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ABSTRACT

THE LATTICE OF PERIODS OF A GROUP ACTION
AND ITS TOPOLOGY

Hüseyin Acan

M.S. in Mathematics

Supervisor: Asst. Prof. Dr. Ergün Yalçın

July, 2006

In this thesis, we study the topology of the poset obtained by removing the

greatest and least elements of lattice of periods of a group action. For a G-set

X where G is a finite group, the lattice of periods is defined as the image of the

map from the subgroup lattice of G to the partition lattice of X which sends a

subgroup H of G to the partition of X whose blocks are the H-orbits of X. We

study the homotopy type of the associated simplicial complex. When the group

G belongs to one of the families dihedral group of order 2n, dihedral group of

order 2pn where p is an odd prime, semi-dihedral group, or quaternion group and

the set X is transitive, we find the homotopy type of the corresponding poset. If

G is the dihedral group of order 2n or one of semidihedral and quaternion groups,

we find that the homotopy type of the complex is either contractible or has the

homotopy type of three points. In the case of dihedral group of order 2pn, the

associated complex is either contractible or it has the homotopy type of p points

or it has the homotopy type of p+ 1 points.

Keywords: lattice of periods, poset topology.
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ÖZET

YÖRÜNGE LATİSLERİ VE ONLARIN TOPOLOJİLERİ

Hüseyin Acan

Matematik, Yüksek Lisans

Tez Yöneticisi: Yard. Doç. Dr. Ergün Yalçın

Temmuz, 2006

Bu tezde yörünge latisinden en büyük ve en küçük elemanların çıkarılmasıyla

elde edilen kısmi sıralı kümelerin topolojisini çalıştık. G sonlu bir grup ve X

sonlu bir G-kümesi olsun. G’nin altgruplarının latisini L(G) ile ve X’in bölüntü

(parçalama) latisini Π(X) ile gösterelim. Verilen bir altgrubu onun herbir X

yörüngesini bir blok olarak kabul eden bölüntüye götüren fonksiyonun görüntü

kümesine yörünge latisi deniyor. Biz bu latisten elde edilen kısmi sıralı kümeye

karşılık gelen simpleksler kompleksinin homotopi çeşidini inceledik. Eğer G, el-

eman sayısı 2n veya 2pn (p asal) olan bir dihedral grup, bir yarı-dihedral grup

veya bir quaternion grup ise, oluşacak kısmi sıralı kümenin homotopi çeşidini

tam olarak hesaplıyoruz. G grubu eleman sayısı 2n olan bir dihedral grup, bir

yarı-dihedral grup veya bir quaternion grup ise, oluşan simplekler kompleksi, G-

kümesi X’in eleman sayısına bağlı olarak ya bir noktaya büzülebilir bir kompleks

oluyor ya da 3 tane noktanın homotopi çeşidine sahip oluyor. Eğer G, eleman

sayısı 2pn olan dihedral grup ise üç farklı durum söz konusu: Kompleks ya bir

noktaya büzülebilir oluyor, ya p tane noktanın homotopi çeşidine sahip oluyor ya

da p+ 1 tane noktanın homotopi çeşidine sahip oluyor.

Anahtar sözcükler : yörünge latisi, kısmi sıralı küme topolojisi.
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Chapter 1

Introduction

In [6] and [7], G. C. Rota introduced the lattice of periods of a group action. It

is constructed from a finite group G and a G-set X. An element of the lattice of

periods is a partition of X whose blocks are the orbits of some subgroup H of G.

Formally, we have a map η from the subgroup lattice L(G) of G to the partition

lattice Π(X) of X. This map sends a subgroup H of G to the partition of X

whose blocks are the H orbits of G. The image of η is a lattice with the ordering

inherited from the partition lattice of X and it is called the lattice of periods of

a group action. It is denoted by Γ(G,X).

It is clear that the image of η is a subposet of the partition lattice Π(X).

However, it does not have to be a sublattice of Π(X). Although the join (taken

in Π(X)) of any two elements of Im(η) is again in Im(η), the meet of two elements

of Im(η) may not lie in it.

In [2], W. Doran gives some characterizations of the isomorphism classes of

the lattice of periods for a group G. The main theorem of [2] states that for a

finite group G and a G-set X, the corresponding lattice of periods depends on

the support of the complex representation CX. The support of a representation

is the set of complex characters which appear in the representation. In Section

2.2 we give an alternative proof for this theorem.
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CHAPTER 1. INTRODUCTION 2

In this thesis we cosider the topology of the lattice of periods. Recall that,

given a poset P , associated to it there is a simplicial complex ∆(P ) where the

faces (simplices) of ∆(P ) corresponds to the chains in P . By this way, every poset

can be seen as a topological object. We study the topology of the poset obtained

by removing the least and the greatest elements of the lattice. We denote this

poset by Γ0(G,X). Indeed, any poset with an element which is comparable to any

other element is contractible to that element. So, a (finite) lattice is contractible

since it has a greatest element and a least element. Hence, it is more interesting

to consider the lattice without the least element and the greatest element.

We consider the lattice of periods generated by transitive G-sets where G

belongs to one of the following families: Dihedral groups of order 2pn where p is

an odd prime, dihedral groups of order 2n, semidihedral groups, and quaternion

groups. In all these cases, we find that the poset we are interested in is either

contractible or has the homotopy type of disjoint union of points. When G is a

member of the last three families, we show that the poset (if not empty) is either

contractible or has the homotopy type of 3 points. When G is a dihedral group

of order 2pn, the poset is either contractible or has the homotopy type of p points

or has the homotopy type of p+ 1 points.

We also find some more general results. The poset Γ0(G,X) is homotopy

equivalent to the poset obtained by removing the least and the greatest elements

of the quotient lattice L(G)/ ker η. This is equivalent to saying that the poset

Γ0(G,X) is homotopy equivalent to the poset obtained from L(G) by removing

the block of G in ker η and the block of the trivial subgroup in ker η. The main

ingredient for the proof is the theorem known as Quillen Fiber Lemma which

states that two posets P and Q are homotopy equivalent if there is a poset map

f : P → Q such that the preimage of the elements which is smaller than or equal

to q is contractible for each q ∈ Q, i.e., if f−1(Q≤q) is contractible for any q ∈ Q.

Every transitive G-set is G-isomorphic to G/H for some subgroup H of G

where the action on G/H is given by left multiplication. Our attention will be

on transitive sets in the next chapters. Assume that G is a finite group and H

is a subgroup of it. Assume further that N is a normal subgroup of G which is
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contained in H. In this case we find that Γ(G,G/H) and Γ(G/N,G/N
/
H/N)

are isomorphic lattices. This result enables us to deal with smaller groups.

The rest of the thesis is organized as follows:

Chapter 2 has three parts. In the first part we give background material for

posets and lattices. In the second part, we define the lattice of periods and give

general properties of it. In the last part of the chapter, how to construct all

possible lattices of periods for a given group G is described. Most of the material

in the last two parts of Chapter 2 is due to Doran [2].

In Chapter 3, we start with the topological notions. Then we give some well

known results about the poset topology such as the Quillen Fiber Lemma and

give a homotopy equivalence for the poset Γ0(G,X).

In Chapter 4, we calculate the homotopy type of Γ0(G,X) for various transi-

tive G-sets for 2-groups belonging to the families of dihedral, semi-dihedral, and

quaternion groups. The results for semi-dihedral and quaternion groups mainly

follow from the dihedral case. We also calculate the homotopy type of the lattice

for dihedral group of order 2pn where p is an odd prime.



Chapter 2

General Properties of Lattice of

Periods

In the first part of this chapter we will give background material on lattices.

In the second part we will define the lattice of periods for a G-set X where G

is a finite group. The lattice of periods of a group action was first introduced by

G.C. Rota in [6] and [7].

Some general properties of lattice of periods will follow. The most impor-

tant result of this section is Theorem 2.2.22. It says that, the set of irreducible

characters which appear in the character of permutation module CX uniquely

determines the lattice of periods.

In the last part of the chapter, we will give an algorithm for constructing all

possible lattice of periods for a given group G. Most of the results in this chapter

are due to Doran [2].

4



CHAPTER 2. GENERAL PROPERTIES OF LATTICE OF PERIODS 5

2.1 Background Material on Lattices

In this section, necessary definitions and background material on posets and

lattices will be given. The material in this section is standard and can be found

in any lattice theory book but we follow mostly [3].

A partially ordered set or a poset (P,≤) is a nonempty set P together with a

binary relation ≤ satisfying the first three properties of the following:

1. Reflexivity: a ≤ a for any a ∈ P

2. Antisymmetry: a ≤ b and b ≤ a together imply that a = b for a, b ∈ P .

3. Transitivity: a ≤ b and b ≤ c together imply that a ≤ c for a, b, c ∈ P .

4. Linearity: a ≤ b or b ≤ a for a, b ∈ P

The binary relation mentioned in the definition of the poset is called the

ordering (of P ). If two distinct elements a, b in a poset P is related by a ≤ b then

we say that a is smaller than b, or b is greater than a. If a poset P satisfies the

linearity property then it is called a totally ordered set or a toset (also called fully

ordered set, linearly ordered set). The most natural examples of totally ordered

sets are N, Z, Q, R with the usual ≤ relation. For a set A, the set of all subsets

of A is called the power set of A and denoted by P(A). Any subset of the power

set P(A) is a poset with containment ordering : X ≤ Y if and only if X ⊆ Y for

X, Y ∈ P(A). Usually, the ordering ≤ is omitted in the notation and just P is

used instead of (P,≤).

Let P be a poset and Q be a nonempty subset of P . Then there is a natural

ordering ≤Q on Q induced by the ordering ≤ in P as follows: for a, b ∈ Q, a ≤Q b

if and only if a ≤ b. We call (Q,≤Q) or simply Q a subposet of P .

If a and b are elements of a poset P , they are called comparable if a ≤ b or

b ≤ a. They are called incomparable otherwise. If a subposet C of a poset P

is consisting of pairwise comparable elements then it is called a chain. In other
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words, a chain C is a totally ordered subposet of a poset P . The length l(C) of a

finite chain C is one less than the elements of it, i.e., l(C) = |C| − 1. A subposet

A of a poset P is called antichain if it consists of elements pairwise incomparable.

Given a poset P and two elements a, b ∈ P , [a, b] denotes the set of elements

of P between a and b, i.e., [a, b] = {c ∈ P : a ≤ c ≤ b}. In particular, if b is not

greater than or equal to a, then [a, b] = ∅.

Let S be a subset of P and a ∈ P . If s ≤ a for each s ∈ S then a is called an

upper bound for S. It is called the least upper bound of S or supremum of S if

for any upper bound b of S we have a ≤ b. It is denoted by supS. Similarly, any

element c of P is called a lower bound for S if c ≤ s for any s ∈ S. An element d

of P is called the greatest lower bound of S or infimum of S if it is greater than

any other lower bound of S, i.e., c ≤ d for any lower bound c of S. The infimum

of S is denoted by infS.

Proposition 2.1.1. Assume that P is a poset and S is a subset of it. If supS

exists in P , then it is unique. Similarly, if infS exists in P , then it is unique.

Proof. Assume that a and b are two least upper bounds for S. By definition,

a ≤ b but also b ≤ a. This is possible only if a = b. The uniqueness of greatest

lower bound is shown similarly.

Definition 2.1.2. Let P be a poset. An element a in P is called a minimal

element if there is no a 6= x ∈ P such that x ≤ a. An element b in P is called a

maximal element if there is no b 6= y ∈ P such that b ≤ y.

Let P be a poset. The dual poset of P is denoted by P d and constructed as

follows: The elements of P d is the same as the elements of P and a ≤ b in P d

if and only if b ≤ a in P . The dual of P d is the same poset as P . So, if P is

the dual poset of Q then also Q is the dual poset of P . The minimal elements

in P become the maximal elements in P d and vice versa. Similarly, the greatest

and least elements interchange in two posets. The supremums interchange with

infimums, upper bounds interchange with lower bounds.

Assume that P and Q are two posets. A map f : P → Q is called order

preserving if a ≤ b in P implies that f(a) ≤ f(b) in Q. Such a map is also called
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a poset map. Two posets P and Q are said to be isomorphic if there is an order

preserving bijective map f : P → Q such that the inverse map f−1 is also order

preserving. If P and Q are isomorphic posets we write P ∼= Q.

Definition 2.1.3. A lattice L is a poset such that inf{a, b} and sup{a, b} exist

for any pair of elements a and b. It is equivalent to saying that for any finite

nonempty subset S of L, the greatest lower bound infS and the least upper

bound supS exist in L.

Lemma 2.1.4. If L is a finite lattice, then there is an element which is smaller

than all the other elements; it is called the least element of L and denoted by 0̂.

There is also an element which is greater than all the other elements; it is called

the greatest element and denoted by 1̂.

Proof. It is easy to see that infL is smaller than all the other elements. Similarly,

supL is greater than all the other elements.

Let L be a lattice and a, b ∈ L are two elements. Then, a ∧ b denotes the

infimum of a and b, and a ∨ b denotes the supremum of a and b, i.e., a ∧ b =

inf{a, b} and a∨ b = sup{a, b}. The notation ∧ is called the meet and ∨ is called

the join. We call a ∧ b the meet of a and b. Similarly, we call a ∨ b the join of a

and b. These notions can be generalized to arbitrary subsets of L. For any subset

S of L, we will use
∧
S instead of infS and

∨
S instead of supS. If S is empty

then we take
∧
S = 1̂ and

∨
S = 0̂.

Definition 2.1.5. Suppose that L is a finite lattice. The minimal elements in

L− {0̂, 1̂} are called atoms and maximal elements are called coatoms.

Definition 2.1.6. Let L be a lattice and K be a subposet of L. If a∧ b ∈ K and

a ∨ b ∈ K for every a, b ∈ K then K is called a sublattice of L.

Remark 2.1.7. It is possible that a subposet K of a lattice L is a lattice (with

the same ordering) but not a sublattice of L. For example, let A = {1, 2, 3},
X = {1, 2}, and Y = {2, 3}. The power set P(A) is a lattice with the containment

ordering, i.e., B ≤ C iff B ⊆ C for B,C ∈ P(A). The subposet {X, Y, ∅, A} of

P(A) is a lattice but it is not a sublattice of P(A) since X ∧ Y = {2} is not an

element of this subposet.
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Definition 2.1.8. Let L be a finite lattice and L∗ denote the sublattice of L

consisting meets of arbitrary set of coatoms L, i.e.,

L∗ = {
∧

I : I is a subset of coatoms in L}.

The order of L∗ is inherited from L. The meet of empty set is 1̂ by definition, so

1̂ is an element of L∗. We will call L∗ the meet sublattice of L. The join sublattice

of L is defined similarly; replace the coatoms with atoms and meets with joins in

the definition of the meet sublattice. The element 0̂ is in the join sublattice of L

since the join of empty set gives 0̂.

If the least upper bound exists for any set of elements in a poset P then it is

called a join semilattice. Similarly, if the greatest lower bound exists for any set

of elements in P then it is called a meet semilattice. A poset L is a lattice if and

only if it is both a join semilattice and a meet semilattice.

Lemma 2.1.9. A join semilattice P with a least element is a lattice. Similarly,

a meet semilattice Q with a greatest element is a lattice.

Proof. Since P has a well defined join we need only to show it has a well defined

meet. Let S be a subset of P and Glb(S) denotes the set of lower bounds of

S. This set is not empty since it contains the least element. Then the join of

Glb(S) is the greatest lower bound (meet) of S. The second claim has a similar

proof.

2.2 The Lattice of Periods of a Group Action

A partition π of a set X is a collection of disjoint nonempty subsets of S such

that their union is X, i.e., X =
⋃

i∈I Xi and Xi

⋂
Xj = ∅ for any i, j ∈ I. The

Xi’s are called the blocks of the partition. In this work, X will always denote a

finite set and hence the index set is always finite. We will denote by X1|X2|...|Xn

a partition whose blocks are X1, X2, . . . , Xn. One can define an ordering ≥ on

the set of partitions of X such that A1|...|As ≥ B1|...|Br if each Bi is a subset of

some Aj. This ordering is called the refinement ordering. All the partitions of X
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form a lattice with this ordering which is called the lattice of partitions of X and

denoted by Π(X). The partition lattice of the set {1, 2, . . . , n} is denoted by Πn.

For π ∈ Π(X), the notation a ∼π b is used to denote that a and b are in the

same block of π.

For a group G, we denote the subgroup lattice of G by L(G). The elements

of L(G) are the subgroups of G and they are ordered by containment. All the

groups that we consider are finite groups.

Definition 2.2.1 ([4]). Let G be a group and X be a nonempty set. Assume

that for each g ∈ G and x ∈ X there is defined a unique element g · x ∈ X such

that,

(i) 1 · x = x for every x ∈ X and,

(ii) x · gh = (x · g) · h for every x ∈ X and g, h ∈ G.

Then we say that G acts on X or · is an action of G on X. A set X together

with a G-action is called a G-set.

Definition 2.2.2. Let the finite group G act on the finite set X. Let η : L(G) →
Π(X) be such that H 7→ A1|...|As where a ∼η(H) b if and only if a = g · b for

some g ∈ H. The image of η forms a subposet with the order inherited from

the partition lattice of X. Actually, it forms a lattice which, in general, is not a

sublattice of Π(X). This lattice is called the lattice of periods of the G-action on

X. We will denote it by Γ(G,X). If the group G and the set X is clear in the

context we will use the term ‘lattice of periods ’ for short.

Remark 2.2.3. Unless otherwise stated the map η will always denote the map

defined above throughout this thesis.

Example 2.2.4. Let S3 acts on the set {1, 2, 3} in the usual way. Then,

η(〈id〉) 7→ 1|2|3

η(〈(12)〉) 7→ 12|3

η(〈(13)〉) 7→ 13|2

η(〈(23)〉) 7→ 1|23

η(〈(123)〉) 7→ 123

η(S3) 7→ 123.
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Figure 2.1: Γ(S3, {1, 2, 3})

In general, when Sn acts on the set [n] = {1, 2, ..., n}, the resulting lattice

of periods is Πn. Indeed, for any partition π = A1|A2|...|As one can take the

subgroup of Πn generated by the cycles C1, C2, ..., Cs where Ci has the elements

of Ai for i = 1, 2, . . . , s, then the image of this subgroup is π.

Now we will present some properties of the map η and the poset Γ(G,X).

Proposition 2.2.5. The map η is order preserving.

Proof. Let H1 ≤ H2. Assume that a and b are in the same block in η(H1). Then,

a = hb for some h ∈ H1. Since h ∈ H1 implies h ∈ H2, the elements a and b must

be in the same block in η(H2). Thus, η(H1) ≤ η(H2).

Proposition 2.2.6. The map η preserves joins. That is

η(H ∨K) = η(H) ∨ η(K),

where the first join takes place in L(G) and the second in Π(X).

Proof. By the previous proposition η(H) ≤ η(H ∨K). Similarly, η(K) ≤ η(H ∨
K). Hence, η(H) ∨ η(K) ≤ η(H ∨K). Now let a and b are in the same block in

η(H∨K). We need to show that they are in the same block in η(H)∨η(K). First,

note that H∨K is a subgroup consisting of elements of the form h1k1h2k2 . . . hnkn

where hi ∈ H and ki ∈ K for i = 1, 2, . . . , n. If a and b are in the same block in

η(H ∨K) then a = h1k1 . . . hnkn · b.

a ∼η(H) k1h2k2 · · ·hnknb
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k1h2 · · ·hnknb ∼η(K) h2k2 · · · knb

...

knb ∼η(K) b.

Hence a and b are in the same block in η(H) ∨ η(K).

Remark 2.2.7. The map η does not necessarily preserve meets. So, Γ(G,X) is

not necessarily a sublattice of Π(X). For instance, in Example 2.2.4,

η(〈(12)〉 ∧ 〈(123)〉) = η(〈id〉) = 1|2|3
whereas

η(〈(12)〉) ∧ η(〈(123)〉) = 12|3 ∧ 123 = 12|3.

Corollary 2.2.8. η(H) =
∨
g∈H

η(〈g〉)

Proof. This is clear since H =
∨
g∈H

〈g〉.

So, it is enough to compute η(〈g〉) for all g ∈ G in order to compute the lattice

of periods. Γ(G,X) is generated by taking the arbitrary joins of the elements from

the set {η(〈g〉) : g ∈ G}.

Corollary 2.2.9. The poset Γ(G,X) is a lattice.

Proof. By Proposition 2.2.6, Γ(G,X) has a well defined join. Since η is an order

preserving map η({1}) is the minimum element of Γ(G,X). We conclude the

proof by Lemma 2.1.9.

Definition 2.2.10. Let P and Q be two posets and ϕ : P → Q be an order

preserving map. The kernel of ϕ is the partition of P where a and b are in the

same block if and only if ϕ(a) = ϕ(b). It is denoted by kerϕ.

Recall that, for a poset P and two elements a and b in it, the interval [a, b] is

defined as

[a, b] = {c ∈ P : a ≤ c ≤ b}.

Definition 2.2.11. Given a poset P , a partition π of P is called an interval

partition if a ∼π b implies that a ∼π c ∼π b for each c ∈ [a, b].
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Definition 2.2.12. Given a poset P , a partition π of P is called a normal parti-

tion if for any two blocks Ai and Aj, the following two conditions together imply

that i = j.

(i) There exist x ∈ Ai and y ∈ Aj with x ≤ y,

(ii) There exist z ∈ Ai and t ∈ Aj with z ≥ t.

Recall that a poset map is an order preserving map between two posets.

Lemma 2.2.13. A partition of a poset P is a normal partition if and only if it

is the kernel of some poset map ϕ : P → Q.

Proof. Let π be a partition of P which is equal to kerϕ where ϕ : P → Q is

a poset map and let Ai, Aj be two blocks of π. Assume that there are elements

x, z ∈ Ai and y, t ∈ Aj such that x ≤ y and z ≥ t. Then, f(x) ≤ f(y) and

f(z) ≥ f(t). But since f(x) = f(z) and f(y) = f(t), all the elements must be in

the same block, i.e., i = j. Hence, π is a normal partition.

Now assume that π is a normal partition. For each block Ai in π create an

element qi. If there are two elemets x ∈ Ai and y ∈ Aj such that x ≤ y then

let qi ≤ qj. Let Q be the poset with the elements qi and with this ordering. Let

ϕ : P → Q be the map sending an element in Ai to qi. Then, kerϕ is the same

partition as π.

Definition 2.2.14. Let π = A1| . . . |Ar be a normal partition of P . The quotient

poset of π is the poset whose elements are A1, . . . , Ar and Ai ≤ Aj if and only if

x ≤ y in P for some x ∈ Ai and y ∈ Aj. This poset is denoted by P/π.

Since η is an order preserving map (poset map), P/ ker η is well defined as a

poset. We need this construction for the proof of next proposition.

Remark 2.2.15. In [2], the quotient poset P/π is defined when π is an interval

partition. However, when π is not a normal partition, the quotient poset may

not be well defined. For instance let P be the poset with the set of elements

{a, b, c, d} and with the relations a ≤ b and c ≤ d. Then π = ad|bc is an interval

partition but P/π is not well defined.
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Recall that two posets P and Q are said to be isomorphic, denoted by P ∼= Q,

if there is a bijective map f : P → Q such that f and f−1 are order preserving.

Proposition 2.2.16. The lattice of periods Γ(G,X) is isomorphic to the quotient

lattice L(G)/ ker η.

Proof. Let ker η = A1| . . . |Am and η(H) = πi for H ∈ Ai. So, the elements

A1, . . . , Am constitute the lattice L(G)/ ker η and the elements π1, . . . , πm consti-

tute the lattice Γ(G,X).

Since the map η is order preserving, if Ai ≤ Aj, it is clear that πi ≤ πj. Now

let πi ≤ πj for some i 6= j. Take H ∈ Ai and K ∈ Aj. Then H ∨ K ∈ Aj by

Proposition 2.2.6 and hence Ai ≤ Aj since H ≤ H ∨K. Hence we are done.

Proposition 2.2.17. Let G be a finite group acting on the finite sets X and Y

and let η1 and η2 be the corresponding maps respectively. If ker η1 = ker η2 then

Γ(G,X) ∼= Γ(G, Y ).

Proof. Let the defining maps for Γ(G,X) and Γ(G, Y ) be the maps

η1 : L(G) → Π(X)

η2 : L(G) → Π(Y ).

By Proposition 2.2.16, we have Γ(G,X) ∼= L(G)/ ker η1 and Γ(G, Y ) ∼=
L(G)/ ker η2. Combining the two isomorphisms we get the desired result.

For a finite group G and a G-set X, the set of G fixed points of X is denoted

by XG and the set of G orbits of X is denoted by X/G. For a group element g, the

notationXg is used to denote the g fixed points ofX, i.e., Xg = {α ∈ X : gα = α}

Lemma 2.2.18. Let G be a group and X and Y be two G-sets. Then, the

following are equivalent:

(i) |XH | = |Y H | for each cyclic subgroup H of G.

(ii) |X/H| = |Y/H| for each subgroup H of G.
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(iii) |X/H| = |Y/H| for each cyclic subgroup H of G.

(iv) The complex representations CX and CY are isomorphic.

Proof. We will first show that the first three statements are equivalent. Then

we will show that (i) implies (iv) and finally we will show that (iv) implies (ii).

(i) ⇒ (ii) We have

|X/H| = 1

|H|
∑
g∈H

|Xg|

=
1

|H|
∑
g∈H

|Y g|

= |Y/H|

where the first and third equalities are due to Cauchy-Frobenius Theorem [4].

The second equality is followed by (i).

(ii) ⇒ (iii) This is obvious.

(iii) ⇒ (i) We have |X〈1〉| = |Y 〈1〉|. Assume by induction for all the proper

subgroups 〈h〉 of 〈g〉, |X〈h〉| = |Y 〈h〉|. If the number of 〈g〉 orbits of X and Y are

equal then
1

|〈g〉|
∑
h∈〈g〉

|Xh| = 1

|〈g〉|
∑
h∈〈g〉

|Y h|

by Cauchy-Frobenius Theorem. Then,∑
h∈〈g〉

|Xh| =
∑
h∈〈g〉

|Y h|.

The last equation and the induction hypothesis together imply that |X〈g〉| =
|Y 〈g〉|.

(i) ⇒ (iv) Let χ1 be the character of complex representation CX and χ2 be

the character of complex representation CY . Assume that |Xg| = |Y g| for every

g ∈ G. In order to show that CX and CY are isomorphic representations it is

enough to show the characters χ1 and χ2 are equal. But for any g ∈ G, χ1(g) is
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the number of g fixed points of X and χ2(g) is the number of g fixed points of Y .

Since |Xg| = |Y g| for every group element g, the characters χ1 and χ2 are equal.

(iv) ⇒ (ii) Now assume that the complex representations CX and CY are

isomorphic. Then dimC(CX)H = dimC(CY )H for every subgroup H of G where

(CX)H denotes theH fixed points of CX and (CY )H denotes theH fixed points of

CY . But since dimC(CX)H = |X/H| and dimC(CY )H = |Y/H| for any subgroup

H we conclude that |X/H| = |Y/H| for every subgroup H of G.

Proposition 2.2.19. Let η1 : L(G) → Π(X) and η2 : L(G) → Π(Y ) be the usual

maps where G is a finite group and X,Y are finite G-sets. If ker η1 6= ker η2 then

there exist subgroups H1 ≥ H2 such that one of the following statements holds,

(i) η1(H1) = η1(H2) but η2(H1) 6= η2(H2)

(ii) η1(H1) 6= η1(H2) but η2(H1) = η2(H2)

Proof. Suppose ker η1 6= ker η2. Then, there exist subgroups H and K of G

such that η1(H) = η1(K) but η2(H) 6= η2(K), or vice versa. Assume WLOG,

η1(H) = η1(K) but η2(H) 6= η2(K). Then, η1(H ∨ K) = η1(H) = η1(K) but

at least one of η2(H) and η2(K) is not equal to η2(H ∨K), say η2(H). Letting

H ∨K = H1 and H = H2 completes the proof.

Theorem 2.2.20 (Thm 3.2, Doran [2]). Let G be a finite group acting on fi-

nite sets X and Y . If the complex permutation representations of X and Y are

isomorphic, then

Γ(G,X) ∼= Γ(G, Y ).

Proof. If the complex representations CX and CY are isomorphic then the num-

ber of H orbits of X and the number of H orbits of Y are equal by Lemma 2.2.18,

for any subgroup H of G. Let η1 : L(G) → Π(X) and η2 : L(G) → Π(Y ) be

the usual maps. If we show that ker η1 = ker η2 then we are done by Proposition

2.2.17.

Assume that H1 ≥ H2. Since H2 is a subgroup of H1, any H2 orbit of a G-set

is included in an H1 orbit. On the other hand, the images of H1 and H2 under

η1 are same if and only if H1 and H2 orbits of X are same. Combining these two
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facts we conclude that the images η1(H1) and η1(H2) are same if and only if the

number of H1 orbits and H2 orbits are equal. Similarly, the images η2(H1) and

η2(H2) are same if and only if the number of H1 and H2 orbits of Y are equal.

But then, by the contrapositive of Proposition 2.2.19, the kernels ker η1 and ker η2

are same.

Definition 2.2.21. Let G be finite a group and φ be a complex representation of

G. The support of φ is the set of irreducible representations (up to isomorphism)

appearing in φ, i.e., if φ ∼= a1φ1⊕· · ·⊕akφk where a1, . . . , ak are positive integers

and φ1, . . . , φk are pairwise nonisomorphic irreducible representations then the

set {φ1, . . . , φk} is the support of φ.

Actually, the next theorem says that it is enough to look at the support of

the representation to determine the lattice of periods of a group action.

Theorem 2.2.22 (Thm 5.2, Doran [2]). Let G be a finite group and X, Y be two

finite G-sets. Let χ1 and χ2 be the characters of complex representations CX and

CY , respectively. If the supports of χ1 and χ2 are same, then Γ(G,X) ∼= Γ(G, Y ).

Proof. Let η1 : L(G) → Π(X) and η2 : L(G) → Π(Y ) be the defining maps.

By Proposition 2.2.17 it is enough to show that ker η1 = ker η2. Let H1 ≥ H2.

Then, as in the proof of Theorem 2.2.20, the images of H1 and H2 under η1 are

the same if and only if the number of H1 orbits of X is equal to the number of

H2 orbits of X. But the number of H1 orbits is equal to dimC(CX)H1 and the

number of H2 orbits is equal to dimC(CX)H2 . Hence, η1(H1) = η1(H2) if and

only if dimC(CX)H1 = dimC(CX)H2 .

Let

χ1 = a1ψ1 + · · ·+ anψn

χ2 = b1ψ1 + · · ·+ bnψn

where ai, bi ∈ Z+ and ψi’s are irreducible characters (i = 1, . . . , n). Then,

CX ∼= a1V1 ⊕ · · · ⊕ anVn

where Vi is an irreducible CG submodule of CX whose character is ψi, (i =

1, . . . , n). Similarly,

CY ∼= b1V1 ⊕ · · · ⊕ bnVn.
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First note that since H1 ≥ H2, the H1 fixed points of any CG-module M is

contained in the H2 fixed points of M . We have dimC(CX)H1 = dimC(CX)H2 if

and only if

dimC(a1V1 ⊕ · · · ⊕ anVn)H1 = dimC(a1V1 ⊕ · · · ⊕ anVn)H2 .

The last equality holds if and only if dimC(Vi)
H1 = dimC(Vi)

H2 for i = 1, 2, . . . , n

since dimC(Vi)
H1 ≤ dimC(Vi)

H2 for all i. Thus, η1(H1) = η1(H2) if and only

if dimC(Vi)
H1 = dimC(Vi)

H2 for i = 1, 2, . . . , n. Similarly, one can show that

η2(H1) = η2(H2) if and only if dimC(Vi)
H1 = dimC(Vi)

H2 for i = 1, 2, . . . , n.

Thus, η1(H1) = η1(H2) if and only if η2(H1) = η2(H2). We conclude that the

kernels are the same by Proposition 2.2.19.

We end this section with a proposition from [2].

Proposition 2.2.23 (Proposition 4.4, Doran [2]). Let H1 and H2 be conjugate

subgroups of G. Then kerH1 = kerH2 where kerHi = ker(ηi) and ηi : L(G) →
Π(G/Hi) is the defining map for lattice of periods on the group G on the set G/Hi

for i = 1, 2.

2.3 Constructing the Lattice of Periods

In this section, we will determine the possible lattice of periods for a given finite

group G. All we need is the kernels of defining maps η : L(G) → Π(X) where X

runs over the representatives of conjugacy classes of transitive G-sets.

By Proposition 2.2.17, constructing the possible lattices of periods for a group

action is equivalent to determining the possible partitions of the subgroup lattice

L(G) which can arise as the kernel of a map η : L(G) → Π(S).

Definition 2.3.1. Let G be a group and X, Y be two G-sets. X and Y are

said to be G-isomorphic if there exists a bijective function ϕ : X → Y such that

ϕ(g · x) = g · ϕ(x) for any g ∈ G and x ∈ X.
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Let G be a finite group and X be a transitive G-set. There exists a subgroup

H of G such that X is G-isomorphic to G/H. Indeed, for any α ∈ X one can

take the subgroup Gα for H where Gα denotes the stabilizer of α.

If X and Y be two disjoint G-sets one can extend the action of G to X q Y

by

g · a =

{
g ·(action on X) a, if a ∈ X,

g ·(action on Y) a, if a ∈ Y ,

for a ∈ X q Y .

Theorem 2.3.2. Let X and Y be two G-sets. Let η1 : L(G) → Π(X) and

η2 : L(G) → Π(Y ) be the defining maps and ker η1 and ker η2 be the kernels of

these maps respectively. Then,

Γ(G,X q Y ) ∼= L(G)/(ker η1 ∧ ker η2)

Proof. The defining map for Γ(G,X q Y ) is

η :L(G) → Π(X q Y )

H 7→ η1(H)|η2(H)

It is enough to show that ker η = ker η1 ∧ ker η2.

If two subgroups H1 and H2 are in the same block in ker η then obviously

they are in the same block in ker η1 and ker η2 and hence in ker η1 ∧ ker η2. Thus,

ker η ⊆ ker η1 ∧ ker η2.

Conversely, if H1 and H2 are in the same block in ker η1∧ker η2, then η1(H1) =

η1(H2) and η2(H1) = η2(H2). But, then η(H1) = η(H2). So, they are in the same

block in ker η. Thus, ker η ⊇ ker η1 ∧ ker η2. Hence, ker η = ker η1 ∧ ker η2.

For a subgroup H of G, let kerH denote the kernel of the map ϕ : L(G) →
Π(G/H). Since any G-set X is a union of transitive sets, it can be written as

X = G/H1 q · · · qG/Hn. Thus, above theorem provides a method for obtaining
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all possible lattice of periods for a given group G. The method can be described as

follows: Calculate kerH for each subgroup H of G and take all the possible meets

of these kernels. For any combination of subgroups H1, · · · , Hn, the quotient

poset L(G)/(kerH1 ∧ · · · ∧ kerHn) gives a lattice of periods for group G and

G-set X ∼= G/H1q · · · qG/Hn and conversely any lattice of periods for group G

can be obtained by this way.

Corollary 2.3.3. If the G-set X contains an orbit isomorphic to G/{1}, then

Γ(G,X) ∼= L(G).

Proof. This follows from the observation that the meet of ker{1} with kerH for

any H ≤ G gives ker{1}.

Proposition 2.3.4. Let G be a finite group and H be a subgroup of it. If there

is a normal subgroup N of G such that N ≤ H ≤ G then,

Γ(G,G/H) ∼= Γ(G/N,G/N
/
H/N).

Proof. Let η1 : L(G) → Π(G/H) and η2 : L(G/N) → Π(G/N
/
H/N) be the

defining maps. First let’s show that η1(M) = η1(MN) for a subgroup M of G. It

is obvious that η1(MN) ≥ η1(M). Let aH be a coset of H in G for some arbitrary

a ∈ G. It is enough to show that the block of aH in η1(M) contains the block of

aH in η1(MN). The block of aH in η1(MN) is {mnaH : m ∈ M,n ∈ N} and

the block of aH in η1(M) is {maH : m ∈ M}. If we show that mnaH = maH

for any n ∈ N we are done. The last equality holds if and only if a−1m−1mna =

a−1na ∈ H. But the last expression holds since a−1na ∈ N ≤ H. So, for any

partition π in Γ(G,G/H), there is a subgroup N ≤ K ≤ G such that η1(K) = π.

So, the map r : Ω → Γ(G,G/H) defined by r(K) = η1(K) is a surjective map

where Ω = {K : N ≤ K ≤ G}.

Now, let φ : Γ(G,G/H) → Γ(G/N,G/N
/
H/N) be such that

η1(K) 7→ η2(K/N)

for N ≤ K ≤ G.

Assume that η1(K1) = η1(K2) for N ≤ K1, K2 ≤ G. This is possible iff

aH ∼η1(K1) bH ⇐⇒ aH ∼η1(K2) bH for any a, b ∈ G.
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This is equivalent to saying that

∃k1 ∈ K1 s.t. aH = k1bH ⇐⇒ ∃k2 ∈ K2 s.t. aH = k2bH.

Since N ≤ H is a normal subgroup of G, the last expression is equivalent to

∃k1 ∈ K1 s.t. a(H/N) = k1b(H/N) ⇐⇒ ∃k2 ∈ K2 s.t. a(H/N) = k2b(H/N)

and this equivalent to the expression

a(H/N) ∼η2(K1/N) b(H/N) ⇐⇒ a(H/N) ∼η2(K2/N) b(H/N) for any a, b ∈ G.

Thus the map φ is well defined and injective. It is obvious that it is surjective

and order preserving. It is also obvious that the inverse map φ−1 is order preserv-

ing. Hence, φ is an order preserving bijective map such that its inverse is order

preserving. Therefore, it is an isomorphism between two lattices.

Corollary 2.3.5. Let G be a finite group and X is a transitive G-set which is

isomorphic to G/N as a G-set where N is a normal subgroup of G. Then, Γ(G,X)

is isomorphic to L(G/N).

Proof. First apply Proposition 2.3.4 with H = N and then Corollary 2.3.3.



Chapter 3

Topology of the Lattice of

Periods

In the first part of this chapter we give the necessary definitions for poset topology.

Then we state some general results about the topology of lattice of periods.

3.1 Poset Topology

In order to be able to talk about the topology of a poset, we will associate a

simplicial complex to a given poset. In this way it will be clear what is meant by

‘topology of a poset’. First, we need some definitions.

Definition 3.1.1. Let X and Y be two spaces and f, g : X → Y be two con-

tinuous maps between X and Y . The maps f and g are said to be homotopic,

denoted by f ' g, if there is a continuous map H : X × I → Y such that

(i) H(x, 0) = f(x) for all x ∈ X and

(ii) H(x, 1) = g(x) for all x ∈ X.

The map H is called homotopy.

Suppose X and Y are two spaces and f : X → Y is a map. The map f is

21
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called homotopy equivalence if there is a map g : Y → X such that f ◦ g ' idY

and g ◦ f ' idX . In this case, X and Y are said to be homotopy equivalent. The

map g is called the homotopy inverse of f . A space Z is called contractible if it

is homotopy equivalent to a point.

The notation ' is used both to denote the homotopic maps and homotopy

equivalent spaces.

The topology of the space RN has the basis elements U1 ×U2 × . . . where the

Ui’s are open sets of R and Ui = R except for a finite number of i. A set of points

{p0, p1, . . . , pn} in RN is said to be geometrically independent if the equations
n∑

i=0

tipi = 0 and
n∑

i=0

ti = 0

together imply that ti = 0 for i = 0, 1, . . . , n.

An n-simplex is defined as the convex hull of n+1 geometrically independent

points. Technically, if V = {p0, . . . , pn} is a geometrically independent set in

RN, the n-simplex σ with vertex set V is the set of points x in RN such that

x =
n∑

i=0

tipi where
n∑

i=0

ti = 1 for nonnegative t0, · · · , tn.

If an n-simplex σ is a convex hull of points {p0, p1, . . . , pn}, then these points

are called the vertices of σ. The set of vertices is denoted by V (σ). The dimension

of σ is n. In general the dimension of any simplex is one less than the number

of vertices of that simplex. Any simplex with vertex set S where S ⊆ V (σ) is

called a face of σ. A simplex σ can be topologized by the subspace topology, i.e.,

a subset τ of σ is open in σ if and only if τ = U ∩ σ for some open set U of RN.

Definition 3.1.2. A simplicial complex ∆ in RN is a collection of simplices

satisfying:

1. If σ is a simplex in ∆, then so is any face of it.

2. Intersection of two simplices in ∆ is a face of both simplices.

A simplicial complex ∆ can be topologized as follows: A subset X of ∆ is

closed if and only if X ∩σ is closed in σ for any simplex σ of ∆. This topologized
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space is called the polytope of ∆ and sometimes denoted by |∆|. We will not

distinguish ∆ and |∆|.

It is possible to define a simplicial complex in an abstract way which makes

it an appealing object for mathematicians working in combinatorics.

Definition 3.1.3. An abstract simplicial complex ∆ on vertex set V is a subset

of P(V )− {∅} such that:

1. {v} ∈ ∆ for any v ∈ V

2. If A ∈ ∆ then B ∈ ∆ for any B ⊆ A.

An element of a simplicial complex ∆ is called a face or a simplex of ∆. A

maximal face, i.e., a face which is not included in any other face, is called a facet.

It suffices to know the facets of a simplicial complex to know the simplicial com-

plex. The dimension of ∆ is the maximum dimension among all the dimensions

of its faces, or equivalently its facets. Any simplicial complex ∆′ which is a subset

of ∆ is called a subcomplex of ∆.

A simplicial map between two simplicial complexes ∆ and ∆′ is a continuous

map f : ∆ → ∆′ sending a simplex of ∆ to a simplex of ∆′, i.e., if σ ∈ ∆ then

f(σ) ∈ ∆′.

It is possible to define an abstract simplicial complex from a geometric one

uniquely. Similarly, it is possible to construct a geometric simplicial complex from

an abstract simplicial complex S. Although this construction is not unique, it is

unique up to homeomorphism. Such a complex is called a geometric realization

of S. This gives us the ability to talk about the topology of an abstract simplicial

complex without any confusion. In the remaining of this chapter and next chapter

we will work with abstract simplicial complexes. By abuse of terminology, we will

mean a simplicial complex by ‘complex’.

Definition 3.1.4. Let ∆ be a simplicial complex with vertex set V and F be

the set of facets of ∆. If w is a point which is not in V (∆) then the cone on ∆

with vertex w is defined as the complex with facet set {{w} ∪ V (σ) : σ ∈ F}. It
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is denoted as w ∗∆. It is clear that ∆ is a subcomplex of w ∗∆ and it is called

the base of the cone w ∗∆.

A poset P can be viewed as a topological object by associating a simplicial

complex ∆(P ) to P . The elements of the poset constitute the vertices of the

simplicial complex ∆(P ) and any chain of length n is considered as an n-simplex

with the corresponding vertices in ∆(P ). Naturally, by ‘the topology of P ’ we

mean the topology of ∆(P ). Any topological aspect of P such as contractibility

is indeed the topological aspect of ∆(P ). If L is a finite lattice then it has a

greatest element 1̂ and a least element 0̂. Every maximal chain in such a lattice

contains the elements 0̂ and 1̂. This is equivalent to saying that every facet in

∆(L) contains the vertices 0̂ and 1̂. So, ∆(L) is a cone on ∆(L−{0̂}) with vertex

0̂ and it is a cone on ∆(L− {1̂}) with vertex 1̂. It is well known that a cone on

a complex with vertex w is contractible to w. Hence ∆(L) is contractible for any

finite lattice L.

Recall that a poset map f : P → Q between two posets P and Q is an order

preserving map, i.e., x ≤P y implies that f(x) ≤Q f(y).

Proposition 3.1.5. Any poset map f : P → Q induces a simplicial map |f | :

∆(P ) → ∆(Q).

A poset P is called conically contractible if there is a poset map f : P → P

such that p ≤ f(p) ≥ p0 for all p ∈ P and for some p0 ∈ P . A lattice L is

conically contractible since f(p) = p ∨ p0 for any p0 ∈ L is a poset map from

L to itself satisfying the above condition. Similarly, a poset P with a least

(greatest) element is conically contractible since the function f : P → P which

sends p ∈ P 7→ sup{p, p0} where p0 denotes the least (greatest) element of P is

well defined and satisfies the above condition. A conically contractible poset is

contractible. This is an easy consequence of the following proposition.

Proposition 3.1.6 (Homotopy Property, Quillen [5]). If f, g : X → Y are poset

maps such that f(x) ≤ g(x) for every x ∈ X then |f | and |g| are homotopic maps.

Proof. If X and Y are posets then X × Y is a poset with (x, y) ≤ (x′, y′) iff

x ≤ x′ and y ≤ y′. Similarly, if ∆1 and ∆2 are simplicial complexes, then
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∆1 ×∆2 is a simplicial complex with faces {(σ1, σ2) : σ1 ∈ ∆1, σ2 ∈ ∆2}. There

is a homeomorphism between ∆(X ×Y ) and ∆(X)×∆(Y ) induced by the maps

|pr1| and |pr2|. We have a map F : X × {0, 1} → Y such that F (x, 0) = f(x)

and F (x, 1) = g(x). This induces a homotopy |F | : ∆(X)× I → ∆(Y ) such that

|F |(x, 0) = |f |(x) and |F |(x, 1) = |g|(x) for all x ∈ ∆(X).

Definition 3.1.7. For a poset P we define P≤x as the set {y ∈ P : y ≤ x}.
P<x, P>x and P≥x are defined similarly. If f is a poset map from P to Q, then

f−1(Q≤q) = {p ∈ P : f(p) ≤ q}. This is clearly a subposet of P . The set

f−1(Q≥q) is defined similarly.

The next proposition, known as Quillen Fiber Lemma, is a very important

result and tool in this subject [5].

Proposition 3.1.8 (Quillen Fiber Lemma). Let P and Q be posets and let φ :

P → Q be a poset map. Suppose ∆(f−1(Q≤q)) is contractible for each q ∈ Q.

Then, ∆(P ) ' ∆(Q).

In [1], some generalizations of this lemma are given.

Theorem 3.1.9. Let P be a p-group which is not elementary abelian and L(P )

be the subgroup lattice of P . Then the poset L(P )−{0̂, 1̂} is contractible where 0̂

denotes the trivial subgroup of P and 1̂ denotes the group P itself.

Proof. Let L0(G) denote L(G)− {0̂, 1̂} for any group G. Now, let P be a group

as above. Then Φ(P ) 6= {1}. Since the Frattini group is a normal subgroup,

Φ(P )H is a subgroup of G for any subgroup H of P . Let ψ : L0(P ) → L0(P ) be

such that ψ : H 7→ Φ(P )H. It is clear that H ≤ ψ(H) ≥ Φ(P ). Then, the poset

L0(P ) is conically contractible and hence it is contractible.

3.2 A Homotopy Equivalence for the Lattice of

Periods

In this section, we will give some general results about the topology of lattice of

periods. We have seen in the first chapter that, ker η gives a partition of L(G)



CHAPTER 3. TOPOLOGY OF THE LATTICE OF PERIODS 26

where G is a finite group and η is the defining map for the lattice of periods. We

will denote the block of trivial subgroup of G by S0 and the block of G by S1 in

ker η. The set S will denote the union S0 ∪ S1.

Theorem 3.2.1. ∆(Γ0(G,X)) is homotopy equivalent to ∆(L(G)− S).

Proof. Let φ be the restriction of η to L(G) − S. Then the image of φ is

Γ0(G,X) = Γ(G,X)− {0̂, 1̂} where 0̂ denotes the image of trivial subgroup and

1̂ denotes the image of G under η. Let Q = Γ0(G,X). If we show that φ−1(Q≤q)

is contractible for each q ∈ Q then we are done by Quillen Fiber Lemma. In

order to show φ−1(Q≤q) is contractible, it is enough to prove that φ−1(Q≤q)

has a greatest element. Assume it does not have such an element. Then there

must be two distinct maximal elements, H and K in this set. On the other

hand by Proposition 2.2.6, φ(H ∨ K) = φ(H) ∨ φ(K) ≤ q. So, we will have

H ∨K ∈ φ−1(Q≤q). This contradicts the maximality of H and K.

Definition 3.2.2. Given a poset P with a greatest element 1̂ and least element

0̂, the poset P − {0̂, 1̂} is denoted by P0.

Recall that, for a lattice L, the meet sublattice L∗ is defined as follows:

L∗ = {
∧
I : I is a subset of coatoms in L},

Lemma 3.2.3 (Lemma 2.2, Shareshian [8]). Let L be a finite lattice and P be a

subposet of L which contains L∗ ∪ {0̂}.
(i) If 0̂ ∈ L∗ then ∆(P0) ' ∆(L∗

0).

(ii) Otherwise ∆(P0) is contractible.

Proof. Define the poset Q such that,

Q =

{
L∗

0, 0̂ ∈ L∗;

L∗ − {1̂}, otherwise.

Let i : Q → P0 be the inclusion map. For x ∈ P0 define x∗ to be the meet of

all coatoms greater than x. Clearly, the preimage of i restricted to the elements

greater than or equal to x in P0 is equal to Q≥x∗ which is contractible since it
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has a least element. We conclude by Quillen Fiber Lemma that ∆(Q) ' ∆(P0).

Thus the first part is proved. But if 0̂ /∈ L∗ then L∗ contains a least element and

so does Q. This finishes the proof of second part.

Corollary 3.2.4. Let L be a finite lattice. If 0̂ 6∈ L∗, then L0 is contractible.

Otherwise L0 is homotopy eqivalent to L∗
0.

Proof. Take P = L in the Lemma 3.2.3.

In the next chapter we will examine the topology of lattice of periods in some

special cases and Lemma 3.2.3 will be the main tool in the proofs.



Chapter 4

Calculations

In this chapter we will identify the topology of lattices of periods in some special

cases. We will consider transitive G-sets where G belongs to one of the following

family of groups: D2n , D2pn , SD2n , Q2n where p is an odd prime and D2n denotes

the dihedral group of order 2n, SD2n denotes the semi-dihedral group of order

2n, and Q2n denotes the quaternion group of order 2n.

4.1 The Dihedral Group of Order 2n

The presentation of dihedral group D2n is given by:

D2n = 〈a, b : a2n−1
= b2 = 1, bab = a−1〉.

Lemma 4.1.1. Let G = D2n for n > 1. Then G has 3 maximal subgroups which

are H1 = 〈a〉, H2 = 〈a2, b〉 and H3 = 〈a2, ab〉.

Proof. Any maximal subgroup of a p-group has index p. So, all the maximal

subgroups of D2n has order 2n−1. Clearly, H1, H2 and H3 are subgroups of order

2n−1. Indeed, a has order 2n−1 in G and hence H1 = 〈a〉 has order 2n−1. The

element a2 has order 2n−2 and H2 % 〈a2〉, so H2 has order 2n−1. Similarly, H3

has order 2n−1. Now, let H be a subgroup of index 2. It contains a2 for otherwise

28
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H, aH and a2H would be distinct left cosets of H which is not possible since

an index 2 subgroup has two left cosets. If a ∈ H, then H = H1. Otherwise,

either b ∈ H or ab ∈ H. The former case corresponds to H = H2 and the latter

corresponds to H = H3.

The group element aib has order 2 for i = 0, 1, . . . . Moreover, aibakaib = a−k

and in particular aiba2aib = a−2. Hence, the above lemma tells us that the

dihedral group of order 2n (n ≥ 2) has a cyclic maximal subgroup and two other

maximal subgroups which are dihedral of order 2n−1.

Corollary 4.1.2. Any subgroup of dihedral group of order 2n is either a cyclic

group or a dihedral group.

Proof. It becomes apparent if we apply Lemma 4.1.1 repeatedly.

Corollary 4.1.3. If H is a noncyclic subgroup of D2n with index 2k, then H =

〈a2k
, aib〉 for some i ∈ {0, 1, . . . , 2k − 1}.

Proof. The claim holds for maximal dihedral subgroups by Lemma 4.1.1. Assume

it holds for dihedral subgroups of index 2j. Let H be a dihedral subgroup of index

2j+1. Then it is a subgroup of a subgroup K where K has index 2j. By induction

hypothesis K = 〈a2j
, aib〉 for some i ∈ {0, 1, . . . , 2j − 1}. Since |K : H| = 2,

H = 〈a2j+1
, alaib〉 for some l ∈ {0, 2j} by Lemma 4.1.1.

Corollary 4.1.4. Let H be a subgroup of D2n with index 2k. Then either H is

cyclic generated by a2k−1
or H is a dihedral group generated by a2k

and aib for

some i = 0, 1, . . . , 2k − 1.

Proof. This is an immediate consequence of Corollary 4.1.2 and Corollary 4.1.3.

The first three lines of the subgroup lattice of dihedral group of order 2n

(n ≥ 3) is shown in Figure 4.1. In the second row we have three maximal

subgroups; a cyclic subgroup and two dihedral subgroups. In the third row, we

have a cyclic subgroup of order 2n−2 and four dihedral subgroups of the same

order. In general, in row k (for 2 ≤ k ≤ n) we have one cyclic subgroup of order

2n−k+1 and 2k−1 dihedral subgroups of the same order.
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•
D2n = 〈a, b〉

•D2n−1
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•
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•
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•
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•
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Figure 4.1: D2n

Lemma 4.1.5. Let H and K be two proper subgroups of G = D2n which are not

maximal. Then, HK 6= G.

Proof. It is enough to show that for two subgroups H and K of index 4, HK 6= G

since any subgroup of index greater than 4 is contained in a subgroup of index 4.

Any subgroup of G of index 4 is either cyclic generated by a2 or generated by the

elements a4 and aib for i ∈ {0, 1, 2, 3}. Hence, two subgroups of index 4 intersect

at the subgroup 〈a4〉. |HK| = |H||K|/|H ∩K| = |G|/4.|G|/4
|G|/8

= |G|/2 6= |G|. Hence

HK 6= G.

Proposition 4.1.6. Let G be a group, H be a subgroup of G, and let G act on

G/H in the usual way. If η(K1) ≥ η(K2) in Γ(G,G/H) then K1H ⊇ K2H. In

particular, if η(K1) = η(K2) in Γ(G,G/H) then K1H = K2H.

Proof. This becomes clear with the following observation: For any subgroup K,

the union of the left cosets of H which are in the same block with the coset H in

partition η(K) is equal to the product KH.

Let X = G/H be a transitive G-set where G is isomorphic to dihedral group

of order 2n. If n = 1, then the only possible lattices of periods of this group

are the lattice with one element and the lattice with two elements. But, we are

interested only in the poset where the greatest and least elements of the lattice

are removed. In the case of D2 this poset is the empty poset hence everything is

trivial for this case. Now assume n ≥ 2. We need two lemmas before stating one

of the main theorems of this thesis.

Lemma 4.1.7. Let H be a subgroup of G = D2n such that H = 〈a2k
, aib〉 where



CHAPTER 4. CALCULATIONS 31

k > 1 and i ∈ {0, 1, . . . 2k − 1}. Then the maximal elements of Γ0(G,G/H) are

η(〈a2, aib〉), η(〈a4, ai+1b〉) and η(〈a4, ai+3b〉).

Proof. The cosets of H are H, aH, . . . , a2k−1H. Let 〈a〉 = H1 and 〈a2, ai+1b〉 =

H2. Since H1 · H = G = H2 · H we have η(H1) = η(G) = η(H2). On the other

hand,

G 6= 〈a2, aib〉H = 〈a2, aib〉

G 6= 〈a4, ai+1b〉H (by Lemma 4.1.5)

G 6= 〈a4, ai+3b〉H (by Lemma 4.1.5)

Any proper subgroup of G other than H1 and H2 is a subgroup of at least one of

the given subgroups. Since η is an order preserving map all the possible maximal

elements of Γ0(G,G/H) are the corresponding images of these subgroups under

the map η. Now,

η(〈a2, aib〉) = H, a2H, . . . , a2k−2H|aH, a3H, . . . , a2k−1H

η(〈a4, ai+1b〉) = H, aH, . . . , a2k−4H, a2k−3H|a2H, a3H, . . . , a2k−2H, a2k−1H

η(〈a4, ai+3b〉) = H, a3H, . . . , a2k−4H, a2k−1H|aH, a2H, . . . , a2k−3H, a2k−2H

Clearly, above three partitions are not comparable. Hence we are done.

Lemma 4.1.8. Let H be a subgroup of D2n which is generated by a2k
for

k = 1, 2, . . . . Then the maximal elements in the poset Γ0(G,G/H) are η(〈a〉),
η(〈a2, b〉), η(〈a2, ab〉), i.e., the maximal elements of Γ0(G,G/H) are the images

of maximal subgroups in D2n.

Proof. Since H is a subgroup of the Frattini group Φ(D2n) = 〈a2〉, it is a sub-

group of each of the maximal subgroups. Hence HM = M 6= D2n when M is one

of these subgroups which implies that the image of M under η is not equal to

η(D2n). This fact guarantees that the images of maximal subgroups exist in the

poset Γ0(G,G/H). Since η is order preserving, the image of any proper subgroup

K is smaller than the image of the maximal subgroup containing K. Now it is

enough to prove that any pair of these three elements are not comparable. But

this is an immediate consequence of Proposition 4.1.6.
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Theorem 4.1.9. Let H be a subgroup of G = D2n and X = G/H.

(i) If H has index 1 or 2, then Γ0(G,G/H) is empty.

(ii) If H has index 4, then Γ0(G,G/H) is homotopy equivalent to 3 points.

(iii) If H has index greater than 4, then Γ0(G,G/H) is contractible.

Proof. (i) If H has index 1 or 2, then lattice of periods has one or two elements

respectively. When the least and greatest elements are removed, the remaining

poset is empty in either case.

(ii) Suppose now that H has index 4. If H = 〈a2〉 = Φ(G) then Γ(G,G/H)

is isomorphic to L(G/H) and hence Γ0(G,G/H) is isomorphic to L(G/H) −
{0̂, 1̂} where 0̂ and 1̂ denote the trivial subgroup and G/H itself. Since G/H

is isomorphic to D4, it follows that Γ0(G,G/H) has the homotopy type of 3

points. Let H = 〈a4, aib〉 where i ∈ {0, 1, 2, 3}. Then the cosets of H are

{H, aH, a2H, a3H} and η(G) = η(〈a〉) = η(〈a2, ai+1b〉) = H, aH, a2H, a3H. We

have

η(〈a2, aib〉) = H, a2H|aH, a3H,

η(〈a4, ai+1b〉) = H, aH|a2H, a3H, and

η(〈a4, ai+3b〉) = H, a3H|aH, a2H.

Since η is order preserving, the coatoms of Γ(G,G/H) are the above three parti-

tions. The meet of any pair of these partitions is the partition H|aH|a2H|a3H,

which is the least element in Γ(G,G/H). So, the meet sublattice consists of five el-

ements; the greatest element H, aH, a2H, a3H, the least element H|aH|a2H|a3H,

and three atoms (or coatoms) appearing above. Since the least element of

Γ(G,G/H) is contained in the meet sublattice, the poset Γ0(G,G/H) is homotopy

equivalent to 3 points by Lemma 3.2.3.

(iii) Now assume that H has index greater than 4 in G. If H is generated

by a2m
for some m = 2, 3, . . . then the maximal elements of Γ0(G,G/H) are

exactly the images of maximal subgroups of D2n by Lemma 4.1.8. Since H is

properly included in the Frattini subgroup Φ(D2n), the images η(Φ(D2n)) and

η(〈1〉) are distinct elements of Γ(G,G/H). The meet semilattice has the least
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element η(Φ(D2n)) and hence does not contain the least element of Γ(G,G/H).

Hence, Γ0(G,G/H) is contractible by Corollary 3.2.4.

Now assume that H = 〈a2m
, aib〉 for some m = 3, 4, . . . and 0 ≤ i < 2m. The

maximal elements of Γ0(G,G/H) are η(〈a2, aib〉), η(〈a4, ai+1b〉) and η(〈a4, ai+3b〉)
by Lemma 4.1.8. Since 〈a4〉 is an index 8 subgroup, it is not included in H and

hence 〈a4〉H 6= H. So, η(〈a4〉) 6= η(〈1〉). On the other hand η(〈a4〉) is smaller

than all these maximal elements. So, the meet of all maximal elements is equal to

η(〈a4〉). Hence the least element of the meet sublattice of Γ(G,G/H) is different

than η({1}). Thus, Γ0(G,G/H) is contractible by Corollary 3.2.4.

4.2 The Dihedral Group of Order 2pn

The presentation of dihedral group D2pn is given by:

D2pn = 〈a, b : apn

= b2 = 1, bab = a−1〉.

Proposition 4.2.1. The group D2pn has p + 1 maximal subgroups, namely a

cyclic subgroup of index 2 and p dihedral groups of index p.

Proof. Cpn = 〈a〉 is a normal subgroup of D2pn . Sylow’s Theorem tells us that

there is no other subgroup of D2pn of index 2. Assume H is a maximal subgroup

of D2pn which is different from Cpn . Let k be the least positive integer such that

ak ∈ H. It is clear that k = pl for some l ∈ {0, 1, . . . , n}. Similarly, let i be the

least nonnegative integer such that aib ∈ H (there does exist such an element).

This i is necessarily smaller than k. Thus k must be greater than 1 otherwise

H would be the whole group D2pn . But if k = pl for l > 1 then by adding ap

to the generating set of H we obtain a larger subgroup which is not D2pn . This

contradicts the maximality of H. So, H = 〈ap, aib〉 for some i = 0, 1, . . . , p − 1.

Clearly, different i’s generate different subgroups. The elements ap and aib have

orders pn−1 and 2 respectively. Moreover aibapaib = a−p, so 〈ap, aib〉 is a dihedral

group of order 2pn−1.

Corollary 4.2.2. All the subgroups of D2pn are either cyclic groups or dihedral

groups.
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Figure 4.2: D18

Proof. Any maximal subgroup of cyclic group is cyclic. Maximal subgroups of

dihedral groups D2pk for any k are either cyclic of index 2 or dihedral of index p

by Proposition 4.2.1. The desired result follows by induction.

Proposition 4.2.3. Let H be a proper subgroup of D2pn which is not maximal.

Then there exists a maximal subgroup 〈ap, aib〉 of index p which contains H where

i ∈ {0, 1, . . . , p− 1}.

Proof. If H is a dihedral subgroup then it is contained in a maximal dihedral

subgroup. If H is not a dihedral subgroup, then it is cyclic generated by apk
for

some k ≥ 1. The subgroup H is included in a maximal dihedral group in this

case too.

The top part of the subgroup lattice of D18 is illustrated in Figure 4.2.

Lemma 4.2.4. Let H1 and H2 be subgroups of D2pn where H1, H2 /∈ {〈a〉, D2pn}.
Then, H1H2 6= D2pn.

Proof. By Proposition 4.2.3, it is enough to consider maximal subgroups

Mi = 〈ap, aib〉, i = 0, 1, . . . , p−1. Since Mi∩Mj = 〈ap〉 we have |Mi∩Mj| = pn−1.

|MiMj| =
|Mi| · |Mj|
|Mi ∩Mj|

=
2pn−12pn−1

pn−1
= 4pn−1 < 2pn = |D2pn|.

Theorem 4.2.5. Assume G = D2pn where p is an odd prime and let G act on

G/H for H ≤ G.

(i) If H has index 1 or index 2, then Γ0(G,G/H) = ∅.
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(ii) If H has index p, then Γ0(G,G/H) is homotopy equivalent to the disjoint

union of p points.

(iii) If H has index 2p, then Γ0(G,G/H) is homotopy equivalent to the disjoint

union of p+ 1 points.

(iv) Otherwise, Γ0(G,G/H) is contractible.

Proof. (i) The first case which corresponds to |G : H| = 1 or [G : H] = 2 is

trivial since in each of these cases, any element of Γ(G,G/H) is either the least

element or the greatest element. Hence the removal of the least and the greatest

elements of Γ(G,G/H) leaves the poset Γ0(G,G/H) empty.

(ii) D2pn has p subgroups with index p. These subgroups are {〈ap, aib〉 : 0 ≤
i < p} which are conjugate to each other. Let Ki = 〈ap, aib〉 for i = 0, 1, . . . , p−1.

Hence H = Km for some m ∈ {0, 1, . . . , p − 1}. Without loss of generality, we

can assume m = 0 by Proposition 2.2.23. Since 〈a〉 has index 2, it is normal

in D2pn and 〈a〉H = G which means that η(〈a〉) = η(D2pn). By Lemma 4.2.4,

KiH 6= D2pn for i ∈ {0, 1, . . . , p − 1}. By Proposition 4.1.6, η(Ki) 6= η(G) for

i ∈ {0, 1, . . . , p−1} and η(Kj) 6= η(Kl) for distinct j, l ∈ {0, 1, . . . , p−1}. So, the

images of these subgroups are maximal in Γ0(G,G/H). The maximal subgroups

of D2pn are {〈a〉}∪ {K0, K1, . . . , Kp−1} and any other proper subgroup of D2pn is

contained in at least one of the subgroups in {〈ap, aib〉 : 0 ≤ i < p} by Proposition

4.2.3. So, the only maximals in Γ0(G,G/H) are {η(Ki) : i ∈ {0, 1, . . . , p − 1}}.
Let’s now show that η(Ki)∧ η(Kj) does not lie in Γ0(G,G/H) for i 6= j. Assume

otherwise, let η(Ki)∧η(Kj) = η(K) for some K ≤ D2pn and η(K) 6= η({1}). The

cosets of H are {H, aH, . . . , ap−1H}. Assume asH ∼η(K) a
rH for s 6= r. Then

asH ∼η(Ki) a
rH and asH ∼η(Kj) a

rH.

asH ∼η(Ki) a
rH ⇐⇒ kia

sH = arH for some ki ∈ Ki

⇐⇒ a−rkia
s ∈ H for some ki ∈ Ki

Ki = 〈ap, aib〉 = {apx : x ∈ N} ∪ {apy+ib : y ∈ N}. The element ki can not be

of the form apx so ki = apy+ib for some y ∈ N. Then, the element a−rapy+ibas =

apy+i−s−rb is in H if and only if s + r = i mod p. So, asH ∼η(Ki) a
rH if and

only if s+ r = i mod p.

Similarly, asH ∼η(Kj) a
rH if and only if s + r = j mod p. Clearly, both of
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these cannot be satisfied if i 6= j. Hence contradiction. So, η(Ki) ∧ η(Kj) =

η({1}) for any i 6= j. So, the meet sublattice of Γ(G,G/H) consists of these

maximals together with the greatest and the least elements of Γ(G,G/H). Hence,

by Lemma 3.2.3, Γ0(G,G/H) has the homotopy type of p distinct points.

(iii) If H has index 2p, then H = 〈ap〉 = Φ(D2pn). The lattice Γ(G,G/Φ(G))

is isomorphic to L(G/Φ(G)) by Corollary 2.3.5. If we take G = D2pn and

H = Φ(D2pn) then, Γ0(D2pn , D2pn/Φ(D2pn)) ' L0(D2pn/Φ(D2pn)) ' L0(D2p)

and L0(D2p) is homotopy equivalent to p+ 1 points.

(iv) Assume now H has index greater than 2p. If H ≤ 〈a〉 then the maximal

elements of the poset Γ0(G,G/H) are η(〈a〉) and η(Ki) for i = 0, 1, . . . , p − 1

where Ki is as defined above. But the meet of any pair is greater than η(Φ(G))

since η is order preserving. Hence the least element of the meet sublattice of

Γ(G,G/H) is greater than or equal to η(Φ(G)) which is strictly greater than

η({1}). Therefore, the meet sublattice does not contain the least element of

Γ(G,G/H). We conclude by Lemma 3.2.3 that Γ0(G,G/H) is contractible. If H

is not a subgroup of 〈a〉 then the maximal elements of Γ0(G,G/H) are η(Ki) for

i = 0, 1, . . . , p− 1. Nevertheless, the same argument works well in this case also

to show that Γ0(G,G/H) is conically contractible.

4.3 Semi-dihedral and Quaternion Groups

In this section we restrict our attention to semi-dihedral groups and quater-

nion groups. If G is one of these groups and X is a transitive G-set which

is G-isomorphic to G/H for some subgroup H with index more than 2, then

Γ0(G,G/H) is either homotopic to 3 points or it is contractible.

Lemma 4.3.1. Let H ≤ SD2n = 〈x, y : x2n−1
= y2 = 1, yxy = x2n−2−1〉. Assume

that xk ∈ H where k is a positive integer and there is no natural number l less than

k such that xl ∈ H. Similarly, assume xiy ∈ H where i is a nonnegative integer

and there is no natural j less than i such that xjy ∈ H. Then, H = 〈xk, xiy〉 and

|H| = 2|〈xk〉|.
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•
SD2

•
1

................................................................................................

Figure 4.3: SD2

Proof. Let xt ∈ H such that t = kr + q with 0 ≤ q < k. Then, x−krxkr+q =

xq ∈ H. By the minimality of k, q must be 0. We claim that if xty ∈ H then,

t = kr + i for some convenient integer r.

Assume otherwise, let xty ∈ H such that k(r − 1) + i < t < kr + i. Then,

xkr+iyxty = xkr+ix(2n−2−1)t = xkr+i−tx2n−2t ∈ H. But then, xkr+i−t ∈ H since

x2n−2t ∈ H and x−2n−2t ∈ H. This contradicts the minimality of k since 0 <

kr+ i− t < k. So, any element of H is either of the form xkr or xkj+iy for integer

r and j. This completes the first part of the proof.

It is clear that |H| = 2|〈xk〉|.

Let H be a subgroup of SD2n as in the previous lemma. Then i must be less

than k, otherwise x−kxiy = xi−ky would be in H. Since the order of SD2n is

a power of 2, k must be a power of 2. Let k = 2e. If e = n − 1 then i must

be even since xiyxiy = x2n−2
for odd i which is contradicting the minimality of

k. If e < n − 1 then i can be anything less than k. So, there are k subgroups

which contain xk and do not contain xl for l < k for k 6= 2n−1. These are

{〈xk, xiy〉 : i < k}. There are 2n−2 subgroups with k = 2n−1, which constitute

the set {〈xiy〉 : i is even and i < 2n−1}.

The subgroup lattices of SD2n for n = 1, n = 2, and n = 3 are given in

Figures 4.3, 4.4, and 4.5 respectively.

For n > 3, first three lines of the subgroup lattice of SD2n is illustrated in

Figure 4.6. The maximal subgroups of SD2n are the three subgroups in the

middle line of the figure.

Lemma 4.3.2. If H and K are two subgroups of SD2n which are both not max-

imal then HK 6= SD2n.
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Figure 4.4: SD4

•
SD8 = 〈x, y〉

•
〈x2, y〉
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Figure 4.5: SD8
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Figure 4.6: SD2n

Proof. It is enough to consider the subgroups of index 4 since any nonmaximal

subgroup lies in an index 4 subgroup. But any two subgroups of index 4 intersect

at 2n

8
elements generated by x4. |HK| = |H||K|

|H∩K| = 2n

2
= 2n−1 < 2n. So, HK can

not be equal to SD2n .

Proposition 4.3.3. Let G be a semi-dihedral group of order 2n where n > 3 and

X ∼= G/H is a transitive G-set for some subgroup H of G.

(i) If H has index 1 or 2 then Γ0(G,G/H) is empty.

(ii) If H has index 4, then Γ0(G,G/H) has the homotopy type of 3 points.

(iii) Otherwise Γ0(G,G/H) is contractible.

Proof. There are three maximal subgroups of G: M1 = 〈x2, y〉, M2 = 〈x〉 and

M3 = 〈x2, xy〉. Let H1, . . . , H5 be the index 4 subgroups of G from left to right

respectively in Figure 4.6.

(i). This is obvious since in this case the corresponding lattice has one element

or two elements. Removing the greatest and the least elements results in an empty

poset.

(ii) If H = H3 is the Frattini subgroup then Γ(G,G/H) is isomorphic to

L(G/H) ∼= D4. Hence Γ0(G,G/H) has the homotopy type of 3 points. Oth-

erwise assume without loss of generality that H = H1. The images of M2 and

M3 under η are equal to η(G) since M2H = G = M3H. Then the maximal

elements of Γ0(G,G/H) are η(M1), η(H4) and η(H5). The cosets of H are

H, xH, x2H and x3H. The maximal elements are: η(M1) = H, x2H|xH, x3H;

η(H4) = H, xH|x2H, x3H; and η(H5) = H, x3H|xH, x2H. Since the meet of any

two maximal elements is η({1}), the meet sublattice consists of five elements; two
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are the least and the greatest elements of Γ(G,G/H) and the others are η(M1),

η(H4) and η(H5). Hence, the poset Γ0(G,G/H) is homotopy equivalent to 3

points by Lemma 3.2.3.

(iii) If H has index greater than 4, then either it lies in the Frattini subgroup

H3 or it lies in exactly one of M1 and M3. In the former case, the maximal

elements of Γ0(G,G/H) are the images of maximal subgroups of G under the

map η. Since η(M1) ∧ η(M2) ∧ η(M3) = η(Φ(G)) 6= η({1}), the meet sublattice

does not contain the least element of Γ(G,G/H). Thus, the poset Γ0(G,G/H)

contractible by Corollary 3.2.4. In the latter case, assume thatH lies inM1. Then

the maximal elements of the poset Γ0(G,G/H) are η(M1), η(H4) and η(H5). All

these maximal elements are greater than or equal to η(〈x4〉) since the map η is

order preserving. So, η(M1)∧η(H4)∧η(H5) ≥ η(〈x4〉). Since 〈x4〉 is not contained

in H, the product H〈x4〉 6= H. This means that the coset H does not appear

alone in η(〈x4〉). Hence, η(〈x4〉) 6= η({1}). Hence, η({1}) does not appear in the

meet sublattice. By Lemma 3.2.3, we conclude that Γ0(G,G/H) is contractible.

If H does not lie in M1 but lies in M3, then we can replace M1 with M3, H4 with

H1 and H5 with H2 in the above argument and get the same result.

In the remaining part of this section we will consider quaternion groups.

Lemma 4.3.4. Let H ≤ Q2n = 〈x, y : x2n−1
= 1, x2n−2

= y2, yxy−1 = x−1〉.
Assume that xk ∈ H where k is positive and for 0 < l < k, xl 6∈ H. Similarly,

assume that xiy ∈ H where i is nonnegative and for 0 ≤ j < i, xjy 6∈ H. Then,

H = 〈xk, xiy〉 and |H| = 2|〈xk〉|.

Proof. It is clear that 〈xk, xiy〉 ⊆ H. In order to show the equality, it is enough

to show that every element of H is either of the form xkr for some integer r or it

is of the form xkr+iy for some integer r.

Suppose that xt ∈ H. Let t = kr+ q with 0 ≤ q < k. Then, x−krxkr+q = xq ∈
H. So, q = 0 by the minimality of k. If xiy ∈ H then xiyxiy = y2 = x2n−2 ∈ H.

It is clear that k is a power of two. So, k = 2l for some l = 0, 1, . . . n− 2.

Assume xkr+i+qy ∈ H with 0 ≤ q < k. Then, xk(r+1)+iyxkr+i+qy = xk−qy2 =

xk−qx2n−2 ∈ H and xk−qx2n−2
x2n−2

= xk−q ∈ H which implies q = 0. So,
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Figure 4.7: Q8

H = 〈xk, xiy〉 = {xks : s = 0, 1, . . . } ∪ {xkj+i : j = 0, 1, . . . }. It is clear that

|H| = 2|〈xk〉|.

As in the case of semi-dihedral group i must be smaller than k in the above

setting. Any nontrivial subgroup of Q2n contains x2n−2
= y2. So, if H is a

nontrivial subgroup of Q2n containing xiy for some i, then k is a member of

the set {2e : e = 0, 1, . . . , n − 2}. There are 2t + 1 subgroups with index 2t for

t = 1, 2, . . . , n − 2. These are {〈x2t
, xiy〉 : 0 ≤ i < 2t} and 〈x2t−1〉. There is

only one subgroup with index 2n−1 which is generated by y2. The quaternion

group with two elements is isomorphic to C2, indeed there is only one group up

to isomorphism with two elements. The quaternion group with four elements is

isomorphic to SD4 which is isomorphic to V4 and its subgroup lattice has the

shape in Figure 4.4. The subgroup lattice of Q8 is illustrated in Figure 4.7.

For n > 3, the shape of the subgroup lattice of Q2n is similar to the shape of

the subgroup lattice of SD2n . The only difference occurs in subgroups of order

2. Quaternion group has a unique subgroup of order 2 but semi-dihedral group

has 2n−2 +1 subgroups of order 2. Therefore, the first three lines of the subgroup

lattice of Q2n for n > 3 is exactly the same as the first three lines of lattice of

SD2n . It is illustrated in Figure 4.8.
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Figure 4.8: Q2n

Lemma 4.3.5. Let H and K be two subgroups of Q2n which are both not maximal

. Then, HK 6= Q2n.

Proof. It is enough to consider index 4 subgroups of Q2n . All these subgroups

include the element x4. Consequently, any two of these groups intersect at the

subgroup 〈x4〉 which is an index 8 subgroup. So, if H and K are such two

subgroups then |HK| = |H||K|
|H∩K| = 2n−1. Hence the product of these groups can

not be equal to the group Q2n .

Proposition 4.3.6. For n > 3, let H be a subgroup of G = Q2n and let X be a

G-set which is G-isomorphic to G/H.

(i) If H has index 1 or 2 then Γ0(G,G/H) is empty.

(ii) If H has index 4 then Γ0(G,G/H) is homotopic to 3 points.

(iii) Otherwise, Γ0(G,G/H) is contractible.

Proof. One can replace SD2n with Q2n in the proof of Theorem 4.3.3 and obtain

the same results.

We can also argue as follows: There is a unique subgroup of order two of the

quaternion group. This subgroup is generated by y2 and it is a normal subgroup

of G. If H = {1}, then Γ(G,G/H) is isomorphic to the subgroup lattice L(G)

and hence Γ0(G,G/H) is contractible by Theorem 3.1.9. Otherwise, we can apply

Theorem 2.3.4 with N = 〈y2〉 since every non-trivial subgroup contains 〈y2〉. The

quotient G/〈y2〉 is isomorphic to the dihedral group of order 2n−1. The group

H/N is either a dihedral group or a cyclic group of order |H|/2. So, the problem
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is reduced to find the homotopy type of the lattice of periods generated by the

dihedral group of order 2n−1 and a transitive set. Since the index of H/N in G/N

is the same as the index of H in G, we conclude the proof by Theorem 4.1.9.

Remark 4.3.7. Also in the case of semi-dihedral group we could use Theorem

2.3.4 to reduce the problem to the dihedral case if the subgroup H has order

greater than 2. This is because all the subgroups with order greater than 2

contains the central subgroup C = 〈x2n−2〉, so for a semi-dihedral group G we

have G/C ∼= D2n−1 . But for the subgroups of order 2 we can not use the theorem

unless the subgroup H is C itself.
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