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ABSTRACT 

IN SILICO IDENTIFICATION OF CANDIDATE MECP2 TARGETS AND 
QUANTTITATIVE ANALYSIS IN RETT SYNDROME 

 
 

Onur Emre Onat 
M.S. in Molecular Biology and Genetics 

Supervisor: Prof. Dr. Tayfun Özçelik 
July 2006, 96 Pages 

 
 
 
Rett syndrome (RTT) is an X-linked neuro-developmental disorder seen exclusively 
girls in the childhood. It is one of the most common causes of mental retardation 
with an incidence rate of 1/10,000-1/15,000. Mutations in MECP2 gene was 
described as a common cause of RTT. MECP2 is a transcriptional repressor that 
regulates gene expression. It is not fully understood which MECP2 targets are 
affected in RTT and therefore contribute to disease pathogenesis. Researchers 
approached the problem in two directions: a) Global expression profile analysis and 
b) Candidate gene analysis. Global expression profile analysis revealed which a 
limited number of genes including those on the X-chromosome are de-regulated. 
Candidate gene analysis studies showed that loss of imprinting as exemplified by 
DLX5 could also contribute to disease pathogenesis. We hypothesize that X-
chromosome inactivation (XCI) is an important physiological epigenetic mechanism 
that could be involved in Rett pathogenesis. We predicted a MECP2 binding motif 
by a distinctive bioinformatic approach. Using this algorithm we searched for the 
candidate MECP2 target genes on the X-chromosome and whole genome. The genes 
FHL1 and MPP1, whose interaction with MECP2 were heuristically displayed were 
predicted by our algorithm. We identified more than 100 genes which are on the X-
chromosome. 10 genes from the list were selected according to their MECP2 binding 
homology score and X-inactivation status. In order to test this hypothesis we 
analyzed these genes with quantitative RT-PCR .We expect to identify the key genes 
that potentially contribute to RTT pathogenesis via disturbances in X-chromosome 
inactivation. 
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ÖZET 

MECP2 HEDEF GENLERİNİN IN SILICO TANIMLANMASI VE  

RETT SENDROMU’NDA NİCELİKSEL ANALİZİ 

 
 

Onur Emre Onat 
Moleküler Biyoloji ve Genetik Yüksek Lisans 

Tez Yöneticisi: Prof. Dr. Tayfun Özçelik 
Temmuz 2006, 96 Sayfa 

 
 
 
Rett sendromu (RTT) çocukluk çağında kız çocuklarında görülen nörogelişimsel bir 
hastalıktır. Mental retardasyonun başlıca sebeplerinden olup, 1/10000-1/15000 
sıklıkla görülür.  MECP2 geninin mutasyonuna bağlı olarak gelişir.  MECP2 bir gen 
anlatımı baskılayıcısıdır.  RTT’de anlatımı bozulan genlerin belirlenmesi hastalığın 
patogenezinin anlaşılması açısından çok önemlidir.  Bu konuda araştırmacılar iki 
farklı yoldan ilerlemektedir: a) Global gen anlatım profili incelemeleri b) Aday gen 
incelemeleri.  Mikroarray teknolojisi ile incelenen birinci yolda, kısıtlı sayıda genin 
anlatımının farklılaştığı gözlenmiştir.  Aday gen çalışmaları ise önemli bir epigenetik 
düzenleme olan genomik imlemeye uğrayan DLX5 geninin RTT hastalarında 
imlemeden kaçarak hastalık mekanizmasına katkıda bulunduğunu göstermiştir.  
Önemli bir fizyolojik epigenetik düzenleme X-etkinsizleştirilmesidir.  RTT 
patogenezi ile ilişkisi henüz araştırılmamıştır.  X-etkinsizleştirilmesinin RTT 
patogenezinde önemli bir rol oynadığını düşünüyoruz.  Özgün bir biyoinformatik 
yazılım algoritmi geliştirerek MECP2 bağlayan dizi motiflerinin varlığını özellikle 
X-kromozomu olmak üzere insan genomunda aradık. Bu inceleme sonunda saptanan 
genler arasında MECP2 ile etkileşime girdiği deneysel olarak gösterilmiş MPP1 ve 
FHL1 genleride yer alıyordu.  Listemizde bulunan genler arasında X-kromozomuna 
haritalanan yüzün üzerinde gen bulunmaktadır. Bu genlerin X-etkinsizleştirilmesi 
profillerine ve MECP2 bağlayan dizi homolojisi değerlerine bağlı olarak on farklı 
aday gen seçtik.  Ters yazılımlı polimeraz zincir reaksiyonu (RT-PCR) ile bu 
genlerin anlatımını incelemeye aldık. Bu çalışmaların RTT patogenezinde X-
etkinsizleştirilmesinin rolü konusunda değerli bilgiler vermesi beklenmektedir. 
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CHAPTER I.    INTRODUCTION 

 

 

 

1.1 Rett syndrome 

 

Rett syndrome (RTT; OMIM #312750) is an X-linked neuro-developmental 

disorder first defined by Dr. Andreas Rett in 1966 (Rett, 1966; Rett, 1977). It is the 

second most common causes of mental retardation in females after Down syndrome 

(Ellaway et al., 2001). Population genetics studies estimated the frequency of Rett 

syndrome to be about 1 in 10,000 to 1 in 20,000 (Kerr et al, 1985; Hagberg et al., 1985; 

Leonard et al., 1997; Miyamoto et al., 1997). It is seen almost exclusively in females 

and lethal in males. Unlike females which have two X chromosomes, males have one X 

and one Y chromosomes. So, there is no backup copy of X chromosomes in males that 

can compensate in the presence of defective copy. Rett patients appear to develop 

normally until 6–18 months of age, then gradually lose speech and purposeful hand use, 

and develop microcephaly, seizures, autism-like features, ataxia, intermittent 

hyperventilation and stereotypic hand movements (Armstrong, 1997). 

 

1.1.1 Clinical features 

 

When Andreas Rett defined Rett syndrome in two girls showing same unusual 

behaviors who were seated next to each other in the waiting room in 1966, it was largely 

ignored (Rett, 1966).  

 

In 1983, Hagberg described 35 girls with a progressive encephalopathy. He 
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described RTT phenotype as rapid deterioration of high brain functions following 

developmental stagnation after normal development up to the age of 7 to 18 months. 

Within 1.5 years period autism, severe dementia, loss of purposeful hand use, ataxia, and 

microcephaly occurs (Hagberg et al., 1983) 

 

The diagnosis criteria for Rett syndrome is summarized in Table 1.1. At the first 

3 months after birth, growth and development are normal. At the age 3 to 6 months 

developmental delay and slowed head growth is noted, which is followed by autistic 

behavior, regression, and stereotyped hand movements. Between the age 6 to 18 months 

hypotonia (diminished muscle tone), deceleration in eye contact occurs. After the age 3 

years up until the end of adolescence acquired microcephaly (decreased head 

circumference) and decline in body weight is seen, and it results in a short stature 

(Fitzgerald et al., 1990)  
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Table 1.1 Diagnostic criteria for Rett syndrome (Ellaway et al., 2001) 
 
 
Necessary Criteria 

• Apparently normal prenatal and perinatal period 
• Apparently normal psychomotor development within the first 6 months 
• Normal head circumference at birth 
• Deceleration of head growth between ages 5 months and 4 years 
• Loss of acquired purposeful hand skills between ages 6 and 30 months, 

temporally associated with communication dysfunction and social withdrawal 
• Development of severely impaired expressive and receptive language, and 

presence of apparent severe psychomotor retardation 
• Stereotypic hand movements such as hand writing/squeezing, clapping/tapping, 

mouthing and washing/rubbing automatisms appearing after purposeful hand 
skills are lost 

• Appearance of gait apraxia and truncal apraxia/ataxia between ages 1 and 4 years 
• Diagnosis tentative until 2 to 5 years of age 

Supportive Criteria 

• Breathing dysfunction 
o Periodic apnea during wakefulness 
o Intermittent hyperventilation 
o Breath-holding spells 
o Forced expulsion of air or saliva 

• Electroencephalografic abnormalities 
o Slow waking background and intermittent rhythmical slowing (3-5 Hz) 
o Epileptiform discharges, with or without clinical seizures 

• Seizures 
• Spasticity, often with associated development of muscle wasting and dystonia 
• Peripheral vasomotor disturbance 
• Scoliosis 
• Growth retardation 
• Hypotrophic small feet 

Exclusion Criteria 

• Evidence of intrauterine growth retardation 
• Organomegaly of other signs of storage disease 
• Retinopathy or optic atrophy 
• Microcephaly at birth 
• Evidence of perinatally acquired brain damage 
• Existence of identifiable metabolic or other progressive neurological disorder 
• Acquired neurological disorders resulting from severe infections or head trauma 
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1.1.2 Stages of Rett syndrome 

 

There are four stages of the RTT which are early onset (6-18 months), regressive 

stage (1-3 years), relative stabilization stage (3-10 years), and late motor impairment 

stage (10+ years) summarized in Table 1.2.  

 
 
Table 1.2 Classic Rett syndrome: clinical characteristics and differential diagnosis 

by stage (Ellaway et al., 2001) 

 

Stage Clinical characteristics Differential diagnosis 
I. Early onset 

stagnation 

stage Onset: 6-
18 months 

Development stagnation/arrest 
Deceleration of head/brain growth 
Disinterest in play activity 
Hypotonia 
Nonspecific personality changes 
Diminished play interest 
Hand waving – nonspecific, episodic 

Benign congenital hypotonia 
Prader-Willi syndrome 
Cerebral palsy 

II. Rapid 

destructive 

stage Onset: 1-
3 years 

Rapid developmental regression with 
irritability 
Poor hand use 
Seizures 
Hand stereotypies: wringing 
Autistic manifestations 
Loss of expressive language 
Insomnia and irritability 
 
Self-abusive behaviour (e.g., chewing 
fingers) 
Mental deterioration 
 
Clumsy mobility/apraxia/ataxia 
Better preservation of gross motor 
functions 
Irregular breathing – hyperventilation 

Autism 
Psychosis 
Hearing or visual disturbance 
Encephalitis 
Infantile spasms (West 
syndrome) 
Tuberous sclerosis 
Ornithine carbamoyl 
transferase deficiency 
Phenylketonuria 
Infantile neuronal ceroid     
lipofuscinosis 
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III. Pseudo-

stationary 

stage Onset: 3-
10 years 

Severe mental retardation/apparent 
dementia 
Amelioration of autistic features 
Seizures and epileptic signs 
 
Typical hand stereotypies 
Prominent gait ataxia and apraxia 
Jerky truncal ataxia 
Spasticity; gross motor dysfunction 
Hyperventilation, breath-holding, 
aerophagia 
Apnea during wakefulness 
Weight loss with excellent appetite 
Early scoliosis, Bruxism 

Spastic ataxic cerebral palsy 
Spinnocerebellar 
degeneration 
Leukodystrophies or other 
storage disorders 
Neuroaxonal dystrophy 
Lennox-Gastaut syndrome 
Angelmann syndrome 

IV. Late motor 

deterioration 

stage Onset: 
10+ years 

Combined upper and lower motor neuron 
signs 
 
Progressive scoliosis, muscle wasting, and 
rigidity 
Severe multihandling syndrome  
Paraparesis or tetraparesis 
Decreasing mobility; wheelchair-bound 
Growth retardation, but normal puberty 
Staring, unfathomable gaze 
Emotional and eye contact “improving” 
Reduced seizure frequency 
Virtual absence of expressive and 
receptive language 
Trophic disturbance of feet 
Cachexia 
Respiratory abnormalities 

Neurodegenerative disorders 
of unknown genes 

 
 
 

In stage I, early onset of stagnation, there is stagnation in development and 

growth. Head growth slows and hypotonia is seen. The infant begins to show less eye 

contact and obtaining new skills slows down. Quite frequently these symptoms are not 

sufficient to be noticed. After several months, stage II, the rapid regression stage 

comes. At this stage most of the previously acquired skills such as spoken language and 

purposeful hand use (apraxia), and social interaction are lost. The characteristic hand 
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movements begin to emerge and slowing of head growth draw attention. At Stage III, 

plateau or pseudo-stationary stage, motor problems, and seizures develop. Autistic-

like features clearly emerge. Many girls remain in this stage for most of their lives. The 

last stage, stage IV – late motor deterioration stage – is defined as reduced mobility. 

Spasticity, dystonia (increased muscle tone), muscle weakness, rigidity (stiffness), 

scoliosis are features of this stage. The majority of the girls with Rett syndrome survive 

into adulthood. 

 
 
 
 

 
 
 
Figure 1.1 Girl with typical characteristics of RTT phenotype (Courtesy of Rett 

Syndrome Association – Turkey; Prof. Dr. Meral Topçu). 

 

 

1.1.3 Rett variants 

 

The clinical characteristics of Rett syndrome varies among patients. In general 

there are two phenotypes of Rett syndrome: Typical (classic) and atypical phenotypes. 

Besides, there are variants of the atypical form of Rett syndrome (Hagberg et al., 1994) 
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Early onset seizure subgroup demonstrates the 5-10% of the cases, which occur 

in both classical and atypical forms (Hagberg et al., 1994).  

 

Form fruste subgroup is characterized by dyspraxic hand functioning and milder 

mental retardation but no classic Rett stereotypies. This group constitutes 25-30% of the 

cases (Hagberg et al., 1994).  

 

Congenital onset subgroup, which consists of severely affected girls, constitutes 

a very small percentage. These girls have abnormal development from birth (Hagberg et 

al., 1995).  

 

Girls with Late childhood regression subgroup develop more gradually with 

respect to classic RTT types (Gillberg, 1989).  

 

Preserved speech variant (PSV) subgroup resembles classic RTT phenotype 

but differs in that patients recover some degree of speech and hand use (De Bona et al., 

2000).  

 

The male form subgroup represents the same phenotypic characteristics with 

classic Rett syndrome (Christen et al., 1995; Topcu et al., 1991) 

 

 

1.2 Molecular mechanisms of the disease 

 

1.2.1 Identification of the Rett syndrome gene: MECP2 

 

Since almost 99% percent of the RTT cases are sporadic, it was not easy to 

understand the genetic basis of the disease (Schanen et al., 1997). Several hypotheses 
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were put forward including the following: 

 

First of all, Hagberg proposed that X-linked dominant inheritance is the best 

explanation of the involvement of the disease in females (Hagberg et al., 1983). This 

hypothesis was confounded because most RTT cases are sporadic. However, twin 

studies with Rett syndrome (Tariverdian et al., 1987; Tariverdian, 1990; Partington, 

1988, Zoghbi et al. 1990) supported the hypothesis that Rett syndrome is a genetic 

disorder. Chromosomal rearrangements (Benedetti et al., 1992) and both uniparental 

heterodisomy and isodisomy (Webb et al., 1993) were excluded.  

 

At the very beginning of 90s, it was suggested that the gene for Rett syndrome 

should be located on the short arm of the X chromosome because of a translocation t(X; 

22) (p11.22; p11) (Journel et al., 1990) and t(X;3)(p22.1;q13.31) (Zoghbi et al., 1990). 

In the late 90s, following elegant exclusion mapping studies, RTT locus was mapped to 

Xq28 (Schanen et al., 1997). 

  

Soon after identification of three de novo missense mutations in 5 of 21 sporadic 

Rett probands and an additional missense mutation in a family with two affected half 

sisters in the MECP2 gene, revealed the long sought “RTT gene” (Amir et al., 1999). 

 

In a more recent study, it was found that truncating frameshift and missense 

mutations in the CDKL5 gene causes RTT-like phenotypes (Weaving et al., 2004; Tao et 

al., 2004). Missense mutations in CDKL5 is also associated with infantile spasms and 

clinical phenotypes of neurodegenerative disorders, such as Rett syndrome and 

Angelman syndrome (Tao et al., 2004) 
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1.2.2 MECP2 organization and expression 

 

MECP2 gene is located on Xq28, and spans a region of 76 kb. It lies between the 

genes interleukin I receptor-associated kinase (IRAK) and the red opsin (RCP) (Quaderi 

et al., 1994; D’Esposito et al., 1996) (Figure 1A) The MECP2 gene has four exons and a 

CpG island which contains several potential binding sites for Sp1 (Marin et al., 1997, 

Reichwald et al., 2000). 

 

 

 
 
 

Figure 1.2 Location and organization of MECP2. A) The MECP2 gene in Xq28 is 

flanked by the IRAK and RCP loci in humans. B) The genomic organization of the 

MECP2 gene. It is comprised of four exons. The coding sequence for the methyl-binding 

domain is indicated in blue (Dragich et al., 2000). 

 
 
 

Expression of MECP2 gene is low during embryogenesis in mammals, but it is 

widely expressed in adult tissues. The highest expression is seen in adult brain and 
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spinal cord. There are three transcripts of MECP2 gene: 1.8 kb, 7.6 kb and 10 kb. The 

shortest and longest transcripts are present in most tissues and have short half-lives 

(Dragich et al., 2000) 

 

 

1.2.3 Structure and function of MECP2 

 

As mentioned above, mutations in the gene encoding methyl CpG binding 

protein 2 (MeCP2) is the major cause of Rett syndrome. MeCP2 functions as a 

transcriptional repressor like MeCP1. Both MeCP family genes bind methylated CpG 

dinucleotides (Meehan et al., 1992). Most of the cytosine residues of the CpG 

dinucleotides are methylated in terms of regulation of gene expression (Ng et al., 1999; 

Jones et al., 1999).  

 

Transcriptional repression via MeCP2 is probably important in epigenetic 

regulation such as imprinting (Pedone et al., 1999), X-inactivation (Jeppesen et al., 

1993), tissue specific expression (Schubeler et al., 2000), and the silencing of 

endogenous retroviruses (Li et al., 1992).  

 

MeCP2 contains two domains: MBD (Methyl Binding Domain) (Nan et al., 

1993) and TRD (Transcriptional Repression Domain) (Nan et al., 1998). Besides, 

MeCP2 has two NLSs (Nuclear Localisation Signals) (Nan et al., 1996). MeCP2 binds 

methylated CpG base pairs on its target genes via MBD domain (Nan et al., 1993), and 

represses its target genes by interacting with a co-repressor complex containing Sin3A 

and HDACs (histone deacetylases 1 and 2) via its TRD domain (Nan et al., 1998; Jones 

et al., 1998).  
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Figure 1.3 The schematic representation of MECP2 repression activity. A) MeCP2 

binds on methylated DNA and represses transcription by recruiting chromatin-

remodeling complex including SIN3A (transcriptional co-repressor), BRM (SWI/SNF-

related chromatin remodeling protein), and HDACs (histone deacetylases). Lack of 

MeCP2 binding on DNA can be due to inactivation of MeCP2 via phosphorylation by 

CDKL5 (Cyclin-dependent kinase-like 5) B) MeCP2 can also represses its target genes 

independent of DNA methylation (Bienvenu et al., 2006) 
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1.2.4 Mutations and polymorphisms of MECP2 and their effects 

 

MECP2 mutations are detected in up to 80% of classic RTT patients (Wan et al., 

1999; Bienvenu et al., 2000). More than 2000 MECP2 mutations have been reported in 

females (Amir et al., 2000; Miltenberger et al., 2003; Weaving et al., 2005; Philippe et 

al., 2006) but 8 C�T transitions given in Table-1.3 account for 65% of all mutations in 

RTT patients (Miltenberger et al., 2003).  

 
 
Table 1.3 MECP2 mutation spectrum in Rett syndrome (Weaving et al., 2003) 
 
Base Change AA Change Incidence Type of Mutation 

473 C�T T158M 9.64 Missense 
502 C�T R168X 9.25 Nonsense 
763 C�T R255X 7.93 Nonsense 
808 C�T R270X 7.70 Nonsense 
880 C�T R294X 6.30 Nonsense 
916 C�T R306C 5.13 Missense 
397 C�T R133C 4.04 Missense 
316 C�T R106W 3.73 Missense 

 
 

Furthermore, there are several polymorphisms defined for MECP2 in the coding 

or non-coding regions (Laccone et al., 2002). The medical significance of these 

polymorphisms in hemizygous males need a clear definition. 

 

Most mutations found in MECP2 gene lie in the MBD and TRD functional 

domains. The majority of the RTT mutations are nonsense or frameshift mutations that 

lie in the last exon of MECP2.  In general, there are five types of MECP2 mutations: 1) 

Missense mutations, 2) Nonsense mutations, 3) Frameshift mutations, 4) Large 

deletions, 5) Splicing mutations, deletions, and insertions (Bienvenu et al., 2002).  
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Figure 1.4 Type of MECP2 mutations. Mutations are classified as nonsense mutations 

(%44), missense mutations (%36), large deletions (%14), frameshift mutations (%8), 

splicing mutations (%1) (Bienvenu et al., 2002) 

 
 
 
1.3 Phenotype - Genotype correlations in Rett syndrome 

 

The phenotypic range of the RTT patients led to the classification of the cases 

from milder to the more severe. Form fruste and preserved speech variants are classified 

as mildest cases. These patients lack all supportive criteria mentioned before and they 

can also retain some communication and hand skills (Zappella, 1992).  

 

The phenotype-genotype correlation studies indicated that the nonsense 

mutations cause more severe phenotype than missense mutations (Cheadle et al., 2000). 

Another study indicates that early truncating mutations are more severe than late 
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truncating mutations (Weaving et al., 2003). Besides that, the severity of the disorder is 

likely to depend on location and type of mutation present. Rett patients with PSV do not 

contain early truncating mutations; all the mutations found in these patients are either 

missense or late truncating mutations (Zapella et al., 2001). 

 

More specifically, recent studies with RTT patients demonstrated that R133C 

mutation was associated with autistic presentation, R306C mutation is associated with 

slower disease progression (Smeets et al., 2003), and R270X mutation is associated with 

reduced survival (Jian et al., 2005). 

 

 

1.4 Epigenetic mechanisms 

 

The epigenetic mechanism of transcriptional silencing by methylation of CpG 

dinucleotides has a considerable importance for development. As mentioned, MECP2 

represses its target genes by binding to the methylated CpG dinucleotides that is why it 

is thought that MECP2 repression has roles in epigenetic mechanisms such as X-

inactivation and genomic imprinting (Cross et al., 1995).  

 

1.4.1 X-chromosome inactivation 

 

X-chromosome inactivation occurs in females in order to equalize dosage 

compensation between females and males. Since males have only one X-chromosome, 

one of the X allele is silenced via X-inactivation mechanism in females (Plath et al., 

2002).  

 

The X-inactivation mechanism is controlled via Xic (X-inactivation control 

center). Xic contains two major genes: XIST and TSIX, which are coding non-translated 

genes. TSIX gene is anti-sense mRNA transcript of XIST (Shibata et al., 2003; Takagi, 
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2003). In general terms, XIST is expressed from the inactive X and TSIX is expressed 

from the active X chromosome (Lee et al., 2001).  

 

In fact, the mechanism of X-chromosome inactivation is more complex. Once the 

XIST is expressed from one allele, TSIX is expressed from other allele at the same time. 

TSIX is the repressor of XIST (Lee et al., 1999). Mouse-knock out studies reveal that 

TSIX disrupted mice express XIST and escape from X-inactivation (Lee et al., 1999). 

Therefore repression of TSIX leads an increase in the expression of XIST. Then the XIST 

mRNA coats the X allele in cis form (Clemson et al., 1996) and inactivates the allele via 

some modifications such as histone modifications, partially methylation of CpG islands, 

and action of trans-acting factors (Solari et al., 1974).  

 

1.4.2 Genomic imprinting 

 

Genomic imprinting is another epigenetic mechanism resulting in parent specific 

expression such that only one allele of a gene is expressed. Paternal imprinting means 

that the allele coming from father is modified to prevent transcription and maternal 

imprinting means that the allele coming from mother is transcriptionally repressed. In 

both conditions mono-allelic expression occurs (Surani, 1998).  

 

DNA methylation on CpG dinucleotides is a key mechanism in imprinting 

(Costello-Plass, 2001). Genomic imprinting is heritable during cell divisions and 

reversible in gametogenesis (Gribnau et al., 2003).  

 

Two well known imprinted genes are H19 and IGF2. H19 gene is paternally 

imprinted and IGF2 is maternally imprinted. DMR (Differentially Methylated Region) 

regulates the imprinting of both genes. DMR is methylated on the paternal chromosome 

and not methylated on the maternal chromosome (Croteau et al., 2001).  
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The mechanism of imprinting in the H19/IGF2 is more complex. IGF2 

expression depends on the CTCF (CCCTC-binding factor), which is a methylation 

sensitive insulator (Filippova et al., 1996). CTCF has binding sites on H19 DMR and 

represses the expression of IGF2 from maternal allele via DNA methylation (Schoenherr 

et al., 2003).  

(Figure 1.5) 

 

 

 

 
Figure 1.5 Schematic representation of H19/IGF2 imprinting. White circles are non-

methylated CpGs and black circles are methylated CpGs (Salozhin et al., 2005) 

 
 

 

Errors in imprinting causes some defects such that errors in paternal imprinting 

can lead to an increase in cell growth and cell differentiation and errors in maternal 

imprinting can cause opposite effects (Leighton et al., 1995) 

 

1.4.3 Association between epigenetic regulations and Rett syndrome 

 

Epigenetic regulations via DNA methylation are associated with gene silencing. 

Transcriptional repression occurs in two ways: 1) DNA binding of transcription factors 
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on methyl-CpGs, 2) binding of proteins on methylated CpGs independent of their DNA 

sequences. These proteins include MeCP2, MBD1, MBD2, MBD4, and Kaiso (Bell et 

al., 2000; Hendrich et al., 1998; Prokhortchouk et al., 2001) 

 

Defects in DNA methylation cause human diseases. Among the five genes, 

MeCP2 defects cause Rett syndrome exclusively in girls because MECP2 is X-linked. 

Due to the random X-chromosome inactivation, RTT patients are mosaic for the mutant 

allele. Therefore, extremely skewed X-chromosome inactivation can lead to lethality or 

can prevent the disease (Villard et al., 2000).  

 

Girls with Rett syndrome usually show random X-inactivation patterns. 

However, cases with skewed X-inactivation and milder phenotypes such as mild 

learning disabilities or incomplete diagnostic features have been reported (Amir et al., 

2000; Wan et al., 1999).  

 

Furthermore, Angelman syndrome, which is an imprinting disorder, shares some 

clinical similarities with Rett syndrome including developmental delay, language 

impairment, seizures, and stereotypic behaviors (Zoghbi, 2003). Angelman syndrome is 

defined by loss of imprinting in the maternal allele of chromosome 15q11-q13 due to the 

mutation of UBE3A (Lalande, 1996). Mice studies showed that Mecp2 deficiency results 

in reduction of Ube3a and Gabrb3 in mice cerebrum without any change in allele 

specific expression (Moretti et al., 2005). The reduction in the expression levels of these 

genes in RTT patients confirmed the hypothesis (Samaco et al., 2005).  

 

1.5 Targets of MECP2 mediated repression 

 

Biochemical evidences revealed that MeCP2 represses its target genes by 

binding to chromosomes, thus, defects in MeCP2 would result in deregulation of a large 

number of genes (Willard et al., 1999).  
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Investigators attempting to identify MECP2 targets approached the subject in 

two ways: Global expression profile analysis and candidate gene analysis. To identify 

potential target genes regulated by MeCP2, Francke and colleagues looked for increased 

transcript levels in MECP2 mutants. The differentially regulated genes identified as 49 

with increased and 21 with decreased expression, leading to the conclusion that MECP2 

deficiency does not correlate with global deregulation of gene expression (Traynor et al., 

2002). Subsequent experimental studies supported the proposal that MECP2 deficiency 

does not lead to global alterations in transcription but instead leads to subtle changes of 

gene expression (Chen et al., 2003). Esteller and colleagues unveiled novel target genes 

of MECP2-mediated gene expression via cDNA microarray and ChIP analysis. They 

showed  over-expressed X-linked genes in which the presence of methylation was highly 

likely because inactivation of one of the X chromosomes is mediated by methylation 

(Ballestar et al., 2004).  

 

On the other hand, candidate gene analysis provided a different view on target 

gene search. Loss of imprinting in the maternally expressed DLX5 gene in individuals 

with RTT provided a new mechanism underlying gene regulation by MECP2 (Horike et 

al., 2005).  
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Figure 1.6 MeCP2 repression of Dlx5 imprinted gene. A) In wild type neurons Dlx5 

is paternally imprinted via MeCP2 mediated repression by recruiting histone co-

repressor complex. B) In Mecp2-null neurons Dlx5 is biallelically expressed from both 

allele resulting in increased neurotransmitter production. (Cabellero et al., 2005). 

 

 

 

Another MeCP2 target gene identified by candidate gene approach is BDNF 

(Brain-derived Neurotrophic Factor) (Chen et al., 2003; Martinowich et al., 2003). 

MeCP2 deficiency in neuronal cells results in incomplete repression of Bdnf (Chen et 

al., 2003).  
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Table 1.4 Known MeCP2 target genes (Bienvenu et al., 2006) 
 
Gene Species Function Tissue in which 

gene is expressed 
Change in 
expression level  

BDNF Mouse Survival, neuronal 
plasticity 

Cultured neurons ≈ +2-fold 

hairy2 Xenopus Neuronal 
differentiation 

Whole embryo ≈ -2- fold 

Fkbp5 Mouse Hormonal signalling Brain (74 days) +2.26-fold 
IGF2 Human Cell proliferation Lymphoblastoid cells +2.21-fold 
DLX5 Human Transcription factor Lymphoblastoid cells ≈ +2-fold 
Dlx5 Mouse Transcription factor Brain ≈ +2-fold 
Dlx6 Mouse Transcription factor Brain ≈ +2-fold 
Ube3a Mouse Proteolysis Brain ≈ -2-fold 
UBE3A Human Proteolysis Brain (2–20 years) ≈ -2-fold 
Sgk1 Mouse Cellular stress response Brain (74 days) +3.44-fold 
MPP1 Human Signal transduction Lymphoblastoid cells +3.32-fold 
 
BDNF, brain-derived neurotrophic factor; DLX, distal-less homeobox; Fkbp5, FK506-

binding protein 5; IGF2, insulin-like growth factor 2; MeCP2, methyl-CpG-binding 

protein 2; MPP1, palmitoylated membrane protein 1; Sgk1, serum/glucocorticoid kinase 

1; Ube3a, ubiquitin protein ligase E3A. 

 

 
1.6 Bioinformatics and algorithms 

 

Bioinformatics can be defined as handling and processing the biological 

information via computers (Ouzounis et al., 2003). The birth of bioinformatic studies 

can be considered as the early 70s with the first sequence alignment algorithms (Gibbs et 

al., 1970).  One of the most important aspects of late 70s in terms of bioinformatics was 

collection of the biological information in computers for storage (Dayhoff, 1978). The 

collected data on computers were made available for the first time in the 80s and 

depending on that the first efficient algorithms and the theory of clustering were 

developed (Ouzounis et al., 2003; Shepard et al., 1980). 

In the early 90s, access to the Internet led to the formation of first databases such 



 

 

21 

as GenBank or MedLine and scientific tools such as BLAST (Ouzounis et al., 2003). 

 

Nowadays, with the advances in information technology such as large capacity 

storage, internet, and databases creates a revolution in bioinformatics (Soberon et al., 

2004). 

 

The importance of analyzing sequences generated by molecular biology activities 

increased dramatically importance in recent years. In the algorithms of sequence 

analysis, the quantification of similarity is achieved by normalization and scoring which 

relies on aligning reference homologous sequences and then comparing them with the 

candidate alignments (Vinga et al., 2003). Alignment and scoring is the more important 

aspects of the algorithms. In order to obtain optimal alignments dynamic programming 

or HMM (hidden markov model) which maximize the score, is used. Besides that 

BLAST and FASTA provides an experiment-based approach (Altschuletal et al., 1997; 

Pearson et al., 1988, Vinga et al., 2003). On the other hand, scoring depends on the pair-

wise alignments. There are several scoring systems such as PAM (amino acids 

substitution matrices) and BLOSUM matrices (Henikoff et al., 1992; Dayhoff et al., 

1978; Vinga et al., 2003).  

 

MEME is a tool for discovering motifs among DNA or protein sequences which 

are related to each other. The sequence which occurs repeated among these DNA or 

protein sequences is called as motif. In the MEME tool motifs are extracted by a 

position dependent letter-probability matrix. The DNA or protein sequences, which are 

given as input in the MEME program, are called training sets. There are lots of expected 

outputs requested and MEME tool automatically aligns these motifs according to best 

width, description of each motif, and number of occurrence by statistical calculations. 

MEME firstly puts the most statistically significant motif in the first place. The most 

significant motif is the one which has the lowest E-value and the E-value is dependent 

on the motifs’ log likelihood ratio, width and number of occurrences, the background 



 

 

22 

letter frequencies, and the size of the training set (http://meme.sdsc.edu/meme/meme-

intro.html).  

 

 

1.7 Aim and strategy 

 

Mutations in MECP2 (Xq28) was described in 1999 as a common cause of RTT. 

MeCP2 is a transcriptional repressor that regulates the expression pattern of many genes. 

It is not fully understood which MeCP2 targets are affected in RTT and therefore 

contribute to disease pathogenesis. Investigators approached the problem in two 

directions: a) Global expression profile analysis and b) Candidate gene analysis. Global 

expression profile analysis revealed that several genes including those on the X-

chromosome are over-expressed in MECP2 positive Rett patients (Traynor et al., 2002; 

Chen et al., 2003; Ballestar et al., 2004). Candidate gene analysis studies showed that 

loss of imprinting as exemplified by DLX5 could also contribute to disease pathogenesis. 

Here modifications in silent-chromatin looping in MECP2 mutants are strongly 

suspected (Horike et al., 2005). We hypothesize that X-chromosome inactivation (XCI) 

is an important physiological epigenetic mechanism that could be involved in Rett 

pathogenesis. Random XCI patterns in peripheral blood are characteristic for RTT that is 

caused by heterozygous MECP2 mutations.  

 

All in all, we expect to observe over-expression of X-linked genes which are 

transcribed exclusively from active X-chromosome and whose expression is controlled 

by MeCP2. These putative genes have the potential to contribute to RTT pathogenesis 

via disturbances in XCI. 

 

We developed an algorithm which predicts potential MeCP2 targets on the X-

chromosome and the entire genome. This algorithm is based on the identification of 

shared sequence motifs in known MeCP2 targets.  
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CHAPTER II. MATERIALS AND METHODS 

 
 
 
2.1 MATERIALS 

 

2.1.1 Patient samples 

 

Rett syndrome patients were referred to Bilkent University, Faculty of Science, 

Department of Molecular Biology and Genetics (Ankara, Turkey) by collaborating 

physicians at Hacettepe University, Medical Faculty, Department of Pediatric Neurology 

(Ankara, Turkey). Blood samples were collected in EDTA containing tubes, with the 

consent forms signed by the parents of the patients. 

 

2.1.2 Cell lines and cell culture reagents 

 

Immortalized lymphoblastoid cell lines (LCLs) derived from three Rett patients 

with known MECP2 mutations and one healthy individual were kindly supplied from 

Prof. Dr. Alessandra Renieri (University of Siena, Department of Molecular Biology, 

Medical Genetics Laboratory, Siena, Italy) (http://www.biobank.unisi.it/Elencorett.asp) 

(Table 2.1) 

 
 
Table 2.1 Lymphoblastoid cell lines 
 
LCL Phenotype Mutated 

Gene 
Mutation 
Type 

Nucleotide 
Change 

AA 
Change 

1195 Rett-Like MECP2 missense C316T R106V 
1198 Rett-Like MECP2 missense C397T R133C 
1211 Classic Rett MECP2 late truncating 1162_1187del26 - 
1213 Healthy - - - - 
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Table 2.2 Reagents used in the cell culture experiments 
 
Reagents Supplier 
RPMI 1640 with L-Glutamine Biological industries, Haemek, 

Israel 
Fetal Bovine Serum Sigma, St. Louis, MO, USA 
Penicillin/streptomycin mixture Biochrom AG, Berlin, Germany 
L-Glutamine Biochrom AG, Berlin, Germany 
Tissue Culture Flasks Costar Corp. (Cambridge, Englang) 
Petri dishes Costar Corp. (Cambridge, Englang) 
15 ml polycarbonate centrifuge tubes 
with lids 

Costar Corp. (Cambridge, Englang) 

Cryotubes Costar Corp. (Cambridge, Englang) 
0.4% Trypan Blue Solution Biochrom AG, Berlin, Germany 
 
 
 

2.1.3 Oligonucletides 

 

The oligonucleotides used in PCR and Real time RT-PCR were synthesized by 

IONTEK (Bursa, Turkey). The list of used primer sequences are given in tables below. 

 
 
Table 2.3 Primers for mutation detection on MECP2 gene 
 
 
Primer Sequence (5’�3’) Primer 

Length 
Gene 
Name 

Expected 
Size (bp) 

RTT3F CCTGGTCTCAGTGTTCATTG 20 
RTT3R CTGAGTGTATGATGGCCTGG 20 

MECP2 597 

RTT4.1F TTTGTCAGAGCGTTGTCACC 20 
RTT4.1R CTTCCCAGGACTTTTCTCCA 20 

MECP2 380 

RTT4.3F GGCAGGAAGCGAAAAGCTGAG 21 
RTT4.3R TGAGTGGTGGTGATGGTGGTGG 22 

MECP2 366 
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Table 2.4 Primers for Real Time RT-PCR 
 
Primer Sequence (5’�3’) Primer 

Length 
Gene 
Name 

Expected 
Size (bp) 

AFF2F TCGGTAAATGAGGGAGACAC 20 
AFF2R TAGAGGTGATGGTGGAAATGG 21 

AFF2 181 

PTCHD1F AATTCCACCTTCCTGGGAGT 20 
PTCHD1R GGCAGTGGTGAGAAAAGG 20 

PTCHD1 165 

HMGB3F GTATGAGAAGGATGTTGCTG 20 
HMGB3R TCTTCATCTTCCTCTTCCAC 20 

HMGB3 102 

FAM50AF ATCATCCCTCACCATCACAG 20 
FAM50AR GGACTCATCCTTCTCCACAG 20 

FAM50A 135 

RPS6KA3F AAACTCCCAAAGATTCACCTG 21 
RPS6KA3R CTGTTCCTGTGTAACTGCTG 20 

RPS6KA3 154 

SLC6A8F TGGGAGAACAAAGTCTTGAG 20 
SLC6A8R TGAAGTACACGATCTTTCCC 20 

SLC6A8 151 

RP11F GTTCCCTGCTCTTCTATGAC 20 
RP11R CCAAAGTAGTTCACCCAGAC 20 

RP11-
13E5.1 

157 

OTUD5F AGGTACAAGCAGTCAGTTCTC 21 
OTUD5R AGTCATTCAGACCAAAGGCA 20 

OTUD5 128 

TSPYL2F GTCAAAGCATTCCTCAACCA 20 
TSPYL2R ATGTCTGAGATCCTGTACCTG 21 

TSPYL2 105 

FHL1F CATCACTGGGTTTGGTAAAGG 21 
FHL1R GGACAATACACTTGCTCCTG 20 

FHL1 165 

MPP1F ACCCTGTCCCATATACAACAC 21 
MPP1R CTGCCAAACTCCAAGAACTC 20 

MPP1 124 

PGK1F GTTCTTGAAGGACTGTGTAGG 21 
PGK1R GGCTTTAACCTTGTTCCCAG 20 

PGK1 145 

 

 
 
 
 
Table 2.5 Primers for X-chromosome inactivation status determination 
 
Primer Sequence (5’�3’) Primer 

Length 
Gene 
Name 

Expected 
Size (bp) 

RS-6 GTCCAAGACCTACCGAGGAG 20 
RS-7 CCAGGACCAGGTAGGCTGTG 20 

AR 280 
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2.1.4 Chemicals and reagents 
 
 
Table 2.6 Chemicals, reagents, and kits used in the experiments 
 
Reagent  Supplier Used for 
Acrylamide Sigma, St. Louis, MO, USA Polyacrylamide Gel 

Electrophoresis 
Agarose Basica LE, EU Agarose Gel electrophoresis 
Bisacrylamide Sigma, St. Louis, MO, USA Polyacrylamide Gel 

Electrophoresis 
Bromophenol Blue Sigma, St. Louis, MO, USA Gel Electrophoresis 
Ethanol Merck, Frankfurt, Germany  
Ethidium Bromide Sigma, St. Louis, MO, USA Gel Electrophoresis 
Proteinase K Appligene-Oncor, USA Nucleic Acid Extraction 
TEMED Carlo Erba, Milano, Italy Polyacrylamide Gel 

Electrophoresis 
RNAse ZAP Ambion, Inc., USA RNA Extraction 
pUC Mix Marker, 8 MBI Fermentas, Amh, NY, 

USA 
Gel Electrophoresis 

RevertAidTM cDNA 
Synthesis Kit 

MBI Fermentas, Amh, NY, 
USA 

cDNA Synthesis 

DNeasy Tissue Kit Qiagen, Chatsworth, CA, USA DNA isolation 
BSA Promega, Madison, USA Enzymatic Digestion 
Sodium Chloride 
(NaCl) 

Sigma, St. Louis, MO, USA PBS 

Sodium Acetate Sigma, St. Louis, MO, USA PBS 
Tris-HCl Sigma, St. Louis, MO, USA Agarose Gel 
Ficoll Type 400 Sigma, St. Louis, MO, USA Agarose Gel Loading Buffer 
Boric Acid Sigma, St. Louis, MO, USA TBE 
Xylene Cyanol Sigma, St. Louis, MO, USA Agarose Gel Loading Buffer 
APS Carlo Erba, Milano, Italy Polyacrylamide Gel 

Electrophoresis 
EDTA pH 8.0 Carlo Erba, Milano, Italy TAE, TBE 
Tris BioRad, CA, USA TBE 
Nucleospin® Blood 
kit 

Macherey-Nagel Inc., PA, 
USA 

DNA isolation 
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2.1.5 Restriction enzymes 
 
 
Table 2.7 Restriction enzymes used in the mutation detection experiments 
 
Enzyme 
Name 

Supplier Recognition Site Buffer (1X) 

Hsp92 II 
(NlaIII) 

Promega, Madison, 
USA 

5’-CATG   -3’ 
3’-   GTAC-5’ 

NE Buffer 4 
50 mM Potassium acetate 
20 mM Tris acetate 
10 mM Magnesium acetate 
1 mM DTT 

BspLI 
(NlaIV) 

Fermentas, Amh, 
NY, USA 

5’-GGN    NCC-3’ 
3’-CCN    NGG-5’ 

Buffer Y+/TangoTM 

66 mM Potassium acetate 
33 mM Tris acetate 
10 mM Magnesium acetate 
0.1 mg/ml BSA 

HphI Fermentas, Amh, 
NY, USA 

5’-GGTGA(N)8   -3’ 
3’-CCACT(N)7    -5’ 

Buffer B+ 
10 mM Tris-HCl 
10 mM MgCl2 
0.1 mg/ml BSA 

HinfI Fermentas, Amh, 
NY, USA 

5’-G  ANTC-3’ 
3’-CTNA  A-5’ 

Buffer Y+/TangoTM 

66 mM Potassium acetate 
33 mM Tris acetate 
10 mM Magnesium acetate 
0.1 mg/ml BSA 

Hin61 
(HhaI) 

Fermentas, Amh, 
NY, USA 

5’-G  CGC-3’ 
3’-CGC  G-5’ 

Buffer Y+/TangoTM 

66 mM Potassium acetate 
33 mM Tris acetate 
10 mM Magnesium acetate 
0.1 mg/ml BSA 
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Table 2.8 Restriction enzymes used in the X-inactivation determination 
 
Enzyme 
Name 

Supplier Recognition Site Buffer (1X) 

HpaII Fermentas, Amh, 
NY, USA 

5’-C   CGG-3’ 
3’-GGC   C-5’ 

Buffer Y+/TangoTM 

66 mM Potassium acetate 
33 mM Tris acetate 
10 mM Magnesium acetate 
0.1 mg/ml BSA 

RsaI Fermentas, Amh, 
NY, USA 

5’-GT   AC-3’ 
3’-CA   TG-5’ 

Buffer Y+/TangoTM 
66 mM Potassium acetate 
33 mM Tris acetate 
10 mM Magnesium acetate 
0.1 mg/ml BSA 

 
 
 

 

2.1.6 Polymerase chain reaction materials 

 

Three kinds of thermal cycler were used for PCR reactions: The GeneAmp 

System 9600 (Perkin-Elmer, USA), DNA Engine Tetrat, PTC-225 (MJ Research Inc., 

MA, USA), and Mastercycler Eppendorf Scientific, Inc. (NY, USA). PCR reaction kits 

were supplied from MBI Fermentas Inc. (Amherst, NY, USA). The kit contains the 

following reagents 

 

 

 

Table 2.9 PCR kit reagents 
 
Reagent Concentrations 
Thermus Aquaticus DNA Polymerase 5U/µl 
10X PCR Buffer 100 mM Tris-HCl (ph 8.8 at 25oC) 

500 mM KCl 
0.8% Nonidet P40 

MgCl2 Solution 25 mM 
dNTP mix 10 µM dCTP, dGTP, dATP, dTTP 
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2.1.7 Electrophoresis marker 

 

PUC mix, 8 was used as DNA marker in both agarose and polyacrylamide gel 

electrophoresis. It is supplied with 2 ml 6X Loading Dye solution. The sizes of the 

fragments and their appearance on 1.7% agarose gel and 5% polyacrylamide gel are 

given in figure 2.1. 

 
 
 
 

 
 
 

Figure 2.1 Sizes of the fragments of PUC mix marker, 8 and appearance on both 

agarose and polyacylamide gel electrophoresis (MBI Fermentas web site) 
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2.1.8 Real Time RT-PCR materials 

 

The iCycler used for Real time RT-PCR was from BioRad (CA, USA). Real time 

RT-PCR kit was obtained from Qiagen (Chatsworth, CA, USA). The kit contains 

LightCycler-DNA Master SYBR Green I (Roche, Molecular Biochemicals, Germany) 

reagent.  

 

 

2.1.9 Solutions and buffers 

 

 

Table 2.10 Standard solutions and buffers used in the experiments 
 
Reagents Concentrations 
1X TBE (Tris-Boric Acid-EDTA) 89 mM Tris-base  

89 mM boric acid  
2 mM EDTA  
pH 8.3 

Ethidium Bromide 10 mg/ml in water (stock solution) 
30 ng/ml (working solution) 

Agarose Gel Loading Buffer (6X) 15% ficoll 
0.05% bromophenol 
0.05% xylene cyanol 

Acrylamide:Biacrylamide Stock Solution 
(%30) 

29.5 gr acrylamide 
0.44 gr bisacrylamide 
100 ml with ddH2O 

1X TAE (Tris-Acetic Acid-EDTA) 40 nm Tris-Acetate 
2 mM EDTA 
pH 8.0 
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2.2 METHODS 

 

2.2.1 Mutation detection of Rett patients 

 

2.2.1.1 DNA isolation from blood samples 

 

Blood samples have been reached us in tubes containing EDTA, and they were 

divided into 1 ml aliquots in 1.5 ml eppendorf tubes. The DNA isolation was carried out 

from 200 µl bloods via Nucleospin® Blood kit (Macherey-Nagel Inc., PA, USA) 

according to manufacturer’s instructions. The remaining bloods were stored at -80oC for 

later use.  

 

The concentration of the DNA was checked by spectrophotometric reading and 

horizontal 1% agarose gel electrophoresis in 1X TBE or TAE buffer. The DNA samples 

were loaded on gel after mixed with 6X loading buffer. 1 µg/ml ethidium bromide was 

added in agarose gel and the gel was run in electrophoresis buffer (1X TBE or 1X TAE) 

at different voltages and time depending on the size of the gels. After the run, the DNA 

samples were visualized with UV transilluminator.  

 

2.2.1.2 Polymerase chain reaction (PCR) 

 

PCR reaction carried out to amplify the 3 different fragments on 2 different 

exons of MECP2: Exon1 (Primer: RTT3F and RTT3R), exon4.1 (Primers: RTT4.1F and 

RTT4.1R), and exon4.3 (Primers: RTT4.3F and RTT4.3R). The cocktail and the 

conditions are given in Table 2.11 and Figure 2.2, 2.3, 2.4. 

 
 
 
 
 
 



 

 

32 

 
 
Table 2.11 PCR cocktail for mutation detection 
 
Reaction Ingredients Volume 
DNA (100-150 ng) 3 µl 
Mg Buffer (10X) 2.5 µl 
MgCl2 solution (1.5 mM) 1.5 µl 
Forward Primer (20 pmol) 0.5 µl 
Reverse Primer (20 pmol) 0.5 µl 
dNTP (10 mM) 0.5 µl 
Taq Polymerase (1.25 U) 0.25 µl 
ddH2O 16.25 µl 
Total 25 µl 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 2.2 PCR conditions for RTT 3F/3R primers 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 2.3 PCR conditions for RTT 4.1F/4.1R primers 
 

     Denaturation 10 min at 95oC 
 
30 sec. at 95 oC 

 30 sec. at 57 oC                    35 cycles 
 40 sec. at 72 oC 
 
      Extension: 10 min. at 72 oC 

     Denaturation 10 min at 95oC 
 
30 sec. at 95 oC 

 30 sec. at 61 oC                    35 cycles 
 40 sec. at 72 oC 
 
      Extension: 10 min. at 72 oC 
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Figure 2.4 PCR conditions for RTT 4.3F/4.1R Primers 
 
 
 
 
 
2.2.1.3 Restriction enzyme digestions 
 

Restriction enzyme digestion of PCR products were performed in 20 µl reaction 

volumes in 500 µl tubes. The amount of PCR products needed for digestion determined 

by 2% agarose gel electrophoresis before the reaction. Reactions were carried out using 

the conditions and materials (reaction buffer and BSA) given in the manufacturer’s 

instructions. One unit of enzyme was used for each reaction. 

 

The digestion reactions were incubated at 37oC in the water bath overnight. 

Restriction enzymes, mutations, and expected product sizes after digestion are given 

below. 

 
 
 
 
 
 
 
 
 
 
 

     Denaturation 10 min at 95oC 
 
30 sec. at 95 oC 

 30 sec. at 63 oC                    35 cycles 
 40 sec. at 72 oC 
 
      Extension: 10 min. at 72 oC 
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Reaction 1: MECP2 exon 3  
 
 RE 1: NlaIII. For R106W 
  Uncut amplicon: 597 bp 
  Mutant profile: 152 bp, 141 bp, 121 bp, 67 bp, 50 bp, 35 bp, 31 bp 
  Normal profile: 156 bp, 152 bp, 141 bp, 67 bp, 50 bp, 31 bp 
 

 
Reaction 2: MECP2 exon 4.1 
 
 RE 2: NlaIV. For P152R 
  Uncut amplicon: 380 bp 
  Mutant profile: 213 bp, 95 bp, 49 bp, 23 bp 
  Normal profile: 175 bp, 95 bp, 49 bp, 38 bp, 23 bp 
 
 RE 3: HinfI. For T197M 
  Uncut amplicon: 380 bp 
  Mutant profile: 197 bp, 183 bp 
  Normal profile: 380 bp 
 

RE 4: NlaIII. For T158M 
  Uncut amplicon: 380 bp 
  Mutant profile: 197 bp, 183 bp 
  Normal profile: 380 bp 
 

RE 5: HphI. For R168X 
  Uncut amplicon: 380 bp 
  Mutant profile: 235 bp, 123 bp, 22 bp 
  Normal profile: 358 bp, 22 bp 
 

 
Reaction 3: MECP2 exon 4.3 
 
 RE 6: NlaIV. For R270X & V288X 
  Uncut amplicon: 366 bp 
  Mutant profile: 366 bp 
  Normal profile: 314 bp, 52 bp 
 
 RE 7: HhaI. For R306C 
  Uncut amplicon: 366 bp 
  Mutant profile: 308 bp, 47 bp, 11 bp 
  Normal profile: 164 bp, 144 bp, 47 bp, 11 bp 
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2.2.1.4 Agarose and polyacrylamide gel electrophoresis 

 

Based on the recurrent mutation detection protocol on page 33, the digested 

samples RE2 (NlaIV), RE3 (HinfI), RE4 (NlaIII), RE5 (HphI), RE6 (NlaIV), and RE7 

(HhaI) were loaded in 3% agarose gel (3 g agarose, 1X TAE, and 3 µl Ethidium 

Bromide). The digests were mixed with 5 µl 6X loading buffer and then loaded on the 

gel. The gel was run in 1X TAE buffer at different voltages and time depending on the 

size of the gels. After the run, the DNA samples were visualized with UV 

transilluminator. 

 

The digested sample RE1 (NlaIII) was loaded in 6% polyacrylamide gel (12 ml 

acrylamide: bisacrylamide (29:1) solution, 6 ml 10X TBE buffer, 38 ml ddH2O, 40 µl 

TEMED, and 500 µl 10X APS) in  order to detect the fragments with small differences 

in length. The polyacrylamide solution was poured into the vertical apparatus and the 

digests was run at constant 20W for 3 hours in 1X TBE buffer. After the run the gel was 

put into ethidium bromide staining solution for 10 minutes, and then into ddH2O 

washing for 10 minutes. The digests were visualized with UV transilluminator. 

 

2.2.2 MECP2 target gene search via bioinformatics analysis 

 

Shigematsu and colleagues defined in vivo binding sequences of MECP2 by 

sequencing 100 Mecp2-binding sites (MBSs). Among these binding sequences, they 

mapped 33 genes located within 100 kb region on either side of each unique MBSs. 24 

genes out of 33 were known to have a role in neurogenesis, muscle and skeletal 

development (Horike et al., 2005).  

 

By using the human homolog promoters (-2000, +400) of these genes (Appendix 

B) we defined a motif via MEME program (http://meme.sdsc.edu/meme/intro.html) 

(Figure 2.5 and Figure 2.6) 
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MEME gives all the possible motifs; therefore, in order to select the right motif, 

several criteria were being taken into account: 

 

1. The sequence of the motif should be C-G rich. 

2. The length of the motif should be between 40-70 bases. 

3. Motif should not be searched by one per sequence to lower blurriness. Instead, 

zero or one per sequence should be selected.  

4. Higher number of reference sequences is desired for a good motif. 

5. E-value should be smaller. 

6. Distribution of these motifs over sequences is also important such that more 

compact regions would mean functional roles in transcription (Timothy et al. 

1994) 

 

Motif extracted over -2000 +400 promoters: 

CCGCCCGCGCGGCCGCGGCCGCCGCCGCCGCCGCCGCCGCCGCCCCCGCCG

CCCC (55 bp, 100% C-G rich sequence) 

 

At first, our motif was aligned over -600 +400 promoters of human X-

chromosome (1107 genes) according to the Jaligner algorithms 

(http://jaligner.sourceforge.net/). Jaligner uses an open source Java implementation of 

the Smith-Waterman algorithm with Gotoh's improvement for biological local pair-wise 

sequence alignment using the affine gap penalty model. According to Jaligner 

algorithms gap open penalty was selected as 25, and gap extension penalty was selected 

as 2. Then, our motif was aligned over -600 +400 promoters of human genome (32649 

reference sequences and 24017 genes) by the same procedure.  
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Figure 2.5 Schematic Representation of MECP2 target gene search on X 
chromosomes via bioinformatic analysis. 
 

MECP2 target 
gene promoters 
(-2000 +400) 

MEME 

MECP2 target 
genes 

Motifs 
 

C-G rich 

High frequency 

All promoters (1117 
genes) in X-
chromosome   
(-600 +400)  

Biological local 
pairwise sequence 

alignment  

Candidate MECP2 
targeted genes 

All promoters 
in Genome 

aatgctagtcgatcgatcgtagctagctagtcgatcgtaac 
gcatgctagctagctagctagctagtcaggtagctagctaa 
GCCGCGGCCGCCGCCGCCCCCCGCCCGGCGGCCGCCGCGG

CCCCCCCCGCGGCCGCTGCCGCCGCCGCCG 

gctagctagctagctagctagctagtcgatcgatcgatcga 

Matrix: Nuc4.4 
Gap open penalty: 25 

Gap extension penalty: 2  
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Figure 2.6 Schematic representation of MECP2 target gene search on human 
genome via bioinformatic analysis 
 
 
 
 
 
 
 

MECP2 target 
gene promoters 
(-2000 +400) 
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MECP2 target 
genes 

Motifs 
 

C-G rich 
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All promoters (32649 
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(-600 +400)  
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Candidate MECP2 
targeted Genes 

All promoters 
in Genome 

aatgctagtcgatcgatcgtagctagctagtcgatcgtaac 
gcatgctagctagctagctagctagtcaggtagctagctaa 
GCCGCGGCCGCCGCCGCCCCCCGCCCGGCGGCCGCCGCGG

CCCCCCCCGCGGCCGCTGCCGCCGCCGCCG 

gctagctagctagctagctagctagtcgatcgatcgatcga 

Matrix: EDNAFULL 
Gap open penalty: 25 

Gap extension penalty: 2  
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2.2.3 Cell culture techniques 

 

2.2.3.1 Establishment of lymphoblastoid cell lines 

 

Lymphoblastoid cell lines (LCLs) obtained from Siena University laboratories 

were established by Epstein-Bar Virus transformation of peripheral blood cells from 

patients with known MECP2 mutations and from healthy individuals.  

 

2.2.3.2 Culturing and subculturing of lymphoblastoid cell lines 

 

Human lymphoblastoid cell lines are usually cultured in RPMI-1640 medium 

containing 10% fetal calf serum and they grow in suspension. EBV transformed cell 

lines grow in clumps (Sigma catalog, commonly used tissue culture techniques, 1988). 

 

Suspension LCLs were cultured into RPMI-1640 medium with L-glutamine. 

Medium was supplied with 10% fetal calf serum. Before culturing the cell lines 5 ml 

(1%) L-Glutamine, 5 ml (1%) penicillin/streptomycin were added into the medium. The 

cells were cultured into T25 tissue culture flask with 15 ml medium. The flasks were 

incubated at 37oC under 5% carbon dioxide in upright position. Lymphoblastoid cell 

lines were either subcultured or refed with fresh medium in every 5 to 7 days. The 

subculturing the cells the clumps should bring into single cell suspension by pipetting or 

mixing. 

  

2.2.3.3 Cell counting 

 

The cells were counted before storage because too high or too low cell count 

lowers the recovery viability. Cell counting can be used for different kinds of operations 

on cell cultures such as transfections, cell fusions, cryopreservation, and subculturing. 

Optimum number of cells is necessary for optimum growth and it will help to 
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standardize other techniques. (Cryomed Technical Manual for Model 700 

Preprogrammed Freezing Controller, 1985) 

 

In order to count the cells, the cell suspension centrifuged and resuspend with a 

fresh medium in a small volume. The clumps were broken up by pipetting or mixing. 

200 µl of cell suspension was mixed with the same amount of Trypan Blue. A cover-slip 

was attached on the haemocytometer by moistening with the breath. Both sides of the 

chamber were filled with the mixture. The bright cells (non-viable cells were stained 

blue) were counted under microscope. The concentrations of the cells were counted by 

the formula: 

 

Number of viable cells = Mean number of viable cells counted x Dilution factor 

x correction factor x Total volume of the suspension 

 

2.2.3.4 Cryopreservation of cell lines 

 

Cryopreservations of the cell cultures are the most reliable and reproducible way 

to freeze cells. Freezing media contained 70% RPMI-1640, 20% Fetal Calf Serum, 10% 

DMSO.  DMSO (dimethyl sulphoxide) is used as a cryoprotectant.  

 

One day before freezing the cells the medim of the cell suspension were 

changed. The cells were centrifuged at 5000 rpm for 5 minutes and the cell pellet was 

resuspend at a concentration of 4x106 to 9x106 cells per ml in freezing medium. 1 ml of 

aliquots were added to each cyroprotective ampules. The ampules were put in +4oC 

freezer for one hour, -20oC freezer for 4 hours, and then put into -80oC freezer 

overnight, respectively. Lastly they were put into liquid nitrogen storage vessel for long 

term preservation.  
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2.2.4 Determination of X-chromosome inactivation statuses of cell lines 

 

2.2.4.1 DNA isolation from cell lines 

 

Cells were counted as previously described before DNA isolation. The DNA 

isolation was carried out from up to 5x106 cells via DNeasy® Tissue Kit (Qiagen, 

Chatsworth, CA, USA) according to manufacturer’s instructions. The isolated DNAs 

were stored at +4oC for later applications. 

 

The concentration of the DNA was checked by horizontal 2% agarose gel 

electrophoresis in TAE buffer. The DNA samples were loaded on gel after mixed with 

6X loading buffer. 1 µg/ml ethidium bromide was added in agarose gel and the gel was 

run in 1X TAE buffer. After the run, the DNA samples were visualized with UV 

transilluminator.  

 

2.2.4.2 Restriction enzyme digestions 

 

Restriction enzyme digestion was carried out from 1 µl genomic DNA isolated 

from the cells in 20 µl reaction volumes in 500 µl tubes. Methylation specific HpaII and 

RsaI enzymes were used for determination of X-inactivation statuses. The uncut control 

samples were only digested with RsaI enzyme using the conditions and materials 

(reaction buffer and BSA) given in the manufacturer’s instructions. One unit from each 

enzyme was used for the reaction. The digestion reactions were incubated at 37oC in the 

water bath overnight. 

 

2.2.4.3 Polymerase chain reaction (PCR) 

 

PCR reaction carried out to amplify 280 bp region in the exon1 of Androgen 
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Receptor (AR) gene (Primers: RS6 and RS7). The cocktail and the conditions are given 

in Table 2.12 and Figure 2.7. 

 

Table 2.12 PCR cocktail for X-chromosome inactivation detection 
 
Reaction Ingredients Volume 
DNA (100-150 ng) 3 µl 
Mg Buffer (10X) 2.5 µl 
MgCl2 solution (1.5 mM) 1 µl 
Forward Primer (20 pmol) 0.5 µl 
Reverse Primer (20 pmol) 0.5 µl 
dNTP (10 mM) 0.5 µl 
Taq Polymerase (1.25 U) 0.25 µl 
ddH2O 16.75 µl 
Total 25 µl 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 2.7 PCR conditions for AR RS6/7 primers 
 
 
 

2.2.4.4 Polyacrylamide gel electrophoresis 

 

The PCR products were loaded in 10% polyacrylamide gel (20 ml acrylamide: 

bisacrylamide (29: 1) solution, 6 ml 10X TBE buffer, 34 ml ddH2O, 40 µl TEMED, and 

500 µl 10X APS). The polyacrylamide solution was poured into the vertical apparatus 

and the digests was run at constant 20W for 5 hours in 1X TBE buffer. After the run the 

     Denaturation 7 min at 95oC 
 
30 sec. at 95 oC 

 30 sec. at 56 oC                    35 cycles 
 40 sec. at 72 oC 
 
      Extension: 10 min. at 72 oC 
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gel was put into ethidium bromide staining solution for 10 minutes, and then into ddH2O 

washing for 10 minutes. The digests were visualized by UV transilluminator. 

 

2.2.5 Construction of cDNA library from the cell lines 

 

2.2.5.1 RNA isolation from cell lines 

 

Cells were counted as previously described before RNA isolation. The DNA 

isolation was carried out from up to 5x106 cells via NucleoSpin® RNA II Kit (Macherey 

Nagel, Inc., PA, USA) according to manufacturer’s instructions. The isolated RNAs 

were stored at -80oC for later applications. 

 

The concentrations and purities of the total RNAs were checked by 

spectrophotometer (Beckman Instruments Du640, Inc. CA, USA).   

 

2.2.5.2 cDNA synthesis from RNAs 

 

cDNA synthesis was carried out via RevertAidTM First Strand cDNA Synthesis 

Kit (MBI Fermentas, Amh, NY, USA) from 2 µg RNA according to manufacturer’s 

instructions. 

 

2.2.5.3 Polymerase chain reaction (PCR) 

 

PCR reaction carried out from cDNAs of LCL1195 to amplify AFF2 (181 bp), 

PTCHD1 (165 bp), HMGB3 (102 bp), FAM50A (135 bp), RPS6KA3 (154 bp), 

SLC6A8F (151 bp), RP11-13E5.1 (157 bp), OTUD5 (128 bp), TSPYL2 (105 bp), FHL1 

(165 bp), MPP1 (124 bp), PGK1 (145 bp). After PCR the products were loaded in 2% 

agarose gel (2 g agarose, 1X TAE, and 3 µl Ethidium Bromide) to check optimization of 

the primers. The cocktail and the conditions are given in table 13 and figure 6. 
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Table 2.13 PCR cocktail for candidate MeCP2 target gene primers 
 
Reaction Ingredients Volume 
cDNA (100 ng) 1 µl 
Mg Buffer (10X) 2.5 µl 
MgCl2 solution (1.5 mM) 1,5 µl 
Forward Primer (20 pmol) 0.5 µl 
Reverse Primer (20 pmol) 0.5 µl 
dNTP (10 mM) 0.5 µl 
Taq Polymerase (1.25 U) 0.25 µl 
ddH2O 18.25 µl 
Total 25 µl 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 2.8 PCR conditions for MeCP2 target gene primers 
 
 

 

 

2.2.6 Real Time RT-PCR 

 

The real time RT-PCR assays were carried out with iCycler instrument (BioRad, 

CA, USA) using LightCycler-DNA Master SYBR Green I (Roche, Molecular 

Biochemicals, Germany) from cDNAs of the LCLs. The cocktail and the conditions 

were given in table 14 and figure 7.  

     Denaturation 10 min at 95oC 
 
30 sec. at 95 oC 

 30 sec. at 60 oC                    35 cycles 
 40 sec. at 72 oC 
 
      Extension: 10 min. at 72 oC 
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Table 2.14 Real Time RT-PCR cocktail for candidate MeCP2 target gene primers 
 
Reaction Ingredients Volume 
cDNA (100 ng) 1 µl 
SYBR Green I Master Mix 12,5  
Forward Primer (20 pmol) 0.25 µl 
Reverse Primer (20 pmol) 0.25 µl 
Nuclease free ddH2O 11 µl 
Mineral Oil 25 µl 
Total 50 µl 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 2.9 Real Time RT-PCR conditions for candidate MeCP2 target gene 
primers 
 
 
 

 
Cycle  1: (  1X)  
 Step  1:   95.0ºC for 10:00 
Cycle  2: ( 50X)  
 Step  1:   95.0ºC for 00:30 
 Step  2:   60.0ºC for 00:30 
 Step  3:   72.0ºC for 00:30 
 Data collection enabled. 
Cycle  3: (  1X)  
 Step  1:   72.0ºC for 10:00 
 Step  2:   95.0ºC for 00:30 
Cycle  4: (  1X)  
 Step  1:   55.0ºC for 00:30 
Cycle  5: ( 80X)  
 Step  1:   55.0ºC for 00:15 
 Increase setpoint temperature after cycle 2 by 0.5ºC 
 Melt curve data collection and analysis enabled.  
Cycle  6: (  1X)  
 Step  1:    4.0ºC HOLD 
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The amounts of the cDNAs of the LCLs were equalized against GAPDH. Each 

of the primers was normalized by diluting cDNAs form 1 µl to 10-4 µl. Relative 

expression levels were calculated according to the formula: 

 

  Expression change = n-(∆CT patient – ∆CT control) 

 

Where; n is the normalization number (depends on the efficiency of the primers), 

CT is the threshold cycle for each cell line, and ∆CT represents the difference between 

the candidate MECP2 target genes and GAPDH threshold cycles.  
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CHAPTER III. RESULTS 

 
 
 
 
3.1 Mutation spectrum of MECP2 in Rett patients 

 

In order to provide a mutation spectrum of Rett patients, eight recurrent 

mutations shown in Table 3.1 and Figure 3.1 were screened in 235 patients. The 

mutations were selected according to their incidence rates and frequencies given in 

Appendix A.  

 

 
Table 3.1 Selected MECP2 mutations 
 
Exon Amino Acid 

Change 
Nucleotide 
Change 

Mutation 
Type 

Domain Restriction 
Enzyme 

3 R106W 316 C�T Missense MBD NlaIII 
4.1 P152R 455 C�G Missense MBD NlaIV 
4.1 T158M 473 C�T Missense MBD NlaIII 
4.1 R168X 502 C�T Nonsense IDR HphI 
4.1 F155S 590 C�T Missense IDR HinfI 
4.3 V288X 806 delG Nonsense TRD NlaIV 
4.3 R270X 808 C�T Nonsense TRD NlaIV 
4.3 R306C 916 C�T Missense TRD HhaI 
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Figure 3.1 Selected MECP2 mutations 
 
 

 

The genomic DNAs isolated from the peripheral bloods of the patients were 

evaluated quantitatively by agarose gel. The PCR reactions with exon 3, exon 4.1, and 

exon 4.3 primers from the genomic DNAs were analyzed by agarose gel electrophoresis. 

The expected size of the PCR products were: 597 bp (exon 3 primer), 380 bp (exon 4.1 

primer), and 366 bp (exon 4.3 primer). 

 

The restriction enzyme digestion was carried out as explained in the methods 

part. The digestion enzymes and expected product sizes after digestion is given in the 

materials part. The pictures of the enzymatic digestions visualized by transilluminator 

are given in Figure 3.2. 

 
 
 
 

                    Exon II     Exon  III                                                                                      Exon IV   

 

           1    26               235               376                         486                         625                                        930                               1461 

316C→→→→T 
R106W 

502 C→→→→T 
R168X 

590 C→→→→T 
F155S 

   455C→→→→G 
     P152R 

473C→T 
T158M 

808 delG 
V288X 

916C→→→→T 
R306C 

TRD- Transcriptional Repression Domain (104 aa) 

MBD- Methyl-CpG Binding Domain (85 aa) 
 

808 C→→→→T 
R270X 
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   A    
 
   1     2     3    4     5     6     7           8     9   10   11  12  13          14   15  16   17   18 

 
 
 
 
   B 
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Figure 3.2 Mutation detection via enzymatic digestion. MECP2 mutation detections 

of the RTT patients at 3% agarose gel electrophoresis (A,B) and 8% polyaccrylamide 

agarose gel (C). Lane 1s: pUC mix marker, 8.  20 µl digest + 5 µl 6x loading buffer were 

loaded on gels. A) Lanes 2-7: NlaIV restriction, lane 6: Patient 00-133 with P152R 

mutation, lane 7: Uncut sample. Lanes 8-13: NlaIII restriction, lane 12: Patient 00-188 

with T158M mutation, lane 13: Uncut digest. Lanes 14-18:  HinfI restriction, no patients 

with F155S mutation detected, lane 18: Uncut digest. B) Lanes 19-24: HphI restriction, 

lane 23: Patient 00-381 with R168X mutation, lane 24: Uncut sample. Lanes 25-30: 

NlaIV restriction, lane 29: Patient 00-104 with R270X mutation, lane 30: Uncut digest. 

Lanes 31-36: Hin61 restriction, lane 35: Patient 02-28 with R306C mutation, lane 36: 

Uncut digest. C) Lanes 37-41: NlaIII restriction, lane 41: Patient 99-91 with R106W 

mutation. 

 
 

 

Analysis of the eight recurrent MECP2 mutations in 235 patients revealed a 

mutation n 48 patients. The frequencies of the mutations are given in Table 3.2. 

 
 
 
Table 3.2 MECP2 mutation spectrum in Rett patients 
 
Exon Amino Acid 

Change 
Nucleotide 
Change 

Number 
observed 

3 R106W 316 C�T 5/235 
4.1 P152R 455 C�G 5/235 
4.1 T158M 473 C�T 13/235 
4.1 R168X 502 C�T 6/235 
4.1 F155S  590 C�T 0/235 
4.3 V288X 806 delG 4/235 
4.3 R270X 808 C�T 8/235 
4.3 R306C 916 C�T 7/235 
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3.2 X-chromosome inactivation profile in cell lines 

 

In order to determine the X-chromosome inactivation patterns in the cell lines, 

the androgen receptor assay was performed as explained in the methods section. 

Androgen receptor assay depends on the methylation of the inactive X-chromosome. 

Methylated inactive X-chromosome is resistant to methylation specific HpaII enzyme 

but unmethylated X-chromosome can be digested. A highly polymorphic triplet repeat 

adjacent to the methylation site in the androgen receptor provides difference in lengths 

of the alleles. The concentration difference of more than 80% between the two alleles is 

considered as skewed X-chromosome inactivation (Allen et al., 1992; Naumova et al., 

1996). X-inactivation statuses of the cells are given in Figure 3.3 and Table 3.3. 

According to these results, whereas LCL 1198 and LCL1213 are not informative, LCL 

1195 and LCL1211 display skewed X-chromosome inactivation.  

     
      1          2         3        4         5        6        7          8        9      
 

 
 

Figure 3.3 X-chromosome inactivation statuses via AR assay. Lane 1:  pUC mix 

marker, 8, lane 2:  HpaII digested PCR product of LCL1213, lane 3: Undigested PCR 

product of LCL1213, lane 4:  HpaII digested PCR product of LCL1211, lane 5: 

Undigested PCR product of LCL1211, lane 6:  HpaII digested PCR product of 

LCL1198, lane 7: Undigested PCR product of LCL1198, lane 8:  HpaII digested PCR 

product of LCL1195, lane 9: Undigested PCR product of LCL1195 
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Table 3.3 X-inactivation statuses of the cell lines 
 
LCL Phenotype Nucleotide 

Change 
AA 
Change 

X-inactivation 
status 

X-inactivation 
pattern 

1195 Rett-Like C316T R106V %90.1 Skewed 
1198 Rett-Like C397T R133C - Not informative 
1211 Classic Rett 1162_1187del26 - %84.8 Skewed 
1213 Healthy - - - Not informative 
 
 
 
 
3.3 Candidate MECP2 target genes determination via bioinformatic analysis 

 

The candidate gene analysis was carried out by bioinformatic analysis as 

explained in the methods part. At first, candidate MECP2 target genes on the X-

chromosome were searched (Table 3.4 and Appendix C). On the second round, 

candidate MECP2 target genes on the whole chromosomes were searched (Table 3.5 and 

Appendix D). 

 

 

Table 3.4 Candidate MECP2 target genes identified by bioinformatic analysis 
 
No Gene Score Localization X-Inactivation 

Status 
1 AFF2 242 Xq28 - 
2 PTCHD1 223 Xp22.11 - 
3 HMGB3 201 Xq28 0/9 

4 FAM50A 185 Xq28 - 
5 RPS6KA3 179 Xp22.12-p22.1 0/9 
6 SLC6A8 173 Xq28 - 
7 RP11-13E5.1 161 Xq25 - 

8 OTUD5 152 Xp11.23 - 
9 TSPYL2 150 Xp11.2 0/5 
10 FHL1 150 Xq26 1/9 
11 MPP1 - Xq28 0/9 

12 PGK1 - Xq26 0/9 
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Table 3.5 Candidate MECP2 target genes on whole chromosomes 
 

Symbol Chr Score Gene Name Location Go Term Kegg Title Phenotype 

AFF2 X 242 AF4/FMR2 family, member 2 Xq28 brain development/learning and/or memory --- Mental retardation, X-linked, 
FRAXE type 

BTBD2 19 228 BTB (POZ) domain containing 2 19p13.3 protein binding --- --- 

PTCHD1 X 223 patched domain containing 1 Xp22.11 --- --- --- 

WIZ 19 214 --- --- --- --- --- 

FLJ37478 4 211 --- --- --- --- --- 

PRKCA 17 209 protein kinase C, alpha 17q22-q23.2 ATP binding/calcium ion binding/cell surface 
receptor linked signal transduction 

Wnt signaling pathway/MAPK signaling 
pathway/Focal adhesion 

Pituitary tumor, invasive 

LOC116349 5 206 --- --- --- --- --- 

NOVA2 19 201 neuro-oncological ventral antigen 2 19q13.3 RNA binding/nucleus --- --- 

HMGB3 X 201 high-mobility group box 3 Xq28 DNA bending activity --- --- 

QKI 6 195 quaking homolog, KH domain 
RNA binding (mouse) 

6q26-q27 nucleic acid binding --- --- 

WNT4 1 192 wingless-type MMTV integration 
site family, member 4 

1p36.23-p35.1 cell-cell signaling/development Wnt signaling pathway/Hedgehog 
signaling pathway 

Rokitansky-Kuster-Hauser 
syndrome 

RHOT1 17 192 ras homolog gene family, member 
T1 

17q11.2 GTP binding --- --- 

ZNF480 19 192 zinc finger protein 480 19q13.41 metal ion binding --- --- 

SLC35F1 6 189 solute carrier family 35, member 
F1 

6q22.1-q22.31 --- --- --- 

NDRG3 20 189 NDRG family member 3 20q11.21-
q11.23 

catalytic activity/cell differentiation --- --- 

RBPMS2 15 188 RNA binding protein with multiple 
splicing 2 

15q22.31 --- --- --- 

HOXC8 12 187 homeobox C8 12q13.3 development --- --- 

CAMK2N2 3 186 calcium/calmodulin-dependent 
protein kinase II inhibitor 2 

3q27.1 --- --- --- 

CHD3 17 186 chromodomain helicase DNA 
binding protein 3 

17p13.1 ATP binding/ATP-dependent DNA helicase 
activity 

--- --- 

CNOT6L 4 185 CCR4-NOT transcription complex 4q13.3 --- --- --- 

FAM50A X 185 family with sequence similarity 50, 
member A 

Xq28 nucleus --- --- 
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3.4 Real Time RT-PCR 

 

Relative expression levels of the 12 candidate MECP2 target genes on the X-

chromosome given in Table 3.4 were determined by Real time RT-PCR as explained in 

the methods part. The genes MPP1 and PGK1 were selected from the literature as a 

positive control (Ballester et al., 2005). 
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3.4.1 Relative expressions of AFF2 and FHL1 
 
 

 
Figure 3.4 PCR Amp/Cycle Graph for AFF2 and FHL1. Calculated threshold using 

the maximum curvature approach is 106.4. 

 

 
Figure 3.5 Melt curve graph for AFF2 and FHL1. Threshold for automatic peak 

detection is set at 1.00. 
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3.4.2 Relative expression of MPP1 
 
 

 
Figure 3.6 PCR Amp/Cycle Graph for MPP1. Calculated threshold using the 

maximum curvature approach is 77.0. 

 

 
Figure 3.7 Melt curve graph for MPP1. Threshold for automatic peak detection is set 

at 1.00. 
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3.4.3 Relative expression of RPS6KA3 
 

 
Figure 3.8 PCR Amp/Cycle Graph for RPS6KA3. Calculated threshold using the 

maximum curvature approach is 73.4. 

 

 
Figure 3.9 Melt curve graph for RPS6KA3. Threshold for automatic peak detection is 

set at 1.00. 
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3.4.4 Relative expression of RP11.13E5.1 
 
 

 
Figure 3.10 PCR Amp/Cycle Graph for RP11.13E5.1. Calculated threshold using the 

maximum curvature approach is 59.2. 

 

 
Figure 3.11 Melt curve graph for RP11.13E5.1. Threshold for automatic peak 

detection is set at 1.00. 
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3.4.5 Relative expression of OTUD5 

 

 

 
Figure 3.12 PCR Amp/Cycle Graph for OTUD5. Calculated threshold using the 

maximum curvature approach is 71.3. 

 

 
Figure 3.13 Melt curve graph for OTUD5. Threshold for automatic peak detection is 

set at 1.00. 
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3.4.6 Relative expression of FAM50A 
 
 

 
Figure 3.14 PCR Amp/Cycle Graph for FAM50A. Calculated threshold using the 

maximum curvature approach is 113.3. 

 

 
Figure 3.15 Melt curve graph for FAM50A. Threshold for automatic peak detection is 

set at 1.00. 
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3.4.7 Relative Expression of PGK1 
 
 

 
Figure 3.16 PCR Amp/Cycle Graph for PGK1. Calculated threshold using the 

maximum curvature approach is 60.0. 

 

 
Figure 3.17 Melt curve graph for PGK1. Threshold for automatic peak detection is set 

at 1.00. 
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3.4.8 Relative expression of PTCHD1 and SLC6A8 
 

 
Figure 3.18 PCR Amp/Cycle Graph for PTCHD1 and SLC6A8. Calculated threshold 

using the maximum curvature approach is 97.8. 

 

 
Figure 3.19 Melt curve graph for PTCHD1 and SLC6A8. Threshold for automatic 

peak detection is set at 1.00. 
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3.4.9 Relative expressions of TSPYL2 and HMGB3 
 
 

 
Figure 3.20 PCR Amp/Cycle Graph for TSPYL21 and HMGB3. Calculated threshold 

using the maximum curvature approach is 91.8. 

 

 
Figure 3.21 Melt curve graph for TSPYL2 and HMGB3. Threshold for automatic 

peak detection is set at 1.00. 
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Table 3.6 Relative expressions of the candidate MECP2 target genes in cell lines 

Gene 
Name 

Normalization Relative 
Expression 
of LCL1195 

Relative 
Expression 
of LCL1198 

Relative 
Expression 
of LCL1211 

Mean 
Relative 
Expression 

AFF2 2.00 +84.45 +1.52 +13.00 +32.99 
PTCHD1 2.00 - +1.32 +1.00 +1.16 
HMGB3 2.00 +1.07 -7.46 +1.00 -1.79 
FAM50A 2.00 -3.25 -2.00 +5.66 +0.14 
RPS6KA3 1.94 -1.30 -2.37 -2.21 -1.96 
SLC6A8 2.00 +3.73 +1.32 +1.23 +2.09 
RP11-
13E5.1 

2.24 -21.43 -1.91 -2.81 -8.72 

OTUD5 1.68 -1.30 -1.44 -1.11 -1.28 
TSPYL2 1.80 +3.24 +2.28 +1.12 +2.21 
FHL1 2.00 +21.11 +6.50 +8.57 +12.06 
MPP1 1.69 +1.23 +1.88 -2.57 +0.18 
PGK1 1.92 -2.48 -2.55 -1.69 -2.24 
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Figure 3.22 Relative expressions of the candidate MECP2 target genes in cell lines 
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CHAPTER IV. DISCUSSION 
 
 
 

 
Rett Syndrome is the second most common causes of mental retardation after 

Down syndrome (Ellaway et al., 2001). It is seen exclusively in girls with an incidence 

rate of 1 in 10,000 to 1 in 20,000 (Kerr et al, 1985; Hagberg et al., 1985; Leonard et al., 

1997; Miyamoto et al., 1997). The discovery of mutations in MECP2 as the cause of the 

disease imply that Rett syndrome is the first human disease caused by a gene that is 

involved in transcriptional regulation (Amir et al., 1999; Wan et al., 1999). 

 

 

4.1 Mutation spectrum of Rett syndrome 

 

As mentioned before, there are up to 2000 MECP2 mutations defined in classic 

female RTT patients (Amir et al., 2000; Miltenberger et al., 2003; Weaving et al., 2005; 

Philippe et al., 2006). We screened our patients for 7 frequent mutations: R106W, 

P152R, T158M, R168X, V288X, R270X, R306C and 1 rare mutation: F155S. 

 

In the present mutation detection study which is an extension of a previous thesis 

conducted in our laboratory (Ayça Sayı, 2001), a total of 235 patients were analyzed for 

MECP2 mutations (Table 3.2) and 48 mutations were detected with a 20% mutation 

detection rate. 
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Table 4.1 Frequencies comparison of MECP2 mutations in our study. 
 
Amino Acid 
Change 

Nucleotide 
Change 

Number 
observed 

T158M 473 C�T 13/235 
R270X 808 C�T 8/235 
R306C 916 C�T 7/235 
R168X 502 C�T 6/235 
R106W 316 C�T 5/235 
P152R 455 C�G 5/235 
V288X 806 delG 4/235 
F155S  590 C�T 0/235 
 
 

 

Table 4.1 gives the frequencies of the selected MECP2 mutations in the literature 

and in our study group.  

 

4.2 Algorithms and Bioinformatics 

 

MeCP2 functions as a transcriptional repressor by binding directly to the 

promoters of its target genes, thus, it is believed that MeCP2 has a great number of 

downstream targets (Willard et al., 1999). Recent potential target gene studies provided 

a different view on Rett pathogenesis and a limited number of candidate genes were 

defined as listed in Table 1.4 (Traynor et al., 2002; Ballestar et al., 2004; Horike et al., 

2005; Bienvenu et al., 2006).  

 

According to general overview, bioinformatics is the application of computer 

technology to the management of the biological information. With the recent 

developments in biotechnology in terms of high capability of computers to store, 

interpret, and analyze large amounts of data, internet, and databases bioinformatics 

become more popular in biological research (Soberon et al., 2004).  
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In order to find potential target genes of MeCP2 we derived a candidate MECP2 

binding motif using an algorithm. The motif is extracted from the genes taken from the 

article described in methods part via MEME program. The next step was biological local 

pair-wise sequence alignment of the motif with the 1107 X-linked genes’ promoters 

using the affine gap penalty model.  

 

In general terms, sequence alignment can be explained as the definition of a 

distance of number of sequences. By extracting the mismatch scores and gap open 

penalties from the total match scores alignment score is obtained (Barton et al., 1993; 

Gotoh et al., 1982). In our algorithm of target gene search higher scores of a gene means 

biological similarity between the motif of the MECP2 and the gene on X chromosome. 

We further our experiments with the first ten genes with the higher scores. 

 

 

4.3 De-regulated genes in MECP2 mutant cell lines 

 

MeCP2 has a function of regulating gene expression via transcriptional 

repression by directly binding to promoters of its target genes (Meehan et al., 1992). 

Therefore, MeCP2 mutations would be result in deformations in MeCP2 transcriptional 

repression activity. Direct targets of MeCP2 would show increased expression in 

MECP2 mutant cell lines.   

 

We selected nine candidate genes according to the results of our bioinformatic 

study with the score more than 150, and 2 genes from micro-array data that are shown to 

be over-expressed in RTT cell lines (Ballester et al., 2005). Besides that, FHL1 gene 

was resided both in the microarray data with an increased expression and in our 

bioinformatic results with a higher score (150), suggesting that our algorithm gave a 

experimental approach.  
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Our RT-PCR results demonstrated that FHL1 and AFF2 showed a 12-fold and 

33-fold increase, respectively, in their expression in MECP2 mutant cell lines in 

comparison with a control cell line. Besides that, SLC6A (2-fold) and TSPYL2 (2-fold) 

were also over-expressed in RTT cell lines. HMGB3 (2-fold), RP11-13E5.1 (9-fold), and 

PGK1 (2-fold) genes were down-regulated in RTT cell lines. Moreover, PTCHD1, 

FAM50A, OTUD5, and MPP1 genes showed no significant alteration in their expression 

patterns (Figures 3.4 - 3.21 and Table 3.7). 

 

 

4.4 Future Perspectives 

 

RTT phenotype is described as rapid deterioration of high brain functions 

following developmental stagnation, autism, severe dementia, loss of purposeful hand 

use, ataxia, and microcephaly (Hagberg et al., 1983).  

 

According to Gene Ontology database (http://www.geneontology.org/), AFF2 

gene functions in brain development, learning, and memory and FHL1 gene functions in 

muscle growth and organ morphogenesis. Besides that, SLC6A8 gene takes role in 

mental retardation. Therefore, these genes have a high potential to link with RTT 

phenotype. Our results showed increased expression of these genes in MECP2 mutant 

cell lines, that is what we expect to find, however, in order to confirm the interactions 

between these genes and MECP2, further experimentation is needed.  

 

In order to obtain a more significant data we are planning to collect RNA 

samples from peripheral bloods of our Rett patients with known MECP2 mutation and 

broaden our sample size. Confirming our hypothesis will provide a new perspective on 

candidate gene research via identifying new X-linked target genes and therefore 

contribute to disease pathogenesis via disturbances in X-chromosome inactivation. 

Moreover, confirming our data will show the importance of collaboration between 
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Bioinformatics and Molecular Genetics and will provide a different view on target gene 

research experiments. 

 

As explained before, MECP2 regulation of gene expression takes role in 

epigenetic mechanisms such as imprinting and X-chromosome inactivation. DLX5 gene 

escapes from imprinting and biallelically expressed from both paternal and maternal 

alleles in MECP2 mutant RTT patients (Horike et al., 2005). However, the role of X-

inactivation in RTT pathogenesis is still an unknown issue. We expect to show that the 

increase in over-expression in the X-linked MECP2 target genes depends on the biallelic 

expression from both active and inactive X-chromosome by escaping from X-

chromosome inactivation via quantitative RT-PCR and clonal analysis of cells (single 

heterezygote clones) for intragenic polymorphisms. So we expect to conclude that the 

biallelic expression would be one of the causes of Rett syndrome by creating dosage 

problem. 

 

Furthermore, we are planning to broaden our target gene research on whole 

human chromosomes. We derived the MECP2 potential target genes data via our 

bioinformatic algorithm (APPENDIX D) as the next step of our hypothesis. We are 

aiming to identify the key genes contributing RTT pathogenesis on Human genome as a 

future direction. 
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CHAPTER VII. APPENDICIES 

Appendix A The incidence rates and frequencies of some of the Rett mutations 

(http://mecp2.chw.edu.au/cgi-bin/mecp2/views/basic.cgi?form=amino-freq)  

 
Amino acid change Frequency Percentage 

p.T158M 190 9.2 
p.R168X 186 9.01 
p.R255X 166 8.04 
p.R270X 146 7.07 
p.R294X 118 5.71 
p.R306C 96 4.65 
p.R133C 91 4.41 
p.R106W 71 3.44 
intronic variation 54 2.62 
p.L386fs 47 2.28 
p.P388fs 30 1.45 
p.G269fs 30 1.45 
p.P152R 29 1.4 
p.S194S 23 1.11 
p.M1? 23 1.11 
p.E397K 22 1.07 
p.T299T 19 0.92 
3'UTR variation 19 0.92 
p.A140V 18 0.87 
p.S411S 15 0.73 
p.R306H 14 0.68 
p.P302R 12 0.58 
p.S134C 12 0.58 
p.G237fs 12 0.58 
p.P376S 11 0.53 
p.P225R 10 0.48 
p.R9fs 10 0.48 
p.R106Q 10 0.48 
p.P387fs 9 0.44 
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p.Y141X 9 0.44 
p.K345K 8 0.39 
p.R270fs 7 0.34 
p.G428S 7 0.34 
p.T197M 7 0.34 
p.T203M 7 0.34 
p.A201V 7 0.34 
p.S359P 6 0.29 
p.P251fs 6 0.29 
p.P384fs 6 0.29 
p.P385fs 6 0.29 
p.A439T 6 0.29 
p.A259A 5 0.24 
p.F142F 5 0.24 
p.P387_M466del80 5 0.24 
p.(N126+S486) 5 0.24 
p.A444T 5 0.24 
p.P402L 5 0.24 
p.R250fs 5 0.24 
p.G232fs 5 0.24 
p.G252fs 4 0.19 
p.P361A 4 0.19 
p.H366fs 4 0.19 
p.P390_P391delPP 4 0.19 
p.Q406X 4 0.19 
p.P272L 4 0.19 
p.D156E 4 0.19 
5'UTR variation 4 0.19 
p.S204X 4 0.19 
p.S70S 4 0.19 
p.L386fsX403 4 0.19 
p.R133H 4 0.19 
p.T240T 4 0.19 
p.S401N 4 0.19 
p.P302L 4 0.19 
ambiguous mutation data 4 0.19 
p.K286fs 4 0.19 
p.L100V 4 0.19 
p.V412I 3 0.15 
p.P405P 3 0.15 
MECP2_e1:p.G16dupG 3 0.15 
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p.P322L 3 0.15 
p.S332fs 3 0.15 
p.G273G 3 0.15 
p.S49X 3 0.15 
p.R106G 3 0.15 
p.P101S 3 0.15 
p.P399L 3 0.15 
p.T158T 3 0.15 
p.R250R 3 0.15 
p.P399P 3 0.15 
p.A278A 3 0.15 
p.I125I 3 0.15 
[p.R168X] + [p.G232A] 3 0.15 
p.Q170X 3 0.15 
[p.L328L + p.388delP] 3 0.15 
p.K305R 3 0.15 
p.P56P 3 0.15 
p.Q244X 3 0.15 
p.A281A 3 0.15 
p.L328L 3 0.15 
p.R458C 2 0.1 
p.P101R 2 0.1 
p.T445T 2 0.1 
p.K200X 2 0.1 
p.H368fs 2 0.1 
p.P322A 2 0.1 
p.S357S 2 0.1 
p.K22X 2 0.1 
p.F155S 2 0.1 
p.Q297X 2 0.1 
p.P376fs 2 0.1 
p.P225L 2 0.1 
p.S229L 2 0.1 
p.C413C 2 0.1 
p.A280A 2 0.1 
p.R250H 2 0.1 
p.P302A 2 0.1 
p.D34fs 2 0.1 
p.Q16X 2 0.1 
p.K36fs 2 0.1 
p.T158A 2 0.1 
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Appendix B Gene list used in motif search 

Gene Name Accession Number Chromosome 
CTSS NM_004079 1 
S100A10 NM_002966 1 
CLK2 NM_003993 1 
IGFBP2 NM_000597 2 
MYCN NM_005378 2 
LHCGR NM_000233 2 
AGTR1 NM_032049 3 
PPID NM_005038 4 
ITGA2 NM_002203 5 
PAM NM_138822 5 
SEPT7 NM_001788 7 
NET1 NM_005863 10 
MARCH8 NM_145021 10 
PTPRCAP NM_005608 11 
BIRC2 NM_001166 11 
IGF2 NM_000612 11 
SLC2A3 NM_006931 12 
CDH1 NM_004360 16 
TOP2A NM_001067 17 
ITGA3 NM_005501 17 
DNAJB1 NM_006145 19 
CSE1L NM_177436 20 
GNAS NM_080426 20 
PGK1 NM_000291 X 
RNF113A NM_006978 X 
RBBP7 NM_002893 X 
SMARCA1 NM_139035 X 
AFF2 NM_002025 X 
FHL1 NM_001449 X 
MPP1 NM_002436 X 
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Appendix C Whole list of candidate MECP2 target genes on X chromosomes 

determined by bioinformatic analysis 

 
No Gene Score Localization X-Inactivation 

Status 
1 AFF2 242 Xq28  
2 PTCHD1 223 Xp22.11  
3 HMGB3 201 Xq28 0/9 
4 FAM50A 185 Xq28  
5 RPS6KA3 179 Xp22.12-p22.1 0/9 
6 SLC6A8 173 Xq28  
7 RP11-13E5.1 161 Xq25  
8 OTUD5 152 Xp11.23  
9 TSPYL2 150 Xp11.2 0/5 

10 FHL1 150 Xq26 1/9 
11 UTX (DUSP21) 149 Xp11.2 9/9 
12 SH3KBP1 147 Xp22.1-p21.3 4/9 
13 TSPAN7 147 Xp11.4  
14 KIAA1280 145 Xp22.32 1/9 
15 TBL1X 141 Xp22.3 7/9 
16 LOC158572 139 Xp11.23 0/9 
17 PRKX 138 Xp22.3 7/9 
18 CRSP2 137 Xp11.4-p11.2 6/6 
19 USP27X 137 Xp11.23  
20 LOC286495 137 Xq13.3  
21 AP1S2 135 Xp22.2 9/9 
22 LOC402395 135 Xp11.4  
23 UBQLN2 134 Xp11.23-p11.1 2/9 
24 TMEM28 134 Xq13.1  
25 NHS 133 Xq22.13 3/9 
26 APXL 132 Xq22.3  
27 ARD1A 132 Xq28  
28 PPP1R3F 129 Xq11.23 0/9 
29 LOC401621 129 Xq28  
30 PLXNA3 129 Xq28 0/9 
31 LOC139952 128 Xp22.2  
32 PRPS2 127 Xp22.3-p22.2 0/5 
33 RGAG4 (KIAA2001) 127 Xq13.1 0/9 
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34 CXorf38 126 Xp11.4  
35 REPS2 (POB1) 124 Xp22.2 2/9 
36 LOC139334 124 Xp11.3  
37 BRCC3 124 Xq28  
38 RBBP7 (RpAp46) 123 Xp22.2 9/9 
39 PDZK4 123 Xq28 0/9 
40 SLC9A7 122 X 1/9 
41 SYN1 122 Xp11.23 0/9 
42 NAP1L3 122 Xq21.3-q22 7/9 
43 DOCK11 122 Xq24 3/9 
44 IRAK1 122 Xq28 1/9 
45 ATP6AP2 121 Xp11.4 1/9 
46 MSL3L1 120 Xp22.3 3/9 
47 TMEM47 120 Xp11.4  
48 CXorf17 120 Xp11.22  
49 GPC3 120 Xq26.1  
50 SRPX (ETX1) 119 Xp21.1 0/9 
51 ZNF6 119 Xq21.1-q21.2  
52 FMR1 118 Xq27.3 1/9 
53 F8 118 Xq28 0/9 
54 MAGEA11 117 Xq28  
55 MTMR1 117 Xq28 0/9 
56 ZMAT1 116 Xq21  
57 TMEM32 116 Xq26.3  
58 LOC441488 115 Xp21.1  
59 LOC340602 115 Xp11.22 0/9 
60 AMMECR1 115 Xq22.3 2/9 
61 FLJ25444 114 Xp22.11  
62 ELK1 114 Xp11.2 0/6 
63 XK 113 Xp21.1  
64 SMC1L1 113 Xp11.22-p11.21 7/9 
65 MSN 113 Xq11.2-q12 1/9 
66 IL13RA1 113 Xq24 0/9 
67 PNMA3 113 Xq28   
68 CXorf12 113 Xq28 5/9 
69 CNKSR2 112 Xp22.12  
70 MBTPS2 112 Xp22.1-p22.2 0/9 
71 PCDH19 112  Xq13.3  
72 LOC392510 112 Xq22.1  
73 LOC389895 111 Xq27.1  
74 ABCD1 111 Xq28 3/9 
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75 GPR143 110 Xp22.3 7/9 
76 CASK 110 Xp11.4 0/6 
77 USP51 110 Xp11.22   
78 CITED1 110 Xq13.1 1/9 
79 LOC401602 110 Xq21.32  
80 SLC25A5 109 Xq24-q26 0/6 
81 DKFZP564B147 109 Xq26.3 0/9 
82 MGC39606 109 Xq26.3  
83 GAB3 109 Xq28 8/9 
84 SMS 108 Xp22.1 0/6 
85 ACOT9 108 Xp22.11  
86 SUV39H1 108 Xp11.23  0/9 
87 ELF4 108 Xq26 0/9 
88 LOC389842 107 Xp21.3  
89 LOC347454 107 Xq24  
90 WDR40B 107 Xq25  
91 SMARCA1 107 Xq25 0/9 
92 APLN 107 Xq25-26.3 0/9 
93 CXorf50 106 Xq13.1  
94 GPC4 106 Xq26.1 2/9 
95 SLC9A6 106 Xq26.3 0/9 
96 TREX2 106 Xq28 0/9 
97 RAB9B 105 Xq22.1-q22.3 1/9 
98 SUHW3 105 Xq25  
99 PNMA6A 105 Xq28 0/9 
100 LOC392423 104 Xp22.33  
101 ARL13A 104 Xq22.1  
102 ZIC3 104 Xq26.2  
103 LDOC1 104 Xq27 1/9 
104 PLCXD1 103 Xp22.33; Yp11.32 9/9 
105 FAM51A1 103 Xp22.2 9/9 
106 ZFX 103 Xp21.3 9/9 
107 NROB1 103 Xp21.3-p21.2  
108 PJA1 103 Xq13.1 1/9 
109 RP11-130N24.1 103 Xq13.3  
110 LOC286425 103 Xq21.1  
111 GABRE 103 Xq28 0/9 
112 DUSP9 103 Xq28  0/9 
113 SLC25A6 102 Xp22.32; Yp11.3 9/9 
114 PHF16 102 Xp11.3 0/9 
115 SYP 102 Xp11.23-p11.22 2/9 



 

 

87 

116 LOC389863 102 Xq12  
117 LOC158948 102 Xq22.1  
118 NUDT11 101 Xp11.22 0/9 
119 AR 101 Xq11.2-q12 0/6 
120 LOC402422 101 Xq25  
121 FLNA 101 Xq28 0/9 
122 IQSEC2 100 Xp11.22  
123 DLG3 100 Xq13.1 0/9 
124 UBE2A 100 Xq24-q25 0/9 
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APPENDIX D Whole list of candidate MECP2 target genes on whole chromosomes determined by bioinformatic analysis 

 
Symbol Chr Score Gene Name Location Go Term Kegg Title Phenotype 

AFF2 X 242 AF4/FMR2 family, member 2 Xq28 brain development/learning and/or memory --- Mental retardation, X-linked, 
FRAXE type 

BTBD2 19 228 BTB (POZ) domain containing 2 19p13.3 protein binding --- --- 
PTCHD1 X 223 patched domain containing 1 Xp22.11 --- --- --- 

WIZ 19 214 --- --- --- --- --- 
FLJ37478 4 211 --- --- --- --- --- 
PRKCA 17 209 protein kinase C, alpha 17q22-q23.2 ATP binding/calcium ion binding/cell surface 

receptor linked signal transduction 
Wnt signaling pathway/MAPK signaling 
pathway/Focal adhesion 

Pituitary tumor, invasive 

LOC116349 5 206 --- --- --- --- --- 
NOVA2 19 201 neuro-oncological ventral antigen 2 19q13.3 RNA binding/nucleus --- --- 
HMGB3 X 201 high-mobility group box 3 Xq28 DNA bending activity --- --- 
QKI 6 195 quaking homolog, KH domain 

RNA binding (mouse) 
6q26-q27 nucleic acid binding --- --- 

WNT4 1 192 wingless-type MMTV integration 
site family, member 4 

1p36.23-p35.1 cell-cell signaling/development Wnt signaling pathway/Hedgehog 
signaling pathway 

Rokitansky-Kuster-Hauser 
syndrome 

RHOT1 17 192 ras homolog gene family, member 
T1 

17q11.2 GTP binding --- --- 

ZNF480 19 192 zinc finger protein 480 19q13.41 metal ion binding --- --- 
SLC35F1 6 189 solute carrier family 35, member 

F1 
6q22.1-q22.31 --- --- --- 

NDRG3 20 189 NDRG family member 3 20q11.21 catalytic activity/cell differentiation --- --- 
RBPMS2 15 188 RNA binding protein with multiple 

splicing 2 
15q22.31 --- --- --- 

HOXC8 12 187 homeobox C8 12q13.3 development --- --- 
CAMK2N2 3 186 calcium/calmodulin-dependent 

protein kinase II inhibitor 2 
3q27.1 --- --- --- 

CHD3 17 186 chromodomain helicase DNA 
binding protein 3 

17p13.1 ATP binding/ATP-dependent DNA helicase 
activity 

--- --- 

CNOT6L 4 185 CCR4-NOT transcription complex 4q13.3 --- --- --- 
FAM50A X 185 family with sequence similarity 50, 

member A 
Xq28 nucleus --- --- 
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RNF170 8 184 ring finger protein 170 8p11.21 metal ion binding/protein binding/zinc ion 
binding 

--- --- 

NPAS3 14 184 neuronal PAS domain protein 3 14q12-q13 DNA binding --- --- 
RKHD2 18 184 ring finger and KH domain 

containing 2 
18q21.1 --- --- --- 

FAM44A 4 183 family with sequence similarity 44, 
member A 

4p16.1 --- --- --- 

CPEB2 4 183 cytoplasmic polyadenylation 
element binding protein 2 

4p15.33 nucleic acid binding/nucleotide binding --- --- 

HCN2 19 183 hyperpolarization activated cyclic 
nucleotide-gated potassium 
channel 2 

19p13.3 cAMP binding/cation transport/cell-cell signaling  --- --- 

CACNG2 22 183 calcium channel, voltage-
dependent, gamma subunit 2 

22q13.1 calcium ion binding MAPK signaling pathway --- 

EIF4E3 3 181 eukaryotic translation initiation 
factor 4E member 3 

3p14 --- --- --- 

TMEM99 17 180 transmembrane protein 99 17q21.2 --- --- --- 
NKRF X 180 NF-kappaB repressing factor Xq24 DNA binding --- --- 
RPS6KA3 X 179 ribosomal protein S6 kinase, 

90kDa, polypeptide 3 
Xp22.2-p22.1 ATP binding/central nervous system 

development/ skeletal development 
MAPK signaling pathway/Long-term 
potentiation 

Coffin-Lowry 
syndrome/Mental retardation, 
X-linked  

KLF11 2 178 Kruppel-like factor 11 2p25 negative regulation of cell proliferation/ --- --- 
DGKI 7 178 diacylglycerol kinase, iota 7q32.3-q33 cytoplasm/diacylglycerol kinase activity Phosphatidylinositol signaling 

system/Glycerolipid metabolism/ 
--- 

ANKRD13D 11 178 ankyrin repeat domain 13 family, 
member D 

11q13.2 --- --- --- 

FLJ46347 2 177 --- --- --- --- --- 
LOC642931 9 176 --- --- --- --- --- 
LOC644689 9 176 --- --- --- --- --- 
LOC644722 9 176 --- --- --- --- --- 
JPH3 16 175 junctophilin 3 16q24.3 biological process unknown --- Huntington disease-like 2 
KIAA1713 18 175 KIAA1713 18q11 --- --- --- 
CUL3 2 174 cullin 3 2q36.3 G1/S transition of mitotic cell cycle Ubiquitin mediated proteolysis --- 
ELF2 4 174 E74-like factor 2  4q28 regulation of transcription from RNA polymerase 

II promoter 
--- --- 

LMX1B 9 174 LIM homeobox transcription factor 
1, beta 

9q34 development/dorsa ventral pattern 
formation/embryonic development/ embryonic 
limb morphogenesis/ neuron differentiation 

--- Nail-patella syndrome/Nail-
patella syndrome with open-
angle glaucoma 

RCOR1 14 174 REST corepressor 1 14q32.32 --- --- --- 
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MAZ 16 174 MYC-associated zinc finger 
protein 

16p11.2 transcription termination from RNA polymerase 
II promoter 

--- --- 

PP2447 22 174 --- --- --- --- --- 
TP53BP2 1 173 tumor protein p53 binding protein, 

2 
1q42.1 NF-kappaB binding/SH3/SH2 adaptor 

activity/apoptosis 
--- --- 

C9orf28 9 173 chromosome 9 open reading frame 
28 

9q33.3 --- --- --- 

DAPK2 15 173 death-associated protein kinase 2 15q22.31 ATP binding/apoptosis/ --- --- 
CDYL2 16 173 chromodomain protein, Y-like 2 16q23.2 chromatin assembly or disassembly --- --- 
NCAM2 21 173 neural cell adhesion molecule 2 21q21.1 cell adhesion /neuron adhesion Cell adhesion molecules (CAMs) --- 
ANAPC11 17 172 APC11 anaphase promoting 

complex subunit 11 homolog  
17q25.3 anaphase-promoting complex /protein 

ubiquitination 
Ubiquitin mediated proteolysis/Cell 
cycle 

--- 

PCBP1 2 171 poly(rC) binding protein 1 2p13-p12 Ribonucleoprotein complex --- --- 

GNB2 7 171 guanine nucleotide binding protein 
(G protein), beta polypeptide 2 

7q21.3-q22.1 signal transducer activity/signal transduction --- --- 

FBXO11 2 170 F-box protein 11 2p16.3 protein ubiquitination --- --- 
LOC644873 5 170 --- --- --- --- --- 
LOC653483 6 170 --- --- --- --- --- 
MLL5 7 170 myeloid/lymphoid or mixed-

lineage leukemia 5  
7q22.1 regulation of transcription, DNA-dependent --- --- 

RNF165 18 170 ring finger protein 165 18q21.1 --- --- --- 
HDGF2 19 170 --- --- --- --- --- 
USF2 19 170 upstream transcription factor 2 19q13 RNA polymerase II transcription factor activity --- --- 
RIMS4 20 170 Regulating synaptic membrane 

exocytosis 4 
20q13.12 exocytosis/neurotransmitter transport/synapse --- --- 

KIF13A 6 169 kinesin family member 13A 6p23 microtubule motor activity --- --- 
RXRA 9 169 retinoid X receptor, alpha 9q34.3 retinoid-X receptor activity Adipocytokine signaling pathway --- 

ARID2 12 169 AT rich interactive domain 2 
(ARID, RFX-like) 

12q12 chromatin modification --- --- 

NOTUM 17 169 Notum pectinacetylesterase 
homolog  

17q25.3 --- --- --- 

ACAA2 18 169 acetyl-Coenzyme A acyltransferase 
2  

18q21.1 acetyl-CoA C-acyltransferase activity Fatty acid metabolism --- 

ADNP 20 169 activity-dependent neuroprotector 20q13.13 Sequence-specific DNA binding --- --- 
DNAJC5 20 169 DnaJ (Hsp40) homolog, subfamily 

C, member 5 
20q13.33 heat shock protein binding --- --- 
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PRKACB 1 168 protein kinase, cAMP-dependent, 
catalytic, beta 

1p36.1 cAMP-dependent protein kinase activity/ protein 
amino acid phosphorylation 

Calcium signaling pathway/Insulin 
signaling pathway/ MAPK signaling 
pathway /Wnt signaling pathway/ 
Hedgehog signaling  

--- 

MAD2L1BP 6 168 MAD2L1 binding protein 6p21.1 regulation of exit from mitosis --- --- 
LOC644640 9 168 --- --- --- --- --- 
CENTG3 7 167 centaurin, gamma 3 7q36.1 small GTPase mediated signal transduction --- --- 
ZDHHC2 8 167 zinc finger, DHHC-type containing 

2 
8p21.3-p22 acyltransferase activity --- --- 

EIF2C2 8 167 Eukaryotic translation initiation 
factor 2C, 2 

8q24 protein biosynthesis/translation initiation factor 
activity 

--- --- 

NKX6-2 10 167 NK6 transcription factor related, 
locus 2 (Drosophila) 

10q26 --- --- --- 

GNPTAB 12 167 N-acetylglucosamine-1-phosphate 
transferase, alpha and beta subunits 

12q23.3 --- --- Mucolipidosis IIIA 

CRLF1 19 167 cytokine receptor-like factor 1 19p12 antimicrobial humoral response /cytokine 
binding/ 

--- Cold-induced sweating 
syndrome 

CABP7 22 167 calcium binding protein 7 22q12.2 calcium ion binding --- --- 
JAZF1 7 166 --- --- --- --- --- 
CLN8 8 166 ceroid-lipofuscinosis, neuronal 8  8p23 ER-Golgi intermediate compartment /nervous 

system development 
--- Ceroid lipofuscinosis, 

neuronal 8 
C9orf75 9 166 chromosome 9 open reading frame 

75 
9q34.3 --- --- --- 

DAZAP1 19 166 DAZ associated protein 1 19p13.3 cell differentiation /spermatogenesis --- --- 
NOTCH3 19 166 Notch homolog 3 (Drosophila) 19p13.2-p13.1 Notch signaling pathway /regulation of 

development 
Dorso-ventral axis formation/Notch 
signaling pathway 

Cerebral arteriopathy  

PBX3 9 165 pre-B-cell leukemia transcription 
factor 3 

9q33-q34 anterior compartment specification/ embryonic 
development/ hindbrain development/ posterior 
compartment specification 

--- --- 

PPM1A 14 165 protein phosphatase 1A  
magnesium-dependent, alpha  

14q23.1 positive regulation of I-kappaB kinase/NF-
kappaB cascade 

MAPK signaling pathway --- 

NCK2 2 164 NCK adaptor protein 2 2q12 T cell activation /cytoskeletal adaptor activity T cell receptor signaling pathway/Axon 
guidance 

--- 

CHCHD7 8 164 coiled-coil-helix- domain 7 8q12.1 --- --- --- 
LOC653569 8 164 --- --- --- --- --- 
MLLT10 10 164 myeloid/lymphoid leukemia 

translocated to 10 
10p12 transcription factor activity --- Leukemia, acute T-cell 

lymphoblastic 
ENO2 12 164 enolase 2 (gamma, neuronal) 12p13 phosphopyruvate hydratase activity Phenylalanine, tyrosine and tryptophan 

biosynthesis 
--- 

FOXA1 14 164 forkhead box A1 14q12-q13 regulation of transcription --- --- 
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DISP2 15 164 dispatched homolog 2 (Drosophila) 15q15.1 --- --- --- 
CSNK2A2 16 164 casein kinase 2, alpha prime 

polypeptide 
16p13.3-p13.2 protein kinase CK2 activity/ signal transduction Wnt signaling pathway/Tight 

junction/Adherens junction 
--- 

LOC643734 18 164 --- --- --- --- --- 
PLCG1 20 164 phospholipase C, gamma 1 20q12-q13.1 phosphoinositide phospholipase C activity Cholera Infection/ Phosphatidylinositol 

signaling /Natural killer cell mediated 
cytotoxicity 

--- 

SPEN 1 163 spen homolog, transcriptional 
regulator 

1p36.33-p36.11 Notch signaling pathway --- --- 

PCDH1 5 163 protocadherin 1 (cadherin-like 1) 5q32-q33 nervous system development --- --- 
LOC340260 7 163 --- --- --- --- --- 
MARVELD1 10 163 MARVEL domain containing 1 10q24.2 --- --- --- 
CYGB 17 163 cytoglobin 17q25.3 heme binding --- --- 
RAPH1 2 162 Ras association and pleckstrin 

homology domains 1 
2q33 cytoskeleton/signal transduction --- --- 

FLJ10707 3 162 --- --- --- --- --- 
FAM44B 5 162 family with sequence similarity  5q35.2 --- --- --- 
FKBP8 19 162 FK506 binding protein 8, 38kDa 19p12 isomerase activity --- --- 
LIX1L 1 161 Lix1 homolog (mouse) like 1q21.1 --- --- --- 
TYRO3 15 161 TYRO3 protein tyrosine kinase 15q15.1-q21.1 transferase activity --- --- 
MAP1LC3B 16 161 Microtubule associated protein 1 

light chain 3 beta 
16q24.2 autophagic vacuole/autophagy /ubiquitin cycle --- --- 

PRKACA 19 161 protein kinase, cAMP-dependent, 
catalytic, alpha 

19p13.1 cAMP-dependent protein kinase complex Wnt signaling pathway/ Hedgehog 
signaling pathway/ MAPK signaling  

--- 

GNAS 20 161 GNAS complex locus 20q13.3 G-protein coupled receptor protein signaling 
pathway 

Long-term depression/Gap 
junction/Cholera 

Acromegaly/McCune-
Albright syndrome/  

LOC340578 X 161 --- --- --- --- --- 
KIF21B 1 160 kinesin family member 21B 1pter-q31.3 microtubule motor activity --- --- 

FLJ39653 4 160 --- --- --- --- --- 
LY6H 8 160 lymphocyte antigen 6 complex, 

locus H 
8q24.3 cellular defense response/ nervous system 

development 
--- --- 

LOC51145 9 160 --- --- --- --- --- 

USP7 16 160 ubiquitin specific peptidase 7  16p13.3 cysteine-type endopeptidase activity --- --- 

ASH1L 1 159 absent, small, or homeotic-like  1q22 regulation of transcription Tight junction --- 

FLJ90575 4 159 --- --- --- --- --- 
GTF2E2 8 159 general transcription factor IIE, 

polypeptide 2, beta 34kDa 
8p21-p12 general RNA polymerase II transcription factor 

activity complex 
Basal transcription factors --- 

LOC338799 12 159 --- --- --- --- --- 
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LOC645631 16 159 --- --- --- --- --- 
PODXL2 3 158 podocalyxin-like 2 --- --- --- --- 
PFN2 3 158 profilin 2 3q25.1-q25.2 actin binding cytoskeleton organization and 

biogenesis 
Regulation of actin cytoskeleton --- 

NRF1 7 158 nuclear respiratory factor 1 7q32 generation of precursor metabolites and energy --- --- 
LOC643481 11 158 --- --- --- --- --- 
CKAP4 12 158 cytoskeleton-associated protein 4 12q23.3 membrane fraction --- --- 

MAST1 19 158 microtubule associated 
serine/threonine kinase 1 

19p13.2 cytoskeleton organization and 
biogenesis/magnesium ion binding 

--- --- 

LOC200312 22 158 --- --- --- --- --- 
LOC285346 3 157 --- --- --- --- --- 
ATXN7 3 157 ataxin 7 3p21.1-p12 visual perception --- Spinocerebellar ataxia-7 
C6orf148 6 157 chromosome 6 open reading frame 

148 
6q13 --- --- --- 

AIG1 6 157 androgen-induced 1 6q24.2 integral to membrane/membrane --- --- 
LOC642730 8 157 --- --- --- --- --- 
SPPL3 12 157 --- --- --- --- --- 
ZNF219 14 157 zinc finger protein 219 14q11 /transcription factor activity --- --- 

ANKRD9 14 157 ankyrin repeat domain 9 14q32.32 --- --- --- 

MAP2K3 17 157 mitogen-activated protein kinase 
kinase 3 

17q11.2 MAP kinase activity MAPK signaling pathway/Toll-like 
receptor signaling pathway 

--- 

NFIC 19 157 nuclear factor I/C (CCAAT-
binding transcription factor) 

19p13.3 transcription from RNA polymerase II promoter --- --- 

ALX3 1 156 aristaless-like homeobox 3 1p21-p13 Development --- --- 

ZFAND3 6 156 zinc finger,AN1-type domain 3 6pter-p22.3 zinc ion binding --- --- 

PRKACG 9 156 protein kinase, cAMP-dependent, 
catalytic, gamma 

9q13 cAMP-dependent protein kinase activity/male 
gonad development 

Wnt signaling pathway/Hedgehog 
signaling pathway 

--- 

PPAPDC1A 10 156 phosphatidic acid phosphatase type 
2 domain containing 1A 

10q26.12 microtubule/microtubule-based 
movement/structural molecule activity 

--- --- 

JAG2 14 156 jagged 2 14q32 Notch signaling pathway /auditory receptor cell 
fate commitment 

Notch signaling pathway --- 

TLK1 2 155 tousled-like kinase 1 2q31.1 regulation of chromatin assembly or 
disassembly/response to DNA damage stimulus 

--- --- 

RREB1 6 155 ras responsive element binding 
protein 1 

6p25 Ras protein signal transduction --- --- 

MAP3K4 6 155 mitogen-activated protein kinase 
kinase kinase 4 

6q26 JNK cascade/activation of MAPKK activity MAPK signaling pathway --- 
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KCNB2 8 155 potassium voltage-gated channel, 
Shab-related subfamily, member 2 

8q13.2 cation transport/delayed rectifier potassium 
channel activity 

--- --- 

TAOK1 17 155 TAO kinase 1 17q11.2 amino acid phosphorylation/ --- --- 
ZNF521 18 155 zinc finger protein 521 18q11.2 --- --- --- 
C20orf11 20 155 chromosome 20 open reading 

frame 11 
20q13.33 Nucleus --- --- 

SLC6A8 X 155 solute carrier family 6 
(neurotransmitter transporter, 
creatine), member 8 

Xq28 neurotransmitter uptake/neurotransmitter:sodium 
symporter activity 

--- Creatine deficiency 
syndrome, X-linked 

PPARG 3 154 peroxisome proliferative activated 
receptor, gamma 

3p25 generation of precursor metabolites and energy --- Diabetes mellitus, insulin-
resistant, with acanthosis 
nigrican 

KIAA1718 7 154 --- --- --- --- --- 

ASTN2 9 154 astrotactin 2 9q33.1 --- --- --- 

FLJ45530 16 154 --- --- --- --- --- 

CANT1 17 154 calcium activated nucleotidase 1 17q25.3 Golgi stack /NF-kappaB cascade Pyrimidine metabolism/Purine 
metabolism 

--- 

SALL3 18 154 sal-like 3 (Drosophila) 18q23 regulation of transcription --- --- 
LOC645874 3 153 --- --- --- --- --- 

BMP6 6 153 bone morphogenetic protein 6 6p24-p23 cartilage development/cell 
differentiation/cytokine activity 

Hedgehog signaling pathway/TGF-beta 
signaling pathway 

--- 

KDELR2 7 153 endoplasmic reticulum protein 
retention receptor 2 

7p22.1 ER to Golgi vesicle-mediated transport --- --- 

AGTPBP1 9 153 ATP/GTP binding protein 1 9q21.33 carboxypeptidase A activity/proteolysis --- --- 

CPT1A 11 153 carnitine palmitoyltransferase 1A 
(liver) 

11q13.1-q13.2 carnitine O-palmitoyltransferase activity Fatty acid metabolism/Adipocytokine 
signaling pathway 

CPT deficiency, hepatic, type 
IA 

EB-1 12 153 --- --- --- --- --- 
CCNE1 19 153 cyclin E1 19q12 G1/S transition of mitotic cell cycle/androgen 

receptor binding 
Cell cycle --- 

RELB 19 153 v-rel reticuloendotheliosis viral 
oncogene homolog B,3 

19q13.31-
q13.32 

transcription corepressor activity --- --- 

KCTD3 1 152 potassium channel tetramerisation 
domain containing 3 

1q41 --- --- --- 

KCMF1 2 152 potassium channel modulatory 
factor 1 

2p11.2 --- --- --- 

GNL3 3 152 guanine nucleotide binding 
protein-like 3 (nucleolar) 

3p21.1 GTP binding --- --- 
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PLXND1 3 152 plexin D1 3q21.3 development --- --- 

FOXF2 6 152 forkhead box F2 6p25.3 sequence-specific DNA binding --- --- 
LOC653748 7 152 --- --- --- --- --- 

C9orf10 9 152 chromosome 9 open reading frame 
10 

9q22.31 --- --- --- 

SIDT2 11 152 SID1 transmembrane family, 
member 2 

11q23.3 integral to membrane/membrane --- --- 

NOG 17 152 noggin 17q21-q22 cartilage development /nervous system 
development/sensory perception of sound 

TGF-beta signaling pathway Stapes ankylosis syndrome 

LOC645369 18 152 --- --- --- --- --- 

KIF3B 20 152 kinesin family member 3B 20q11.21 anterograde axon cargo transport/determination 
of left/right symmetry 

--- --- 

LOC643325 22 152 --- --- --- --- --- 

SHANK3 22 152 SH3 and multiple ankyrin repeat 
domains 3 

22q13.3 protein binding --- Chromosome 22q13.3 
deletion syndrome 

OTUD5 X 152 OTU domain containing 5 Xp11.23 --- --- --- 
DOCK7 1 151 dedicator of cytokinesis 7 1p31.3 GTPase binding/guanyl-nucleotide exchange 

factor activity 
--- --- 

KCNH1 1 151 potassium voltage-gated channel 
subfamilyH  member1 

1q32-q41 calmodulin binding/cation transport/delayed 
rectifier potassium channel activity 

--- --- 

UNQ6077 1 151 --- --- --- --- --- 
ODC1 2 151 ornithine decarboxylase 1 2p25 lyase activity/ornithine decarboxylase 

activity/polyamine biosynthesis 
Urea cycle and metabolism of amino 
groups/Arginine and proline metabolism 

Colonic adenoma recurrence 

KCNK12 2 151 potassium channel, subfamily K, 
member 12 

2p22-p21 potassium channel activity/ voltage-gated ion 
channel activity 

--- --- 

HEG1 3 151 HEG homolog 1 (zebrafish) 3q21.2 --- --- --- 
CPLX1 4 151 complexin 1 4p16.3 exocytosis/neurotransmitter transport/synaptic 

transmission/syntaxin binding 
--- --- 

FLJ20647 4 151 --- --- --- --- --- 
CSS3 5 151 --- --- --- --- --- 
FNDC1 6 151 fibronectin type III domain 

containing 1 
6q25 --- ECM-receptor interaction --- 

KIAA1706 7 151 --- --- --- --- --- 
GRB10 7 151 growth factor receptor-bound 

protein 10 
7p12-p11.2 SH3/SH2 adaptor activity/cell-cell signaling --- --- 

WDR5 9 151 WD repeat domain 5 9q34 protein binding --- --- 
C10orf9 10 151 chromosome 10 open reading 

frame 9 
10p11.21 regulation of progression through cell cycle --- --- 
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PHF21A 11 151 PHD finger protein 21A 11p11.2 protein binding/regulation of transcription --- --- 
DRAP1 11 151 DR1-associated protein 1 (negative 

cofactor 2 alpha) 
11q13.3 transcription corepressor activity/transcription 

factor activity 
--- --- 

GNAO1 16 151 guanine nucleotide binding protein 
(G protein) 

16q13 G-protein coupled receptor protein signaling 
pathway /nervous system development 

Long-term depression --- 

FAM57A 17 151 family with sequence similarity 57, 
member A 

17p13.3 integral to membrane/membrane --- --- 

LOC645722 17 151 --- --- --- --- --- 
CACNG4 17 151 calcium channel, voltage-

dependent, gamma subunit 4 
17q24 calcium ion binding MAPK signaling pathway --- 

TUBB4 19 151 tubulin, beta 4 19p13.3 GTP binding/ microtubule-based movement Gap junction --- 
C20orf18 20 151 chromosome 20 open reading 

frame 18 
20p13 ubiquitin cycle --- --- 

SLC24A3 20 151 solute carrier family 24, member 3 20p13 antiporter activity /symporter activity --- --- 
ZNF278 22 151 zinc finger protein 278 22q12.2 DNA-dependent --- --- 

 
 


