 3)] 6= ∅

so for any

z ∈ [max{d2(1, 2) + d3(2, 3), d3(1, 3)}, min{d1(1, 2) + d2(2, 3), d1(1, 3)}]

there exists

x ∈ [d2(1, 2), d1(1, 2)]

and

y ∈ [d3(2, 3), d2(2, 3)]

such that z = x + y. Let (t1, t2, t3) ∈ R3 be such that

t2 − t1 = x , t3 − t2 = y and t1 + t2 + t3 = 0 .
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Then, for agent 1

u1(1, t1)− u1(2, t2) = d1(1, 2)− x ≥ 0

u1(1, t1)− u1(3, t3) = d1(1, 3)− (x + y) ≥ 0 .

Thus agent 1 does not envy other agents.

For agent 2

u2(2, t2)− u2(1, t1) = −d2(1, 2) + x ≥ 0

u2(2, t2)− u2(3, t3) = d2(2, 3)− y ≥ 0 .

So agent 2 does not envy other agents.

For agent 3

u3(3, t3)− u3(1, t1) = −d3(1, 3) + x + y ≥ 0

u3(3, t3)− u3(2, t2) = −d3(2, 3) + y ≥ 0 .

so agent 3 does not envy other agents.

Hence (σ, t = (t1, t1 + x, t1 + x + y)) ∈ NE(N, u)

Let (σ, t) ∈ NE(N, u). By Lemma 1 σ ∈ Σmax(N, u). For sake of

simplicity let σ = (1, 2, 3), by Lemma 3

t2 − t1 ∈ [d2(1, 2), d1(1, 2)]

t3 − t2 ∈ [d3(2, 3), d2(2, 3)]

t3 − t1 ∈ [d3(1, 3), d1(1, 3)] .

38



So there are only two cases to check. Assume that

t2 − t1 ∈ [d2(1, 2), d1(1, 2)],

t3 − t2 ∈ [d3(2, 3), d2(2, 3)],

t3 − t1 /∈ [max{d2(1, 2) + d3(2, 3), d3(1, 3)}, min{d1(1, 2) + d2(2, 3), d1(1, 3)}]

Case 1) If d3(1, 3) ≤ t3 − t1 < d2(1, 2) + d3(2, 3)

t3 − t1 = t3 − t2 + t2 − t1

and

t3 − t2 ≥ d3(2, 3)

t2 − t1 ≥ d2(1, 2)

so

t3 − t1 ≥ d2(1, 2) + d3(2, 3)

is in contradiction with

t3 − t1 < d2(1, 2) + d3(2, 3)

Case 2) If d1(1, 3) ≥ t3 − t1 > d1(1, 2) + d2(2, 3)

t3 − t1 = t3 − t2 + t2 − t1

and

t3 − t2 ≤ d2(2, 3)

t2 − t1 ≤ d1(1, 2)
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so

t3 − t1 ≤ d1(1, 2) + d2(2, 3)

is in contradiction with

t3 − t1 > d1(1, 2) + d2(2, 3)

�

In next lemma we will carry our results to the case when n = 4.

Lemma 7 For any (N, u) ∈ Q if |N | = 4, then NE(N, u) 6= ∅ and (σ, t) ∈

NE(N, u) if and only if σ ∈ Σmax(N, u) and t2 − t1 ∈ [d2(1, 2), d1(1, 2)] ,

t3−t2 ∈ [d3(2, 3), d2(2, 3)], t4−t3 ∈ [d4(3, 4), d3(3, 4)], t3−t1 ∈ [max{d2(1, 2)+

d3(2, 3), d3(1, 3)}, min{d1(1, 2) + d2(2, 3), d1(1, 3)}], t4 − t2 ∈ [max{d3(2, 3) +

d4(3, 4), d4(2, 4)}, min{d2(2, 3) + d3(3, 4), d2(2, 4)}],

t4− t1 ∈ [max{max{d3(2, 3) + d4(3, 4), d4(2, 4), d3(1, 3)− d1(1, 2) + d4(3, 4)}+

max{d2(1, 2), d3(1, 3)− d2(2, 3), d3(1, 3) + d4(3, 4)− d2(2, 4)}, d4(1, 4)},

min{min{d2(2, 3) + d3(3, 4), d2(2, 4), d1(1, 3)− d2(1, 2) + d3(3, 4)}+

min{d1(1, 2), d1(1, 3)− d3(2, 3), d1(1, 3) + d3(3, 4)− d4(2, 4)}, d1(1, 4)}]

such that t1 + t2 + t3 = 0.

From Lemma 6 we know that if there are only three agents we can find

envy free solutions. In the proof of Lemma 7 we will use this information. We

start by considering first three and last three agents in four person problem

seperately and by Lemma 6 we know that there is a set of envy free solutions

to both first three agents and last three agents problems. Note that there

are some agents which are both in first three and last three agents, agent 2

and agent 3. In the next step we check if the intersection of solutions for the
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transfer difference between agents 2 and 3 coming from the solutions to first

three agents’ and last three agents’ problems is nonempty or not. It turns out

that it is nonempty, hence we are able to connect two pieces of information.

The last thing we do is to check if there are solutions which make agent 1

and agent 4 envy free between themselves.

Proof Let σ ∈ Σmax(N, u) and without loss of generality let σ = (1, 2, 3, 4).

From Lemma 6 we know that there are x, y and y, z pairs satisfying

i)

x ∈ [d2(1, 2), d1(1, 2)]

y ∈ [d3(2, 3), d2(2, 3)]

and

x + y ∈ [max{d2(1, 2) + d3(2, 3), d3(1, 3)}, min{d1(1, 2) + d2(2, 3), d1(1, 3)}]

ii)

y ∈ [d3(2, 3), d2(2, 3)]

z ∈ [d4(3, 4), d3(3, 4)]

and

y + z ∈ [max{d3(2, 3) + d4(3, 4), d4(2, 4)}, min{d2(2, 3) + d3(3, 4), d2(2, 4)}]

Let

Y = {y ∈ [d3(2, 3), d2(2, 3)] | ∃x ∈ [d2(1, 2), d1(1, 2)] :

x + y ∈ [max{d2(1, 2) + d3(2, 3), d3(1, 3)}, min{d1(1, 2) + d2(2, 3), d1(1, 3)}]
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If max(Y ) = d2(2, 3) then by Lemma 5

d3(2, 3) + d4(3, 4) ≤ d2(2, 3) + d3(3, 4)

d4(2, 4) ≤ d2(2, 3) + d3(3, 4)

If max(Y ) 6= d2(2, 3) then d2(2, 3) /∈ Y , we know from Lemma 5 that

max{d2(1, 2) + d3(2, 3), d3(1, 3)} ≤ d2(2, 3) + d1(1, 2)

and

d2(2, 3) + d2(1, 2) ≤ d2(2, 3) + d1(1, 2)

then it should be the case that

min{d1(1, 2) + d2(2, 3), d1(1, 3)} < d2(2, 3) + d2(1, 2)

else d2(2, 3) ∈ Y . So it is the case that

d1(1, 3) < d2(2, 3) + d2(1, 2) ≤ d1(1, 2) + d2(2, 3).

Since

d1(1, 3)− d2(1, 2) + d2(1, 2) = d1(1, 3),

then

d1(1, 3)− d2(1, 2) ∈ Y,

so

max(Y ) ≥ d1(1, 3)− d2(1, 2).

Assume that

max(Y ) > d1(1, 3)− d2(1, 2)
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then

max(Y ) + d2(1, 2) > d1(1, 3)

hence max(Y ) /∈ Y which is a contradiction. Hence

max(Y ) ≤ d1(1, 3)− d2(1, 2)

so

max(Y ) = d1(1, 3)− d2(1, 2)

then by Lemma 5

d3(2, 3) + d4(3, 4) ≤ d1(1, 3)− d2(1, 2) + d3(3, 4)

d4(2, 4) ≤ d1(1, 3)− d2(1, 2) + d3(3, 4)

so

max{d2(1, 2)+ d3(2, 3), d3(1, 3)} ≤ max{d2(2, 3), d1(1, 3)− d2(1, 2)}+ d3(3, 4)

hence

max{d2(1, 2) + d3(2, 3), d3(1, 3)} ≤ max(Y ) + d3(3, 4) .

If min(Y ) = d3(2, 3) then by Lemma 5

d2(2, 3) + d3(3, 4) ≥ d3(2, 3) + d4(3, 4)

d2(2, 4) ≥ d3(2, 3) + d4(3, 4)

If min(Y ) 6= d3(2, 3) then d3(2, 3) /∈ Y , we know from Lemma 5 that

min{d1(1, 2) + d2(2, 3), d1(1, 3)} ≥ d3(2, 3) + d2(1, 2)
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and

d3(2, 3) + d1(1, 2) ≥ d3(2, 3) + d2(1, 2)

then it should be the case that

max{d2(1, 2) + d3(2, 3), d3(1, 3)} > d3(2, 3) + d1(1, 2)

else d3(2, 3) ∈ Y . So it is the case that

d3(1, 3) > d3(2, 3) + d1(1, 2) ≥ d2(1, 2) + d3(2, 3).

Since

d3(1, 3)− d1(1, 2) + d1(1, 2) = d3(1, 3),

then

d3(1, 3)− d1(1, 2) ∈ Y,

so

min(Y ) ≤ d3(1, 3)− d1(1, 2).

Assume that

min(Y ) < d3(1, 3)− d1(1, 2)

then

min(Y ) + d1(1, 2) < d3(1, 3)

hence min(Y ) /∈ Y which is a contradiction. Hence

min(Y ) ≥ d3(1, 3)− d1(1, 2)

so

min(Y ) = d3(1, 3)− d1(1, 2)
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then by Lemma 5

d2(2, 3) + d3(3, 4) ≥ d3(1, 3)− d1(1, 2) + d4(3, 4)

d2(2, 4) ≥ d3(1, 3)− d1(1, 2) + d4(3, 4)

so

min{d2(2, 3) + d3(3, 4), d2(2, 4)} ≥ min{d3(2, 3), d3(1, 3)− d1(1, 2)}+ d4(3, 4)

hence

min{d2(2, 3) + d3(3, 4), d2(2, 4)} ≥ min(Y ) + d4(3, 4).

Hence

[max{d3(2, 3) + d4(3, 4), d4(2, 4)}, min{d2(2, 3) + d3(3, 4), d2(2, 4)}]
⋂

[min{d3(2, 3), d3(1, 3)− d1(1, 2)}+ d4(3, 4),

max{d2(2, 3), d1(1, 3)− d2(1, 2)}+ d3(3, 4)] 6= ∅

so

[max{d3(2, 3) + d4(3, 4), d4(2, 4)}, min{d2(2, 3) + d3(3, 4), d2(2, 4)}]
⋂

[min(Y ) + d4(3, 4), max(Y ) + d3(3, 4)] 6= ∅

so there exists a triple x, y, z ∈ R+ such that

x ∈ [d2(1, 2), d1(1, 2)]

y ∈ [d3(2, 3), d2(2, 3)]

z ∈ [d4(3, 4), d3(3, 4)]
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x + y ∈ [max{d2(1, 2) + d3(2, 3), d3(1, 3)}, min{d1(1, 2) + d2(2, 3), d1(1, 3)}]

y + z ∈ [max{d3(2, 3) + d4(3, 4), d4(2, 4)}, min{d2(2, 3) + d3(3, 4), d2(2, 4)}]

holds. For any such triple

y + z ∈ [max{d3(2, 3) + d4(3, 4), d4(2, 4), d3(1, 3)− d1(1, 2) + d4(3, 4)},

min{d2(2, 3) + d3(3, 4), d2(2, 4), d1(1, 3)− d2(1, 2) + d3(3, 4)}].

Let X be the set of x which satisfy above requirement with a (y, z) couple.

X = {x ∈ [d2(1, 2), d1(1, 2)] | y ∈ [d3(2, 3), d2(2, 3)], z ∈ [d4(3, 4), d3(3, 4)] :

x+y ∈ [max{d2(1, 2)+d3(2, 3), d3(1, 3)}, min{d1(1, 2)+d2(2, 3), d1(1, 3)}], y+

z ∈ [max{d3(2, 3) + d4(3, 4), d4(2, 4)}, min{d2(2, 3) + d3(3, 4), d2(2, 4)}]}

If min(X) = d2(1, 2) then by Lemma 5

d2(1, 2) + d3(2, 3) + d4(3, 4) ≤ d1(1, 4)

d2(1, 2) + d4(2, 4) ≤ d1(1, 4)

d2(1, 2) + d3(1, 3)− d1(1, 2) + d4(3, 4) ≤ d1(1, 4)

If min(X) 6= d2(1, 2) note that d2(1, 2)+d3(2, 3) ≤ min{d1(1, 3), d1(1, 2)+

d2(2, 3)} so

1) for all y ∈ [d3(2, 3), d2(2, 3)]

y + d2(1, 2) < max{d3(1, 3), d2(1, 2) + d3(2, 3)}

hence

d2(2, 3) + d2(1, 2) < max{d3(1, 3), d2(1, 2) + d3(2, 3)}

so

d2(1, 2) + d3(2, 3) ≤ d2(2, 3) + d2(1, 2) < d3(1, 3)
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assume that

min(X) < d3(1, 3)− d2(2, 3)

then

min(X) + d2(2, 3) < d3(1, 3)

so

min(X) /∈ X

which is a contradiction. Hence

min(X) ≥ d3(1, 3)− d2(2, 3)

a) If min(X) = d3(1, 3)− d2(2, 3) then by Lemma 5

d3(1, 3)− d2(2, 3) + d3(2, 3) + d4(3, 4) ≤ d1(1, 4)

d3(1, 3)− d2(2, 3) + d4(2, 4) ≤ d1(1, 4)

d3(1, 3)− d2(2, 3) + d3(1, 3)− d1(1, 2) + d4(3, 4) ≤ d1(1, 4)

b) If min(X) 6= d3(1, 3)− d2(2, 3) note that letting y = d2(2, 3)

d3(1, 3)− d2(2, 3) + d2(2, 3) = d3(1, 3) ∈

[max{d2(1, 2) + d3(2, 3), d3(1, 3)}, min{d1(1, 2) + d2(2, 3), d1(1, 3)}]

since

d2(1, 2) + d3(2, 3) < d3(1, 3)

so for any y ∈ [d3(2, 3), d2(2, 3)] such that

max{d2(1, 2) + d3(2, 3), d3(1, 3)} − d3(1, 3) + d2(2, 3) ≤ y
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≤ min{d1(1, 2) + d2(2, 3), d1(1, 3)} − d3(1, 3) + d2(2, 3)

and any z ∈ [d4(3, 4), d3(3, 4)]

y + z /∈ [max{d3(2, 3) + d4(3, 4), d4(2, 4)}, min{d2(2, 3) + d3(3, 4), d2(2, 4)}]

by Lemma 5

i)d1(1, 3)− d3(1, 3) + d2(2, 3) + d3(3, 4) ≥ d3(2, 3) + d4(3, 4)

ii)d1(1, 3)− d3(1, 3) + d2(2, 3) + d3(3, 4) ≥ d4(2, 4)

iii)d1(1, 2) + d2(2, 3)− d3(1, 3) + d2(2, 3) + d3(3, 4) ≥ d3(2, 3) + d4(3, 4)

iv)d1(1, 2) + d2(2, 3)− d3(1, 3) + d2(2, 3) + d3(3, 4) ≥ d4(2, 4)

so

min{d1(1, 2) + d2(2, 3), d1(1, 3)} − d3(1, 3) + d2(2, 3) + d3(3, 4) ≥

max{d3(2, 3) + d4(3, 4), d4(2, 4)}

hence it should be the case that

min{d2(2, 3) + d3(3, 4), d2(2, 4)} <

max{d2(1, 2) + d3(2, 3), d3(1, 3)} − d3(1, 3) + d2(2, 3) + d4(3, 4)

by Lemma 5

i)d2(2, 3) + d3(3, 4) ≥ d3(1, 3)− d3(1, 3) + d2(2, 3) + d4(3, 4)
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since in our case d3(1, 3) > d2(1, 2) + d3(2, 3) and by Lemma 5

ii)d2(2, 3) + d3(3, 4) ≥ d2(1, 2) + d3(2, 3)− d3(1, 3) + d2(2, 3) + d4(3, 4)

since in our case d3(1, 3) ≥ d2(1, 2) + d2(2, 3) and by Lemma 5

iii)d2(2, 4) ≥ d2(1, 2) + d3(2, 3)− d3(1, 3) + d2(2, 3) + d4(3, 4)

so it should be

iv)d2(2, 4) < d3(1, 3)− d3(1, 3) + d2(2, 3) + d4(3, 4).

Assume that

min(X) < d3(1, 3) + d4(3, 4)− d2(2, 4)

then

d2(2, 4) < d3(1, 3)−min(X) + d4(3, 4)

so

min(X) /∈ X

which is a contradiction. Hence

min(X) ≥ d3(1, 3) + d4(3, 4)− d2(2, 4)

A) In our case

d2(1, 2) < d3(1, 3)− d2(2, 3)

and

d3(1, 3)− d2(2, 3) < d3(1, 3) + d4(3, 4)− d2(2, 4)

hence

d2(1, 2) < d3(1, 3) + d4(3, 4)− d2(2, 4)
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and by Lemma 5

d3(1, 3) + d4(3, 4)− d2(2, 4) ≤ d1(1, 2)

hence

d3(1, 3) + d4(3, 4)− d2(2, 4) ∈ [d2(1, 2), d1(1, 2)]

B)

a) In our case

d3(1, 3)− d2(2, 3) < d3(1, 3) + d4(3, 4)− d2(2, 4)

so

d3(1, 3) < d3(1, 3) + d4(3, 4)− d2(2, 4) + d2(2, 3)

again in our case

d2(1, 2) + d3(2, 3) < d3(1, 3)

so

max{d2(1, 2) + d3(2, 3), d3(1, 3)} < d3(1, 3) + d4(3, 4)− d2(2, 4) + d2(2, 3)

b) By Lemma 5

d3(1, 3) + d4(3, 4)− d2(2, 4) + d3(2, 3) ≤ min{d1(1, 2) + d2(2, 3), d1(1, 3)}

so

[max{d2(1, 2) + d3(2, 3), d3(1, 3)}, min{d1(1, 2) + d2(2, 3), d1(1, 3)}]
⋂

[d3(1, 3)+d4(3, 4)−d2(2, 4)+d3(2, 3), d3(1, 3)+d4(3, 4)−d2(2, 4)+d2(2, 3)] 6= ∅
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hence there exists y ∈ [d3(2, 3), d2(2, 3)] such that

d3(1, 3) + d4(3, 4)− d2(2, 4) + y ∈

[max{d2(1, 2) + d3(2, 3), d3(1, 3)}, min{d1(1, 2) + d2(2, 3), d1(1, 3)}]

C) a) by Lemma 5

i)d1(1, 3)− d3(1, 3)− d4(3, 4) + d2(2, 4) + d3(3, 4) ≥ d3(2, 3) + d4(3, 4)

ii)d1(1, 3)− d3(1, 3)− d4(3, 4) + d2(2, 4) + d3(3, 4) ≥ d4(2, 4)

iii)d1(1, 2)+d2(2, 3)−d3(1, 3)−d4(3, 4)+d2(2, 4)+d3(3, 4) ≥ d3(2, 3)+d4(3, 4)

iv)d1(1, 2) + d2(2, 3)− d3(1, 3)− d4(3, 4) + d2(2, 4) + d3(3, 4) ≥ d4(2, 4)

so

min{d1(1, 2) + d2(2, 3), d1(1, 3)} − d3(1, 3)− d4(3, 4) + d2(2, 4) + d3(3, 4) ≥

max{d3(2, 3) + d4(3, 4), d4(2, 4)}

b) since −d3(1, 3)− d4(3, 4) + d2(2, 4) < −d3(1, 3) + d2(2, 3)

i)d2(2, 3) + d3(3, 4) ≥ d3(1, 3)− d3(1, 3)− d4(3, 4) + d2(2, 4) + d4(3, 4)

ii)d2(2, 3)+d3(3, 4) ≥ d2(1, 2)+d3(2, 3)−d3(1, 3)−d4(3, 4)+d2(2, 4)+d4(3, 4)

iii)d2(2, 4) ≥ d2(1, 2) + d3(2, 3)− d3(1, 3)− d4(3, 4) + d2(2, 4) + d4(3, 4)

iv)d2(2, 4) = d3(1, 3)− d3(1, 3)− d4(3, 4) + d2(2, 4) + d4(3, 4)

so

min{d2(2, 3) + d3(3, 4), d2(2, 4)} ≥
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max{d2(1, 2) + d3(2, 3), d3(1, 3)} − d3(1, 3)− d4(3, 4) + d2(2, 4) + d4(3, 4)

henced3(1, 3)+d4(3, 4)−d2(2, 4) ∈ X so min(X) = d3(1, 3)+d4(3, 4)−d2(2, 4).

By Lemma 5

d3(1, 3) + d4(3, 4)− d2(2, 4) + d3(2, 3) + d4(3, 4) ≤ d1(1, 4)

d3(1, 3) + d4(3, 4)− d2(2, 4) + d4(2, 4) ≤ d1(1, 4)

d3(1, 3) + d4(3, 4)− d2(2, 4) + d3(1, 3)− d1(1, 2) + d4(3, 4) ≤ d1(1, 4)

2) There exist y ∈ [d3(2, 3), d2(2, 3)] such that

max{d2(1, 2) + d3(2, 3), d3(1, 3)} ≤

y + d2(1, 2) ≤ min{d1(1, 2) + d2(2, 3), d1(1, 3)}

hence

max{d2(1, 2) + d3(2, 3), d3(1, 3)} ≤ d2(2, 3) + d2(1, 2)

so in this case

d3(1, 3) ≤ d2(2, 3) + d2(1, 2)

for any y ∈ [d3(2, 3), d2(2, 3)] such that

max{d2(1, 2) + d3(2, 3), d3(1, 3)} − d2(1, 2) ≤

y ≤ min{d1(1, 2) + d2(2, 3), d1(1, 3)} − d2(1, 2)

and any z ∈ [d4(3, 4), d3(3, 4)]

y + z /∈ [max{d3(2, 3) + d4(3, 4), d4(2, 4)}, min{d2(2, 3) + d3(3, 4), d2(2, 4)}]
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by Lemma 5

i)d1(1, 3)− d2(1, 2) + d3(3, 4) ≥ d3(2, 3) + d4(3, 4)

ii)d1(1, 3)− d2(1, 2) + d3(3, 4) ≥ d4(2, 4)

iii)d1(1, 2) + d2(2, 3)− d2(1, 2) + d3(3, 4) ≥ d3(2, 3) + d4(3, 4)

iv)d1(1, 2) + d2(2, 3)− d2(1, 2) + d3(3, 4) ≥ d4(2, 4)

so

min{d1(1, 2) + d2(2, 3), d1(1, 3)} − d2(1, 2) + d3(3, 4) ≥

max{d3(2, 3) + d4(3, 4), d4(2, 4)}

hence it should be the case that

min{d2(2, 3) + d3(3, 4), d2(2, 4)} <

max{d2(1, 2) + d3(2, 3), d3(1, 3)} − d2(1, 2) + d4(3, 4)

since in this case d3(1, 3) ≤ d2(2, 3) + d2(1, 2) and by Lemma 5

i)d2(2, 3) + d3(3, 4) ≥ d3(1, 3)− d2(1, 2) + d4(3, 4)

by Lemma 5

ii)d2(2, 3) + d3(3, 4) ≥ d2(1, 2) + d3(2, 3)− d2(1, 2) + d4(3, 4)

iii)d2(2, 4) ≥ d2(1, 2) + d3(2, 3)− d2(1, 2) + d4(3, 4)

so it should be

iv)d2(2, 4) < d3(1, 3)− d2(1, 2) + d4(3, 4).
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Assume that

min(X) < d3(1, 3) + d4(3, 4)− d2(2, 4)

then

d2(2, 4) < d3(1, 3)−min(X) + d4(3, 4)

so

min(X) /∈ X

which is a contradiction. Hence

min(X) ≥ d3(1, 3) + d4(3, 4)− d2(2, 4)

A) In our case

d2(1, 2) < d3(1, 3) + d4(3, 4)− d2(2, 4)

and by Lemma 5

d3(1, 3) + d4(3, 4)− d2(2, 4) ≤ d1(1, 2)

hence

d3(1, 3) + d4(3, 4)− d2(2, 4) ∈ [d2(1, 2), d1(1, 2)]

B)

a) In this case

d3(1, 3)− d2(2, 3) ≤ d2(1, 2) < d3(1, 3) + d4(3, 4)− d2(2, 4)

so

d3(1, 3) < d3(1, 3) + d4(3, 4)− d2(2, 4) + d2(2, 3)

54



again in our case

d2(1, 2) + d3(2, 3) ≤ d2(2, 3) + d2(1, 2)

so

d2(1, 2) + d3(2, 3)− d2(2, 3) ≤ d2(1, 2)

and

d2(1, 2) < d3(1, 3) + d4(3, 4)− d2(2, 4)

hence

d2(1, 2) + d3(2, 3) < d3(1, 3) + d4(3, 4)− d2(2, 4) + d2(2, 3)

so

max{d2(1, 2) + d3(2, 3), d3(1, 3)} < d3(1, 3) + d4(3, 4)− d2(2, 4) + d2(2, 3)

b) By Lemma 5

d3(1, 3) + d4(3, 4)− d2(2, 4) + d3(2, 3) ≤ min{d1(1, 2) + d2(2, 3), d1(1, 3)}

so

[max{d2(1, 2) + d3(2, 3), d3(1, 3)}, min{d1(1, 2) + d2(2, 3), d1(1, 3)}]
⋂

[d3(1, 3)+d4(3, 4)−d2(2, 4)+d3(2, 3), d3(1, 3)+d4(3, 4)−d2(2, 4)+d2(2, 3)] 6= ∅

hence there exists y ∈ [d3(2, 3), d2(2, 3)] such that

d3(1, 3) + d4(3, 4)− d2(2, 4) + y ∈

[max{d2(1, 2) + d3(2, 3), d3(1, 3)}, min{d1(1, 2) + d2(2, 3), d1(1, 3)}]
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C) a) by Lemma 5

i)d1(1, 3)− d3(1, 3)− d4(3, 4) + d2(2, 4) + d3(3, 4) ≥ d3(2, 3) + d4(3, 4)

ii)d1(1, 3)− d3(1, 3)− d4(3, 4) + d2(2, 4) + d3(3, 4) ≥ d4(2, 4)

iii)d1(1, 2)+d2(2, 3)−d3(1, 3)−d4(3, 4)+d2(2, 4)+d3(3, 4) ≥ d3(2, 3)+d4(3, 4)

iv)d1(1, 2) + d2(2, 3)− d3(1, 3)− d4(3, 4) + d2(2, 4) + d3(3, 4) ≥ d4(2, 4)

so

min{d1(1, 2) + d2(2, 3), d1(1, 3)} − d3(1, 3)− d4(3, 4) + d2(2, 4) + d3(3, 4) ≥

max{d3(2, 3) + d4(3, 4), d4(2, 4)}

b) since −d3(1, 3)− d4(3, 4) + d2(2, 4) < −d2(1, 2)

i)d2(2, 3) + d3(3, 4) ≥ d3(1, 3)− d3(1, 3)− d4(3, 4) + d2(2, 4) + d4(3, 4)

ii)d2(2, 3)+d3(3, 4) ≥ d2(1, 2)+d3(2, 3)−d3(1, 3)−d4(3, 4)+d2(2, 4)+d4(3, 4)

iii)d2(2, 4) ≥ d2(1, 2) + d3(2, 3)− d3(1, 3)− d4(3, 4) + d2(2, 4) + d4(3, 4)

iv)d2(2, 4) = d3(1, 3)− d3(1, 3)− d4(3, 4) + d2(2, 4) + d4(3, 4)

so

min{d2(2, 3) + d3(3, 4), d2(2, 4)} ≥

max{d2(1, 2) + d3(2, 3), d3(1, 3)} − d3(1, 3)− d4(3, 4) + d2(2, 4) + d4(3, 4)

henced3(1, 3)+d4(3, 4)−d2(2, 4) ∈ X so min(X) = d3(1, 3)+d4(3, 4)−d2(2, 4).

By Lemma 5

d3(1, 3) + d4(3, 4)− d2(2, 4) + d3(2, 3) + d4(3, 4) ≤ d1(1, 4)
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d3(1, 3) + d4(3, 4)− d2(2, 4) + d4(2, 4) ≤ d1(1, 4)

d3(1, 3) + d4(3, 4)− d2(2, 4) + d3(1, 3)− d1(1, 2) + d4(3, 4) ≤ d1(1, 4)

so we have reached to the conclusion that

max{d3(2, 3) + d4(3, 4), d4(2, 4), d3(1, 3)− d1(1, 2) + d4(3, 4)}+

max{d2(1, 2), d3(1, 3)− d2(2, 3), d3(1, 3) + d4(3, 4)− d2(2, 4)} ≤ d1(1, 4).

If max(X) = d1(1, 2) then by Lemma 5

d1(1, 2) + d2(2, 3) + d3(3, 4) ≥ d4(1, 4)

d1(1, 2) + d2(2, 4) ≥ d4(1, 4)

d1(1, 2) + d1(1, 3)− d2(1, 2) + d3(3, 4) ≥ d4(1, 4)

If max(X) 6= d1(1, 2) note that d1(1, 2)+d2(2, 3) ≥ max{d3(1, 3), d2(1, 2)+

d3(2, 3)} so

1) for all y ∈ [d3(2, 3), d2(2, 3)]

y + d1(1, 2) > min{d1(1, 3), d1(1, 2) + d2(2, 3)}

hence

d3(2, 3) + d1(1, 2) > min{d1(1, 3), d1(1, 2) + d2(2, 3)}

so

d1(1, 2) + d2(2, 3) ≥ d3(2, 3) + d1(1, 2) > d3(1, 3)

assume that

max(X) > d1(1, 3)− d3(2, 3)
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then

max(X) + d3(2, 3) < d1(1, 3)

so

max(X) /∈ X

which is a contradiction. Hence

max(X) ≤ d1(1, 3)− d3(2, 3)

a) If max(X) = d1(1, 3)− d3(2, 3) then by Lemma 5

d1(1, 3)− d3(2, 3) + d2(2, 3) + d3(3, 4) ≥ d4(1, 4)

d1(1, 3)− d3(2, 3) + d2(2, 4) ≥ d4(1, 4)

d1(1, 3)− d3(2, 3) + d1(1, 3)− d2(1, 2) + d3(3, 4) ≥ d4(1, 4)

b) If max(X) 6= d1(1, 3)− d3(2, 3) note that letting y = d3(2, 3)

d1(1, 3)− d3(2, 3) + d3(2, 3) = d1(1, 3) ∈

[max{d2(1, 2) + d3(2, 3), d3(1, 3)}, min{d1(1, 2) + d2(2, 3), d1(1, 3)}]

since

d1(1, 2) + d2(2, 3) > d3(1, 3)

so for any y ∈ [d3(2, 3), d2(2, 3)] such that

max{d2(1, 2) + d3(2, 3), d3(1, 3)} − d1(1, 3) + d3(2, 3) ≤ y

≤ min{d1(1, 2) + d2(2, 3), d1(1, 3)} − d1(1, 3) + d3(2, 3)
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and any z ∈ [d4(3, 4), d3(3, 4)]

y + z /∈ [max{d3(2, 3) + d4(3, 4), d4(2, 4)}, min{d2(2, 3) + d3(3, 4), d2(2, 4)}]

by Lemma 5

i)d3(1, 3)− d1(1, 3) + d3(2, 3) + d4(3, 4) ≤ d2(2, 3) + d3(3, 4)

ii)d3(1, 3)− d1(1, 3) + d3(2, 3) + d4(3, 4) ≤ d2(2, 4)

iii)d2(1, 2) + d3(2, 3)− d1(1, 3) + d3(2, 3) + d4(3, 4) ≤ d2(2, 3) + d3(3, 4)

iv)d2(1, 2) + d3(2, 3)− d1(1, 3) + d3(2, 3) + d4(3, 4) ≤ d2(2, 4)

so

max{d2(1, 2) + d3(2, 3), d3(1, 3)} − d1(1, 3) + d3(2, 3) + d4(3, 4) ≤

min{d2(2, 3) + d3(3, 4), d2(2, 4)}

hence it should be the case that

max{d3(2, 3) + d4(3, 4), d4(2, 4)} >

min{d1(1, 2) + d2(2, 3), d1(1, 3)} − d1(1, 3) + d3(2, 3) + d3(3, 4)

by Lemma 5

i)d3(2, 3) + d4(3, 4) ≤ d1(1, 3)− d1(1, 3) + d3(2, 3) + d3(3, 4)

since in our case d1(1, 3) < d1(1, 2) + d2(2, 3) and by Lemma 5

ii)d3(2, 3) + d4(3, 4) ≤ d1(1, 2) + d2(2, 3)− d1(1, 3) + d3(2, 3) + d3(3, 4)
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since in our case d1(1, 3) < d1(1, 2) + d3(2, 3) and by Lemma 5

iii)d4(2, 4) ≤ d1(1, 2) + d2(2, 3)− d1(1, 3) + d3(2, 3) + d3(3, 4)

so it should be

iv)d4(2, 4) > d1(1, 3)− d1(1, 3) + d3(2, 3) + d3(3, 4).

Assume that

max(X) > d1(1, 3) + d3(3, 4)− d4(2, 4)

then

d4(2, 4) > d1(1, 3)−max(X) + d3(3, 4)

so

max(X) /∈ X

which is a contradiction. Hence

max(X) ≤ d1(1, 3) + d3(3, 4)− d4(2, 4)

A) In our case

d1(1, 2) > d1(1, 3)− d3(2, 3)

and

d1(1, 3)− d3(2, 3) > d1(1, 3) + d2(3, 4)− d4(2, 4)

hence

d1(1, 2) > d1(1, 3) + d3(3, 4)− d4(2, 4)

and by Lemma 5

d1(1, 3) + d3(3, 4)− d4(2, 4) ≥ d2(1, 2)
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hence

d1(1, 3) + d3(3, 4)− d4(2, 4) ∈ [d2(1, 2), d1(1, 2)]

B)

a) In our case

d1(1, 3)− d3(2, 3) > d1(1, 3) + d3(3, 4)− d4(2, 4)

so

d1(1, 3) > d1(1, 3) + d3(3, 4)− d4(2, 4) + d3(2, 3)

again in our case

d1(1, 2) + d2(2, 3) > d1(1, 3)

so

min{d1(1, 2) + d2(2, 3), d1(1, 3)} > d1(1, 3) + d3(3, 4)− d4(2, 4) + d3(2, 3)

b) By Lemma 5

d1(1, 3) + d3(3, 4)− d4(2, 4) + d2(2, 3) ≥ max{d2(1, 2) + d3(2, 3), d3(1, 3)}

so

[max{d2(1, 2) + d3(2, 3), d3(1, 3)}, min{d1(1, 2) + d2(2, 3), d1(1, 3)}]
⋂

[d1(1, 3)+d3(3, 4)−d4(2, 4)+d3(2, 3), d1(1, 3)+d3(3, 4)−d4(2, 4)+d2(2, 3)] 6= ∅

hence there exists y ∈ [d3(2, 3), d2(2, 3)] such that

d1(1, 3) + d3(3, 4)− d4(2, 4) + y ∈

[max{d2(1, 2) + d3(2, 3), d3(1, 3)}, min{d1(1, 2) + d2(2, 3), d1(1, 3)}]
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C) a) by Lemma 5

i)d3(1, 3)− d1(1, 3)− d3(3, 4) + d4(2, 4) + d4(3, 4) ≤ d2(2, 3) + d3(3, 4)

ii)d3(1, 3)− d1(1, 3)− d3(3, 4) + d4(2, 4) + d4(3, 4) ≤ d2(2, 4)

iii)d2(1, 2)+d3(2, 3)−d1(1, 3)−d3(3, 4)+d4(2, 4)+d4(3, 4) ≤ d2(2, 3)+d3(3, 4)

iv)d2(1, 2) + d3(2, 3)− d1(1, 3)− d3(3, 4) + d4(2, 4) + d4(3, 4) ≤ d2(2, 4)

so

max{d2(1, 2) + d3(2, 3), d3(1, 3)} − d1(1, 3)− d3(3, 4) + d4(2, 4) + d4(3, 4) ≤

min{d2(2, 3) + d3(3, 4), d2(2, 4)}

b) since −d1(1, 3)− d3(3, 4) + d4(2, 4) > −d1(1, 3) + d3(2, 3)

i)d3(2, 3) + d4(3, 4) ≤ d1(1, 3)− d1(1, 3)− d3(3, 4) + d4(2, 4) + d3(3, 4)

ii)d3(2, 3)+d4(3, 4) ≤ d1(1, 2)+d1(2, 3)−d1(1, 3)−d3(3, 4)+d4(2, 4)+d3(3, 4)

iii)d4(2, 4) ≤ d1(1, 2) + d2(2, 3)− d1(1, 3)− d3(3, 4) + d4(2, 4) + d3(3, 4)

iv)d4(2, 4) = d1(1, 3)− d1(1, 3)− d3(3, 4) + d4(2, 4) + d3(3, 4)

so

max{d3(2, 3) + d4(3, 4), d4(2, 4)} ≤

min{d1(1, 2) + d2(2, 3), d1(1, 3)} − d1(1, 3)− d3(3, 4) + d4(2, 4) + d3(3, 4)

henced1(1, 3)+d3(3, 4)−d4(2, 4) ∈ X so max(X) = d1(1, 3)+d3(3, 4)−d4(2, 4).

By Lemma 5

d1(1, 3) + d3(3, 4)− d4(2, 4) + d2(2, 3) + d3(3, 4) ≥ d4(1, 4)
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d1(1, 3) + d3(3, 4)− d4(2, 4) + d2(2, 4) ≥ d4(1, 4)

d1(1, 3) + d3(3, 4)− d4(2, 4) + d1(1, 3)− d2(1, 2) + d3(3, 4) ≥ d4(1, 4)

2) There exist y ∈ [d3(2, 3), d2(2, 3)] such that

max{d2(1, 2) + d3(2, 3), d3(1, 3)} ≤

y + d1(1, 2) ≤ min{d1(1, 2) + d2(2, 3), d1(1, 3)}

hence

min{d1(1, 2) + d2(2, 3), d1(1, 3)} ≥ d3(2, 3) + d1(1, 2)

so in this case

d1(1, 3) ≥ d3(2, 3) + d1(1, 2)

for any y ∈ [d3(2, 3), d2(2, 3)] such that

max{d2(1, 2) + d3(2, 3), d3(1, 3)} − d1(1, 2) ≤

y ≤ min{d1(1, 2) + d2(2, 3), d1(1, 3)} − d1(1, 2)

and any z ∈ [d4(3, 4), d3(3, 4)]

y + z /∈ [max{d3(2, 3) + d4(3, 4), d4(2, 4)}, min{d2(2, 3) + d3(3, 4), d2(2, 4)}]

by Lemma 5

i)d3(1, 3)− d1(1, 2) + d4(3, 4) ≤ d2(2, 3) + d3(3, 4)

ii)d3(1, 3)− d1(1, 2) + d4(3, 4) ≤ d2(2, 4)

iii)d2(1, 2) + d3(2, 3)− d1(1, 2) + d4(3, 4) ≤ d2(2, 3) + d3(3, 4)

iv)d2(1, 2) + d3(2, 3)− d1(1, 2) + d4(3, 4) ≤ d2(2, 4)
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so

max{d2(1, 2) + d3(2, 3), d3(1, 3)} − d1(1, 2) + d4(3, 4) ≤

min{d2(2, 3) + d3(3, 4), d2(2, 4)}

hence it should be the case that

max{d3(2, 3) + d4(3, 4), d4(2, 4)} >

min{d1(1, 2) + d2(2, 3), d1(1, 3)} − d1(1, 2) + d3(3, 4)

since in this case d1(1, 3) ≥ d3(2, 3) + d1(1, 2) and by Lemma 5

i)d3(2, 3) + d4(3, 4) ≤ d1(1, 3)− d1(1, 2) + d3(3, 4)

by Lemma 5

ii)d3(2, 3) + d4(3, 4) ≤ d1(1, 2) + d2(2, 3)− d1(1, 2) + d3(3, 4)

iii)d4(2, 4) ≤ d1(1, 2) + d2(2, 3)− d1(1, 2) + d3(3, 4)

so it should be

iv)d4(2, 4) > d1(1, 3)− d1(1, 2) + d3(3, 4).

Assume that

max(X) > d1(1, 3) + d3(3, 4)− d4(2, 4)

then

d4(2, 4) > d1(1, 3)−max(X) + d3(3, 4)

so

max(X) /∈ X
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which is a contradiction. Hence

max(X) ≤ d1(1, 3) + d3(3, 4)− d4(2, 4)

A) In our case

d1(1, 2) ≥ d1(1, 3) + d3(3, 4)− d4(2, 4)

and by Lemma 5

d1(1, 3) + d3(3, 4)− d4(2, 4) ≥ d2(1, 2)

hence

d1(1, 3) + d3(3, 4)− d4(2, 4) ∈ [d2(1, 2), d1(1, 2)]

B)

a) In this case

d1(1, 3)− d3(2, 3) ≥ d1(1, 2) > d1(1, 3) + d3(3, 4)− d4(2, 4)

so

d1(1, 3) > d1(1, 3) + d3(3, 4)− d4(2, 4) + d3(2, 3)

again in our case

d1(1, 2) ≥ d1(1, 3) + d3(3, 4)− d4(2, 4)

and by Lemma 5

d2(2, 3) ≥ d3(2, 3)

so

d1(1, 2) + d2(2, 3) ≥ d1(1, 3) + d3(3, 4)− d4(2, 4) + d3(2, 3)
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so

min{d1(1, 2) + d2(2, 3), d1(1, 3)} ≥ d1(1, 3) + d3(3, 4)− d4(2, 4) + d3(2, 3)

b)b) By Lemma 5

d1(1, 3) + d3(3, 4)− d4(2, 4) + d2(2, 3) ≥ max{d2(1, 2) + d3(2, 3), d3(1, 3)}

so

[max{d2(1, 2) + d3(2, 3), d3(1, 3)}, min{d1(1, 2) + d2(2, 3), d1(1, 3)}]
⋂

[d1(1, 3)+d3(3, 4)−d4(2, 4)+d3(2, 3), d1(1, 3)+d3(3, 4)−d4(2, 4)+d2(2, 3)] 6= ∅

hence there exists y ∈ [d3(2, 3), d2(2, 3)] such that

d1(1, 3) + d3(3, 4)− d4(2, 4) + y ∈

[max{d2(1, 2) + d3(2, 3), d3(1, 3)}, min{d1(1, 2) + d2(2, 3), d1(1, 3)}]

C) a) by Lemma 5

i)d3(1, 3)− d1(1, 3)− d3(3, 4) + d4(2, 4) + d4(3, 4) ≤ d2(2, 3) + d3(3, 4)

ii)d3(1, 3)− d1(1, 3)− d3(3, 4) + d4(2, 4) + d4(3, 4) ≤ d2(2, 4)

iii)d2(1, 2)+d3(2, 3)−d1(1, 3)−d3(3, 4)+d4(2, 4)+d4(3, 4) ≤ d2(2, 3)+d3(3, 4)

iv)d2(1, 2) + d3(2, 3)− d1(1, 3)− d3(3, 4) + d4(2, 4) + d4(3, 4) ≤ d2(2, 4)

so

max{d2(1, 2) + d3(2, 3), d3(1, 3)} − d1(1, 3)− d3(3, 4) + d4(2, 4) + d4(3, 4) ≤
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min{d2(2, 3) + d3(3, 4), d2(2, 4)}

b) since −d1(1, 3)− d3(3, 4) + d4(2, 4) > −d1(1, 3) + d3(2, 3)

i)d3(2, 3) + d4(3, 4) ≤ d1(1, 3)− d1(1, 3)− d3(3, 4) + d4(2, 4) + d3(3, 4)

ii)d3(2, 3)+d4(3, 4) ≤ d1(1, 2)+d1(2, 3)−d1(1, 3)−d3(3, 4)+d4(2, 4)+d3(3, 4)

iii)d4(2, 4) ≤ d1(1, 2) + d2(2, 3)− d1(1, 3)− d3(3, 4) + d4(2, 4) + d3(3, 4)

iv)d4(2, 4) = d1(1, 3)− d1(1, 3)− d3(3, 4) + d4(2, 4) + d3(3, 4)

so

max{d3(2, 3) + d4(3, 4), d4(2, 4)} ≤

min{d1(1, 2) + d2(2, 3), d1(1, 3)} − d1(1, 3)− d3(3, 4) + d4(2, 4) + d3(3, 4)

henced1(1, 3)+d3(3, 4)−d4(2, 4) ∈ X so max(X) = d1(1, 3)+d3(3, 4)−d4(2, 4).

By Lemma 5

d1(1, 3) + d3(3, 4)− d4(2, 4) + d2(2, 3) + d3(3, 4) ≥ d4(1, 4)

d1(1, 3) + d3(3, 4)− d4(2, 4) + d2(2, 4) ≥ d4(1, 4)

d1(1, 3) + d3(3, 4)− d4(2, 4) + d1(1, 3)− d2(1, 2) + d3(3, 4) ≥ d4(1, 4)

so we have reached to the conclusion that

min{d2(2, 3) + d3(3, 4), d2(2, 4), d1(1, 3)− d2(1, 2) + d3(3, 4)}+

min{d1(1, 2), d1(1, 3)− d3(2, 3), d1(1, 3) + d3(3, 4)− d4(2, 4)} ≥ d4(1, 4).

Hence there exists x, y, z ∈ R+ such that
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x ∈ [d2(1, 2), d1(1, 2)]

y ∈ [d3(2, 3), d2(2, 3)]

z ∈ [d4(3, 4), d3(3, 4)]

x + y ∈ [max{d2(1, 2) + d3(2, 3), d3(1, 3)}, min{d1(1, 2) + d2(2, 3), d1(1, 3)}]

y + z ∈ [max{d3(2, 3) + d4(3, 4), d4(2, 4)}, min{d2(2, 3) + d3(3, 4), d2(2, 4)}]

x+y+z ∈ [max{max{d3(2, 3)+d4(3, 4), d4(2, 4), d3(1, 3)−d1(1, 2)+d4(3, 4)}+

max{d2(1, 2), d3(1, 3)− d2(2, 3), d3(1, 3) + d4(3, 4)− d2(2, 4)}, d4(1, 4)},

min{min{d2(2, 3) + d3(3, 4), d2(2, 4), d1(1, 3)− d2(1, 2) + d3(3, 4)}+

min{d1(1, 2), d1(1, 3)− d3(2, 3), d1(1, 3) + d3(3, 4)− d4(2, 4)}, d1(1, 4)}]

Let t2 − t1 = x, t3 − t2 = y, t4 − t3 = z, such that
∑4

i=1 ti = 0 hence

for agent 1

u1(1, t1)− u1(2, t2) = d1(1, 2)− x ≥ 0

u1(1, t1)− u1(3, t3) = d1(1, 3)− (x + y) ≥ 0

u1(1, t1)− u1(4, t4) = d1(1, 4)− (x + y + z) ≥ 0

so agent 1 does not envy other agents.

For agent 2

u2(2, t2)− u2(1, t1) = −d2(1, 2)x ≥ 0

u2(2, t2)− u2(3, t3) = d2(2, 3)− y ≥ 0

u2(2, t2)− u2(4, t4) = d2(2, 4)− (y + z) ≥ 0

so agent 2 does not envy other agents.
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For agent 3

u3(3, t3)− u3(1, t1) = −d3(1, 3)x + y ≥ 0

u3(3, t3)− u3(2, t2) = −d3(2, 3)y ≥ 0

u3(3, t3)− u3(4, t4) = d3(3, 4)− z ≥ 0

so agent 3 does not envy other agents.

For agent 4

u4(4, t4)− u4(1, t1) = −d4(1, 4)x + y + z ≥ 0

u4(4, t4)− u4(2, t2) = −d4(2, 4)y + z ≥ 0

u4(4, t4)− u4(3, t3) = −d4(3, 4)z ≥ 0

so agent 4 does not envy other agents.

Let (σ, t) ∈ NE(N, u) so by Lemma 1 σ ∈ Σmax(N, u). For sake of

simplicity let σ = (1, 2, 3, 4), by Lemma 3

∀i ∈ {1, 2} ti+1 − ti ∈ [di+1(i, i + 1), di(i, i + 1)].

So

t2 − t1 ∈ [d2(1, 2), d1(1, 2)],

t3 − t2 ∈ [d3(2, 3), d2(2, 3)],

t4 − t3 ∈ [d4(3, 4), d3(3, 4)],

t3 − t1 ∈ [d3(1, 3), d1(1, 3)],

t4 − t2 ∈ [d4(2, 4), d2(2, 4)],

t4 − t1 ∈ [d4(1, 4), d1(1, 4)].
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Assume that

t2 − t1 ∈ [d2(1, 2), d1(1, 2)],

t3 − t2 ∈ [d3(2, 3), d2(2, 3)],

t3 − t1 /∈ [max{d2(1, 2) + d3(2, 3), d3(1, 3)}, min{d1(1, 2) + d2(2, 3), d1(1, 3)}]

Case 1) If d3(1, 3) ≤ t3 − t1 < d2(1, 2) + d3(2, 3)

t3 − t1 = t3 − t2 + t2 − t1

and

t3 − t2 ≥ d3(2, 3)

t2 − t1 ≥ d2(1, 2)

so

t3 − t1 ≥ d2(1, 2) + d3(2, 3)

is in contradiction with

t3 − t1 < d2(1, 2) + d3(2, 3).

Case 2) If d1(1, 3) ≥ t3 − t1 > d1(1, 2) + d2(2, 3)

t3 − t1 = t3 − t2 + t2 − t1

and

t3 − t2 ≤ d2(2, 3)

t2 − t1 ≤ d1(1, 2)
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so

t3 − t1 ≤ d1(1, 2) + d2(2, 3)

is in contradiction with

t3 − t1 > d1(1, 2) + d2(2, 3).

Assume that

t3 − t2 ∈ [d3(2, 3), d2(2, 3)],

t4 − t3 ∈ [d4(3, 4), d3(3, 4)],

t4 − t2 /∈ [max{d3(2, 3) + d4(3, 4), d4(2, 4)}, min{d2(2, 3) + d3(3, 4), d2(2, 4)}]

Case 1) If d4(2, 4) ≤ t4 − t2 < d3(2, 3) + d4(3, 4)

t4 − t2 = t4 − t3 + t3 − t2

and

t4 − t3 ≥ d4(3, 4)

t3 − t2 ≥ d3(2, 3)

so

t4 − t2 ≥ d3(2, 3) + d4(3, 4)

is in contradiction with

t4 − t2 < d3(2, 3) + d4(3, 4).

Case 2) If d2(2, 4) ≥ t4 − t2 > d2(2, 3) + d3(3, 4)

t4 − t2 = t4 − t3 + t3 − t2
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and

t4 − t3 ≤ d3(3, 4)

t3 − t2 ≤ d2(2, 3)

so

t4 − t2 ≤ d2(2, 3) + d3(3, 4)

is in contradiction with

t4 − t2 > d2(2, 3) + d3(3, 4).

Assume that

t2 − t1 ∈ [d2(1, 2), d1(1, 2)]

t3 − t2 ∈ [d3(2, 3), d2(2, 3)]

t4 − t3 ∈ [d4(3, 4), d3(3, 4)]

t3 − t1 ∈ [max{d2(1, 2) + d3(2, 3), d3(1, 3)}, min{d1(1, 2) + d2(2, 3), d1(1, 3)}]

t4 − t2 ∈ [max{d3(2, 3) + d4(3, 4), d4(2, 4)}, min{d2(2, 3) + d3(3, 4), d2(2, 4)}]

t4− t1 /∈ [max{max{d3(2, 3) + d4(3, 4), d4(2, 4), d3(1, 3)− d1(1, 2) + d4(3, 4)}+

max{d2(1, 2), d3(1, 3)− d2(2, 3), d3(1, 3) + d4(3, 4)− d2(2, 4)}, d4(1, 4)},

min{min{d2(2, 3) + d3(3, 4), d2(2, 4), d1(1, 3)− d2(1, 2) + d3(3, 4)}+

min{d1(1, 2), d1(1, 3)− d3(2, 3), d1(1, 3) + d3(3, 4)− d4(2, 4)}, d1(1, 4)}]

Case 1)

t2 − t1 ∈ [d2(1, 2), d1(1, 2)]

t3 − t2 ∈ [d3(2, 3), d2(2, 3)]
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t4 − t3 ∈ [d4(3, 4), d3(3, 4)]

t3 − t1 ∈ [max{d2(1, 2) + d3(2, 3), d3(1, 3)}, min{d1(1, 2) + d2(2, 3), d1(1, 3)}]

t4 − t2 ∈ [max{d3(2, 3) + d4(3, 4), d4(2, 4)}, min{d2(2, 3) + d3(3, 4), d2(2, 4)}]

but

d4(1, 4) ≤ t4−t1 < max{max{d3(2, 3)+d4(3, 4), d4(2, 4), d3(1, 3)−d1(1, 2)+d4(3, 4)}+

max{d2(1, 2), d3(1, 3)− d2(2, 3), d3(1, 3) + d4(3, 4)− d2(2, 4)}

1) If

t4 − t1 < d3(2, 3) + d4(3, 4) + d2(1, 2)

we know that

t4 − t1 = t4 − t3 + t3 − t2 + t2 − t1

and

t2 − t1 ≥ d2(1, 2),

t3 − t2 ≥ d3(2, 3),

t4 − t3 ≥ d4(3, 4).

Hence

t4 − t1 ≥ d3(2, 3) + d4(3, 4) + d2(1, 2)

contradicts with

t4 − t1 < d3(2, 3) + d4(3, 4) + d2(1, 2).

2) If

t4 − t1 < d3(2, 3) + d4(3, 4) + d3(1, 3)− d2(2, 3)
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then

t4 − t3 + t3 − t2 + t2 − t1 < d3(2, 3) + d4(3, 4) + d3(1, 3)− d2(2, 3)

by Lemma 3

t4 − t3 ≥ d4(3, 4),

t3 − t2 ≥ d3(2, 3).

So

t2 − t1 < d3(1, 3)− d2(2, 3)

so

t2 − t1 + d2(2, 3) < d3(1, 3)

by Lemma 3

t3 − t2 ≤ d2(2, 3)

so

t3 − t1 ≤ t2 − t1 + d2(2, 3) < d3(1, 3)

but

t3 − t1 < d3(1, 3)

contradicts with Lemma 3.

3) If

t4 − t1 < d3(2, 3) + d4(3, 4) + d3(1, 3) + d4(3, 4)− d2(2, 4)

then

t4 − t3 + t3 − t2 + t2 − t1 < d3(2, 3) + d4(3, 4) + d3(1, 3) + d4(3, 4)− d2(2, 4)
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by Lemma 3

t4 − t3 ≥ d4(3, 4),

t3 − t2 ≥ d3(2, 3).

So

t2 − t1 < d3(1, 3) + d4(3, 4)− d2(2, 4)

so

t2 − t1 + d2(2, 4) < d3(1, 3) + d4(3, 4)

by Lemma 3

t4 − t2 ≤ d2(2, 4)

so

t4 − t1 ≤ t2 − t1 + d2(2, 4) < d3(1, 3) + d4(3, 4)

hence either

t4 − t3 < d4(3, 4)

or

t3 − t1 < d3(1, 3)

but by Lemma 3 it is both

t4 − t3 ≥ d4(3, 4)

t3 − t1 ≥ d3(1, 3)

which is a contradiction.

4) If

t4 − t1 < d4(2, 4) + d2(1, 2)

we know that

t4 − t1 = t4 − t3 + t3 − t2 + t2 − t1
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and by Lemma 3

t2 − t1 ≥ d2(1, 2),

t4 − t2 ≥ d4(2, 4).

Hence

t4 − t1 ≥ d4(2, 4) + d2(1, 2)

contradicts with

t4 − t1 < d4(2, 4) + d2(1, 2).

5) If

t4 − t1 < d4(2, 4) + d3(1, 3)− d2(2, 3)

then

t4 − t3 + t3 − t2 + t2 − t1 < d4(2, 4) + d3(1, 3)− d2(2, 3)

by Lemma 3

t4 − t2 ≥ d4(2, 4).

So

t2 − t1 < d3(1, 3)− d2(2, 3)

so

t2 − t1 + d2(2, 3) < d3(1, 3)

by Lemma 3

t3 − t2 ≤ d2(2, 3)

so

t3 − t1 ≤ t2 − t1 + d2(2, 3) < d3(1, 3)

but

t3 − t1 < d3(1, 3)

contradicts with Lemma 3.
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6) If

t4 − t1 < d4(2, 4) + d3(1, 3) + d4(3, 4)− d2(2, 4)

then

t4 − t3 + t3 − t2 + t2 − t1 < d4(2, 4) + d3(1, 3) + d4(3, 4)− d2(2, 4)

by Lemma 3

t4 − t2 ≥ d4(2, 4).

So

t2 − t1 < d3(1, 3) + d4(3, 4)− d2(2, 4)

so

t2 − t1 + d2(2, 4) < d3(1, 3) + d4(3, 4)

by Lemma 3

t4 − t2 ≤ d2(2, 4)

so

t4 − t1 ≤ t2 − t1 + d2(2, 4) < d3(1, 3) + d4(3, 4)

hence either

t4 − t3 < d4(3, 4)

or

t3 − t1 < d3(1, 3)

but by Lemma 3 it is both

t4 − t3 ≥ d4(3, 4)

t3 − t1 ≥ d3(1, 3)

which is a contradiction.
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7) If

t4 − t1 < d3(1, 3)− d1(1, 2) + d4(3, 4) + d2(1, 2)

then

t4 − t3 + t3 − t2 + t2 − t1 < d3(1, 3)− d1(1, 2) + d4(3, 4) + d2(1, 2)

by Lemma 3

t2 − t1 ≥ d2(1, 2).

So

t4 − t2 < d3(1, 3)− d1(1, 2) + d4(3, 4)

so

t4 − t2 + d1(1, 2) < d3(1, 3) + d4(3, 4)

by Lemma 3

t2 − t1 ≤ d1(1, 2)

hence

t4 − t1 ≤ t4 − t2 + d1(1, 2) < d3(1, 3) + d4(3, 4)

hence either

t4 − t3 < d4(3, 4)

or

t3 − t1 < d3(1, 3)

but by Lemma 3 it is both

t4 − t3 ≥ d4(3, 4)

t3 − t1 ≥ d3(1, 3)

which is a contradiction.
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8) If

t4 − t1 < d3(1, 3)− d1(1, 2) + d4(3, 4) + d3(1, 3)− d2(2, 3)

then

t4 − t3 + t3 − t2 + t2 − t1 < d3(1, 3)− d1(1, 2) + d4(3, 4) + d3(1, 3)− d2(2, 3)

by Lemma 3

t3 − t1 ≥ d3(1, 3).

So

t4 − t3 < d3(1, 3)− d1(1, 2) + d4(3, 4)− d2(2, 3)

so

t4 − t3 + d1(1, 2) + d2(2, 3) < d3(1, 3) + d4(3, 4)

by Lemma 3

t2 − t1 ≤ d1(1, 2),

and

t3 − t2 ≤ d2(2, 3).

Hence

t4 − t1 ≤ t4 − t3 + d1(1, 2) + d2(2, 3) < d3(1, 3) + d4(3, 4)

hence either

t4 − t3 < d4(3, 4)

or

t3 − t1 < d3(1, 3)
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but by Lemma 3 it is both

t4 − t3 ≥ d4(3, 4)

t3 − t1 ≥ d3(1, 3)

which is a contradiction.

9) If

t4 − t1 < d3(1, 3)− d1(1, 2) + d4(3, 4) + d3(1, 3) + d4(3, 4)− d2(2, 4)

then

t4−t3+t3−t2+t2−t1 < d3(1, 3)−d1(1, 2)+d4(3, 4)+d3(1, 3)+d4(3, 4)−d2(2, 4)

by Lemma 3

t3 − t1 ≥ d3(1, 3),

t4 − t3 ≥ d4(3, 4).

So

0 < d3(1, 3)− d1(1, 2) + d4(3, 4)− d2(2, 4)

hence

d1(1, 2) + d2(2, 4) < d3(1, 3) + d4(3, 4)

but by Lemma 5

d1(1, 2) + d2(2, 4) ≥ d3(1, 3) + d4(3, 4)

which is a contradiction.

Case 2)

t2 − t1 ∈ [d2(1, 2), d1(1, 2)]
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t3 − t2 ∈ [d3(2, 3), d2(2, 3)]

t4 − t3 ∈ [d4(3, 4), d3(3, 4)]

t3 − t1 ∈ [max{d2(1, 2) + d3(2, 3), d3(1, 3)}, min{d1(1, 2) + d2(2, 3), d1(1, 3)}]

t4 − t2 ∈ [max{d3(2, 3) + d4(3, 4), d4(2, 4)}, min{d2(2, 3) + d3(3, 4), d2(2, 4)}]

but

d1(1, 4) ≥ t4−t1 > min{min{d2(2, 3)+d3(3, 4), d2(2, 4), d1(1, 3)−d2(1, 2)+d3(3, 4)}+

min{d1(1, 2), d1(1, 3)− d3(2, 3), d1(1, 3) + d3(3, 4)− d4(2, 4)}

The proof of this part is very similar to Case 1).

�

I conjecture that this result may be carried to the general case inductively.
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Chapter 3

CONCLUSION

In our model the capacity of the facility is unlimited just like Maniquet

(2003)’s, Chun (2004a)’s, Kayi & Ramaekers (2006)’s, Moulin (2004)’s,

Moulin (2005)’s, and Özsoy (2005)’s models. The job lengths of individuals

are identical like Maniquet (2003)’s, Chun (2004a)’s, and Kayi & Ramaek-

ers (2006)’s models. The difference between our model and other models is

that we are considering more general preferences for agents than other models

do. In Moulin (2004)’s, Moulin (2005)’s, and Özsoy (2005)’s models all of the

agents value cost of waiting for a unit of time similarly but in our model these

valuations may be different. In Maniquet (2003)’s, Chun (2004a)’s, and Kayi

& Ramaekers (2006)’s models each agent has an impatience level hence the

difference between any two consecutive positions is equal for an agent. In our

model an agent may value the difference between two different consecutive

positions differently.

Our first result is that if a solution is an envy free solution, then the order-

ing of agents should be a maximal ordering. Since numeric representation of

preferences of agents are quasi-linear in transfers any envy free solution is also

a Pareto efficient solution. If order preservation property is satisfied, then we

are able to characterize envy free solutions by using the solution concept F .

Even if order preservation property is not satisfied I conjecture that set of
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envy free solutions are not empty. Up to four agents we have characterized

the envy free solutions. Generalizing this result is an open problem. I think

that in generalizing this result the properties of maximal orderings which are

explored in this study will play a key role.

A natural extension of this study is limiting the capacity of the facility,

and studying with non-identical job lengths. Taking more general preferences

of agents might be another option. Since envy freeness is a fairness notion,

one might study other fairness notions such as identical preferences lower

bound under this or under a more general model. Best of my knowledge

there is not much solution concepts defined for queuing problems. We have

introduced the solution concept F in this study, one might come up with

different solution concepts for queuing problems.
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