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ABSTRACT

INVESTIGATION, MODELING, AND APPLICATIONS
FEASIBILITY OF THE THERMAL CROSSTALK IN

HIGH TC TRANSITION EDGE BOLOMETER ARRAYS

Ali Bozbey

PhD in Electrical and Electronics Engineering

Supervisor: Asst. Prof. Dr. Mehdi Fardmanesh

August 2006

So far, the high Tc transition edge bolometer (TEB) devices are mostly used as

single pixel detectors. Recently, there are a number of groups working on the

2-4 pixel array applications of the high Tc TEB. Though the target spectrum of

the TEB is far IR and mm-waves, we are using a near IR laser source in our

investigation due to practical reasons since the response analysis is similar.

We have designed and implemented 4-pixel Y Ba2Cu3O7−δ (YBCO) edge tran-

sition bolometer arrays. The crosstalk study was made possible through the illu-

mination of the sense-devices and measuring the voltage response of the blocked

read-out device in the same array. This was done using a silver coated shadow

mask. In order to prevent thermal artifacts created by the mask, the mask was

made in free standing configuration on top of the devices. The devices were made

of 200 nm and 400 nm thick pulsed laser deposited YBCO films on SrT iO3 and

LaAl2O3 substrate materials.

In this thesis, we made the qualitative investigation of the dependence of the

thermal crosstalk on the various device parameters such as the substrate mate-

rial, device layout, YBCO film thickness, operating temperature, and modulation

frequency. Then, based on the experimental results, we proposed an analytical

thermal model. We proposed two models: i) Basic model, which takes into ac-

count only the lateral heat diffusion in the substrate for quick design purposes

ii)Analytical model, which takes into account the lateral heat diffusion, vertical

heat diffusion, and the effect of the leaking laser radiation through the shadow

mask, for detailed design purposes and verifying the qualitative analysis. Finally,

we proposed and verified possible applications of the thermal crosstalk in TEB

arrays. One proposed application of the crosstalk is the electrical free read-out
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of the sense pixels by utilization of the unique dependence of the magnitude and

phase of the response on the thermal crosstalk between bolometer pixels in an

array.

The qualitative investigation made in this study is the most detailed inves-

tigation about the bolometer arrays and the proposed analytical model is the

strongest among the reported ones so far in terms of fitting the experimental

results, explaining the effects of the various parameters, and designing TEB ar-

rays. The proposed crosstalk based read-out method is expected to decrease the

read-out circuitry for possible TEB based applications. Since multilayer process

is difficult to make in high Tc superconductors, decreasing the complexity of the

read-out circuitry by half is even important and it is the first time that such a

method is utilized including bolometer arrays made of different types of materials.

Keywords: Superconductor, bolometer, infrared detector, thermal crosstalk,

YBCO.



ÖZET

YÜKSEK SICAKLIK SÜPERİLETKEN BOLOMETRE
DİZİLERİNDE TERMAL BAĞLAŞIMIN

İNCELENMESİ, MODELLENMESİ VE UYGULAMA
OLANAKLARI

Ali Bozbey

Elektrik ve Elektronik Mühendisliği, Doktora

Tez Yöneticisi: Yrd. Doç. Mehdi Fardmanesh

Auğustos 2006

Şimdiye kadar yüksek sıcaklık süperiletken geçiş kenarı bolometreleri (GKB)

tek piksellik algılayıcılar olarak kullanılmışdır. Son zamanlarda bazı gruplar 2-

4 piksellik yüksek sıcaklık GKB dizileri üzerinde çalışmaktadır. GKB’lerin asıl

uygulama spektrumu uzak kızıl ötesi ve mm dalgaboyları olmasına rağmen, tepki

analizi aynı olduğu için ölçümlerimizde pratik nedenlerden dolayı yakın kızılötesi

lazer kaynağı kullanılmıştır.

Bu çalışmada 4×1 piksellik Y Ba2Cu3O7−δ geçiş kenarı bolometre dizileri

tasarlanıp üretildi. Komşu aygıtlar arasındaki termal bağlaşımın incelenmesi,

aygıtlardan sadece birisinin lazer ile aydınlatılıp, maskelenmiş diğer aygıtların

tepkilerinin ölçülmesiyle başarıldı. Maske olarak 400 nm gümüş kaplı 0.1 mm

kalınlığında cam kullanıldı. Maske tarafından kaynaklanabilecek termal etkilerin

engellenebilmesi için, maske, aygıtlara değmeden, aygıtların üzerinde serbest du-

racak şekilde üretildi. Aygıtlar için darbeli lazer kaplama yöntemiyle 200 nm

ve 400 nm kalınlıklarında, SrT iO3 ve LaAl2O3 alttaş üzerine yapılmış filmler

kullanıldı.

Bu tezde, termal bağlaşımın, alttaş maddesi, aygıt tasarımı, YBCO film

kalınlığı, çalışma sıcaklığı ve modulasyon frekansı gibi aygıt parametrelerine olan

bağımlılığı incelendi. Daha sonra, deney sonuçlarına dayanarak, 2 adet termal

model önerildi. Bunlardan birincisi, sadece substrat üzerinde yatay ısı dağılımını

dikkate alan, hızlı tasarım maksatlı kullanılabilecek basit model, ikincisi ise, yatay

ve dikey ısı yayılımını ve gümüş maskenin lazeri mükemmel engelleyememesini

hesaba katan; daha ayrıntılı tasarım amaçlı ve bağlaşımın daha ayrıntılı ince-

lenmesine olanak veren analitik modeldir. Son olarak, termal bağlaşımın olası
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uygulama alanları önerildi ve bunların yapılabilirliği gösterildi. Olası uygulama

alanı olarak, bağlaşım tepkisinin fazını ve büyüklüğünü kullanarak, elektriksel

bağlantı yapmadan dizideki birden fazla pikselin tepkilerinin okunmasıdır.

Yapılan nitel inceleme bolometre dizileri ile ilgili şimdiye kadar yapılmış en

ayrıntılı incelemedir. Önerilen termal model, şimdiye kadar rapor edilenler içinde,

deney sonuçlarına uyması, çeşitli aygıt parametrelerinin etkilerini açıklaması ve

GKB dizileri tasarlamada kullanılabilmesi açısından en güçlü modeldir. Önerilen

tepki okuma yönteminin ise yüksek sıcaklık süperiletkenlerinde çok katmanlı

tasarımlar yapmanın zorluğu dikkate alındığında, bolometre dizilerinin tepki

okuma elektroniklerinin karmaşıklığını azaltmasının önemi anlaşılmaktadır. Bu

yöntem bolometre dizilerinde ilk defa kullanılmıştır.

Anahtar sözcükler : Süperiletken, bolometre, kızıl ötesi detektör, termal bağlaşım,

YBCO.
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Chapter 1

Introduction and Literature

Survey

High temperature superconductor transition edge bolometers (TEB) are one of

the promising devices that can be used to detect electromagnetic radiation over

the whole spectrum from X ray to the far infrared. They cover a wide range of

applications such as space radiometry and spectrometry, optical communication,

thermal sensing, and imaging for military or biomedical purposes. The operation

of a bolometer is basically based upon the steep drop in the resistance at the su-

perconductivity transition. Over the last decade, especially after the discovery of

high Tc superconductor Y Ba2Cu3O7−δ (YBCO), there has been quite a consider-

able research on single pixel bolometer detectors [1]– [9]. In the recent years, the

array applications of the transition edge bolometers have attracted attention and

a number of groups are working on the fabrication, modeling, and applications

of TEB arrays [10] – [22].

In this thesis, we investigated the interpixel thermal crosstalk in an array

of high Tc superconducting transition edge bolometers. We designed and fabri-

cated various TEB arrays and analyzed the dependence of the interpixel thermal

crosstalk on the physical parameters of the devices such as the YBCO film thick-

ness, substrate material, and temperature. Besides, we derived an analytical
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CHAPTER 1. INTRODUCTION AND LITERATURE SURVEY 2

thermal model and proposed an example application of utilization of the thermal

crosstalk. The results of more than ten experiments are used for qualitative ex-

planation of the effects of the physical parameters and verification of the proposed

analytical thermal model.

The thesis is organized as the following: In this chapter, we provide some

background information about bolometers and thermal crosstalk that will help

the reader to understand the crosstalk phenomena in the bolometer arrays. In

the second chapter, we explain the fabrication details of the devices and show the

main parts of the experimental setup together with the measurement methodol-

ogy. In the third and fourth chapters, which are based on articles [23] – [25], we

show the experimental results and propose a thermal model to explain the exper-

imental results respectively. Then in the fifth chapter, which is based on article

[26], we propose a possible application of the thermal crosstalk in the bolometer

arrays.

Throughout this thesis, the “bolometer” and “device” terms will be used

to represent “superconducting transition edge bolometer”, and “crosstalk” will

represent “interpixel thermal crosstalk” in the bolometer arrays.

The principles of the operation of a single pixel bolometer has been explained

in the MS theses of the author and Akram in details [27], [28]. Hence, in this

thesis only a condensed summary will be provided and the focus will be mainly

on the arrays and the crosstalk phenomena in these devices.
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1.1 Operation of a Transition Edge Bolometer

Bolometer is a detector whose electrical resistance changes (+ or -) with tempera-

ture. Temperature change is caused by the absorbed radiation or by heat diffusion

in the substrate (crosstalk) as shown in Figure 1.1. Theoretically bolometers can

be made by using any conductor the resistance of which has temperature depen-

dence. However, for sensitivity, the temperature dependence of the resistance

(dR/dT) should be as high as possible. Superconductors are perfect candidates

for this purpose since there is a sharp resistance drop at the normal to supercon-

ductor transition. Thus, at the edge of the normal to superconductor transition,

there is a considerable resistance change due to a small amount of temperature

rise. The operation of a superconducting transition edge bolometer (TEB) is

explained in Figure 1.2.
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Figure 1.1: Schematic of a bolometer with thermal conductance G and capaci-
tance C.

For maximum sensitivity, the temperature of the bolometer should be kept

constant at the edge of the transition. For Y Ba2Cu3O7−δ material which we

used in this thesis, the transition temperature is around 90 K and the transition

width is around 1 K. For the operation of this bolometer, it is enough to control

the temperature at the Tc with 20 mK accuracy, which is achievable with a

PID controller. However, if the bolometer material is Tungsten, (W), which

has a critical temperature of 125 mK and transition width of just 1 mK, there

is no way to externally control the temperature of the device with the present
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Figure 1.2: Operation of a bolometer: Incident radiation is absorbed by the
superconducting film and its temperature is increased which causes an increase
of resistance.

technique. Thus, the bias voltage is used to achieve both electrical bias and

temperature bias. Applying a voltage across the W film causes it to self-bias in the

resistive transition due to Joule heating, and its temperature can be determined

by measuring the electrical current flow through the metal (negative feedback).

W material is used for single photon detector applications as explained in Section

1.2.2.

Detection of the radiation (resistance change) by edge transition bolometers

can be done in two methods. In the conventional method, a constant bias current

is applied to the bolometer and the change of resistance is measured by means

of the voltage change around the device. However, in the SQUID based read-

out method, the bolometer is biased with a constant voltage and the change

in the resistance is sensed by a SQUID that senses the resulting change in the

current through the device [29]. Utilizing the SQUID, which is the most sensitive

magnetic field or current sensor, is superior to the conventional method.

In this thesis we utilized the conventional method since our goal was inves-

tigation of the response rather than increase of sensitivity. For the targeted
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measurements, the conventional method was sufficient. The details of the experi-

mental setup is explained in Chapter 2. For the details of SQUID based read-out

of transition edge bolometers, the reader can refer to articles [12], [13], [30] – [32].
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1.2 Application Areas

1.2.1 Astronomy - mm-wave and THz Detectors

The millimetre region of the electromagnetic spectrum can be defined as 10 mm>

λ >1 mm (30 GHz< ν <300 GHz) and the sub-millimetre (THz) as 1 mm>

λ >0.2 mm (300 GHz< ν <1500 GHz). The universe emits as much energy in

the mm and sub-mm region as the optical, near IR and UV. Many astrophysical

phenomena can be studied in the mm and sub-mm, which cannot be studied using

the emission in the optical and IR region. For example by using the Sunyaev-

Zel’dovich Effect (scattering of the cosmic microwave background) as it passes

through clusters of galaxies, the expansion history of the universe, the formation

of the structure can be explained [33], [34]. There are a number of groups working

in the Astrophysical applications of the transition edge bolometers [33] – [39].

As Biswas states, [35], “Bolometer devices are all set to dominate mm and

sub-mm wave astronomical instrumentation in the coming decades due to their

quick detector response, high sensitivity, and wide bandwidth of operation.” Cur-

rently, in a number of space telescopes TEB sensors are being used. For exam-

ple, in the Atacama Pathfinder EXperiment (APEX), which is a collaboration

between Max Planck Institut fur Radioastronomie (MPIfR) , Onsala Space Ob-

servatory (OSO), and the European Southern Observatory (ESO), an array of

288 composite bolometers with superconducting thermistors and superconduct-

ing quantum-interference devices (SQUIDs) for multiplexing and amplification is

in preparation. The goal of the experiment is to study warm and cold dust in star-

forming regions both in Milky Way and in distant galaxies [40]. In 2001, Romani

et al. reported observations of the Crab pulsar made during prototype testing at

the McDonald 2.7 m with a fiber-coupled transition-edge sensor (TES) system.

The detector system used in the observations had a 6×6 array of Tungsten TES

pixels on a Si substrate [39].
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1.2.2 Single Photon detection

To measure the energy associated with a single particle, an extremely sensitive

detector is required. For example, single photon detection is important for ulti-

mate security of a quantum cryptography or quantum key distribution systems.

If the source departs from ideal operation by emitting more than one photon in

the same quantum-bit state, single photon sources can be destroyed by a host of

attacks. So, the researchers have developed true single photon sources [41]. How-

ever, the security of quantum cryptography systems can also be compromised if

the detectors used in the receiving system have high error rates. Thus, very low

noise single photon detectors are required as well [42] – [44].

Miller et al. report a system based on the superconducting transition edge

bolometer that is originally developed for astronomical spectrophotometers [39].

As explained in Section 1.1, the TEB device produces an electrical signal pro-

portional to the heat produced by the absorption of a photon. The increase

in temperature of the absorber is measured by an ultrasensitive thermometer

(=bolometer) consisting of a tungsten film with a very narrow superconducting-

to-normal resistive transition (Tc=125 mK, ∆Tc=1 mK). The detection efficiency

of the system is 20% and the NEP for the system is below 1 × 10−19 W/Hz1/2

[42], [45].

1.2.3 X-Ray Detectors

X-ray spectrometers are used in X-ray microanalysis and X-ray astronomy. Semi-

conductor energy-dispersive spectrometer (EDS) is used in over 90% of installed

X-ray microanalysis systems because it is easy to use, inexpensive to operate, and

offers rapid qualitative evaluation of chemical composition. However, it is limited

by an energy resolution on the order of 100 eV, which is insufficient to resolve

many important overlapping X-ray peaks in materials of industrial interest. On

the other hand, semiconductor wavelength-dispersive spectrometer (WDS) uses

Bragg reflection from curved difracting crystals to achieve high resolution (typ-

ically 2 to 20 eV) needed to resolve most peak overlaps. However, qualitative



CHAPTER 1. INTRODUCTION AND LITERATURE SURVEY 8

WDS analysis is limited by the long time needed to serially scan over the entire

energy range using multiple difraction crystals [46].

Finkbeiner et al., Wollman et al., and Irwin et al. report superconducting

bilayer transition edge bolometers for X-ray Microcallorimetry [46]–[48]. Basi-

cally, their microcalorimeters consists of an X-ray absorber and a transition edge

bolometer underneath. When an X-ray deposits its energy in the absorber, the

temperature and resistance of the TES increase. As explained in Section 1.1, the

increase of the resistance can be sensed with a SQUID sensor or lock-in amplifier.

For example, Wollman et al. has used Bi as the absorbing layer and Al/Ag as

the transition edge bolometer. The bolometer has an operating temperature of

around 100 mK and 2eV energy resolution.

1.2.4 Medical Imaging

Starting with the invention of the X-rays, by Wilhelm Conrad Röntgen in 1895,

X-ray examination has become an invaluable tool in medical diagnosis. However,

this technique has several shortcomings. X-rays are harmful to living beings

since they are ionizing. In addition, the spatial resolution is limited by Rayleigh

scattering to about 50 µm. Finally, the contrast between some sorts of tissues

is quite low [49], [50]. Methods have recently been developed that make use of

terahertz (THz) frequencies, the region of the spectrum between millimetre wave-

lengths and far infrared, for imaging purposes. Radiation at these wavelengths

is non-ionizing and subject to far less Rayleigh scatter than visible or infrared

wavelengths, making it suitable for medical applications [51].

In 1995, Hu et al. took the first image in the frequency range of 0.1 to 2

THz [52]. Later they have developed their system up to the point where two-

dimensional images of objects a few centimeters in size could be accumulated in

a reasonable time. In 1998, Hunsche et al. has increased the spatial resolution by

near-field imaging, and resolutions down to λ/6 have been reported. They have

shown that the internal structure and composition of objects can be visualized

using THz tomography [53]. Later, Han et al. and Arnone et al. could identify
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different types of tissues in fresh untreated samples [54], [55]. Mittleman and

co-workers showed that THz imaging may be useful for burn diagnosis [56], [57].

In 1999 and 2001, skin cancer detection has been demonstrated by Arnone and

co-workers [55], [58].

In the year 2000, the first commercially available THz time-domain imaging

system has been developed by Rudd et al. [59]. However, still there is a need for

smaller and less expensive systems.

Knobloch et al. report on a THz imaging investigation of samples that are

treated by the standard procedure for histo-pathological examination. In [49],

they present data obtained on a pig larynx and a human liver with metastasis.

Their measurements show that different types of tissue can be clearly distin-

guished in THz transmission images, either within a single image or by com-

paring images obtained for different frequency windows. For the measurements

they presented, the frequency spacing is set to 230 GHz which is the resonance

frequency of their low-temperature-grown GaAs dipole antenna. For detection,

a low Tc standard bolometer is used. They aim on detection schemes which use

nitrogen cooled high-temperature superconductor bolometer.
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In the year 2003, a superconducting nanotransistor based digital logic gate

has been reported [60], [61]. Though it is not a bolometric sensor application,

it is worth mentioning here since the operation principle is based on the joule

heating resulting in a temperature rise and diffusion of the heat in the device.

Figure 1.3: A schematic diagram of the nanotransistor [60].

The device consists of three component layers, the heater layer, the insulator

layer, and the superconductor layer. When sufficient potential drop is applied to

the heater, the electron temperature is raised significantly above the background

temperature. This leads to the creation of nonequilibrium or hot phonons in the

heater, which travel to the substrate. When the hot phonons arriving at the

superconductor have energies less than the local superconducting energy gap (∆)

they will reach through the superconductor without scattering with the Cooper

pairs and travel to the interface between the superconductor and the substrate,

which acts as the phonon sink. When the phonon energy is higher than the

minimum excitation energy, it will act to break the Cooper pairs exciting quasi-

particles. The consequence of the increased population of excited quasiparticles

is that it creates a situation equivalent to a local increase in temperature which

will lead to the reduction in the superconducting order parameter. Then, this

will reduce the local critical current. Basically, the heat generated by the top

heater layer acts to control the flow of supercurrent through the weak-link giving

transistor action in the device [60], [61].
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1.3 Commonly used Substrates for Y Ba2Cu3O7−δ

thin film

Popular substrates used with YBCO are Lanthanum Aluminate (LaAlO3), Mag-

nesium Oxide (MgO), Neodymium Gallate (NdGaO3), Saphire (Al2O3), Stron-

tium Titanate (SrT iO3), and Yttria stabilized Zirconium Oxide (Y2O3 − ZrO3)

[62], [63]. In our experiments we utilized devices on LaAlO3, SrT iO3, and MgO

substrates which are explained in more detail below. In this thesis we mainly

focus on the results from LaAlO3, SrT iO3 based devices.

Substrate
LaAlO3 SrT iO3 MgO

Crystal Structre Rhombohedral Cubic Cubic

Lattice Parametera,b (Å) a=3.79, c=13.11 a=3.9 a=4.216
Thermal Conductivityc,d (W/K cm) 0.16, 0.32 0.56 3

Specific Heatc (J/K cm3) 0.59 0.43 0.53
Thermal Expansion Coeff.a (10−6) 9.2 10.4 12.8

Densitya,b (g/cm3) 6.51 3.58 3.58
Melting Pointa,b (Celsius) 2180 2080 2800

Reflectance @ 850nme (%) 8.5 15 3
Transmittance @ 850nme (%) 69 73 89.5

Absorption @ 850nme (%) 22.5 12 7.5

a From [63], b From [64], c From [2], d From [3], e From [27]

Table 1.1: Typical properties of single crystal 1 mm thick LaAlO3 and SrT iO3

substrates. Note that the values vary depending on the fabrication process tech-
niques.

Crystalline LaAlO3 has a good lattice match with YBCO to within ∼1%

and can be grown to reasonably large sizes. YBCO films on LaAlO3 have Tc

of about 90 K and Jc of about 106 A/cm2 similar to that of SrT iO3. Unlike

this substrate, LaAlO3 is generally heavily twinned due to its structural phase

transitions as shown in Figure 1.3. While heating LaAlO3 wafers to the deposition

temperatures of YBCO, (∼ 800◦C) motion, formation, and annihilation of these

twins are observable. These phenomena can cause strain and defects on the

overlaying films [65]. Speculated artifacts of this property on the thermal crosstalk

will be explained in Section 3.5.
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Figure 1.4: 50X magnification photo of LaAlO3. The twinning in LaAlO3 is seen.
(Photo by Rizwan Akram.)

The thermal conductivities and thermal capacitances of SrT iO3 and LaAlO3

materials are close to each other as shown in Table 1.1. LaAlO3 has more ab-

sorption than SrT iO3 in the near IR range. The dependence of the crosstalk on

the IR absorption will be explained in Section 3.4.

Knowing the above properties of these substrates, one can choose one of the

substrates for optimum designs depending on the application purpose.
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1.4 Thermal Diffusion Equation

Heat propagation in the crystal substrate of the devices can be considered as a

conventional thermal diffusion. Numerical and analytical 3D heat diffusion pro-

cess in a generic crystal has already been formulated by a number of researchers

[66]–[69]. However, the solutions proposed in these studies does not take into

account the phonon spectrum of the superconducting thin film on top of the sub-

strate material. We speculated that the change of the phonon spectrum of the

YBCO thin film affects the heat diffusion process in the substrate [23], [70], [71].

For our proposed analytical thermal model, we handled the heat propagation

in three main parts, which is explained in details in Chapter 4. For the first

part, the 1D fundamental heat diffusion equation is used. As shown below, we

determine the crosstalk based on the diffusion at the surface of the substrate [7],

[72], [73].

In the following, we show the derivation of the 1D lateral heat diffusion equa-

tion starting from the fundamental heat diffusion equation [74], [75].

∇2T − 1

D

∂T

∂t
= 0 (1.1)

Where T is temperature, D = ks/cs and ks and cs are the thermal conductivity

and the heat capacity of the substrate material, respectively. Assuming heat

propagation only in x direction, we let ∇2 = d2

dx2 . Then, we get

d2T

dx2
− 1

D

∂T

∂t
= 0 (1.2)

In phasor notation, we get the following equation:

d2T

dx2
− 1

D
jωT = 0 (1.3)

Equation 1.3 is an ordinary second order differential equation, and its solution

is as the following:

T = k1e
(−1)1/4

√
ω
D

x + k2e
−(−1)1/4

√
ω
D

x (1.4)



CHAPTER 1. INTRODUCTION AND LITERATURE SURVEY 14

Since (−1)1/4 = 1+j√
2
, k1 should be zero for x > 0. Thus, we get the following

solution for the temperature at the surface of the substrate:

T = T0e
−( 1+j√

2
)
√

ω
D

x
= T0e

−
√

ω
2D

x e−j
√

ω
2D

x (1.5)

The magnitude and phase of the Equation 1.5 are as the following respectively:

|T | = T0 exp(−√
ω

2D
x)

∠T = −√
ω

2D
x

(1.6)

In Chapter 4, this solution will be applied to the bolometer arrays for simple

design purposes. Later, the model will be improved to make advanced designs to

be able to explain the observed crosstalk behaviors.

1.5 Thermal Diffusion Length, Lf

As derived in Equation 1.6, as the distance from the bolometer, x, increases the

magnitude of the response, |T |, decreases. At some x value ln(|Tx|) becomes half

of the ln(|T0|). This x value is called the thermal diffusion length, Lf , for that

material and modulation frequency. By using the Lf definition and Equation 1.6,

thermal diffusion length can be derived as;

Lf = (
D

πf
)1/2 (1.7)

Instead of finding the thermal diffusion length for a given modulation fre-

quency, we may need to find the modulation frequency at which the substrate

thickness, ts, is equal to the thermal diffusion length. This frequency is called the

knee frequency, fL, for that substrate material and thickness. It is given by [71]:

fL =
D

πt2s
(1.8)

Physically, the thermal diffusion length, Lf , represents the characteristics pen-

etration depth of the temperature variation into the substrate. More specifically,

let the thickness of the substrate be L and then the frequency associated to this
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thickness would be fL (knee frequency) according to Equation 1.7. If the mod-

ulation frequency, fm, of the device is above fL, then the AC heat flow into the

substrate will not reach the substrate/holder interface. In Table 1.2, the knee

frequencies for 1 mm thick, single crystal substrates are shown.

Substrate D (cm2/s) fL=1mm fL=0.5mm

MgO 5.66 180 Hz 720 Hz
LaAlO3 0.55 17.5 Hz 70 Hz
SrT iO3 0.12 3.85 Hz 15.4 Hz

Table 1.2: The knee frequencies for 1 mm and 0.5 mm thick, single crystal sub-
strates.

For example, if the modulation frequency of the IR radiation is 100 Hz, the

response of two identical bolometers made on 0.5 mm or 1 mm thick LaAlO3

substrate, will be very similar due to the above arguments.
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1.6 Analytical Model for Single Pixel Bolome-

ters

We have investigated and modeled the response of a single pixel bolometer in the

authors MS thesis [27]. For the sake of completeness and conceptual background

we will provide a summary of the model here. The model uses the electrical

analogy to the thermal parameters. The electrical analogous of the thermal pa-

rameters are given in Table 1.3 [27].

Thermal Parameter Electrical Analog
Heat Energy (Joule) Charge (Coulomb)

Heat Flow (Watt) Current (Ampere)
Temperature (Kelvin) Voltage (Volt)

Thermal Impedance (Kelvin/Watt) Impedance (Ω)
Thermal Conductance (Watt/Kelvin) Conductance (1/Ω)

Heat Capacity (Joule/Kelvin) Capacitance (Farad)

Table 1.3: Electrical analogous of thermal parameters used in modeling the heat
propagation.

A one dimensional thermal model associated to the characterization setup is

shown in Figure 1.5. In this model, RfL is the film lateral thermal resistance due

to conduction through the YBCO to the contact areas, Cf is the film thermal

capacitance, Rfs and Rsc are the film/substrate and substrate/cold-head thermal

boundary resistances and Rs and Cs are the substrate thermal resistance and

capacitance respectively. While the first four parameters can be used as a lumped

circuit element in the model, the latter two cannot be used. Thus, in order to

find the thermal impedance seen from the surface of the film, we should find

the thermal impedance of the substrate. We can do this by using the analogy

between a transmission line and the substrate. If we divide the substrate into

infinitesimally small segments, one of which is shown in Figure 1.6, a substrate

segment of thickness ∆x can be modeled with a simple RC circuit. The resistance

of the segment is calculated by r(x)∆x where r(x) is the unit length resistance

at position x and the capacitance is calculated with c(x)∆x, where c(x) is the

unit length capacitance at position x. Similar approach as finding the delay in a

VLSI wire in [76] is used for finding the substrate thermal impedance.
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Figure 1.5: Electrical analog of the thermal model and source for each parameter.
The physical dimensions are not to scale.

The equilibrium equations of the circuit, by Kirchoff’s voltage and current

laws, are

v(t, x + ∆x)− v(t, x) = −r(x) ∆x i(t, x + ∆x) (1.9)

i(t, x + ∆x)− i(t, x) = −c(x) ∆x
∂v(t, x + ∆x)

∂t
(1.10)

In the limit that ∆x → 0, we get the following PDEs,

∂v(t, x)

∂x
= −r(x) i(t, x) (1.11)

∂i(t, x)

∂x
= −c(x)

∂v(t, x)

∂t
(1.12)

If we take the Fourier transform, we have

∂V (ω, x)

∂x
= r(x) I(ω, x) (1.13)

∂I(ω, x)

∂x
= −jωc(x) V (ω, x) (1.14)

By using the above equations,

∂2V (ω, x)

∂x2
= jω r(x) c(x) V (ω, x) +

1

r(x)

dr(x)

dx

dV (ω, x)

dx
(1.15)

∂2I(ω, x)

∂x2
= jω r(x) c(x) I(ω, x) +

1

c(x)

dc(x)

dx

dI(ω, x)

dx
(1.16)
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c∆x

i(t,x) r∆x

v(t,x) v(t,x+∆x)

i(t,x+∆x)

Figure 1.6: Circuit analog of a substrate segment ∆x. r∆x and c∆x are segment
resistance and capacitance. r and c are the unit length resistance and capacitance
respectively.

We can solve these equations using MathematicaTM for arbitrary r(x) and c(x)

and we get the impedance matrix Zsub:

[
V (0)

V (l)

]
=

[
z11 z12

z21 z22

]

︸ ︷︷ ︸
Zsub

[
I(0)

I(l)

]

ZsubZfilm
Rsc

q

Zin1Zin2

V(0)

I(0)

V(l)

I(l)
Rfs

Figure 1.7: Impedance matrix for the holder configuration used in the analysis

In above, Zfilm =
Rf

1+jωCf Rf
from basic RC circuit, and we can calculate Zin1 as

in Equation 1.17 from the two port model terminated by Zsc [77].

Zin1 = z11 +
z12 ∗ z21

Rsc − z22

(1.17)
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Thus we get Zin2 as follows:

Zin2 =
Zfilm ∗ (Rfs + Zin1)

Zf + Rfs + Zin1

(1.18)

Finally, q ∗ Zin2 gives the voltage (=temperature) of the film.

For large area patterns, we can use unilateral heat propagation and consider

the propagation area equal to the film area, A, throughout the substrate. Then

we get, r(x) = rs/A = 1/(ks ∗A) and c(x) = cs ∗A. For these values of c(x) and

r(x), we get the substrate impedance matrix Zsub as follows:

Zsub =
1√

j cs ks ω

[
coth(γ l) −csch(γ l)

csch(γ l) − coth(γ l)

]
(1.19)

where,

γ =

√
jωcs

ks

(1.20)

We get Zin1 and Zin2 by using equations 1.17 and 1.18 as follows, same as reported

in reference [78] as a steady state solution to a general one-dimensional heat

propagation equation, neglecting Rf .

Zin1 =
e(γ`) + Γe−γ`

e(γ`) − Γe−γ`

√
1

jωcsks

(1.21)

Zin2 =

e(γ`)+Γe−γ`

e(γ`)−Γe−γ`

√
1

jωcsks
+ Rfs

e(γ`)+Γe−γ`

e(γ`)−Γe−γ`

√
jω

csks
Cf + 1 + jωCfRfs

(1.22)

where,

Γ =
Rsc −

√
1

jωcsks

Rsc +
√

1
jωcsks

(1.23)
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1.7 Previous Crosstalk Studies

In 2001, Gaugue et al [11] has investigated the substrate influence on inter-pixel

crosstalk in the YBCO mid-infrared bolometers and proposed 2D analytical and

3D numerical models. He has concluded that “the 2D model can be used to

predict the optical response for the illuminated pixel but ceases to be valid to be

used for the optical response of the non-illuminated adjacent pixel. So, interpixel

crosstalk has to be evaluated only by a 3D model and the thermal interface must

be taken into account.” However, 3D numerical model was able to explain the

thermal crosstalk up to mid-modulation frequencies, where the thermal crosstalk

starts to cease and the leaking input laser response starts to dominate as shown

in Figure 1.8.

Figure 1.8: 3D numerical model calculation results and experimental data from
Gauge et al [11].

In 2003, Delerue et al has reported the thermal crosstalk measurement re-

sults on YBCO Mid-Infrared Bolometer Arrays. They have defined some key

parameters in the interpixel thermal crosstalk such as the corner frequencies in

the response of the neighbor pixels and detectivity in the bolometer arrays. They

have also reported the response vs. laser spot position for testing the imaging
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performance of the array. They have not used a reflecting mask on the non-

illuminated pixels and they have not used gold coated contact pads. Thus, their

crosstalk measurement results, especially in the high frequency ranges, had some

artifacts due to the optical response of the YBCO pads where not only the source

pixel is illuminated but also the sense pixel was illuminated. The results from our

devices used in this thesis is protected against the above artifacts by the special

engineering of the device structure explained in the following chapters.



Chapter 2

Fabrication Of The Bolometers

and Characterization Setup

2.1 Sample Preparation

The devices used in this study were made of 200 nm and 400 nm thick c-axis

oriented YBCO films on 0.5 - 1 mm thick substrates deposited by pulsed laser

deposition (PLD) at Julich Research Center - Germany [70]. For more details of

the PLD process, the reader is encouraged to read the references [79]–[81].

On top of the superconducting films we prepared 4×1 bolometer arrays to

investigate the thermal coupling or the crosstalk between the devices in the form

of arrays of long bridges. The illuminated device in the array had an area of

20 µm × 1 mm and the neighboring test devices had areas of 20 µm × 0.75

mm. In order to measure the crosstalk between the devices, it is essential to

keep the test bolometers optically isolated from the environment. However, it

was further taken into consideration that optically isolating the devices does not

cause additional thermal coupling artifacts in the array. The details of the array

and mask are explained in the following section.

22
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(a)

Photoresist GlasSubstrate Silver YBCO Back-etched Substrate

ABCD

(b)

Figure 2.1: Top (a) and side (b) view of the test devices. The illuminated device
and the neighbor devices are shown together with the shadow mask.

The four neighbor devices of our design are shown in Figure 2.1. One bolome-

ter, the ”source-device”, (named B) is illuminated with modulated IR radiation

whereas the remaining three bolometers, ”sense-devices”, are blocked with a free

standing reflecting mask. The separations of the sense-bolometers named, A, C,

and D, from the source-bolometer were 40, 60, and 170 µm respectively.
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Photoresist GlasSubstrate Silver YBCO

ABC

d
c

d
a

Figure 2.2: Side view of the bolometer array used in the non-contact read-out
feasibility test experiments shown in Chapter 5. The read-out pixel B, and the
sense-pixels A and C are shown.

2.1.1 Reflecting Mask

The radiation blocking was achieved in a flip-chip configuration. The reflecting

mask was made of a 250 nm thick sputtered silver layer on 0.1 mm glass so that the

IR transmittance was negligible. For silver deposition, we used Denton Vacuum

Desk II etch-sputter unit with the silver target option. Then using standard

lithography process, a 25 µm wide groove was opened in the reflecting layer. A

1.4 µm thick photoresist layer was spinned and a larger window was opened so

that the mask was free standing on top of the devices, eliminating any parasitic

thermal or electrical contacts that could affect the measurements. The oxidation

problem of the silver was not faced since the top side of the silver was on the

glass side and the bottom side was coated with a thick layer of photoresist.

Instead of making the mask on-chip, we preferred it to make it with the flip-

chip configuration. This way, the fabrication process was much more easier and we

had the flexibility of changing the mask position on different pixels and changing

the number of windows in the mask for different applications. For example, in

addition to the crosstalk studies, the same bolometer array has been used to test

the feasibility of electrical contact free read-out of bolometer arrays by means of

thermal crosstalk. For this purpose, we designed an other mask which had two

windows rather than one as shown in Figure 2.2. The details of this study is

presented in Chapter 5.
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2.1.2 Array Preparation

The array was fabricated by using standard lithography process and chemical

etching on top of the PLD films that were explained in the previous section.

For chemical etching we used 0.75% H3PO4 acid diluted with DI water for 30

to 60 seconds depending on the thickness of the film. The contact paths and

pads were coated by a sputtered gold layer so that the YBCO contact paths with

nonzero resistance at the operating temperatures were shorted assuring that the

generated response is only due to the bridges. The gold-deposited parts of the

YBCO are shown in horizontal hatch pattern and the bridges are shown in cross

hatch pattern in Figure 2.1-a. The effective lengths of the bridges facing the

direct thermal coupling were 0.5 mm, so that the lateral thermal conductance

dominates over the longitudinal thermal conductance of the devices. Finally, the

groove was aligned and the mask was fixed on top of the source-bolometer as

shown in Figure 2.1.

2.1.3 Back-etching the substrate

There is no known chemical to etch LaAlO3 and SrT iO3 materials. Thus, to

remove the substrate-holder interface, we had to etch the bottom of the substrate

by mechanical means. The problem with this solution is that, first we make the

measurements without back-etching the samples then repeat the same experiment

with various amounts of back-etching. Thus, while back-etching, the microbridges

had to be protected against excess pressure and excess heating. The ethcing

amounts were in 250 µm increments in three steps. Thus, we had to monitor the

amount of exching during etching as well. To overcome all these issues, we used

a small PCB driller with proper tip and a home-made setup to be able to apply

the required minimum pressure and remove the generated heat during drilling.

The system had a scale to monitor and measure the amount of etching as well.
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2.2 Characterization Setup

The responses of the samples were measured under a DC bias current, Ibias, in

4-probe configuration using an automated low noise characterization setup as

shown in Figure 2.4.

The temperature of the substrate was controlled with a maximum 20 mK

deviation from the target temperature using a liquid nitrogen dewar (Janis VPF-

475) and a software PID controller. As a temperature sensor, Pt − 500 is used

which has a linear temperature dependent resistance in lN2-room temperature

range. The sensor was calibrated by measuring the resistance in lN2 (77.3 K)

and ice water (273.7 K), and finding the linear relation between temperature and

the resistance. The resistance of Pt − 500 is measured with 4-wire resistance

measurement method using Agilent 3401A DMM with 100 µA bias current to

prevent self-heating. The sensor is mounted in a groove, 1 mm below the sample

so that the temperature gradient is minimized. The metal film resistor heater,

powered by an HP6628A DC power supply, is placed 1 cm away from the sample

and can control the temperature up to 150 K with a maximum power of 5 W.

For the temperatures close to 90 K, 1-2 W is sufficient and 250 ml of lN2 provides

cooling the dewar for 2 hours. The thermal conductance from the cold head to

the lN2 reservoir was intentionally decreased by adding some insulator in between

so that the thermal run away from the cold head is further decreased. The

temperature controller can increase or decrease the temperature of the system by

up to 5 K/min. In Figure 2.3, the temperature stability of the system for a fixed

and decreasing temperature is shown.

The optical response of the devices, the phase and magnitude of the devices

under the IR radiation, were measured with SR850 DSP lock-in amplifier, the

input of which was amplified with an ultra-low noise preamplifier (Stanford SR

570). As a radiation source, electrically modulated, fiber coupled IR laser diode

with wavelength of 850 nm, and 12 mW power was used (from Power Technolo-

gies). Since the quartz window was not close enough to the sample, we used a

lens to focus the light to get higher intensity without sacrificing the homogeneity

of the light on the patterns.
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(a) (b)

Figure 2.3: Temperature (a) stability over a frequency sweep time -12 min- and
(b) decrease 1K/min over a temperature sweep time -6 min-. Maximum deviation
from the target temperature is less than 20 mK

The system is capable of measuring all four devices in one cooling cycle with-

out altering the electrical or thermal contacts, or the optical setup. In all the

measurements, the magnitude of the response was at least one order of magnitude

greater than the system noise.

The responses of the devices were measured versus radiation modulation fre-

quency in the range of 1 Hz to 100 KHz, limited by the lock-in amplifier. During

the measurements, the temperature was fixed at three different values. First, the

temperature was fixed at the middle of the superconductivity transition where

the highest response magnitude was obtained (Tc−mid), then it was fixed above

and below the Tc−mid to get a response magnitude approximately 10 % of the

maximum. These temperature values were defined as Tc−onset and Tc−zero respec-

tively. The set of measurements were repeated for bolometers made on different

substrate materials (SrT iO3 and LaAlO3) for films of different thicknesses (200

nm and 400 nm).

Currently, an analog switch as well an preamplification addition has been

made to the system as a senior design project [82]. With this addition, the

system is capable of doing the measurements without any manual interaction up

to four different samples. In addition, a low temperature opamp is integrated
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together with the switch so that the signal is amplified at cryogenic temperatures

close to the sample before any noise is added. Since the measurements shown in

this study are made with the system before the addition of the complimentary

circuitry, we do not explain the details of the new configuration here.
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Chapter 3

Experimental Results and

Analysis

Response of the bolometers are affected by several parameters. The amount of

parameters involved in the response makes the analysis complicated. However,

once the operation of a bolometer is understood, each of these parameters pro-

vide us an extra degree of freedom to make optimal designs for desired response

characteristics.

In this thesis, we have investigated the dependence of the response of the

bolometers on various physical parameters such as the bias temperature, device

separation between the neighbor pixels, substrate material, YBCO film thickness

and substrate back-etching.

As explained in more detail in Chapter 2, the source pixel is illuminated and

the sense response of the sense pixels were measured. The measured crosstalk

response of the devices has a lag due to the diffusion in the substrate. Thus, the

measured response is a complex quantity and it has both magnitude and phase

as shown in Equation 4.1. The voltage responses of the sense-devices versus the

radiation modulation frequency shown in this study can be divided into two main

parts: the response generated due to the crosstalk between the source-device and

the response generated by the leaking laser beam directly due to the imperfect

30
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Table 3.1: The crosstalk-free modulation frequencies of
devices A, C, and D at Tc−zero, Tc−mid, and Tc−onset for
SrT iO3 and LaAlO3 substrates.

Substrate Device d Crosstalk-free fm (Hz)
(µm) Tc−zero Tc−mid Tc−onset

SrT iO3 A 40 17853 15500 -
SrT iO3 C 60 7590 5850 4611
SrT iO3 D 170 762 645 366
LaAlO3 A 40 69400 34870 -
LaAlO3 C 60 13840 8730 -
LaAlO3 D 170 1743 1100 -

blocking of the radiation by the reflecting shadow mask.

For example, the response of the device D in Figure 3.1 is due to the crosstalk

up to about 700 Hz and mainly due to the direct absorption of the leaking laser

beam after about 2.5 kHz. As observed in Figure 3.1, the phase and magnitude

behavior of the response of device D are the same as the source-device B for f ≥
2.5 kHz. For device D, which is separated by 170 µm distance, the crosstalk-free

modulation frequency is around 1 kHz. Above this frequency, the coupling is

expected to become negligible and the unblocked leaking input laser power, in

the order of 1%, starts to dominate the measured response. As observed in Figure

3.1-b, the magnitude of the response of device D at higher frequencies (f ≥ 10

kHz) is approximately two orders of magnitude smaller than that in device B,

which shows that the radiation blocking of the shadow mask is more than 99%.

The modulation frequencies between 700 Hz and 2.5 kHz, lead to a mixed

and complicated response behavior. This is because the response due to the

crosstalk and the leaking laser beam through the shadow mask become compara-

ble in this range. The phase and magnitude depths of the responses at above the

knee frequency of the curves in Figure 3.1 are associated with the interference of

the responses due to the leaking laser beam and the thermal crosstalk from the

source-device. This is investigated and explained in detail in Chapter 4 by us-

ing the proposed analytical thermal model. Here we have analyzed the crosstalk
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based responses of the devices qualitatively by considering them from five main

aspects: i) the effect of the separation between the devices, ii) superconductivity

transition, iii) substrate material, iv) back-etching of the substrate, v) the YBCO

film thickness on the crosstalk characteristics.
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3.1 Effect of separation between the devices on

the crosstalk based response

Figure 3.1: Phase (a) and magnitude (b) of the IR response vs. frequency of
bolometers A, B, C, and D on 1 mm thick SrTiO3 substrate at Tc−mid. The effect
of the separation distance on the response is clearly observed.

The dependence of the response on the separation between the devices is

shown in Figure 3.1 for devices on a 1 mm thick SrTiO3 substrate. The ther-

mal diffusion length, that represents the characteristic penetration depth of the

temperature variation into the substrate, as explained in Section 1.5, is found

from:
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Lf =

√
D

πf
(3.1)

Where T0 is the temperature at x=0, f is the modulation frequency, D = ks/cs

is the thermal diffusivity of the substrate material, and ks and cs are the thermal

conductivity and the specific heat of the substrate materials, respectively [72].

For example, the thermal diffusion length for the SrTiO3 substrate at 4 Hz would

be 1 mm, the thickness of the substrate.

At low frequencies, all the characterized neighbor devices behaved the same,

as shown in Figure 3.1. That is, their response magnitude behaviors and phases

are very close to each other. This is interpreted to be caused by the fact that the

thermal diffusion length in this range is comparable to the substrate thickness

leading to an almost similar temperature variation for all the neighbor devices. In

this range of frequency, the Kapitza boundary resistance is the dominant thermal

parameter affecting the response [70], [71] and all the devices behave as if they

are perfectly coupled to each other. As the thermal diffusion length starts to

be comparable to the distance between the devices, the response curves start to

diverge from each other. Eventually, after the modulation frequency becomes

high enough to cease the coupling, the devices again converge to the response of

the input device, B, due to the leaking laser beam as discussed earlier. Thus, for

each device at different temperatures we can define a modulation frequency after

which the crosstalk is negligible. The crosstalk-free modulation frequency values

in Table 3.1 have been obtained by getting the phase minima versus modulation

frequency for devices A, C, and D. Above these frequency values, the crosstalk is

negligible and the response is only generated by the leaking input laser itself. For

example, the values of the 4th column in Table 3.1 are found from the frequencies

where the minimum phase occurs in the curves in Figure 3.1-a. After these

frequencies, the crosstalk can be considered to be negligible compared to the

leaking laser term.
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3.2 Effect of Superconductivity Transition on

the response behavior of the samples

Figure 3.2: Phase (a) and magnitude (b) of the IR response vs. frequency of the
source bolometer, B on 1 mm thick SrTiO3 substrate. The data is taken at three
different temperatures: Tc−zero, Tc−mid, and Tc−onset.

One of the immediate observations in the response of the devices is a strong

temperature dependence of the phase of the source-devices at low modulation

frequencies, fm, as shown in Figures 3.2 and 3.3. This has been explained for

small and large area single pixel devices in [70] and [71]. There was discussed that

the transition-dependent change of the phase of the response is due to the effects

of the order parameter of the YBCO material on the phonon spectrum, which also
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determines the Kapitza boundary resistance. Since the thermal diffusion length

at low modulation frequencies is greater than the device separation, the sense-

devices are also strongly coupled to the source-device in this range of frequencies.

Figure 3.3: Phase (a) and magnitude (b) of the IR response vs. frequency of the
sense bolometer, D on 1 mm thick SrTiO3 substrate. The data is taken at three
different temperatures: Tc−zero, Tc−mid, and Tc−onset.

We have also measured the response in the illuminated device without a

shadow mask to verify the above result, compared to the previously reported

results on the large area devices. As measured, the response of the device B did

not change considerably compared to that of the shadowed case. Temperature
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dependent response of a single device has been reported elsewhere [70], [71]. The

response behavior in Figure 3.2 is also affected by the gold deposition over the

contact paths, the effects of which dominate the temperature dependence of the

other thermal parameters in the device such as the lateral thermal conductance

through the YBCO film or the film-substrate thermal resistance.

Figure 3.4: Phase (a) and magnitude (b) of the IR response vs. frequency of the
sense bolometer, C on 1 mm thick SrTiO3 substrate. The data is taken at three
different temperatures: Tc−zero, Tc−mid, and Tc−onset.

As shown in the Figure 3.2, the response of the source-device B does not show

considerable temperature dependence. However, Figures 3.3 and 3.4 show that

the responses of devices C and D are strongly dependent on the superconductivity
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transition. Similar temperature dependent results have also been obtained for

device A. Thus, the strong temperature dependent response of the devices A, C,

and D are associated to be caused mainly by the superconductivity transition

dependent crosstalk between the devices.

Using the phase of the response of device D in Figure 3.3, the crosstalk-free

modulation frequency at Tc−onset is lower than that of Tc−zero. Based on the

above, the coupling between the devices is found to be more at lower temper-

atures, enabling crosstalk at higher frequencies. By using these crosstalk mod-

ulation frequencies and the proposed thermal model in Section 4.1, the lateral

thermal diffusivity values are obtained and given in Table 4.2.

3.3 Effect of the thickness of the YBCO Film

Based on the measured crosstalk-based response of the 200 nm and 400 nm thick

YBCO film bolometers with designs as shown in Figure 3.5, film thickness is

found to affect the response at both low and high modulation frequency ranges.

For clarity, the data in Figure 3.5 (except for pixel D made of 200 nm thick

YBCO film) are plotted just up to the lowest points, where the response starts

to be dominated by the direct absorption of the leaking laser beam.

We observed that the phases of the response of the 400 nm thick film bolome-

ters were smaller and the rates of decrease of magnitude versus frequency were

slower than those of the thinner film bolometers. Thus, as shown in Figure 3.5,

there was more crosstalk between the bolometers made of thick films. We as-

sociate this to the ratio between absorption of IR radiation by the YBCO thin

film and by the substrate. The 400 nm YBCO films absorb more radiation than

the 200 nm films; the lag which is possibly caused by the substrate material, is

decreased in the thicker film samples. The confirmation of this result based on

the analytical thermal model is provided in Section 4.3.3.
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Figure 3.5: a) Phases and b) magnitudes of 200 nm thick devices and 400 nm
thick devices.

There are two issues to consider when fabricating bolometers using thick films.

As the cross sectional area through which the current passes increases, electrical

resistance decreases, decreasing dR/dT. Second, as the film thickness is increased,

beyond about 300 nm in our PLD system, YBCO film quality decreases and

hence the superconductivity transitions of the thick films were less sharp than

the thinner ones. The loss in the sharpness of the transition with the thicker

films might be avoided by optimizing the PLD system, but the inherent decrease

in resistance of the film due to the thicker film would result in an overall lower

dR/dT degrading the response.
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Figure 3.6: a) Phases and b) magnitudes of 200 nm and 400 nm thick devices
and their fitting curves.

In [83], we investigated the effect of the transition width and film quality of

the YBCO films on the response of a single pixel bolometer. We observed that

as the transition width increases, the phase dip at low frequencies decreases due

to the difference of the lateral thermal conductivity of the YBCO film. However

for the purpose of this study, we have coated the contact paths of the bolometers

with gold; this dominated over the thermal parameters of the film and we did not

observe the phase dip at low frequencies that happened with the low quality films

in [83]. We can only interpret that the difference in the crosstalk-based phase of

the response is not associated with the transition width of the films. Crosstalk

characteristics of the bolometers based on thicker films are mainly interpreted
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to be due to differences in absorbtivities of the 200 nm and 400 nm YBCO

films. Possible effects of structural film quality on the crosstalk has not been

investigated.

The decision about the optimal thickness of the YBCO films should be with

the consideration of the thickness dependence of the film quality, the dimensions

of the bolometers, and the targeted range of the operation modulation frequency.

3.4 Effect of the Substrate Material

The thermal diffusivity of the substrate material is one of the fundamental pa-

rameters that affect the thermal crosstalk between the pixels in an array. This

is especially true at the low and mid ranges of the modulation frequencies, fm,

where the thermal diffusion length is in the same range as the substrate thick-

ness. In this range, the substrate thermal conductance and thermal capacitance

become the dominant parameters, which affect the response of the bolometers

[70].

Figure 3.7 shows the crosstalk response vs. frequency curve of pixel C on

LaAlO3 and SrT iO3 substrates. The crosstalk-free fm for pixel C on LaAlO3 is

21927 Hz whereas the crosstalk-free fm for pixel C on SrT iO3 substrate is 5850

Hz. Based on these frequencies, the lateral thermal diffusivities of the LaAlO3

and SrT iO3 are calculated to be 0.088 and 0.027 cm2/s, respectively in Section

4.1.

In this study, we did not investigate the effect of substrate thickness on the

crosstalk between the pixels. However, based on previously reported single pixel

studies [70], [71], as the thickness of the substrate decreases, the thermal diffusion

length becomes comparable to the thickness of the substrate at higher frequencies

as shown in (3.1), and the Kapitza boundary resistance affects the response for a

higher ranges of frequencies. For example, in Figure 3.7-a, the knee point around

4 Hz, caused by Kapitza boundary resistance, is clearly seen in the phase vs.

frequency plot of SrT iO3. Based on (3.1), as the thickness is decreased, the knee



CHAPTER 3. EXPERIMENTAL RESULTS AND ANALYSIS 42

Figure 3.7: a) Phases and b) magnitudes of devices C on LaAlO3 and SrTiO3

substrates and their fitting curves.

point is expected to shift to higher frequency values, decreasing the crosstalk at

a higher rate.

Apart from the thermal parameters of the substrates material, it is observed

that the crystal structure of the substrate also affects the response of the bolome-

ters. The bolometers made on SrT iO3 did not show much dependence on back-

etching; however back-etching the LaAlO3 substrate-based bolometers consider-

ably affected the response at an unexpectedly low modulation-frequency range.
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3.5 Effect of the Substrate Back-etching

Basically, back-etching removes the interface between the substrate and the cold-

head. Thus, there should be no effect of Kapitza boundary resistance. For exam-

ple, the thermal diffusion length of SrT iO3 based bolometers, shown in Figure

3.8, is 1 mm at 4 Hz modulation frequency. At frequencies below 4 Hz, the heat

wave is expected to face the boundary resistance that reduces the phase of the

response [70], [71]. However, since there is no such boundary in the back-etched

bolometers, the phase of the response ends up being higher compared to the

normal substrate based bolometers.

Figure 3.8: a) Phases and b) magnitudes of back-etched and unetched devices
made on LaAlO3 and SrTiO3 substrates.
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At frequencies where the propagating heat is not expected to face the bound-

ary, the response is expected to be independent of the back-etching [24], [72]. As

Figure 3.8 shows, the response of the bolometers on SrT iO3 substrate was as

expected. However, the bolometers made on LaAlO3 showed a clear dependence

on back-etching even at higher frequencies where the thermal diffusion length is

supposedly much shorter than the substrate thickness. This result is different

from that predicted by the classical models and needs further detailed investiga-

tion [24], [72], [73]. To verify that this was due to the substrate-specific result,

we repeated the experiment with different LaAlO3 and SrT iO3 based bolome-

ters; which led to similar results. Since the thermal conductance and the thermal

capacitances of both substrates are close to each other, [84] we attribute this dis-

crepancy to the twinned structure of the LaAlO3 material possibly affecting the

phonon propagation mechanism, the physical reasoning behind which is under

investigation.



Chapter 4

Modeling the Crosstalk

In Chapter 3, we qualitatively explained the observed dependence of response

behaviors on the various physical parameters of the devices. In this chapter, we

propose two models to support the results of Chapter 3 and to make application

specific bolometer array designs.

In this chapter we propose two models: one of them, the simple model, is

basically an application of the conventional heat propagation equation to the

bolometers together with the proper thermal parameters found by using the ex-

perimental data from Chapter 3. The other model, the analytical thermal model,

is more robust and has two more components in addition to the principal thermal

diffusion equation, the details of which is explained in Section 4.2.

4.1 Simple Model

The spatial dependence of the temperature through the substrate, for large area

bolometers assuming 1D heat propagation, has been derived in Section 1.4 and

formulated in [7], [72], and [73] as the following:

T (x, f)

T0

= exp[−
√

πf

D
x]

︸ ︷︷ ︸
Magnitude

exp[−
√

πf

D
x

︸ ︷︷ ︸
Phase

j] (4.1)

45
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Table 4.1: The crosstalk-free modulation frequencies and the calculated dif-
fusivities for devices A, C, and D at Tc−zero, Tc−mid, and Tc−onset for SrT iO3

and LaAlO3 substrates.

Substrate Device d Crosstalk-free fm (Hz) Diffusivity (cm2/s)∗

(µm) Tc−z Tc−m Tc−o Tc−z Tc−m Tc−o

SrT iO3 A 40 17853 15500 - 0.030 0.028 -
SrT iO3 C 60 7590 5850 4611 0.030 0.026 0.022
SrT iO3 D 170 762 645 366 0.029 0.027 0,022
LaAlO3 A 40 69400 34870 - 0.109 0.086 -
LaAlO3 C 60 13840 8730 - 0.086 0.073 -
LaAlO3 D 170 1743 1100 - 0.104 0.095 -

* For SrT iO3, average diffusivities at Tc−zero, Tc−mid, and Tc−onset are
0.030, 0.027, and 0.022 cm2/s respectively.
For LaAlO3, average diffusivities at Tc−zero and Tc−mid are 0.099cm and
0.084 cm2/s respectively.

Where, D is the thermal diffusivity of the substrate material, f is the modulation

frequency; x is the distance from the bolometer, and T/To is the spatial and

frequency dependent variation of the temperature in the substrate.

We have made a finite element modeling with ANSYS and observed that for

a small area bolometer, the lateral thermal diffusion can be approximated with

the same decay factor after a separation distance equal to the device width.

In the previously reported results, a clear knee frequency in the magnitude

of the response vs. modulation frequency curve has been observed due to the

Kapitza boundary resistance at the bottom of the substrate [70], [2]. However, a

knee frequency is not expected in the lateral direction. Thus, we calculated the

diffusivity values by using (4.1) and the response plots. For example, the phase

minimum for device D, at Tc occurs at 645 Hz as obtained from Figures 3.1-a

and 4.1-a and the corresponding T/T0 value is 0.00978 as obtained from Figures

3.1-b and 4.1-b. The distance, d, between the device B and D is 170 µm. If we

substitute the above values in (4.1), we get a diffusivity value of 0.027 at Tc−mid

as shown in Table 4.2. According to [84] and [85], the corresponding diffusivity

D, for bulk SrTiO3 is 0.12 cm2/s.
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The diffusivity values found here which is derived from the basic thermal

diffusion process differs from the previously reported values. This is interpreted

to be due to the fact that our calculation here is mostly based on the lateral

thermal conductance where [84] and [85] report the values for bulk material and

for vertical thermal conductance. For different substrate materials, the crosstalk

free modulation frequencies and the lateral diffusivity values are given in Table

4.1. From engineering point of view, one can use these lateral diffusivity values for

the calculations of the lateral thermal diffusion process for design optimizations

targeting crosstalk-free operation.

Figure 4.1: Obtaining the numeric values for the simple model from experimental
data.
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4.2 Analytical Model

In the previous section, we have calculated the lateral thermal diffusivity (DL)

of the SrT iO3 and LaAlO3 substrate materials by taking into account only the

fundamental thermal diffusion equation [23], [86]. That approach is valid for quick

design purposes such as deciding on the the device dimensions and the operating

modulation frequency. In this section, we present a more robust model that can

be also be used to explain the observed response behaviors of the characterized

devices. The model has three main parts: i) effect of the lateral heat diffusion,

ii) effect of the vertical heat diffusion iii) effect of the leaking input laser through

the mask. These three parts are shown in Figure 4.2. Basically, the previously

reported lateral thermal diffusion parameter takes into account all these three

parts up to the frequency ranges that the crosstalk is not negligible. In this

paper, we do not use the previously defined lateral thermal diffusivity but use

the bulk thermal diffusivity of the substrate material. For comparison purposes,

the results of the simple model with lateral diffusivity values is given in Section

4.2.1 as well.

I IIIII

Figure 4.2: Three main parts of the analytical model: i) effect of the lateral heat
diffusion, ii) effect of the vertical heat diffusion iii) effect of the leaking input laser
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Figure 4.3: Measurement results of the response of device C (——) and thermal
modeling results for lateral heat diffusion equation (¤). 5 shows results of the
simple model from Section 4.1
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4.2.1 Heat Diffusion on the Surface of the Substrate

Assuming only lateral heat propagation in the substrate, the spatial variation of

the response at distance x away from a single pixel bolometer has been formulated

as in Eq. 4.1, [7], [73].

The points represented with ¤ in Figure 4.3 shows the results of Equation 4.1.

It is seen that the lateral heat propagation equation is not adequate for explaining

the experimental data shown with straight lines in Fig 4.3. However, as in Section

4.1 for simple design purposes, a new term called lateral thermal diffusivity (DL)

was introduced and used in (4.1) [23]. The results of this approach is shown with

(5) in Fig. 4.3. As shown, it gives a better approximation than the use of bulk

diffusivity of the substrate in the lateral heat diffusivity approximation.

4.2.2 Heat Diffusion in the Bulk

We have shown that for a 1 mm thick SrT iO3 substrate, the substrate-cold head

Kapitza boundary resistance is effective up to 4 Hz modulation frequencies [78].

In Figure 4.4, it is shown that in this array configuration there is a knee frequency

around 4 Hz in the crosstalk based response as well which is due to the effect of the

Kapitza resistance. Thus we cannot neglect the effects of the vertical propagation

and the interfaces. However, (4.1) assumes heat propagates only in the surface

of the substrate material. Hence another term has to be added to (4.1) to be

able to take the thermal parameters caused by the bulk and the interfaces into

account as follows:

rv−C(f) = exp[−(1 + j)

√
πf

D
x ]

︸ ︷︷ ︸
Lateral Heat Diffusion Term

× (rv−B(f))α

︸ ︷︷ ︸
V ertical Heat

Diffusion term

(4.2)

Where, rv−C(f) is the measured crosstalk based response of the sense-pixel C,

rv−B(f) is the experimental data of the device B and α is the term that accounts

for amount of the the crosstalk delay caused by the substrate and the interfaces.

Basically, as crosstalk lag decreases i.e. stronger crosstalk is observed, the ex-

ponential α decreases. This is an expected result since as the crosstalk between
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the devices increase, the lateral heat diffusion becomes more dominant and the

contribution of the deeper bulk and interfaces decrease. The result of (4.2) is

shown with © in Figure 4.4.

For a rough estimation of the α parameter, a relation between the lateral

thermal diffusivity is found based on the DL values given in Table 4.2 and the α

values used in (4.2). As given in Table 4.2, α ×DL is equal to 0.05 for SrT iO3

substrate and 0.11 for LaAlO3 substrate. Thus, once the lateral thermal diffu-

sivity value of a device is known for a specific substrate, the α parameter can

be estimated for the array. In Section 4.3, the utilization of the parameter α is

shown with the application to devices with various physical parameters.

4.2.3 Leaking Input Laser Effect

As seen in Figure 4.4, the phase and magnitude of the crosstalk response that are

shown with © continuously decrease. However, after some frequency, the phase

of the experimental data shown with straight line recovers and it converges to that

of device B and likewise, the magnitude of device C recovers to the magnitude of

B scaled by the transparency of the reflecting mask. Thus, after some frequency,

the response caused by the input laser becomes dominant. The input laser leaks

to the device C through the reflecting mask. If we add this leaking term to the

crosstalk response, we get the following relation whose plot is shown with 4 in

Figure 4.4:

rv−c(f) = exp[−(1 + j)

√
πf

D
x ]

︸ ︷︷ ︸
Lateral Heat Diffusion Term

× (rv−B(f))α

︸ ︷︷ ︸
V ertical Heat

Diffusion term

+ rv−B(f)× β︸ ︷︷ ︸
Leaking laser term

(4.3)

In our experiments, the transparency of the reflecting mask was in the order of 1%

as shown in Table 4.2. Thus at low frequencies, where the crosstalk is dominant,

the effect of the leaking laser term is negligible.
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Figure 4.4: Measurement results of the response of device B (- - -) and C (——)
and analytical model without (©) and with (4) leaking laser effect. (. . .)
shows the magnitude of device B multiplied by the transparency (β) of the mask.
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Table 4.2: The parameters used in the application of the thermal model to the
test devices.
No Substrate Da Db

L T tc x c βc α DL × α
cm2/s cm2/s (K) (nm) µm

1 SrT iO3 0.12 0.028 Tc 200 30 0.010 1.9 0.053
2 SrT iO3 0.12 0.027 Tc 200 50 0.010 1.9 0.051
3 SrT iO3 0.12 0.030 Tc−zero 200 150 0.010 1.75 0.052
4 SrT iO3 0.12 0.026 Tc 200 150 0.010 1.9 0.049
5 SrT iO3 0.12 0.022 Tc−onset 200 150 0.022 2.1 0.046
6 SrT iO3 0.12 0.025 Tc 400 30 0.009 2.2 0.055
7 SrT iO3 0.12 0.026 Tc 400 50 0.008 2.2 0.057
8 SrT iO3 0.12 0.024 Tc 400 150 0.009 2.2 0.052
9 LaAlO3 0.32 0.086 Tc−zero 200 50 0.015 1.3 0.11
10 LaAlO3 0.32 0.078 Tc 200 50 0.009 1.5 0.11
11 LaAlO3 0.32 - Tc−onset 200 50 0.016 1.6 -

a SrT iO3: from [84], LaAlO3: 0.55 from [3], 0.28 from [78]
b SrT iO3: from [23], LaAlO3: from [86]
c t: Film Thickness, x : Distance from the source device, B, β: Transmittance of
the mask

4.3 Application of the Model to the Test De-

vices

In the previous section, we have chosen an arbitrary sample’s data and demon-

strated the derivation and physical basis of the model. We have already explained

the qualitative analysis of the effects of the physical parameters of the devices on

the thermal crosstalk between the devices of an array in Section 3 and hence we

will not get into the details here [23], [24]. In this section, we present the results

of applying the model to devices of various physical parameters and verify its

validity and test its range of applicability. We have applied the model to the 11

devices listed in Table 4.2 and obtained a fairly well fit.

In addition, once the model is tested and verified in the following subsections,

we utilize the model in Chapter 5 to propose possible applications of interpixel

crosstalk in the bolometer arrays.
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4.3.1 Device Separation

The distance between the source and sense pixels is one of the main parameters

that affect the crosstalk between the devices. As the distance between the devices

starts to be comparable to the thermal diffusion length at a specific frequency,

the response curves of bolometers A, C, and D start to diverge from each other

as shown in Figure 4.5. Eventually, after the modulation frequency becomes high

enough to cease the coupling, the devices again converge to the response of the

input device, B, due to the leaking laser beam as discussed earlier.

In Figure 4.5 we see the effect of the separation, x, between the devices on

the crosstalk. When we apply the model to the devices 6, 7, and 8 on the same

substrate with different x values, we see that the model fits well by only varying

x in (4.3). This is while other parameters are constant as listed in table 4.2.
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Figure 4.5: Verification of the model with the sense devices of different distances
from the source device. (Table I rows 7, 8, 9) Scatter plots show the experimental
date, line plots show the results of analytical model
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4.3.2 Substrate Material

The thermal diffusivity of the substrate material has a major effect on the

crosstalk response of the bolometers. As demonstrated in Figure 4.6, it is shown

that the model is able to explain the crosstalk response for the two different

kinds of substrates. As listed in the Table 4.2, the only different physical param-

eter between devices 2 and 10 is the diffusivity values of the substrate materials.

Since the substrate has changed, the α parameter in (4.3) should be changed.

LaAlO3 has a lower α value than that of SrT iO3. This is because the diffusivity

of LaAlO3 is higher leading to higher crosstalk as observed, and the thermal pa-

rameters in the vertical direction such as the interfaces are less effective on the

response. In addition, the absorbtivities of the LaAlO3 and SrT iO3 substrates

at 850 nm wavelength are 23% and 13% respectively [27]. Thus, the ratio of the

absorbed radiation by the YBCO film and the substrate material is higher in

SrT iO3 which effects the amount of crosstalk between the devices.

4.3.3 Film Thickness

In Figure 4.7, it is shown that the model also fits very well to the crosstalk

between the devices made of thicker films as well. The devices 2 and 7 are used

to test the model. In this fitting, the only parameter that has changed is the α

parameter. As shown in table 4.2, the thick film based device (device 7) has a

relatively greater α value. We associate this to the ratio of the absorbed radiation

by the film and that of the substrate material. As the film thickness is increased

the amount of the absorbed radiation by the film is increased. Thus the ratio of

the absorbed radiation by the YBCO film and the substrate material is higher in

the thicker films. A similar variation in α parameter is observed for the substrate

material effect.
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Figure 4.6: Verification of the model with the devices made on different substrate
materials. (Table I rows 2, 11) Scatter plots show the experimental data, line
plots show the results of analytical model.
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Figure 4.7: Verification of the model with the devices made of different film
thicknesses. (Table I rows 2, 8) Scatter plots show the experimental date, line
plots show the results of analytical model
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4.3.4 Bias Temperature

In Figure 4.8, it is shown that the analytical model is able to fit the response of the

devices at different temperatures. Table I shows the parameters of the devices and

the parameters used in the model. We have measured the devices made on both

LaAlO3 (9, 10, 11) and SrT iO3 (3, 4, 5) and obtained similar response behaviors.

Fig 4.8 shows the experimental results and fitting curves of devices 10, 11, and

12. The temperature dependence of the crosstalk has been analyzed in Section

3.2 [23]. There, we have concluded that as the bias temperature is decreased, the

crosstalk between the devices increases. Based on the observations of the Section

4.3.2, as the crosstalk is increased the α parameter is decreased, and in Table 4.2

we also see that this result is valid in the temperature effect as well.

In addition, by using the quantitative analysis and calculation of the diffu-

sivity values based on the simple model, at different temperatures, as explained

in Section 3.1, we obtained the crosstalk-free modulation frequencies and the

diffusivity values given in Table 4.1. As observed from Table 4.1 the diffusivity

decreases as the temperature increases. The average diffusivity values were cal-

culated to be 0.030 cm2/s, 0.027 cm2/s, and 0.022 cm2/s at Tc−zero, Tc−mid, and

Tc−onset temperatures, respectively. The increase of diffusivity as the temperature

is decreased might be interpreted to be due to the change of the phonon spectrum

in the YBCO film. This result agrees with the previously reported single pixel

response behaviors in [71] and [70], where the phase of the response of single

pixel devices are also reported to increase as the temperature decreases at high

modulation frequencies due to the increase of the effective thermal conductance

of the devices.
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Figure 4.8: Verification of the model with the devices under different bias tem-
peratures. (Table I rows 10, 11, 12) Scatter plots show the experimental date,
line plots show the results of analytical model



Chapter 5

Applications of Crosstalk

5.1 Feasibility of Electrical-Contact Free Mea-

surement of the Response of Superconduc-

tive Bolometer Arrays

We have investigated and reported the parameters that affect the thermal

crosstalk between the neighbor pixels of the transition edge bolometer arrays

and proposed an analytical model in the previous chapters [23], [86]. There, we

have defined the crosstalk-free modulation frequency (fm) for the operation of

the devices operating in the conventional configuration. That is, each pixel has

electrical contacts and it is favorable that the pixels do not have any thermal

crosstalk.

Since a very large area on most of the detector chips is occupied by the

read-out electronics and/or the contact paths, it is favorable to decrease the

electrical contact areas or contacts made to the sensor pixels. Decrease of the

electrical contacts when possible, would lead to denser layout designs that enables

increased spatial resolution, and decrease of the power consumption as well as the

fabrication costs. In this chapter, we operate the devices below their crosstalk-free

modulation frequencies to utilize the crosstalk between the devices in an array in

61
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detection of the response of the radiation sensing pixels with no electrical contacts.

This is done by measuring the phase and magnitude of a read-out device in the

array, which is biased using its electrical contacts. To the best of our knowledge,

including semiconductor and superconductor detectors, this is the first time that

such a read-out methodology is proposed and utilized. This approach would allow

only one read-out pixel be used for a number of sense-pixels.

Photoresist GlasSubstrate Silver YBCO

ABC

d
c

d
a

Figure 5.1: Side view of the ETB array. The read-out pixel B, and the sense-pixels
A and D are shown.

In this section, we show the feasibility of the proposed read-out technique by

use of two source pixels in an array, as the image-mapping devices, and one opti-

cally shielded pixel as the read-out device. While the sense pixels were electrical-

contact free, the read-out device was current biased in 4-probe current-bias con-

figuration. Both the phase and magnitude of the response due to the crosstalk in

the array were found to be strongly dependent on the modulation frequency and

the distance between the sense and read-out pixels. A series of measurements

were designed to extract the response of each single sense-pixel. By combining

the measured data, the response of individual pixels could be extracted through

the interpolation of the mapped responses.

To test the feasibility of the proposed detection mechanism, we have imple-

mented the device array configuration as shown in Figure 5.1. The read-out pixel

is chosen as device B, whereas devices A and C were chosen to be the sense-pixels

being exposed to the incident radiation. The device B has contacts for 4-probe

measurements, and devices A and C do not have any electrical contacts. The

goal of this study is to find the methodology for extracting the response of the A

and C pixels through the measured signal of the current biased device B.
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5.1.1 Principle of Operation

The spatial and frequency dependence of the response at distance x away from a

single pixel bolometer has already been formulated in Chapter 4.

T (x, f)

T0

= exp[−
√

πf

D
x]

︸ ︷︷ ︸
Magnitude

exp[−
√

πf

D
x

︸ ︷︷ ︸
Phase

j] (5.1)

Where, T (x, f)/T0 is the normalized response under modulation frequency of f

at x distance away from the source pixel, and D is the diffusivity of the substrate

material. As shown in Equation (5.1), with the increase of the distance x, the

phase of the response, −
√

πf/D × x, decreases resulting in further increase of

the lag of the signal.

Considering the crosstalk for a two-pixel case, the crosstalk response at point

xb, caused by devices A and C, are the superposition of the responses of individual

pixels A and C at xb. Equation (5.2) shows this superposition relation:

T (xb,f)
T0

= exp[−
√

πf
D

da] exp[−j
√

πf
D

da]

+ exp[−
√

πf
D

dc] exp[−j
√

πf
D

dc]
(5.2)

Where da and dc are the distances of A and C pixels from the B pixel respec-

tively. Figure 5.1 shows the implemented design and the structure of the array

with the shadow mask. In Figure 5.2, the superposition relation is shown together

with experimental data confirming the validity of the above superposition (due to

the interference) assumption for xa = 40 µm and xc = 170 µm. The read-out pixel

B, will have a response due to sense-pixels A and C with x= 40 µm and 170 µm,

respectively. If we add these two responses in vector form to include both their

phase and magnitude contributions, we get the curves denoted by (N) in Figure

5.2. The three experimental curves in Figure 5.2 are obtained by three illumina-

tion configurations as; i) only A, ii) only C, iii) both A and C. The calculated
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Figure 5.2: The response magnitudes (a) and phases (b) of B under various
illuminations of A and C (¥, •, and N). The magnitude and phase of the sum of
the crosstalk responses of A and C (F) fit to that of the phase and magnitude of
B (N).
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curves in the Figure 5.2 are obtained by vectorial sum of individual responses of

A and C. As shown in the figure, the vector sum of these responses fit closely to

the case of simultaneously illumination of A and C devices, and while the phases

fit well, the magnitudes do not. This is because the measurements were done at

different times and due to the difficulty of the laser alignments, the magnitudes

could not be perfectly aligned to the former state. However, one should note that

the normalized response in the experimental curves and the calculated curve, fit

very well. In the following section, we investigate the calculations in the inverse

approach. That is, given the simultaneous illumination data, we extract the in-

dividual contributions of the devices A and C by using the measured phase and

magnitude of superposition of the two responses.

Figure 5.3: Mag(A)/Mag(C) vs. Phase of read-out device B. By measuring the
phase of device B, Mag(A)/Mag(C) can be obtained. The numbers in squares
show the calibration data points.
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5.1.2 Example of extraction of the response of two sense-

pixels with one read-out pixel

As shown in Equation (5.2), the phase of the crosstalk based response of the

read-out pixel depends on the modulation frequency of the incident radiation,

the distances from the sense pixels, and intensities of the incident radiation on

the sense pixels. The distance between the the pixels are constant and a specific

modulation frequency can be chosen. In this case, the phase of the read-out

pixel is affected only by the intensities of the incident radiation on the sense

pixels. Thus, by measuring the phase of the read-out pixel, the intensities of the

incident radiation on the sense pixels can be obtained. To be able to achieve this,

some calibration measurements are needed to be done by radiating with various

intensities on the sense pixels.

For instance, at 174 Hz modulation frequency, the following calibration mea-

surements can be done:

• When only the far sensing pixel (C) is illuminated, the phase of the

read-out pixel is -61o (taking into account the leaking laser beam,

Mag(A)/Mag(C)=100),

• When the incident light on the far pixel (C) is double the near pixel (A),

the phase of the read-out pixel is -40o,

• When both of the sense pixels are illuminated equally, the phase of the

read-out pixel is -36o,

• When the incident light on the near pixel (A) is double the far pixel (C),

the phase of the read-out pixel is -34o,

• When only the near sensing pixel (A) is illuminated, the phase of

the read-out pixel is -31o (taking into account the leaking laser beam,

Mag(A)/Mag(C)=0.01).

As shown, when the relative incident radiation on the near sense pixel increases,

the phase of the response of the read-out pixel increases. In other words, the
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lag of the crosstalk response decreases. When a proper modulation frequency is

chosen, the ratios of the incident radiation on the sense pixels and the phase of

the read-out pixel has a one-to-one relation as shown in Figure 5.3. The data

points can be interpolated to get the ratio of the incident radiation on the sense

pixels. In addition, by using the analytical model proposed in Section 4.2, or

the individual pixels response data given in Chapter 3, the exact values of the

responses can be obtained by using the read-out pixels data.

For example, at 174 Hz, the crosstalk response magnitude of devices A and

C are 31.8 µV and 10.1 µV respectively as experimentally reported reported in

Chapter 3 or predicted by the analytical model proposed in Section 4.2. Thus,

when the A and C pixels are illuminated equally, the relative effect of the crosstalk

of these pixels on the read-out pixel is 31.8/10.1 = 3.1 That is, the data points

in Figure 5.3 should be reevaluated by taking into account this ratio, which is

named as k1.

If we formulate the crosstalk response as the superposition of the responses

of A and C pixels on B pixel based on Equation (5.2):

Vbe
−jθb = Vae

−jθa + Vce
−jθc (5.3)

Where, Va and Vc are the magnitudes of the responses of the pixels A and C, θa

and θc are the phases of the responses of pixel A and C when only pixels A and

C are illuminated. θb and Vb are the measured response phase and magnitude of

the read-out pixel. Above, θa and θc values are given as -31o and -61o respectively

and the desired unknowns are Va and Vc in terms of Vb. A relationship between

Va and Vc can be defined as the following:

Va = k1 × k2 × Vc (5.4)

Where k1 is the relative effect of the crosstalk of A and C pixels on the read-out

pixel at a given modulation frequency and k2 is the ratio of the radiation intensity

falling on the pixels A and C as found from calibration Figure 5.3. If Equation

(5.4) is substituted into Equation (5.3):

Vb

Vc

=
k1 × k2 × (e−jθa) + (e−jθc)

(e−jθb)
(5.5)
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For example, to get the individual response magnitudes of A and C, given

that the response of the read-out pixel is 100e−j35o
at fm=174 Hz, we look at

the calibration Figure 5.3 for θ = −35o and we find the value of k2 which is 2.

At 174 Hz, k1, θa, and θc parameters are known to be constant for a specific

device pattern and substrate material. If we substitute all the known values, into

Equation (5.5), we get the following:

Vb

Vc

=
2× 3.1× (e−j31o

) + (e−j61o
)

(e−j34o)
= 7.08 + j0.12 ∼= 7.08 (5.6)

Thus, Vc = Vb/7.08 and Va = 3.1Vb/7.08. For Vb = 100µV , Va and Vc values are

found as 87.5 µV and 14.1 µV respectively.

By using the calibration plot of the Figure 5.3, we can obtain Va and Vc values

for arbitrary θb values in the range of calibration. For example for θb = −36o, k2

is found to be 1 and we get Vb/Vc = 4− j0.15 ∼= 4 and for θb = −40o, k2 is found

to be 0.5 and we get Vb/Vc = 2.5 − j0.11 ∼= 2.5. Note that Vb/Vc in Equation

(5.5) is not real for arbitrary values of θ and k. However, as shown, the Vb/Vc

ratio is almost real for different intensities falling on A and C pixels. This shows

too that the proposed approach is correct.

Though there are a number of parameters to be taken into account in the

extraction of the individual responses, one should note that all the parameters

except k2 is constant for a fixed device pattern and modulation frequency. Since

only k2 is dependent on the incident radiation, once the device dimensions and

fm are given, the individual magnitudes can be obtained by only using Equation

(5.5) and calibration Figure 5.3, which give the k2 value for a desired phase of

the read-out pixel.
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5.1.3 Determination of Optimum Modulation Frequency

Based on the Device Dimensions

For uniquely determination of the response of A and C devices, the

Mag(A)/Mag(C) vs. phase plots should have one-to-one correspondence. e. g.,

the curve of 110 Hz in Figure 5.3 cannot be used for this purpose. In the lower

end of the frequencies, since Lf is greater than the device separations, the devices

A and C are coupled to each other as well. Based on the thermal diffusion length

relation Lf = (D/πf)1/2 and using the thermal diffusivity of 0.027 cm2/s, the

crosstalk-free fm between the devices A and C would be 19.4 Hz. Below this

frequency, we cannot differentiate the response of device A from device C. Above

the crosstalk-free fm of device C and B, which is around 500 Hz, the response

measured by the read-out pixel B would only be due to the device A. Thus we

should keep the fm above 20 Hz and below 500 Hz. The most optimum operating

frequencies for this given configuration is the frequencies that are just below the

crosstalk-free fm between B and C. In Figure 5.2, we see that the optimal oper-

ating frequency is around 250 Hz where the maximum phase difference between

A and C pixels is obtained, and well fits our estimation range.

5.1.4 Determination of Optimum Device Layout Dimen-

sions Based on the Modulation Frequency

The studied bolometer array was mainly designed for investigation of the inter-

pixel crosstalk of the neighbor devices, rather than the non-contact measurement

of the IR response. Hence the extraction of the individual signals cannot be done

efficiently for the studied devices. In this case the error margins are large and

the usable range of the modulation frequencies is narrow.

As a design consideration, two main issues should be taken into account.

First, the phases of the response caused by the individual sense-pixels should be

as different as possible. This is while the crosstalk magnitudes of the responses

should be as close to each other as possible. To be able to achieve both of
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these preferences at the same time, apart from the device separations, the sizes

of the sense-pixels should also be chosen different accordingly. For example, if

the distant devices are made larger in area, then the magnitude of the crosstalk

response on the read-out pixel would be greater. Though the phase of the response

is dependent on the distance and it would not change considerably. In some

applications, different sizes of sense-pixels might not be desired. In this case, the

read-out pixel shape would need to be adjusted so that the desired responses from

the sense-pixels are obtained. In the following section, an example design given

based on these considerations and the analytical thermal model.

5.2 Design example for a read-out for 4 pixels

By using the analytical model, we propose a read out algorithm for 4-pixels. The

read-out pixel is designed to be a spiral pattern and the sense pixels are put with

various distances to the sense pixel as shown in Figure 5.4. The perpendicular

parts of the spiral to the sense pixels are to be deposited by gold so that they do

not contribute to the response.

In addition, as explained in Section 5.1.4, for maximum resolution, the phase

differences between the sense pixels should be as much as possible while the

magnitudes should be as close as possible. For maximum phase difference, the

distances between the sense and read-out pixels can be adjusted. However, as the

distance between a pair of sense and read-out pixel increases, the magnitude of

the crosstalk is decreased below the measurable limit. To overcome this problem,

we set the widths of the read-out pixels as a design parameter. Thus, the electrical

resistances of the parallel R1-R4 portions of the read-out pixel are not the same.

While designing the layout shown in 5.4, we have the freedom of changing the

distances between R and S pixels and widths of R1-R4 pixels. Though the gold

coated portions of the read-out pixel does not contribute to the response, their

lengths affect the operating frequency range of the device. So, it can be considered

as a design parameter as well.
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Figure 5.4: Top view of the proposed design example for a read-out for 4 pixels.
Not to scale.

The overall response of the read-out pixel is a superposition of 17 components.

16 components are for the interpixel crosstalk between the sense (S) and read-out

(R) pixels and 17th component is for taking into account the leaking laser effect

due to imperfect blocking of the reflecting mask.

If we assume that only the sense pixel S1 is illuminated, it will have an effect

on the R1-R4 parts of the read-out pixel. Ignoring the leaking laser effect, we

will have the following relation:

TS1

T0
= RR1 × e−(1+j)

√
ω
2D

ds1R1 + RR2 × e−(1+j)
√

ω
2D

ds1R2

+ RR3 × e−(1+j)
√

ω
2D

ds1R3 + RR4 × e−(1+j)
√

ω
2D

ds1R4
(5.7)

Where, RR1 - RR4 are the normalized electrical resistances of the R1-R4 pixels

respectively and ds1R1 − ds1R4 are the distances of the sense pixel S1 to read-out

pixels R1-R4.
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If all of the sense pixels are illuminated, the overall response will be as the

following:

TS = TS1 + TS2 + TS3 + TS4 (5.8)

Note that TS1 - TS4 will be calculated as in Equation 5.7.

In addition to the crosstalk terms caused by the sense pixels, the leaking laser

term should be taken into account as well. Thus the overall response becomes as

the following:

T = TS + β(RR1 + RR2 + RR3 + RR4)TR−N︸ ︷︷ ︸
Leaking laser term (TR)

(5.9)

Where β is the transparency of the reflecting mask, and TR−N is the experimen-

tally obtained normalized response of the read-out pixel. Basically, the leaking

laser term, TR, is a scaled form of the response of the read-out pixel to the IR

illumination in the absence of the sense pixels.

By using Equation 5.9, we can obtain the response of the read-out pixel by

any illumination combination of the sense pixels. For example, let the 2nd and 3rd

pixels of the array are illuminated, then we get the following response according

to Equations 5.7 – 5.9:

T = TS2 + TS3 + TR (5.10)



CHAPTER 5. APPLICATIONS OF CROSSTALK 73

Figure 5.5: Illuminated sense pixels vs. the phase of the response of the read-out
pixel

If we compute the overall response with all the 16 illumination possibilities

of the sense pixels as shown in Equation 5.10, such as: 1st and 2nd sense pixels

are illuminated (0011) or 2nd and 3rd pixels are illuminated (0110) or all the pix-

els are illuminated (1111); we get the response curve shown in Figure 5.5. The

curve, has been obtained by using the physical parameters shown in Table 5.1.

These parameters have been determined by automated trial and error by using

Mathematica program. They might not be the optimum parameters, however,

they show the feasibility of the proposed methodology.

RR1 RR2 RR3 RR4 ds1R1 ds2R2 ds3R3 ds4R4 dGold fm

2.5 1 1 1.5 190 µm 15 µm 50 µm 105 µm 200 µm 276 Hz

Table 5.1: Physical parameters used in computation of the thermal crosstalk by
using Equation 5.8
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As shown in Figure 5.5, there is a one-to-one relationship between any combi-

nation of illuminated pixels and the phase of the response of the read-out pixel.

Thus, by measuring the phase of the read-out pixel, one can estimate the illu-

minated pixels in the array. Note that this algorithm assumes that the incident

radiation power on the sense pixels are equal.



Chapter 6

Conclusions and Future Work

6.1 Conclusions

In this thesis, we investigated the dependence of the crosstalk between the pixels

of bolometer arrays with various device parameters. It was found that while

some device parameters cannot be freely chosen due to practical constraints,

there are still enough controllable parameters for getting the desired response

characteristics based on the application. In addition we have shown an analytical

model for explaining the crosstalk response behaviors of the bolometer arrays.

We have shown that, as in the previously reported single pixel cases, the su-

perconductivity transition in our bolometer arrays have a major effect on the

thermal coupling between the devices and the lateral heat diffusion in the sub-

strate. We have found that the response of the source-device shown in Figure

2.1 does not show considerable temperature dependence which is interpreted to

be due to the dominant thermal conductance through the gold layer on the con-

tact paths. Thus, the measured temperature dependent response of the devices

A, C, and D are associated to be caused mainly by the superconductivity tran-

sition dependent crosstalk between the devices. This implies that the phonon

scattering and its spectrum in the substrate material should also be a function of

the superconductivity parameters of the thin YBCO film at the transition. This

75
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is while the thickness of the engaged substrate material is orders of magnitude

thicker than that of the YBCO film. These phenomenon is also observed at rel-

atively high temperatures of about 90 K where the phonons’ mean free paths

are expected to be very short compared to the thermal diffusion length at the

corresponding frequencies.

We observed that also the film thickness is one of the effective parameters that

affects the crosstalk and as the film thickness is increased the crosstalk increases.

We also observed that the response of LaAlO3 substrate devices unexpectedly

strongly depends on the back-etching even at high frequencies where the thermal

diffusion length is expected to be smaller than the substrate thickness. The

responsible mechanisms for this observation are under further investigation.

In addition to above investigations, an analytical model has been proposed

and verified for explanation of the dependence of the crosstalk on the physical

parameters of the devices, bias temperature, and the modulation frequency. We

have shown that if the modulation frequency is high enough, in addition to the

crosstalk based response, the leaking laser term due to imperfect blocking of the

mask, should also be taken into account.

Our proposed thermal model is suitable for detailed design and implementa-

tions of edge transition bolometer arrays. It requires an experimental data from

a single pixel device to be able to extend the lateral heat diffusion equation to a

3D model. At first sight, requirement of a single pixel response data may seem

as a weak point of the model. But practically obtaining the response data for

a single pixel device is trivial and it is not necessary to get the data for each

and every single device. In this regard, the data can be tabulated for different

substrate materials and film thicknesses. To make the model free of experimental

single pixel device data, the single pixel bolometer model that has been explained

at the Introduction chapter of the thesis can be used. We think that this only

complicates the model without gaining much in terms of practical use.

Apart from the conventional device parameters, such as the device dimensions,

thermal capacitance or conductances, the model introduces a new parameter,

α. As discussed before in this thesis, α is a measurable parameter and it is
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a measure of crosstalk amount and has a systematic dependence on the other

device parameters. We observed that as the crosstalk is increased the α parameter

decreases, which is verified by the substrate effect and the temperature effect. As

the ratio of the absorption of the film to substrate increases the α parameter

decreases, which is verified by the substrate effect and film thickness effect study.

As shown, α × DL has a constant value for a specific substrate and this is inline

with the above two observations.

Normally, interpixel crosstalk is an undesired issue in the array applications.

However we have utilized the crosstalk phenomenon in our bolometer arrays. We

have proposed and experimentally demonstrated the feasibility of a crosstalk-

based read-out algorithm for transition edge bolometers. To the best of our

knowledge, including semiconductor and superconductor detectors, this is the first

time that such a read-out methodology is proposed and utilized. This approach

would allow only one read-out pixel be used for a number of sense-pixels.

6.2 Future Work

In this thesis we investigated and modeled the thermal crosstalk in the YBCO

transition edge bolometers. Now that we have a fairly good understanding of

the crosstalk phenomenon and the analytical model for thermal crosstalk, the

application areas of the findings can be extended.

One of the current research in the field of bolometer and SQUID applications

is that to be able to read-out the response of as many pixels as possible in a

bolometer array by using a single SQUID [13], [30], [32]. The proposed read-

out methodology in Chapter 5 can be extended to use SQUID based read-out of

bolometer arrays.

One fundamental problem in this integration is that the optimum operating

temperatures of YBCO transition edge bolometers are around Tc ( 90K) where as

the optimum and popular operating temperature of a YBCO SQUID is 77K. To
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be able to integrate these two devices, preferably on-chip, the operating temper-

ature of the bolometer should be shifted towards 77K. This is possible through

Silicon ion implantation to the YBCO film. X. He et al. have shown that Si

or Ni ion implantation can be used to shift the critical temperature of YBCO

films continuously to lower temperatures and at the operating temperature the

bolometer has a exactly defined temperature sensitive area which results in no

change in the responsivity of the bolometer [87], [88]. In another study, one of

our collaborators have reported successful Si and Ge ion implantation results to

YBCO in recent years [89], [90]. Thus, the crosstalk based read-out or bolometer

response by SQUID sensors is feasible and it is planned to be test in the following

year.
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