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ABSTRACT

A ZERO-ASSIGNMENT APPROACH TO

TWO-CHANNEL FILTER BANKS AND

WAVELETS

Mustafa Akba�s

M.S. in Electrical and Electronics Engineering

Supervisor: Prof. Dr. A. B�ulent �Ozg�uler

September 2001

It is well-known that subband decomposition and perfect reconstruction of an ar-

bitrary input signal is possible by a proper design of four �lters. Besides having a

wide range of applications in signal processing, perfect reconstruction �lter banks

have a strong connection with wavelets as pointed out by Mallat. Daubechies

managed to design minimal order, maximally at �lters and she proposed a cas-

cade algorithm to construct compactly supported orthogonal wavelets from the

orthogonal perfect reconstruction �lter banks. The convergence of the cascade

algorithm requires at least one zero at z = �1 and z = 1 for the lowpass and the

highpass �lters, respectively. This thesis focuses on the design of two-channel �l-

ter banks with assigned zeros. The fact that causal, stable and rational transfer

functions form a Euclidean domain is used to pose the problem in an abstract

setup. A polynomial algorithm is proposed to design �lter banks with �lters hav-

ing assigned zeros and a characterization of all solutions having the same zeros

in terms of a free, even, causal, stable and rational transfer function is obtained.

A generalization of Daubechies design of orthogonal �lter banks is given. The

free parameter can be used to improve the �lter bank design and the design of
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corresponding orthogonal or biorthogonal wavelets. The results also �nd an ap-

plication in examining the robustness of regularity of minimal length compactly

supported wavelets with respect to perturbation of �lter zeros at 1 and -1.

Keywords: �lter banks, perfect reconstruction, wavelets, zero assignment, Eu-

clidean domain, polynomial algorithm.
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�OZET

M�UKEMMEL-YEN_IDEN-_INS�A S�UZGEC� K�UMES_I VE

DALGACIKLARDA SIFIR ATAMA

Mustafa Akba�s

Elektrik ve Elektronik M�uhendisli�gi B�ol�um�u Y�uksek Lisans

Tez Y�oneticisi: Prof. Dr. A. B�ulent �Ozg�uler

Eyl�ul 2001

Herhangi bir giri�s sinyali i�cin bantlara ayr��st�rma ve m�ukemmel-yeniden-in�san�n

m�umk�un oldu�gu bilinen bir ger�cektir. Sinyal i�sleme alan�ndaki uygulamalara

ek olarak Mallat taraf�ndan g�osterildi�gi gibi iki-kanall� s�uzge�c k�umeleri dal-

gac�k d�on�u�s�um�u ile de yak�ndan alakal�d�r. Daubechies minimum derece, maksi-

mum d�uz s�uzge�cler tasarlad� ve dikgen m�ukemmel-yeniden-in�sa s�uzge�c k�umelerini

kullanarak cascade algoritmas�yla dikgen dalgac�klar �uretti. Cascade algorit-

mas�n�n yak�nsamas� al�cak ge�cirgen s�uzgecin z = �1'de ve y�uksek ge�cirgen

s�uzgecin z = 1'de en az birer s�f�rlar�n�n olmas�na ba�gl�d�r. Bu tez belli s�f�rlar�

haiz s�uzge�clerden olu�san iki-kanall� m�ukemmel-yeniden-in�sa s�uzge�c k�umelerinin

tasar�m�na odaklanmaktad�r. Nedensel, kararl� ve rasyonel d�on�u�s�um fonksiy-

onlar�n�n bir �Oklid alan� (domain) olu�sturmas� ger�ce�gi kullan�larak cebirsel bir

metod �onerilmi�stir. Belli s�f�rlar� olan s�uzge�cleri tasarlamak i�cin bir polinom algo-

ritmas� ortaya at�lm��st�r. Serbest �cift, nedensel, kararl� ve rasyonel bir d�on�u�s�um

fonksiyonu yard�m�yla ayn� s�f�rlar� haiz b�ut�un �c�oz�umler elde edilmi�stir. Bu yeni

metod ayn� zamanda Daubechies'nin tasar�m�n�n da bir genellemesidir. Serbest

parametre kullan�larak daha geli�smi�s s�uzge�cler ve bunlara kar�s�l�k gelen dikgen
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veya �cift dikgen dalgac�klar �uretmek m�umk�und�ur. S�f�rlar �uzerindeki kontrol kul-

lan�larak -1 ve 1'deki s�f�rlar�n yerinden oynat�lmas� durumunda dalgac�klar�n ne

kadar de�gi�sti�gi de incelenmi�stir.

Anahtar kelimeler: s�uzge�c k�umeleri, m�ukemmel-yeniden-in�sa, dalgac�k d�on�u�s�um�u,

s�f�r atama, �Oklid alan�, polinom algoritmas�.
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Chapter 1

INTRODUCTION

A �lter bank is a set of �lters and multirate operators. It is used to split an

arbitrary signal into di�erent frequency bands and to process each band inde-

pendently. A two-channel �lter bank as the one in Figure 2.1 consists of two

main parts called the analysis part and the synthesis part. The analysis part

is used for decomposition whereas the synthesis part is used for reconstruction.

There are four basic types of errors created in a �lter bank during the recon-

struction process: Aliasing, imaging, magnitude distortion and phase distortion.

All these errors can be removed by a proper choice of the analysis and the syn-

thesis �lters. Filter banks �nds applications in speech and image compression

[1], the digital audio industry, statistical and adaptive signal processing, and in

many other �elds [20]. Filter bank like decompositions are very popular in image

and speech processing, since such decompositions emulate human auditory and

vision system [21]. Filter banks are also closely related to some time-frequency

representations such as the wavelet transform [20].

The wavelet transform was introduced at the beginning of eighties. First,

a French geophysicist Morlet used it as tool for an analysis of seismic data.

Later, it was started to be widely used in all areas of signal processing. The
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wavelet transform is a new tool for time-frequency analysis. It generalizes the

short-time Fourier transform (STFT). In STFT, translations and modulations

of a �xed window function is used. This leads to the same resolution at all

frequencies. However, good time locality is needed at high frequencies and good

frequency localization is needed at low frequencies. This is achieved by the

wavelet transform. What made the wavelet transform popular is the existence

of eÆcient and fast algorithms to compute wavelet coeÆcients. The theory of

multiresolution analysis (MRA) combines the wavelet transform and the two-

channel �lter banks within the same framework [21]. MRA has a wide range of

applications. According to Daubechies: \The history of the formulation of MRA

is a beautiful example of applications stimulating theoretical development", [6].

Among the applications of the wavelet transform, there are subband coding,

speech, image and video compression, denoising, feature detection, etc. Today,

subband coding is one of the most successful technique for image coding [19].

Therefore, FBI uses the wavelet scalar quantization algorithm to store digitized

�ngerprints. It was initially expected that the JPEG standard would win, but

the wavelet scalar quantization happened to be the winning algorithm [19].

Two-channel �lter banks were �rst studied by Croiser, Esteban and Galland

(1976) [3] who showed that it is possible to achieve perfect reconstruction (PR)

by a proper design of analysis and synthesis �lters. Their design used a certain

type of quadrature mirror �lters (QMF) which resulted in FIR �lters of only two

nonzero coeÆcients and, hence, poor frequency responses. In 1986 Smith and

Barnwell [17] and in 1985 Mintzer [15] independently showed that it is possible

to have FIR �lters with more satisfactory frequency responses if the �lters are

selected so that they satisfy conjugate quadrature property. Their design is called

alternating ip design. The resulting �lters also satisfy orthogonality conditions.

After Mallat discovered the relation between orthogonal wavelets and PR

orthogonal �lter banks, the latter gained importance as it became possible to
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implement a fast algorithm for discrete wavelet transform via �lter banks [13].

PR �lter bank theory was further improved by biorthogonal �lter banks pro-

posed by Vetterli [21] and general paraunitary matrix theory introduced by

Vaidyanathan [20]. One of the most important works on the relation of �lter

banks and wavelets was performed by Daubechies. She proposed a method to

design an orthogonal PR system with �lters that are at to any degree [6].

She also determined the minimum order �lter that satisfy a speci�ed degree of

atness.

Design of �lter banks of increasing sophistication is of course possible due

to the large degree of freedom one has in designing the analysis and synthesis

�lters. Even after satisfying the PR condition, a large degree of freedom still

remains. Most desirable �lter properties such as atness, minimal-length, etc.,

all directly relate to number and location of the zeros in the �lter transfer func-

tion. FIR �lters can be thought of as all-zero �lters so that they are completely

characterized by their zeros.

In this thesis, we study the problem of assigning zeros to the �lters that satisfy

perfect reconstruction property. The problem is posed and solved in an algebraic

framework which allows considering various di�erent classes of �lters at the same

time. Our approach is similar in technique to the recent study of Sweldens and

Daubechies [7] in which the fact that the Laurent polynomials form a Euclidean

domain is exploited to construct increasingly sophisticated wavelets with various

properties. The approach in this thesis di�ers signi�cantly from that of [7] in

that, here, the �lters with pre-assigned zeros are constructed.

The main result of the thesis is stated in Theorem 1 which shows that (i) it

is possible to design a PR �lter bank with any assigned zeros and with poles in

any desired region of the complex plane and (ii) all such �lter banks can be char-

acterized (described) based on a free parameter which consists of an even �lter

transfer function. The construction of a �lter bank with assigned zeros is given in
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an algorithm which uses polynomial algebra and spectral factorization. Theorem

1, when specialized to FIR �lters, can be used to characterize minimal-length,

conjugate quadrature (or QMF) �lters with assigned zeros. This result is stated

in Theorem 2. When the assigned zeros are �xed at z = �1 for lowpass �lters

and at z = 1 for highpass �lters, Theorem 2 gives rise to Daubechies maximally

at �lters and to the associated minimal length orthonormal wavelets, a cele-

brated result of [6]. The result of Theorem 2 is further applied in investigating

the robustness with respect to perturbations in �lter zeros of the regularity of

minimal-length compactly supported wavelets of Daubechies.

The outline of the thesis is as follows. We begin with the structure of a

two-channel �lter bank in Chapter 2, where we introduce multirate operators

and analysis and synthesis �lters. In addition to traditional building blocks, in

�lter banks two new building blocks are used. These are downsamplers and up-

samplers which are called multirate operators. They are linear but time varying

systems. Both time and frequency domain characterization of them are given

in the chapter. In Chapter 3, the de�nition of PR and some simple PR �lter

banks are given. In Chapter 4, continuous and discrete-time wavelet transform

and the relation between the wavelet transform and two channel �lter banks

are explained. The axiomatic de�nition of the multiresolution analysis (MRA)

is also given in the chapter. The cascade algorithm discovered by Daubechies

[6] is explained and used to construct compactly supported wavelets from the

orthogonal FIR �lter banks. The main results of this thesis are in Chapter 5,

where a method of constructing �lter banks with �lters having assigned zeros is

given. Applications of the main result to Daubechies' wavelets are also given in

this chapter.

In order to make this thesis accessible to system and control theorists as well

as to researchers in signal processing, the introductory chapters on �lter banks

4



and wavelets and the algebraic preliminaries in Chapter 5 are presented in as

much detail as possible.
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Chapter 2

STRUCTURE OF A FILTER

BANK

In traditional single rate digital signal processing, building blocks are adders,

multipliers (multiplication of two or more signals and multiplication by a scalar),

delay elements and �lters. In multirate signal processing, in addition to single

rate operators, there are two new building blocks called M -fold downsampler

and L-fold upsampler. This chapter concerns the structure of a �lter bank which

is a simple system for multirate signal processing. A brief review of all building

blocks of a �lter bank is given.

This chapter is organized as follows: Section 2.1 gives a brief information

on how �lter banks operate. In Section 2.2, upsamplers and downsamplers, the

basic operators of multirate signal processing, are explained. The input-output

relation both in frequency-domain and in time-domain is stated. Section 2.3

deals with analysis and synthesis �lters and their properties.

6



2.1 Introduction

Filter banks are used to separate an arbitrary signal into di�erent frequency

bands and then process each individual band independently. Figure 2.1 shows

the general structure of a two-channel maximally decimated �lter bank. An input

signal is usually �rst �ltered with a lowpass �lter and a highpass �lter in the two-

channel �lter banks. Analysis �lters H1(z); H2(z) and 2-fold downsamplers form

the analysis section. Maximally decimated means that the sum of reciprocals of

downsampling ratios equals to 1. In the synthesis section there are upsamplers

and synthesis �lters K1(z) and K2(z). Subband signals v1[n] and v2[n] are in

general further processed (quantization, subband coding) before entering the

synthesis part. As a result of this further processing disturbances d1[n] and d2[n]

are often created. In the literature both two-channel and M -channel �lter banks

are studied. However in this thesis we will concentrate on two-channel �lter

banks only. Moreover, we will assume throughout the thesis that disturbances

d1[n] and d2[n] are both zero.

H2(z) K2(z)

K1(z)H1(z) ↑ 2

↑ 2

↓ 2

↓ 2

v1[n]

v2[n] x[n]

x[n]

^

++

+

d1[n]

d2[n]

Figure 2.1: Two-channel maximally decimated �lter bank structure.
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2.2 Multirate Operators

The most basic operations in multirate signal processing are downsampling and

upsampling. They are used to change the sampling rate. We will analyze upsam-

pling and downsampling both in time-domain and in frequency-domain. Time

domain analysis is useful to understand how they operate. Frequency domain

analysis provides a simpler analysis of the overall �lter bank.

2.2.1 Downsampling

Downsampling, which is also called subsampling or decimation, is used to de-

crease number of samples in subband signals vk[n]. Figure 2.2 shows an M -fold

downsampler.

M -fold
downsampler y[n ]=x[ Mn ]x[n ]

Figure 2.2: M -fold downsampler.

Downsampling in Time Domain

An M -fold downsampler keeps every M
th sample of its input and discards the

rest. Therefore, in time domain we can express it as follows:

y[n] = x[Mn] (2.1)

Obviously, downsampling is not causal. Moreover it is not time invariant. Figure

2.3 illustrates decimation for M = 2. The most obvious result of downsampling

is a decrease in the number of samples. Therefore, for M = 2 unless the input is

constructed from samples of a continuous time signal with sampling rate more

8



..................

0-1 1 2-2

0-1 1

x[n]

n

y[n]=x[ 2n ]

n

......... .........

Figure 2.3: Downsampling for M=2 in time domain.

than twice the Nyquist rate 1, the basic consequence of downsampling operation

is aliasing. This is more obvious in frequency domain.

Downsampling in Frequency Domain

Frequency domain relation between input and the output for an M-fold down-

sampler is

Y (ejw) =
1

M

M�1X
k=0

X(ej(w�2�k)=M); (2.2)

which means that the input spectrum is expanded by a factor of M and then it

is shifted by an amount of 2�k for k = 0; 1; :::;M � 1. The �nal spectrum of the

output is constructed as the superposition of all expanded and shifted spectra.

Sometimes it is better to write the input-output relation in the z-domain. In

that case we have

Y (z) =
1

M

M�1X
k=0

X(z1=MW k

M
); (2.3)

whereW k

M
= e

�j2�k=M . Figure 2.4 illustrates downsampling in frequency domain

for M=2. Downsamplers are in general sources of aliasing in a �lter bank. The

1Nyquist rate is the minimum sampling frequency that prevents aliasing and allows recon-

struction of a bandlimited signal from its samples. It is twice the maximum frequency that the

continuous signal contains.
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X(ejw)

w0 π-π 2π-2π

Y(ejw)

w0 π-π 2π-2π

(a)

X(ejw)

w0 π-π 2π-2π

Y(ejw)

w0 π-π 2π-2π

(d)

A

A

A

A

(c)

(b)

π/2-π/2 3π/2-3π/2

π/2 3π/2-π/2-3π/2

Figure 2.4: Downsampling for M = 2 in frequency domain. Figures a, b show a

case of no aliasing, whereas c, d show aliasing.

necessary and suÆcient condition for no aliasing is that the input signal must be

band limited to a frequency band of �

M
, that is, the input spectrum is nonzero

for only wi � jwj � wi +
�

M
where wi � 0 [20].

2.2.2 Upsampling

Upsampling is the inverse of downsampling in the sense that it increases the

number of samples. An L-fold upsampler simply puts L� 1 zeros between each

samples of the input. Figure 2.5 shows the block diagram of an upsampler.

10



L -fold
upsampler y[n ]x[n ]

Figure 2.5: L-fold upsampler.

Upsampling in Time Domain

Mathematical relation between input and output in time domain is

y[n] =

8<
:

x[n=L] if n = kL; k 2 Z

0 o=w

(2.4)

Upsampling is not causal and not time invariant, either. Figure 2.6 illustrates

upsampling for L = 2.

..................

0-1 1 2-2

0-1 1

x[n]

n

y[n]

n

......... .........

-2 2-3-4 3 4

Figure 2.6: Upsampling for L = 2.

Upsampling in Frequency Domain

Frequency domain relation between input and the output of an L-fold upsampler

is

Y (ejw) = X(ejwL) or Y (z) = X(zL): (2.5)
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X(ejw)

w0 π-π 2π-2π

Y(ejw)

w0 π-π 2π-2π

(a)

A

A

(b)

image image

Figure 2.7: Upsampling in frequency domain.

The result of upsampling is shrinkage of the input spectrum. Due to this shrink-

age, copies of the original spectrum of the input which are called image appear

at higher frequencies for a low frequency input. Figure 2.7 illustrates upsam-

pling in frequency domain for L = 2. Upsamplers are known to be sources of

imaging in a �lter bank.

M -fold
downsamplerx[n]

L -fold
upsampler y[n]

Figure 2.8: Cascade connection of an M -fold downsampler with an L-fold up-

sampler.

Cascade connection of an upsampler and a downsampler is used to change the

sampling rate. A cascade connection of an M -fold downsampler and an L-fold

upsampler is shown in Figure 2.8. For this connection, in z-domain, we have

Y (z) =
1

M

M�1X
k=0

X(zL=MW k

M=L
): (2.6)

In general, multirate operators are used together with digital �lters. When

multirate operators are used with digital �lters, we can place them before or

12



after the �lters. Di�erent combinations are shown in Figure 2.9. There are two

identities for these combinations which are also shown in the same �gure.

H(z) ↑ M H(zM)↑ M≡

↓ MH(zM) H(z)≡ ↓ M

Noble Identity I

Noble Identity II

Figure 2.9: Noble Identities.

2.3 Analysis and Synthesis Filters

Analysis �lters are a set of �lters that operate in parallel. The main function

of these �lters is that they separate the input into di�erent frequency bands.

Analysis �lters must be chosen to decrease the aliasing due to downsamplers

that follows them. Therefore, sometimes they are called anti-aliasing �lters.

Similarly, synthesis �lters must be determined so that they do not introduce

images. Many di�erent ways of separating the frequency band is possible and

the choice depends on the type of application. The important point is to cover the

whole input spectrum, i.e., prevent data loss. Uniform partition of the spectrum

is an example. It is done with equal bandwidth band-pass �lter. Figure 2.10

shows two di�erent uniform separation. Filters Hk(e
j!), k = 1; 2; ::;M , are

analysis �lters for an M -channel �lter bank. In Figure 2.10a, non-overlapping

�lters are used. However, in such cases there are very severe attenuations at the

frequencies multiples of �

M
for an M-channel �lter bank. Therefore, the situation

in Figure 2.10b is preferred most of the time. By such a choice analysis �lters

produce aliasing but it is possible to cancel the aliasing due to analysis part by

a proper selection of synthesis �lters.
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-π π0

H1(ejw) H2(ejw) HM(ejw)

(a)

-π π0

H1(ejw) H2(ejw) HM(ejw)

(b)

............

............

Figure 2.10: Uniform partition of the spectrum (a) non-overlapping partition of

the spectrum, (b) overlapping partition.
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Chapter 3

PERFECT

RECONSTRUCTION FILTER

BANKS

In the previous chapter, the building blocks of a two-channel �lter bank have been

introduced. The time domain and the frequency domain input-output relation

of these blocks have been given. Using this information, it is possible to write

the input-output relation of the overall system. The input signal is �rst �ltered

by the analysis �lters and then decimated. This process produces so called

subband signals vk[n], k = 1; 2, of Figure 2.1. Although subband signals vk[n] are

quantized and then coded, we assume in de�ning PR that the subband signals

enter the synthesis part without any further processing like quantization and

coding. In the synthesis part subband signals are �rst upsampled and then

�ltered by synthesis �lters. PR is achieved when the output signal x̂[n] is the

same as the input signal x[n] except possibly some delay in time. Croiser [3]

showed that is it is possible to achieve PR using the freedom in choosing the

analysis and the synthesis �lters. This chapter explains how to use this freedom

to achieve PR. The relation between the input and the output of the �lter bank
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can be analyzed in time domain or in the z-domain. The z-domain analysis is

simpler and appropriate from the point of view of assigning zeros, so we will

proceed in the z-domain. The reader may consult [1, 21] for the analysis in the

time domain.

This chapter is organized as follows: Section 3.1 exposes the input-output

relation of the two-channel �lter bank. The errors created in the system are

discussed together with an assessment of how to avoid these errors. Section 3.2

contains some examples to PR systems: Croiser's design, Smith and Barnwell

design, and �lter banks with Daubechies' maximally at �lters.

3.1 PR in a Two-Channel Filter Bank

The reconstruction at the output of a �lter bank of Figure 2.1 di�ers from its

input due to disturbances inuencing the system or distortions introduced inside

the system. There are four basic sources of distortion:

i. aliasing,

ii. imaging,

iii. amplitude distortion,

iv. phase distortion.

Aliasing is mainly due to downsamplers and overlapping �lters. Aliasing due

to downsamplers can be eliminated if the output of analysis �lters are band

limited to a frequency band of �

M
where M is the decimation factor (which

is 2 for maximally decimated two-channel �lter bank). In the ideal case this

can be achieved using ideal bandpass �lters. However, in practice �lters have

nonzero transition band and stopband gain. Another solution is non-overlapping
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spectrum partition as seen in Figure 2.10a. However, in that case, there is severe

data loss at frequencies multiples of �

M
where M is the number of subbands.

In the light of these, the optimal solution is to use overlapping analysis �lters

that allow aliasing and then cancel the aliasing in the synthesis part by a proper

design of synthesis �lters. How this can be achieved will be explained in this

section.

Imaging occurs in the synthesis part due to upsamplers as mentioned in Sec-

tion 2.2.2. Images, just like aliasing, can be removed by a proper choice of

synthesis �lters.

Amplitude distortion and phase distortion can be easily seen from the input

output relation of the overall system in the z-domain. For a two-channel �lter

bank the output X̂(z) can be written in terms of the input X(z) as follows:

X̂(z) =
1

2

�
T (z)X(z) + S(z)X(�z)

�
; (3.1)

where

T (z) = H1(z)K1(z) +H2(z)K2(z)

and

S(z) = H1(�z)K1(z) +H2(�z)K2(z):

Transfer functions T (z) and S(z) result from (2.6). The term with X(�z) in

(3.1) is called the aliasing term and T (z) is knows as distortion transfer function

[20]. In order to achieve PR the aliasing term must be removed, i.e., S(z) must

be zero. However, even when S(z) = 0, X̂(z) is

X̂(z) =
1

2
T (z)X(z): (3.2)

On the unit circle we can write T (z) as

T (ej!) = jT (ej!)jej�(!): (3.3)

Therefore, X̂(ej!) = 1
2
jT (ej!)jej�(!)X(ej!). If jT (ej!)j is not allpass, i.e.,

jT (ej!)j = c 6= 0, then amplitude distortion is inevitable. Likewise, if �(!)
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is not a linear function of ! which means T (z) is not linear phase, then phase

distortion is a direct consequence. If a �lter bank system is free from aliasing

and moreover there is no phase and no amplitude distortion, then we say PR is

achieved. The output X̂(z) is given as

X̂(z) =
1

2
cz
�n0X(z) (3.4)

for some constant c and an odd integer n0. In time domain this corresponds to

x̂[n] = 1
2
cx[n� n0].

As mentioned previously, by proper design of synthesis �lters aliasing cancel-

lation is possible. By a proper design we mean the following selection

K1(z) = H2(�z)V (z)

K2(z) = �H1(�z)V (z)
(3.5)

for some stable V (z). This is a consequence of the condition S(z) = 0 provided

H1(z), H2(z) have no common zeros. This selection completely cancels aliasing.

Distortion transfer function T (z) becomes

T (z) =
�
H1(z)H2(�z) �H2(z)H1(�z)

�
V (z) = cz

�n0 : (3.6)

Equation (3.6) will be referred to as the PR equation. After de�ning P0(z) =

H1(z)H2(�z), equation (3.6) becomes

�
P0(z)� P0(�z)

�
V (z) = cz

�n0 : (3.7)

For exact reconstruction c is chosen to be 2. There are di�erent designs that

satisfy equation (3.7). When V (z) is 1, equation (3.7) turns out to be

P0(z)� P0(�z) = 2z�n0 : (3.8)

The left hand side in equation (3.8) is an odd function, therefore n0 must be

an odd integer. If we multiply both sides in equation (3.8) by z
n0 and de�ne

P (z) = z
n0P0(z), we obtain

P (z) + P (�z) = 2: (3.9)
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Any �lter P (z) satisfying (3.9) is called a halfband �lter. All even indexed samples

of p[n] are zero except p[0] which is 1. Some authors �rst design a halfband �lter

P (z) and then factor it into H1(z) and H2(�z). Moreover, it is possible to build

other �lters multiplying the particular �lters H1(z) and H2(z) by an allpass �lter

V (z) as in [22]. However, from this point on, for simplicity, V (z) in (3.7) will be

assumed to be 1.

3.2 Di�erent Designs

It is possible to design di�erent types of �lter banks using the freedom in P0(z)

of (3.8). In this section we will consider Croiser's design, Smith and Barnwell's

design, and Daubechies maximally at �lter design.

3.2.1 A Simple Alias Free QMF System

If two analysis �lters H1(z) and H2(z) satisfy the property

jH2(e
j!)j = jH1(e

j(��!))j; (3.10)

then the pair is called a quadrature mirror �lter (QMF) since the highpass �lter

jH2(e
j!)j is the mirror image of jH1(e

j!)j with respect to quadrature frequency

2�
4
. Figure 3.1 shows a QMF pair. There are two di�erent types of �lter selection

satisfying this property. One is introduced by Croiser [3] and the other by Smith

and Barnwell [17] and Mintzer [15], independently. Croiser's selection relates the

analysis �lters as

H2(z) = H1(�z): (3.11)

If H1(z) is a good lowpass �lter, then H2(z) is a good highpass �lter. In time

domain h2[n] is constructed from h1[n] by modulating it with (�1)n, that is,

h2[n] = (�1)nh1[n]; so this method is also called the alternating sign method. In
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Croiser's design, PR equation (3.6) in terms of analysis �lter H1(z) with aliasing

cancellation choice is

H1(z)
2 �H1(�z)2 = 2z�n0 : (3.12)

Any H1(z) satisfying (3.12) achieves PR. There is a severe limitation on FIR

solutions to Equation (3.12). It is easy to see this limitation with the polyphase

structure introduced by Vaidyanathan [20]. Analysis lowpass �lter H1(z) can be

written in the polyphase form as

H1(z) = H10(z
2) + z

�1
H11(z

2)

where polyphase component H10(z) is

H10(z) =

1X
k=�1

h1[2k]z
�k

and polyphase component H11(z) is

H11(z) =

1X
k=�1

h1[2k + 1]z�k

Let us rewrite equation (3.12) in terms of polyphase components of H1(z), then

we have

4z�1H10(z
2)H11(z

2) = 2z�n0 : (3.13)

If H1(z) is FIR, then so are H10(z) and H11(z). However, under this condition,

(3.13) holds if and only if H10(z) and H11(z) are pure delays, i.e., H10(z) =

an1z
�n1 and H11(z) = an2z

�n2. Analysis �lters become

H1(z) = an1z
�2n1 + an2z

�2n2�1; H2(z) = an1z
�2n1 � an2z

�2n2�1:

Therefore, FIR solutions are limited to only two nonzero coeÆcients which results

in poor stopband attenuation and smooth transition band. Although, choosing

H10(z) = 1=H11(z) may give better �lters, with such a choice the �lters become

IIR.
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Figure 3.1: QMF pair.

3.2.2 FIR PR System with Better Filters

Smith and Barnwell [17] and Mintzer [15], improving the design of Croiser, came

up with another type of QMF �lters which are also known as conjugate quadrature

�lters (CQF). After satisfying (3.5) with V (z) = 1, they relate analysis �lters as

H2(z) = �z�NH1(�z�1): (3.14)

where N is an odd integer. This design is also called as alternating ip design [19],

because in time domain this selection corresponds to �rst ipping the sequence

h1[n] with respect to origin and then changing the sign of odd indexed samples.

The term �z�N is used to make H2(z) causal by shifting the new sequence to

the right by N when H1(z) is FIR. Letting n0 = N , these new �lters satisfy the

following PR equation

�
H1(z)H1(z

�1) +H1(�z)H1(�z�1)
�
z
�N = 2z�N : (3.15)

Thus the halfband �lter P (z) de�ned by equation (3.9) has a special form, P (z) =

H1(z)H1(z
�1). The product �lter P (z) in that special form is an autocorrelation

function. A CQF �lter bank has two properties that are worth mentioning: power

complementarity and orthogonality.

i. Power Complementarity:

Any two �lters H1(z) and H2(z) satisfying

jH1(e
j!)j2 + jH2(e

j!)j2 = c
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for some constant c are called power complementary �lters [20]. PR equa-

tion (3.6) for V (z) = 1 and c = 2 becomes

H1(z)H2(�z) �H1(�z)H2(z) = 2z�n0 : (3.16)

From (3.14) we can get H1(�z) = �z�NH2(z
�1). Substituting H1(�z) and

H2(�z) in (3.16) we have

z
�N

H1(z)H1(z
�1) + z

�N
H2(z)H2(z

�1) = 2z�n0: (3.17)

Taking n0 = N in (3.17) and evaluating the expression on the unit circle

we reach

H1(e
j!)H1(e

�j!) +H2(e
j!)H2(e

�j!) = 2

jH1(e
j!)j2 + jH2(e

j!)j2 = 2:

Therefore, Smith and Barnwell's choice results in power complementary

�lters.

ii. Orthogonality: Any two-channel �lter bank satisfying (3.14) and (3.15)

with n0 = N is called an orthogonal �lter bank. Sometimes they are also

called lossless or paraunitary �lter banks [22]. Orthogonality we men-

tion here is double-shift orthogonality. In time domain, it means that two

sequences h1[n] and h2[n] satisfy

1X
n=�1

h1[n]h2[n� 2k] = 0; 8k 2 Z; (3.18)

1X
n=�1

h1[n]h1[n� 2k] = Æ[k]; 8k 2 Z; (3.19)

1X
n=�1

h2[n]h2[n� 2k] = Æ[k]; 8k 2 Z: (3.20)

Writing Equation (3.15) in time domain for n0 = N , we can see that the

sequence h1[n] satis�es

1X
n=�1

h1[n]h1[n� k] +

1X
n=�1

(�1)n(�1)n�kh1[n]h1[n� k] = 2Æ[k]

1X
n=�1

h1[n]h1[n� 2k] = Æ[k]:

(3.21)
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n Filter coeÆcients

0 0.04935260

1 -0.01553230

2 -0.08890390

3 0.31665300

4 0.78751500

5 0.50625500

6 -0.03380010

7 -0.10739700

Table 3.1: 8-tap Smith & Barnwell �lter coeÆcients.

Therefore, Smith and Barnwell �lters satis�es (3.19). Following the same

steps we can show that h2[n] satis�es (3.20).
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Figure 3.2: Frequency Magnitude Response of 8-tap Smith & Barnwell Filter.

Table 3.1 gives an example to �lters that Smith and Barnwell designed. This

�lter is known as 8-tap lowpass Smith and Barnwell �lter. It was widely used

in speech and image processing. The frequency magnitude response is shown in

Figure 3.2. In Section 4.4, this �lter will be used to generate wavelet function.
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3.2.3 Daubechies' Maximally Flat Filters

Daubechies' �lters were �rst designed to construct orthogonal wavelets. These

are FIR �lters that have zeros1 atw = � and/or w = 0 with multiplicity at least 1.

Daubechies chooses synthesis �lters to cancel aliasing and relates analysis �lters

by Equation (3.14), i.e., she uses alternating ip design of Smith and Barnwell so

that the resulting �lters are orthogonal. Daubechies' �lters are named according

to number of zeros they have at w = �. Daubechies' �lter with N zero at w = �

is named as DN . She concentrates on an analysis lowpass �lter H1(e
j!) in the

form

H1(e
j!) =

�1 + e
�j!

2

�N
L(ej!)

with N � 1 for some L(ej!). Then PR equation (3.6) on the unit circle is given

by

jH1(e
j!)j2 + jH1(e

j(!+�))j2 = 2�
cos2

!

2

�N
L(ej!) +

�
cos2

! + �

2

�N
L(ej(!+�)) = 2

(3.22)

where L(ejw) = jL(ejw)j2. Cosine terms come from
���1+e�jw2

���2N . Since �lter

coeÆcients are real, L(ej!) can be written as a polynomial in cos!. However,

writing L(ej!) as a polynomial in sin2 !

2
= 1�cos!

2
is more convenient [6]. After

a change of variable from ! to sin !

2
and de�ning y = sin !

2
, the equation (3.22)

becomes

(1� y)NP (y) + y
N
P (1� y) = 2 (3.23)

where

P (y) = L(ej!)
���
sin !

2
=y
: (3.24)

The explicit solution of (3.23) turns out to be

P (y) =

N�1X
k=0

0
@ N + k � 1

k

1
A y

k + y
N
R(

1

2
� y) (3.25)

1Lowpass �lters have zeros at w = � and highpass �lters have zeros at w = 0.
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n N=2 N=3 N=4

0 0.48296 0.33267 0.23038

1 0.83652 0.80689 0.71485

2 0.22414 0.45988 0.63088

3 -0.12941 -0.13501 -0.02798

4 -0.08544 -0.18703

5 0.03523 0.03084

6 0.03288

7 -0.01059

Table 3.2: Daubechies synthesis lowpass �lters for N = 2, N = 3 and N = 4.

where R(�) is an odd polynomial chosen such that P (y) � 0 for y 2 [0; 1]. This

is the set of all solutions. Individual �lters come from the spectral factorization

of P (y). First, L(ejw) is calculated using (3.24). Then, L(ejw) is factored into

L(ejw) = L(ejw)L(e�jw). Finally, the minimum phase zeros generated from

factorization are assigned to H1(z), [6]. Table 3.2 shows coeÆcients of D2, D3

and D4 synthesis lowpass �lters. We will obtain the above design of Daubechies

as a corollary to our main result in Chapter 5.
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Chapter 4

WAVELETS AND

MULTIRESOLUTION

ANALYSIS

In signal processing, one needs to perform series expansion of signals for anal-

ysis and synthesis purposes. Sometimes, it is necessary to have both time and

frequency information. In such cases, the Fourier transform is not suÆcient and

the short-time Fourier transform does not have both good time and good fre-

quency localization. Thus, the wavelet transform which has good time locality at

high frequencies and good frequency localization at low frequencies is introduced.

There are very eÆcient algorithms to compute the wavelet transform. These al-

gorithms are provided by the multiresolution analysis (MRA) techniques which

use two-channel PR �lter banks as a tool for computations. Among the methods

of constructing wavelets, the construction using the two-channel PR �lter banks

is very popular. In this chapter, we give the formal de�nition of the wavelet

transform and focus on the relation between discrete-time wavelet transform and

the two-channel PR �lter banks.
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This chapter is organized as follows: Section 4.1 introduces two di�erent tools

for time-frequency analysis, namely the short-time Fourier transform and the

wavelet transform. The advantages of the wavelet transform in comparison with

the short-time Fourier transform (STFT) is discussed. Section 4.2 is devoted to

MRA where an axiomatic de�nition of MRA is given. In Section 4.3, it is shown

how every orthogonal wavelet transform corresponds to an orthogonal �lter bank.

Conversely, under certain conditions, an orthogonal �lter bank corresponds to

an orthogonal wavelet transform. These conditions and an algorithm to compute

the wavelet from the �lter bank are given in Section 4.4.

4.1 Time Frequency Analysis

There are several ways of decomposing a signal for analysis. One of them is

Fourier transform. Although it is a powerful tool for signal analysis, it only gives

limited information about the signal to be analyzed. Formally Fourier transform

of a function f(t) is given as

F (!) =

Z 1

�1
f(t)e�j!tdt:

Since integration is an averaging operation, the analysis obtained using the

Fourier transform is in some sense an average analysis. The averaging inter-

val is all of time. By looking at the Fourier transform of a signal we can say

which frequencies are involved in the signal, what are their relative weight, etc.

However, we cannot say when a particular frequency occurred. If we have a very

non-stationary signal, then we need time information adjoined with a particular

frequency, since it is required to know not only which frequency components oc-

cur but also when a particular frequency occurs. Fourier transform of a function

is perfectly localized in frequency, on the other hand, the function f(t) itself is

perfectly localized in time. Although f(t) and F (!) represent the same function,
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they are two extremes in time and frequency localization. One way of obtain-

ing this information is to use STFT which is also known as Gabor transform or

windowed Fourier transform.

4.1.1 Short-Time Fourier Transform

STFT was introduced in 1946 by Gabor [8] to measure localized frequency com-

ponents of sounds. In STFT, a real symmetric window function g(t) with unit

norm is used. Transform is calculated by translating and modulating the �xed

window function g(t). Modulated and translated g(t) is written as

gu;
(t) = e
j
t
g(t� u);

which is also of unit norm for any u and 
. STFT of a function f(t) is given as

F (u;
) = hf; gu;
i =
Z 1

�1
f(t)gu;
(t� u)e�j
tdt;

and inverse transform is

f(t) =
1

2�

Z 1

�1

Z 1

�1
F (u;
)g(t� u)ej
tdud
:

F (u;
) is a continuous function of u and 
. Information provided by F (u;
)

is represented in time-frequency plane by a region whose location and width

depends on the time-frequency spread of gu;
(t). Since gu;
(t) has unit norm,

jgu;w(t)j2 can be interpreted as a probability distribution with mean

u =

Z 1

�1
tjgu;
(t)j2dt: (4.1)

The spread around the mean u is given by the variance

�
2
u
=

Z 1

�1
(t� u)

2jgu;
(t)j2dt: (4.2)

By Parseval formula,
R1
�1 jGu;
(!)j2dt = 2�jjgu;
(t)jj2 where Gu;
(!) is the

Fourier transform of gu;
(t). Now we can interpret 1
2�
jGu;
(!)j2 as a proba-

bility density function. Similarly, for the frequency variable 
, the mean of
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1
2�
jGu;
(!)j2 is given as


 =
1

2�

Z 1

�1
!jGu;
(!)j2d! (4.3)

and the spread around 
 is

�
2

 =

1

2�

Z 1

�1
(! � 
)

2jGu;
(!)j2d!: (4.4)

uγ

Ω

Ωγ

u

σΩ

σu

0

Figure 4.1: Time-frequency atom centered at (u;
).

Time-frequency resolution of gu;
(t) is represented in the time-frequency plane

(u;
) by a Heisenberg box centered at (u;
) whose width is �
 and �u along

frequency and time, respectively, as seen in Figure 4.1. By the Heisenberg un-

certainty theorem, the area satis�es

�u� �
1

2

Therefore there is a trade o� between time resolution and frequency resolution.

Since gu;
(t) is an even function of t, time spread around u is independent of

u. Similar argument holds for Gu;
(!), because Gu;
(!) is also an even function

since gu;
(t) is real. As a result, for a �xed window function, dimensions of

the Heisenberg box is �xed which means we have the same resolution all over

the time-frequency plane. Figure 4.2 shows the uniform tiling of time-frequency

plane for STFT. Example 1 and 2 explain two extreme cases.

Example 1. A complex sinusoid f(t) = ej
0t is very well localized in frequency. Its

Fourier transform is F (!) = 2�Æ(w � 
0), an impulse at w = 
0. Taking STFT of
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u

Ω

0

Figure 4.2: Uniform tiling of time-frequency plane.

f(t) we reach

F (u;
) =

Z 1

�1
ej
0tg(t� u)e�j
tdt = e�ju(
�
0)G(
� 
0):

Therefore, in time-frequency plane the energy is concentrated along a horizontal strip

around the frequency 
0 and the width of the strip is determined by the window

function's Fourier transform variance �2
. This is illustrated in Figure 4.3.

σΩ

Ω

Ωγ

u0

…

Figure 4.3: STFT of a complex sinusoid with frequency 
0.

Example 2. Contrary to complex sinusoids a Dirac function f(t) = �(t�u0) is very

well localized in time. Its Fourier transform is F (!) = e�j!u0 . Taking the STFT we

have

F (u;
) =

Z 1

�1
Æ(t� u0)g(t� u)e�j
tdt = e�j
u0g(u0 � u):

In that example, energy of F (u;
) is concentrated around u0 with a width of �u. This

is shown in Figure 4.4.

30



σu

Ω

Ωγ

u0 uγ
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Figure 4.4: STFT of a Dirac delta function at Æ(t� u0).

Uniform tiling of time-frequency plane is a limited representation since the

resolution is the same for all frequencies. In Figure 4.5, there are four di�erent

cases. In each case, sinusoids with di�erent frequencies are multiplied by a �xed

Gaussian window. In Figure 4.5a, window function cannot capture one period

of the sinusoid, therefore sinusoid cannot be detected correctly. On the other

extreme, in Figure 4.5d, there are more than one period of the sinusoid in the

support of window function, therefore time locality is poor. Because, for example,

if there is only one period of a sinusoid inside the window and the window's

support is very large compared to the period of the sinusoid, we can only say

that there is a sinusoid inside the window. Time information of this sinusoid

is speci�ed as being in the support of the window. A narrower window will

give better time locality since its support is narrower than the previous one. In

the light of these, we can conclude that we need a variable size window. At

low frequencies window size will be comparatively large in order to detect low

frequencies accurately and at high frequencies we need a narrower window in

order to have good time locality. Wavelet transform is a good solution to this

problem.
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Figure 4.5: windowed.

4.1.2 Wavelet Transform

Wavelets were introduced at the beginning of the eighties. First, Morlet, a

French geophysicist, used them as a tool for an analysis of seismic data. His

success prompted Grossmann [9] to make a more detailed mathematical analy-

sis of wavelets. In 1985 Meyer became aware of this theory and he recognized

many classical results inside it. He pointed out to Grossmann and Morlet that

there was a connection between their signal analysis methods and existing pow-

erful techniques in the mathematical study of singular integral operators. Then

Ingrid Daubechies became involved. It was also the start of cross fertilization

between the signal analysis and the purely mathematical aspects of techniques

based on dilations and translations. After Mallat [13] and Meyer [14] introduced
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multiresolution analysis, in 1988 Daubechies provided a major breakthrough by

constructing families of orthonormal wavelets with compact support [4].

In the two following subsections, we summarize the fundamentals of contin-

uous and discrete wavelet transforms.

Continuous Wavelet Transform

Wavelets constitute a family of functions derived from one single function w(t)

which is called mother wavelet. In wavelet transform, dilation and translation of

this mother wavelet instead of modulation and translation of a �xed window is

used. Therefore, the window function has a variable support which gives a zoom-

ing ability to wavelet transform. Wavelet transform has good time localization

at high frequencies and good frequency localization at low frequencies. Dilated

and scaled mother wavelet is written as

wa;b(t) =
1p
jaj
w(

t� b

a
); a 6= 0; b 2 R:

The mother wavelet is chosen such that the wavelet function has unit norm, that

is,

jjwa;b(t)jj2 =
Z 1

�1
jwa;b(t)j2dt = 1; (4.5)

for all a; b 2 R.

The Wavelet transform of a function f(t) is written in terms of wa;b and is

given as

F (a; b) =

Z 1

�1
f(t)w�

a;b
(t)dt (4.6)

where � denotes complex conjugation. Equation 4.6 is known as a continuous

wavelet transform (CWT), as F (a; b) is a continuous function of a and b. The

variable a replaces the frequency 
 in STFT and it is called the scale parameter.

The variable b, is the analogue of the translation parameter u in STFT. The
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inverse CWT is

f(t) =
1

Cw

Z 1

�1

Z 1

�1
F (a; b)wa;b(t)

da

a2
db: (4.7)

where

Cw =

Z 1

0

jWa;b(!)j2

!
<1 (4.8)

is written in terms of the Fourier transformWa;b(!) of wa;b(t). Inequality in (4.8)

is known as the admissibility condition [13]. For the integral in (4.8) to exist,

jWa;b(0)j = 0 must hold, since otherwise, there will be a singularity at ! = 0.

Note that Wa;b(0) is the average value of wa;b(t), so that the wavelet function

must have a zero average. Note also that since jWa;b(0)j = 0, Wa;b(!) must be

either nonzero only for frequencies larger than certain frequency or nonzero only

for a band of frequencies. However, since wa;b(t) has unit norm, by Parseval's

relationship

1

2�

Z 1

�1
jWa;b(!)j2d! = 1; (4.9)

so that Wa;b(!) is nonzero only for a band of frequencies.

Time-frequency analysis of wavelet transform can be carried out as in STFT.

The mother wavelet w(t) has unit norm speci�ed by (4.5). Therefore, we can

interpret jw(t)j2 as a probability distribution with mean

t =

Z 1

�1
tjw(t)j2dt

and a spread around t , speci�ed by the variance

�
2
t
=

Z 1

�1
(t� t)

2jw(t)j2dt:

Similarly, by (4.9), the Fourier transform 1
2�
jW (!)j2 of the mother wavelet could

be interpreted as a probability distribution with mean

! =
1

2�

Z 1

�1
!jW (!)j2d!

and variance

�
2
!
=

1

2�

Z 1

�1
(! � !)

2jW (!)j2d!
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around the mean !. The mother wavelet de�nes an Heisenberg box in the time-

frequency plane with dimensions �t � �!. The dimension of the Heisenberg box

corresponding to dilated and translated wavelet function wa;b(t) is di�erent from

the mother wavelet's. Let ta;b; denote the mean of wa;b(t). The mean is equal to

ta;b; =

Z 1

�1
tjwa;b(t)j2dt;

=

Z 1

�1
t

��� 1p
a
w(

t� b

a
)
���2dt;

=

Z 1

�1
(ax+ b)jw(x)j2dx where t = ax + b;

= a

Z 1

�1
xjw(x)j2dx+ b

Z 1

�1
jw(x)j2dx;

= at + b:

(4.10)

The variance of wa;b(t) around t
a;b


is given by

�
2
a;b;t

=

Z 1

�1
(t� ta;b;)

2jwa;b(t)j2dt

=

Z 1

�1
(t� ta;b;)

2
��� 1p

a
w(

t� b

a
)
���2dt

=

Z 1

�1
(ax + b� ta;b;)

2jw(x)j2dx where t = ax + b;

=

Z 1

�1
[ax + b� (at + b)]2jw(x)j2dx;

= a
2

Z 1

�1
(x� t)

2jw(x)j2dx;

= a
2
�
2
t
:

(4.11)

We have thus determined the dimension of the Heisenberg box along the time

axis. We have to follow the same procedure in order to determine the dimension

along the frequency axis. The Fourier transform Wa;b(!) of wa;b(t) is also a
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probability distribution with mean

!a;b; =
1

2�

Z 1

�1
!jWa;b(!)j2d!;

=
1

2�

Z 1

�1
!j
p
ae

�j!b
W (a!)j2d!;

=
a

2�

Z 1

�1
!jW (a!)j2d!;

=
1

2�a

Z 1

�1

jW (
)j2d
 where ! =




a
;

=
!

a
:

(4.12)

The next step is to calculate the variance �2
a;b;!

around the mean !a;b;

�
2
a;b;!

=
1

2�

Z 1

�1
(! � !a;b;)

2jWa;b(!)j2d!;

=
1

2�

Z 1

�1
(! � !a;b;)

2j
p
ae

�j!b
W (a!)j2d!;

=
a

2�

Z 1

�1
(! �

!

a
)2jW (a!)j2d!;

=
1

2�

Z 1

�1
(



a
�
!

a
)2jW (
)j2d
 where ! =




a
;

=
1

a2

h Z 1

�1
(
� !)

2jW (
)j2d

i
;

=
�
2
!

a2
:

(4.13)

As a result, an Heisenberg box with dimensions a0�t � �!

a0
corresponds to any

dilated and modulated wavelet wa0;b
(t). Dimensions of the Heisenberg box are

independent of translation parameter b, only the scale parameter a is e�ective.

However, the area of Heisenberg box stays constant independent of a. Figure 4.6

shows time-frequency atoms for wavelet transform for di�erent scales and Figure

4.7 shows the tiling of time-frequency plane. In Figure 4.7, zooming ability of

wavelet transform is very obvious.

In CWT variables a and b run from �1 to 1. Even when a and b are in

bounded intervals, we have to calculate the wavelet transform for in�nitely many

values of a and b. This is not good for practical applications. It may also be

the case that the wavelet transform F (a; b) is known for some a < a0 only. In

such situations we need a complement of information corresponding to F (a; b)
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Figure 4.6: Time-frequency atoms for wavelet transform.

for a � a0. This is obtained by introducing a scaling function �(t) which is an

aggregation of wavelets at scales larger than 1 [13]. Modulus of Fourier transform

of scaling function is de�ned by

j�(!)j2 =
Z 1

1

jW (a!)j2
da

a
;

and the complex phase of �(!) can be arbitrarily chosen. Scaling function �(t)

has unit norm like wavelet function. Since scaling function is an aggregation of

wavelet functions wa;b(t) for a � 1, it is low pass in nature. Because, as a gets

larger, wa;b(t) slows down. This means that �(t) is a lowpass function compared

to wa;b(t). Therefore, low frequency approximation of any function f(t) at scale

a0 can be written in terms of �(t) and contains all the information contained in

f(t) for scales larger than a0. Let F�(a0; b) be the low frequency approximation

of a signal f(t). It is given as

F�(a0; b) = hf(t);
1
p
a0
�(
t� b

a0
)i =

Z 1

�1
f(t)

1
p
a0
�
�(
t� b

a0
)dt:

As a result, wavelet transform of a function can be written in terms of a wavelet

function up to some scale a0 plus the low frequency approximation which covers
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Figure 4.7: Tiling of the time-frequency plane for wavelet transform.

scales larger than a0. Then, the inverse transform given by equation 4.7 becomes

f(t) =
1

Cw

Z 1

�1

Z
a0

�1
F (a; b)wa;b(t)

da

a2
db+

1

Cw

Z 1

�1
F�(a0; b)

1
p
a0
�(
t� b

a0
)dt:

Low frequency approximation F�(a0; b) is also known as the coarse approximation

for lowpass signals (most natural signals including speech and image). This type

of thinking gives rise to so called multiresolution analysis (to be explained in

section 4.2) introduced by Mallat [13] and Meyer [14] .

Discrete-Time Wavelet Transform

Discrete-time wavelet transform (DTWT) is obtained from CWT by special

choices of a; b. We obtain a series representation where the basis functions wa;b(t)

and �a;b(t) =
1p
a
�( t�b

a
) have discrete scaling and translating parameters a and

b. The discrete version of the scaling and translating parameters have to be de-

pendent on each other because if the scale a is such that the basis functions are

narrow, the translation step b should be correspondingly small and vice versa.
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There are di�erent ways of choosing these parameters. The most popular ap-

proach is to select a and b according to

a = a
�m
0 ; b = nb0a

�m
0

where m and n are integers. This selection gives us the following basis set

wm;n(t) = a
m=2
0 w(am0 t� nb0);

�m;n(t) = a
m=2
0 �(am0 t� nb0); m; n 2 Z:

In terms of these new wavelet bases, wavelet transform of a function f(t) becomes

F [m;n] = a
m=2
0

Z 1

�1
f(t)w(am0 t� nb0)dt:

As a special case, a0 = 2 and b0 = 1 is chosen. This choice has a strong

relation with multiresolution analysis. Discretization of CWT corresponds to

sampling the time-frequency plane. Horizontal sampling is along the time axis

and it depends on a0 and b0. For a �xed m, time axis is sampled uniformly.

Vertical sampling is along the frequency axis (or scale axis) and it depends only

on a0. Vertical sampling is non-uniform. Figure 4.8 shows sampling of the time-

frequency plane. By introducing DTWT, we moved from CWT where both time

function f(t) and its transform are continuous function to DTWT where time

function f(t) is still continuous but its transform is a discrete function of m and

n. In order to make use of digital signal processing, f(t) must also be discretized,

i.e, everything must be in discrete time. By discretizing f(t), we reach a discrete

wavelet transform (DWT). As pointed out by Mallat [13] and Meyer [14], two-

channel PR �lter banks implements a fast algorithm for DWT as explained in

some more detail below. Computational complexity of the algorithm is order N ,

i.e., the number of multiplications and additions required to take the transform

are proportional to N , the length of signal to be transformed.
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Figure 4.8: Tiling of the time-frequency plane for wavelet transform.

4.2 Multiresolution Analysis

Orthogonal wavelets dilated by 2m carry signal variations at the resolution 2�m.

The construction of such bases can be related to multiresolution signal approxi-

mation by changing the resolution 2�m. Examining this link between orthogonal

wavelets and multiresolution analysis leads to an equivalence between wavelet

bases and conjugate quadrature �lters used in �lter banks. These �lter banks

implement a fast orthogonal wavelet transform that requires only O(N) oper-

ations for signals of size N . The design of CQF �lter banks also provides a

simpler way of constructing new orthogonal wavelets using the cascade algorithm

introduced by Daubechies [6].

In Section 4.1.2, we introduced the scaling function in CWT. It is used to

get low-frequency representation (coarse approximation) of a function f(t). It

contains all wavelet representations above a certain scale a0. We can use the
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same idea for DTWT. In DTWT scaling function carries all the information

above a certain scale am0 and again it contains the low-frequency information of

f(t). Here, a0 is constant andm is an integer as in Section 4.1.2. Scale is changed

by changing m. By decreasing m, we can decrease the scale am0 and increase the

resolution1. Let us assume that the old scale is amold

0 . Decreasing m by 1 we

reach the scale amold�1
0 . Doing this, we increased the information carried by the

scaling function �(t). The di�erence between old and new scales are provided

by the wavelet coeÆcients at the scale amold

0 . We call these di�erences as details.

The low-frequency representation carried by �(t) at the new scale is better than

the old one. We can get better low-frequency approximations following the same

procedure over and over. The idea of multiresolution is to make use of this �ne

and coarse approximations. Now we will introduce an axiomatic de�nition of

multiresolution analysis developed by Mallat [13] and Meyer [14].

De�nition 1. Multiresolution analysis consists of a sequence of embedded closed

subspaces Vm

: : : � V2 � V1 � V0 � V�1 � V�2 � : : :

satisfying

i. Upward completeness: [
m2Z

Vm = L2(R):

ii. Downward completeness: \
m2Z

Vm = f0g:

iii. Scale invariance:

f(t) 2 V0 , f(2mt) 2 V�m; m 2 Z:

iv. Shift invariance:

f(t) 2 V0 ) f(t� k) 2 V0; 8k 2 Z:
1Scale am

0
corresponds to resolution a

�m

0
.
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v. Existence of a basis:

There exists �(t) 2 V0 such that

f�(t� k)jk 2 Zg

is an orthonormal basis for V0. In general

f2m=2
�(2mt� k)jm; k 2 Zg (4.14)

is a basis for V�m.

vi. Existence of a complementary basis:

There exists w(t) 2 W0 such that

fw(t� k)jk 2 Zg (4.15)

is an orthonormal basis for W0 and W0 satis�es

V�1 = V0 �W0;

that is, W0 is orthogonal complement of V0 in V�1. In general,

f2m=2
w(2mt� k)jm; k 2 Zg

is an orthonormal basis for W�m and W�m is an orthogonal complement of

V�m in V�m�1. Subspaces W�m and V�m are coarser subspaces and V�m�1

is a �ner subspace.

vii. Orthogonality:

2m
Z 1

�1
�(2mt� k1)�(2

m
t� k2)dt = Æ[k1 � k2];

2m
Z 1

�1
w(2mt� k1)�(2

m
t� k2)dt = Æ[k1 � k2];

2(m1+m2)=2

Z 1

�1
w(2m1t� k1)w(2

m2t� k2)dt = Æ[k1 � k2]Æ[m1 �m2]

(4.16)

where k1; k2; m;m1; m2 2 Z.
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The simplest example to multiresolution analysis is the space of piecewise

constant functions. The basis function of V0 is an indicator function �(t � k)

which is one in the interval [k; k + 1) and zero outside the interval. The basis

function �(t) is known as the Haar scaling function. By (4.14), the indicator

function �(2m � k) is one in the interval [ k

2m
;
k+1
2m

) and zero outside. Obviously,

any piecewise constant function in V0 is also in V�m for all m � 0. Therefore,

embedded closed subspaces requirement is satis�ed. From this point on we will

concentrate on the subspaces V�1, V0, and W0. The relation between these sub-

spaces gives rise to an unexpectedly strong relation between orthogonal wavelets

and two-channel orthogonal �lter banks.

4.3 Orthogonal Wavelets and Orthogonal Filter

Banks

In this section, we will be dealing with expansions of continuous time signals in

terms of continuous wavelet and scaling functions. It is possible to expand any

function in V�1 in terms of basis functions of V�1. Since V0 andW0 are contained

in V�1, the basis functions w(t) and �(t) of these subspaces can also be written

in terms of the basis functions of the �ner subspace V�1. More formally, we can

write

Dilation equation : �(t) =
p
2

1X
k=�1

k1[k]�(2t� k); (4.17)

Wavelet equation : w(t) =
p
2

1X
k=�1

k2[k]�(2t� k): (4.18)

Equations (4.17) and (4.18) are also known as two scale equations [21] which

make a design of w(t) and �(t) satisfying the axioms of multiresolution possi-

ble. These two equations will be used to design orthogonal wavelet and scaling

function using the cascade algorithm of Daubechies below in Section 4.4. We can

calculate discrete sequences k1[n] and k2[n] making use of the orthogonality of
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basis functions. Multiplying both sides of (4.17) and (4.18) by
p
2�(2t� n) and

then integrating with respect to t we have

p
2

Z 1

�1
�(t)�(2t� n)dt =

1X
k=�1

k1[k]

Z 1

�1
2�(2t� n)�(2t� k)dt; (4.19)

p
2

Z 1

�1
w(t)�(2t� n)dt =

1X
k=�1

k2[k]

Z 1

�1
2�(2t� n)�(2t� k)dt: (4.20)

Integrals on the right hand side of (4.19) and (4.20) are one for k = n and zero

otherwise by (4.16). As a result, the discrete sequences come out to be

k1[n] =
p
2

Z 1

�1
�(t)�(2t� n)dt; (4.21)

k2[n] =
p
2

Z 1

�1
w(t)�(2t� n)dt: (4.22)

Let f(t) be a function in V�1. Then, as in the previous discussion, we can

expand it in terms of the basis functions of V�1, i.e.,

f(t) =
p
2

1X
k=�1

F�1[k]�(2t� k): (4.23)

Another way of expanding f(t) is to express it in terms of the sum of the coarser

approximation fc(t) in V0 and the detail fd(t) in W0, i.e., f(t) = fc(t) + fd(t)

where fc(t) and fd(t) can in turn be expanded in V0 and W0, respectively. We

thus have

fc(t) =

1X
k=�1

F0[k]�(t� k); (4.24)

fd(t) =

1X
k=�1

D0[k]w(t� k): (4.25)

Combining (4.23), (4.24) and (4.25) we get

p
2

1X
k=�1

F�1[k]�(2t� k) =

1X
k=�1

F0[k]�(t� k) +

1X
k=�1

D0[k]w(t� k): (4.26)

Again multiplying both sides of (4.26) by
p
2�(2t � n) and integrating with

respect to t, we get
1X

k=�1

F�1[k]

Z 1

�1
2�(2t� n)�(2t� k)dt =

1X
k=�1

F0[k]

Z 1

�1

p
2�(t� n)�(2t� k)dt+

1X
k=�1

D0[k]

Z 1

�1

p
2w(t� n)�(2t� k)dt:
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After replacing t by t + k and using orthogonality

F�1[n] =

1X
k=�1

F0[k]

Z 1

�1

p
2�(t)�(2t+ 2k � n)dt+

1X
k=�1

D0[k]

Z 1

�1

p
2w(t)�(2t+ 2k � n)dt:

(4.27)

By (4.21) and (4.22),

F�1[n] =

1X
k=�1

F0[k]k1[n� 2k] +

1X
k=�1

D0[k]k2[n� 2k] (4.28)

Equation (4.28) can be interpreted as a synthesis of discrete sequence F�1[n]

from F0[n] and D0[n]. In fact, equation (4.28) corresponds to upsampling F0[n]

and D0[n] �rst and then �ltering with k1[n] and k2[n]. Therefore, the synthesis

section of a two-channel �lter bank implements the synthesis of a �ner signal

from its coarser approximation and its detail. Figure 4.9 visualizes this process.

k2[n]

k1[n]↑ 2

↑ 2 F -1[n]+

F 0[n]

D0[n]

Figure 4.9: Synthesis of a �ne signal F�1[n] from a coarse approximation F0[n]

and a detail D0[n].

The natural question arising at this point is whether analysis section of a two-

channel �lter bank implements an inverse operation, i.e., it decomposes F�1[n]

into F0[n] and D0[n]. The answer is yes. We start with an orthogonal projection

of f(t) into V0 and W0. Coarse approximation fc(t) in terms of f(t) is

fc(t) =

1X
k=�1

h Z 1

�1
f(t)�(t� k)dt

i
�(t� k): (4.29)

Equation (4.29) is the same as (4.24), so

F0[k] =

Z 1

�1
f(t)�(t� k)dt: (4.30)
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Multiplying both sides of (4.23) by �(t�n) and integrating with respect to t we

get

Z 1

�1
f(t)�(t� n)dt =

1X
k=�1

F�1[k]

Z 1

�1

p
2�(2t� k)�(t� n)dt: (4.31)

Then by (4.21) and (4.30)

F0[n] =

1X
k=�1

F�1[k]k1[k � 2n]: (4.32)

Following the same steps for fd(t) we can get

D0[n] =

1X
k=�1

F�1[k]k2[k � 2n]: (4.33)

Equations (4.32) and (4.33) correspond to �ltering the sequence F�1[n] with

k1[�n] and k2[�n], respectively, and then downsampling by 2. Figure 4.10 illus-

trates the result we have reached. We have shown that a �lter bank implements

an orthogonal wavelet transform. However, we have not yet answered the ques-

tion of what type of �lter bank it is. We now concentrate on orthogonality of

wavelet basis and make use of dilation and wavelet equation in order to �gure

out the properties of the discrete �lters k1[n] and k2[n]. We �rst multiply both

sides of the dilation equation (4.17) by �(t� n) and integrate with respect to t

to get

Z 1

�1
�(t)�(t� n)dt =

1X
k=�1

k1[k]

Z 1

�1

p
2�(2t� k)�(t� n)dt; (4.34)

=

1X
k=�1

k1[k]

Z 1

�1

p
2�(2t+ 2n� k)�(t)dt: (4.35)

In (4.35), the left hand side is the impulse Æ[n] and the integral on the right hand

side is k1[n� 2k], by equation (4.21). Thus

1X
k=�1

k1[k]k1[k � 2n] = Æ[n]: (4.36)

Following the same steps for the wavelet equation (4.18), we get

1X
k=�1

k2[k]k1[k � 2n] = 0 (4.37)
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Finally, multiplying wavelet equation (4.18) by w(t � n) and following the pre-

vious procedure we get

1X
k=�1

k2[k]k2[k � 2n] = Æ[n]: (4.38)

These equations are the same as (3.19), (3.18) and (3.20) of CQF �lters. There-

fore, an orthogonal wavelet transform is computed by an orthogonal �lter bank.

In signal processing applications, in general, one likes to deal with discrete

time signals. Continuous time signals are sampled and then these samples are

processed. From this point of view, two-channel �lter banks are very important

because they provide a fast algorithm to take continuous time wavelet transform

without dealing with continuous time signals themselves but rather with samples

of these signals.

k2[-n]

k1[-n] ↓ 2

↓ 2

F -1[n] F 0[n]

D0[n]

Figure 4.10: Decomposition of F�1[n] into a coarse approximation F0[n] and a

detail D0[n].

4.4 Construction of Orthogonal Wavelets with

Compact Support Using Fourier Tech-

niques

In Section 4.2, we de�ned multiresolution analysis and gave the conditions on

the scaling function �(t) and the wavelet function w(t). However, we did not
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give any example other than the space of piecewise constant functions for which

Haar wavelets are basis functions. The reason for this is that we do not have

any closed form expressions for compactly supported wavelet functions except

for the Haar wavelet [6]. A solution to eÆcient construction of wavelets is the

cascade algorithm which uses the discrete sequences k1[n] and k2[n] to construct

the scaling function and the wavelet function [6]. The algorithm uses iterated

two-channel orthogonal �lter bank with lowpass �lter k1[n] and highpass �lter

k2[n] de�ned by (4.17) and (4.18). Figure 4.11 shows synthesis section of an

iterated two-channel �lter bank for wavelet-like decomposition. In this type

of decomposition only outputs of the lowpass �lters are decomposed further.

K2(z)

K1(z)↑ 2

↑ 2 +

...

K2(z)

K1(z)↑ 2

↑ 2 +

K2(z)

K1(z)↑ 2

↑ 2 +

Path 1

Path 2

Figure 4.11: Synthesis section of iterated two-channel �lter bank for wavelet-like

decomposition.

K1
(i)(z)↑ 2i

K2
(i)(z)↑ 2i

Path 1:

Path 2:

Figure 4.12: Equivalent structure of Path 1 and Path 2 after i-iterations.

Equivalent structures after i-iteration in Path 1 and Path 2 can be written as
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a single upsampler followed by a single �lter making use of the noble identity

in Figure 2.9. Figure 4.12 shows this equivalent structures. Equivalent �lters

K
(i)
1 (z) and K

(i)
2 (z) are

K
(i)
1 (z) =

i�1Y
k=0

K1(z
2k)

K
(i)
2 (z) = K2(z

2i�1

)

i�2Y
k=0

K1(z
2k)

Let impulse responses corresponding to K
(i)
1 and K

(i)
2 be k

(i)
1 [n] and k

(i)
2 [n]. Then

wavelet and scaling functions are de�ned in terms of k
(i)
1 [n] and k

(i)
2 [n] as i goes to

in�nity. However, we can calculate approximations for �nite i. Approximations

are de�ned as

�
(i)(t) = 2i=2k

(i)
1 [n]; n=2i � t < (n+ 1)=2i; (4.39)

w
(i)(t) = 2i=2k

(i)
2 [n]; n=2i � t < (n + 1)=2i: (4.40)

These functions are in continuous-time and they are constant in the intervals

[ n
2i
;
(n+1)

2i
). As i increases, the length of the interval decreases in order to keep

the support of �(i)(t) and w
(i)(t) �nite. In fact, �(i)(t) and w

(i)(t) are nonzero

in the interval [0; N � 1) for length N �lters k
(i)
1 [n] and k

(i)
2 [n]. Discrete-time

�lters and corresponding continuous-time functions have the same support. The

normalization factor 2i=2 in (4.39) and (4.40) keeps the norm of continuous-time

functions constant at 1.

Example 3. In this simple example we will construct D2 (Daubechies' wavelet with

support [0,3)) from discrete �lters. Lowpass �lter k1[n] and highpass �lter k2[n] are

k1[n] = 0:4830 + 0:8365z�1 + 0:2241z�2 � 0:1294z�3;

k2[n] = �0:1294 � 0:2241z�1 + 0:8365z�2 � 0:4830z�3 :

Figure 4.13 illustrates the cascade algorithm for N = 2, 3, and 4 iterations.

Example 4. In Section 3.2 we introduced di�erent types of �lters that satisfy PR. We

summarized some of those �lters in Table 3.1 and 3.2. Figure 4.14 shows the scaling

and wavelet functions corresponding to �lters in those tables.
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The functions in Figure 4.14a,b,c,d,e,f are really scaling functions and

wavelets. However, this is not true for the functions in Figure 4.14g,h, note

the wiggles at the peaks of these functions. Why discrete �lters of D2, D3 and

D4 generate wavelets but Smith and Barnwell �lter cannot is closely related to

the zeros the �lters have. Figure 4.15 shows the zeros of �lters in Table 3.1 and

3.2. Daubechies �lters have common zeros at z = �1 with multiplicities larger

than 1 but Smith and Barnwell �lter does not. Moreover, larger number of zeros

at z = �1 gives smoother functions. This result is stated in [6] where it is shown

that the discrete lowpass �lter must have at least one zero at z = �1 and the

discrete highpass �lter must have at least one zero at z = 1. In the next chapter,

we explain how to assign these and other zeros to discrete �lters.
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Figure 4.13: Illustration of the cascade algorithm for D2, (a), (c), (e) Scaling

functions, (b), (d), (f) Wavelet functions.
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Figure 4.14: Scaling and wavelet functions constructed using cascade algorithm.
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Figure 4.15: Zero plot of (a) D2, (b) D3, (c) D4 and (d) Smith and Barnwell.
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Chapter 5

ZERO ASSIGNMENT

Most desirable �lter properties such as atness, minimal-length, smoothness are

all directly related to number and location of the zeros in the �lter transfer

functions. Moreover, FIR �lters can be viewed as all-zero transfer functions

of delay z
�1 so that an FIR �lter upto multiplication by a nonzero constant is

completely characterized by its zeros. It is hence of utmost importance to be able

to assign desired zeros to �lter transfer functions. In this chapter, we introduce

a way of assigning zeros to �lter transfer functions using algebraic methods.

The main result given in Theorem 1 describes the set of all �lter banks with

assigned �lter zeros and with poles in any desired region in the complex plane.

The description is in terms of an even transfer function parameter that enters

linearly into the expression for a product of �lter transfer functions. Thus, every

choice of an even transfer function gives a new �lter bank with assigned zeros

and all �lter banks are obtained as such.

This chapter is organized as follows: Section 5.1 gives the mathematical pre-

liminaries from abstract algebra. In that section, the methods of solving the

equation ax+ by = c in a Euclidean domain is also given. Section 5.2 is the main

contribution of this thesis. Theorem 1 proves that it is possible to design �lter
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banks with �lters having assigned zeros. A construction algorithm is given in the

following section, Section 5.3. Section 5.4 deals with FIR �lters only. Because it

is possible to design orthogonal FIR �lter banks which correspond to the orthog-

onal wavelets when zeros at z = 1, and z = �1 exist. Theorem 2 incorporates

the orthogonality condition (or conjugate symmetry) and a way of obtaining a

particular orthogonal FIR solution using the free even parameter. Theorem 2 is

a generalization of Daubechies' design and makes possible to assign zeros other

than the ones at z = 1 and z = �1. It is hence possible to investigate the e�ect

of perturbing the zeros at 1 and -1 on the smoothness of the wavelet and the

scaling functions generated. This robustness analysis is the topic of Section 5.5.

5.1 A Brief Review of a Euclidean Domain

A brief review of a Euclidean domain, Euclidean algorithm, and the linear equa-

tion ax + by = c over an arbitrary Euclidean domain is �rst given. The reader

may consult [10] and [12] for a detailed exposition.

A commutative ring without divisors of 0, with a unit element 1, and in which

every pair of elements not both zero has a greatest common divisor representable

linearly in terms of the elements is called a principal ideal domain. Simplest

examples of a principal ideal domain (which are not �elds) are the rings of inte-

gers and polynomials of one variable, with real coeÆcients. In a principal ideal

domain, a divisor of 1 is called a unit. A common divisor of a, b in a principal

ideal domain D is c 2 D such that a = c�a and b = c�b for some �a;�b 2 D. A

greatest common divisor of (a; b) is a common divisor which includes any other

common divisor as a factor and it is unique upto multiplication by a unit of D.

An important instance of a principal ideal domain is a Euclidean domain

de�ned by the property that (i) associated with every nonzero element a, there is

a nonnegative integer ed(a) called the Euclidean degree of a and (ii) for every pair
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of elements a; b 6= 0, there exists two elements q; r such that a = bq+r, and either

r = 0 or ed(r) < ed(b). Thus for integers, ed(m) := jmj and for polynomials

of u with real coeÆcients, the degree of a polynomial ed(p(u)) := deg(p(u))

serve as valid de�nitions of Euclidean degrees. A useful property of the ring of

polynomials and D
, de�ned below, is that ed(a_b) = ed(a)+ed(b) for all nonzero

elements a; b. In the ring of polynomials ed(a + b) � max(ed(a); ed(b)) is also

true.

Although they share many nice properties, a Euclidean domain is superior to

a principal ideal domain by the existence of an algorithm to determine a greatest

common divisor. The Euclidean algorithm is based on the property (ii) above:

LetD be a Euclidean domain and let a; b 2 D, with say b 6= 0, be given. Consider

the algorithm

a = bq1 + r1; ed(r1) < ed(b);

b = r1q2 + r2; ed(r2) < ed(r1);

...
...

rn�3 = rn�2qn�1 + rn�1; ed(rn�1) < ed(rn�2);

rn�2 = rn�1qn + rn; rn = 0:

(5.1)

The algorithm stops at the �rst zero remainder rn. A greatest common divisor

of a; b is then rn�1. By working backwards in the algorithm, it is not diÆcult to

construct elements x; y 2 D, in terms of quotients and remainders, satisfying

rn�1 = ax + by:

The Euclidean algorithm thus gives an explicit linear representation of a greatest

common divisor of a; b. In Appendix A, explicit expressions for x and y are

available for the polynomial ring.

Two elements a and b inD are called coprime if their greatest common divisor

is a unit; (a; b) is coprime if and only if there exists x; y 2 D such that ax+by = 1.

Given a; b; c 2 D, let x; y 2 D satisfy

ax + by = c: (5.2)
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The pair (x; y) is then called a solution to (5.2) over D. A necessary and suÆcient

condition for a solution to exist is that a greatest common divisor g of (a; b)

divides c, i.e., there exist â; b̂; ĉ 2 D such that a = gâ; b = gb̂ with (â; b̂) coprime

and c = gĉ. Note that a solution can be constructed by �rst determining x̂; ŷ 2 D

satisfying âx̂ + b̂ŷ = 1 via the algorithm (5.1) and then letting x := x̂ĉ; y := x̂ĉ

so that ax + by = gĉ = c.

The set of all solutions to (5.2) has a convenient description in terms of a

particular solution (x; y):

f(x+ b̂�; y � â�) : � 2 Dg: (5.3)

This is a very useful parameterization of all solutions since it is linear and since

the parameter � is free over the whole domain D.

Example 5. Consider the ring of integers and the equation 5x + 7y = 3. Note that

(x; y) = (2;�1) is a particular solution. Also note that (5; 7) is coprime. All solutions

are hence obtained as (2 + 7�;�1� 5�) for an arbitrary integer �.

The algebraic structure of the Euclidean domain of rational, causal, and sta-

ble transfer functions (see [11] or [16]) can be examined with the objective of

determining special solutions to an equation of the type (5.2).

In order to handle various di�erent notions of stability in the same context, we

introduce a stability set 
, which is a set of points in the complex plane symmetric

with respect to the origin. Thus, 
 = f0g, 
 = f�0:5 � 0:5jg, and 
 = open

unit disk are all examples of stability sets. Let D
 be the set of all rational

functions in the indeterminate z with all their poles in 
 and such that they

have �nite limits as z ! 1. These are transfer functions of �nite-dimensional,

discrete-time, causal systems which are stable to a degree determined by the

stability set. If 
 is the open unit disc, then D
 is the set of transfer functions of

�lters that are stable in the usual sense. On the other hand, if 
 = f0g, then D


is the set of all FIR �lters. Since it can be obtained as a quotient ring of the ring
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of polynomials, D
 is a principal ideal domain. In fact, it is a Euclidean domain

with the Euclidean degree of an element H(z) de�ned as the number of its zeros

at in�nity and its �nite zeros outside 
, [16]. The units in D
 are those elements

having their zeros all in 
 and having causal inverses (equivalently to the latter,

having no zeros at in�nity). If 
 = f0g, then the units of D
 are nonzero real

numbers. If, on the other hand, 
 is the open unit disc, then the units of D


are stable, minimum-phase transfer functions devoid of zeros at in�nity. It can

easily be shown that a pair of elements (A;B) in D
 are coprime if and only if

(i) they have no common zero outside 
 and (ii) at least one of them has no zero

at in�nity.

Suppose 
 contains at least one real number r. Any element H(z) 2 D
 has

the following useful representation with respect to r, [16]:

H(z) = U(z)
�(z)

�(z)n
; (5.4)

where U(z) is a unit in D
, �(z) is a monic polynomial in z having all its zeros

outside 
, n is a nonnegative integer, and �(z) := z�r, a degree one polynomial

with its zero at r. Such a representation is unique and is referred to as a standard

representation, [11]. It is easy to see that, in the standard representation (5.4),

n = ed(H(z)).

One can employ standard representations to determine solutions to an equa-

tion like (5.2) over D
 using polynomial algebra rather than the Euclidean algo-

rithm over D
. Let A(z); B(z); C(z) 2 D
 be given and consider the equation

A(z)X(z) +B(z)Y (z) = C(z) (5.5)

for X(z); Y (z) 2 D
. Not showing the dependence on z, let us consider the

following procedure that constructs a solution (X; Y ) to (5.5). For simplicity

and without loss of generality, we assume that (A;B) is coprime and that B has

no zeros at in�nity, i.e., B has a causal inverse. Note that by the condition for

solvability of (5.5), a greatest common divisor of (A;B) should divide C, which
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allows us to make the �rst assumption. If (A;B) is coprime, then it is necessary

that either A or B is devoid of zeros at in�nity; this allows the second assumption.

We also assume that B is not a unit, since otherwise the construction of a solution

is trivial. Let us consider the standard representations

A = Ua

�

�n
; B = Ub

�

�m
; C = Uc



�k

of A;B;C. By the assumptions on B, we have m = deg(�) � 1. By the

assumption of coprimeness of (A;B) over D
, we also have that the polynomials

(�; �) are coprime since otherwise A and B would have a common �nite zero

outside 
 contradicting the assumption. De�ne two integers l := maxfn;mg and

t := maxfl�1; k�lg. We now have that the pair of polynomials (�l�n�; �l�m�) is

coprime so that by an application of the Euclidean algorithm (5.1) with D taken

as the polynomial ring, there exist polynomials x; y such that �l�n�x+�l�m�y =

�
l�k+t

. Here one can ensure that deg(x) � l � 1. (Since if x does not satisfy

this condition, by Euclidean division once more, one can write x = �
l�m

�~x + x̂

where x̂ does satisfy deg(x̂) � l � 1. Upon de�ning ŷ := ~x�l�n� + y, we have a

solution (x̂; ŷ) satisfying the condition.) De�ning

X = UcU
�1
a

x

�t
; Y = UcU

�1
b

y

�t
;

where X 2 D
 by the fact that deg(x) � t, one easily veri�es that (5.5) is

satis�ed. It remains to check that Y 2 D
. Since all poles of Y are clearly

in 
, one only needs to verify that Y has no pole at in�nity. However, Y =

B
�1(C � AX), where C � AX has no pole at in�nity and B has no zero at

in�nity. It follows that Y has no pole at in�nity. Therefore, (X; Y ) is a solution

to (5.5). We note that the Euclidean degrees of X and Y so constructed satisfy

maxfed(X); ed(Y )g < maxfed(A); ed(B)g provided ed(C) � 2maxfed(A); ed(B)g�1:

(5.6)

We now let 
 := f0g and focus on a special case of the equation (5.5). Let

G(z) 2 Df0g have order equal to g. Suppose (G(z); G(�z)) is coprime over Df0g.
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Let n0 be an odd integer and consider the equation

G(z)M(z) �G(�z)N(z) = 2z�n0 (5.7)

in the unknowns M(z) and N(z). If some M(z); N(z) 2 Df0g satisfy (5.7), then

the pair is said to be a solution to (5.7).

Fact 1. Given any odd integer n0 � 0, if a solution (M(z); N(z)) to (5.7) is

such that each of M(z); N(z) has order less than g, then it is unique and satis�es

M(z) = N(�z).

Proof. Let (Mi(z); Ni(z)); i = 1; 2 be two solutions to (5.7). Then,

G(z)(M1(z)�M2(z)) = G(�z)(N1(z)�N2(z)):

By coprimeness of (G(z); G(�z)) over Df0g, it follows that

M1(z)�M2(z) = G(�z)�(z)

and

N1(z)�N2(z) = G(z)�(z)

for some �(z) 2 Df0g. Since for any two nonzero elements in Df0g, the order

of the multiple is equal to the sum of the order of each element, and since the

order of the sum of the two elements is less or equal to the larger order, we have

that M1(z)�M2(z) has a strictly less order than G(�z)�(z). Thus the two are

not equal unless both are identically zero. It follows that M1(z) = M2(z) and,

hence, N1(z) = N2(z).

Now, by the fact that n0 is odd, (M(z); N(z)) is a solution to (5.7) if and only

if (N(�z);M(�z)) is a solution. Since orders of M(z); N(z) being less than g

implies that the orders of N(�z);M(�z) are also less than g, by the uniqueness

result proved in the �rst part it follows that M(z) = N(�z). �

Fact 2. Given any odd integer n0 2 [0; 2g � 1], a solution (M(z);M(�z)) to

(5.7), where M(z) has order at most g � 1, exists, is unique, and is a minimal

order solution.
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Proof. By the construction of a solution to (5.5), a solution

(M̂(z); N̂(z))

to (5.7) exists and, by (5.6), satis�es

maxfed(M(z); ed(N(z))g < maxfed(G(z)); ed(G(�z))g = g

provided

ed(2z�n0) = n0 � 2maxfed(G(z)); ed(G(�z))g � 1 = 2g � 1:

By Fact 1, M(z) = N(�z) and the solution (M(z);M(�z)) is unique. Minimal-

ity is a direct consequence of uniqueness. �

5.2 Assignment of Arbitrary Zeros

Since PR condition (3.16) determines the synthesis �lter transfer functions almost

entirely in terms of the analysis �lter transfer functions, we will consider the

problem of assigning zeros to PR analysis �lters. We assume throughout this

section that 0 2 
 so that the delay element z�1 2 D
.

Suppose an odd overall delay n0 � 0 is given. If the analysis �lters H1(z)

and H2(z) are to have certain zeros in 
 with desired multiplicities, then let the

zeros of the causal-stable transfer functions G1(z) and G2(z) contain the desired

zeros of H1(z) and H2(z), respectively.
1 The analysis �lters will then have the

desired zeros if and only if

H1(z) = G1(z)Ĥ1(z); H2(z) = G2(z)Ĥ2(z) (5.8)

for some causal-stable transfer functions Ĥ1(z) and Ĥ2(z). Here, we rewrite PR

equation (3.16) for convenience:

H1(z)H2(�z) �H1(�z)H2(z) = 2z�n0 : (5.9)

1Since zeros in 
 are in danger of being cancelled by poles, the stability set 
 should exclude

those zeros that we desire to assign. The D
-functions G1(z) and G2(z) are then formed by

placing equal number of arbitrary poles in the denominator as the assigned zeros.
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In what follows, we refer to H1(z)H2(�z) = H1(z)K1(z) as the product lowpass

�lter. Substituting (5.8) in (5.9), we have

G1(z)G2(�z)Ĥ1(z)Ĥ2(�z)�G1(�z)G2(z)Ĥ1(�z)Ĥ2(z) = 2z�n0 : (5.10)

Thus, a necessary condition on the to-be-assigned zeros is that a greatest common

divisor (upto multiplication by a unit) of
�
G1(z)G2(�z); G1(�z)G2(z)

�
must

divide 2z�n0 so that it must at most be a delay function of the form z
�l0 with

l0 � n0. After de�ning G(z) = G1(z)G2(�z), we hence assume, for simplicity,

that
�
G(z); G(�z)

�
is coprime. (5.11)

Note that this assumption amounts to the restriction that there are no sym-

metrically located zeros (and poles) of G(z) with respect to the imaginary axis.

In order to construct Ĥ1(z) and Ĥ2(z) satisfying (5.10), we resort to the con-

struction using the Euclidean algorithm by which there exist F1(z) and F2(z)

satisfying

G(z)F1(z)�G(�z)F2(z) = z
�n0 : (5.12)

Substituting �z for z in (5.12) and taking the sum of (5.12) with the resulting

equality, we have

G(z)Ĥ(z)�G(�z)Ĥ(�z) = 2z�n0 (5.13)

where Ĥ(z) := F1(z) + F2(�z). We have thus constructed Ĥ(z), a factorization

of which would yield (5.10) and therefore a PR �lter bank in which the analysis

�lters have assigned zeros. An application of (5.3) also yields the set of all solu-

tions to Ĥ(z) in terms of a particular solution. Following theorem summarizes

these results.

Theorem 1. Let G1(z); G2(z) 2 D
 satisfy (5.11) and let the Euclidean degree

of G(z) be denoted by g.

(i) Given any odd integer n0 > 0, there exists a two-channel PR �lter bank

of time-delay n0 with analysis �lters of the form

H1p(z) = G1(z)Ĥ1p(z); H2p(z) = G2(z)Ĥ2p(z)
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for transfer functions Ĥ1p(z), Ĥ2p(z) 2 D
. If n0 2 [0; 2g � 1], then the �lters

are such that the Euclidean degree of Ĥp(z) := Ĥ1p(z)Ĥ2p(�z) is at most g � 1.

(ii) All analysis �lters giving a PR �lter bank of time-delay n0+ l0 for an even

integer l0 � 0, are given by H1(z) = G1(z)Ĥ1(z); H2(z) = G2(z)Ĥ2(z), where

Ĥ1(z)Ĥ2(�z) = Ĥ1p(z)Ĥ2p(�z)z�l0 +G1(�z)G2(z)�(z) (5.14)

for some even �(z) 2 D
.

Proof: (i) By the construction (5.2) in Section 5.1, a particular solution Ĥp(z) to

G(z)Ĥp(z)� G(�z)Ĥp(�z) = 2z�n0 exists and satis�es ed(Ĥp(z)) < g provided

n0 � 2g � 1. Let Ĥp(z) = Ĥ1p(z)Ĥ2p(�z) be any factorization of Ĥp(z) into

Ĥ1p(z) and Ĥ2p(z). Then, (5.10) is satis�ed and PR is achieved. (ii) By direct

substitution, it is easy to verify that any other H1(z), H2(z) related to Ĥ1p(z),

Ĥ2p(z) by (5.14) will also satisfy (5.13), with n0 replaced by n0 + l0, provided

�(z) = �(�z). Moreover, by the parameterization (5.3) of Section 5.1, (5.14)

describes the set of all solutions to (5.10). Substituting an arbitrary solution

into the equation and changing the variable z to �z, it is easy to see that the

parameter �(z) is further constrained by �(z) = �(�z). �

Every even �(z) yields a unique product lowpass �lter by the linearity of

the parameterization. However, nonuniqueness is still present in our scheme

since in obtaining the individual analysis �lters, a (spectral) factorization of

Ĥ1p(z)Ĥ2p(z) + G1(�z)G2(z)�(z) into Ĥ1(z)Ĥ2(�z) is required. For a high

order product lowpass �lter, there would be many di�erent possible choices for

analysis �lters. This nonuniqueness may be exploited in satisfying the practical

constraints of low-pass and high-pass on the �lters H1(z) and H2(z). A hand-rule

is to select the right half plane poles and left half plane zeros for low-pass �lters

and right half plane zeros and left half plane poles for high-pass �lters. In low

order �lters, especially in FIR ones, this hand-rule works fairly well. More on

the e�ect of pole and zero locations on frequency response may be found in [18].
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The next section introduces an algorithm to �nd a solution to (5.13).

5.3 A Polynomial Algorithm to Construct a Fil-

ter Bank with Assigned Zeros

In the previous section, we have shown that it is possible to design �lter banks

with assigned zeros. There are several ways, such as Hermite polynomial interpo-

lation or realization theory [11], of �nding a solution to (5.13). In this thesis, we

adopt an algorithm which uses an algebraic method and relies on the Euclidean

algorithm and the preliminary work in Section 5.1. It is possible to design both

FIR and IIR �lters using the algorithm, however, computations occur over the

ring of polynomials. The polynomial algorithm used to solve (5.5) will be used

to construct a solution to PR equation formed by �lters with prespeci�ed zeros.

In FIR case, Fact 1 and Fact 2 guarantee the uniqueness and minimal length

property when the degree conditions required are met.

Algorithm:

Let 
 be chosen such that it contains the origin and it is symmetric with

respect to the origin. Suppose G1(z) and G2(z) in D
 are prespeci�ed and

contain the to-be-assigned zeros, i.e., G1(z) and G2(z) has the form G1(z) =

G1n(z)=G1d(z) and G2(z) = G2n(z)=G2d(z) where the zeros of the polynomi-

als G1n(z) and G2n(z) consist only of the to-be-assigned zeros and polynomi-

als G1d(z) and G2d(z) have their zeros arbitrary but �xed in 
. Moreover, let
�
G1(z)G2(�z); G1(�z)G2(z)

�
be coprime. De�ne G(z) := G1(z)G2(�z). The

PR equation (5.9), in terms of G(z) and Ĥp(z) and for a given odd delay n0 > 0,

becomes

G(z)Ĥp(z)�G(�z)Ĥp(�z) = 2z�n0 : (5.15)
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In order to determine a particular solution Ĥp(z) of (5.15), one may follow the

steps below:

i. Write G(z) and G(�z) in the standard form

G(z) =
Gn(z)

Gd(z)
= UG(z)

Gn(z)

zg
;

and

G(�z) = (�1)gUG(�z)
Gn(�z)

zg

where g is the Euclidean degree of G(z), UG(z) = z
g
=Gd(z) is a unit in D


and Gn(z) = G1n(z)G2n(�z), Gd(z) = G1d(z)G2d(�z). (When working

with FIR �lters, we can take UG(z) = 1.)

ii. Solve the polynomial equation

Gn(z)f1(z)�Gn(�z)f2(z) = z
g�n0+t (5.16)

with t := max(g � 1; n0 � g). Note that (Gn(z); Gn(�z)) are coprime

polynomials by the coprimeness of G(z); G(�z) over D
.

A solution to (5.16) can be found as follows. First, solve

Gn(z)�(z)�Gn(�z)�(z) = 1

for some polynomials �(z) and �(z). A solution can be determined by the

polynomial Euclidean division algorithm of Appendix A. In the next step,

by Euclidean division in the polynomial ring there exist (z) and f2(z) with

deg f2(z) < deg Gn(z) such that

z
g�n0+t�(z) = (z)Gn(z) + f2(z):

Finally, f1(z) is de�ned as

f1(z) = z
g�n0+t�(z)� (z)Gn(�z):
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iii. F1(z) and F2(z) de�ned as

F1(z) = U
�1
G
(z)

f1(z)

zt
; F2(z) = (�1)gU�1

G
(�z)

f2(z)

zt
:

are now a solution pair to

G(z)F1(z)�G(�z)F2(z) = 2z�n0 :

The product �lter Ĥp(z) satisfying (5.15) is obtained as

Ĥp(z) = F1(z) + F2(�z) =
U
�1
G
(z)

zt

�
f1(t) + (�1)g+tf2(�z)

�
:

The individual analysis �lters come from a factorization of Ĥp(z). Let Ĥ1p(z)

and Ĥ2p(z) be any �lters in D
 satisfying

Ĥ1p(z)Ĥ2p(�z) =
U
�1
G
(z)

zt

�
f1(z) + (�1)g+tf2(�z)

�

Then,

H1p(z) = G1(z)Ĥ1p(z)

and

H2p(z) = G2(z)Ĥ2p(z)

are a pair of particular analysis �lters with assigned zeros. The set of all solutions

with the same assigned zeros can be constructed using (5.14) in Theorem 1.

Note that this algorithm, also provides a control on the poles of the �lters.

Since it is possible to specify G1d(z) and G2d(z) as well. Moreover, new poles

inside 
 can be added using the freedom in �(z).

Example 6. Let 
 be speci�ed as f0g. Our aim is to design analysis �lters that satisfy

PR equation. Furthermore, �lters are required to have a at passband and ripples of

magnitude 0.1 at most in the stopband. For that purpose, we choose assigned zeros such

that the assigned zeros of the lowpass �lter suppress frequencies around � and those of

the highpass �lter suppress frequencies around 0. Thus, let f�1;�0:97� j0:2431g and
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n Ĥp(z) H1p;1(z) H2p;1(z) H1p;2(z) H2p;2(z)

0 0.017772808 0.349944392 0.050637984 0.044496347 0.398245678

1 -0.098461361 0.810135407 0.117228979 -0.087882084 -0.786551304

2 0.196628063 0.430350685 -0.117203556 -0.162218309 0.438969255

3 -0.098461281 -0.162218165 -0.438968953 0.430351615 0.117203214

4 0.017772779 -0.087881681 0.786551349 0.810135148 -0.117228958

5 0.044496155 -0.398245803 0.349943656 -0.050637885

Table 5.1: The coeÆcients of the �lters designed in Example 6.

f1; 0:8 � j0:6g be zeros of the analysis lowpass �lter and the analysis highpass �lter,

respectively. The overall delay is given as n0 = 5. Thus,

G1(z) =
z3 + 2:94z2 + :94z + 1

z3
;

G2(z) =
z3 � 2:9z2 + 2:9z � 1

z3
;

G(z) =
z6 + 5:84z5 + 14:366z4 + 19:052z3 + 14:366z2 + 5:84z + 1

z6
:

Upon running the algorithm we get a particular solution Ĥp(z). Table 5.1 lists the

coeÆcients of Ĥp(z), H1p;1(z), H2p;1(z), H1p;2(z), and H1p;2(z). One factorization of

Ĥp(z) gives the �lters H1p;1(z) and H2p;1(z). Another factorization gives the �lters

H1p;2(z) and H2p;2(z). Figure 5.1 shows the frequency response magnitude plots of

H1p;1(z) and H2p;1(z) and Figure 5.2 shows that of H1p;2(z) and H2p;2(z). Note that

due to the zeros we have assigned �lters satisfy the requirements in their passbands

and stopbands.

67



−3 −2 −1 0 1 2 3
0

0.5

1

1.5
Frequency response magnitude plots

w

Figure 5.1: The frequency response magnitude plots of �lters H1p;1(z) and

H2p;1(z) designed in Example 6.
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Figure 5.2: The frequency response magnitude plots of �lters H1p;2(z) and

H2p;2(z) designed in Example 6.
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n Ĥ(z) H1(z) H2(z)

0 0.001900000 0.225795989 0.008314964

1 -0.010526000 0.668245656 0.024608235

2 0.020049595 0.653487222 -0.009336967

3 -0.005147184 0.070014279 -0.096274414

4 -0.028097603 -0.242847036 -0.017218334

5 0.005152612 -0.027964498 0.250216259

6 0.068588132 0.099797665 0.061104148

7 0.005152633 -0.008268874 -0.662232862

8 -0.028097551 -0.025666755 0.660646889

9 -0.005147227 0.008540522 -0.219827918

10 0.020049588

11 -0.010525984

12 0.001899995

Table 5.2: The coeÆcients of the �lters designed in Example 7(i).

Example 7. Let the a stability set 
 be f0;�0:1 � j0:1g. Note that the FIR �lters

of Example 6 are still in 
 since 0 2 
. In this example, we will use the free parameter

�(z) in Theorem 1 to construct more general solutions from the particular solution of

Example 6.

(i) Let us �rst construct FIR solution with better stopband. Let

�(z) =
0:0019z6 � 0:005z4 � 0:005z2 + 0:0019

z6
;

and l0 = 4. Then, a product �lter Ĥ(z) is given as

Ĥ(z) = z�l0Ĥp(z) +G(�z)�(z)

Upon factorizing Ĥ(z) such that H1(z) has the minimum-phase zeros of Ĥ(z), we get

the analysis �lters whose coeÆcients are given in Table 5.2. Figure 5.3 shows the

frequency response magnitude plots of the resulting �lters.
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Figure 5.3: The frequency response magnitude plots of �lters designed in Exam-

ple 7(i).

(ii) Let us now choose �(z) = 0:00342z4+0:002897
z4+0:0004

. Choosing the particular solution

to be Ĥp(z) of Example 6 and letting l0 = 2, we have

Ĥ(z) = z�l0Ĥp(z) +G(�z)�(z)

=
0:0034z10� 0:0189z9 + 0:0629z8 � 0:1576z7 + 0:2446z6 � 0:1335z5

z6(z4 + 0:0004)

+
0:0594z4 � 0:0501z3 + 0:0383z2 � 0:0161z + 0:0029

z6(z4 + 0:0004)

Upon factorizing Ĥ(z) such that the minimum-phase zeros of Ĥ(z) are assigned to the

lowpass �lter H1(z), the analysis �lters come out to be

H1(z) = 0:3088
h (z + 1)(z2 + 1:94z + 1)(z2 � 0:8606z + 0:20434)

z7(z2 � 0:2z + 0:02)

� (z2 � 0:5712z + 0:2281)(z2 + 0:7926z + 0:4038)
i

H2(z) = 0:01101
(z � 1)(z2 � 1:6z + 1)(z2 + 0:3474z + 7:27)(z2 + 4:5514z + 6:175)

z5(z2 � 0:2z + 0:02)

Figure 5.4 shows the frequency magnitude responses of these IIR analysis �lters.
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Figure 5.4: The frequency magnitude plots of �lters designed in Example 7(ii).

Example 8. Let the stability set 
 be the disk with radius 0:1 and centered at

the origin. It is possible to choose poles of G1(z) and G2(z) di�erent from 0 at the

outset. Let G1(z) =
(z2+1:6z+1)(z2+1:84z+1)

z2(z2�0:1z+0:005) , G2(z) =
(z�0:9)(z2�1:9z+1)

(z+0:07)3
and n0 = 7. The

algorithm gives

Ĥ(z) = �
(z � 0:07)3(z2 � 0:1z + 0:005)(z2 � 3:2454+ z4:7821)(z2� 0:5692z + 0:1062)(z� 2:4253)

z10

The analysis �lters are

H1(z) = 0:2387
(z2+ 1:6z + 1)(z2 + 1:84z + 1)(z � 0:07)3(z2 � 0:5692z+ 0:1062)

z7(z2 � 0:1z + 0:005)
;

H2(z) = �0:0423
(z� 0:9)(z2 � 1:9z + 1)(z2 + 0:1z + 0:005)(z + 2:4253)(z2 + 3:2454z+ 4:7821)

z5(z + 0:07)3
:

Figure 5.5 shows the frequency response magnitude plots of the analysis �lters.
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Figure 5.5: The frequency response magnitude plots of �lters designed in Exam-

ple 8.

5.4 FIR Filters

In this section, we will focus attention on FIR �lters. Thus, we let 
 = f0g

throughout this section so that D
 consists of FIR transfer functions which can

be viewed as polynomials in the delay element z�1. The Euclidean degree of an

FIR �lter is its order (i.e., its number of poles), or equivalently, the degree of the

�lter function considered as a polynomial in z�1.

A typical need for zero assignment in FIR �lters arises in designing �lters

with a frequency magnitude response as at as possible. Degree of atness of

�lters is determined by the number of zeros at z = �1 for low-pass �lters and by
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the number of zeros at z = 1 for high-pass �lters. Daubechies, in her design of or-

thogonal wavelets with compact support, exploited the correspondence between

orthogonal wavelets and PR �lter banks discovered by Mallat [13]. The required

�lters for orthogonal wavelets are QMF and power complementary. Daubechies

determined the minimum �lter length for a given degree of atness, or equiv-

alently, the maximum degree of atness possible for a given �lter length. A

characterization of all QMF, PR �lters of varying degrees of atness is another

of her main results. In what follows, we show how such results, in more generality,

are obtained from Theorem 1.

5.4.1 Orthogonal FIR Filter Banks

Consider the �lter bank of Figure 2.1. If the synthesis �lters satisfy

H2(z) = �z�nH1(�z�1); (5.17)

where n is the order of the �lter H1(z) and an odd integer, then the �lters are

said to be quadrature mirror or QMF.2 This selection provides orthogonal �lter

banks as explained in Section 3.2. Substituting (5.17) in (5.9), we have

H1(z)H1(z
�1) +H1(�z)H1(�z�1) = 2zn�n0 (5.18)

which implies, upon replacing z by z�1 and comparing the resulting equality with

(5.18), n = n0, i.e., time delay in a PR �lter bank with QMF property is equal to

the order of the individual (analysis or synthesis) �lters.

If H1 and H2 have assigned zeros, then they are as in (5.8) so that

G2(z)Ĥ2(z) = �z�nG1(�z�1)Ĥ1(�z�1):

Let us suppose that the assigned zeros are chosen in accordance with QMF so that

the transfer functions G1 and G2 satisfy G2(z) = z
�k
G1(�z�1), where k is the

2In order to distinguish this property from the more restrictive QM property H2(z) =

H1(�z), (5.17) is sometimes referred to as \conjugate quadrature property", [17], [15]. See

[20] for a detailed discussion of QMF property.
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order of G1(z). It follows, by the fact that the order of a multiple of elements in

D
 is the sum of their orders, that Ĥ2(z) = �z�n̂Ĥ1(�z�1), where n̂ is the order

of Ĥ1(z), which implies that the product lowpass �lter Ĥ(z) = Ĥ1(z)Ĥ2(�z) has

symmetric coeÆcients, i.e.,

Ĥ(z) = z
�2n̂

Ĥ(z�1): (5.19)

Conversely, suppose G(z) with order 2k has symmetry property and a solution

Ĥ(z) to (5.13) also has symmetry property. Let 2n̂ be the order of Ĥ(z). Substi-

tuting z�1 for z in (5.13), multiplying by a suitable power of z�1, and employing

the symmetry conditions, we have

G(z)Ĥ(z)�G(�z)Ĥ(�z) = 2z�(2k+2n̂�n0) = z
�n0

so that n̂ = n0 � k. Thus, the order of any symmetric solution to (5.13) is

2n0 � 2k. A spectral factorization of Ĥ(z) into Ĥ(z) = Ĥ1(z)Ĥ2(�z), where

Ĥ1(z) consists of zeros inside the unit disk and Ĥ2(�z) outside, with zeros on

unit circle shared appropriately, can be carried out. The analysis �lters are then

obtained by (5.8) and satisfy (5.17) provided G2(z) = z
�k
G1(�z�1).

We will need the following result concerning symmetric FIR �lters.

Lemma 1. Let H(z) 2 Df0g have order n and write H(z) =

nX
i=0

Hiz
�i for real

numbers Hi; i = 0; 1; 2; :::; n.

(i) For any integer k, z�kH(z�1) 2 Df0g if and only if k � n. If k � n, then

z
�k
H(z�1) has order at most k.

(ii) z
�k
H(z�1) 2 Df0g has order n if and only if k = n and H(z) is biproper,

i.e., H0 6= 0.

(iii) z
�k
H(z�1) = H(z) and H(z) is biproper if and only if k = n and Hi = Hn�i

for all i = 0; :::; n.
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Proof. Since H(z) has order n, Hn 6= 0. All claims easily follow by the

expression z
�k
H(z�1) = H0z

�k + :::+Hnz
�(k�n). �

We can now state and prove our main result on FIR �lter banks with assigned

zeros.

Theorem 2. Let G1(z); G2(z) 2 Df0g be of order k each and satisfy (5.11). Let

CQF property G1(z) = z
�k
G2(�z�1) also hold.

(i) For each odd integer n0 2 [0; 4k� 1], a minimal order FIR solution Ĥp(z)

to (5.13) is unique and has order at most 2k � 2. This solution has symmetry

property (equivalently, a factorization of it into analysis �lters satisfying the CQF

property exists) if and only if n0 = 2k � 1 and Ĥp(z) has order 2k � 2.

(ii) The set of all analysis �lters with assigned zeros resulting in PR-QMF

�lter banks are given by H1(z) = G1(z)Ĥ1(z), H2(z) = G2(z)Ĥ2(z), where

Ĥ(z) = z
�l0Ĥp(z) +G(�z)�(z) (5.20)

for some even �(z) having symmetry property. A choice of �(z) with order

2(l0 � 1) results in a �lter bank of time delay 2k + l0 � 1 for even l0 � 2 and

analysis �lters of order 2k + l0 � 1.

Proof. (i) By Theorem 1(i), where g = 2k, a solution of order at most 2k�1

exists provided n0 2 [0; 4k � 1]. By Fact 2 of Section 5.1, it is unique and is of

minimal order. Moreover, by the fact that n0 is odd and the order of G(z) is

even, it must be that the order of any solution is also even. Hence, Ĥp(z) has

order at most 2k�2. We �rst show that, if n0 = 2k�1, then the unique solution

to (5.13) has symmetry property. Replacing z by z�1 in (5.13), and multiplying

each term by a suitable power of z, we have

z
�2k

G(z�1)z2k�2n0Ĥp(z
�1)� z

�2k
G(�z�1)z2k�2n0Ĥp(�z�1) = 2z�n0 :

Invoking the symmetry property of G(z), we obtain

G(z)z2k�2n0Ĥp(z
�1)�G(�z)z2k�2n0Ĥp(�z�1) = 2z�n0 :
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Since the order of Ĥp(z) is at most 2k� 2, by Lemma 1(i), z2k�2n0Ĥp(z
�1) is an

FIR �lter transfer function as 2n0 � 2k = 2k� 2 is greater or equal to the order

of Ĥp(z). By the uniqueness of a solution, we have that Ĥp(z) = z
2k�2

Ĥp(z
�1)

and hence, by Lemma 1(iii), the order of Ĥp(z) is exactly 2k � 2.

We have established prior to the statement of Lemma 1 that the order 2n̂

of any symmetric solution Ĥ(z) to (5.13) satis�es 2n0 = 2k + 2n̂. Suppose

n0 < 2k � 1 and a delay of n0 gives a symmetric solution Ĥ(z). With Ĥp(z)

being the unique solution obtained with delay equal to 2k � 1 above, We claim

that Ĥ(z) is not bicausal, contradicting symmetry by Lemma 1(iii). In fact,

with l := 2k � 1� n0, z
�l
Ĥ(z) is clearly a solution to (5.13) with delay 2k � 1.

By uniqueness of a solution for a given delay, it must be that z�lĤ(z) = ~H(z).

Thus, ~H(z) is not bicausal. This argument shows that the symmetric solution

Ĥp(z) obtained for the delay 2k � 1 is the only symmetric solution among all

delays up to 2k � 1. This proves (i).

(ii) Theorem 1(ii) gives that a product lowpass �lter Ĥ(z) giving a PR

�lter bank of time delay n0 + l0 in terms of a particular one Ĥp(z) giving

a time delay n0 can be written as Ĥ(z) = z
�l0Ĥp(z) + G(�z)�(z), where

G(z) = G1(z)G2(�z). Suppose Ĥp(z) and G(z) both satisfy the symmetry prop-

erties Ĥp(z) = z
�2n̂

Ĥp(z
�1) and G(z) = z

�2k
G(z�1). In order for Ĥ(z) also have

the symmetry property, it should hold that

z
�l0Ĥp(z) +G(�z)�(z) = z

�N [zl0Ĥp(z
�1) +G(�z�1)�(z�1)];

where N is the order of Ĥ(z). By the fact that the time delay is equal to the

order of H1(z), N should satisfy N+2k = 2(n0+ l0) which gives N = 2k+2l0�2.

The order of the left hand side of the equality Ĥ(z) = z
�l0Ĥp(z)+G(�z)�(z) is

thus strictly greater than the order l0+2k� 2 of the �rst term z
�l0Ĥp(z) on the

right hand side. It must be that the order of G(z)�(z) is equal to 2k + 2l0 � 2.

Therefore, the order of �(z) is equal to 2(l0�1) and gives an analysis �lter H1(z)
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of order 2k + l0 � 1. �

Example 9. In this example, we will design D3, a Daubechies �lter of smoothness

order 3. The analysis lowpass �lter has three zeros at z = �1. Therefore,

G1(z) =
(z + 1)3

z3

which is of order k = 3. Choosing G2(z) according to the requirement G2(z) =

z�kG1(�z�1), we have

G2(z) = �
(z � 1)3

z3
:

Using the constructive algorithm with the overall delay 2k� 1 = 5, �rst we must solve

the polynomial equation

�(z + 1)6f1(z) + (z � 1)6f2(z) = z6:

Following the algorithm, we get

t = 5;

f1(z) = �0:0059z5 + 0:0352z4 � 0:0742z3 + 0:0352z2 � 0:0059z;

f2(z) = �0:0059z5 � 0:0352z4 � 0:0742z3 � 0:0352z2 � 0:0059z;

F1(z) =
�0:0059z5 + 0:0352z4 � 0:0742z3 + 0:0352z2 � 0:0059z

z5
;

F2(z) = (�1)6
�0:0059z5 � 0:0352z4 � 0:0742z3 � 0:0352z2 � 0:0059z

z5
;

Ĥp(z) =
�0:0117z4 + 0:0703z3 � 0:1484z2 + 0:0703z � 0:0117

z4
;

Ĥp(z) = �0:0117
(z2 � 5:4255z + 9:4438)(z2 � 0:5745z + 0:1059)

z4
:

The roots of Ĥp(z) are 2:7127 � j1:4439 and 0:2873 � j0:1529. Factorizing the

product �lter Ĥp(z), we have

H1p(z) = 0:3327
(z + 1)3(z2 � 0:5745z + 0:1059)

z5
;

H2p(z) = 0:0352
(z � 1)3(z2 + 5:4255z + 9:4438)

z5
:

Here, the minimum phase zeros are assigned to the lowpass �lter and the non-minimum

phase zeros are assigned to the highpass �lter. The constant -0.0117 is factorized in
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such a way that the sum of the squares of the resulting �lters' coeÆcients is 1, i.e.,

the �lters have unit energy. Analysis �lters we designed are the same as the synthesis

�lters of D3. In the cascade algorithm in Section 4.4, the synthesis section is used to

generate wavelets. Thus, it is possible to construct Daubechies wavelet D3 using the

analysis section of the �lter bank we have designed. Figure 5.6 shows the wavelet and

the scaling function generated from H1p(z) and H2p(z).

The order of Ĥp(z) is 2k�2 = 4 as stated in Theorem 2(i). The �lter bank designed

is of minimal order. It is possible to get a higher order orthogonal �lter bank with the

same assigned zeros. By Theorem 2(ii), this is possible if and only if an even �(z) of

order 2(l0 � 1) with symmetry property is used in (5.20). Let l0 be 2 and select �(z)

as (0:01z2 + 0:01)=z2 which satis�es the symmetry property. The new product �lter

Ĥ(z) is

Ĥ(z) = z�2Ĥp(z)�
(z � 1)6

z6
(z2 + 1)

z2

=
�0:01z8 + 0:06z7 � 0:1717z6 + 0:3303z5

z8

+
�0:4484z4 + 0:3303z3 � 0:1717z2 + 0:06z � 0:01

z8

= �
(z2 � 4:3548z + 5:3805)(z2 � 0:6432z + 3:3395)

z8

�(z2 � 0:1926z + 0:2994)(z2 � 0:8094z + 0:1859);

which satis�es the symmetry property. Following the same factorization procedure,

the individual �lters come out to be

H1(z) =
0:424z7 + 0:8472z6 + 0:2693z5 � 0:1529z4

z7

+
0:0606z3 � 0:0111z2 � 0:0471z + 0:0236

z7

H2(z) =
0:0236z7 + 0:0471z6 � 0:0112z5 � 0:0605z4

z7

+
�0:1529z3 � 0:2694z2 + 0:8472z � 0:4240

z7

They satisfy the orthogonality condition (5.17). Figure 5.7 shows the scaling and the

wavelet functions generated from these �lters.
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Figure 5.6: (a) The scaling function, (b) the wavelet function generated from the

�lters H1p(z) and H2p(z) designed in Example 9.

5.4.2 Biorthogonal FIR Filter Banks

In the absence of the relation (5.17) between analysis �lters, any PR �lter bank is

called biorthogonal [21]. Biorthogonal �lter banks produce biorthogonal wavelets

depending on the existence of the zeros at z = 1 and z = �1. In the biorthogonal

case, there are two wavelets and two scaling functions. The analysis �lters H1(z)

and H2(z) produce a wavelet w(t) and a scaling function �(t) and the synthesis

�lters produce a dual wavelet ~w(t) and a dual scaling function ~�(t) [21]. The

wavelet functions satisfy the following biorthogonality relation

hwm;n(t) ~wk;l(t)i = Æ[m� k]Æ[n� l]:

Any function in the space spanned by these wavelets can be decomposed in two

di�erent ways, i.e.,

f(t) =
X
m

X
n

hwm;n(t); f(t)i ~wm;n(t)

=
X
m

X
n

h ~wm;n(t); f(t)iwm;n(t);

since wm;n(t) and ~wm;n(t) play dual roles. In the biorthogonal case, it is possible

to construct linear phase �lters that satisfy PR and lead to symmetric wavelets

[21]. This is not possible for the orthogonal �lter banks except the Haar wavelet.
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Figure 5.7: (a) The scaling function, (b) the wavelet function generated from the

�lters H1(z) and H2(z) designed in Example 9.

One easy way of designing biorthogonal wavelets is to design an orthogonal �lter

bank �rst and then factor it in such a way that orthogonality fails. We will

illustrate this in the next example.

Example 10. Let G1(z) = (z+1)2=(z2) and G2(z) = (z�1)2=(z2). The constructive

algorithm gives the following minimal order product �lter.

Ĥp(z) = (�0:0625z2 + 0:25z � 0:0625)=z2

Note that Ĥp(z) satis�es symmetry property. Therefore, it is possible to construct an

orthogonal �lter bank. In fact it gives the orthogonal �lter bank that generates D2. In

this example, a factorization which gives a biorthogonal �lter bank with linear phase

�lters will be performed. The product �lter Ĥp(z) is assigned to the lowpass �lter.

The �lter coeÆcients are adjusted so that the �lters have unit norm. The �lters are

H1(z) = �
1

4
p
2

(z4 � 2z3 � 6z2 � 2z + 1)

z4
;

H2(z) =
1

2
p
2

(z2 � 2z + 1)

z2
:

Figure 5.8 shows the wavelet and the scaling functions generated.

In the previous example, the wavelet and the scaling functions generated from

the analysis �lters are very spiky. It is possible to improve them by increasing the
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Figure 5.8: (a) The scaling function, (b) the wavelet function formed from the

analysis �lters. (c) The scaling function, (d) the wavelet function formed from

the synthesis �lters.

order of Ĥp(z). This is done using (5.14). It is possible to maintain the phase

linearity designing a product �lter with symmetry property and assigning the

whole product �lter to the lowpass or the highpass �lter only. The next example

exactly does this.

Example 11. Let �(z) = 3

64
p
2

z2+1
z2

, then by (5.14) where Ĥp(z) is in Example 10,

the new product �lter Ĥ(z) is

Ĥ(z) =
1

64
p
2

3z6 � 12z5 + 5z4 + 40z3 + 5z2 � 12z + 3

z6
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which has the symmetry property. The individual �lters are

H1(z) =
1

64
p
2

(3z8 � 6z7 � 16z6 + 38z5 + 90z4 + 38z3 � 16z2 � 6z + 3)

z8
;

H2(z) =
1

2
p
2

(z2 � 2z + 1)

z2
:

Figure 5.9 shows the wavelet and the scaling functions corresponding to this �lter bank.

This time there are no spikes. This illustrates the importance of the free parameter

�(z).
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Figure 5.9: (a) The scaling function, (b) the wavelet function formed from the

analysis �lters. (c) The scaling function, (d) the wavelet function formed from

the synthesis �lters.
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5.5 Robustness of Regularity of Minimal Length

Wavelets

In Theorem 2, we have proved that an orthogonal FIR �lter bank with analysis

�lters having k zeros at -1 (lowpass �lter) and 1 (highpass �lter) is possible and

we have shown that the minimal order �lters having these assigned zeros are of

order 2k� 1. The wavelet and the scaling function generated from the synthesis

�lters corresponding to such analysis �lters have k-vanishing moments, i.e.,

Z
�(t)dt = 1;

Z
t
n
�(t)dt = 0 for n = 1; 2; : : : ; k � 1;

Z
t
n
w(t)dt = 0 for n = 0; 1; : : : ; k � 1:

These vanishing moments, for example, are important in numerical analysis ap-

plications or compression of large matrices [5]. Another important property of

compactly supported wavelets is regularity. Regularity of a function is a mea-

sure of the di�erentiability of this function. Let Cn denote the space of n-times

di�erentiable functions. Regularity of wavelet and scaling functions has a close

relation to the number of zeros at -1 and 1 of the synthesis lowpass and high-

pass �lters, respectively. If a scaling function �(t) is compactly supported and

�(t) 2 C
k, then the synthesis lowpass �lter3 must have at least k-zeros at �1.

The regularity of wavelet and scaling functions �N(t) and wN(t) generated from

the minimal order synthesis �lters having N zeros at �1 and 1 increases lin-

early as the support of these functions increases. However, �N(t) 2 C
�(N) and

lim �(N)=N = 0:2075 for large N , [5]. This means that, for large N , 80% of van-

ishing moments are wasted. Therefore, for a �xed support, it is possible to give

up some vanishing moments in order to have more regular wavelet and scaling

functions. Table 5.3 shows the regularity of �2(t), �3(t), and �N(t) for a large

3From this point on we will mention only the zeros of the synthesis lowpass �lter because

the highpass �lter has a zero at �1=z0 due to orthogonality. Here z0 is a zero of the lowpass

�lter.
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Table 5.3: Regularity of �2(t), �2(t), and �N(t) for a large N .

n Lowpass �lter coef. Highpass �lter coef.

0 0.26470182888814 0.03913298187377

1 0.77142053992871 0.11406453485679

2 0.55640509458866 -0.10351113318248

3 -0.10351113318248 -0.55640509458866

4 -0.11406453485679 0.77142053992871

5 0.03913298187377 -0.26470182888814

Table 5.4: The synthesis �lter coeÆcients corresponding to most regular scaling

and wavelet functions

N . Note that even for N = 2 and N = 3, we are wasting some 2 zeros at -1 and

1 because �2(t) is in C
0 and �3(t) is in C

1.

In this section, we will investigate the regularity of compactly supported

wavelet and scaling functions of support [0; 5). In [5], Daubechies designs the

most regular wavelet and scaling functions of support [0; 5) via an optimization

procedure. Since �3(t) is in C
1, at least one zero of the synthesis lowpass �lter at

-1 is necessary. However, the synthesis lowpass �lter corresponding to �3(t) has

three zeros at �1. Daubechies keeps two of them and moves the remaining in

the complex plane. When the remaining zero is at z = �1:4749 the most regular

wavelet and scaling functions are obtained. Table 5.4 gives the coeÆcients of

the synthesis lowpass and highpass �lters corresponding to these most regular

functions.

In Theorem 2, we have determined how to obtain minimal-length �lters for

a FIR-PR �lter bank with desired assigned zeros. This allows us to examine the

robustness of the regularity of the obtained wavelet and the scaling functions.
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We start with the most regular wavelet and scaling functions. Corresponding

synthesis lowpass �lter has two zeros at �1 and a zero at �1:4749. We will

perturb �rst the zero at �1:4749 only, and then, the zero at �1:4749 together

with one of the zeros at �1.

In what follows, we denote the most regular wavelet and the scaling functions

of support [0; 5) as wreg(t) and �reg(t), respectively. Denoting a perturbed wavelet

and a scaling function by wp(t) and �p(t), respectively, we assess the regularity of

these in comparison with the most regular wavelet and scaling functions wreg(t)

and �reg(t). We use two heuristic measures in order to determine the robustness

against the perturbation. The �rst one relies on the cross-covariance values. The

cross-covariance of the functions �reg(t) and �p(t) is de�ned as

C� =

Z
N

0

(�reg(t)� ��reg)(�p(t)� ��p)dt =

Z
N

0

�reg(t)�p(t)dt�N��reg��p

where �reg and �p are the means of �reg and �p(t), respectively, and N is the

support of the scaling functions. We can write Cw for the wavelet functions using

the expression of C�. One diÆculty here is that we do not have these continuous

time functions as they are obtained by the limiting cases of (4.39) and (4.40). Let

us use discrete approximations instead of continuous functions in writing C� and

Cw. Let wreg[n], �reg[n], wp[n], and �p[n] be approximated wavelet and scaling

functions after eight iteration of the cascade algorithm. The cross-covariance for

these discrete functions is given as

C� =

N 0X
n=0

(�reg[n]� ��reg)(�p[n]� ��p) =

N 0X
n=0

�reg[n]�p[n]� (N 0 + 1)��reg��p

where scaling functions have support [0; N 0].

The second measure is based on the derivative of the di�erence between �p(t)

and �reg(t). If a perturbed scaling function has a regularity very close to that

of the most regular one, we expect that the di�erence function �p(t) � �reg(t)

will be very smooth which means that the magnitude of the derivative of the

di�erence function will be small. Since derivative operation is linear, derivative
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of di�erence is the same di�erence of derivatives. We know that �reg(t) is in C
1,

hence, it is di�erentiable. This means that, at any point t0, the left and the right

derivatives of �reg(t) are equal, i.e.,

lim
�t!0

�reg(t0)� �reg(t0 ��t)

�t
= lim

�t!0

�reg(t0 +�t)� �reg(t0)

�t

and the derivative of �reg(t) at t0 is the same the left and the right derivatives.

However, as in the previous measure, we have to work with discrete (sampled)

functions and hence, we do not have an expression for the derivative. Thus, we

introduce the right-di�erence dr[n0] and the left-di�erence dl[n0] at a point n0 as

follows

dl[n0] = �reg[n0]� �reg[n0 � 1];

dr[n0] = �reg[n0 + 1]� �reg[n0]:

We expect that for a high sampling rate, the di�erence between dr[n0] and

dl[n0] will be very small for the samples of a di�erentiable continuous func-

tion. Therefore, we can approximate the derivative of �reg(t) as the aver-

age of dr and dl divided by the sampling period Ts. Since the sampling pe-

riod is the same for all scaling functions, we can omit it in the de�nition.

As a result, the approximate derivative of �reg(t) at n0 can be obtained as

(dr[n0]+dl[n0])=2 = (�reg[n0+1]��reg[n0� 1])=2. We can calculate the approx-

imate derivative of a perturbed scaling function in the same way. Our criteria is

to check the maximum di�erences between derivatives d�;max and dw;max de�ned

as

d�;max = max
n

���(�p[n + 1]� �p[n� 1])� (�reg[n+ 1]� �reg[n� 1])
���;

dw;max = max
n

���(wp[n+ 1]� wp[n� 1])� (wreg[n+ 1]� wreg[n� 1])
���:

When d�;max and dw;max are small, we conclude that the perturbed scal-

ing/wavelet function is close to the most regular scaling/wavelet function.

Table 5.5 lists the perturbed zeros of the lowpass and the highpass �lters,

the cross-covariance values for the associated scaling and the wavelet functions
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and the maximum di�erences d�;max and dw;max. There are twenty di�erent

cases. Figures 5.10, 5.11, 5.12, 5.13, and 5.14 show the wavelet and scaling func-

tions associated to the cases (0,1,2,3), (4,5,6,7), (8,9,10,11), (12,13,14,15), and

(16,17,18,19), respectively. Case 0 is the most regular one found by Daubechies

[5]. It has the maximum covariance value for both the wavelet and the scaling

functions. In both measures, Case 13 is the closest to the most regular case, Case

0. Among the cases 1-7 (only the zero at -1.4749 is perturbed), Case 5 is the

most successful in both measures. The critical zero at -1.4749 is perturbed by as

much as 25.41% but C� and Cw changed only by 2.1% and 4.3%, respectively. In

Case 6, perturbing the critical zero by 35.6% results in 2.5% and 5.08% deviation

in C� and Cw. When two zeros are perturbed (Case 8-19), the most successful is

Case 13 in which the critical zero at -1.4749 is perturbed by 25.41% and the zero

at -1 is perturbed by 10%. The cross-covariance values C� and Cw are changed

by 1.01% and 2.08%. In Case 14, the perturbation of the zero at -1.4749 is very

close to that of Case 13 but the zero at -1 is perturbed by 100%. This results in a

very sharp decrease in the regularity. For example, the deviation in Cw becomes

48%. Therefore, the zero at -1 should not be changed too much.

In conclusion, we have observed that a change of about 20% in the critical

zero location of the most regular wavelet results in at most 5% loss of regularity

as measured by C� and Cw. Similarly, the same location change results in a

negligible loss of smoothness as measured by d�;max and dw;max.
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Figure 5.10: The �rst column shows the scaling functions and the second column

shows the wavelet functions of the cases 0, 1, 2, and 3 of Table 5.5.
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Figure 5.11: The �rst column shows the scaling functions and the second column

shows the wavelet functions of the cases 4, 5, 6, and 7 of Table 5.5.
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Figure 5.12: The �rst column shows the scaling functions and the second column

shows the wavelet functions of the cases 8, 9, 10, and 11 of Table 5.5.
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Figure 5.13: The �rst column shows the scaling functions and the second column

shows the wavelet functions of the cases 12, 13, 14, and 15 of Table 5.5.
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Figure 5.14: The �rst column shows the scaling functions and the second column

shows the wavelet functions of the cases 16, 17, 18, and 19 of Table 5.5.
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Chapter 6

CONCLUSION

We have considered PR �lter banks and associated wavelets. The focus of our

attention was on assigning zeros and poles to analysis �lters. The following are

the main contributions of this thesis:

(i) It is possible to assign to the analysis �lters any number of desired zeros

and place the poles in any desired region in the complex plane while preserving

the perfect reconstruction property.

(ii) All \product lowpass �lters" in a PR �lter bank can be described based

on a particular product �lter and a free parameter �(z) which is an even, causal

transfer function with poles in the same region as the poles of the �lters.

(iii) All FIR �lters having conjugate quadrature property can be described

based on a particular product �lter and a free parameter �(z) which is an even

function having symmetry property.

(iv) A minimal length FIR �lter with conjugate quadrature property exists

for any given set of assigned zeros. Such �lters have the same length as the

overall delay in the �lter bank.
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(v) Most of Daubechies' conclusions on minimal-length compactly supported

orthonormal wavelets are thus shown to hold for arbitrarily assigned zeros, not

necessarily for zeros at -1 and 1.

We have also shown, using the result in (iv), how to examine the robustness

of regularity of minimal-length compactly supported orthonormal wavelets with

respect to perturbations of zeros at -1 (and 1). Finally, we have illustrated how

the free parameter �(z) can be used to generate orthogonal and biorthogonal

wavelets with extra desired properties.

The main result of Theorem 1 has other potential applications not considered

in this thesis. Perhaps, the most promising application is in the case the distor-

tions modelled by d1[n] and d2[n] of Figure 2.1 are present (nonzero). The recon-

struction with delay will then be corrupted by terms caused by di[n]; i = 1; 2.

One open problem is thus to optimally design the analysis �lters so that the

\inuence" of distortions on the reconstructed output is at a minimum. If the

inuence is quanti�ed by anH1-norm, then the problem becomes one of a special

H1-optimization problem in which the free parameter �(z) should be optimally

chosen. This problem is currently under study.
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Appendix A

Polynomial Division Algorithm

Let polynomials a and b be coprime, i.e., no zeros in common. There exists a

polynomial pair (x; y) which is a particular solution of the equation

ax+ by = 1:

Following algorithm �nds the solution.

Step 1 We can assume that degree of a is greater than or equal to degree of b.

Since deg(a) � deg(b), we can �nd polynomials a2 and b2, with deg(a2) =

deg(a)� deg(b), deg(b2) < deg(b), so that

a = a2b+ b2:

Step 2 Similarly, we can �nd a3 and b3 with deg(a3) = deg(b) � deg(b2),

deg(b3) < deg(b2), so that

b = a3b2 + b3:

We keep going on this procedure, with bn�1 taking the role of b in this last

equation, and bn the role of b2,

bn�1 = an+1bn + bn+1:
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Since deg(bn) is strictly decreasing, this has to stop at some point, which

is only possible if bN+1 = 0 for some N , with bN 6= 0,

bN�1 = aN+1bN :

Step 3 Since

bN�2 = aNbN�1 + bN ;

it follows that bN divides bN�2 as well. By induction bN divides all the

previous bn, and b so that bN divides both a and b. Since a and b have no

zeros in common, it follows that bN is a constant di�erent from zero.

Step 4 By induction

bN = ~aN;kbN�k + ~bN;kbN�k�1;

with ~aN;1 = �aN , ~bN;1 = 1, ~aN;k+1 = ~bN;k � ~aN;kaN�k, and ~bN;k+1 = ~aN;k.

For k = N � 1, we �nd

bN = ~aN;N�1b+ ~bN;N�1a:

It follows that

x = ~bN;N�1=bN

and

y = ~aN;N�1=bN :
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