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ABSTRACT

DESIGN OF APPLICATION SPECIFIC INSTRUCTION

SET PROCESSORS FOR THE FFT AND FHT

ALGORITHMS

Oğuzhan Atak

M.S. in Electrical and Electronics Engineering

Supervisor: Prof. Dr. Abdullah Atalar

September 2006

Orthogonal Frequency Division Multiplexing (OFDM) is a multicarrier trans-

mission technique which is used in many digital communication systems. In

this technique, Fast Fourier Transformation (FFT) and inverse FFT (IFFT) are

kernel processing blocks which are used for data modulation and demodulation

respectively. Another algorithm which can be used for multi-carrier transmission

is the Fast Hartley Transform algorithm. The FHT is a real valued transforma-

tion and can give significantly better results than FFT algorithm in terms of

energy efficiency, speed and die area. This thesis presents Application Specific

Instruction Set Processors (ASIP) for the FFT and FHT algorithms. ASIPs

combine the flexibility of general purpose processors and efficiency of application

specific integrated circuits (ASIC). Programmability makes the processor flexible

and special instructions, memory architecture and pipeline makes the processor

efficient.

In order to design a low power processor we have selected the recently pro-

posed cached FFT algorithm which outperforms standard FFT. For the cached

FFT algorithm we have designed two ASIPs one having a single execution unit
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and the other having four execution units. For the FHT algorithm we have

derived the cached FHT algorithm and designed two ASIPs; one for the FHT

and one for the cached FHT algorithm. We have modeled these processors with

an Architecture Description Language (ADL) called Language of Instruction Set

Architectures (LISA). The LISATek processor designer, generates the software

tool chain (assembler, linker and instruction set simulator) and HDL code of the

processor from the model in LISA automatically. The generated HDL code is

further synthesized into gate-level description by Synopsis Design Compiler with

0.13 micron technology library and then power simulations are performed. The

single execution unit cached FFT processor have been shown to save 25% of en-

ergy consumption as compared to an FFT ASIP. The four execution unit cached

FFT processor on the other hand runs faster up to 186%. The ASIP designed

for the developed cached FHT algorithm runs almost two times faster than the

ASIP for the FHT algorithm.

Keywords: FFT, cached FFT, FHT, cached FHT, Applicattion Specific Instruc-

tion Set Processor, OFDM
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ÖZET

FFT VE FHT ALGORITMALARI İCİN UYGULAMAYA ÖZGÜ

KOMUT KÜMELİ İSLEMCİ TASARIMI

Oğuzhan Atak

Elektrik ve Elektronik Mühendisliḡi Bölümü Yüksek Lisans

Tez Yöneticisi: Prof. Dr. Abdullah Atalar

Eylül 2006

Ortogonal Frekans Bölmeli Çoğullama birçok sayısal haberleşme sisteminde

kullanılan çok taşıyıcılı bir haberleşme tekniğidir. Bu teknikte hızlı Fourier

donusumu (FFT) ve tersine hızlı Fourier donusumu (IFFT) modulleri, sayısal

veri modulasyonu ve demodulasyonu icin kullanılan temel modüllerdir. Çok

taşıyıcılı sayısal haberleşme için kullanılabilecek bir diğer algoritma ise hızlı Hart-

ley dönüşümüdür (FHT). FHT algoritması reel bir dönüşüm olduğu için, enerji

tüketimi, silikon büyüklüğü ve çalışma hızı bakımından FFT algoritmasına göre

daha iyi sonuçlar verebilir. Bu tezde, FFT ve FHT algoritmaları için Uygulamaya

Özgü Komut Kümeli İşlemciler sunuyoruz. Uygulamaya özgü işlemci yöntemi,

genel amaçlı işlemcilerin sağladığı esneklik ile, uygulamaya özgü tümleşik de-

vrelerin (ASIC) sağladığı verimliliği birleştirmektedir. İşlemcinin programlan-

abilir olması onu esnek ve uygulamaya özgü komutları, bellek mimarisi ve işlem

hattına (pipeline) sahip olması ise onu verimli yapmaktadır.

Düşük enerji tüketen bir işlemci tasarlamak amacıyla, FFT algoritmasına

göre daha iyi sonuç veren önbellekli-FFT algoritmasını kullandık. Bu algoritma

için, biri tek işlev uniteli, diğeri dört işlev uniteli olmak üzere iki işlemci tasar-

ladık. FHT algoritması için ise önbellekli-FHT algoritmasını geliştirdik ve biri



FHT algoritması için ve diğeri önbellekli FHT algoritması için iki işlemci tasar-

ladık. Bu işlemcilerin tasarımını komut kümesi mimari dili (LISA) adı verilen

bir mimari tanımlama dili ile yaptık. Bu dil için geliştirilmiş bir yazılım aracı;

LISATek işlemci tasarımcısı, tasarlanan işlemcinin yazılım geliştirme araclarını

(assembler, linker, komut kümesi simulatoru) ve HDL (Hardware Description

Language) kodunu otomatik olarak üretmektedir. Üretilen HDL kodunu ise

UMC 0.13 micron teknoloji kütüphanesini kullanarak, Synopsis Design Compiler

yazılım aracı ile sentezleyerek mantık devresi seviyesinde HDL kodu elde ettik ve

enerji tüketimi simulasyonları yaptık. Tasarladığımız tek işlev üniteli önbellekli-

FFT işlemcisi aynı metodla tasarlanmış bir FFT işemcisine göre %25 enerji tasar-

rafu sağlamaktadır. Dört işlev üniteli önbellekli-FFT işlemcisi ise %186 ya kadar

daha hızlı çalışabilmektedir. FHT algoritması için tasarladığımız, önbellekli-FHT

işlemcisi ise FHT işlemcisine göre yaklaşık iki kat daha hızlı çalışmaktadır.

-

Anahtar Kelimeler: Hızlı Fourier Dönüşümü, FFT, Hızlı Hartley Dönüşümü,

FHT, önbellekli FFT, önbellekli FHT, Uygulamaya Özgü Komut Kümeli İşlemci,

Ortogonal Frekans Bölmeli Çoğullama
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Chapter 1

Introduction

Multi Carrier Modulation[1] techniques have been shown to be very effective for

channels with severe intersymbol interference. Therefore these techniques have

been investigated for standardization. For example, OFDM (Orthogonal Fre-

quency Division Multiplexing) is used in many wired and wireless applications.

In OFDM Systems, data bits are sent by using multiple sub-carriers in order to

obtain both a good performance in highly dispersive channels and a good spec-

tral efficiency. Because of its robustness against frequency-selective fading and

narrow-band interference, OFDM is applied in many digital wireless communi-

cation systems such as Wireless Local Area Networks (WLAN) and Terrestrial

Digital Video Broadcasting (DVB-T). MCM technologies use Inverse Discrete

Fourier Transform (IDFT) for the modulation and Discrete Fourier Transform

(DFT) for the demodulation. The complexities of these transforms are reduced

by using their fast versions; Inverse Fast Fourier Transform (IFFT) and Fast

Fourier Transform (FFT), respectively. The FFT algorithm, like many other sig-

nal processing algorithms has a large number of memory accesses causing high

energy consumption in memory. It has been shown that, by employing a small

cache, the number of memory accesses can be reduced considerably[2].
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FFT is a complex valued transform. When its used to transform a real se-

quence, the output of the transform involves redundancy, i.e the spectrum is

symmetric around the center. Real-valued transforms for Multicarrier Modula-

tion and Demodulation has been shown to be possible[3] by using the Discrete

Hartley Transform[4]. Moreover,the DHT algorithm can be employed to imple-

ment FFT/IFFT for symmetrical sequences [5], for example Asymmetric Digital

Subscriber Lines (ADSL) service, which has been selected by the American Na-

tional Standards Institute[6] has such a symmetrical structure. That the DHT

has also a fast version has already been shown[7].The Fast Hartley Transform

(FHT) algorithm has a similar flowgraph to that of FFT.

This thesis presents Application Specific Instruction Set Processor (ASIP)

implementations of the FFT and FHT algorithms. ASIPs are programmable

processors which have customized instruction-set and memory architecture for

a particular application. The advantage of ASIPs as compared to other digi-

tal implementation techniques is that ASIPs combine the flexibility of general

purpose processors and efficiency of ASICs (Application Specific Integrated Cir-

cuit). Keutzer et al [8] shows some evidence for the shift from ASIC to ASIP. The

birth of digital signal processors in the early 1980s was mainly due to flexibility

requirement of the market. After about some ten years video processors have be-

come popular in the market. Currently the driving force to design ASIPs rather

than ASICs is not the flexiblity requirement but the difficulties in the design of

ASICs. As CMOS technology shrinks to the deep-sub-micron(DSM) geometries,

the design of an ASIC becomes more difficult due to multi million dollar CMOS

manufacturing costs and expensive design tools. The non-recurring engineering

costs can only be affordable for large volume products.
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1.2 Organization of the Thesis

The rest of the thesis is organized as follows: the ASIP design methodology is

presented in chapter 2. The cached FFT algorithm and the ASIPs designed for

the cached FFT algorithm are presented in chapter 3. Chapter 4 presents the

FHT algorithm and the two processors designed for the FHT algorithm. The

thesis is finalized in chapter 5 by presenting the implementation results for the

4 processors.
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Chapter 2

Design Methodology

2.1 Digital Application Design

A digital application can be implemented in three ways; pure software (SW), pure

hardware (HW) or mixed SW/HW. In the pure software approach, the designer

does not deal with the design of the processor hardware, she selects the proces-

sor, possibly a general purpose processor (GPS) or a domain specific processor

(DSP), from the market for her particular application and writes the software for

the application. The pure software approach is the most flexible and the cheapest

solution, and time-to-market is little. The pure hardware approach can be classi-

fied as ASIC and reconfigurable hardware i.e. Field Programmable Gate Arrays

(FPGA) and Complex Programmable Logic Devices (CPLD). The ASIC method

can only be possible for large volume products due to expensive CMOS process-

ing costs, and it suffers from flexibility. Even a slight change in the application

can not be mapped on to the ASIC after it has been implemented on silicon.

Pure software and FPGA implementations mainly suffer from performance and

power consumption. As a rule of thumb, software implementation is two orders

of magnitude and FPGA implementation is one order of magnitude slower than
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the ASIC implementation. Another important parameter in the coming System

On Chip era is the Intellectual Property (IP) reuse. Even before physical design

it is very difficult to alter a customized ASIC. Mixed HW/SW design combines

the benefits of pure software and pure hardware methods. In this technique,

the design is portioned into HW and SW parts. The SW part makes the design

flexible and the HW part makes the design power efficient and fast. Application

Specific Instruction Set Processors (ASIP) fall into this category. ASIPs differ

from DSPs or GPSs in that the designer not only writes the software code but

also designs the underlying hardware.

2.2 ASIP Design

The design of an ASIP requires following phases[9]:

1. Architecture Exploration

2. Architecture Implementation

3. Application Software Design

4. System Integration

The architecture exploration phase is an iterative process which requires the

software development tools assembler, linker, compiler and an Instruction Set

Simulator (ISS) in order to profile the algorithm on different architectures. The

iteration lasts until finding the best match between the algorithm and the archi-

tecture. Each time the processor architecture is changed, the software develop-

ment tools and the ISS must also be redesigned accordingly. Separate design of

processor architecture and software development tools may cause inconsistencies,

therefore ASIPs are generally modeled with more abstract languages called Ar-

chitecture Description Languages(ADL). ADLs involve not only the information
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about the processor hardware architecture but also about the processor instruc-

tion set architecture, memory model and possibly instruction syntax and coding.

2.3 LISA Based Design Methodology

Language of Instruction Set Architectures (LISA)[9] is an ADL which is devel-

oped in Technical University of Aachen (RWTH Aachen). LISA aims to cover

all the necessary hardware and software information of the processor so that the

design is abstracted in a unified language.

 

Figure 2.1: LISA Based Design Flow

Figure 2.1 shows the LISA based design flow. Once the processor is modeled

in LISA, the HDL code, the assembler and linker and the ISS can be generated au-

tomatically with the LISA compiler (actually called LISATek Processor Designer,

the tool is developed in RWTH Aachen and later acquired by CoWare[10]).
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The verification of the processor architecture is done by simulating the desired

algorithm on the ISS. This simulation also gives various information about the

performance of the processor; such as the number of clock cycles consumed by the

algorithm, the distribution of the clock cycles to the instructions, the number of

memory hits for each memory and each instruction, the number of clock cycles

which is lost during a pipeline stall or flush etc. By using these information,

the designer can change the architecture of the processor, she may combine two

or more instructions into a single instruction, may decide to include another

memory, or invent a new instruction to reduce the effect of the pipeline stalls.

On the other side, hardware properties of the processor can be evaluated by

performing gate level synthesis and power simulations with third party tools.

The LISATek processor designer generates the synthesis scripts for the third

party synthesis tools (CADENCE or SYNOPSIS), the designer then synthesize

the design into a gate level description(VHDL or VERILOG) and gets the results

for the processor area, timing and perform power simulations .

2.4 ASIP modeling in LISA

The processor is modeled in LISA by defining all of the processor resources

in a RESOURCE section. The functionality of the processor is modeled by

several OPERATIONs which performs operations on the resources defined in

the RESOURCE section. Following are the basic language elements of the LISA

to model a processor.
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2.4.1 RESOURCE section in LISA

All of the processor resources such as RAMs, ROMs, registers and the pipeline,

of the processor are defined in this section. A common property for all pro-

grammable processors is the program memory, and depending on the needs of the

specific algorithm that will eventually run on the processor, several memories can

be attached to speed up the processor. All memories of the processor are defined

in this section by providing its number of memory locations, the width of the

memory locations and the memory flags; X:executable,R:Redable,W:Writable.

Below is an example to define a 32 bit program memory and 32 bit data mem-

ory of sizes 0x100 and 0x400 respectively. At the beginning of the code is the

memory map of the processor.

RESOURCE {

MEMORY_MAP{

RANGE(0x0000, 0x00ff) -> prog_mem[(31..0)];

RANGE(0x0100, 0x04ff) -> data_mem[(31..0)]; }

RAM unsigned int prog_mem {

SIZE(0x0100);

BLOCKSIZE(32,32);

FLAGS(R|X);

ENDIANESS(BIG);};

RAM int data_mem{

SIZE(0x0400);

BLOCKSIZE(32,32);

FLAGS(R|W);

ENDIANESS(BIG); };

/*...other declerations follow*/ }

.
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Another common property of the programmable processors is the registers,

all programmable processors require registers for temporary data storage, i.e the

input data to the processor may come from the memory, from an I/O device

or from the instruction as an immediate value and the algorithm elaborates the

input data and stores output values to the processor registers. The registers can

be defined as arrays to construct a register file, or can be defined as individual.

The third resource that can be defined in the resource section is the processor

pipeline. Pipeline refers to the separation of an instruction into multiple clock

cycles so that the clock period is reduced, i.e the processor runs faster. Although

the instruction is executed in multiple clock cycles, several instructions can be

active at different pipeline stages at the same clock cycle, thus the average number

of instructions per clock cycle approaches to unity. In LISA, pipeline is defined by

declaring the name of the pipeline stages and by declaring the pipeline registers;

the registers between pipeline stages. These registers are used by operations

assigned to a pipeline stage as the input and output. Below is an example 3

stage pipeline definition with 5 pipeline registers.

RESOURCE{ /*...Other resource declarations*/

PIPELINE pipe = { FE; DE; EX};

PIPELINE_REGISTER IN pipe {

unsigned unsigned int instr;

short op1;

short op2;

short op3;

short op4;

};

}

9



2.4.2 OPERATION section in LISA

Having modeled the processor resources, the next step is to model the functional-

ity of the processor, i.e the usage of the resources. The functionilty is modeled in

LISA by OPERATIONs. OPERATIONs assigned to the pipeline stages, model

the behavior of the individual pipeline stage. OPERATIONs also model the

syntax and coding of the instruction set of the processor. An OPERATION is

composed of following subsections:

SY NTAX: is used when the operation is part of a processor instruction and if

it has a syntax.

CODING: defines the binary coding of the instruction, coding section is used

if the operation has to do a decoding.

BEHAV IOR: the operation’s hardware behavior is modeled in this section. Its

input can be either the processor resources defined in RESOURCE section or the

operands decoded from SYNTAX and CODING sections. Its output is only the

processor resources; the register file, memories or pipeline registers. The syntax

used in behavior section for modeling the hardware behavior of the operations

is the C language syntax. Thus the designer can define C variables; char, short

int, long int for temporary data calculation. The embedded C code for instruc-

tion behavior actually corresponds to a hardware description. Therefore several

data dependent multiplications and/or additions subtractions must be avoided

in order not to get a slow processor.

ACTIV ATION : this section is used to activate other operations in the follow-

ing pipeline stages. Several operations can be activated, the activation order is

extracted by the operation’s pipeline stage. Following is an example LISA code

section to define a processor with two instructions; ADD and SUB.

OPERATION fetch IN pipe.FE {

DECLARE {INSTANCE decode;}

BEHAVIOR {

10



OUT.instr = prog_mem[PC];

OUT.pc = PC;

PC = PC+1; }

ACTIVATION {decode} }

OPERATION decode IN pipe.DE {

DECLARE { GROUP instruction={ADD||SUB}; }

CODING AT (PIPELINE_REGISTER(pipe,FE/DE).pc) { IN.instr == instruction }

SYNTAX { instruction }

ACTIVATION { instruction }}

OPERATION ADD IN pipe.EX {

DECLARE {GROUP dst,src={reg};}

CODING{0b00 dst src}

SYNTAX{"ADD" ~" " dst "," src}

BEHAVIOR{ dst=dst+src }}

OPERATION SUB IN pipe.EX {

DECLARE {GROUP dst,src={reg};}

CODING{0b00 dst src}

SYNTAX{"SUB" ~" " dst "," src}

BEHAVIOR{ dst=dst-src }}

OPERATION reg {

DECLARE{ LABEL index;}

CODING {index=0bx[3]}

SYNTAX {"R[" ~index=#U ~"]"}

EXPRESSION{R[index]}

}

11



In the above code, the fetch operation is assigned to the FE stage of the

pipeline and it simply reads the instruction from the program memory and as-

signs the instruction into a pipeline register instr. The ”fetch” operation uncon-

ditionally activates the ”decode” operation. The ”decode” operation is assigned

to the DE stage of the pipeline. The available instructions are declared as ADD

and SUB in the DECLARE section of the ”decode” operation. The decode op-

eration simply activates the ADD and SUB operations according to the contents

of the pipeline register instr. The ADD and SUB operations are assigned to the

EX stage of the pipeline, the operands of both operations are declared as ”dst”

and ”src”. These two variables are indeed the two instances of the register file

R[0..7]. The last operation ”reg” is used for indexing the register file. Since it is

instantiated in ADD and SUB operations, it is not assigned to a pipeline stage.

2.4.3 Pipeline management

An instruction is injected to the processor pipeline by fetching the instruction

from program memory and assigning it to a pipeline register. This operation is

generally performed by a fetch operation assigned to to the fist pipeline stage.

During normal flow, if there is no data or control hazards, the contents of the

pipeline registers are shifted to the next pipeline stage , and the instruction on

the last pipeline stage leaves the pipeline at each clock cycle. Data hazards

arises when the operand of an instruction has not been updated by the previous

instruction due to depth of the pipeline. Following is an example data hazard

situation,

cMUL R[1],R[2];

cMUL R[3],R[1];

cMUL is a complex multiplication instruction and it is executed in two

pipeline stages(excluding the fetch, decode stages), four multiplications in the
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first stage and two additions in the second stage. When the first instruction fin-

ishes the execution of four multiplications, the next instruction tries to use the

register R[1] which has not been updated yet. Data hazards must be detected

before they happen and the pipeline must be stalled. Control hazard refers to the

situation that, when a branch instruction is executed, the instructions following

the branch instruction on the pipeline must not be executed, since they are not

valid instructions. In case of a control hazard, the pipeline stages containing

invalid instructions must be flushed. Pipeline stalls and flushes cause to cycle

losses, in order not to speed down the processor, they must be avoided as much

as possible. More information on pipeline modeling and processor architecture

can be found in [11].

The pipeline is controlled in LISA, in the operation ”main”. Operation

”main” must exist in every LISA models, it typically executes the pipeline, i.e

executes the operations in all pipeline stages and shifts the pipeline registers.

The pipeline is flushed and stalled by the operations that detect the hazards.

2.5 Design Flow

Figure 2.2 shows the design flow used in the thesis. The LISATek Processor

Designer takes the model in LISA as the input, and generates the software tool

chain, the assembler, linker and instruction set simulator automatically. The

algorithm is written in the assembly language of the processor designed, and is

simulated on the ISS and the results are verified against a high-level software

implementation of the algorithm, Matlab. After verifing the correctness of the

implementation of the processor and the algorithm in the assembly, the LISA

model is converted to the Register-Transfer-Level (RTL) HDL code. LISATek
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Processor Designer generates the VHDL code automatically from the LISA de-

scription. Then the VHDL description of the processor is simulated on the SYN-

OPSYS Scirocco simulation tool. LISATek tool suite has utilities to generate

proper memory files to be used in VHDL simulation. Then the results of the

simulation is verified against the ISS. The variable names used in LISA descrip-

tion are kept similar while generating the VHDL code, i.e. the automatically

generated HDL code is readable. After the verification of the processor’s VHDL

description, the design is further synthesized into gate-level HDL description by

Synopsis’ Design Compiler(DC) tool. At this step DC generates the timing and

area reports. The gate-level description is then simulated on Synopsys’ Prime

Power tool to get power reports.
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Chapter 3

Cached FFT ASIP

3.1 The FFT Algorithm

The Discrete Fourier Transform of an N-point sequence is given by:

F (k) =
N−1∑
n=0

x(n) ∗ e(−j 2π
N

kn) (3.1)

The DFT algorithm for an N-point sequence, requires N2 complex multiplica-

tions, i.e the complexity grows exponentially with the number of samples. The

FFT algorithm breaks the N-point sequence into two N/2-point sequences and

exploits the periodicity property of the DFT kernel e(−j 2π
N

kn) to compute two

samples with just one complex multiplication instead of two. The two N/2-point

sequences are further split into four N/4-point sequences and this procedure is

repeated until getting 2-point sequences. At each step the number of multiplica-

tions required is halved so that the complexity is reduced to N ∗ log2(N) (For a

derivation of FFT see[12]).

Figure 3.1 shows the flow graph of the radix-2 FFT algorithm. The computa-

tion flow is from left to right. Each cross represents a FFT butterfly operation.
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Figure 3.1: Radix-2 FFT Flow-graph

The butterfly takes two complex inputs A and B and generates two complex

outputs X = A + B ∗W and Y = A−B ∗W , where W is the twiddle factor:

W k
N = exp(−j

2π

N
k)

The pseudo-code below shows the radix-2 FFT algorithm. It has two loops,

one for counting the stages and one for counting the butterflies within the stages.

For an N-point FFT, the number of stages is given by S = log2N and the number

of butterflies by B = N/2 for each stage.

FOR s=0 to S-1

FOR b=0 to N/2-1

BFLY(s,b)

END

END
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The BFLY(s,b) function in the above code, calculates the memory addresses

of its two inputs from the loop variables s (stage number) and b (butterfly num-

ber), performs a butterfly operation and saves the result back to the same mem-

ory locations. The table below shows the memory addressing scheme for radix-2

FFT algorithm. Bits BS−2 to B0 are used to count the butterflies within a stage

and ’*’ is a place holder. Putting a ”0” in place of the ”*” gives the address of

the input A (output X), and a ”1” gives the address of the input B (output Y).

For every stage increment, the difference in the addresses between the two inputs

of the butterfly is doubled.

Table 3.1: Memory Addressing Scheme for Radix-2
Stage Memory Address

0 Bs−2 Bs−3 · · · B1 B0 *
1 Bs−2 Bs−3 · · · B1 * B0

2 Bs−2 Bs−3 · · · * B1 B0

S-1 * Bs−2 Bs−3 · · · B1 B0

3.1.1 The Cached FFT Algorithm

The basic idea behind the cached FFT algorithm is to load part of the data from

the main memory into a small cache and process as many stages of butterfly

operations as possible without accessing to the main memory. Standard FFT

algorithm reads the input data of the butterfly operations from the memory

directly, therefore for an N-point FFT, the memory is read N ∗ log2N times,

since there are log2N stages. The cached FFT algorithm aims to decrease the

number of memory accesses by using a small cache and performing as many

stages of computations as possible with the data in the cache, so that the factor

log2N is reduced.

The cached FFT algorithm can be derived from the FFT algorithm, by chang-

ing the addressing scheme of the FFT algorithm. As shown in table 3.1, for a
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stage increment the place holder ’*’ moves one to the left, in other words the

only variable part is the bit position corresponding to the place holder. For P

consecutive stages, the variable part becomes the P place holders. Since the idea

is to compute P stages, the cache is loaded by fixing the other bits than these

P bits, and reading all the data corresponding to these 2P memory locations.

Table 3.2 shows the memory addressing scheme for the standard FFT algorithm,

and table 3.3 shows the cached FFT algorithm’s cache loading scheme for N=64

point transform. It is desired to calculate P=3 consecutive stages with a cache

of size 2P = 8. For the first three stages the place holders forms the 3 least sig-

nificant bit positions of the memory addresses, hence the 8-sized cache is loaded

with the data corresponding to these 3 LSB positions, the remaining bits, the 3

most significant bits are held constant and are called the group bits. Once the

cache is loaded with these data, the first three stages of butterfly computations

can be performed. For the last three stages, the place holders form the three

MSB positions, hence the data corresponding to these positions must be loaded,

while keeping the 3 LSB as group bits. Group bits are so called because the

whole data, N points must be processed in blocks of size C; the size of the cache,

thus there are N/C groups.

Table 3.2: Memory Addressing Scheme for 64-point FFT
Stage Memory Address

0 B4 B3 B2 B1 B0 *
1 B4 B3 B2 B1 * B0

2 B4 B3 B2 * B1 B0

3 B4 B3 * B2 B1 B0

4 B4 * B3 B2 B1 B0

5 * B4 B3 B2 B1 B0

Table 3.3: Cache Loading for 64-point FFT
Stage Memory Address

First Three Stages G2 G1 G0 * * *
Last Three Stages * * * G2 G1 G0

The FFT and cached FFT algorithms can be best visualized by their flow-

graphs, figure-3.2 shows the simplified flowgraph of the standard FFT algorithm,
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and figure-3.3 shows the flowgraph of the cached FFT algorithm. The transform

length is N = 64, and the cache size is C = 8. With C = 8, three stages can be

computed, since there are 6 stages, the transform is divided into two superstages

called epochs. Within an epoch the cache is loaded and dumped back N/C times,

i.e there are N/C goups in an epoch.

stage 1 Stage 2 stage 3 stage 4 stage5 stage 0 

Figure 3.2: 64-point FFT Algorithm

The address calculations can be summarized as follows:

1. Having a cache of size C, log2C stages can be computed at most with the

data in the cache. Since there are log2(N) stages to compute, there are

e = log2N/log2C superstages, called epochs. In order to have a balanced

cached FFT algorithm, e must be an integer.

2. Within an epoch, the data is processed in groups. A group is a block of

data in the memory, whose size is equivalent to cache size.Table 3.3 shows

the cache loading and dumping for N=64 points cached FFT algorithm

and e=2. The difference in cache loading and dumping for different epochs

comes from the FFT addressing scheme. Since there are N data points in
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Figure 3.3: 64-point Cached FFT Algorithm

the memory and the group size is C,there are N/C groups. In other words

the cache must be loaded and dumped N/C times for each epoch.

3. Within a group, the data is processed in log2(C) stages which are called

passes. The data in the cache is addressed as shown in Table 3.4

4. Within a pass, C/2 butterfly operations are performed.

Table 3.4: Cache and twiddle addressing
Epoch Pass Cache Index Twiddle Address

0 0 B1 B0 * 0 0 0 0 0
1 B1 * B0 B0 0 0 0 0
2 * B1 B0 B1 B0 0 0 0

1 0 B1 B0 * G2 G1 G0 0 0
1 B1 * B0 B0 G2 G1 G0 0
2 * B1 B1 B1 B0 G2 G1 G0
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For some N , C is not an integer. In this case the algorithm becomes an

Unbalanced-Cached FFT algorithm [2]. Unbalanced Cached FFT is calculated

by first constructing the Cached FFT algorithm for the next longer transform

length and removing some of the groups and passes from the calculation. For

example, for 128-point FFT, the next longer transform length is 256. For 256-

point FFT, the cache size is 16 for 2 epochs, and the number of groups is 16.

Table 3.5 shows the cache loading and dumping for 256-point FFT.

Table 3.5: Loading and dumping for N = 256
Epoch Loading and dumping address

0 G3 G2 G1 G0 * * * *
1 * * * * G3 G2 G1 G0

For a 128-point FFT, the number of groups is 8, therefore 8 groups must be

removed from the calculation as shown in Table 3.6.

Table 3.6: Loading and dumping for N = 128
Epoch Loading and dumping address

0 G2 G1 G0 * * * *
1 * * * * G2 G1 G0

The next step is the removal of the pass(es) from the calculation. There are

8 stages for a 256-point FFT and 7 stages for a 128-point FFT. Therefore, one

pass must be removed from the calculation. The pass that must be removed from

the calculation can be determined from Table 3.6. As highlighted in the Table,

either the 3rd pass from epoch 0 or the 0th pass from epoch 1 can be removed

(the pass corresponding to the overlapping placeholder ’*’).

The ASIPs that are presented in this thesis have support for both the balanced

and unbalanced cached FFT.
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3.1.2 The Modified cached FFT Algorithm

For a variable length implementation of the cached FFT algorithm, the size of

the cache is determined by the largest possible number of points. Smaller size

FFTs use a part of the cache only, so that the latter is only partially utilized.

However, it is possible to change the structure of the algorithm to fully exploit

the cache. This is achieved by computing more stages in epoch 0, rather than

evenly distributing the stage computation in the two epochs. The parameters of

the modified cached FFT algorithm for the 2 epochs are determined as follows:

• The number of butterflies in a pass is given by C/2, where C is cache size.

• The number of passes for the two epochs is given by log2C and log2N −
log2C for epoch 0 and 1 respectively, where N is the number of FFT points.

• The number of groups is given by N/C.

In this case, C is given by Cmodified =
√

Nmax, rather than Coriginal =
√

N .

Since Cmodified > Coriginal for lower size FFT, less number of groups are required

because of the larger number of butterflies in a pass. Consequently, the number

of cache loading and dumping is reduced.

For example, for a 64 point FFT (Figure 3.4), there are 6 stages, and

Coriginal = 8. If Nmax = 256, Cmodified = 16, the number of groups is 4, and

the number of butterflies in a pass is 8.
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Figure 3.4: Modified Cached FFT Algorithm

3.2 Architectures for the Cached FFT Algo-

rithm

In this section, a Single Instruction Single Data (SISD) and a Very Large In-

struction Word (VLIW) processor architecture for the CFFT algorithm are pre-

sented. The basic instruction-set for the two architectures is the same. In both

processors, the registers are used as caches. Since the size of FFT that can be

implemented depends on the size of the cache and the number of epochs, a cache

size of 32 and 2 number of epochs is selected. Therefore, the processors can

compute FFT up to 1024 points according to the equation

C = N
1
E

where C is the cache size, N is the number of points and E is the number of

epochs.
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3.2.1 Instruction-Set Design

Below is a pseudo-code for the Cached FFT algorithm. It has 4 nested loops.

For each group, the cache registers of the processor are filled with data from the

memory, stages of butterfly operations are performed and finally the results in

the cache registers are saved back to the memory.

FOR e = 0 to E-1

FOR g = 0 to G-1

Load_Cache(e,g);

FOR p = 0 to P-1

FOR b = 0 to NumBFLY-1

Butterfly(e,g,p,b);

END

END

Dump_Cache(e,g);

END

END

The kernel operation in the FFT algorithm is the butterfly operation which

is composed of a complex multiplication followed by one addition and one sub-

traction. In order to have a fast processor, cycle consuming operations must be

optimized. This can be done by combining the whole instructions required to

perform a butterfly computation into a single instruction [13]. Combining several

instructions into a single instruction does not mean to execute every arithmetic

operation in a single clock cycle, depending on the number of arithmetic opera-

tions to be performed and data dependency between the arithmetic operations

the pipeline of the processor is made deeper. So that, several butterfly operations

could be active on different pipeline stages. Both SISD and VLIW processors

have a special BFLY instruction which not only performs the butterfly operation
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but also calculates the cache register indexes and the twiddle coefficient address.

The twiddle coefficient is precalculated and stored to a ROM, an alternative

method to calculate twiddle coefficient by using CORDIC[14] is not considered

since the precision of the coefficients worsen as the the number of CORDIC it-

erations decrease, and using several cordic iterations could make the processor

larger and slower. A VLSI implementation of the cached FFT algorithm by em-

ploying the CORDIC machine has already been proposed in [15] The cache index

and memory address calculations require

1. The total number of passes, groups and butterflies. These 3 parameters

together with the number of bit reversing are specified in a 16-bit control

register (CTR)

2. The group, pass, butterfly and the epoch numbers for a given iteration. The

first three parameters are passed with general purpose registers whereas the

epoch number is passed as a 2 bit immediate value.

The latter means that the outermost loop for the epoch is unrolled. The BFLY

instruction has an automatic post-increment addressing mode. Figure 3.5 shows

the structure of the instruction.

Several approaches can be used to speed-up the execution of loops. The

simplest one is the delayed branch technique, where some instructions following a

conditional branch are always executed, regardless of whether the branch is taken.

This technique was not considered for the two cached FFT ASIPs because, in our

implementation, the core of the loop consists of the single BFLY instruction. A

more sophisticated technique is Zero-Overhead-Loop (ZOL) that enables efficient

implementation of loops. The programmer specifies which instructions have to

be repeated and how many times, then the processor automatically manages

the loop index and terminates the loop accordingly. The concept of ZOL can

be extended to nested loops with a further speed improvement at the expense
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Figure 3.5: Structure of the BFLY instruction

of increased hardware complexity [16]. This complexity can be avoided for the

cached FFT algorithm by using a simple RPT instruction as shown below.

For loading data from the memory into the cache registers, a READ instruc-

tion was added. The instruction uses 2 pointers: Read Pointer (RP) for indexing

the memory and Cache Pointer (CP) for indexing the cache registers. The READ

instruction loads data from memory addressed by RP into the cache register in-

dexed by CP. It also automatically increments the CP, and takes the number of

increment for RP as an immediate operand. The code below shows how 32 data

words are loaded into the cache registers and the butterflies computed.

RPT #32

READ #1

RPT #16

BFLY GPR[1],GPR[2],GPR[3]++,#0
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Both RP and CP are dedicated registers, and can be initialized by special in-

structions.

For decimation in time, the memory address specified by RP must be bit

reversed. The number of bit reversing is equal to log2N , an is specified in the

control register CTR. For dumping the cache into the memory, there is a WRITE

instruction which is similar to the READ instruction.

3.2.2 The SISD Architecture

This is a load-store architecture with 6 pipeline stages: fetch, decode and 4

execution stages. There are 8 general purpose registers in addition to the 32 cache

registers and 12 special purpose registers. The latter are used for addressing and

for flow control. There are 3 memories for program, data and coefficients with

the configurations 24x256, 32x1024 and 32x512 respectively. The 16-bit real and

imaginary parts of a data or coefficient are concatenated to form a 32-bit word.

Figure 3.6 shows the structure of the pipeline.

Figure 3.6: The SISD Architecture
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The stages EX2 to EX4 are used by the BFLY instruction only. The execution

of this instruction proceeds as follows: in EX1 stage, the 4 operands of the

BFLY instruction are used to calculate cache register indexes and the twiddle

address according to table 3.4. The twiddle is then fetched from the dedicated

twiddle memory. In the following two stages, a complex multiplication between

the second input sample and the twiddle factor is performed. Four parallel

multiplications are computed in one stage, followed by two parallel additions

in the other. In the final pipeline stage, the results calculated in the previous

stage are added to and subtracted from the first input sample to calculate the 2

outputs of the butterfly, and the results are then saved to the respective cache

registers.

3.2.3 The VLIW Architecture

This is also a load-store architecture with 4 slots, each of which can execute a

BFLY instruction (figure 3.7). The BFLY instruction is similar to the one in the

SISD architecture with the difference that the execution occurs in 3 rather than 4

stages. In this case, the last 2 operations in the BFLY are done in one stage. The

reason is that, in the former case, the BFLY instruction takes its inputs in the 3rd

pipeline stage and outputs the result in the 6th. For the SISD architecture, the

BFLY instructions are executed sequentially, and there is no data hazard between

the passes. However, for the VLIW case, 4 BFLY instructions are executed in

parallel and there are data hazards between the passes due to pipelining. In

order to reduce this problem, the last two pipeline stages are combined so that

the results of the BFLY instructions are available earlier. An alternative solution

of using a forwarding mechanism is not considered for this architecture. Such a

mechanism would result in a significant area increase, since each of the 8 outputs

could potentially go into any of the 8 inputs.
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Combining the last two stages does not completely resolve data dependencies.

For the same reasons as above, interlocking was not implemented. Instead, since

the code size is rather small, the problem is resolved in the assembly source by

inserting NOP instructions between the passes. The trade-off is acceptable in

this case because there is a maximum of 7% increase in total number of cycles

for N = 256. For N > 256, there are no data dependency problems between the

passes. For N < 256, the increase in number of cycles is lower. It is worth to

mention that, there is no data hazard for modified CFFT algorithm, since the

cache is fully utilized valid instructions are inserted instead of NOP instructions.

Since 4 butterfly instructions execute in parallel, and since they need 4 dif-

ferent twiddle factors for some passes, the twiddle coefficient memory is divided

into 4 physically separate memories, each with the configuration 32×128. Each

slot of the VLIW architecture has access to every of the 4 twiddle memories. Ex-

pensive interleaving is not necessary because access conflicts can be completely

avoided in software if the architecture is carefully designed. Table 3.7 shows the

twiddle addressing scheme for the VLIW architecture. The most significant 2

bits are used to select the twiddle memory. The 2 bits are in turn determined by

the group, pass, epoch and the butterfly number. In any iteration, the former 3

numbers are the same. Therefore, selecting butterfly numbers having a difference

of 4 guarantees that there is no conflict for all passes. The code below show how

this is achieved for N=64 for epoch 0 (The VLIW for modified CFFT).

BFLY R[0],R[1],R[2]++,#0 || \

BFLY R[0],R[1],R[3]++,#0 || \

BFLY R[0],R[1],R[4]++,#0 || \

BFLY R[0],R[1],R[5]++,#0

The registers R[2],R[3],R[4] and R[5] which contain the butterfly numbers are

initialized to 0, 4, 8 and 12 respectively prior to each group iteration.
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Figure 3.7: The VLIW Architecture showing the BFLY

Table 3.7: Twiddle Addressing Scheme for the VLIW ASIP
E Pass Twiddle Coefficient Address
0 0 0 0 0 0 0 0 0 0 0

1 B0 0 0 0 0 0 0 0 0
2 B1 B0 0 0 0 0 0 0 0
3 B2 B1 B0 0 0 0 0 0 0
4 B3 B2 B1 B0 0 0 0 0 0

1 0 G4 G3 G2 G1 G0 0 0 0 0
1 B0 G4 G3 G2 G1 G0 0 0 0
2 B1 B0 G4 G3 G2 G1 G0 0 0
3 B2 B1 B0 G4 G3 G2 G1 G0 0
4 B3 B2 B1 B0 G4 G3 G2 G1 G0

︸ ︷︷ ︸ ︸ ︷︷ ︸
Selects the Selects the cell within the twiddle
memory memory
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Chapter 4

Cached Fast Hartley Transform

ASIP

4.1 The Fast Hartley Transform Algorithm

For an N -point sequence x(n), 0 < n < N − 1, the DHT [4] is given by:

H(k) =
N−1∑
n=0

x(n)cas(
2π

N
kn) (4.1)

and its inverse is given by:

x(n) =
1

N

N−1∑

k=0

H(k)cas(
2π

N
kn) (4.2)

Where cas(x) = cos(x) + sin(x). As seen in the equations, the same cas

function is used for both forward and inverse transforms. This feature of DHT

is especially valuable for an hardware implementation, since the same hardware

can be used for both transforms. FHT[7] is derived from DHT in the same way
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FFT is derived from DFT (for a detailed derivation of FHT see[17]). The N

point sequence is first divided into two N/2 sequences:

H(k) =

N/2−1∑
n=0

x(2n)cas(
2π

N
2kn)

+

N/2−1∑
n=0

x(2n + 1)cas(
2π

N
(2n + 1)k)

(4.3)

Now, the idea is to calculate H(k) which is the DHT of x(n), from H1(k) and

H2(k), which are the DHTs of x1(n) = x(2n) and x2(n) = x(2n+1) respectively.

Apparently the first term in the above equation is the DHT of x1(n) which is

H1(k), but the second term is not the DHT of x2 since the cas function in the

second term is not a valid DHT kernel, due to a time shift. By using the shift

rule of DHT given below:

H(k + c) = cos(c)H(k) + sin(c)H(−k) (4.4)

it can be shown that the second term in equation (4.3) is equal to:

cos(
2π

N
k)H2(k) + sin(

2π

N
k)H2(−k) (4.5)

finally H(k) can be rewritten in terms of H1(k) and H2(k) as:

H(k) = H1(k) + cos(
2π

N
k)H2(k) + sin(

2π

N
k)H2(−k) (4.6)

Above equation is valid for 0 ≤ k ≤ N/2 − 1. To calculate H(k) for k ≥ N/2,

the periodicity of the DHT and the symmetry of the cas function can be used.

DHT of a sequence is periodic with the sequence length, that is:

H(k + N) = H(k), 0 ≤ k ≤ N − 1 (4.7)
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And the cas function is:

cas(
2π

N
(n + N/2)) = −cas(

2π

N
n) (4.8)

Now the complete formula for the computation of H(k) is:

H(k) =





H1(k)+

cos(2π
N

k)H2(k)+

sin(2π
N

k)H2(−k) 0 ≤ k ≤ N
2
− 1

H1(k − N
2
)

−cos(2π
N

(k − N
2
))H2(k − N

2
)

−sin(2π
N

(k − N
2
))H2(−k + N

2
) N

2
≤ k ≤ N − 1

(4.9)

The switching from DHT to FHT lies in equation (4.9). The right hand side

of the above equation contains inputs which are the same for the two equations

due to periodicity. Therefore two H(k) can be calculated together, for instance

H(0) and H(N/2). Thus, by dividing the sequence into two smaller sequences,

the complexity of DHT is reduced. The splitting procedure can be repeated

until we get 2 point sequences. The FHT algorithm can be best understood by

its flow graph. Figure 4.1 shows the structure of the FHT for Decimation-In-

Time approach[18]( A complete set of other approaches, decimation-in-frequency,

radix-4 etc can be seen in[19]). The 16-length sequence x(n) is split into two

smaller sequences successively. This procedure can be seen on the graph (from

right to left). Since for each splitting the sequence is split into even and odd

indexed sequences, the x(n) sequence shows in a permuted order. The signal

flow, so the computation flow, is from left to right, when signals are transmitted

by unbroken lines their values remain unchanged. If a signal is transmitted by

a broken line, its sign is reversed. The internal structures of blocks T3 at level

3 and T4 at level 4 are shown on the bottom of figure 4.1. Multiplications with

34



cosine and sine functions are performed in these blocks. Apparently for the first

two blocks cosine and sine functions give 1 or 0 as the result. So there are no T

blocks for the first two stages.

Figure 4.1: FHT Flow Graph

4.1.1 Structure Of The FHT Algorithm

In terms of data addressing scheme, FHT flow graph is exactly the same of FFT

except the T blocks. In FHT algorithm, a butterfly has two inputs one of which is

directly connected to the previous stage and the other one is connected through

the T block. An output of T block is a function of two inputs of the T block.

Therefore a butterfly needs one additional input due to the T block, thus 2 output

values are calculated by using 3 input values. This input-output inefficiency can
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be avoided by calculating another butterfly which shares the two inputs of the

first butterfly and needs one additional input, thus by using 4 inputs, 4 outputs

can be calculated (Dual butterfly) [20]. Since a dual-butterfly has 4 inputs, there

are N/4 dual-butterflies in a stage. It should be noted that for the first two stages,

there is no T block; hence the butterflies can be independently computed.

4.1.2 Memory Addressing

Table 4.1: Memory Addressing For FHT
Stage Memory Address

1 B4 B3 B2 B1 B0 X *
2 B4 B3 B2 B1 B0 * X
3 B4 B3 B2 B1 * 0 B0

4 B4 B3 B2 * 0 B1 B0

5 B4 B3 * 0 B2 B1 B0

6 B4 * 0 B3 B2 B1 B0

7 * 0 B4 B3 B2 B1 B0

Table 4.1 shows the memory addressing scheme of the FHT algorithm. For

the first two stages, there is no need for dual- butterfly computation, since the

individual butterflies are independent from each other. For the remaining stages,

the aim is to count the dual-butterflies. Since a dual-butterfly involves 2 but-

terflies and since the addresses of these two butterflies are interrelated by the

T block, we can count only one butterfly of the dual-butterfly and derive the

address of the other from the address of the first one. For this purpose, one of

the bits is set to 0 in table 4.1. By doing so, the addresses of the inputs corre-

sponding to upper half (graphically upper) of the T blocks are calculated. A ”0”

in place of ”*” gives the address of the input which is not in the T block (X0), a

”1” in place of the ”*” gives the address of the input which is in the upper half

of the T block (X1). The dual-butterfly needs two more addresses. If IndexX is

the digits right to the ”*”:
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IndexY =





2stage−1 − IndexX IndexX 6= 0

2stage−2 IndexX = 0

(4.10)

Now the remaining two addresses for the second butterfly can be calculated

by concatenating bits left to the ”*” with IndexY. These two addresses are Y0

(a ”0” in place of the ”*”) and Y1 (a ”1” in place of the ”*”)

4.1.3 Dual-Butterfly Computation

Having calculated the 4 addresses, the next step is the computation of the dual-

butterfly:

M [X0] = M [X0] + (M [X1]cos(φ) + M [Y 1]sin(φ)) (4.11a)

M [X1] = M [X0]− (M [X1]cos(φ) + M [Y 1]sin(φ)) (4.11b)

M [Y 0] = M [Y 0] + (−M [X1]cos(φ) + M [Y 1]sin(φ)) (4.11c)

M [Y 1] = M [Y 0]− (−M [X1]cos(φ) + M [Y 1]sin(φ)) (4.11d)

where φ = IndexX2π
2stage

The second terms in the right hand side of above equations are actually the

computations in the T blocks. Apparently for IndexX=0, above computations

reduce to additions and subtractions.

4.2 Cached Fast Hartley Transform Algorithm

The idea behind the cached FHT algorithm is to load part of the data from

memory into a cache and process as many stages of butterfly computations as

possible by using the data in the cache. The cached FHT algorithm can be
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derived from FHT in a manner similar to cached FFT is derived from FFT

algorithm [2].

4.2.1 Derivation of Cached FHT Algorithm

The difficulty in cached FHT algorithm is the additional data dependency caused

by the T blocks. To derive cached FHT, we first show an example and then

generalize the cached FHT algorithm. For N = 128, there are 7 = log2(N)

stages and if we have a cache of size 16 (C=16). The first 4 (log2(16)) stages can

be calculated without a problem, since all the addresses of the four inputs of a

dual-butterfly lie in 16-size page. So, the cache can be loaded for 8 groups as in

table 4.2, and four each group, 4 stages of dual-butterfly computations can be

Table 4.2: Cache Loading For The First Epoch
Memory Address Cache Address

g2 g1 g0 * * * * * * * *

performed. At the end of the computations the results in the cache are dumped

back to the memory for each group. This constitutes the first epoch. For the

second epoch, there are 3 stages of computations remaining. For these 3 stages,

the cache must be so loaded that all the data for the 3 stages must be available in

the cache. Since the FHT is similar to FFT except the T blocks, half of the cache

must be loaded as in the cached FFT and the other half is loaded by considering

T block dependencies.

Table 4.3: Cache Loading For The Second Epoch
Memory Address

B4 B3 * 0 B2 B1 B0

* * * 0 g2 g1 g0

* * * 1 ag2 ag1 ag0

The first row in table 4.3 shows the butterfly addressing scheme for the stage

5. As explained previously these butterflies correspond to the upper half of the T
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blocks for stage 5. For further stages, the * moves toward left. Since the aim is to

calculate stages of butterfly computations with the data in the cache, the cache

must be loaded for variable part, which are the addresses corresponding to 3 Most

Significant Bit (MSB) positions, while keeping the 4 Least Significant Bit (LSB)

positions constant. So half of the cache is loaded from the memory locations given

in the second row of table 4.3. The remaining half of the cache must be loaded

by considering the T block dependencies. For the group, G = g2g1g0 = 001,

and for all butterflies in stage 5, IndexX will be 0001 therefore , IndexY=1111

(IndexY = 2stage−1 − IndexX), thus for G=001 we need to load remaining half

of the cache with another group AG =111 (auxiliary group) as in the third row

of table 4.3. Now lets investigate if the same data in the cache can be used

for stage 6. Since G=001, IndexX will be either 00001 or 10001 depending

on the butterflies in the stage 6, consequently IndexY will be either 11111 or

01111 respectively, since the 3 LSB of IndexY is 111 the data is available in

the auxiliary cache. Similarly for stage 7 IndexX will be 000001, 010001,100001,

110001 and correspondingly IndexY 111111, 101111, 011111, 001111 again the 3

LSB of IndexY is 111. So the data required for 3 stages of computations can be

loaded into the cache. This procedure can be repeated for other groups(G), the

auxiliary group(AG) is determined from G as follows:

AG =





2log2(C)−1 −G G 6= 0

0 G = 0

(4.12)

where C is the size of the cache. Having loaded the cache with the data, the

next step is to calculate the addresses of the data in the cache for each pass

and butterfly. As assumed, the least significant half of the cache contains the

data corresponding to upper half of the T block for the first pass. These cache

addresses can be found from the left hand side of table 4.4. And the data

corresponding to lower half of the T blocks lie in the most significant half of the
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cache and they can be found by the right hand side of table 4.4. In this table,

the ”-” represent a binary inversion and it is due to IndexY calculation.

Table 4.4: Cache Addressing
Pass Cache Address For G Cache Address For AG

0 0 B1 B0 * 1 B1 B0 *
1 0 B1 * B0 1 B1 * −B0

2 0 * B1 B0 1 * −B1 −B0

The final step is to compute the address of the cas function. For the FHT

algorithm it is equivalent to the IndexX, so for the cached FHT it is calculated

by concatenating digits right to the ”*” of the cache address for G and group

digits. It should be noted that for the group G=0, AG is also 0, so the cache

loading and cache indexing must be done as in the first epoch.

4.3 Processors For The FHT Algorithm

We have designed two Application Specific Processors for the FHT algorithm.

The first processor is implemented for the FHT algorithm and the second one for

the cached FHT algorithm. Both processors have 16 bit data path, and a special

”dual-butterfly” instruction.

4.3.1 FHT Processor

FHT algorithm requires four data for the dual-butterfly computation, the natural

solution is to use a 4-ported memory, but the energy dissipation and the die area

of a 4-ported memory is not feasible, so we have used a dual-ported memory

with a pipeline interlocking mechanism. Figure-4.2 shows the pipeline struc-

ture of the FHT processor. In the first two pipeline stages, the instructions are
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fetched from program memory and decoded. If the decoded instruction is ”dual-

butterfly” instruction, the 4 addresses are calculated from the operands of the

”dual-butterfly” instruction in the 3rd pipeline stage together with the address

of the cas function. In the 4th pipeline stage, two memory locations are loaded

corresponding to IndexX, in the 5th pipeline stage, two data for the IndexY are

loaded from memory and previously loaded two data are multiplied by respective

sine and cosine values (see eqns 4.11a and 4.11b). In the remaining stages dual

butterfly computation is completed. As it is noticed from pipeline figure, two

pipeline stages have access to the memory, if two consecutive instructions have

memory accesses, a data hazard arises. In order to solve this problem, pipeline

interlocking mechanism is used. In the DE and ADR stages of the pipeline the

processor determines whether both instructions have memory access and stalls

the pipeline if it determines a data hazard.

 

FE DE ADR MEM MEM & MUL ADD ADD & SUB Multiplex. Dual-port Data memory 
Single-port Coefficient memory 

Figure 4.2: FHT Pipeline

At the final pipeline stage, the dual-butterfly computation is completed and

the results are saved to the registers of the processor. The processor has 32

data and address registers, therefore after executing 8 dual-butterfly instructions
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the registers are filled completely and the results are saved to the memory by

executing 16 ”store” instructions.

4.3.2 Cached FHT Processor

The cached FHT processor has 64 registers for the purpose of caching. The

processor can compute up to 2048 point FHT, 6 passes in the first epoch and

5 passes in the second epoch. Figure 4.3 shows the pipeline structure of the

processor. This processor loads the two blocks corresponding to the group and

the auxiliary group bits to the cache and auxiliary cache registers and performs

dual butterfly operations on these cache registers. Since the 4 operands of the

dual-butterfly operation comes from cache registers, one of the memory accessing

stages of the FHT algorithm does not exist in the cached FHT processor. This

processor also has a dual-ported data memory and the cache is loaded from the

memory by means of two read pointers, one of which is for the G (group) and the

other one is for AG (Auxiliary Group). After the cache is loaded with data, dual-

butterfly computations are performed. Since ”dual-butterfly” operation requires

4 data from the cache registers, both cache and auxiliary cache registers are 8-

ported, 4 port for reading and 4 port for writing. The cached FHT processor

has support for two epochs only, and the assembly code for the two epochs are

unrolled, since the cache loading and dumping for the two epochs are different.
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FE DE ADR MEM ADD ADD&SUBDual-portDatamemory
1-portCoeff-memoryProgrammemory

CacheRegisters
Aux.CacheRegisters

Figure 4.3: FHT Pipeline
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Chapter 5

Results and Conclusion

This thesis aimed at designing and implementing low power, flexible FFT pro-

cessors for the European Union funded NEWCOM OFDM project. Several al-

gorithms are explored by the researchers from Technical University of Aachen,

Politecnico di Torino and Bilkent University. The cached FFT ASIP is chosen

as the processor for the project due to its low power consumption. All of the

processors compared in the following sections are ASIPs. The ASIPs designed in

this thesis are not compared with ASIC processors, since such a comparison is

unfair. All of the processors compared in the next section are designed with the

same design methodology [9] and synthesized with the same technology library;

UMC 0.13µ.

5.1 Implementation Results for cached FFT

ASIP

CFFT-S is the SISD ASIP that was described in Section 3.2.2. For a comparison

with the Cooley-Tukey(CT) algorithm, the ASIP which is described in [16] is
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considered. In that publication, the authors describe two ASIPs with an opti-

mized data-path and with an optimized control-path respectively. The former is

selected for comparison because this ASIP is comparable to CFFT-S: both con-

tain a butterfly instruction which fetch the operands and update the addresses

with a minimum overhead. However, the data path optimized ASIP, which is

here called CT-D (CT is an abbreviation for Cooley- Tukey FFT algorithm),

does not have instructions for ZOL as is the case with CFFT-S. Since this com-

parison aims at determining the reduction in energy dissipation as a consequence

of less number of accesses to the main memory, a direct comparison with CFFT-

S would be inconclusive. Therefore, an ASIP CT-Z which is similar to CT-D,

but which supports nested ZOLs was implemented by our research partners from

VLSI lab of POLITO[21] and Institute of Integrated Systems, RWTH, Aachen

[22]. The selected technique for nested ZOLs is the same as in [16]. The by-

pass mechanism of CT-D was not re-implemented in CT-Z. This is because the

CT-FFT algorithm can be similarly implemented on CT-Z without any need for

bypassing.
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Figure 5.1: Energy Consumption Graphic
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The effectiveness of computing the butterflies from the cache registers can be

observed from the Figure 5.1, where energy dissipation is reduced by 25% and

22% for 256 and 1024 points respectively. However, this implementation of the

cached FFT algorithm is slower by 21% (run-time) for 256 points(Figure 5.2).

This is attributed to low cache utilization for lower points FFT. Figures 5.3 and

5.4 show the results for the modified cached FFT algorithm. The advantage of

our modification is that the number of groups is decreased, so that the number of

cache dumps and loads is also decreased. This reduces the increase in run-time to

8% for 256 points, with a corresponding further reduction in energy dissipation

of 11%. Significantly better results can be obtained by unrolling the groups and

pass loops for the modified algorithm as shown in Figure 5.4.
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Figure 5.2: Execution Cycles Graphic

Figures 5.5,5.6,5.7 show the results for the VLIW implementation of the modi-

fied algorithm. A speed-up of 186% and 39% for 256 and 1024 points are achieved.

But, this comes at a cost of more than double the gate count. The area increase

is primarily caused by the duplication of the data path. No area overhead is

incurred for resolving data dependencies. These are completely resolved by the

techniques which are described in the previous section 3.2.3. Even though the

cached FFT algorithm could be efficiently parallelized at the instruction level
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Figure 5.3: Execution Cycles for Different Implementations
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Figure 5.4: Energy Consumption for Different Implementations

with respect to execution time, this approach increases the energy consumption

considerably by 17% and 48%.

5.2 Implementation Results for FHT ASIP

In this section, we compare three ASIPs: FHT, CFHT (cached FHT) and CFFT

(cached FFT). CFFT is the ASIP described in section 3.2.2. Although they run
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Figure 5.5: Execution Cycles: SISD vs VLIW
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Figure 5.6: Energy Consumption:SISD vs VLIW

different algorithms (FFT and FHT), the comparison is valuable for a Multi-

carrier communication system designer to evaluate the performance of the al-

gorithms, since all processors are designed with the same design methodology

and same technology library. CFFT ASIP has 32 cache registers for complex

data. Each complex data is represented by 32 bits (16 bit for real and 16 bit

for imaginary parts). CFHT ASIP has 64 cache registers for real data(16 bits),

therefore the two processors have nearly the same number of gates. FHT ASIP

on the other hand has 32 data registers and 32 address registers, although it has

the same number of registers, these registers have less ports, moreover address
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Figure 5.7: Area: SISD vs VLIW

calculation of FHT algorithm is simpler than those of CFHT and CFFT, thus

FHT processor has nearly half of the gates of other processors(Figure 5.8).

As illustrated in Figure 5.9, CFHT ASIP is almost two times faster than FHT

ASIP, since FHT processor stalls the pipeline for each consecutive dual-butterfly

instruction, on the other hand CFHT ASIP works directly on the 4-ported cache,

and has no pipeline interlocking. CFFT is in between the FHT and CFHT, its

faster than FHT since it has no interlocking either, and slower than CFHT since it

executes butterfly instruction rather than dual-butterfly instruction. The energy

consumptions of processors are shown in Figure 5.10, a direct comparison of

FHT and other processors may be inconclusive, since the cached algorithms have

significantly less memory access than that of FHT, however the comparison of

the CFHT and CFFT could give valuable information about the energy efficiency

of the algorithms. As it is noticed CFHT consumes almost half of the energy

CFFT consumes.
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Figure 5.8: Area: Comparison of FFT and FHT processors

Execution Cycles

0
2000
4000
6000
8000

10000
12000
14000

CFFT FHT CFHT

Processors

# 
o

f 
cy

cl
es

256 point

1024 point

 

Figure 5.9: Execution Cycles: Comparison of FFT and FHT processors

5.3 Conclusion

The cached FFT and FHT algorithms are explored for the first time for the

ASIP implementation. For the cached FFT algorithm, two processors one having

a single execution unit and the other having 4 execution units are designed.

For a variable length implementation of the cached FFT algorithm, the size

of the cache must be selected to fit to the largest FFT size. This leads to an

inefficient cache utilization for lower size FFT. We also present a modified cached

FFT algorithm which allows a better cache utilization for the lower size FFT.
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Figure 5.10: Energy Consumption: Comparison of FFT and FHT processors

It has been shown that cached FFT ASIP saves 25% of energy consumption

as sompared to an FFT ASIP. An alternative transformation to FFT in MCM

technologies, FHT algorithm is studied for the hardware implementation. Two

processor architectures are designed. The FHT algorithm requires a 4-port data

memory for the efficient execution of its dual-butterfly operation, however 4-

ported memory is not feasible. The FHT ASIP designed in this thesis uses a

dual-port data memory and employs two memory accessing pipeline stages with

a pipeline interlocking mechanism. The second FHT processor is the cached

FHT processor. We have derived the cached FHT algorithm in a way similar to

cached FFT algorithm is derived from FFT algorithm. It has been shown that

the cached FHT ASIP is 2x faster than FHT ASIP.
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