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ABSTRACT

A VARIATIONAL APPROACH TO STATIONARY AND
ROTATING BOSE-EINSTEIN CONDENSATES

Murat Keçeli

M.S. in Physics

Supervisor: Assist. Prof. M. Özgür Oktel

July, 2006

After the experimental demonstration of Bose-Einstein condensation (BEC)

in alkali gases [6, 7, 18], the number of theoretical and experimental papers on

ultracold atomic physics increased enormously [48]. BEC experiments provide a

way to manipulate quantum many-body systems, and measure their properties

precisely. Although the theory of BEC is simpler compared to other many-body

systems due to strong correlation, a fully analytical treatment is generally not

possible. Therefore, variational methods, which give approximate analytical so-

lutions, are widely used. With this motivation, in this thesis we study on BEC

in stationary and rotating regimes using variational methods.

All the atoms in the condensate can be described with a single wave function,

and in the dilute regime this wave function satisfies a single nonlinear equation

(the Gross-Pitaevskii equation) which resembles the nonlinear Schrödinger equa-

tion in nonlinear optics. A simple analytical ansatz, which has been used to

describe the intensity profile of the similariton laser [41, 43] having a similar be-

havior in the limiting cases of nonlinearity with ground state density profile of

BECs, is used as the trial wave function to solve the Gross-Pitaevskii equation

with variational principle for a wide range of the interaction parameter. The

simple form of the ansatz allowed us to modify it for both cylindrically symmet-

ric and completely anisotropic harmonic traps. The resulting ground state wave

function and energy are in very good agreement with the analytical solutions

in the limiting cases of interaction and numerical solutions for the intermediate

regime.
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In the second part, we consider a rapidly rotating two-component Bose-

Einstein condensate containing a vortex lattice. We calculate the dispersion rela-

tion for small oscillations of vortex positions (Tkachenko modes) in the mean-field

quantum Hall regime, taking into account the coupling of these modes with den-

sity excitations. Using an analytic form for the density of the vortex lattice, we

numerically calculate the elastic constants for different lattice geometries. We also

apply this method to the calculation the elastic constant for the single-component

triangular lattice. For a two-component BEC, there are two kinds of Tkachenko

modes, which we call acoustic and optical in analogy with phonons. For all lat-

tice types, acoustic Tkachenko mode frequencies have quadratic wave-number

dependence at long-wavelengths, while the optical Tkachenko modes have linear

dependence. For triangular lattices the dispersion of the Tkachenko modes are

isotropic, while for other lattice types the dispersion relations show directional

dependence consistent with the symmetry of the lattice. Depending on the in-

tercomponent interaction there are five distinct lattice types, and four structural

phase transitions between them. Two of these transitions are second-order and

are accompanied by the softening of an acoustic Tkachenko mode. The remain-

ing two transitions are first-order and while one of them is accompanied by the

softening of an optical mode, the other does not have any dramatic effect on

the Tkachenko spectrum. We also find an instability of the vortex lattice when

the intercomponent repulsion becomes stronger than the repulsion within the

components.

Keywords: Bose-Einstein condensation, Gross-Pitaevskii equation, vortex lattice,

Tkachenko modes, structural phase transition, phase separation, optical lattices.



ÖZET

DURAĞAN VE DÖNEN BOSE-EINSTEIN
YOĞUŞMALARINA VARYASYONEL YAKLAŞIM

Murat Keçeli

Fizik, Yüksek Lisans

Tez Yöneticisi: Yrd. Doç. Dr. M. Özgür Oktel

Temmuz, 2006

Bose-Einstein Yoğuşması’nın (BEY’in) deneysel olarak gösterilmesinden sonra

[6, 7, 18], ultrasoğuk atomik fizik hakkındaki deneysel ve kuramsal makalelerin

sayısı hızla arttı [48]. Yapılan deneyler kuantum çok-parçacık sistemlerin kontrol

edilebilmesini ve oldukça kesin ölçümler elde edilmesini sağladı. Buna ek olarak

BEY fazında bağıntıların kuvvetli olması kuramsal olarak anlaşılmasını da diğer

çok-parçacıklı kuantum sistemlerine göre kolay kılar. Bu güdülenme ile bu tezde

BEY’i durağan ve dönen durumlarında varyasyonel yöntemler kullanarak kuram-

sal olarak inceledik.

Tezin ilk bölümünde durağan durum araştırıldı. BEY fazındaki atomlar tek

bir dalga fonksiyonu ile ifade edilirler ve bu dalga fonksiyonu da doğrusal ol-

mayan Gross-Pitaevskii denklemini sağlamak zorundadır. Bu denklem, daha önce

similariton lazerlerinin yoğunluk profilini açıklamak için kullanılan fonksiyonun

[41, 43] yardımıyla varyasyonel olarak çözüldü. Elde ettiğimiz sonuçlar sayısal

yöntemlerle karşılaştırıldı.

Tezin ikinci bölümünde BEY fazına girmiş dönen gazlar incelendi. Bu faz-

daki gazlar süperakışkan özellikleri gösterdikleri için hız alanları dönüşsüzdür.

Dönmesi ancak belli bir açısal momentumun üzerinde oluşan girdaplarla

mümkündür. Bu girdapların sayısı, dönme hızıyla beraber artar ve gir-

daplar bir örgü oluşturur. En düşük enerjili yapı süperiletkenlerdeki Abrikosov

örgüsünde olduğu gibi üçgen örgüdür. Bu örgüdeki girdaplara ufak bir tedir-

ginlik verildiğinde, örgü toplu olarak salınım yapar ve bu salınıma Tkachenko

salınımı denir. Tezde önce tek bileşenli BEY’ler için bu salınımın hesaplan-

ması gösterildikten sonra benzer yöntemi iki bileşenli beyler için uygulandı.
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İki bileşenli BEY’lerin ilginç bir özelliği bileşenler arasındaki etkileşime bağlı

olarak üçgen örgü dışında, kare, diktörtgen ve eşkenar dörtgen düzeninde örgüler

oluşturabilmesidir. Tüm bu örgüler için Tkachenko salınımı frekansı hesapla-

narak bu örgüler arasındaki faz geçişleri de incelendi. Elde edilen sonuçlara göre

Tkachenko salınımının iki farklı kolu vardır. Bu kollar çift atomlu kristallerdeki

fonon kipine benzetilerek, akustik ve optik kip diye adlandırıldı. Akustik kipin

her örgü için yöne bağlı olduğu gösterildi. Bu da daha önce bu kipi araştırmak

için yapılan deneyde bu salınımın hızla sönümlenişinin açıklanabilmesini sağladi.

Ayrıca ikinci dereceden faz geçişlerinde akustik Tkachenko kipinin katı hal

fiziğinden öngörülebileceği gibi yumuşadığı tespit edildi.

Anahtar sözcükler : Bose-Einstein yoguşması, Gross-Pitaevskii denklemi, girdap

örgüleri, Tkachenko salınımları, faz geçişleri, yapısal faz ayrışması, optik örgüler.
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Feyza and my fiancé Sevnur. I can not imagine a life without their love and

support. This thesis can only be an opportunity for me to thank them, and as a

part of my endless thanks, I want to dedicate this thesis to my mom and dad.

vii



To my mom and dad...

viii



Contents

1 Introduction 1

1.1 Bose-Einstein Condensation . . . . . . . . . . . . . . . . . . . . . 2

1.2 Organization of the Thesis . . . . . . . . . . . . . . . . . . . . . . 4

2 Gross-Pitaevskii Equation 6

2.1 Mean Field Theory . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.2 Analytical Solutions . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.2.1 Ideal Gas Approximation . . . . . . . . . . . . . . . . . . . 8

2.2.2 Thomas-Fermi Approximation . . . . . . . . . . . . . . . . 9

2.2.3 Similariton Ansatz for variational calculations [45] . . . . . 10

3 Rotating Bose-Einstein Condensates 18

3.1 What is a Vortex? . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3.2 Vortex Lattices and Lowest Landau Level . . . . . . . . . . . . . . 20

3.3 Tkachenko Oscillations . . . . . . . . . . . . . . . . . . . . . . . . 22

3.4 Spinor Condensates . . . . . . . . . . . . . . . . . . . . . . . . . . 25

ix



CONTENTS x

4 Spinor BECs in the Lowest Landau Level 26

4.1 Vortex lattices of two-component BEC . . . . . . . . . . . . . . . 31

4.2 Numerical calculation of elastic constants . . . . . . . . . . . . . . 37

4.3 Hydrodynamic equations . . . . . . . . . . . . . . . . . . . . . . . 40

4.4 Overlapped triangular lattice . . . . . . . . . . . . . . . . . . . . . 43

4.5 Interlaced triangular lattice . . . . . . . . . . . . . . . . . . . . . 49

4.6 Square lattice . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

4.7 Rectangular lattice . . . . . . . . . . . . . . . . . . . . . . . . . . 54

4.8 Rhombic lattice . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

4.9 Structural phase transitions . . . . . . . . . . . . . . . . . . . . . 61

5 Conclusions and Future Work 64

5.1 Similariton Function . . . . . . . . . . . . . . . . . . . . . . . . . 64

5.2 Tkachenko Modes for Spinor BECs . . . . . . . . . . . . . . . . . 65

5.3 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

5.3.1 Phase Separation for α ≥ 1 . . . . . . . . . . . . . . . . . 68

5.3.2 Optical Lattices . . . . . . . . . . . . . . . . . . . . . . . . 69

A Jacobi Theta Function 77



List of Figures

1.1 (Color) Phase diagram of ordinary matter. The region under the

curve is forbidden. BEC of alkali gases is a metastable state in this

region. From Fig. 4 of [22] . . . . . . . . . . . . . . . . . . . . . . 3

1.2 (Color) Images of velocity distributions from Ketterle group web

site [1]. Leftmost image is taken at a temperature above Tc, the

round Gaussian distribution is due to Maxwell-Boltzmann distri-

bution. The middle image is just below the transition temperature

where both thermal and condensed clouds are present, so there is a

spike and a round curve. Right image is at a temperature T ¿ Tc,

so that the thermal cloud is vanishing and a peak comes from the

atoms condensed at the ground state. Color corresponds to the

number of atoms increasing from blue to red. . . . . . . . . . . . 4

2.1 Trial similariton function. Solid curve is for n = 1 and dashed

curve is for n = 10. . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.2 (Color) Ground state energy with respect to interaction parameter

β obtained with the variational function (black solid line). The

resulting energy of a Gaussian variational function is given with

dotted (red) line and energy obtained with Thomas-Fermi solution

is given with dashed line (green). Improved Thomas-Fermi solution

[52] is given with dotted line (blue). The inset is given for small β

values. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

xi



LIST OF FIGURES xii

2.3 (Color) Wave function calculated with the steepest descent method

[26] is shown with bold line (blue) whereas the similariton ansatz

solution is given with dashed line (red) for β = 100. . . . . . . . 14

2.4 Change of variational parameters with interaction parameter β is

given. Left plot shows the number of terms in the summation and

the right one shows the change of width of the similariton ansatz. 14

3.1 (a) Vortex Lattice (b) Classical body rotation ([36]) . . . . . . . . 21

3.2 Energy bands in the LLL regime. n = 0 is the lowest energy and

n increases in the vertical direction. Infinite degeneracy of m in

Landau levels is lifted because of the minute difference between

rotation frequency and trapping frequency. . . . . . . . . . . . . 22

4.1 Lattice geometry for an overlapped triangular lattice (a), an in-

terlaced triangular lattice (b), and a square lattice (c). Unit cells

are shown with dashed lines. (d) Unit cell geometry for an arbi-

trary lattice. White and black dots represent vortices of different

components. Definitions of a, b, u, v are given in Sec. 4.1. . . . . . 35

4.2 (a) Lattice geometry for a rectangular lattice; a unit cell is shown

with dashed lines. (b) Change of the aspect ratio of the rectangle

v∗ with respect to interaction strength α. The unit cell grows in

the y direction as α → 1. At α = 1, v∗ =
√

3. (c) Lattice geometry

of a rhombic lattice, dashed lines showing a unit cell. η is twice

the opening angle of the rhombic unit cell. (d) Plot of η vs α for

the rhombic lattice. As α → 0.3732, η → 90◦, and the rhombus

continuously changes to a square. At α = 0.1724, η makes a jump

from 60◦ to 67.958◦. . . . . . . . . . . . . . . . . . . . . . . . . . . 36

4.3 Contour plot of the energy for a one-component triangular lattice,

Eq. (4.15). The inset is a closer view around the equilibrium point.

Circular contours indicate that quadratic fit of Eq. (4.16) is possible. 38



LIST OF FIGURES xiii

4.4 Elastic constants (Cab, Cu) of overlapped (−1 < α < 0) and inter-

laced (0 < α < 0.1723) triangular lattices with respect to α. As

the attraction between the components increases (α → −1), Cab

increases, and Cu decreases linearly. When there is no interaction

between components (α = 0), Cab = 0 which causes the disconti-

nuity in the transition to interlaced triangular lattice. At α = 0,

the value of Cu is equal to the shear modulus of a one-component

vortex lattice. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

4.5 Spectrum for overlapped triangular lattice, (a), (c), at α = −0.5,

and interlaced triangular lattice (b), (d) at α = 0.1. k′ and ω are

scaled to rotation frequency Ω, and gn
Ω

= 0.1. Dispersion relations

are the same for both lattice types, Eqs. (4.52) and (4.58). How-

ever, the elastic constants are different (see Fig. 4.4). Both acous-

tic and optical inertial modes, (a), (b), are gapped. For both lat-

tices optical Tkachenko modes are linear while acoustic Tkachenko

modes are quadratic in k. . . . . . . . . . . . . . . . . . . . . . . 47

4.6 Elastic constants (Cab, Cu, Cv) of square lattice, Eqs. (4.66) and

(4.74). As the components attract each other more, Cab increases

linearly. Both limits of α lead to second-order phase transitions.

Cu and Cv vanish at α = 0.3733 and α = 0.9255, respectively. . . 51

4.7 Dispersion relation of the acoustic Tkachenko modes for the square

lattice, Eq. (4.71) for α = 0.4 (a), and α = 0.85 (b). Underlying

contour plots are given to illustrate the anisotropy of the modes. . 53

4.8 Elastic constants (Ca, Cb, Cu, Cv) of rectangular lattice. The upper

figure shows optical elastic constants(Ca, Cb). As α → 1, Ca van-

ishes. The lower figure shows acoustic elastic constants (Cu, Cv).

As α → 1, Cu → Cv and there remains only one acoustic elastic

constant similar to the one-component triangular lattice. . . . . . 55



LIST OF FIGURES xiv

4.9 Dispersion relation of the optical Tkachenko mode of the rectan-

gular lattice, Eq. (4.93), for α = 0.95, gn
Ω

= 0.1. The underlying

contour plot reflects the symmetry of the rectangular lattice. . . . 56

4.10 Dispersion relation of the acoustic Tkachenko modes of the rect-

angular lattice, Eq. (4.87) for α = 0.95 (a) and for α = 1.0 (b).

At α = 1.0, the dispersion relation becomes isotropic. The simi-

larity between (a) and Fig. 4.7(b) is due to the second-order phase

transition between square and rectangular lattices. . . . . . . . . . 57

4.11 Optical elastic constants [upper, Eq. (4.106)] and acoustic elastic

constants [lower, Eq. (4.99)] of rhombic lattice with respect to α.

As α → 0.3732, Ca → Cb, and Cu, Cv vanish, leaving two optical

elastic constants, and one acoustic elastic constant for the square

lattice. In the opposite limit α → 0.1724, six elastic constants

remain due to the discontinuity in the transition to interlaced tri-

angular lattice. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

4.12 Dispersion relation of the acoustic Tkachenko mode of the rhombic

lattice, Eq. (4.102), for α = 0.2. The anisotropy reflects the

twofold symmetry of the rhombic lattice (see Fig. 4.13). . . . . . . 60

4.13 (Color) Polar plot of the frequency of the acoustic [left, Eq. (4.102)]

and the optical [right, Eq. (4.108)] Tkachenko modes for the rhom-

bic lattice (k = 0.1, gn
Ω

= 0.1, α = 0.2). η/2 is the opening angle

of the rhombic unit cell at α = 0.2. . . . . . . . . . . . . . . . . . 61

5.1 Symmetric(left) and asymmetric(right) phase configurations for

two-component BEC. . . . . . . . . . . . . . . . . . . . . . . . . . 68



List of Tables

2.1 The value of the wave function at the center, the root mean square

size rrms and chemical potential is tabulated in units of
√

N/a3
w,

aw and h̄ω respectively. For comparison numerical results of Ref.

[10] is given in parentheses. . . . . . . . . . . . . . . . . . . . . . 15

2.2 Results of our calculation for a cylindrically harmonic trap with

λ =
√

8. Energy and length units are Nh̄ω and aω. The results of

the numerical calculation in Ref. [26] is given in parentheses for

comparison except for the last row. For β = 2165 Thomas-Fermi

result for the chemical potential are given in parentheses. . . . . . 16

2.3 The chemical potential per particle in units of h̄ω is calculated

using the ansatz given in Eq. (2.14) for a completely anisotropic

trap with λ =
√

2 and gγ = 2. The interaction parameter β is

obtained from Ref. [50] and the values in parentheses corresponds

to the numerical solution given in [64]. The variational parameters

nx,y,z and dx,y,z are also tabulated. . . . . . . . . . . . . . . . . . . 17

xv



Chapter 1

Introduction

If someone makes a survey about the most exciting topics in physics, the re-

sult will definitely include lasers, superconductors and superfluids. Bose-Einstein

condensation (BEC) is in the heart of these three ‘different’ subjects. Lasers can

be thought of as BEC of photons, superconductors are in a sense BEC of electron

pairs and superfluids are composed of a condensed and a normal part. Therefore,

it is very important to understand BEC to advance our knowledge about these

topics.

Moreover, cooling below 10−6 K with the advanced laser and magnetic tech-

niques has led to the demonstration of BEC in alkali atom gases, which was the

holy grail of atomic physics. Although superconductors and superfluids can also

be regarded as the experimental demonstration of BEC, the strong interaction

and presence of noncondensed part in these systems shadow the simplicity and

beauty of BEC. On the other hand, weak interaction among particles, and nearly

100% condensation in gaseous BEC is a clean demonstration of BEC phase. This

provides a laboratory to test the theories of many-body quantum physics.

1



CHAPTER 1. INTRODUCTION 2

1.1 Bose-Einstein Condensation

In 1920s S.N. Bose, an Indian physicist from Bangladesh, was trying to publish

his study about black-body radiation in which he treated electromagnetic waves

as a gas of ‘identical particles’. He wrote a letter to A. Einstein about his study

and succeeded in attracting Einstein’s interest and publishing his result [17].

Einstein extended the ‘identical particle’ approach to ideal gas and wrote the

influential paper [28] in which he mentions about the critical point reached either

decreasing the temperature or increasing the number of particles, where all the

particles condense into ground state. Although it is not known at that time, this

new statistics now called Bose-Einstein statistics is valid for bosonic particles

which have integer spins.

For Bose-Einstein statistics, the distribution function, average number of par-

ticles occupying single quantum state i, can be derived using combinatorics and

maximizing entropy for a microcanonical ensemble (total energy and number of

particles are fixed);

fi(ε) =
1

eβ(εi−µ) − 1
, (1.1)

where the physical meaning of β and µ can be understood from the first law of

thermodynamics. It turns out that β = 1/kBT (kB is Boltzmann constant and

T is absolute temperature) and µ is the chemical potential, the energy required

to add a particle to the system. The exponential term is also present in other

distribution functions but the −1 term makes a difference. Absence of it leads to

Maxwell-Boltzmann statistics and same term with opposite sign leads to Fermi-

Dirac statistics which is for fermions.

The first order thermodynamic phase transition that Einstein pointed out

occurs when the de Broglie wavelength λ =
√

2πh̄2/mkBT is as large as mean

interparticle separation r = n−1/3 (h̄, m, n are reduced Planck constant, particle

mass, and number density, respectively). Critical temperature Tc is determined in

the thermodynamic limit where the chemical potential is zero. Chemical potential

is negative above this critical value and equals zero below Tc. This phenomenon

did not create much attention until 1938 when superfluidity was discovered at a
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Figure 1.1: (Color) Phase diagram of ordinary matter. The region under the
curve is forbidden. BEC of alkali gases is a metastable state in this region. From
Fig. 4 of [22]

.

fairly close transition temperature for BEC (superfluid transition was observed

for helium at 2.2 K whereas the critical temperature of BEC is 3.2 K). At that

time F. London indicated this resemblance and BEC has started to be taken

more seriously although the superfluid helium being a strongly interacting system

differs from an ideal gas, and only 10% of the liquid is condensed [75].

Therefore, there was an enormous study to achieve BEC in a system that

is close to an ideal gas. Although the idea is simple -cool the gas until the de

Broglie wavelength is close to interparticle spacing- there are many experimental

difficulties. Many groups in different countries try to capture this holy grail of

atomic physics with different atoms like spin-polarized hydrogen, atomic hydro-

gen, sodium and rubidium. Main difficulty was the combination of molecules due

to three body collisions and the formation of a solid instead of a BEC as can

be seen from the phase diagram in Fig. 1.1. New techniques of cooling such as

laser cooling and evaporative cooling with diluting the gas as much as 106 times

thinner than air helped scientists a lot and finally in 1995 JILA group in Boulder,

Colorado achieved BEC of 2000 Rb atoms. Soon after, the group of W. Ketterle

at MIT demonstrated BEC of 106 Na atoms. These groups used a magnetic trap
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Figure 1.2: (Color) Images of velocity distributions from Ketterle group web site
[1]. Leftmost image is taken at a temperature above Tc, the round Gaussian
distribution is due to Maxwell-Boltzmann distribution. The middle image is just
below the transition temperature where both thermal and condensed clouds are
present, so there is a spike and a round curve. Right image is at a temperature
T ¿ Tc, so that the thermal cloud is vanishing and a peak comes from the
atoms condensed at the ground state. Color corresponds to the number of atoms
increasing from blue to red.

to hold the gas and were able to image it with optical methods. The clean evi-

dence of BEC can be seen in the momentum distribution imaged after letting the

gas expand. (Fig. 1.2)

Today, there are several experimental groups that run experiments on their

BECs which can be created either by using magnetic, optical traps or even with

permanent magnets (For more recent information see Ref. [2]). They can trap

more than 106 atoms and cool down to temperatures beyond 10−9 K.

1.2 Organization of the Thesis

The thesis is organized as follows: Starting with a motivation and a brief in-

troduction to Bose-Einstein Condensation, in Chapter 2 mean-field description of



CHAPTER 1. INTRODUCTION 5

BEC is given. The governing equation of BEC, the Gross-Pitaevskii equation, is

introduced and possible solving methods are investigated. Following that a varia-

tional method to solve this equation is explained in detail. In the next chapter the

effect of rotation on BEC is analyzed. This chapter is like a review of literature

and an introduction to our main work in this thesis. The topological defects on

BEC, vortices and vortex lattices are defined with the collective excitations of the

lattice called Tkachenko oscillations. After that lowest Landau level regime and

spinor condensates are introduced. Chapter 3 is the main work of this thesis and

it is given in the same way as it is published. This work is about vortex lattice ex-

citations in rotating spinor BECs. Inertial modes which are density oscillations

are also derived but the main focus of interest is on Tkachenko modes. Since

there are different lattice types in two-component BECs each lattice type and its

excitation is investigated separately. The first and second order phase transitions

between different lattice types are identified with the explanation of the related

mechanism ‘mode softening’. The summary of our results and possible extensions

of this thesis are given in the concluding chapter.



Chapter 2

Gross-Pitaevskii Equation

As described in Section 1.1, below a critical temperature bosons occupy the

ground state macroscopically. If the temperature is lowered continuously the con-

densate fraction increases and becomes one when T = 0. Since the experiments

can be performed well below the critical temperature, one should not bother with

the tiny uncondensed part. Assuming a pure condensate means that you can de-

scribe all the atoms in the system with a single wave function which simplifies

the picture very much. However, since we still have a many body problem, we

should consider the interaction between the particles.

Fortunately, BECs of alkali gases are very dilute, that is in the order of 1015

cm−3, 106 times thinned with respect to air. This gives another simplification

which is assuming only two body collisions. In fact, two body collisions are

essential in producing BECs, because it restricts the possibility of atoms to form

molecules which requires another atom to remove the excess energy of bonding.

These type of collisions are described by s-wave scattering length a which can

be determined experimentally. The typical values for alkali atoms are in the

order of ten nanometers. These values can also be changed using magnetic field

via Feshbach resonance. This brings a big freedom for theorists to interpret

the interaction as they want. Although two-body collisions is a meaningful and

helpful simplification, a nonlinear term which makes GPE analytically unsolvable

is indispensable.

6
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In this chapter, we will give a variational formulation of the Gross-Pitaevskii

equation (GPE) in Section 2.1 and then give approximate analytical solutions for

this equation in the following section. For the last section, we will solve GPE

variationally using a trial wave function.

2.1 Mean Field Theory

Gross-Pitaevskii theory [62, 34, 35] is found to be very successful to describe

the ground state and excitations of the Bose-Einstein condensates (BECs) in

dilute atomic gases. The success of this theory lies in the fact that the condensate

can be described with a single wave function and the interactions between the

particles are described only with s-wave scattering. The condition for the former

is T ¿ Tc, where Tc is the critical temperature for BEC and for the latter is

n1/3a ¿ 1, where n is the number density of the condensate and a is the s-wave

scattering length. The theory reduces to a single equation that describes the

condensate wave function, known as Gross-Pitaevskii equation (GPE); a type of

nonlinear Schrödinger equation (NLSE) which arises in many areas of physics

such as nonlinear optics (NLO) and hydrodynamic theory of fluids.

The energy functional for a condensate in a trap potential V (r) can be written

as,

E(ψ) =
∫

dr

(
h̄2

2m
|∇ψ(r)|2 + V (r)|ψ(r)|2 +

g

2
|ψ(r)|4

)
. (2.1)

The terms in the integral correspond to kinetic, trapping and interaction energies,

respectively, where g = 4πh̄2a
m

, and m is the atomic mass of the trapped bosons.

GPE can be obtained by minimizing the ground state energy functional given

in Eq. 2.1 of the condensate with respect to the wave function and complex

conjugate of it. Time-independent GPE then follows as,

− h̄2

2m
∇2ψ(r) + V (r)ψ(r) + g|ψ(r)|2ψ(r) = µψ(r), (2.2)

where µ is chemical potential introduced as the Lagrange multiplier with the

normalization constraint
∫

dr|ψ(r)|2 = N . Normalization integral implies that
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number density of the condensate is given as n = |ψ(r)|2. Nonlinearity of GPE

is due to interaction between particles and its effect becomes more pronounced

as the number of particles in the condensate increases which is the case for cur-

rent experiments where more than 107 particles are in the BEC phase. Since

nonlinearity restricts exact analytical solutions of NLSEs except soliton-like so-

lutions, many numerical algorithms [27, 63, 26, 64, 10] and variational methods

[14, 42, 60, 32, 16, 65] are developed to find the ground state solution. Although

variational methods give only an upper bound to the exact ground state energy,

they require less calculation and can give accurate results if a suitable trial func-

tion is chosen. Another advantage of the variational principle is that it gives the

functional form of the wave function which can be used to obtain further infor-

mation on the condensate. Therefore, many trial functions are proposed for the

purpose of obtaining a better bound for the ground state energy. These functions

are generally chosen by adding parameters to a known approximate analytical

solution and approximate solutions can be obtained by looking at the limiting

cases of the GPE where the nonlinearity is negligibly small or very high.

2.2 Analytical Solutions

2.2.1 Ideal Gas Approximation

The nonlinearity in GPE arises from the interaction term and our first assump-

tion will be to ignore this term. That is equal to assuming an ideal Bose gas.

This leads to a linear equation, which is simply the Schrödinger equation where

the chemical potential becomes the energy eigenvalue. However, this equation

is exactly solvable for only very special potentials, so we will assume a spherical

harmonic trap. This is not a bad approximation since this kind of trap is used

in many experiments. Hence, the problem just turns into a simple quantum me-

chanics textbook example, a particle in a simple harmonic trap, and here we have

N particles but they are all in the same state. This is exactly solvable and in
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three dimensions the wave function has the form,

ψ(r) =

√
N

π3/4d3/2
e−r2/2d2

(2.3)

where d is the oscillator length, d =
√

h̄
mω

. Since this is the solution for noninter-

acting case, we can take it as our trial function to solve GPE given in Eq. (2.4)

as a simple application of the variational method. We again assume a spherical

harmonic trap, that is V (r) = 1
2
mω2r2. Solving GPE is equivalent to finding the

energy from Eq. (2.1) so by inserting the Gaussian wave function given in Eq.

(2.3) as our trial function assuming the width of this Gaussian as our variational

parameter, we can obtain,

E =
3N

4

(
h̄2

md2
+ mω2d2 +

4gN

3(2π)3/2d3

)
. (2.4)

We should minimize this energy with respect to d, our variational parameter, to

find an equation for it. This gives us,

− h̄2d

m
+ mω2d5 − 2gN

(2π)3/2
= 0. (2.5)

This equation is a fifth order polynomial equation, so it doesn’t have a closed

form solution. Therefore, we should solve it numerically. Inserting, g = 4πh̄2a
m

where a is the s-wave scattering length which is a quantity that can be tuned

using the Feshbach resonance ideally from −∞ to ∞, and scaling the parameter

d with the oscillator length, we get

− d̃ + d̃5 − g̃ = 0, (2.6)

where g̃ =
√

2mω
πh̄

aN and d̃ = d√
h̄

mω

.

As a check we can easily see the solution for g̃ = 0 gives d̃ = 1 which is the

solution for the ideal gas case. We can find the solutions for different values of g̃

and obtain the density profiles for these different regimes.

2.2.2 Thomas-Fermi Approximation

For the opposite case where nonlinearity is dominant, the kinetic energy term

can be neglected in GPE, which is called Thomas-Fermi Approximation (TFA).
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If we write GPE given in Eq. 2.2 without this term, we get,

V (r)ψ(r) + 2g|ψ(r)|2ψ(r) = µψ(r). (2.7)

We can easily see that solution for the density is,

n(r) =
µ− V (r)

2g
(2.8)

when right hand side of the equation is positive, and zero otherwise. Since the

chemical potential and interaction strength does not depend on the position we

can say that density profile is determined by the trapping potential. Hence if we

have a harmonic trap as in the previous case the density profile turns out to be an

inverted parabola. This shows that as the interaction increases the density profile

changes from a Gaussian to a parabola for a harmonic trap. TFA can be improved

by adding the kinetic energy term obtained with the resulting wave function.

However, derivative of the resulting wave function has logarithmic divergence

which forces a cut off radius R to be inserted to improve the approximation.

This gives kinetic energy per particle as [52],

Ekin

N
= (15β)−2/5

(
1

2
ln (480β)− 5

4

)
, (2.9)

where β ≡ Na/aω is known as the interaction parameter.

2.2.3 Similariton Ansatz for variational calculations [45]

Recently a semi-analytic theory of the similariton lasers is developed [43] using

a trial pulse shape which can be adjusted to have either a Gaussian or a parabolic

form. The trial function to describe the intensity profile is given as,

Sn(x) = exp

(
−

n∑

k=1

x2k

k

)
. (2.10)

For this function, the Gaussian to parabolic behavior can be clearly seen in Fig.

2.1 as the parameter n changed. In nonlinear optics (NLO) the intensity of light

is analogous to the density of the condensate and NLSE for this system is used to

describe the propagation of laser light in an optical medium where the nonlinear-

ity gets in. Since the governing equations are very similar, it is natural to expect



CHAPTER 2. GROSS-PITAEVSKII EQUATION 11

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

x

S
n(x

)

Figure 2.1: Trial similariton function. Solid curve is for n = 1 and dashed curve
is for n = 10.

similar solutions for these different systems. Soliton-like solutions and self-similar

solutions (SSS) of NLSE are important both in BEC and NLO. Soliton-like solu-

tions arise when the nonlinearity is compensated by the dispersion, and they are

only exact analytical solutions of these NLSEs, whereas self-similar solutions are

asymptotic solutions that show up when the effects of initial conditions die out,

but the system is still far from the final state [11]. Although soliton type solu-

tions are well investigated in both NLO and BEC communities, SSS are not well

studied. In BEC community self-similar solutions are used to understand BEC

growth when the the trap holding the condensate is removed. In optics, these

type of solutions are used more extensively from Raman scattering to pulse prop-

agation in fibers, and it is shown that linearly chirped parabolic pulses are exact

asymptotic solutions of NLSE with gain [41]. Recently, self-similar propagation

of ultrashort parabolic pulses in a laser resonator is observed and an analytic

ansatz is developed to describe the intensity profile of this pulse [43]. The so

called ‘similariton’ pulse has a nearly parabolic intensity profile to reduce the

effect of Kerr nonlinearity. However, initially nonlinearity is lower and the pulse

has a Gaussian shape. Therefore, the ansatz proposed in [43] to describe these

pulses has an adjustable profile between a Gaussian and an inverted parabola

which is given in Eq. (2.10).
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This function becomes a Gaussian when n = 1 and turns into an inverted

parabola when n →∞ since the summation in the exponent converges to ln(1−
x2) in that limit for |x| < 1, moreover it converges so quickly that adding about

ten terms is enough to get a parabolic profile with smoother ends which is a

desirable property. Besides, this function is integrable which makes it a good

candidate for variational calculations.

For the reasons explained, we will make use of the similariton ansatz given

in Eq. 2.10 as our trial wave function to minimize the energy functional given

in Eq. (2.1). To simplify the calculations, we nondimensionalize the Gross-

Pitaevskii functional by scaling length, energy and wave function with oscillator

length aω =
√

h̄
mω

, h̄ω and
√

Naω, respectively. We first analyze the solution for

spherical harmonic trap V (r) = 1
2
mω2r2 and introduce the parameter β ≡ Na/aω

which is a measure of the influence of the interaction.

E(ψ)

N
= 2π

∫ ∞

0
d3r

(
|∇ψ(r)|2 + V (r)|ψ(r)|2 + 2πβ|ψ(r)|4

)
. (2.11)

Ideally β can take any value between −∞ to ∞ since all the parameters inside

are experimentally tunable. However, negative scattering length which means

attractive interaction, causes collapse of the condensate when the particle number

is high. For this regime our results agree with the results given in Ref. [14]. In the

present work we concentrate on repulsive interaction. With proper normalization

the trial wave function has the form,

ψ(r) =

√
1

4πd3In

exp

(
n∑

k=1

(r/d)2k

2k

)
, (2.12)

where d and n are our variational parameters with In =
∫∞
0 drr2pn(r) which is

an integral that can be calculated analytically for n = 1, 2 and numerically for

n > 2. Here the parameter d is responsible for the width of the condensate which

increases as the interaction increases, and n takes care of flattening of the central

density. We minimize the energy with respect to d for different n values and chose

the n that gives the minimum energy. For d, we obtain a fifth order polynomial

equation where only one of the roots is physically meaningful.
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Figure 2.2: (Color) Ground state energy with respect to interaction parameter β
obtained with the variational function (black solid line). The resulting energy of a
Gaussian variational function is given with dotted (red) line and energy obtained
with Thomas-Fermi solution is given with dashed line (green). Improved Thomas-
Fermi solution [52] is given with dotted line (blue). The inset is given for small
β values.

2.2.3.1 Isotropic Traps

We can compare our results with the analytical approximations. For small

β values, our trial function reduces to a Gaussian and gives the exact result for

β = 0, and for large β our results agree well with the improved TFA results

as shown in Fig. 2.2. We also compared the resulting wave function with the

numerical solutions obtained by steepest descent method (with courtesy of S.

Sevinçli) for different β values in Fig. 2.3. We also tabulated our results in Table

2.1 and include the results of a recent numerical analysis which direct minimizes

the energy functional by the finite element method. Here it should be noted that

tabulated kinetic, trap, and interaction energies satisfy the virial theorem which

foresees the relation 2Ekin +2Epot−3Eint = 0. It is also remarkable that even for

large β adding 10 terms is enough to find the wave function (see Fig. 2.4) which

shows the easiness of the calculations.
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Figure 2.3: (Color) Wave function calculated with the steepest descent method
[26] is shown with bold line (blue) whereas the similariton ansatz solution is given
with dashed line (red) for β = 100.
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Figure 2.4: Change of variational parameters with interaction parameter β is
given. Left plot shows the number of terms in the summation and the right one
shows the change of width of the similariton ansatz.
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Table 2.1: The value of the wave function at the center, the root mean square

size rrms and chemical potential is tabulated in units of
√

N/a3
w, aw and h̄ω

respectively. For comparison numerical results of Ref. [10] is given in parentheses.
β ψ(0) rrms µ

0 0.4238 (0.4238) 1.2248 (1.2248) 1.5000 (1.5000)
0.2496 0.3969 (0.3843) 1.2794 (1.2785) 1.6805 (1.6774)
0.9986 0.3475 (0.3180) 1.3981 (1.3921) 2.0885 (2.0650)
2.4964 0.2515 (0.2581) 1.5355 (1.5356) 2.5803 (2.5861)
9.9857 0.1739 (0.1738) 1.8822 (1.8821) 4.0089 (4.0141)
49.926 0.1097 (0.1066) 2.5071 (2.5057) 7.2576 (7.2484)
249.64 0.0665 (0.0655) 3.4152 (3.4145) 13.559 (13.553)
2496.4 0.0330 (0.0328) 5.3855 (5.3852) 33.812 (33.810)

2.2.3.2 Cylindrical Traps

Using similar trial functions, we can also solve the GPE for cylindrical and

fully anisotropic traps. For the cylindrically symmetric trap, trial function takes

the form,

ψ(ρ, z) = C exp(−
nρ∑

k=1

(ρ/dρ)
2k

2k
) exp(−

nz∑

k=1

(z/dz)
2k

2k
), (2.13)

where, C =
√

N
2πdro

2dzIρIz
,Iρ =

∫∞
0 ρdρSn(ρ) and Iz =

∫∞
−∞ dzSn(z). We have four

variational parameters, but calculations are similar to the isotropic case. We

compared our results with the numerical results of Dalfovo et al [26] in Table 2.2.

The cylindrically symmetric traps are the most common one in BEC setups and

aspect ratio obtained from xrms

zrms
is very important to identify the BEC phase in

these experiments. It is shown in [14, 26] that for the noninteracting case this

ratio is equal to
√

λ, and goes to λ in the Thomas-Fermi limit. This result is

clearly seen from the values in Table 2.2 where λ =
√

8 and it is also evident that

convergence of TFA is very slow.
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Table 2.2: Results of our calculation for a cylindrically harmonic trap with λ =√
8. Energy and length units are Nh̄ω and aω. The results of the numerical

calculation in Ref. [26] is given in parentheses for comparison except for the last
row. For β = 2165 Thomas-Fermi result for the chemical potential are given in
parentheses.

β xrms zrms Ekin Etr Eint µ
0.0000 0.7071 (0.707) 0.4204 (0.42) 1.2071 (1.207) 1.2071 (1.207) 0.0000 (0.000) 2.4142 (2.414)
0.4330 0.7901 (0.79) 0.4374 (0.44) 1.0539 (1.06) 1.3894 (1.39) 0.2237 (0.21) 2.8907 (2.88)
0.8660 0.8500 (0.85) 0.4472 (0.45) 0.9976 (0.98) 1.5225 (1.52) 0.3500 (0.36) 3.2200 (3.21)
2.1650 0.9657 (0.96) 0.4707 (0.47) 0.8528 (0.86) 1.8188 (1.81) 0.6440 (0.63) 3.9596 (3.94)
4.3300 1.0892 (1.08) 0.4966 (0.50) 0.7337 (0.76) 2.1730 (2.15) 0.9595 (0.96) 4.8258 (4.77)
8.6600 1.2319 (1.23) 0.5332 (0.53) 0.6709 (0.66) 2.6549 (2.64) 1.3227 (1.32) 5.9712 (5.93)
21.650 1.4798 (1.47) 0.5930 (0.59) 0.5314 (0.54) 3.5963 (3.57) 2.0432 (2.02) 8.2142 (8.14)
43.300 1.7038 (1.69) 0.6536 (0.65) 0.4351 (0.45) 4.6121 (4.57) 2.7847 (2.74) 10.616 (10.5)
64.950 1.8447 (1.84) 0.6989 (0.70) 0.4128 (0.41) 5.3569 (5.31) 3.2960 (3.26) 12.361 (12.2)
86.600 1.9562 (1.94) 0.7319 (0.73) 0.3789 (0.38) 5.9693 (5.91) 3.7270 (3.68) 13.802 (13.7)
2165 3.7367 1.3297 0.1459 21.035 13.926 49.033

2.2.3.3 Completely Anisotropic Traps

There are also experiments with fully anisotropic traps [50] and for this case

the trial function assumes the form,

ψ(x, y, z) = C exp

(
−

nx,ny ,nz∑

k=1

(x/dx)
2k + (y/dy)

2k + (z/dz)
2k

2k

)
, (2.14)

where it has six parameters and C is the normalization constant. The results are

given in Table 2.3 where the agreement with the results in [64] is apparent.
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Table 2.3: The chemical potential per particle in units of h̄ω is calculated using
the ansatz given in Eq. (2.14) for a completely anisotropic trap with λ =

√
2 and

gγ = 2. The interaction parameter β is obtained from Ref. [50] and the values in
parentheses corresponds to the numerical solution given in [64]. The variational
parameters nx,y,z and dx,y,z are also tabulated.

β nx, dx ny, dy nz, dz µ
0 1 , 1.000 1 , 0.840 1 , 0.707 2.207 (2.207)
1.787 2 , 1.753 2 , 1.368 1 , 0.817 3.604 (3.572)
3.575 2 ,1.956 2 , 1.489 2 , 1.160 4.385 (4.345)
7.151 3 , 2.433 2 ,1.654 2 , 1.258 5.492 (5.425)
14.302 3 , 2.780 3 , 2.035 2 , 1.384 7.010 (6.904)
28.605 4 , 3.310 3 , 2.30 3, 1.687 9.049 (8.900)
57.211 5 , 3.880 4 , 2.725 3 , 1.896 11.78 (11.57)



Chapter 3

Rotating Bose-Einstein

Condensates

The most important characteristics of superfluids arises when they are set to

rotating. Interestingly, these quantum fluids resist to rotating, since the velocity

field of superfluids is irrotational due to macroscopic wave function describing it.

However, above a critical rotation frequency a vortex appears which carries the

angular momentum of the system, and as the rotation frequency is increased more

vortices enter the system. These vortices form a regular lattice because of mutual

repulsion in between. In this chapter we start with the definition of a vortex and

in the following sections we define vortex lattices and collective vortex lattice

excitations, which are called Tkachenko modes. In Section 3.2 we concentrate on

the lowest Landau level regime where the rotation frequency is close to trapping

frequency. We finish the chapter with the discussion of spinor condensates.

3.1 What is a Vortex?

Vortex formation is seen in superconductors, superfluids and atomic BECs.

They are basically angular momentum carriers of the system where the density

of the system goes to zero. We can see how they are formulated in the following

18
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manner. Defining the condensate wave function ‘order parameter’ as

Ψ(r, t) = |Ψ(r, t)| eiφ(r,t) (3.1)

Hence, we can define the velocity of the condensate as;

v(r, t) =
h̄

M
∇φ(r, t) (3.2)

From the above expression we can immediately see that the curl of the condensate

is zero, meaning that motion of the condensate is restricted that the flow velocity

is irrotational. The only exception happens if the phase of the order parameter

has a singularity. We also know that order parameter should be single valued, so

around a closed contour the change in the phase should be a multiple of 2π.

∆φ =
∮

dl · ∇φ = 2πl, (3.3)

By defining the circulation Γ around a closed contour as

Γ =
∮

dl · v = l
h

M
, (3.4)

We can also find velocity using the circulation,

v = l
h

2πrM
(3.5)

By the aid of Stokes’ theorem

l
h

M
=

∫
dS · ∇ × v (3.6)

Thus, curl of velocity is more generally;

∇× v = l
h

M
δ(2)(x, y) ẑ. (3.7)

So we see that vortices (here one vortex at (0,0)) are the singularities where all

the rotation is concentrated. A point vortex is the picture in two dimensions.

In three dimensions vortices are lines called vortex filaments. We can think of a

vortex as the quantum of angular momentum and it contains a phase singularity

at its core around which 2π multiple of phase winding occurs. These winding

allows rotation and coriolis force leaves the core fluidless [20]. The other inter-

esting property of vortices is that because of the repulsive interaction in between
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they form regular arrays as rotation rate is increased. For a single-component

condensate, the form is hexagonal lattice which is similar to the Abrikosov lattice

[5] seen in superconductors. In a two-component condensate the form turns out

to be a square lattice. If the two components are prepared from the internal spin

states of the same atom, the vortices of either components are filled by the other

component forming a Skyrmion lattice [57].

3.2 Vortex Lattices and Lowest Landau Level

For an axially symmetric system with one vortex at center, each particle

carries an angular momentum of lh̄ where l is an integer. If l = 1, vortex is called

singly quantized, and it turns out that doubly or more quantized vortices are not

energetically favorable. Therefore, as more angular momentum is given to the

system, more singly quantized vortices appear in the fluid, and due to repulsive

interaction between these vortices, they form a regular lattice. As Tkachenko

showed in 1966 [70] the lowest energetic form of this array is the triangular lattice

as in the case of Abrikosov lattice in type II superconductors. The vortex lattice

thus formed also rotates with the system like a classical body as expected from

the correspondence principle since angular momentum is very high. (Fig. 3.1)

The parabolic density profile is also seen in rotating condensates with vortex

lattices as in the classical rotating fluids.

Although increasing number of vortices can carry as much angular momentum

as you can give to the system, there is a limit for the rate of rotation, which is

determined by the trapping frequency. This is a natural limit because above this

speed the atoms of the gas starts to fly out from the trap due to centrifugal

force. From the theoretical point of view, this limit is as much interesting as

it is hard to be achieved experimentally. It is interesting because the physics

of this regime resembles quantum Hall physics and it is hard to be achieved

because of the difficulty of keeping the condensate in the trap. Fortunately new

experimental methods like evaporative spin up technique allowed scientists in

Boulder to achieve 99.9% of the trapping frequency and up to 200 vortices are
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Figure 3.1: (a) Vortex Lattice (b) Classical body rotation ([36])

observed [73].

Landau levels are known to be the energy levels of charged particles under

magnetic fields. In the limit of fast rotation single particle Hamiltonian resembles

to Hamiltonian of these particles. If we move to the rotating frame (with Ω), the

single particle Hamiltonian in the transverse direction becomes,

H =
p2

x + p2
y

2m
+

1

2
mω2

⊥(x2 + y2)− ΩLz + gn (3.8)

Defining the vector potential as A = mΩ × r and neglecting the interaction

term, Eq. 3.8 turns into,

H =
p⊥ −A

2m
+

1

2
m(ω2

⊥ − Ω2)(x2 + y2), (3.9)

which is just the Hamiltonian of a −e charged particle under a magnetic field

2mΩ perpendicular to xy plane with a harmonic trap frequency
√

ω2
⊥ − Ω2. This

system has the energy eigenvalue,

Em,n = h̄[ω⊥ + n(ω⊥ + Ω) + m(ω⊥ − Ω)]. (3.10)

This gives the energy bands shown in Fig. 3.2 when ω⊥−Ω
ω⊥

¿ 1. Since the

density is very thin at this rotation frequency the condition of gn ¿ 2h̄ω⊥ is
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Figure 3.2: Energy bands in the LLL regime. n = 0 is the lowest energy and n
increases in the vertical direction. Infinite degeneracy of m in Landau levels is
lifted because of the minute difference between rotation frequency and trapping
frequency.

easily satisfied where 2h̄ω⊥ is the energy spacing between the bands. This leads

to condensation in the lowest Landau levels n = 0. The advantage of this level

is that the wave function can be written analytically. The wave function is a

gaussian multiplied by an analytic function,

ψ(x, y) = e−r2/2a2
⊥A(x + iy) (3.11)

where a⊥ is the harmonic oscillator length. Since the roots of the analytic function

A has complex roots with 2π phase change around it, they define the positions

of vortices. Making the LLL approach one can calculate the energy of the vortex

lattice precisely, if one knows the positions of the vortices. The details of LLL

calculations are given in Appendix A.

3.3 Tkachenko Oscillations

We have seen above that when a BEC rotates faster than a critical frequency

a vortex forms in the condensate, and as we increase the rotation frequency fur-

ther new vortices will form and these vortices form regular triangular arrays. In

1966 V. K. Tkachenko showed the stability of the triangular vortex lattice [70]

and he also he investigated effects of small perturbations on this lattice. Even-

tually he derived the dispersion law for lattice oscillations and concluded that at

long wavelengths they resemble transverse sound in crystals [71]. He calculated



CHAPTER 3. ROTATING BOSE-EINSTEIN CONDENSATES 23

the shear modulus of the lattice in the superfluid resulting from the stiffness

of the triangular array [72]. The shear modulus determines the spectrum of

Tkachenko waves. This soft mode of vortex lattice is basically elliptical motion

of vortex cores around their stable positions. In the calculations, Tkachenko used

elasticity theory for two dimensional vortex array, and his results could not be

derived from Bekarevich-Khalatnikov hydrodynamics due to ignorance of the en-

ergy increase produced by shearing of the vortex lattice. Lately G. Baym and E.

Chandler reformulated hydrodynamics equations to include elasticity [13].After

that E. B. Sonin considered the compressibility of the fluid in his calculations[67]

and derived Tkachenko modes as well as other modes sustained by the lattice.

Indeed there are three classes of compressional modes; transverse, longitudinal,

and differential longitudinal. Experiments on rotating BECs has increased the

interest in Tkachenko methods and led to both analytical and numerical studies.

Although the predictions are close to the experimental data, theory is not com-

plete. Here, we will follow the procedure of Baym and Chandler to derive the

dispersion relation for Tkachenko mode. The picture in the reference [13] is two

dimensional. We can define the vortex lattice as;

r0
ij = ia + jb (3.12)

where a and b denotes the translation vectors of the lattice. When the vortex is

slightly perturbed new position can be defined via the deformation vector.

εij = rij − r0
ij (3.13)

For a non dissipative flow of a rotating superfluid we can write the continuity

equation in the laboratory frame as

∂ρ

∂t
+∇ · j = 0 (3.14)

where we have used of the hydrodynamic equations

j = (ρ− ρ)v + ρ∗ε̇ (3.15)

∂ji

∂t
+

∂ [(ρ− ρ)vivk + ρ∗ε̇iε̇k]

∂t
+

∂

∂ri

P + σel,i = 0 (3.16)

σel,i =
h̄Ω0

4m
ρ[2∇i(∇ · ε)−∇2εi] (3.17)

∂v

∂t
+ (∇× v)× ε̇ = −∇(µ + v2/2) (3.18)
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We can write these equations also in a frame rotating with Ω0 and then linearize

them, obtaining

∂ρ

∂t
+ (ρ− ρ)∇ · v + ρ∗∇ · ε̇ = 0 (3.19)

∂j

∂t
+ 2Ω0 × j +∇P ′ + σel = 0 (3.20)

∂v

∂t
+ 2Ω0 × ε̇ = −∇µ′ (3.21)

where µ′ = µ − (Ω0 × r)2/2 is the reduced chemical potential and P ′ = P −
ρΩ0 × r2/2 is the reduced potential. These equations describe two dimensional

flow of a rotating superfluid where the vortex line bending effects are ignored.

These equations with the equation of state P (ρ) form a system of six first-order

equations for v, ε, ε̇ and ρ. We can find Tkachenko mode from these equations

by neglecting ρ∗ and considering an incompressible fluid with ∂ρ
∂t

= 0 (valid for

superfluid He and slowly rotating BECs). Then we get,

∇ · v = 0 (3.22)

∂v

∂t
+ 2Ω0 × ε̇ = −∇µ′ (3.23)

∂v

∂t
+ 2Ω0 × v = −∇µ′ − σel/ρ (3.24)

We can get rid of v and reduce the equations to two;

∂2

∂t2
(∇× ε)z +

(
h̄

8m
∇2 + 2Ω0

)
∂

∂t
∇ · ε = 0 (3.25)

∂

∂t
(∇ · ε) + (

h̄

8m
∇2)(∇× ε)z = 0 (3.26)

Now it is easy to obtain the solution by substituting ε = ε0 exp ik · r exp−iωt in

the long wavelength limit k →∞.

ωT =

√
h̄Ω0

4m
k (3.27)

The displacement vector ε rotates around an ellipse whose major axis is perpen-

dicular to and minor is along the vector k.
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3.4 Spinor Condensates

We have seen that a single-component BEC forms an Abrikosov lattice when

it is set rotating. Long wavelength excitations and static properties of this type

are well studied [53, 3, 38, 39, 19, 73]. A more interesting case is to study

the multi-component condensate. A multi-component condensate can be created

using either different species, or different internal states of the same atoms. In

the single-component case spin degree of freedom played no role. By considering

the internal spin states of an atom we can create a multi-component condensate

which is called spinor condensates. The advantage of having the mixture of

internal states of the same atom is that there can be controllable transition from

one state to another whereas for the condensate of two different species you don’t

have such an opportunity. But we lose the conservation of number of particles

because of these transitions [61].

One of the best candidates that can be used for a double-condensate exper-

iment is 87Rb. Applied magnetic field splits 87Rb ground state into eight states

due to hyperfine and Zeeman effects. Among the eight, only three of the states

(F = 1,m = −1〉,|F = 2, m = 1〉, |F = 2,m = 2〉 ) can be magnetically trapped,

and two of the three has fairly equal magnetic moments so that they can be con-

fined in an overlapping TOP trap. The states labelled |1〉 is |F = 1,m = −1〉,
and |2〉 is |F = 2,m = 1〉 are the suitable ones for trapping.

First realization of vortices in a BEC was a spinor double-condensate ex-

periment realized again by JILA group [55]. In the experiment they used

(F = 1,m = −1〉, and |F = 2,m = 2〉 states of 87Rb.



Chapter 4

Spinor BECs in the Lowest

Landau Level

This chapter is the main focus of our thesis and it is given here as it is

published [46].

One of the defining properties of superfluidity is that a superfluid responds

to rotation by forming quantized vortices. Generally, instead of forming multiply

quantized vortices, it is more favorable for a superfluid to create many singly

quantized vortices and arrange them in a vortex lattice. Since the original pred-

ication of such structures by Abrikosov [5], vortex lattices have been observed

in type-II superconductors [30], superfluid helium [76], Bose-Einstein condensed

gases (BECs) [37, 4] and most recently in ultracold fermion superfluids[78].

Once a vortex lattice is formed in a superfluid, small deviations of the vor-

tices from their equilibrium positions require relatively small energy compared to

other hydrodynamic modes of the system, and collective behavior of such small

deviations result in a low-energy branch in the excitation spectrum. The modes

on this branch, which were studied by Tkachenko in the context of superfluid

helium [70, 71, 72], are called Tkachenko modes and in a simplified picture can

be thought of as phonons of the vortex lattice. Tkachenko modes strongly affect

the dynamics of the superfluid [13], and play an important role in many different

26
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problems, ranging from vortex melting [66] to neutron star glitches [54].

Recent experiments on ultracold atoms have been successful in creating large

vortex lattices in rotating harmonically trapped BECs [37, 4]. Remarkable re-

sults about vortex dynamics have been obtained, including the observation of

Tkachenko modes over a large range of rotation frequencies [19]. In this experi-

ment, after the formation of the vortex lattice, a resonant laser beam was focused

on the center of the condensate to excite the Tkachenko modes and subsequently

their frequency was measured. As the rotation frequency is increased, a clear

reduction in the Tkachenko mode frequencies is observed.

Theoretical study of Tkachenko modes of trapped BECs has been carried out

by a number of groups [25, 12, 69, 24, 68, 23, 8, 56]. In particular, the effects of

finite size of the vortex lattice and the compressibility of the BEC lead to major

differences in the Tkachenko spectrum compared with the Tkachenko modes of

an incompressible superfluid such as helium. As the rotation frequency of the

cloud is increased, the compressibility of the BEC starts to play an important

role, reducing the shear modulus of the vortex lattice and thus the Tkachenko

mode frequencies. When the rotation frequency Ω becomes close to the chemical

potential µ = gn, the gas enters the mean-field quantum Hall regime [40] where

only the states in the lowest Landau level (LLL) are populated. Here, the trend

of decrease in Tkachenko frequencies continues. As the rotation frequency Ω gets

closer to the trapping frequency ω, more vortices enter the system, and mean-field

description breaks down at the point where the number of vortices is comparable

to the number of particles [66]. In the strongly correlated regime, the vortex

lattice is expected to melt into a vortex liquid and subsequently go through a

sequence of quantum Hall states ending with the Bosonic Laughlin state when

(ω − Ω)/ω ∼ 1/N , with N being the number of particles [21].

In the experiments of the JILA group, rotation frequencies up to 99% of the

trapping frequency have been achieved [74] and a calculation of the Tkachenko

frequencies in the mean-field quantum Hall regime [12] found good agreement

with the observed frequencies. However, a number of papers have since argued

that this calculation uses an incorrect value for the shear modulus of the vortex
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lattice [69, 24]. When the recalculated value of the shear modulus, which is an

order of magnitude higher, is used, the experimental results seem to indicate that

the gas is not in the LLL regime. Although in this study we mainly consider

two-component BECs, our method is applicable to the single-component lattice,

and our calculations are in excellent agreement with the latter value for the shear

modulus, suggested by Sonin [69].

The versatility of the trapped cold atom experiments have enabled the creation

of new superfluids, such as mixtures and spinor condensates. In a remarkable ex-

periment the JILA group has been able to create a two-component BEC and study

its behavior under rotation [73]. The equilibrium vortex lattice structures have

been calculated by Mueller and Ho [58], and separately by Kasamatsu, Tsubota,

and Ueda [44]. Experimentally, an interlaced square lattice of two-components

has been observed. Furthermore, using an excitation procedure similar to the

one-component case, vortex lattice oscillations have been induced in the two-

component BEC, however, these excitations were found to be heavily damped and

have not yielded a measurement for Tkachenko frequencies. Motivated by this

experiment, in this study, we calculate the Tkachenko modes of a two-component

vortex lattice, and investigate the structural phase transitions between different

lattice geometries.

We consider a large two-component vortex lattice in the LLL regime. To sim-

plify the calculations, we assume that both components have the same density

and same scattering length within each component. As the scattering length be-

tween atoms from different components is varied, the vortex lattice goes through

structural phase transitions, forming five different lattice geometries [58]. For all

these lattice geometries, we calculate the elastic constants of the vortex lattice,

and subsequently the dispersion relations for long-wavelength Tkachenko modes.

Our main results are summarized below.

Unlike a single-component vortex lattice, where there is only one branch of

Tkachenko modes, the two-component lattice has two branches. The situation is

similar to phonon modes of a diatomic solid compared with a monoatomic solid.

When the number of atoms per unit cell is doubled, so are the number of phonon
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modes. In analogy with phonons, we call these branches acoustic Tkachenko

modes, and optical Tkachenko modes. However, these names are not intended to

imply that one branch couples more strongly to light than sound, or vice versa. As

a simple picture, one may think that when an acoustic mode is excited two vortices

inside the unit cell of the lattice oscillate in-phase. In other words, acoustic

modes are oscillations of the “center of mass” of the unit cell, while the vortices

positions with respect to the center of mass remain stationary. For an optical

Tkachenko mode, vortices of different components oscillate in opposite phase,

leaving the “center of mass” of each unit cell stationary. In this work, we choose

our interactions such that there is symmetry under the exchange of components,

which makes the above definitions of optical and acoustic unambiguous. If this

symmetry is broken, as is the case with the parameters of the JILA experiment,

there will still be two modes, but both of them will contain a mixture of acoustic

and optical behavior.

For an incompressible superfluid such as helium, or at low rotation frequen-

cies for BEC, Tkachenko modes in a single-component vortex lattice have linear

wave-vector dependence ωT ∝ k [13]. However, when compressibility of the fluid

becomes important, such as a BEC in the LLL, Tkachenko modes are quadratic

in the wave-vector ωT ∝ k2 [12]. We find that a similar softening happens for the

two-component vortex lattice. For an incompressible fluid, acoustic Tkachenko

modes have linear long-wavelength behavior, while the optical Tkachenko modes

are gapped. For a two-component BEC in the LLL, acoustic Tkachenko modes

have quadratic wave-vector dependence ωac
T ∝ k2, while the optical modes are not

gapped any more, but have linear wave-vector dependence ωop
T ∝ k.

Another important property of the Tkachenko modes of a single-component

system is their isotropy. Tkachenko mode frequencies are independent of the

direction of the excitation wave vector ~k. This can be traced back to the fact

that the underlying vortex lattice is triangular, and similar to acoustic waves

in a triangular lattice, Tkachenko modes have isotropic behavior [51]. For two-

component vortex lattices, this behavior is not expected any more, and indeed

we find that when the underlying lattice has less than sixfold symmetry, both

acoustic and optical Tkachenko modes are anisotropic. In all cases the anisotropy
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reflects the reduced symmetry of the lattice, giving fourfold symmetric dispersion

relations for the square lattice, and twofold symmetric spectra for rhombic and

rectangular lattices.

Another interesting point about the two-component vortex lattices is the pos-

sibility of structural phase transitions between different lattice geometries. For a

two-component BEC in the LLL there are five lattice structures and four struc-

tural phase transitions between them. Two of these are continuous, second-order

transitions, while the other two are first-order transitions. In structural phase

transitions of solids, second-order phase transitions are signalled by the soften-

ing of an acoustic-phonon mode, while first-order transitions are usually, but not

always, accompanied by the softening of an optical-phonon mode. (A soft mode

can be described as a branch of excitation that has zero frequency over a large

range of wave vectors [49].) We find that a similar scenario plays out for the vor-

tex lattices of two-component BECs, both second-order phase transitions have a

soft acoustic Tkachenko mode. Of the two first-order phase transitions, one is

accompanied by a soft optical Tkachenko mode, while the other does not have a

direct effect on the long-wavelength Tkachenko spectrum of the system.

There are two other instabilities in the two-component BEC system. When

the intercomponent attraction is stronger than the repulsion within each com-

ponent, the gas is unstable towards collapse. In the opposite limit, when the

intercomponent interaction is repulsive and stronger than the intracomponent

repulsion we find an instability in the optical Tkachenko mode spectrum, most

possibly signaling a transition to a phase separated state.

The chapter is organized as follows. In the next section, we introduce the

Hamiltonian for the two-component rotating gas in the LLL, and introduce the

different lattice types that are found by energy minimization. In Sec. 4.2, we

outline our method of calculation for elastic coefficients, and calculate the shear

modulus of a one-component condensate as an example. In Sec. 4.3, we write

the coupled equations for the vortex modes and density modes, which are valid

for all lattice types. In the next five sections 4.4 -4.8, we calculate the elastic

energy for each lattice type, and by solving the coupled equations, we find the
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dispersion relations of acoustic and optical Tkachenko modes. We also study

the directional dependence of the dispersion relations and the polarization of the

Tkachenko modes for each lattice type. In Sec. 4.9, we discuss the structural

phase transitions and identify the soft modes associated with each transition.

4.1 Vortex lattices of two-component BEC

In this section, we consider the equilibrium vortex lattice configurations of a

two-component BEC. This problem has been studied in the LLL regime analyt-

ically by Mueller and Ho [58], and for general rotation frequencies numerically

by Kasamatsu et al. [44]. We confine ourselves to the LLL and our method of

calculation of the elastic constants relies on the analytic approach developed by

Mueller and Ho.

We consider a two-component BEC in a quadratic trap with trapping fre-

quency ω. The trap frequency, the mass of the particles m, and the total number

of particles are assumed to be the same for both components. We take the gas to

be rotating at frequency Ω, and assume that the total number of particles in each

component is large enough to form a large vortex lattice without a breakdown

of the mean-field description of the system. Furthermore, we assume that the

scattering lengths of the particles are such that, interaction parameters satisfy

g11 = g22 = g, (4.1)

g12 = αg.

We investigate the behavior of vortex lattice geometry and the Tkachenko modes

as the ratio of intercomponent scattering length to intracomponent scattering

length α is varied,

α =
g12

g
. (4.2)

We limit our discussion of vortex lattices to two dimensions, assuming that

the vortex lattice is not modified along the rotation axis. This assumption is not

very restrictive, as it has been shown that if the cloud is sufficiently broad in the
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third dimension, vortex bending is negligible except at the edges of the cloud [40].

In the opposite limit of a two-dimensional condensate, our approach is formally

valid, however, mean-field theory may not be reliable for such a system. The

energy functional for our system can be written as

E =
∑

i=1,2

∫
d2rΨ∗

i (r)

(
− h̄2

2m
∇2 +

1

2
mω2r2 − ΩLz

)
Ψi(r) + Vint. (4.3)

Here Ψi is the wave function of component i, Lz is the angular momentum along

the rotation direction and Vint is the interaction energy given as

Vint = g
∫

d2r
(

1

2

[
|Ψ1(r)|4 + |Ψ2(r)|4

]
+ α|Ψ1(r)|2|Ψ2(r)|2

)
. (4.4)

When the rotation frequency is close enough to the trapping frequency the

particles can only populate levels in the LLL. For such a gas, which is in the

mean-field quantum Hall regime, the wave functions have the form

Ψi(r) = fi(z)e−
zz̄
2σ2 , (4.5)

where z = x+ iy and σ is the radius of the cloud. The requirement of analyticity

on the wave function essentially determines the form of the wave function in terms

of the positions of the vortices (up to an entire function with no zeros). Thus it

is possible to introduce a variational wave function, using just the lattice basis

vectors as variational parameters.

For a two-component BEC, when both of the components are rotating at the

same frequency, vortex lattices in each component have the same lattice structure,

but are shifted from each other. Thus in the LLL, we can determine the wave

functions for both components in terms of just three, two-dimensional vectors ~a1

and ~a2, the basis vectors of the lattice, and ~d, the offset between the two lattices.

Thus the vortices of the first component are at ~r1,n,m = n~a1 + m~a2, with n,m

integers, while the vortices of the second component are at ~r2,n,m = n~a1+m~a2+ ~d.

Although we need six real numbers to describe these three vectors, the actual

number of variational parameters is lower, namely 4. First of all, the vortex

density ν−1
c is fixed by rotation frequency Ω, thus it is possible to fix the length

of one of the vectors and scale all others by this length. Second, the rotational
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symmetry of the problem permits one to fix the overall orientation of the vectors.

We choose the first lattice basis vector ~a1 to lie along the x̂ direction, and denote

its length as a1. The remaining two vectors can then be written as

~a2 = a1(ux̂ + vŷ), (4.6)

~d = a1[(a + bu)x̂ + bvŷ].

The variational calculation is made in terms of the dimensionless parameters

u, v, a, b, and then the length a1 is fixed by requiring the wave function to have

correct density of vortices νc = a2
1v.

Once the positions of the vortices are known one can write the variational

wave function as a Jacobi Elliptic function Θ, or as one of the doubly periodic

functions that are related to the Θ up to an entire function, such as the σ function

or the modified ζ function [70, 71, 72]. In terms of the Jacobi theta function we

can write

Ψ1(z) = N1Θ(ζ, τ) exp(
πz2

2νc

− zz̄

2l
), (4.7)

Ψ2(z) = N2Θ(ζ − (a + bu + ibv), τ) exp(
πz2

2νc

− zz̄

2l
).

Here ζ = z/a1, τ = u + iv, l =
√

h̄/mω, and N1, N2 are normalization constants

to be determined. With these wave functions we calculate the densities of the

two-components as

|Ψ1(~r)|2 = Cg(~r)e−r2/σ2

, (4.8)

|Ψ2(~r)|2 = Cg(~r − ~d)e−r2/σ2

,

where the function g is periodic with lattice vectors,

g(~r + n~a1 + m~a2) = g(~r), (4.9)

for all integers n,m. The periodic part of the density admits a Fourier series

representation in terms of the reciprocal-lattice basis vectors,

g(~r) =
1

νc

∑

~K

g ~Kei~r· ~K , (4.10)
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with the sum carried out over all reciprocal lattice points generated by ~K1 =
2π
νc

~a2 × ẑ and ~K2 = −2π
νc

~a1 × ẑ. The utility of using the Jacobi theta function

is that the Fourier components of g ~K can be calculated with relative ease. For

~K = m1
~K1 + m2

~K2 one has

g ~K = (−1)m1+m2+m1m2e−
νc ~K2

8π

√
νc

2
. (4.11)

In the LLL, the lattice structure is entirely determined by the interaction

energy. For the parameters used here minimization of the interaction energy

reduces to a minimization of the following simple quantity with respect to u, v, a,

and b:

J =
∑

~K

∣∣∣∣∣
g ~K

g~0

∣∣∣∣∣
2 (

1 + α cos( ~K · ~d)
)
. (4.12)

It must be noted that this expression is obtained in the limit of a very large vortex

lattice, formally setting the cloud radius σ to infinity. The minimization of J is

done numerically with considerable ease as the Fourier coefficients of the density

g ~K are known analytically. For each value of α = g12/g, J can be calculated by

truncating the rapidly converging sum to the desired accuracy, and the values

u∗, v∗, a∗, b∗ that minimize J can be found. These values determine the lattice

geometry for each component and also the offset of the lattices of two-components.

As the ratio of the intercomponent interaction to intracomponent interaction

α is varied, five different lattice types are found to minimize the interaction

energy. Here, we give a brief description of each lattice, and in Secs. 4.4 - 4.8,

the Tkachenko spectrum for each lattice type is calculated.

When the interaction between the two-components is attractive, i.e., α < 0,

the system minimizes its energy by positioning the vortex lattices of two-

components on top of each other. However, for very large attraction, α < −1,

there is an instability towards collapse. In the range −1 < α < 0, both com-

ponents form triangular lattices which overlap with each other (See fig. 4.1).

This overlapped triangular lattice is described by the parameters u∗ = 1/2, v∗ =√
3/2, a∗ = b∗ = 0, which do not change with α in the given range. We find,

however, that the elastic constants of the lattice depend on α, and so do the

Tkachenko modes.
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Figure 4.1: Lattice geometry for an overlapped triangular lattice (a), an interlaced
triangular lattice (b), and a square lattice (c). Unit cells are shown with dashed
lines. (d) Unit cell geometry for an arbitrary lattice. White and black dots
represent vortices of different components. Definitions of a, b, u, v are given in
Sec. 4.1.

If the intercomponent interaction becomes repulsive, it is no more favorable

to put the two vortex lattices on top of each other. Instead, the most favorable

places to put the vortices of one-component would be the density maxima of the

other component. This simple insight holds true for all lattice types found by

the minimization procedure, however the lattice type of each component changes

as α is varied. For weak repulsion between the components, 0 < α < 0.1724,

each component forms a triangular lattice. Within a unit cell, there is more than

one density maximum, so it would seem that there are multiple positions for the

vortex lattice of the second component to be placed. However, these positions are

related with the overall symmetry of the lattice, so the minimization procedure

gives the lattice parameters u∗ = 1/2, v∗ =
√

3/2, a∗ = b∗ = 1/3. Again, the

overall structure of this interlaced triangular lattice (see Fig. 4.1) does not change

with α. At α = 0.1724, there is a first-order phase transition from an interlaced

triangular lattice to a rhombic lattice. In the range 0.1724 < α < 0.3733, the

unit cell of vortex lattices of each component are rhombuses. The vortex lattice

of one-component is placed at the center of the rhombuses formed by the vortex

lattice of the other component. The angle of the rhombus η (see Fig. 4.2), varies

continuously from 67.9◦ to 90◦, while the offset remains the same, a∗ = b∗ = 1/2.

At α = 0.3733, there is a second-order phase transition to a square lattice. In

the range 0.3733 < α < 0.9256, the lattice is parameterized by u∗ = 0, v∗ =

1, a∗ = b∗ = 1/2 (see Fig. 4.2). As the interaction is increased further, there
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Figure 4.2: (a) Lattice geometry for a rectangular lattice; a unit cell is shown
with dashed lines. (b) Change of the aspect ratio of the rectangle v∗ with respect
to interaction strength α. The unit cell grows in the y direction as α → 1. At
α = 1, v∗ =

√
3. (c) Lattice geometry of a rhombic lattice, dashed lines showing a

unit cell. η is twice the opening angle of the rhombic unit cell. (d) Plot of η vs α
for the rhombic lattice. As α → 0.3732, η → 90◦, and the rhombus continuously
changes to a square. At α = 0.1724, η makes a jump from 60◦ to 67.958◦.

is a second-order phase transition to a rectangular lattice at α = 0.9256. In a

rectangular lattice, vortices of one-component are always found at the centers of

the rectangles formed by the vortices of the other component, i.e., a∗ = b∗ = 1/2.

However, the aspect ratio of the rectangle increases continuously.

For a nonrotating system, there is a phase-separation instability at α = 1.

This instability is not found in the results of the energy minimization described

above. However, when the coupling between the density oscillations and vortex

motion is taken into account, as in Sec. 4.7, it is found that at this point there is

an instability. Thus the system is not described by a vortex lattice beyond α = 1.

After a survey of the possible lattice structures and the analytic method that

is used to find these structures, in the next section we describe how the same

analytic approach can be used to calculate the elastic constants of the discussed

vortex lattices.
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4.2 Numerical calculation of elastic constants

The power of the analytic approach introduced in the previous section is that

it can also be used to calculate the energies of lattice structures which are slightly

deformed from the minimum-energy configuration. As the numerical calculation

of the energy for a given lattice is quite simple, it is possible to evaluate the

energy for configurations where lattice parameters have small deviations from

their minimum-energy values. Such small deviations can also be described by

a hydrodynamic approach. Assuming that the lattice deformations are suffi-

ciently smooth, the vortex lattice can be treated as an elastic medium. The

form of the elastic energy is constrained by symmetries of the lattice, and for

small deformations, can always be taken as quadratic in displacements. Thus the

long-wavelength behavior of the lattice is described by an elastic energy that is

quadratic in the vortex displacement field, and the problem reduces to the calcu-

lation of the elastic constants, which are the coefficients of the quadratic terms

in vortex displacements.

Our approach is to numerically calculate the energy of the vortex lattice close

to the equilibrium position, and then find the elastic coefficients of the vortex

lattice by making quadratic fits to the calculated energy. As a demonstration of

this method, we first calculate the shear modulus of the triangular lattice of a

one-component BEC. A vortex lattice in a one-component BEC is parameterized

by two two-dimensional vectors ~a1,~a2, the lattice basis vectors. The lattice basis

vectors define the equilibrium positions of the vortices, and we denote the devia-

tion of the vortex at lattice site n,m, from its equilibrium by the vector ~εn,m. So

the position of the vortex ~rn,m is

~rn,m = n~a1 + m~a2 + ~εn,m. (4.13)

If the vortex displacements are sufficiently smooth over large length scales, one can

describe a long-wavelength vortex displacement field ~ε(x, y) = εx(x, y)x̂+εy(x, y)ŷ

by a suitable coarse-graining procedure. For a triangular lattice, the elastic energy

density can then be written as

εelastic = C1

(
∂εx

∂x
+

∂εy

∂y

)2

+ C2




(
∂εx

∂x
− ∂εy

∂y

)2

+

(
∂εx

∂y
+

∂εy

∂x

)2

 . (4.14)
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Figure 4.3: Contour plot of the energy for a one-component triangular lattice,
Eq. (4.15). The inset is a closer view around the equilibrium point. Circular
contours indicate that quadratic fit of Eq. (4.16) is possible.

For a gas in the LLL, compression modulus is zero, C1 = 0 [13]. Using the analytic

method introduced above, the shear modulus C2 is determined as follows.

For a one-component vortex lattice, the minimum-energy configuration is

found by minimizing

I =
∑

~K

∣∣∣∣∣
g ~K

g~0

∣∣∣∣∣
2

, (4.15)

and yields u∗ = 1/2, v∗ =
√

3/2, the triangular lattice. We calculate the energy

around this point by varying u and v from their equilibrium values. A contour

plot of the energy around the equilibrium point is given in Fig. 4.3. To this form

we can successfully fit a quadratic form, giving us an elastic energy of the form

Eelastic =
gn2

2

[
Cu(u− u∗)2 + Cv(v − v∗)2 + Cuv(u− u∗)(v − v∗)

]
, (4.16)

and determine

Cu = 0.3177, (4.17)

Cv = 0.3177,

Cuv = 0.000.

The fact that Cu = Cv shows that there is only one shear modulus for a

triangular lattice, and validates our numerical procedure. To find the connection
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between Cu and the shear modulus C2, we must determine the displacement field

corresponding to small changes of the lattice basis vectors. By taking into account

that the unit-cell volume is fixed by rotational frequency, the correspondence

between u, v and vortex displacement field is found as

∂εx

∂y
=

u− u∗
v∗

,
∂εx

∂x
= −v − v∗

2v∗
, (4.18)

∂εx

∂y
=

v − v∗
2v∗

,
∂εx

∂y
= 0.

By substituting these expressions in Eq. (4.14), using u∗ = 1/2, v∗ =
√

3/2

and comparing with Eq. (4.16) we obtain

C2 =
3

8
Cu = 0.1191gn2. (4.19)

This value is an order of magnitude larger than the value used by Baym [12],

and is in excellent agreement with Sonin [69]. This is not surprising, as our

method of obtaining the shear modulus is equivalent to the deformation of the

lattice used by Sonin. However, the simplicity of our numerical method enables

us to calculate the elastic coefficients of more complex lattices, such as the two-

component lattices discussed in this study.

For a two-component lattice, the energy of the lattice depends not only on

the lattice basis vectors, but also on the offset of two lattices from each other.

Hence there are four variational parameters u, v, a, b. Elastic energy around the

minimum-energy point has to be expressed as a quadratic form in all of these

variables. We numerically calculate the energy of the lattice for many points

around the minimum-energy point and then express the elastic energy by fitting

to a form

Eelastic =
gn2

2
[Cu(u− u∗)2 + Cv(v − v∗)2 + Cuv(u− u∗)(v − v∗) +

Ca(a− a∗)2 + Cb(b− b∗)2 + Cab(a− a∗)(b− b∗)].

Here, due to the symmetry between component 1 and component 2, it is not

necessary to include terms that mix displacements a, b with deformations of the

lattice u, v. This is essentially the decoupling of optical Tkachenko modes from

acoustic Tkachenko modes as discussed in Sec. 1.
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In the next section, we give the hydrodynamic equations for a two-component

condensate, but leave the form of the elastic energy unspecified. In the following

sections, the form of the elastic energy and the values of the elastic constants

are given separately for each lattice type. After the elastic energy is specified,

hydrodynamic equations are solved and the dispersion relations for Tkachenko

modes are obtained.

4.3 Hydrodynamic equations

The oscillations of vortices about their equilibrium positions can be described

by a hydrodynamic theory by treating the vortex lattice as an elastic medium. For

trapped BECs it is important to take into account the compressibility of the gas,

as the vortex lattice oscillations are coupled to density oscillations in a nontrivial

way. The superfluid hydrodynamics that takes this effect into account has been

developed by a number of groups in the context of superfluid He [13], and more

recently applied to rotating BECs by Baym [12]. Here we describe the hydrody-

namics of a two-component vortex lattice by generalizing this hydrodynamics to

a two-component BEC.

As the hydrodynamic variables, we use the densities of each component

ni(~r, t), corresponding velocity fields ~vi(~r, t), and the vortex displacement fields

~εi(~r, t) introduced in the previous section. Here i = 1, 2 is component index,

giving us a total of six hydrodynamic fields. However, not all of these fields are

independent, as is apparent in the calculation below. We also set h̄ = 1 in the

calculation for convenience.

The long-wavelength average of the velocity field is not irrotational, but is

linked to the compressions of the vortex lattice,

~∇× ~vi = −2Ω~∇ · ~εi, i = 1, 2. (4.20)

Similarly the superfluid acceleration equation holds for each component

m

(
∂~vi

∂t
+ 2~Ω× ∂~εi

∂t

)
= −~∇µi, i = 1, 2. (4.21)
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Here µi is the chemical potential of component i. Below we leave the index i

unspecified to indicate that the equation is valid for both components.

The conservation of particle number results in the continuity equation

∂ni

∂t
+ ~∇ · (ni~vi) = 0, (4.22)

while momentum conservation gives

m

(
ni

∂~vi

∂t
+ 2ni

~Ω× ~vi

)
+ ~∇Pi = −~σi. (4.23)

Here Pi is the pressure, related to the chemical potential as ~∇Pi = ni
~∇µi, and

for a weakly interacting two-component condensate satisfies

~∇P1 = gn~∇n1 + αgn~∇n2, (4.24)

~∇P2 = gn~∇n2 + αgn~∇n1.

The stress vectors σi are obtained by taking the functional derivative of the elastic

energy with respect to vortex displacement fields, as in elasticity theory,

~σi =
δEelastic

δ~εi

. (4.25)

Using Eqs. (4.23) and (4.20), we have

2m~Ω×
(

∂~εi

∂t
− ~vi

)
=

~σi

n
. (4.26)

The curl and divergence of these equations lead to

~∇ ·
(

∂~εi

∂t
− ~vi

)
=

~∇× ~σi

2Ωnm
, (4.27)

and

~∇× ∂~ε

∂t
+ 2Ω~∇ · ~εi = −

~∇ · ~σi

2Ωnm
. (4.28)

Similarly, the divergence of the superfluid acceleration equation gives
(
− ∂2

∂t2
+

gn

m
∇2

)
n1 + α

gn

m
∇2n2 = 2Ωn~∇× ∂~ε1

∂t
, (4.29)

(
− ∂2

∂t2
+

gn

m
∇2

)
n2 + α

gn

m
∇2n1 = 2Ωn~∇× ∂~ε2

∂t
.
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At this stage it is preferable to take advantage of the symmetry of the equa-

tions under the exchange of component 1 with component 2. We define the

symmetric and antisymmetric variables as

n+ = n1 + n2, ~ε+ = ~ε1 + ~ε2, ~σ+ = ~σ1 + ~σ2, (4.30)

n− = n1 − n2, ~ε− = ~ε1 − ~ε2, ~σ− = ~σ1 − ~σ2.

In terms of these variables we obtain two sets of three equations, where each

set is decoupled from the other. The polarization of the Tkachenko modes are

controlled by the polarization equation

~∇× ∂~ε±
∂t

+ 2Ω~∇ · ~ε± = − 1

2mnΩ
~∇ · ~σ±. (4.31)

The usual sound mode equations for a two-component fluid are modified by the

dynamics of the vortex lattice as

− ∂2n±
∂t2

+ (1± α)
gn

m
∇2n± = 2nΩ~∇× ∂~ε±

∂t
. (4.32)

The dynamics of the vortex lattice and its interaction with the density modes is

governed by

~∇ · ∂2~ε±
∂t2

+
1

n

∂2n±
∂t2

=
1

2nmΩ

∂

∂t
~∇× ~σ±. (4.33)

Equations (4.31)-(4.33) form a linear set of six equations. However, as the stresses

σ±, depend only on the lattice displacements ε±, with the same sign, the three

symmetric variable (+) equations are decoupled from the antisymmetric variable

(−) equations. Thus the “+” set describes the acoustic Tkachenko modes and

their coupling with the “in-phase” sound mode, while the “−” set describes the

optical Tkachenko modes and their coupling to the “out-of-phase” sound mode.

In the following sections, we specify the elastic energy Eelastic for each lat-

tice type, and calculate the dispersion relations of both acoustic and optical

Tkachenko modes. Each section starts with a brief description of the properties

of the lattice type under consideration. Subsequently we give the form of the

elastic energy for this lattice type and the values of the numerically calculated

elastic constants. We then outline the solutions of the Tkachenko mode equa-

tions Eqs. (4.31)-(4.33), for the specific form of the elastic energy, and derive the

dispersion relations of the acoustic and optical modes. Each section is concluded

by a discussion of the properties of the dispersion relation.
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4.4 Overlapped triangular lattice

When the interaction between the two-components is attractive, it is energet-

ically preferable to have the density minima of the two-components to coincide.

However, if the intercomponent attraction is too strong there will be a collapse

type instability. This insight is validated by the calculations mentioned in Sec.

4.1, where for −1 < α < 0, the equilibrium lattice structure is triangular for

both components and the vortex lattices of the two-components coincide. This

overlapped triangular lattice is described by

u∗ = 1/2, v∗ =
√

3/2, a∗ = b∗ = 0. (4.34)

The elastic energy in all the vortex lattices can be separated into two parts,

elastic energy due to acoustic displacements ε+, and elastic energy due to optical

displacements ε−. There will not be any terms that contain both, as such con-

tributions to energy change sign under the exchange of components. So we can

write

Eelastic = Eac
elastic + Eop

elastic. (4.35)

The acoustic contribution to the elastic energy will have the same form that is

valid for a triangular lattice. In the LLL the hydrostatic compression modulus is

zero and we need to consider only the shear modulus,

Eac
elastic =

∫
d2rCac




(
∂εx

+

∂x
− ∂εy

+

∂y

)2

+

(
∂εx

+

∂y
+

∂εy
+

∂x

)2

 . (4.36)

Similarly, the only quadratic form one can make from ε− which does not break

the sixfold symmetry of the lattice is

Eop
elastic =

∫
d2rCop (~ε−)2 . (4.37)

The two elastic constants, Cac and Cop, control the acoustic and optical

Tkachenko modes, respectively. These two constants, however, have different

dimensions, as is clear from their definition. We first nondimensionalize these

constants as follows.
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Figure 4.4: Elastic constants (Cab, Cu) of overlapped (−1 < α < 0) and interlaced
(0 < α < 0.1723) triangular lattices with respect to α. As the attraction between
the components increases (α → −1), Cab increases, and Cu decreases linearly.
When there is no interaction between components (α = 0), Cab = 0 which causes
the discontinuity in the transition to interlaced triangular lattice. At α = 0, the
value of Cu is equal to the shear modulus of a one-component vortex lattice.

For the acoustic shear modulus, we can define a dimensionless quantity C̃ac,

C̃ac =
Cac

gn2
. (4.38)

As explained in Sec. 4.2, we can fit the energy near the minimum to a quadratic

form,

Eac
elastic =

1

2
gn2Cu

[
(u− u∗)2 + (v − v∗)2

]
, (4.39)

which yields for the triangular lattice with v∗ =
√

3/2

C̃ac =
3

8
Cu. (4.40)

The results of numerical calculation for Cu are displayed in Fig. 4.4. At α = 0,

the shear modulus for the acoustic modes takes the single-component value (per

component) as expected from two noninteracting vortex lattices. As α is de-

creased towards −1, the shear modulus decreases linearly, signalling the collapse

instability expected due to attractive interaction between the components.

Similarly the optical elastic constant can be nondimensionalized as

C̃op =
d2

gn2
Cop, (4.41)
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where d is the lattice constant for the triangular lattice, which is related to

rotation frequency as

d2 =
2π√
3mΩ

. (4.42)

The optical part of the elastic energy can be fitted to the rotationally invariant

form

Eop
elastic =

gn2

2
Cab[(a− a∗) + u∗(b− b∗)]2 + [v∗(b− b∗)]2. (4.43)

which results in

C̃op =
1

2
Cab. (4.44)

The result of numerical calculation for Cab is plotted in Fig. 4.4. As α is decreased

towards−1, it gets harder to separate the vortices of two-components, as expected

from the increasing attraction between the components.

Once the elastic constants are known, the calculation of the Tkachenko modes

for different lattices are straightforward, albeit tedious. In this section, we give a

detailed calculation, while for all other lattice types we simply present the results

of the calculation.

We first start with the calculation of the acoustic Tkachenko modes. With

the form of the elastic energy given above, the acoustic stress is

~σ+ = −4Cac∇2~ε+. (4.45)

Fourier transforming, we get ~σ+ = 4Cack2~ε+. Now, we also Fourier transform the

polarization equation (4.31) to obtain

εy
+ =

N1

D1

εx
+, (4.46)

with

N1 = −iωky − 2Ωkx − 2Cac

mnΩ
k2kx, (4.47)

D1 = −iωkx + 2Ωky +
2Cac

mnΩ
k2ky.

Substituting the above result into Fourier transforms of Eqs. (4.32) and (4.33),

we obtain
(
ω2 − (1 + α)

gn

m
k2

)
n+ + n

(
4Ω2 +

4Cac

nm
k2

)
ωk2

D1

εx
+ = 0 (4.48)
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and

− ω2

n
n+ +

(
4Cac

nm
k2 − ω2

)
ωk2

D1

εx
+ = 0. (4.49)

By scaling the wave vector in frequency units,

k′ =
√

gn

m
k, (4.50)

and using dimensionless elastic constants we obtain the characteristic equation

as

ω4 − ω2
[
4Ω2 + (1 + α + 8C̃ac)k′2

]
+ (1 + α)4C̃ack′4 = 0. (4.51)

This equation describes two different modes, one is a gapped sound mode,

also called the inertial mode, while the other is the acoustic Tkachenko mode of

the triangular lattice. To the lowest order in the long-wavelength approximation

we get

ωac
I = 2Ω +

1 + α + 8C̃ac

4Ω
k′2, (4.52)

ωac
T =

√
(1 + α)C̃ac

k′2

Ω
.

The inertial mode is gapped, starting at 2Ω, and the second mode is the acoustic

Tkachenko mode which has quadratic dispersion at long-wavelengths, similar to

the Tkachenko mode in a one-component vortex lattice.

Calculation of the optical Tkachenko mode, similarly, starts by evaluating the

optical part of the stress as

~σ− = 4Cop~ε−. (4.53)

From the polarization equation we get

εy
− =

N1

D1

εx
−, (4.54)

with

N1 = ωky − i
(
2Ω +

2Cop

mnΩ

)
kx (4.55)

D1 = ωkx + i
(
2Ω +

2Cop

mnΩ

)
ky

which results in two coupled equations obtained from Eqs. (4.32) and (4.33)

(
ω2 − (1− α)

gn

m
k2

)
n− + n

(
4Ω2 +

4Cop

mn

)
i
ωk2

D1

εx
− = 0, (4.56)
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Figure 4.5: Spectrum for overlapped triangular lattice, (a), (c), at α = −0.5, and
interlaced triangular lattice (b), (d) at α = 0.1. k′ and ω are scaled to rotation
frequency Ω, and gn

Ω
= 0.1. Dispersion relations are the same for both lattice

types, Eqs. (4.52) and (4.58). However, the elastic constants are different (see
Fig. 4.4). Both acoustic and optical inertial modes, (a), (b), are gapped. For
both lattices optical Tkachenko modes are linear while acoustic Tkachenko modes
are quadratic in k.

and
ω2

n
n− +

[
ω2 − 2Cop

Ωnm

(
2Ω +

2Cop

Ωnm

)]
i
ωk2

D1

εx
− = 0. (4.57)

Once again, using k′ =
√

gn
m

k, and the dimensionless elastic constants we

obtain the dispersion relation for two modes,

ωop
I = 2Ω

√
1 +

√
3

π
C̃op

gn

Ω
+

1− α

4Ω
k′2, (4.58)

ωop
T =

√√
3

2π
C̃op

gn

Ω
k′.

These results are obtained to the lowest nonvanishing order in k′ and also to the

lowest order in gn
Ω

, which is a small parameter in the LLL regime.

The typical spectrum of the Tkachenko modes and the gapped sound modes

are displayed in Fig. 4.5. The following properties of Tkachenko modes are

revealed as a result of the above calculation.

First, we see that doubling the number of components in the BEC results in
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a doubling of the modes. Because the vortex lattice oscillations are coupled to

density oscillations in a compressible fluid, there are four branches of excitation.

The two inertial modes correspond to in-phase and out-of-phase oscillations of

the densities of two-components and are gapped, starting essentially at twice

the rotation frequency. As a second point, we find that the acoustic Tkachenko

mode has quadratic k dependence at long-wavelength while the optical Tkachenko

mode goes linearly with k. In an incompressible fluid, we would expect to find

the acoustic modes with linear dispersion and the optical modes to be gapped.

This result can be obtained by explicitly decoupling the density in the above

calculation. Thus the extra factor of k in the dispersion is a result of the coupling

between the density and the vortex lattice oscillations.

While these two properties apply to all the lattice types considered below,

there are some properties that are specific to the overlapped triangular lattice

discussed in this section. First of all, the dispersion relation for both the optical

and the acoustic Tkachenko modes are isotropic, i.e., independent of the direction

of ~k. The isotropy of the excitations is a direct consequence of the sixfold symme-

try of the underlying lattice. The elastic (sound) waves in a triangular lattice also

show isotropic behavior [51] and as we view the Tkachenko modes as the elastic

excitations of the vortex lattice, this result is not unexpected. However, for the

other, nontriangular, lattice types considered below, Tkachenko mode spectrum

is anisotropic. A second property is revealed by investigating the behavior of the

modes for changing α. As α goes to zero, the optical Tkachenko mode becomes

softer and softer, revealing that the two lattices become mostly independent. In-

deed at α = 0 there is a first-order phase transition to the interlaced triangular

lattice. As α approaches −1, this time it is the acoustic mode that becomes soft,

and there is an instability towards collapse at exactly α = −1. It is interesting

to note that although our approach cannot describe this collapse, its signature is

still present in the Tkachenko mode spectrum.
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4.5 Interlaced triangular lattice

For a single-component vortex lattice the equilibrium configuration is always

the triangular lattice. When the interaction between the components of a two-

component vortex lattice is weak, both vortex lattices stay triangular. The offset

between the two-components is, however, decided by the sign of the intercompo-

nent interaction. For attractive interaction α < 0, the resulting lattice is the over-

lapped triangular lattice discussed in the previous section. For weak and repulsive

interaction, it is energetically favorable to place the vortices of one-component at

the density maxima of the other component. The resulting, interlaced triangular

lattice is described by

u∗ =
1

2
, v∗ =

√
3

2
, a∗ = b∗ =

1

3
. (4.59)

The interlaced triangular lattice is the minimum-energy configuration for 0 <

α < 0.1724, and is displayed in Fig. 4.1.

The elastic energy and the Tkachenko mode equations follow directly from

the symmetry of the lattice. As the interlaced triangular lattice has exactly

the same symmetry as the overlapped triangular lattice discussed in the previous

section, the calculation given in the previous section is valid also for the interlaced

triangular lattice. It is only the values of the elastic constants C̃ac and C̃op, and

their dependence on α, that is different from the previous case.

As a result, the acoustic modes are given by

ωac
I = 2Ω +

1 + α + 8C̃ac

4Ω
k′2, (4.60)

ωac
T =

√
(1 + α)C̃ac

k′2

Ω

and the optical modes are given by

ωop
I = 2Ω

√
1 +

√
3

π
C̃op

gn

Ω
+

1− α

4Ω
k′2, (4.61)

ωop
T =

√√
3

2π
C̃op

gn

Ω
k′.
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Here the relations between Cop, Cac and Cu, Cab, remain the same as in the pre-

vious section. A plot of the elastic constants is given in Fig. 4.4.

As in the previous section, we see that the acoustic Tkachenko mode is

quadratic in k, at long-wavelengths, while the optical Tkachenko mode is lin-

ear in k. As a consequence of the sixfold symmetry of the underlying lattice,

both modes are isotropic. A typical spectrum of the Tkachenko modes is dis-

played in Fig. 4.5. Just as the optical Tkachenko mode becomes soft for the

overlapped triangular lattice as α = 0 is approached from below, a similar soften-

ing takes place for the interlaced triangular lattice. So both sides of the first-order

transition have dynamics characterized by a soft optical mode.

4.6 Square lattice

The lattice type which is energetically favorable over the largest range of

intercomponent interaction is the square lattice. For 0.3733 < α < 0.9256, one-

component’s vortex lattice forms a square lattice while the other components

vortices are situated at the centers of the squares (see Fig. 4.1). This lattice is

characterized by

u∗ = 0, v∗ = 1, a∗ = b∗ =
1

2
. (4.62)

For the square lattice we can write the elastic energy due to optical and

acoustic deformations as

Eelastic = Eac
elastic + Eop

elastic (4.63)

with

Eac
elastic =

1

2

∫
d2r


Cac

1

∂εx
+

∂x

∂εy
+

∂y
+ Cac

2

(
∂εx

+

∂y
+

∂εy
+

∂x

)2

 , (4.64)

Eop
elastic =

∫
d2rCop (~ε−)2 .

For acoustic modes we define the dimensionless elastic constants

C̃ac
1 =

Cac
1

gn2
, C̃ac

2 =
Cac

2

gn2
, (4.65)
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Figure 4.6: Elastic constants (Cab, Cu, Cv) of square lattice, Eqs. (4.66) and
(4.74). As the components attract each other more, Cab increases linearly. Both
limits of α lead to second-order phase transitions. Cu and Cv vanish at α = 0.3733
and α = 0.9255, respectively.

and fit the acoustic part of the elastic energy to the form

Eac
elastic =

gn2

2

[
Cu(u− u∗)2 + Cv(v − v∗)2

]
, (4.66)

which yield

C̃ac
1 = −4Cv, C̃ac

2 = Cu. (4.67)

The variation of elastic constants Cu and Cv are plotted in Fig. 4.6.

The calculation of acoustic Tkachenko mode frequencies proceed similar to the

previous sections. However, for the square lattice, the equations are not isotropic,

for example the polarization equation (4.31) gives

εy
+ =

N1

D1

εx
+, (4.68)

with

N1 =
(
−iωky − 2Ωkx − 4Cac

2 + Cac
1

2nmΩ
kxk

2
y

)
, (4.69)

D1 =
(
−iωkx + 2Ωky +

4Cac
2 + Cac

1

2nmΩ
kyk

2
x

)
.

We find, in the long-wavelength limit, the inertial mode frequency

ωac
I = 2Ω +

1 + α + 2C̃ac
2

4Ω
k′2, (4.70)
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and the acoustic Tkachenko mode frequency

ωac
T =

√
1 + α

2

√[
C̃ac

2 f2(θ)− C̃ac
1 f1(θ)

]
)
k′2

Ω
. (4.71)

Here, we have

f1(θ) =
1

4
sin2(2θ), f2(θ) = cos2(2θ), (4.72)

where θ is the angle from the x̂ direction when the basis vectors of the vortex

lattice are taken along x̂ and ŷ.

For the optical spectrum, we define the dimensionless elastic constant

C̃op =
d2

gn2
Cop, (4.73)

where the lattice constant d is given by d2 = π
Ωm

. The optical part of the elastic

energy can be numerically fitted to a form

Eop
elastic =

gn2

2
Cab

[
(a− a∗)2 + (b− b∗)2

]
, (4.74)

which yields

C̃op =
Cab

2
. (4.75)

The dependence of the elastic constant Cab on α is plotted in Fig. 4.6.

The gapped inertial mode and the optical Tkachenko mode are calculated to

the lowest order in k′ and gn
Ω

as

(ωop
I )2 = 4Ω2

[
1 +

2gn

πΩ
C̃op

]
+ (1− α)k′2, (4.76)

and

ωop
T =

√√√√ 1− α

π + 2gn
Ω

C̃op

√
gn

Ω
C̃op k′, (4.77)

respectively.

The above results reveal a number of properties of the Tkachenko modes of

a square vortex lattice. Similar to the triangular lattice, there are two gapped

modes, which are the sound modes of the two-component condensate modified by

the interactions with the vortex oscillations. The remaining two gapless modes
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Figure 4.7: Dispersion relation of the acoustic Tkachenko modes for the square
lattice, Eq. (4.71) for α = 0.4 (a), and α = 0.85 (b). Underlying contour plots
are given to illustrate the anisotropy of the modes.

are the acoustic Tkachenko mode and the optical Tkachenko mode, which have

k2 and k dispersion, respectively. Both the two gapped modes and the optical

Tkachenko mode have isotropic behavior, however, the underlying square lattice

causes the acoustic Tkachenko mode dispersion to be anisotropic. The anisotropy

of the acoustic Tkachenko mode is more transparent when written as

ωac
T =

√
2(1 + α)

[
Cu cos2(2θ) + Cv sin2(2θ)

]k′2

2Ω
. (4.78)

The acoustic mode spectrum is plotted in Fig. 4.7 for two different values of α.

We notice that depending on the elastic constants two different types of softening

happens for the acoustic Tkachenko modes. If Cu = 0, then the acoustic modes

along the directions

θ = 0, π/2, π, 3π/2 (4.79)

become soft. We see from the numerical fit that Cu becomes zero near α = 0.3733

and these soft modes control the dynamics of the second-order phase transition

to the rhombic lattice. The other possibility for soft mode formation is when

Cv = 0. In this case the soft acoustic modes are along the directions

θ = π/4, 3π/4, 5π/4, 7π/4. (4.80)

These soft modes, then, signal the second-order phase transition to the rectan-

gular lattice, at α = 0.9256.



CHAPTER 4. SPINOR BECS IN THE LOWEST LANDAU LEVEL 54

4.7 Rectangular lattice

When the interactions between the components are close to the interactions

within each component, the energetically favorable lattice becomes a rectangular

lattice. The rectangular lattice has a∗ = b∗ = 1/2, so vortices of one-component

are placed at the centers of the rectangles formed by the vortices of the other

component. The ratio of the long side of the rectangles to their short side, v∗,

increases with increasing α (see Fig. 4.2).

The elastic energy can once again be separated as

Eelastic = Eac
elastic + Eop

elastic. (4.81)

Here, we express the acoustic part of the elastic energy as

Eac
elastic =

1

2

∫
d2r


Cac

1

(
∂εx

+

∂x
− ∂εy

+

∂y

)2

+ Cac
2

(
∂εx

+

∂y
+

∂εy
+

∂x

)2

 , (4.82)

a form that is essentially the same as the square lattice, as the hydrostatic com-

pression modulus is zero. The optical part is

Eop
elastic =

∫
d2r

[
Cop

1

(
εx
−

)2
+ Cop

2 (εy
−)2

]
. (4.83)

For the acoustic modes, we define the dimensionless elastic constants

C̃ac
1 =

Cac
1

gn2
, C̃ac

2 =
Cac

2

gn2
, (4.84)

and fit the acoustic part of the elastic energy to the form

Eac
elastic =

gn2

2

[
Cu(u− u∗)2 + Cv(v − v∗)2

]
, (4.85)

which results in

C̃ac
1 = v2

∗Cv, C̃ac
2 = v2

∗Cu. (4.86)

The numerical results for elastic constants Cu and Cv are given in Fig. 4.8.

As a result, we calculate the acoustic Tkachenko mode frequency

ωac
T =

√
1 + α

2

√
C̃ac

1 sin2(2θ) + C̃ac
2 cos2(2θ)

k′2

Ω
, (4.87)



CHAPTER 4. SPINOR BECS IN THE LOWEST LANDAU LEVEL 55

Figure 4.8: Elastic constants (Ca, Cb, Cu, Cv) of rectangular lattice. The upper
figure shows optical elastic constants(Ca, Cb). As α → 1, Ca vanishes. The
lower figure shows acoustic elastic constants (Cu, Cv). As α → 1, Cu → Cv and
there remains only one acoustic elastic constant similar to the one-component
triangular lattice.

and the acoustic inertial mode frequency

(ωac
I )2 = 4Ω2 + [1 + α + 2(C̃ac

1 + C̃ac
2 )]k′2. (4.88)

For the optical modes, we nondimensionalize

C̃op
1 =

d2
1

gn2
Cop

1 , C̃op
2 =

d2
2

gn2
Cop

2 , (4.89)

where d1 and d2 are the sides of the rectangular unit cell with

d2
1 =

π

Ωmv∗
, d2

2 =
πv∗
Ωm

. (4.90)

When the elastic energy is fitted to the numerical form

Eop
elastic =

gn2

2

[
Ca(a− a∗)2 + Cb(b− b∗)2

]
, (4.91)

we obtain

C̃op
1 =

Ca

2
, C̃op

2 =
Cb

2
, (4.92)

The dependence of Ca and Cb on α is plotted in Fig. 4.8.

As a result of the calculation, we obtain the optical Tkachenko mode disper-

sion

ωop
T =

√
1− α

π

gn

Ω

√√√√C̃op
2

v∗
cos2(θ) + C̃op

1 v∗ sin2(θ) k′, (4.93)
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Figure 4.9: Dispersion relation of the optical Tkachenko mode of the rectangular
lattice, Eq. (4.93), for α = 0.95, gn

Ω
= 0.1. The underlying contour plot reflects

the symmetry of the rectangular lattice.

and the inertial mode frequencies

(ωop
I )2 = 4Ω2

[
1 +

gn

πΩ

(
v∗C̃

op
1 +

1

v∗
C̃op

2

)]
+ (1− α)k′2. (4.94)

A number of important conclusions can be deduced from the above results.

First of all, both the acoustic and optical Tkachenko modes are anisotropic, while

the inertial modes are isotropic for the rectangular lattice. While the anisotropy

of the acoustic Tkachenko mode, is similar to the anisotropy obtained for the

square lattice, the anisotropy of the optical modes can be understood by a differ-

ent mechanism. The rectangular lattice can be thought of as alternating planes

of vortices of different components. It is easier to move the vortices in these

planes, rather than perpendicular to these planes. A typical dispersion of optical

Tkachenko modes is given in Fig. 4.9.

As a second property, we see that near α = 0.9256 there is a soft acoustic

mode, signaling a second-order transition to the square lattice. Thus both sides

of the transition from square to rectangular lattice have a soft acoustic mode.

When intercomponent interaction is equal in strength to the interaction within

the components, i.e., α = 1, a number of interesting phenomena are expected.

First, at α = 1, there is no distinction between different components, and one

would expect the results to be the same as that of a single-component vortex
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Figure 4.10: Dispersion relation of the acoustic Tkachenko modes of the rect-
angular lattice, Eq. (4.87) for α = 0.95 (a) and for α = 1.0 (b). At α = 1.0,
the dispersion relation becomes isotropic. The similarity between (a) and Fig.
4.7(b) is due to the second-order phase transition between square and rectangular
lattices.

lattice. Indeed, at this point, v∗ =
√

3, and the resulting rectangular lattice is

equivalent to a single-component triangular lattice. Furthermore, the acoustic

mode spectrum becomes isotropic exactly at this point, as can be seen in Fig.

4.10.

However, the point α = 1, where the intercomponent interaction is the same

as the interaction between the components, is special in another way. For a

nonrotating two-component BEC, there is an instability towards phase-separation

at this point. In previous studies of two-component BECs with vortex lattices,

this instability was not observed. However, we find that at α = 1 the optical

Tkachenko mode becomes soft, and the system is unstable beyond α = 1. This

is reflected in the
√

1− α term, in the dispersion relation Eq. (4.93). Thus we

find that there is an instability beyond α = 1, for rapidly rotating two-component

condensates. As previous studies of this system did not take the coupling between

the vortex movement and density oscillations into account, it is not surprising

that this instability was not observed.

Although we find that there is an instability at α = 1, it is not clear that

this instability leads directly to phase-separation. The analog of the sound mode

that is unstable in a nonrotating system is the optical inertial mode. As this

mode has a gap, there is no instability in the long-wavelength. We find that the
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dispersion of the optical inertial mode has a k2 term with a negative coefficient,

but this is not sufficient to claim that there will be an instability at a finite value

of k, as higher-order terms such as k4 may prevent the dispersion from reaching

zero frequency. Instead there may be a phase with partial phase-separation and

disordered distribution of vortices beyond α = 1. Further investigation of this

instability is needed to determine the nature of the phase beyond α = 1.

4.8 Rhombic lattice

The final lattice type we consider is the rhombic lattice, which is the minimum-

energy configuration for 0.1724 < α < 0.3733. This lattice is an intervening

phase between the interlaced triangular lattice and the square lattice discussed

in previous sections. At α = 0.1724 there is a first-order transition from the

interlaced triangular lattice, where a∗ and b∗ change discontinuously from 1/2 to

a∗ = b∗ =
1

3
. (4.95)

The unit cell also becomes a rhombus, while the acute angle of the rhombus η

continuously changes from 67.96◦ to 90◦. A plot of the lattice geometry and the

change of η is given in Fig. 4.2.

The rhombic lattice has twofold (reflection) symmetry along the axis that

makes an angle η/2 with the primitive basis vectors. However, instead of expressly

taking advantage of this symmetry, we use a general form for the elastic energy.

Writing

Eelastic = Eac
elastic + Eop

elastic, (4.96)

we use

Eac
elastic =

1

2

∫
d2r[Cac

1 (
∂εx

+

∂x
− ∂εy

+

∂y
)2 + Cac

2 (
∂εx

+

∂y
+

∂εy
+

∂x
)2

+Cac
3 (

∂εx
+

∂y
+

∂εy
+

∂x
)(

∂εx
+

∂x
− ∂εy

+

∂y
)],

and

Eop
elastic =

∫
d2r

[
Cop

1

(
εx
−

)2
+ Cop

2 (εy
−)2 + Cop

3 εx
−εy
−

]
. (4.97)
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Figure 4.11: Optical elastic constants [upper, Eq. (4.106)] and acoustic elastic
constants [lower, Eq. (4.99)] of rhombic lattice with respect to α. As α →
0.3732, Ca → Cb, and Cu, Cv vanish, leaving two optical elastic constants, and one
acoustic elastic constant for the square lattice. In the opposite limit α → 0.1724,
six elastic constants remain due to the discontinuity in the transition to interlaced
triangular lattice.

For the acoustic modes, we define dimensionless quantities

C̃ac
1 =

Cac
1

gn2
, C̃ac

2 =
Cac

2

gn2
, C̃ac

3 =
Cac

3

gn2
, (4.98)

and fit the acoustic part of the elastic energy to the form

Eac
elastic =

gn2

2

[
Cu(u− u∗)2 + Cv(v − v∗)2 + Cuv(u− u∗)(v − v∗)

]
, (4.99)

which yields

C̃ac
1 = v2

∗Cv, C̃ac
2 = v2

∗Cu, C̃ac
3 = −v2

∗Cuv. (4.100)

The numerical results for elastic constants Cu, Cv, and Cuv are given in Fig. 4.11.

We find the acoustic inertial mode dispersion

(ωac
I )2 = 4Ω2 + [1 + α + 2(C̃ac

1 + C̃ac
2 )]k′2, (4.101)

and the acoustic Tkachenko mode dispersion

ωac
T =

√
1 + α

2

√
4C̃ac

1

k2
xk

2
y

k4
+ C̃ac

2

(k2
x − k2

y)
2

k4
+ 2C̃ac

3

kxky(k2
y − k2

x)

k4

k′2

Ω
. (4.102)
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Figure 4.12: Dispersion relation of the acoustic Tkachenko mode of the rhombic
lattice, Eq. (4.102), for α = 0.2. The anisotropy reflects the twofold symmetry
of the rhombic lattice (see Fig. 4.13).

The anisotropy of the Tkachenko mode is more transparent when represented in

terms of θ, the angle from the x̂ axis,

ωac
T =

√
1 + α

2

√
C̃ac

1 sin2(2θ) + C̃ac
2 cos2(2θ)− C̃ac

3 sin(4θ)
k′2

Ω
. (4.103)

For the optical modes, we define the dimensionless elastic constants,

C̃op
1 =

d2

gn2
Cop

1 , C̃op
2 =

d2

gn2
Cop

2 , C̃op
3 =

d2

gn2
Cop

3 , (4.104)

where the side length of the rhombus d is

d2 =
π

Ωm sin(η)
. (4.105)

We use a numerical fit to the energy of the general form

Eop
elastic =

gn2

2
{Cax[(a− a∗) + u∗(b− b∗)]2 + Cbyv

2
∗(b− b∗)2

+Cab[(a− a∗) + u∗(b− b∗)]v∗(b− b∗)},

which yields

C̃op
1 =

Cax

2
, C̃op

2 =
Cby

2
, C̃op

3 =
Cab

2
, (4.106)

The dependence of Cax, Cby, and Cab on α is plotted in Fig. 4.11.

We find the optical inertial mode

(ωop
I )2 = 4Ω2

[
1 +

gn

πΩ
sin(η)

(
C̃op

1 + C̃op
2

)]
+ (1− α)k′2, (4.107)
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Figure 4.13: (Color) Polar plot of the frequency of the acoustic [left, Eq. (4.102)]
and the optical [right, Eq. (4.108)] Tkachenko modes for the rhombic lattice
(k = 0.1, gn

Ω
= 0.1, α = 0.2). η/2 is the opening angle of the rhombic unit cell at

α = 0.2.

and the optical Tkachenko mode

ωop
T =

√
1− α

π

gn

Ω
sin(η)

√
C̃op

2 cos2(θ) + C̃op
1 sin2(θ)− 1

2
C̃op

3 sin(2θ) k′. (4.108)

For the rhombic lattice, both the acoustic and the optical Tkachenko modes

are anisotropic. A typical dispersion for the acoustic Tkachenko modes is dis-

played in Fig. 4.12. In the calculation above we have not implicity assumed

the twofold symmetry of the rhombic lattice, however, the resulting dispersion

relations respect this symmetry. As an example the polar plot of optical and

acoustic mode frequencies is given in Fig. 4.13. This symmetry can be viewed as

a validation of the numerical approach we use to calculate the elastic coefficients.

Another property of the Tkachenko modes of the rhombic lattice is that the

transition to the square lattice at α = 0.3733 is accompanied by a soft acoustic

mode. However, the first-order transition to the triangular lattice does not have

any soft acoustic or optical Tkachenko mode.

4.9 Structural phase transitions

The two-component vortex lattice system has five different equilibrium lattice

types and four structural phase transitions between them. In this section, we

comment on the interplay between these transitions and the Tkachenko modes of
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the lattice. Our aim is to give an overall picture of the physics in this system as

the intercomponent interaction α is varied. We start from α = −1, and consider

all transitions as α is increased.

For α < −1, the two-component BEC system is unstable towards collapse

due to the strength of attraction between the components. This instability is

apparent in the Tkachenko mode spectrum of the overlapped triangular lattice

for α values greater than but close to −1. Here there is a soft acoustic Tkachenko

mode, as discussed in Sec. 4.4.

At α = 0, when there is no interaction between the two-components of the

BEC, the vortex lattice geometry changes from overlapped triangular lattice to

the interlaced triangular lattice. This first-order transition leaves the unit cell ge-

ometry the same, however, there is a discontinuous jump in the relative positions

of vortices within the unit cell. On both sides of the transition there is a soft

optical Tkachenko mode. Thus the reordering inside the unit cell is accompanied

by a soft long-wavelength mode as expected.

As the intercomponent repulsion is increased further, there is a first-order

phase transition from the interlaced triangular lattice to the rhombic lattice, at

α = 0.1724. In this transition, both the unit cell geometry and the positions of

vortices inside the unit cell change discontinuously. We find no signature of this

transition in the long-wavelength optical or acoustic modes. The instability mech-

anism causing this transition must include both optical and acoustic Tkachenko

modes, and must take place at wavelengths comparable to the lattice spacing.

Thus this instability is not captured by our linear, long-wavelength approach.

Between α = 0.1724 and α = 0.3733 the rhombic lattice is the minimum-

energy configuration, and at α = 0.3733 there is a second-order phase transition

to the square lattice. On both sides of this transition there is a soft acoustic

Tkachenko mode. The acoustic modes have anisotropic dispersion for both square

and rhombic lattices, and the soft mode has a wave vector ~k, that is parallel to

the primitive lattice basis vectors ~a1 = dx̂, or ~a2 = dŷ. As in the structural phase

transitions of solids, a second-order phase transition is accompanied by a soft

acoustic mode.
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The final structural phase transition between different lattice geometries takes

place at α = 0.9256, between the square and rectangular lattices. This is a second-

order phase transition, and we find that there is a soft acoustic Tkachenko mode

on both sides of the transition. The soft mode has a wave vector ~k that makes

an angle of π/4 with the primitive lattice basis vectors, ~k ‖ (~a1 + ~a2).

For a nonrotating system there is a phase-separation instability at α = 1.

We find that at this point the optical Tkachenko modes of the rotating system

become soft. However, as discussed in Sec. 4.7, it is not clear if this instability

directly leads to phase-separation, or to another phase.



Chapter 5

Conclusions and Future Work

This is the concluding chapter of the thesis where all the result are summa-

rized. In the first section our results for the stationary condensates are explained

briefly. In the following section, we explain our results for the rotating conden-

sates which are mainly given in Chapter 4. The last section is devoted to possible

extensions to this thesis work.

5.1 Similariton Function

In Section 2.2.3, we have given our results that are obtained using the sim-

ilariton function. Briefly, we have solved GPE with any kind of symmetry us-

ing a variational ansatz and compared our results with the numerical solutions.

However, we have only solved time independent GPE, but the extension to time-

dependent one is not so hard. Similariton function can also be used to solve

modified GPE which is used for high densities [31, 9, 29]. There will be no need

to change the form of the similariton function, but only change is in the GPE and

it will make calculations a little bit longer. It is also possible to obtain solutions

for vortex states. A variational function with cylindrical symmetry should have

64
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the form,

ψ(ρ, z) = Cρl exp(−
nρ∑

k=1

(ρ/dρ)
2k

2k
) exp(−

nz∑

k=1

(z/dz)
2k

2k
), (5.1)

where l is an additional variational parameter that takes integer values.

5.2 Tkachenko Modes for Spinor BECs

We considered a rapidly rotating two-component BEC, and calculated the

Tkachenko mode dispersion relations for different lattice geometries. We find that

a two-component vortex lattice has two branches of Tkachenko modes, which we

call acoustic and optical Tkachenko modes in analogy with phonons. The acous-

tic Tkachenko modes have k2 dispersion at long-wavelengths while the optical

Tkachenko modes have linear, k, dispersion. For all lattice types other than tri-

angular lattices, the dispersion relations are anisotropic. By investigating the

behavior of Tkachenko modes near structural phase transitions, we identified

the soft modes that are responsible for the phase transitions. Out of the four

structural phase transitions two are of second-order, while the remaining two

are first-order. The second-order transitions are accompanied by the softening

of an acoustic mode. For one of the first-order phase transitions we identified a

soft optical Tkachenko mode, while for the other first-order transition, no such

long-wavelength mode was found. We also found that if the intercomponent re-

pulsion is stronger than the interactions within each component, the vortex lattice

is unstable. This instability may lead to phase-separation, as is the case for a

nonrotating two-component BEC.

In a recent experiment at JILA [74], a rapidly rotating two-component Rb

condensate was created. It was found that the equilibrium vortex lattice configu-

ration is square. Furthermore, when the lattice was perturbed, a Tkachenko like

mode was observed, however, this mode was found to be heavily damped, thus it

has not been possible to measure the Tkachenko mode frequencies.

There are three important points to consider when comparing our results

with this experiment. First the interaction parameters for the Rb system used
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in the experiment are different from what was considered in this paper, most

importantly, interaction parameters within each component are not the same,

g11 6= g22. (5.2)

In this case, one would expect the acoustic and optical Tkachenko modes to be

coupled. However, this coupling should be relatively small, as

2(g11 − g22)

g11 + g22

≈ 0.05. (5.3)

When the interaction strengths within each component is different, we may re-

define

α =
g12√
g11g22

, (5.4)

which for the Rb system is very close to 1. Although the calculations in the LLL

indicate that a rectangular lattice is more favorable, experimentally the lattice

structure is found to be a square within experimental error. This implies, as a

second point, that one must take into account that the experimental system is not

fully in the LLL regime. As the third and final point, the experimental system

is of finite extent. The overall density profile in the system is affected by the

finite size of the system and may cause in shifts in vortex positions [15]. More

importantly, the coupling between vortex oscillations and the density modes,

coupled with other loss mechanisms, damp the Tkachenko modes.

The above limitations prevent a direct quantitative comparison of data with

the theory presented in this paper. There are, however, some important qualita-

tive conclusions that can be drawn. A puzzling result of the experiment is that

the Tkachenko excitations in the two-component BEC are more heavily damped

compared to a single-component system. It is thought that the main damping

mechanism is the coupling to surface modes near the edges of the cloud, but this

mechanism would be independent of whether one is using a one-component or a

two-component condensate. We believe that there are two effects that contribute

to this apparently high damping rate. The method used in the experiment to

excite Tkachenko modes is to focus a resonant laser beam onto the center of the

condensate. This method excites Tkachenko modes isotropically, giving equal

weight to every direction. However, our calculations show that Tkachenko modes
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in a square (or rectangular) lattice are anisotropic. This anisotropy is very pro-

nounced if the system is close to square to rectangular structural phase transition,

which the experimental system could be as indicated by the ratio of its interaction

strengths. When Tkachenko modes are excited isotropically, because oscillations

along different directions have different frequencies, there will be a significant de-

phasing effect. We believe a significant part of the observed damping is due to this

dephasing. A second effect is that, because of the coupling between the acoustic

and the optical modes, during the excitation optical Tkachenko modes are also

excited. By making measurements on the vortex positions of one-component it

is not possible to distinguish one type of oscillation from the other. We believe,

if the excitation mechanism can be made anisotropic, for example by using a

resonant laser with an elliptical focus, it should be possible to observe smaller

damping rates.

It is also interesting to note that it should be possible to measure optical

Tkachenko modes, using the same interference technique used in the experiment

to prove that the vortices form interlaced lattices. An optical Tkachenko mode,

once excited, would cause oscillations in the visibility of the “vortex lattice inter-

ference” fringes.

Another interesting point is that, we have identified an isotropic Tkachenko

mode for the square lattice at α =

√
(2)

2
[47]. At this value of α, the ratio of the

distance between the vortices of different components to the distance between the

vortices of the same component is the same. The isotropy of acoustic Tkachenko

mode only at this point may be a result of a simple 1
r

repulsive potential between

vortices.
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Figure 5.1: Symmetric(left) and asymmetric(right) phase configurations for two-
component BEC.

5.3 Future Work

5.3.1 Phase Separation for α ≥ 1

Phase separation for nonrotating binary condensates are well studied both

experimentally and theoretically, and it is known from these studies that phase

separation occurs for α = g12√
g11g22

> 1. The signal of this separation is imaginary

density oscillation frequencies, and the stable configuration is the symmetric case

shown in Fig. 5.1, where the inner component is the one with less repulsion.

We found a similar instability for α > 1 since acoustic Tkachenko mode be-

comes imaginary. Therefore, we expect a similar phase separation for this repul-

sive regime. However we could not find the least energetic configuration. As sug-

gested by Ueda et al. [44], we found that at α = 1 many different configurations

have the same energy. We calculated the energy for the symmetric configuration

shown in Fig. 5.1 where the inner component carries doubly quantized vortices in

a triangular array. The energy we found is very close to the interlaced rectangular

lattice configuration explained in Section 4.7.
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5.3.2 Optical Lattices

One of the most important development in the cold atom physics after demon-

stration of BEC is placing atoms in optical lattices. Experimentalist can now

load BECs in optical lattices [59] and phase transitions such as Mott insulator-

superfluid transition can be observed [33]. Therefore, many theoretical papers

are appearing about BECs in optical lattices. For our interest in this thesis we

look at rotating condensates which are put in an optical potential either in the z

direction or in the xy plane. For the former case the change of the vortex lattice

structure due to optical lattice potential can be found with the LLL approach

presented in this thesis. For the latter case, there is a work of Zai et al. [77]

investigating the phase diagram of double layer condensates with large number

of vortices using a similar approach to ours. A future work can be calculating

Tkachenko modes using the methods presented in this thesis.



Bibliography

[1] http://cua.mit.edu/ketterle_group/Nice_pics.htm.

[2] https://ucan.physics.utoronto.ca/News.

[3] J. R. Abo-Shaeer, C. Raman, and W. Ketterle. Formation and decay of

vortex lattices in Bose-Einstein condensates at finite temperatures. Phys.

Rev. Lett., 88(7):070409, 2002.

[4] J. R. Abo-Shaeer, C. Raman, J. M. Vogels, and W. Ketterle. Observation of

vortex lattices in Bose-Einstein condensates. Science, 292(5516):476, 2001.

[5] A. A. Abrikosov. On the magnetic properties of superconductors of the

second group. Sov. Phys. JETP, 5(1174), 1957.

[6] M. H. Anderson, J. R. Ensher, M. R. Matthews, C. E. Wieman, and E. A.

Cornell. Evidence for Bose-Einstein condensation in a dilute atomic vapor.

In Massimo Inguscio, Maria Allegrini, and Antonio Sasso, editors, Laser

Spectroscopy, XII International Conference, page 3. World Scientific, 1995.

[7] M. R. Andrews, M.-O. Mewes, N. J. van Druten, D. S. Durfee, D. M. Kurn,

and W. Ketterle. Direct, nondestructive observation of a Bose condensate.

Science, 273(0):84, 1996.

[8] L. O. Baksmaty, S. J. Woo, S. Choi, and N. P. Bigelow. Tkachenko waves in

rapidly rotating Bose-Einstein condensates. Phys. Rev. Lett., 92(16):160405,

2004.

[9] A. Banerjee and M. P. Singh. Ground-state properties of a trapped Bose gas

beyond the mean-field approximation. Phys. Rev. A, 64:063604, 2001.

70

http://cua.mit.edu/ketterle_group/Nice_pics.htm�
https://ucan.physics.utoronto.ca/News�


BIBLIOGRAPHY 71

[10] W. Bao and W. Tang. Ground-state solution of Bose-Einstein condensate by

directly minimizing the energy functional. Journal of Computational Physics,

187(1):230–254, 2003.

[11] G. I. Barenblatt. Scaling, Self-similarity, and Intermediate Asymptotics.

Cambridge University Press, Cambridge, 1996.

[12] G. Baym. Tkachenko modes of vortex lattices in rapidly rotating Bose-

Einstein condensates. Phys. Rev. Lett., 91(11):110402, 2003.

[13] G. Baym and E. Chandler. The hydrodynamics of rotating superfluids. J.

Low Temp. Phys., 50(57), 1983.

[14] G. Baym and C. J. Pethick. Ground-state properties of magnetically trapped

Bose-condensed rubidium gas. Phys. Rev. Lett., 76(1):6, 1996.

[15] G. Baym and C. J. Pethick. Vortex core structure and global properties

of rapidly rotating Bose-Einstein condensates. Phys. Rev. A, 69(4):043619,

2004.

[16] J. L. Bohn, B.D. Esry, and C.H. Greene. Effective potentials for dilute

Bose-Einstein condensates. Phys. Rev. A, 58(1):584–597, 1998.

[17] S. Bose. Plancks Gesetz und Lichtquantenhypothese. Z. Phys., 26(3):178,

1924.

[18] C. C. Bradley, C. A. Sackett, and R. G. Hulet. Bose-Einstein condensation

of lithium: Observation of limited condensate number. Phys. Rev. Lett.,

78(6):985, 1997.

[19] I. Coddington, P. Engels, V. Schweikhard, and E. A. Cornell. Observation of

Tkachenko oscillations in rapidly rotating Bose-Einstein condensates. Phys.

Rev. Lett., 91(10):100402, 2003.

[20] I. R. Coddington. Vortices in a Highly Rotating Bose Condensed Gas. PhD

thesis, JILA, 2004.

[21] N. R. Cooper, N. K. Wilkin., and J. M F. Gunn. Quantum phases of vortices

in rotating Bose-Einstein condensates. Phys. Rev. Lett., 87(12):120405, 2001.



BIBLIOGRAPHY 72

[22] Eric Cornell. Very cold indeed: The nanokelvin physics of Bose-Einstein

condensation. J. Res. Natl. Inst. Stand. Tech., 101(4):419, 1996.

[23] M. Cozzini, L. P. Pitaevskii, and S. Stringari. Tkachenko oscillations and

the compressibility of a rotating Bose-Einstein condensate. Phys. Rev. Lett.,

92(22):220401, 2004.

[24] M. Cozzini, S. Stringari, and C. Tozzo. Vortex lattices in Bose-Einstein con-

densates: From the thomas-fermi regime to the lowest-Landau-level regime.

Phys. Rev. A, 73(2):023615, 2006.

[25] M. Crescimanno, C. G. Kaoy, and R. Peterson. Limits to sympathetic evap-

orative cooling of a two-component Fermi gas. Phys. Rev. A, 61:053602,

2000.

[26] F. Dalfovo and S. Stringari. Bosons in anisotropic traps: Ground state and

vortices. Phys. Rev. A, 53(4):2477, 1996.

[27] M. Edwards and K. Burnett. Numerical solution of the nonlinear Schrödinger

equation for small samples of trapped neutral atoms. Phys. Rev. A,

51(2):1382, 1995.

[28] A. Einstein. Quantentheorie des einatomigen idealen Gases. Zweite Abhand-

lung. Sitzungber. Preuss. Akad. Wiss., 1925:3, 1925.

[29] E. Erdemir and B. Tanatar. q-gaussian trial function in high density Bose-

Einstein condensates. Physica A: Statistical Mechanics and its Applications,

322:449–455, 2003.

[30] U. Essmann and H. Trauble. The direct observation of individual flux lines

in type ii superconductors. Physics Letters A, 24(10):526–527, 1967.

[31] A. Fabrocini and A. Polls. Beyond the Gross-Pitaevskii approximation: Lo-

cal density versus correlated basis approach for trapped bosons. Phys. Rev.

A, 60(3):2319, 1999.

[32] A. L. Fetter. Variational study of dilute Bose condensate in a harmonic trap.

J. Low Temp. Phys., 106(5/6):643, 1997.



BIBLIOGRAPHY 73

[33] M. Greiner, O. Mandel, T. Esslinger, T. W. Hänsch, and Immanuel Bloch.
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Appendix A

Jacobi Theta Function

The general form of the wave function in the lowest Landau level is Ψ(x, y) =

f(z)e−r2/2d2
, where z = x + iy and f is an entire function whose zeros are ac-

counted as vortices. We assume that these vortices form a regular lattice with

basis vectors b1 and b2 = b1(u + iv), satisfying {b = n1b1 + n2b2}, where ni are

integers. Then the unit cell size is vc = b2
1v. The Jacobi theta function θ(ζ, τ) is

a quasiperiodic function with periodic zeros, where ζ = (x + iy)/b1, τ = u + iv.

It is given with an infinite summation as,

θ(ζ, τ) =
1

i

∞∑

n=−∞
(−1)neiπτ(n+1/2)2e2πiζ(n+1/2). (A.1)

The quasiperiodicity of the function comes from,

θ(ζ + 1, τ) = −θ(ζ, τ), (A.2)

θ(ζ + τ, τ) = −e−iπ(τ+2ζ)θ(ζ, τ), (A.3)

Then f(z) can be written using JTF and an entire function without zeros in its

general form. The only constraint is the normalizability of the wave function

which restricts the form of entire function as h(ζ) = exp(c1ζ + c2ζ
2). The density

of the system is given by |Ψ(r)|2 = |θ(ζ, τ)|2|ec1ζ+c2ζ2|2e−r2/d2
.

|θ(ζ, τ)|2 =
∑

m(−1)me2πimx̄e−πvm2/2Lm (A.4)
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Lm =
1

2

∑

m′

(
1− eiπ(m+m′)

)
e(iπum−2πȳ−πvm′/2)m′

(A.5)

Here the coefficient (1−eiπ(m+m′) in Lm arises because of change of variables. We

applied the Poisson summation formula which is given as,

∞∑

n=−∞
f(n) =

∞∑

k=−∞
=

∞∑

k=−∞

∫ ∞

−∞
dxf(x)e−2πikx (A.6)

to Lm and obtain,

Lm =

√
1

2vc

∑

k

(−1)(m+1)ke(−π(k+um+2iȳ)2/2v). (A.7)

We then find,

|θ(ζ, τ)|2 =

[
1

vc

∑

K

gKeiK·r
]
e2πy2/vc (A.8)

where r = xx̂ + yŷ,K = m1K1 + m2K2, and Ki are the basis vector of the

reciprocal lattice, K1 = (2π/vc)B2 × ẑ, K2 = (2π/vc)ẑ × B1, and the Fourier

coefficients are given as

gK = (−1)m1+m2+m1m2e−vc|K|2/8π

√
vc

2
, (A.9)

where

vcK
2 =

(2π)2

v

(
(vm1)

2 + (m2 − um1)
2
)
. (A.10)

From inversion symmetry about the origin r = 0, we get c1 = 0, and from the

cylindrical symmetry, we have c2 = b2
1π/(2vc). The periodic function g(r) =

g(r + R) is given as,

g(r) = |θ (ζ, τ) exp(−πy2/vc)|2. (A.11)

In Ref. [40] it is shown that wave function in LLL can also be written as a

gaussian with width σ multiplied by a periodic function g(r). Then we see that

σ−2 = d−2 − πv−1
c .


