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ABSTRACT

THE LATTICE OF PERIODS OF A GROUP ACTION
AND ITS TOPOLOGY

Hiiseyin Acan
M.S. in Mathematics
Supervisor: Asst. Prof. Dr. Ergiin Yal¢gin
July, 2006

In this thesis, we study the topology of the poset obtained by removing the
greatest and least elements of lattice of periods of a group action. For a G-set
X where G is a finite group, the lattice of periods is defined as the image of the
map from the subgroup lattice of G' to the partition lattice of X which sends a
subgroup H of G to the partition of X whose blocks are the H-orbits of X. We
study the homotopy type of the associated simplicial complex. When the group
G belongs to one of the families dihedral group of order 2", dihedral group of
order 2p™ where p is an odd prime, semi-dihedral group, or quaternion group and
the set X is transitive, we find the homotopy type of the corresponding poset. If
G is the dihedral group of order 2" or one of semidihedral and quaternion groups,
we find that the homotopy type of the complex is either contractible or has the
homotopy type of three points. In the case of dihedral group of order 2p™, the
associated complex is either contractible or it has the homotopy type of p points
or it has the homotopy type of p + 1 points.

Keywords: lattice of periods, poset topology.
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OZET
YORUNGE LATISLERI VE ONLARIN TOPOLOJILERI

Hiiseyin Acan
Matematik, Yiiksek Lisans
Tez Yoneticisi: Yard. Dog¢. Dr. Ergiin Yalgin
Temmuz, 2006

Bu tezde yoriinge latisinden en biiyiik ve en kii¢iik elemanlarin gikarilmasiyla
elde edilen kismi sirali kiimelerin topolojisini ¢aligtik. G sonlu bir grup ve X
sonlu bir G-kiimesi olsun. G'nin altgruplarinin latisini L(G) ile ve X'in bolinti
(parcalama) latisini II(X) ile gosterelim. Verilen bir altgrubu onun herbir X
yoriingesini bir blok olarak kabul eden boliintiiye gotiiren fonksiyonun goriintii
kiimesine yoriinge latisi deniyor. Biz bu latisten elde edilen kismi sirali kiimeye
karsilik gelen simpleksler kompleksinin homotopi gesidini inceledik. Eger G, el-
eman sayist 2" veya 2p™ (p asal) olan bir dihedral grup, bir yari-dihedral grup
veya bir quaternion grup ise, olusacak kismi sirali kiimenin homotopi gesidini
tam olarak hesapliyoruz. G grubu eleman sayisi 2" olan bir dihedral grup, bir
yari-dihedral grup veya bir quaternion grup ise, olugan simplekler kompleksi, G-
kiimesi X’in eleman sayisina bagl olarak ya bir noktaya biiziilebilir bir kompleks
oluyor ya da 3 tane noktanin homotopi ¢esidine sahip oluyor. Eger G, eleman
sayist 2p™ olan dihedral grup ise ti¢ farkli durum s6z konusu: Kompleks ya bir
noktaya biiziilebilir oluyor, ya p tane noktanin homotopi ¢esidine sahip oluyor ya
da p + 1 tane noktanin homotopi cegidine sahip oluyor.

Anahtar sézcikler: yoriinge latisi, kismi sirali kiime topolojisi.
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Chapter 1

Introduction

In [6] and [7], G. C. Rota introduced the lattice of periods of a group action. It
is constructed from a finite group G and a G-set X. An element of the lattice of
periods is a partition of X whose blocks are the orbits of some subgroup H of G.
Formally, we have a map 7 from the subgroup lattice L(G) of G to the partition
lattice II(X) of X. This map sends a subgroup H of G to the partition of X
whose blocks are the H orbits of GG. The image of 7 is a lattice with the ordering
inherited from the partition lattice of X and it is called the lattice of periods of
a group action. It is denoted by I'(G, X).

It is clear that the image of n is a subposet of the partition lattice TT1(X).
However, it does not have to be a sublattice of II(X). Although the join (taken
in I1(X)) of any two elements of I'm(n) is again in Im(n), the meet of two elements

of I'm(n) may not lie in it.

In [2], W. Doran gives some characterizations of the isomorphism classes of
the lattice of periods for a group G. The main theorem of [2] states that for a
finite group G and a G-set X, the corresponding lattice of periods depends on
the support of the complex representation CX. The support of a representation
is the set of complex characters which appear in the representation. In Section

2.2 we give an alternative proof for this theorem.
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In this thesis we cosider the topology of the lattice of periods. Recall that,
given a poset P, associated to it there is a simplicial complex A(P) where the
faces (simplices) of A(P) corresponds to the chains in P. By this way, every poset
can be seen as a topological object. We study the topology of the poset obtained
by removing the least and the greatest elements of the lattice. We denote this
poset by I'g(G, X). Indeed, any poset with an element which is comparable to any
other element is contractible to that element. So, a (finite) lattice is contractible
since it has a greatest element and a least element. Hence, it is more interesting

to consider the lattice without the least element and the greatest element.

We consider the lattice of periods generated by transitive G-sets where GG
belongs to one of the following families: Dihedral groups of order 2p™ where p is
an odd prime, dihedral groups of order 2", semidihedral groups, and quaternion
groups. In all these cases, we find that the poset we are interested in is either
contractible or has the homotopy type of disjoint union of points. When G is a
member of the last three families, we show that the poset (if not empty) is either
contractible or has the homotopy type of 3 points. When G is a dihedral group
of order 2p™, the poset is either contractible or has the homotopy type of p points
or has the homotopy type of p + 1 points.

We also find some more general results. The poset ['((G, X) is homotopy
equivalent to the poset obtained by removing the least and the greatest elements
of the quotient lattice L(G)/kern. This is equivalent to saying that the poset
I'o(G, X) is homotopy equivalent to the poset obtained from L(G) by removing
the block of G in kern and the block of the trivial subgroup in kerrn. The main
ingredient for the proof is the theorem known as Quillen Fiber Lemma which
states that two posets P and () are homotopy equivalent if there is a poset map
f : P — @ such that the preimage of the elements which is smaller than or equal

to ¢ is contractible for each ¢ € @, i.e., if f~1(Q<,) is contractible for any ¢ € Q.

Every transitive G-set is G-isomorphic to G/H for some subgroup H of G
where the action on G/H is given by left multiplication. Our attention will be
on transitive sets in the next chapters. Assume that G is a finite group and H

is a subgroup of it. Assume further that N is a normal subgroup of G which is
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contained in H. In this case we find that I'(G,G/H) and I'(G/N,G/N/H/N)

are isomorphic lattices. This result enables us to deal with smaller groups.
The rest of the thesis is organized as follows:

Chapter 2 has three parts. In the first part we give background material for
posets and lattices. In the second part, we define the lattice of periods and give
general properties of it. In the last part of the chapter, how to construct all
possible lattices of periods for a given group G is described. Most of the material

in the last two parts of Chapter 2 is due to Doran [2].

In Chapter 3, we start with the topological notions. Then we give some well
known results about the poset topology such as the Quillen Fiber Lemma and

give a homotopy equivalence for the poset I'y(G, X).

In Chapter 4, we calculate the homotopy type of T'o(G, X)) for various transi-
tive G-sets for 2-groups belonging to the families of dihedral, semi-dihedral, and
quaternion groups. The results for semi-dihedral and quaternion groups mainly
follow from the dihedral case. We also calculate the homotopy type of the lattice

for dihedral group of order 2p™ where p is an odd prime.



Chapter 2

General Properties of Lattice of

Periods

In the first part of this chapter we will give background material on lattices.

In the second part we will define the lattice of periods for a G-set X where G
is a finite group. The lattice of periods of a group action was first introduced by
G.C. Rota in [6] and [7].

Some general properties of lattice of periods will follow. The most impor-
tant result of this section is Theorem 2.2.22. It says that, the set of irreducible
characters which appear in the character of permutation module CX uniquely

determines the lattice of periods.

In the last part of the chapter, we will give an algorithm for constructing all
possible lattice of periods for a given group G. Most of the results in this chapter

are due to Doran [2].
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2.1 Background Material on Lattices

In this section, necessary definitions and background material on posets and
lattices will be given. The material in this section is standard and can be found

in any lattice theory book but we follow mostly [3].

A partially ordered set or a poset (P, <) is a nonempty set P together with a
binary relation < satisfying the first three properties of the following:

1. Reflexivity: a < a for any a € P
2. Antisymmetry: a < b and b < a together imply that a = b for a,b € P.
3. Transitivity: a < b and b < ¢ together imply that a < ¢ for a,b,c € P.

4. Linearity: a < bor b <a for a,b € P

The binary relation mentioned in the definition of the poset is called the
ordering (of P). If two distinct elements a,b in a poset P is related by a < b then
we say that a is smaller than b, or b is greater than a. If a poset P satisfies the
linearity property then it is called a totally ordered set or a toset (also called fully
ordered set, linearly ordered set). The most natural examples of totally ordered
sets are N, Z, Q, R with the usual < relation. For a set A, the set of all subsets
of A is called the power set of A and denoted by P(A). Any subset of the power
set P(A) is a poset with containment ordering : X <Y if and only if X C Y for
X,Y € P(A). Usually, the ordering < is omitted in the notation and just P is
used instead of (P, <).

Let P be a poset and () be a nonempty subset of P. Then there is a natural
ordering <g on () induced by the ordering < in P as follows: for a,b € @, a <g b
if and only if a < b. We call (Q, <) or simply @) a subposet of P.

If @ and b are elements of a poset P, they are called comparable if a < b or
b < a. They are called incomparable otherwise. If a subposet C' of a poset P

is consisting of pairwise comparable elements then it is called a chain. In other
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words, a chain C'is a totally ordered subposet of a poset P. The length [(C) of a
finite chain C' is one less than the elements of it, i.e., [(C') = |C| — 1. A subposet

A of a poset P is called antichain if it consists of elements pairwise incomparable.

Given a poset P and two elements a,b € P, [a,b] denotes the set of elements
of P between a and b, i.e., [a,b] = {c € P :a < ¢ < b}. In particular, if b is not

greater than or equal to a, then [a, b] = ().

Let S be a subset of P and a € P. If s < a for each s € S then a is called an
upper bound for S. It is called the least upper bound of S or supremum of S if
for any upper bound b of S we have a < b. It is denoted by supS. Similarly, any
element ¢ of P is called a lower bound for S if ¢ < s for any s € S. An element d
of P is called the greatest lower bound of S or infimum of S if it is greater than

any other lower bound of S, i.e., ¢ < d for any lower bound ¢ of S. The infimum
of S is denoted by infS.

Proposition 2.1.1. Assume that P is a poset and S is a subset of it. If supS

exists in P, then it is unique. Similarly, if infS exists in P, then it is unique.

Proof. Assume that a and b are two least upper bounds for S. By definition,
a < b but also b < a. This is possible only if a = b. The uniqueness of greatest

lower bound is shown similarly. O]

Definition 2.1.2. Let P be a poset. An element a in P is called a minimal
element if there is no a # x € P such that x < a. An element b in P is called a

maximal element if there is no b # y € P such that b < y.

Let P be a poset. The dual poset of P is denoted by P? and constructed as
follows: The elements of P¢ is the same as the elements of P and a < b in P4
if and only if b < a in P. The dual of P? is the same poset as P. So, if P is
the dual poset of ) then also ) is the dual poset of P. The minimal elements
in P become the maximal elements in P? and vice versa. Similarly, the greatest
and least elements interchange in two posets. The supremums interchange with

infimums, upper bounds interchange with lower bounds.

Assume that P and ) are two posets. A map f : P — @ is called order
preserving if a < b in P implies that f(a) < f(b) in Q. Such a map is also called
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a poset map. Two posets P and () are said to be isomorphic if there is an order
preserving bijective map f : P — @ such that the inverse map f~! is also order

preserving. If P and @) are isomorphic posets we write P = ().

Definition 2.1.3. A lattice L is a poset such that inf{a,b} and sup{a,b} exist
for any pair of elements a and b. It is equivalent to saying that for any finite
nonempty subset S of L, the greatest lower bound infS and the least upper
bound supS exist in L.

Lemma 2.1.4. If L is a finite lattice, then there is an element which is smaller
than all the other elements; it is called the least element of L and denoted by 0.
There is also an element which is greater than all the other elements; it is called

the greatest element and denoted by 1.

Proof. It is easy to see that in f L is smaller than all the other elements. Similarly,

suplL is greater than all the other elements. O

Let L be a lattice and a,b € L are two elements. Then, a A b denotes the
infimum of a and b, and a V b denotes the supremum of a and b, i.e., a A b =
inf{a,b} and aVVb = sup{a,b}. The notation A is called the meet and V is called
the join. We call a A b the meet of a and b. Similarly, we call a V b the join of a
and b. These notions can be generalized to arbitrary subsets of L. For any subset
S of L, we will use A S instead of infS and \/ S instead of supS. If S is empty
then we take AS =1 and \/ S = 0.

Definition 2.1.5. Suppose that L is a finite lattice. The minimal elements in

L — {6, /1\} are called atoms and maximal elements are called coatoms.

Definition 2.1.6. Let L be a lattice and K be a subposet of L. If aAb € K and
aVbe K for every a,b € K then K is called a sublattice of L.

Remark 2.1.7. It is possible that a subposet K of a lattice L is a lattice (with
the same ordering) but not a sublattice of L. For example, let A = {1,2,3},
X ={1,2},and Y = {2,3}. The power set P(A) is a lattice with the containment
ordering, i.e., B < C iff B C C for B,C € P(A). The subposet {X,Y,0), A} of
P(A) is a lattice but it is not a sublattice of P(A) since X AY = {2} is not an

element of this subposet.
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Definition 2.1.8. Let L be a finite lattice and L* denote the sublattice of L

consisting meets of arbitrary set of coatoms L, i.e.,
L = {/\ I : I is a subset of coatoms in L}.

The order of L* is inherited from L. The meet of empty set is 1 by definition, so
Tis an element of L*. We will call L* the meet sublattice of L. The join sublattice
of L is defined similarly; replace the coatoms with atoms and meets with joins in
the definition of the meet sublattice. The element 0 is in the join sublattice of L

since the join of empty set gives 0.

If the least upper bound exists for any set of elements in a poset P then it is
called a join semilattice. Similarly, if the greatest lower bound exists for any set
of elements in P then it is called a meet semilattice. A poset L is a lattice if and

only if it is both a join semilattice and a meet semilattice.

Lemma 2.1.9. A join semilattice P with a least element is a lattice. Similarly,

a meet semilattice () with a greatest element is a lattice.

Proof. Since P has a well defined join we need only to show it has a well defined
meet. Let S be a subset of P and GIb(S) denotes the set of lower bounds of
S. This set is not empty since it contains the least element. Then the join of
GIb(S) is the greatest lower bound (meet) of S. The second claim has a similar

proof. O

2.2 The Lattice of Periods of a Group Action

A partition 7 of a set X is a collection of disjoint nonempty subsets of .S such
that their union is X, i.e., X = [J,.; Xi and X;(X; = 0 for any 4,5 € I. The
X,’s are called the blocks of the partition. In this work, X will always denote a

il

finite set and hence the index set is always finite. We will denote by X;|Xs|...| X,
a partition whose blocks are Xy, Xs,...,X,,. One can define an ordering > on
the set of partitions of X such that A;|...|As > By|...|B, if each B; is a subset of

some A;. This ordering is called the refinement ordering. All the partitions of X
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form a lattice with this ordering which is called the lattice of partitions of X and
denoted by II(X). The partition lattice of the set {1,2,...,n} is denoted by II,.

For m € II(X), the notation a ~, b is used to denote that a and b are in the

same block of 7.

For a group G, we denote the subgroup lattice of G by L(G). The elements
of L(G) are the subgroups of G and they are ordered by containment. All the

groups that we consider are finite groups.

Definition 2.2.1 ([4]). Let G be a group and X be a nonempty set. Assume
that for each ¢ € G and x € X there is defined a unique element g - z € X such
that,

(1) 1-x =z for every z € X and,

(1) x - gh = (x - g) - h for every x € X and g,h € G.
Then we say that G acts on X or - is an action of G on X. A set X together

with a G-action is called a G-set.

Definition 2.2.2. Let the finite group G act on the finite set X. Let n: L(G) —
II(X) be such that H — Ay|...|A, where a ~, ) b if and only if a = g - b for
some g € H. The image of n forms a subposet with the order inherited from
the partition lattice of X. Actually, it forms a lattice which, in general, is not a
sublattice of I1(X'). This lattice is called the lattice of periods of the G-action on
X. We will denote it by I'(G, X). If the group G and the set X is clear in the

context we will use the term ‘lattice of periods’ for short.

Remark 2.2.3. Unless otherwise stated the map 7 will always denote the map
defined above throughout this thesis.

Example 2.2.4. Let S3 acts on the set {1,2,3} in the usual way. Then,
n((id)) — 1|2[3

n({(12))) — 12[3

n({(13))) — 13[2

n({(23))) — 1]23

n({(123))) — 123
(

n(Ss) — 123.
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123
12/3 123
12/3
Figure 2.1: I'(S5,{1,2,3})
In general, when S, acts on the set [n] = {1,2,...,n}, the resulting lattice

of periods is II,,. Indeed, for any partition 7 = A;|As|...|As one can take the
subgroup of II,, generated by the cycles C, (s, ..., Cs where C; has the elements
of A; fori=1,2,...,s, then the image of this subgroup is 7.

Now we will present some properties of the map 7 and the poset I'(G, X).

Proposition 2.2.5. The map n is order preserving.

Proof. Let H; < H,. Assume that a and b are in the same block in n(H;). Then,
a = hb for some h € H;. Since h € H; implies h € H,, the elements a and b must
be in the same block in n(Hs). Thus, n(H;) < n(Hs). O

Proposition 2.2.6. The map n preserves joins. That is
n(H Vv K) =n(H)Vn(K),
where the first join takes place in L(G) and the second in I1(X).

Proof. By the previous proposition n(H) < n(H Vv K). Similarly, n(K) < n(H Vv
K). Hence, n(H) Vn(K) <n(H V K). Now let a and b are in the same block in
n(HV K). We need to show that they are in the same block in n(H)Vn(K). First,
note that HV K is a subgroup consisting of elements of the form hikihoks . .. hpk,
where h; € H and k; € K for i = 1,2,...,n. If a and b are in the same block in
n(H V K) then a = hiky ... hyk, - b.

a ~n(H) I{thgkg cee hnknb
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kth e hnknb Nn(K) thQ e knb

kb ~n(ic) b.

Hence a and b are in the same block in n(H) V n(K). O

Remark 2.2.7. The map 7 does not necessarily preserve meets. So, I'(G, X) is
not necessarily a sublattice of II(X). For instance, in Example 2.2.4,

n(((12)) A (123))) = n((id)) = 1]2/3
whereas

n(((12))) A n({(123))) = 12]3 A 123 = 12/3.

Corollary 2.2.8. n(H) = \/ n((g))

geH

Proof. This is clear since H = \/ (g). O

geH

So, it is enough to compute 7({g)) for all g € G in order to compute the lattice
of periods. I'(G, X) is generated by taking the arbitrary joins of the elements from

the set {n({(g)) : g € G}.

Corollary 2.2.9. The poset I'(G, X) is a lattice.

Proof. By Proposition 2.2.6, I'(G, X) has a well defined join. Since 7 is an order
preserving map 7({1}) is the minimum element of I'(G,X). We conclude the
proof by Lemma 2.1.9. O]

Definition 2.2.10. Let P and @ be two posets and ¢ : P — ) be an order
preserving map. The kernel of ¢ is the partition of P where a and b are in the

same block if and only if p(a) = ¢(b). It is denoted by ker ¢.

Recall that, for a poset P and two elements a and b in it, the interval [a, b] is
defined as
la,b] ={c€ P:a<c<b}.

Definition 2.2.11. Given a poset P, a partition 7 of P is called an interval

partition if a ~, b implies that a ~, ¢ ~, b for each ¢ € [a, b].
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Definition 2.2.12. Given a poset P, a partition 7 of P is called a normal parti-
tion if for any two blocks A; and A;, the following two conditions together imply
that ¢ = j.

(¢) There exist © € A; and y € A; with x <,

(i7) There exist z € A; and t € A; with z > t.

Recall that a poset map is an order preserving map between two posets.

Lemma 2.2.13. A partition of a poset P is a normal partition if and only if it

is the kernel of some poset map ¢ : P — Q.

Proof. Let m be a partition of P which is equal to ker ¢ where ¢ : P — @Q is
a poset map and let A;, A; be two blocks of . Assume that there are elements
z,z € A; and y,t € A; such that x < y and z > ¢. Then, f(z) < f(y) and
f(z) > f(t). But since f(x) = f(z) and f(y) = f(t), all the elements must be in

the same block, i.e., © = j. Hence, 7 is a normal partition.

Now assume that 7 is a normal partition. For each block A; in 7 create an
element g;. If there are two elemets x € A; and y € A; such that x < y then
let ¢; < g;. Let @ be the poset with the elements ¢; and with this ordering. Let
¢ : P — @ be the map sending an element in A; to ¢;. Then, ker ¢ is the same

partition as 7. OJ

Definition 2.2.14. Let m = Ay|...|A, be a normal partition of P. The quotient
poset of 7 is the poset whose elements are Ay,..., A, and A; < A; if and only if

x <y in P for some z € A; and y € A;. This poset is denoted by P/r.

Since 7 is an order preserving map (poset map), P/kern is well defined as a

poset. We need this construction for the proof of next proposition.

Remark 2.2.15. In [2], the quotient poset P/ is defined when 7 is an interval
partition. However, when 7 is not a normal partition, the quotient poset may
not be well defined. For instance let P be the poset with the set of elements
{a,b,c,d} and with the relations a < b and ¢ < d. Then 7 = ad|bc is an interval
partition but P/m is not well defined.
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Recall that two posets P and () are said to be isomorphic, denoted by P = @),

if there is a bijective map f : P — @ such that f and f~! are order preserving.

Proposition 2.2.16. The lattice of periods T'(G, X) is isomorphic to the quotient
lattice L(G)/ kern.

Proof. Let kern = Ay|...|A,, and n(H) = m; for H € A;. So, the elements
Ay, ..., A, constitute the lattice L(G)/kern and the elements 7, ..., 7, consti-
tute the lattice I'(G, X).

Since the map 7 is order preserving, if A; < A;, it is clear that m; < ;. Now
let m; < m; for some @ # j. Take H € A; and K € A;. Then HV K € A; by
Proposition 2.2.6 and hence A; < A; since H < H V K. Hence we are done. [

Proposition 2.2.17. Let G be a finite group acting on the finite sets X and Y
and let n; and ny be the corresponding maps respectively. If kern, = kerny then

G, X)=T(G,Y).
Proof. Let the defining maps for I'(G, X) and I'(G,Y) be the maps
e L(G) — TI(X)

ne : L(G) — II(Y).

By Proposition 2.2.16, we have I'(G,X) = L(G)/kern; and I'(G,Y) =
L(G)/ ker ny. Combining the two isomorphisms we get the desired result. O

For a finite group G and a G-set X, the set of G fixed points of X is denoted
by X% and the set of G orbits of X is denoted by X/G. For a group element g, the
notation XY is used to denote the g fixed points of X, i.e., X9 = {a € X : ga = '}

Lemma 2.2.18. Let G be a group and X and Y be two G-sets. Then, the

following are equivalent:
(i) | X = |[YH]| for each cyclic subgroup H of G.

(i1) |X/H|=|Y/H| for each subgroup H of G.
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(i1d) | X/H| = |Y/H]| for each cyclic subgroup H of G.
(tv) The complex representations CX and CY are isomorphic.

Proof. We will first show that the first three statements are equivalent. Then

we will show that (i) implies (iv) and finally we will show that (iv) implies (ii).
(1) = (i) We have

1
| X/H| = |_H]Z | X7
geH

1
S
geH

= [Y/H|

where the first and third equalities are due to Cauchy-Frobenius Theorem [4].

The second equality is followed by (7).
(i1) = (¢i¢) This is obvious.

(4ii) = (i) We have |XV| = |[Y)|. Assume by induction for all the proper
subgroups (h) of (g), | X" | = |[Y"|. If the number of (g) orbits of X and Y are

1 1
o 2= = 22
he(g) hel(g)

by Cauchy-Frobenius Theorem. Then,

Do IxXt=

helg) helg)

equal then

The last equation and the induction hypothesis together imply that | X (9| =
Y9,

(1) = (iv) Let x1 be the character of complex representation CX and y» be
the character of complex representation CY. Assume that | X9 = |Y9| for every
g € G. In order to show that CX and CY are isomorphic representations it is
enough to show the characters x; and y» are equal. But for any g € G, x1(g) is
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the number of ¢ fixed points of X and x2(g) is the number of g fixed points of Y.

Since | X9| = |Y9] for every group element g, the characters x; and ys are equal.

(7v) = (i1) Now assume that the complex representations CX and CY are
isomorphic. Then dimg(CX)# = dimc(CY)# for every subgroup H of G where
(CX)H denotes the H fixed points of CX and (CY)¥ denotes the H fixed points of
CY. But since dim¢(CX)# = | X/H| and dimg(CY)# = |Y/H]| for any subgroup
H we conclude that |X/H| = |Y/H| for every subgroup H of G. O

Proposition 2.2.19. Let n, : L(G) — II(X) and ne : L(G) — II(Y) be the usual
maps where G is a finite group and X,Y are finite G-sets. If kern; # kerns then
there exist subgroups Hy > Hy such that one of the following statements holds,

(4) m(Hy) = m(Hy) but ny(Hy) # n2(Ho)

(#9) m(Hy) # m(Hy) but no(Hy) = n2(Ha)

Proof. Suppose kern; # kern,. Then, there exist subgroups H and K of G
such that n(H) = m(K) but no(H) # no(K), or vice versa. Assume WLOG,
m(H) = m(K) but no(H) # n2(K). Then, m(H vV K) = mi(H) = ni(K) but
at least one of no(H) and n2(K) is not equal to no(H V K), say na(H). Letting
H YV K = H, and H = H, completes the proof. O

Theorem 2.2.20 (Thm 3.2, Doran [2]). Let G be a finite group acting on fi-
nite sets X and Y . If the complex permutation representations of X and Y are
isomorphic, then

I'G,X)=2T(G,Y).

Proof. If the complex representations CX and CY are isomorphic then the num-
ber of H orbits of X and the number of H orbits of Y are equal by Lemma 2.2.18,
for any subgroup H of G. Let 1, : L(G) — II(X) and 72 : L(G) — II(Y) be
the usual maps. If we show that kern; = kern, then we are done by Proposition
2.2.17.

Assume that H; > H,. Since H, is a subgroup of Hy, any H, orbit of a G-set
is included in an H; orbit. On the other hand, the images of H; and H, under

1, are same if and only if H; and H, orbits of X are same. Combining these two
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facts we conclude that the images 1, (H;) and n;(Hs) are same if and only if the
number of H; orbits and H, orbits are equal. Similarly, the images 7,(H;) and
n2(Hy) are same if and only if the number of Hy and Hy orbits of Y are equal.
But then, by the contrapositive of Proposition 2.2.19, the kernels ker n; and ker 7y

are same. O

Definition 2.2.21. Let G be finite a group and ¢ be a complex representation of
G. The support of ¢ is the set of irreducible representations (up to isomorphism)
appearing in ¢, i.e., if ¢ = a1¢1 D - - - D apdr Where aq, ..., ay are positive integers
and ¢q,..., ¢ are pairwise nonisomorphic irreducible representations then the
set {¢1,...,dr} is the support of ¢.

Actually, the next theorem says that it is enough to look at the support of

the representation to determine the lattice of periods of a group action.

Theorem 2.2.22 (Thm 5.2, Doran [2]). Let G be a finite group and X,Y be two
finite G-sets. Let x1 and xo be the characters of complex representations CX and
CY, respectively. If the supports of x1 and x2 are same, then I'(G, X) = T'(G,Y).

Proof. Let n; : L(G) — TI(X) and 17, : L(G) — II(Y) be the defining maps.
By Proposition 2.2.17 it is enough to show that kern, = kermn,. Let H; > Hs.
Then, as in the proof of Theorem 2.2.20, the images of H; and H, under n; are
the same if and only if the number of H; orbits of X is equal to the number of
H, orbits of X. But the number of H; orbits is equal to dimc(CX )"t and the
number of H, orbits is equal to dimc(CX)#2. Hence, n,(Hy) = m1(H,) if and
only if dime(CX)"t = dim¢(CX)H2.

Let
X1 = a1+ -+ apy
X2 = bihr + -+ buihy
where a;,b; € Z* and v;’s are irreducible characters (i = 1,...,n). Then,

CX=2aVi®--Dda,V,

where V; is an irreducible CG submodule of CX whose character is v;, (i =
1,...,n). Similarly,
Cy=znpVie---eb,V,.
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First note that since Hy > Hs,, the H; fixed points of any CG-module M is
contained in the Hy fixed points of M. We have dimg(CX)H1 = dime(CX)H2 if
and only if

dime(a Vi @ - @ a, V)™ = dime (a1 Vi @ - -+ @ a,, V) 2.

The last equality holds if and only if dime(V;)#* = dimc(V;)"2 fori =1,2,...,n
since dime(V;)' < dime(V;)™2 for all 4. Thus, n(Hy) = m(H,) if and only
if dime(V;)®r = dimg(V;)2 for ¢ = 1,2,...,n. Similarly, one can show that
no(Hy) = ma(Hs) if and only if dime(V;)® = dime(V;)#2 for i = 1,2,...,n.
Thus, n1(Hy) = mi(Hy) if and only if no(Hy) = n2(Hz). We conclude that the
kernels are the same by Proposition 2.2.19. [

We end this section with a proposition from [2].

Proposition 2.2.23 (Proposition 4.4, Doran [2]). Let H, and Hy be conjugate
subgroups of G. Then ker Hy = ker Hy where ker H; = ker(n;) and n; : L(G) —
II(G/H;) is the defining map for lattice of periods on the group G on the set G/ H;
fori=1,2.

2.3 Constructing the Lattice of Periods

In this section, we will determine the possible lattice of periods for a given finite
group G. All we need is the kernels of defining maps 7 : L(G) — II(X) where X

runs over the representatives of conjugacy classes of transitive G-sets.

By Proposition 2.2.17, constructing the possible lattices of periods for a group
action is equivalent to determining the possible partitions of the subgroup lattice
L(G) which can arise as the kernel of a map n : L(G) — II(95).

Definition 2.3.1. Let G be a group and X,Y be two G-sets. X and Y are
said to be G-isomorphic if there exists a bijective function ¢ : X — Y such that

o(lg-x)=g-p(z) forany g € G and = € X.
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Let GG be a finite group and X be a transitive GG-set. There exists a subgroup
H of G such that X is G-isomorphic to G/H. Indeed, for any o € X one can
take the subgroup G, for H where GG, denotes the stabilizer of «.

If X and Y be two disjoint GG-sets one can extend the action of G to X I1'Y
by

{ g *(action on X) @, ifae X,
gra=

g *(action on Y) @, ifae Y7

forae X1IY.

Theorem 2.3.2. Let X and Y be two G-sets. Let m, : L(G) — II(X) and
ne : L(G) — II(Y) be the defining maps and kern, and kerny be the kernels of

these maps respectively. Then,

NG, X1IY) = L(G)/(kerm A kerns)
Proof. The defining map for I'(G, X 1Y) is

n:L(G) — (X IIY)
H — n(H)|no(H)

It is enough to show that kern = kern; A kern,.

If two subgroups H; and H, are in the same block in kern then obviously
they are in the same block in ker n; and ker 7, and hence in ker n; A ker ny. Thus,
kern C kern; A ker ns.

Conversely, if H; and Hs are in the same block in ker n; Aker 7g, then 1, (H;) =
ni(Hz) and no(Hy) = n2(Hz). But, then n(H;) = n(Hs). So, they are in the same
block in kern. Thus, kern D kern; A kerns. Hence, kern = kern; A kern,. [l

For a subgroup H of G, let ker H denote the kernel of the map ¢ : L(G) —
II(G/H). Since any G-set X is a union of transitive sets, it can be written as
X =G/H,1I---11G/H,. Thus, above theorem provides a method for obtaining
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all possible lattice of periods for a given group G. The method can be described as
follows: Calculate ker H for each subgroup H of GG and take all the possible meets
of these kernels. For any combination of subgroups Hi,--- , H,, the quotient
poset L(G)/(ker Hy A --- A ker H,) gives a lattice of periods for group G and
G-set X 2 G/H,11---11G/H, and conversely any lattice of periods for group G
can be obtained by this way.

Corollary 2.3.3. If the G-set X contains an orbit isomorphic to G/{1}, then
G, X)=L(G).

Proof. This follows from the observation that the meet of ker{1} with ker H for
any H < G gives ker{1}. O

Proposition 2.3.4. Let G be a finite group and H be a subgroup of it. If there
1s a normal subgroup N of G such that N < H < G then,

I'(G,G/H) = T(G/N,G/N/H/N).

Proof. Let 1y : L(G) — II(G/H) and n, : L(G/N) — I(G/N/H/N) be the
defining maps. First let’s show that 7, (M) = (M N) for a subgroup M of G. It
is obvious that (M N) > n;(M). Let aH be a coset of H in G for some arbitrary
a € G. It is enough to show that the block of aH in n;(M) contains the block of
aH in i (MN). The block of aH in m(MN) is {mnaH : m € M,n € N} and
the block of aH in n (M) is {maH : m € M}. If we show that mnaH = maH
for any n € N we are done. The last equality holds if and only if a 'm~tmna =
a~'na € H. But the last expression holds since a='na € N < H. So, for any
partition 7 in I'(G, G/ H), there is a subgroup N < K < G such that n (K) = 7.
So, the map r : Q — I'(G,G/H) defined by r(K) = n(K) is a surjective map
where Q = {K : N < K <G}.

Now, let ¢ : I'(G,G/H) — I'(G/N,G/N /H/N) be such that
m(K) — n2(K/N)
for N < K <.
Assume that 71 (K7) = n(K3) for N < K;, K5 < G. This is possible iff

al ~y (k) bH <= aH ~, (k,) bH for any a,b € G.
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This is equivalent to saying that
dk, € Ky s.t. aH = kibH <— 3Tky € Ky s.t. aH = kybH.
Since N < H is a normal subgroup of GG, the last expression is equivalent to
Jky € Ky st. a(H/N) = kyb(H/N) <= Jko € Ky s.t. a(H/N) = kob(H/N)
and this equivalent to the expression
a(H/N) ~p, ki ny (H/N) <= a(H/N) ~y,k,/n) bD(H/N) for any a,b € G.

Thus the map ¢ is well defined and injective. It is obvious that it is surjective
and order preserving. It is also obvious that the inverse map ¢! is order preserv-
ing. Hence, ¢ is an order preserving bijective map such that its inverse is order

preserving. Therefore, it is an isomorphism between two lattices. O

Corollary 2.3.5. Let G be a finite group and X is a transitive G-set which is
isomorphic to G/N as a G-set where N is a normal subgroup of G. Then, I'(G, X)
is isomorphic to L(G/N).

Proof. First apply Proposition 2.3.4 with H = N and then Corollary 2.3.3. [J



Chapter 3

Topology of the Lattice of

Periods

In the first part of this chapter we give the necessary definitions for poset topology.

Then we state some general results about the topology of lattice of periods.

3.1 Poset Topology

In order to be able to talk about the topology of a poset, we will associate a
simplicial complex to a given poset. In this way it will be clear what is meant by

‘topology of a poset’. First, we need some definitions.

Definition 3.1.1. Let X and Y be two spaces and f,g : X — Y be two con-
tinuous maps between X and Y. The maps f and ¢ are said to be homotopic,
denoted by f =~ g, if there is a continuous map H : X x I — Y such that

(1) H(x,0) = f(z) for all z € X and

(17) H(z,1) = g(x) for all z € X.

The map H is called homotopy.

Suppose X and Y are two spaces and f : X — Y is a map. The map f is

21
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called homotopy equivalence if there is a map ¢ : Y — X such that f o g ~ idy
and go f ~ idx. In this case, X and Y are said to be homotopy equivalent. The
map ¢ is called the homotopy inverse of f. A space Z is called contractible if it

is homotopy equivalent to a point.

The notation ~ is used both to denote the homotopic maps and homotopy

equivalent spaces.

The topology of the space RY has the basis elements U; x Us x ... where the
U;’s are open sets of R and U; = R except for a finite number of 7. A set of points

{po,p1,--.,pn} in RY is said to be geometrically independent if the equations

1=0 1=0

together imply that ¢;, =0 for: =0,1,...,n.

An n-simplex is defined as the convex hull of n+ 1 geometrically independent
points. Technically, if V' = {py,...,p,} is a geometrically independent set in
RY, tge n-simplex o with vertex set V is the set of points z in RY such that
T = Z t;p; where Zti = 1 for nonnegative to,--- ,t,.

i=0 i=0

If an n-simplex o is a convex hull of points {po, p1,...,Pn}, then these points
are called the vertices of 0. The set of vertices is denoted by V(o). The dimension
of o is n. In general the dimension of any simplex is one less than the number
of vertices of that simplex. Any simplex with vertex set S where S C V(o) is
called a face of o. A simplex ¢ can be topologized by the subspace topology, i.e.,

a subset 7 of ¢ is open in ¢ if and only if 7 = U N o for some open set U of RY.

Definition 3.1.2. A simplicial complex A in RY is a collection of simplices

satisfying:

1. If o is a simplex in A, then so is any face of it.

2. Intersection of two simplices in A is a face of both simplices.

A simplicial complex A can be topologized as follows: A subset X of A is

closed if and only if X N is closed in ¢ for any simplex o of A. This topologized
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space is called the polytope of A and sometimes denoted by |A]|. We will not
distinguish A and |A].

It is possible to define a simplicial complex in an abstract way which makes

it an appealing object for mathematicians working in combinatorics.

Definition 3.1.3. An abstract simplicial complex A on vertex set V is a subset
of P(V) — {0} such that:

1. {v} e Aforanyv eV

2. If A€ A then B € A for any B C A.

An element of a simplicial complex A is called a face or a simplex of A. A
maximal face, i.e., a face which is not included in any other face, is called a facet.
It suffices to know the facets of a simplicial complex to know the simplicial com-
plex. The dimension of A is the maximum dimension among all the dimensions
of its faces, or equivalently its facets. Any simplicial complex A’ which is a subset

of A is called a subcomplex of A.

A simplicial map between two simplicial complexes A and A’ is a continuous
map f : A — A’ sending a simplex of A to a simplex of A’, i.e., if 0 € A then
f(o) € A

It is possible to define an abstract simplicial complex from a geometric one
uniquely. Similarly, it is possible to construct a geometric simplicial complex from
an abstract simplicial complex S. Although this construction is not unique, it is
unique up to homeomorphism. Such a complex is called a geometric realization
of S. This gives us the ability to talk about the topology of an abstract simplicial
complex without any confusion. In the remaining of this chapter and next chapter
we will work with abstract simplicial complexes. By abuse of terminology, we will

mean a simplicial complex by ‘complex’.

Definition 3.1.4. Let A be a simplicial complex with vertex set V and F' be
the set of facets of A. If w is a point which is not in V(A) then the cone on A
with vertex w is defined as the complex with facet set {{w} UV (o) :0¢€ F}. It
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is denoted as w * A. It is clear that A is a subcomplex of w *x A and it is called

the base of the cone w * A.

A poset P can be viewed as a topological object by associating a simplicial
complex A(P) to P. The elements of the poset constitute the vertices of the
simplicial complex A(P) and any chain of length n is considered as an n-simplex
with the corresponding vertices in A(P). Naturally, by ‘the topology of P’ we
mean the topology of A(P). Any topological aspect of P such as contractibility
is indeed the topological aspect of A(P). If L is a finite lattice then it has a
greatest element T and a least element 0. Every maximal chain in such a lattice
contains the elements 0 and 1. This is equivalent to saying that every facet in
A(L) contains the vertices 0 and 1. So, A(L) is a cone on A(L—{0}) with vertex
0 and it is a cone on A(L — {1}) with vertex 1. It is well known that a cone on
a complex with vertex w is contractible to w. Hence A(L) is contractible for any
finite lattice L.

Recall that a poset map f : P — () between two posets P and () is an order
preserving map, i.e., x <p y implies that f(z) <g f(y).

Proposition 3.1.5. Any poset map f : P — @ induces a simplicial map |f] :
A(P) — A(Q).

A poset P is called conically contractible if there is a poset map f: P — P
such that p < f(p) > po for all p € P and for some p, € P. A lattice L is
conically contractible since f(p) = p V po for any py € L is a poset map from
L to itself satisfying the above condition. Similarly, a poset P with a least
(greatest) element is conically contractible since the function f : P — P which
sends p € P +— sup{p,po} where py denotes the least (greatest) element of P is
well defined and satisfies the above condition. A conically contractible poset is

contractible. This is an easy consequence of the following proposition.

Proposition 3.1.6 (Homotopy Property, Quillen [5]). If f,g: X — Y are poset
maps such that f(z) < g(z) for every x € X then |f| and |g| are homotopic maps.

Proof. If X and Y are posets then X x Y is a poset with (z,y) < (2/,y/) iff

r < 2/ and y < y/. Similarly, if A; and A, are simplicial complexes, then
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Ay x Ay is a simplicial complex with faces {(o1,032) : 01 € Ay, 09 € Ay}. There
is a homeomorphism between A(X X Y) and A(X) x A(Y') induced by the maps
lpr1| and [pro|. We have a map F' : X x {0,1} — Y such that F(z,0) = f(z)
and F'(x,1) = g(x). This induces a homotopy |F|: A(X) x I — A(Y') such that
|F|(z,0) = |f|(x) and |F|(z,1) = |g|(x) for all z € A(X).

Definition 3.1.7. For a poset P we define P, as the set {y € P : y < z}.
P_,, P., and P>, are defined similarly. If f is a poset map from P to (), then

Q<) = {p € P: f(p) < q}. This is clearly a subposet of P. The set
f71(Q>,) is defined similarly.

The next proposition, known as Quillen Fiber Lemma, is a very important

result and tool in this subject [5].

Proposition 3.1.8 (Quillen Fiber Lemma). Let P and Q be posets and let ¢ :
P — Q be a poset map. Suppose A(f~1(Q<,)) is contractible for each q € Q.
Then, A(P) ~ A(Q).

In [1], some generalizations of this lemma are given.

Theorem 3.1.9. Let P be a p-group which is not elementary abelian and L(P)
be the subgroup lattice of P. Then the poset L(P) — {6, /1\} is contractible where 0
denotes the trivial subgroup of P and 1 denotes the group P itself.

Proof. Let Lo(G) denote L(G) — {0,1} for any group G. Now, let P be a group
as above. Then ®(P) # {1}. Since the Frattini group is a normal subgroup,
®(P)H is a subgroup of G for any subgroup H of P. Let ¢ : Ly(P) — Lo(P) be
such that ¢ : H — ®(P)H. It is clear that H < ¢(H) > ®(P). Then, the poset

Ly(P) is conically contractible and hence it is contractible. O

3.2 A Homotopy Equivalence for the Lattice of

Periods

In this section, we will give some general results about the topology of lattice of

periods. We have seen in the first chapter that, kern gives a partition of L(G)
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where G is a finite group and 7 is the defining map for the lattice of periods. We
will denote the block of trivial subgroup of G' by Sy and the block of G by 57 in
kern. The set S will denote the union Sy U .S;.

Theorem 3.2.1. A(T'o(G, X)) is homotopy equivalent to A(L(G) — S).

Proof. Let ¢ be the restriction of n to L(G) — S. Then the image of ¢ is
Io(G, X) =T(G, X) — {0, T} where 0 denotes the image of trivial subgroup and
1 denotes the image of G under 7. Let Q = To(G, X). If we show that ¢~ (Q<,)
is contractible for each ¢ € @) then we are done by Quillen Fiber Lemma. In
order to show ¢ '(Q<,) is contractible, it is enough to prove that ¢ '(Q<,)
has a greatest element. Assume it does not have such an element. Then there
must be two distinct maximal elements, H and K in this set. On the other
hand by Proposition 2.2.6, ¢(H V K) = ¢(H) V ¢(K) < q. So, we will have
HV K € ¢$~1(Q<,). This contradicts the maximality of H and K. ]

Definition 3.2.2. Given a poset P with a greatest element T and least element
0, the poset P — {0,1} is denoted by P.

Recall that, for a lattice L, the meet sublattice L* is defined as follows:
L*={N\1I:1is asubset of coatoms in L},

Lemma 3.2.3 (Lemma 2.2, Shareshian [8]). Let L be a finite lattice and P be a
subposet of L which contains L* U {6}

(i) If 0 € L* then A(Py) ~ A(LY).

(17) Otherwise A(Py) is contractible.

Proof. Define the poset () such that,
o Lz, 0e L
L* — {1}, otherwise.

Let i : Q — Py be the inclusion map. For x € Py define * to be the meet of
all coatoms greater than x. Clearly, the preimage of i restricted to the elements

greater than or equal to x in F is equal to ()>,- which is contractible since it



CHAPTER 3. TOPOLOGY OF THE LATTICE OF PERIODS 27

has a least element. We conclude by Quillen Fiber Lemma that A(Q) ~ A(F).
Thus the first part is proved. But if 0 ¢ L* then L* contains a least element and
so does ). This finishes the proof of second part. m

Corollary 3.2.4. Let L be a finite lattice. If6 ¢ L*, then Lq is contractible.

Otherwise Ly is homotopy eqivalent to L.

Proof. Take P = L in the Lemma 3.2.3. ]

In the next chapter we will examine the topology of lattice of periods in some

special cases and Lemma 3.2.3 will be the main tool in the proofs.



Chapter 4

Calculations

In this chapter we will identify the topology of lattices of periods in some special
cases. We will consider transitive G-sets where G belongs to one of the following
family of groups: Dan, Dayn, SDan, QQon where p is an odd prime and Dy, denotes
the dihedral group of order 2n, SDy» denotes the semi-dihedral group of order

2" and (Qon denotes the quaternion group of order 2.

4.1 The Dihedral Group of Order 2"

The presentation of dihedral group Dan is given by:

Dov = (a,b: a®™ =5 = 1,bab = ™).

Lemma 4.1.1. Let G = Don forn > 1. Then G has 3 mazximal subgroups which
are Hy = {(a), Hy = (a®,b) and H3 = (a?, ab).

Proof. Any maximal subgroup of a p-group has index p. So, all the maximal
subgroups of Dyn has order 2" 1. Clearly, H,, H and H; are subgroups of order
2"~1 Indeed, a has order 2"7! in G and hence H; = (a) has order 2"7'. The
element a® has order 2% and H, 2 (a?), so Hy has order 2"~'. Similarly, Hs

has order 2"~!. Now, let H be a subgroup of index 2. It contains a? for otherwise

28
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H, aH and a*H would be distinct left cosets of H which is not possible since
an index 2 subgroup has two left cosets. If a € H, then H = H;. Otherwise,
either b € H or ab € H. The former case corresponds to H = H, and the latter
corresponds to H = Hj. O

The group element a’b has order 2 for i = 0,1,.... Moreover, a‘ba*a’b = a=*
and in particular a’ba?a’d = a~2. Hence, the above lemma tells us that the
dihedral group of order 2" (n > 2) has a cyclic maximal subgroup and two other

maximal subgroups which are dihedral of order 271

Corollary 4.1.2. Any subgroup of dihedral group of order 2" is either a cyclic

group or a dihedral group.
Proof. It becomes apparent if we apply Lemma 4.1.1 repeatedly. O

Corollary 4.1.3. If H is a noncyclic subgroup of Don with index 2%, then H =
(a®*,a’b) for some i€ {0,1,...,2F —1}.

Proof. The claim holds for maximal dihedral subgroups by Lemma 4.1.1. Assume
it holds for dihedral subgroups of index 27. Let H be a dihedral subgroup of index
2/*1 Then it is a subgroup of a subgroup K where K has index 2/. By induction
hypothesis K = (a?,a'b) for some i € {0,1,...,2 —1}. Since |K : H| = 2,
H = (a*"", dla’b) for some | € {0,27} by Lemma 4.1.1. O

Corollary 4.1.4. Let H be a subgroup of Don with index 2. Then either H is
cyclic generated by a® ™" or H is a dihedral group generated by a® and a'b for

somei=0,1,...,2F —1.

Proof. This is an immediate consequence of Corollary 4.1.2 and Corollary 4.1.3.
O

The first three lines of the subgroup lattice of dihedral group of order 2"
(n > 3) is shown in Figure 4.1. In the second row we have three maximal
subgroups; a cyclic subgroup and two dihedral subgroups. In the third row, we
have a cyclic subgroup of order 2"=2 and four dihedral subgroups of the same
order. In general, in row k (for 2 < k < n) we have one cyclic subgroup of order

2n=F+1 and 2¥=1 dihedral subgroups of the same order.
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Dgn = <a, b>

(a?, ab) = Dan-1

(a*,b) (a*,a?b) (a%) (a*,ab)  (a',a’))
Figure 4.1: Don

Lemma 4.1.5. Let H and K be two proper subgroups of G = Daon which are not
mazximal. Then, HK # G.

Proof. It is enough to show that for two subgroups H and K of index 4, HK # G
since any subgroup of index greater than 4 is contained in a subgroup of index 4.
Any subgroup of G of index 4 is either cyclic generated by a? or generated by the

elements a* and a’b for i € {0,1,2,3}. Hence, two subgroups of index 4 intersect

at the subgroup (a?). |HK| = |H||K|/|[HNK|= % = |G|/2 # |G|. Hence

HK +G. O

Proposition 4.1.6. Let G be a group, H be a subgroup of G, and let G act on
G/H in the usual way. If n(Ky) > n(K>) in I'(G,G/H) then K1H O KoH. In
particular, if n(Ky) = n(Ksy) in I'(G,G/H) then K1H = K>2H.

Proof. This becomes clear with the following observation: For any subgroup K,
the union of the left cosets of H which are in the same block with the coset H in

partition n(K) is equal to the product K H. O

Let X = G/H be a transitive G-set where G is isomorphic to dihedral group
of order 2". If n = 1, then the only possible lattices of periods of this group
are the lattice with one element and the lattice with two elements. But, we are
interested only in the poset where the greatest and least elements of the lattice
are removed. In the case of Dy this poset is the empty poset hence everything is
trivial for this case. Now assume n > 2. We need two lemmas before stating one

of the main theorems of this thesis.

Lemma 4.1.7. Let H be a subgroup of G = Dan such that H = (a2, a'b) where
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k>1andi€{0,1,...28 —1}. Then the maximal elements of To(G,G/H) are
n({a®,a'b)), n({a*, a’*'b)) and n((a*, a’**b)).

Proof. The cosets of H are H,aH,...,a* " H. Let (a) = H; and (a?, a't'b) =
H,. Since Hy - H = G = Hy - H we have n(H;) = n(G) = n(Hz). On the other
hand,

G # (a® a'b)H = (a* a'b)
G # (a*,a""'b)H (by Lemma 4.1.5)
G # {(a* a"™b)H (by Lemma 4.1.5)

Any proper subgroup of G other than H; and Hj is a subgroup of at least one of
the given subgroups. Since 7 is an order preserving map all the possible maximal
elements of I'o(G,G/H) are the corresponding images of these subgroups under

the map 7. Now,

n((a* a'b)) = H,a*H, . .. ,a2k’2H|aH, *H, ... > 'H
n({a*,a"™b)) = H,aH, ... ,a2k_4H, a2k_3H|a2H, o*H, ... ,azk_QH, a2 'H
n({a*,a"*t3b)) = H,a’H, . .. ,a2k_4H, a2k_1H|aH, a’H, . .. ,a2k_3H, a2 2H

Clearly, above three partitions are not comparable. Hence we are done. O

Lemma 4.1.8. Let H be a subgroup of Don which is generated by a?* for
k =1,2,.... Then the mazimal elements in the poset U'o(G,G/H) are n({a)),
n({a?,b)), n({a* ab)), i.e., the maximal elements of To(G,G/H) are the images

of maximal subgroups in Dan.

Proof. Since H is a subgroup of the Frattini group ®(Dyx) = (a?), it is a sub-
group of each of the maximal subgroups. Hence HM = M # Dy» when M is one
of these subgroups which implies that the image of M under 7 is not equal to
n(Dan). This fact guarantees that the images of maximal subgroups exist in the
poset I'g(G, G/H). Since 7 is order preserving, the image of any proper subgroup
K is smaller than the image of the maximal subgroup containing K. Now it is
enough to prove that any pair of these three elements are not comparable. But

this is an immediate consequence of Proposition 4.1.6. O
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Theorem 4.1.9. Let H be a subgroup of G = Don and X = G/H.

(1) If H has index 1 or 2, then I'o(G,G/H) is empty.

(12) If H has indez 4, then U'o(G,G/H) is homotopy equivalent to 3 points.
(i43) If H has indez greater than 4, then I'y(G, G/H) is contractible.

Proof. (i) If H has index 1 or 2, then lattice of periods has one or two elements
respectively. When the least and greatest elements are removed, the remaining

poset is empty in either case.

(1) Suppose now that H has index 4. If H = (a*) = ®(G) then I'(G,G/H)
is isomorphic to L(G/H) and hence I'o(G,G/H) is isomorphic to L(G/H) —
{0,1} where 0 and 1 denote the trivial subgroup and G/H itself. Since G/H
is isomorphic to Dy, it follows that I'o(G,G/H) has the homotopy type of 3
points. Let H = (a* a'b) where i € {0,1,2,3}. Then the cosets of H are
{H,aH,a*H,a*H} and n(G) = n({a)) = n({a®a"'b)) = H,aH,a*H,a*H. We

have

n({a? a'b)) = H,a*H|aH,a*H,
n({a*,a"™b)) = H,aH|a*H,a*H, and
n((a*,a"3b)) = H,a*H|aH, a*H.

Since 7 is order preserving, the coatoms of I'(G, G/H) are the above three parti-
tions. The meet of any pair of these partitions is the partition H|aH|a*H|a*H,
which is the least element in I'(G, G/ H). So, the meet sublattice consists of five el-
ements; the greatest element H,aH,a>H, a®>H, the least element H|aH|a?H|a*H,
and three atoms (or coatoms) appearing above. Since the least element of
I'(G,G/H) is contained in the meet sublattice, the poset I'y(G, G/ H) is homotopy
equivalent to 3 points by Lemma 3.2.3.

(771) Now assume that H has index greater than 4 in G. If H is generated
by a*" for some m = 2,3,... then the maximal elements of ['y(G,G/H) are
exactly the images of maximal subgroups of Ds» by Lemma 4.1.8. Since H is
properly included in the Frattini subgroup ®(Dan), the images n(®(Dan)) and
n((1)) are distinct elements of I'(G, G/H). The meet semilattice has the least
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element 7(®(Dyn)) and hence does not contain the least element of T'(G,G/H).
Hence, I'g(G, G/ H) is contractible by Corollary 3.2.4.

Now assume that H = (a®", a'b) for some m = 3,4,... and 0 <i < 2™. The
maximal elements of ['o(G, G/H) are n({(a?, a'b)), n({a*, a”b)) and n((a*, a’*3b))
by Lemma 4.1.8. Since (a?) is an index 8 subgroup, it is not included in H and
hence (a'YH # H. So, n({(a*)) # n({1)). On the other hand n({a?)) is smaller
than all these maximal elements. So, the meet of all maximal elements is equal to
n({a*)). Hence the least element of the meet sublattice of I'(G, G/H) is different
than n({1}). Thus, I'((G, G/H) is contractible by Corollary 3.2.4. O

4.2 The Dihedral Group of Order 2p"

The presentation of dihedral group Ds,» is given by:
Doyn = {a,b: a”" =b* = 1,bab = a™").

Proposition 4.2.1. The group Doy has p + 1 mazimal subgroups, namely a

cyclic subgroup of index 2 and p dihedral groups of index p.

Proof. C,» = (a) is a normal subgroup of Dy,». Sylow’s Theorem tells us that
there is no other subgroup of Dj,» of index 2. Assume H is a maximal subgroup
of Dypn which is different from Cpn. Let k be the least positive integer such that
a* € H. It is clear that k = p' for some [ € {0,1,...,n}. Similarly, let i be the
least nonnegative integer such that a’b € H (there does exist such an element).
This ¢ is necessarily smaller than k£. Thus k£ must be greater than 1 otherwise
H would be the whole group Dy,«. But if & = p’ for [ > 1 then by adding a”
to the generating set of H we obtain a larger subgroup which is not Dgy,n. This
contradicts the maximality of H. So, H = (a?,a'b) for some i = 0,1,...,p — 1.
Clearly, different i’s generate different subgroups. The elements a” and a’b have
orders p"~! and 2 respectively. Moreover a‘baPa'b = a™?, so {af, a'b) is a dihedral

group of order 2p™~1. O

Corollary 4.2.2. All the subgroups of Dayn are either cyclic groups or dihedral

groups.
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D18 = <a, b>

@) 0 @) @b (@) @) @) @) (@ @)

Figure 4.2: D3

Proof. Any maximal subgroup of cyclic group is cyclic. Maximal subgroups of
dihedral groups D, for any k are either cyclic of index 2 or dihedral of index p
by Proposition 4.2.1. The desired result follows by induction. ]

Proposition 4.2.3. Let H be a proper subgroup of Da,n which is not mazimal.
Then there exists a mazimal subgroup (a?,a'b) of index p which contains H where
ie{0,1,...,p—1}.

Proof. If H is a dihedral subgroup then it is contained in a maximal dihedral
subgroup. If H is not a dihedral subgroup, then it is cyclic generated by a?" for
some k > 1. The subgroup H is included in a maximal dihedral group in this

case too. O

The top part of the subgroup lattice of Dqg is illustrated in Figure 4.2.

Lemma 4.2.4. Let Hy and Hy be subgroups of Dopn where Hy, Hy ¢ {(a), Dapn}.
Then, H1H2 7£ Dgpn.

Proof. By Proposition 4.2.3, it is enough to consider maximal subgroups
M; = (a?,a'b),i=0,1,...,p—1. Since M;NM; = (aP) we have |[M;NM;| = p"*.

MMt
MM - gt W < =Dl

| M; M;| =
]

Theorem 4.2.5. Assume G = Dy, where p is an odd prime and let G act on
G/H for H<G.
(i) If H has index 1 or index 2, then T'o(G,G/H) = 0.
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(i1) If H has index p, then T'o(G,G/H) is homotopy equivalent to the disjoint
union of p points.

(13i) If H has index 2p, then T'o(G,G/H) is homotopy equivalent to the disjoint
union of p+ 1 points.

(iv) Otherwise, I'o(G,G/H) is contractible.

Proof. (i) The first case which corresponds to |G : H| = 1 or [G : H] = 2 is
trivial since in each of these cases, any element of I'(G, G/H) is either the least

element or the greatest element. Hence the removal of the least and the greatest
elements of I'(G, G/ H) leaves the poset I'o(G,G/H) empty.

(ii) Dayn has p subgroups with index p. These subgroups are {(a?, a’b) : 0 <
i < p} which are conjugate to each other. Let K; = (a?, a’b) fori =0,1,...,p—1.
Hence H = K, for some m € {0,1,...,p — 1}. Without loss of generality, we
can assume m = 0 by Proposition 2.2.23. Since (a) has index 2, it is normal
in Dy, and (a) H = G which means that n({(a)) = n(Dayn). By Lemma 4.2.4,
K;H # Doy for i € {0,1,...,p — 1}. By Proposition 4.1.6, n(K;) # n(G) for
i€{0,1,...,p—1} and n(K;) # n(kK;) for distinct 5,/ € {0,1,...,p—1}. So, the
images of these subgroups are maximal in I'((G, G/H). The maximal subgroups
of Dyyn are {(a)} U{Ko, K1, ..., K, 1} and any other proper subgroup of D, is
contained in at least one of the subgroups in {(a?, a’b) : 0 < i < p} by Proposition
4.2.3. So, the only maximals in I'((G,G/H) are {n(K;) : i € {0,1,...,p—1}}.
Let’s now show that n(kK;) An(K;) does not lie in I'o(G, G/H) for i # j. Assume
otherwise, let n(K;) An(K;) = n(K) for some K < Dy,n and n(K) # n({1}). The
cosets of H are {H,aH,...,a"'H}. Assume a*H ~, ) a"H for s # r. Then
a’H ~y;) a"H and a*H ~y k) a"H.

a’H ~yg,y a"H <= kja’H = a"H for some k; € K;

<~ a "k;a® € H for some k; € K

K; = (a?,a'b) = {a?” : x € N} U{a?™ : y € N}. The element k; can not be
of the form aP® so k; = a?¥*'b for some y € N. Then, the element a~"a?*'ba® =
aPT'=57"h is in H if and only if s +7 =i mod p. So, a*H ~,k, a"H if and
only if s +r =14 mod p.

Similarly, a*H ~, ;) a"H if and only if s +r = j mod p. Clearly, both of
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these cannot be satisfied if ¢ # j. Hence contradiction. So, n(K;) A n(K;) =
n({1}) for any i # j. So, the meet sublattice of I'(G,G/H) consists of these
maximals together with the greatest and the least elements of I'(G, G/H ). Hence,
by Lemma 3.2.3, I'y(G, G/H) has the homotopy type of p distinct points.

(i13) If H has index 2p, then H = (a?) = ®(Dyyn). The lattice I'(G, G/P(G))
is isomorphic to L(G/®(G)) by Corollary 2.3.5. If we take G = Dg,» and
H = ®(Dyn) then, To(Dypn, Dypn /P(Dopn)) = Lo(Dapn /P(Dopr)) = Lo(Dgp)
and Ly(Dsp) is homotopy equivalent to p + 1 points.

(iv) Assume now H has index greater than 2p. If H < (a) then the maximal
elements of the poset I'y((G,G/H) are n({a)) and n(K;) for i = 0,1,...,p — 1
where K; is as defined above. But the meet of any pair is greater than n(®(G))
since n is order preserving. Hence the least element of the meet sublattice of
['(G,G/H) is greater than or equal to n(®(G)) which is strictly greater than
n({1}). Therefore, the meet sublattice does not contain the least element of
I'(G,G/H). We conclude by Lemma 3.2.3 that I'((G, G/H) is contractible. If H
is not a subgroup of (a) then the maximal elements of I'o(G, G/H) are n(kK;) for
1=20,1,...,p— 1. Nevertheless, the same argument works well in this case also
to show that I'o(G, G/H) is conically contractible. O

4.3 Semi-dihedral and Quaternion GGroups

In this section we restrict our attention to semi-dihedral groups and quater-
nion groups. If GG is one of these groups and X is a transitive G-set which
is G-isomorphic to G/H for some subgroup H with index more than 2, then

I'o(G,G/H) is either homotopic to 3 points or it is contractible.

Lemma 4.3.1. Let H < SDon = (z,y: 22" =42 =1, yay = 22" ). Assume
that z* € H where k is a positive integer and there is no natural number [ less than
k such that x* € H. Similarly, assume x'y € H where i is a nonnegative integer

and there is no natural j less than i such that ¥y € H. Then, H = (2%, z'y) and
|H| = 2[(z")].



CHAPTER 4. CALCULATIONS 37

Figure 4.3: SDy

Proof. Let o' € H such that t = kr + ¢ with 0 < ¢ < k. Then, 2~ F g1 =
2?9 € H. By the minimality of k, ¢ must be 0. We claim that if 'y € H then,

t = kr 41 for some convenient integer r.

Assume otherwise, let z'y € H such that k(r — 1) +4i < t < kr + 4. Then,
xkr+iyxty _ xkr+i$(2”_2—1)t _ xkr+i—t$2"_2t € H. But then, zFrti—t = [T gince
¥’ ¢ H and 272" € H. This contradicts the minimality of k since 0 <
kr+i—t < k. So, any element of H is either of the form x*" or 2*/*iy for integer

r and j. This completes the first part of the proof.

It is clear that |H| = 2[(z*)|. O

Let H be a subgroup of SDsy. as in the previous lemma. Then ¢ must be less
than k, otherwise z %2’y = 2%y would be in H. Since the order of SDsn. is
a power of 2, kK must be a power of 2. Let £k = 2°. If e = n — 1 then ¢ must
be even since ziyx'y = 12" for odd i which is contradicting the minimality of
k. If e < n — 1 then i can be anything less than k. So, there are k subgroups
which contain 2% and do not contain z! for | < k for k # 277!, These are
{{xF z'y) : i < k}. There are 2"~2 subgroups with k = 2"~ which constitute
the set {{x'y) : i is even and i < 271}

The subgroup lattices of SDon for n = 1, n = 2, and n = 3 are given in

Figures 4.3, 4.4, and 4.5 respectively.

For n > 3, first three lines of the subgroup lattice of SDyn is illustrated in
Figure 4.6. The maximal subgroups of SDy» are the three subgroups in the
middle line of the figure.

Lemma 4.3.2. If H and K are two subgroups of S Don which are both not maz-
imal then HK # SDan.
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SDy =V, = (x,y)

Figure 4.4: SD,

SDS = <ZE,y>

(2%, zy) = (zy)

Figure 4.5: SDg

38
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SDQH - <l’,y>

@hy) @y (@) @hay) @)
Figure 4.6: SDon

Proof. It is enough to consider the subgroups of index 4 since any nonmaximal
subgroup lies in an index 4 subgroup. But any two subgroups of index 4 intersect

at £ elements generated by z*. |[HK| = ﬁgﬁ =2 =271 < 2" So, HK can

not be equal to SDan.

Proposition 4.3.3. Let G be a semi-dihedral group of order 2" where n > 3 and
X 2 G/H is a transitive G-set for some subgroup H of G.

(1) If H has index 1 or 2 then U'y(G,G/H) is empty.

(12) If H has indez 4, then U'o(G,G/H) has the homotopy type of 3 points.

(i13) Otherwise I'y(G,G/H) is contractible.

Proof. There are three maximal subgroups of G: M; = (2% y), M, = (z) and
M;z = (22, zy). Let Hy,..., Hs be the index 4 subgroups of G from left to right

respectively in Figure 4.6.

(7). This is obvious since in this case the corresponding lattice has one element
or two elements. Removing the greatest and the least elements results in an empty

poset.

(i1) If H = Hj is the Frattini subgroup then I'(G,G/H) is isomorphic to
L(G/H) = D4. Hence I'o(G,G/H) has the homotopy type of 3 points. Oth-
erwise assume without loss of generality that H = H;. The images of M, and
Ms under n are equal to n(G) since MoH = G = M3H. Then the maximal
elements of I'o(G,G/H) are n(M;), n(Hs) and n(Hs). The cosets of H are
H,zH,z*H and z°H. The maximal elements are: n(M,) = H,z*H|xH,x*H;
n(Hy) = H,xH|2*H,2*H; and n(H;) = H,2*H|xH,2*H. Since the meet of any

two maximal elements is ({1}), the meet sublattice consists of five elements; two
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are the least and the greatest elements of I'(G, G/H) and the others are n(M,),
n(Hy) and n(Hs). Hence, the poset I'((G,G/H) is homotopy equivalent to 3
points by Lemma 3.2.3.

(73i) If H has index greater than 4, then either it lies in the Frattini subgroup
Hj or it lies in exactly one of M; and Ms. In the former case, the maximal
elements of I'o(G,G/H) are the images of maximal subgroups of G under the
map 7. Since (M) A n(Mz) An(Ms) = n(P(G)) # n({1}), the meet sublattice
does not contain the least element of I'(G, G/H). Thus, the poset I'((G,G/H)
contractible by Corollary 3.2.4. In the latter case, assume that H lies in M;. Then
the maximal elements of the poset I'o(G, G/H) are n(M;), n(H,) and n(Hs). All
these maximal elements are greater than or equal to n({z*)) since the map 7 is
order preserving. So, n(My)An(Hy)An(Hs) > n({(xz*)). Since (z*) is not contained
in H, the product H(z*) # H. This means that the coset H does not appear
alone in n({z*)). Hence, n({z*)) # n({1}). Hence, n({1}) does not appear in the
meet sublattice. By Lemma 3.2.3, we conclude that I'y(G,G/H) is contractible.
If H does not lie in M7 but lies in M3, then we can replace M; with M3, H, with

H, and H; with H, in the above argument and get the same result. O]

In the remaining part of this section we will consider quaternion groups.

Lemma 4.3.4. Let H < Qg = (z,y : ¥ =1, 22" =42 yay ' =z,
Assume that o¥ € H where k is positive and for 0 < | < k, 2* ¢ H. Similarly,

assume that 'y € H where i is nonnegative and for 0 < j < i, x9y € H. Then,
H = (z*,2'y) and |H| = 2|(z")].

Proof. It is clear that (z*, 2%y) C H. In order to show the equality, it is enough
to show that every element of H is either of the form 2*" for some integer r or it

kr+i

is of the form 2"y for some integer r.

Suppose that 2! € H. Let t = kr +¢q with 0 < ¢ < k. Then, 27+ +9 = 29 ¢
H. So, ¢ = 0 by the minimality of k. If 2’y € H then z'yz'y = y* = 2" e H.

It is clear that k is a power of two. So, k = 2! for some [ = 0,1,...n — 2.

Assume ¥y € H with 0 < g < k. Then, gh+D iyghrritay — gh-oy2

¥ € H and 2% 922" 22" = #¥~¢ € H which implies ¢ = 0. So,
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Qs

(2*,y) (22, zy)

Figure 4.7: Qs

H = (% 2ly) = {a* : s = 0,1,...}u{zM* . j = 0,1,...}. It is clear that
|H| = 2|(")]. O

As in the case of semi-dihedral group 7 must be smaller than %k in the above
setting. Any nontrivial subgroup of Qs» contains 22"~ = y2. So, if H is a
nontrivial subgroup of Qu» containing 'y for some 4, then %k is a member of
the set {2°: e =0,1,...,n — 2}. There are 2" + 1 subgroups with index 2' for
t =1,2,...,n — 2. These are {(z*,2'y) : 0 < i < 2'} and (z*"). There is
only one subgroup with index 2"~! which is generated by y?. The quaternion
group with two elements is isomorphic to Cs, indeed there is only one group up
to isomorphism with two elements. The quaternion group with four elements is
isomorphic to SD4 which is isomorphic to V4 and its subgroup lattice has the

shape in Figure 4.4. The subgroup lattice of Qg is illustrated in Figure 4.7.

For n > 3, the shape of the subgroup lattice of QQon is similar to the shape of
the subgroup lattice of SDon. The only difference occurs in subgroups of order
2. Quaternion group has a unique subgroup of order 2 but semi-dihedral group
has 2”2+ 1 subgroups of order 2. Therefore, the first three lines of the subgroup
lattice of QQon for n > 3 is exactly the same as the first three lines of lattice of
SDgn. It is illustrated in Figure 4.8.
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S Y) (x4, 2%y) (2?) (x4, zy) (z*, 2%y)

Figure 4.8: Qon

Lemma 4.3.5. Let H and K be two subgroups of Qon which are both not maximal
. Then, HK # Qan.

Proof. It is enough to consider index 4 subgroups of (Jo». All these subgroups
include the element 2. Consequently, any two of these groups intersect at the

subgroup (z*) which is an index 8 subgroup. So, if H and K are such two

HIK| _ gn-1
|HNK]|

not be equal to the group Qon. O

subgroups then |HK| = . Hence the product of these groups can

Proposition 4.3.6. Forn > 3, let H be a subgroup of G = Qon and let X be a
G-set which is G-isomorphic to G/H.

(1) If H has index 1 or 2 then U'y(G,G/H) is empty.

(i1) If H has index 4 then I'o(G,G/H) is homotopic to 3 points.

(i13) Otherwise, I'y(G,G/H) is contractible.

Proof. One can replace SDyn with Qo in the proof of Theorem 4.3.3 and obtain

the same results.

We can also argue as follows: There is a unique subgroup of order two of the
quaternion group. This subgroup is generated by y? and it is a normal subgroup
of G. If H = {1}, then I'(G,G/H) is isomorphic to the subgroup lattice L(G)
and hence I'y(G, G/ H) is contractible by Theorem 3.1.9. Otherwise, we can apply
Theorem 2.3.4 with N = (y?) since every non-trivial subgroup contains (y?). The
quotient G/(y?) is isomorphic to the dihedral group of order 2"~!. The group
H/N is either a dihedral group or a cyclic group of order |H|/2. So, the problem
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is reduced to find the homotopy type of the lattice of periods generated by the
dihedral group of order 2"~ and a transitive set. Since the index of H/N in G/N
is the same as the index of H in GG, we conclude the proof by Theorem 4.1.9. [

Remark 4.3.7. Also in the case of semi-dihedral group we could use Theorem
2.3.4 to reduce the problem to the dihedral case if the subgroup H has order
greater than 2. This is because all the subgroups with order greater than 2
contains the central subgroup C' = (xznﬂ), so for a semi-dihedral group G we
have G/C = Dyn-1. But for the subgroups of order 2 we can not use the theorem

unless the subgroup H is C' itself.
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