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ABSTRACT

EFFECT OF BURST ASSEMBLY OVER TCP
PERFORMANCE IN OPTICAL BURST SWITCHING

NETWORKS

Güray Gürel

M.S. in Electrical and Electronics Engineering

Supervisor: Assoc. Prof. Dr. Ezhan Karaşan

July, 2006

Optical Burst Switching (OBS) is proposed as a short-term feasible solution

that is capable of efficiently utilizing the optical bandwidth of the future Inter-

net backbone. Performance evaluation of TCP traffic in OBS networks has been

under intensive study, as TCP constitutes the majority of Internet traffic. Since

burst assembly mechanism is one of the fundamental factors that determine the

performance of an OBS network, we focus our attention on burst assembly and

specifically, we investigate the influence of the number of burstifiers on TCP per-

formance for an OBS network. We start with a simple OBS network scenario

where very large flows are considered and losses resulting from the congestion

in the core OBS network are modeled using a burst independent Bernoulli loss

model. Then, a background burst traffic is generated in order to create contention

at a core node realizing burst-length dependent losses. Finally, simulations are

repeated for Internet flows where flow sizes are modeled using a Bounded Pareto

distribution. Simulation results show that for an OBS network employing timer-

based assembly algorithm, TCP goodput increases as the number of burst as-

semblers is increased for each loss model. The improvement from one burstifier

to moderate number of burst assemblers is significant, but the goodput differ-

ence between moderate number of buffers and per-flow aggregation is relatively

small, implying that a cost-effective OBS edge switch implementation should use

moderate number of assembly buffers per destination. The numerical studies are

carried out using nOBS, which is an ns2 based OBS simulation tool, built within

this thesis for studying the effects of burst assembly, scheduling and contention

resolution algorithms in OBS networks.

Keywords: Optical Burst Switching, Burst Assembly, TCP Performance.
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ÖZET

OPTİK ÇOĞUŞUM ANAHTARLAMALI AĞLARDA
ÇOĞUŞUM OLUŞUMUNUN TCP PERFORMANSINA

ETKİSİ

Güray Gürel

Elektrik Elektronik Mühendisliği, Yüksek Lisans

Tez Yöneticisi: Doç. Dr. Ezhan Karaşan

Temmuz, 2006

Optik Çoğuşum Anahtarlama (OBS), geleceğin İnternet omurgasının yüksek

bant genişliğini yüksek verimlilikle kullanabilecek ve kısa vadede uygulan-

abilir bir çözüm olarak önerilmiştir. İnternet trafiğinin çoğunluğunu oluşturan

TCP trafiğinin performans değerlendirmesi, OBS ağlarıyla ilgili yapılan birçok

çalışmaya konu olmuştur. Çoğuşum oluşturma mekanizmasının, bir OBS ağının

performansına etki eden temel faktörlerin başında yer almasından hareke-

tle tezin geri kalanında çoğuşum oluşturmaya odaklanarak özellikle çoğuşum

oluşturucuların sayısının TCP performansı üzerindeki etkisini araştırdık. Optik

giriş ve çıkış yönlendiricileri arasında seyahat eden TCP akımlarının alabildiği

bant genişligi, değişik TCP versiyonları ve değişik sayıda çoğuşum oluşturucu

için gözlemlenmiştir. İlk olarak optik çekirdek ağda çakışmalar sonucu kaybolan

çoğuşumların bir Bernoulli kayıp modeliyle temsil edildikleri basit bir OBS ağı

izlenmiştir. Bir sonraki aşama olarak arkaplan trafiği içeren daha gerçekçi bir

OBS ağında çoğuşumların uzunluğunun performansa olan etkisi incelenmiştir.

Son olarak sınırlı Pareto olarak temsil edilen İnternet trafiği altında önceki bul-

guların geçerliligi denenmiştir. Simulasyon sonuçları, zaman-temelli çoğuşum

oluşturan bir OBS ağında, bütün kayıp modelleri için optik çıkış yönlendiricisi

başına düşen çoğuşum oluşturucu sayısı arttıkça TCP performansının arttığını

göstermektedir. Bir çoğuşum oluşturucudan orta sayıda çoğuşum oluşturucuya

çıkıştaki performans artışı anlamlıdır (çoğuşum kayıp oranına, çoğuşum işlem

süresi ve kullanılan TCP sürümüne göre %15-%50 civarında). Fakat orta sayıda

çoğuşum oluşturucu ile TCP akımı sayısı kadar çoğuşum oluşturucu kullanılan

durumdaki performans farkı nispeten azdır. Bu da ederce etkin bir OBS kenar

yönlendiricisi uygulamasının orta sayıda çoğuşum oluşturucu içermesi gerektiğine
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işaret etmektedir. Sayısal analizler, bu tez bünyesinde ns2 üzerine inşa edilmis

bir OBS benzetimcisi olan nOBS ile gercekleştirilmiştir.

Anahtar sözcükler : Optik Çoğuşum Anahtarlama, Çoğuşum Oluşturma, TCP

Performansı.
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Chapter 1

Introduction

Increasing demand for services with very large bandwidth requirements, e.g. grid

networks, facilitates the deployment of optical networking technologies [1]. Using

Dense Wavelength Division Multiplexing (DWDM) technology, optical networks

are able to meet the huge bandwidth requirements of future Internet Protocol (IP)

backbones [2]. Although the total demand is high, individual connections need

to use a very small portion of the bandwidth offered by the optical network.

Consequently, the evolution of optical technology gained momentum in finding

ways of efficient multiplexing access network traffic into optical fiber with as much

bandwidth utilization as possible.

One aspect of this evolution is the switching technology employed through

the optical network. The Multi-protocol Label Switching (MPLS) protocols en-

ables integration of links of Synchronous Optical Networks (SONET) with Asyn-

chronous Transfer Mode (ATM) cell switches, which provide virtual circuits be-

tween IP routers [3]. Recently, IP routers and SONET equipment have evolved to

operate together without an ATM switch [3]. In Optical Circuit Switching (OCS),

delays during connection establishment and release increase the latency especially

for services with small holding times. In addition, as the smallest unit of band-

width, a wavelength is reserved for the entire duration of the transmission regard-

less of the rate of the sender. These shortcomings imply that circuit switching is

not the optimal switching technology for an optical network carrying IP traffic.

1



CHAPTER 1. INTRODUCTION 2

Offering adaptation to changing traffic demands and avoiding the need for

reservations, Optical Packet Switching (OPS) becomes a candidate for providing

all-optical packet switching for the future Internet backbone. However, optical

buffering and signal processing technologies have not matured enough for pos-

sible deployment of OPS in core networks in the near future. When an optical

packet is processed, it needs to be converted back into electrical domain. These

conversions and processing in electrical domain constitute a bottleneck for the

optical connection. Ideally, if the whole operation could be done optically, then

the bandwidth and speed offered by the optical domain could be fully utilized.

OPS research aiming near-term feasibility focuses on electronic control and pro-

cessing of packet header [4]. In this case, electrical conversion is applied only

to the header, which contains routing information, and it is thereafter processed

so that the optical switch could be set up for the optical payload following the

header. There is a guard band between the header and the payload to account

for this processing time. An OPS network can be slotted (synchronous), where

packets of constant size are aligned, or unslotted (asynchronous), where packets

may be of variable size and have a larger contention probability [5]. Several IP

packets may be aggregated to construct an optical packet at edge nodes. The

lack of optical buffering may be overcome by the use of electronic buffering for

large packets and Fiber Delay Lines (FDLs) for small packets [4]. An FDL is a

very long optical fiber to provide fixed amount of delay. Nevertheless, OPS will

have to wait for the availability of optical buffering and optical processing to work

ideally.

Optical burst switching (OBS) is proposed as a short-term feasible technology

that can combine the strengths and avoid the shortcomings of OCS and OPS [6].

Figure 1.1 depicts a typical OBS network. When packets from IP routers reach

the edge router, they are aggregated into a larger entity called burst. Bursts wait

in electronic buffers at the edge router until they are ready to be sent into the

optical domain. Some of the wavelengths are reserved for control packets, which

include routing, arrival and length information for the bursts. A control packet

corresponding to a burst is sent an offset time before the burst to account for the

processing at the core OBS nodes. When a core node receives a control packet, it
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Figure 1.1: An OBS network

converts a copy of the packet to electrical domain and looks whether the switch

is idle during the desired reservation interval for the corresponding burst. If it

is, then the reservation is made so as to deny possible reservations that may re-

quest an overlapping time interval. This is an indication for a future contention

at the switch and knowing this beforehand gives the core node enough time to

choose between contention resolution mechanisms, e.g. wavelength conversion,

deflection routing, FDL usage, dropping the overlapping section from one of the

bursts, preemption or just dropping the contending burst. Sending the control

packet and then sending the burst without waiting for the response is known as

one-way reservation and is implemented in many reservation protocols such as

just-enough-time (JET) [7]. An OBS network employing JET makes reservations

just for the duration of the burst and underutilization due to guard bands as in

OPS is avoided. Reservations are only made when the ingress edge router has

data to send as opposed to the reservation in circuit switching where the channel

is reserved for the whole duration of the transmission. Using reservations en-

ables the control circuitry at the core nodes to prepare before the burst reaches

the node. Aggregating IP packets into bursts leads to efficient bandwidth utiliza-

tion. These superiorities and short-term feasibility make OBS a better alternative

compared to circuit switching and OPS.

Performance evaluation of Transmission Control Protocol (TCP) flows in OBS

networks has been under intensive study, since TCP constitutes the majority of

Internet traffic. As the fundamental factor that determines how TCP traffic is

shaped into optical bursts, the burst assembly mechanism may provide valuable

improvements in terms of its effects on TCP throughput and therefore constitutes

the focus of this thesis.
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The need for assembly arises from two properties of OBS networks. First,

there is a minimum time required for an optical switch to be configured before

an optical packet can pass through it. Secondly, control information is carried

through additional headers which become an overhead to the system. When

we aggregate packets into bursts, the amount of switching time and overhead

per unit amount of application level data decrease resulting in higher bandwidth

utilization.

When a packet needs to travel through an OBS network, it is first received

by an ingress router (Figure 1.1). The ingress node contains electrical buffers

where the packets are aggregated into bursts before they are sent into the optical

link. Once a packet is formed, it is not possible to extract packets from the burst

before it reaches the egress router. Therefore, the ingress router should have at

least one aggregation buffer for each egress router and packets are classified into

aggregation buffers according to their destination egress nodes.

Based on the assembly algorithm, the ingress router keeps track of the delay

experienced by the first packet in an aggregation buffer and/or the size of the

buffer. In the timer-based assembly, a burst is formed when the delay of the

first packet reaches a given timeout. Size-based assembly forms bursts when the

size of the buffer reaches a threshold. For the hybrid algorithm, either condition

results in a burst.

The TCP side of the problem involves the TCP congestion control scheme,

which has been explained clearly in [8]. Briefly, a TCP receiver acknowledges the

reception of a segment by notifying the sender about the sequence number of the

next in-order byte expected. The sender adjusts its rate using two values, namely

CongWin and RcvWindow . The difference in the sequence numbers of the byte to

be sent and the byte that has most recently been acknowledged by the receiver

cannot exceed the minimum of these two windows. Another important parameter

is the round trip time (RTT), which is defined as the time from the transmission

of a segment until the reception of its acknowledgment (ACK). Typically, RTT

is larger than the transmission time of CongWin bytes of data and if we assume

that RcvWindow is relatively large, then TCP rate adjustment simplifies to the
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case where the sender sends CongWin amount of data in each RTT.

The way packets are assembled affects TCP sender’s perception of end-to-

end delay and optimal transmission rate. As a result of burstification, segments

from many TCP flows are put into a burst that may be successfully delivered

or may be dropped due to a contention in the core network. When a burst is

dropped, a TCP sender that has segments in the burst experiences a timeout or

receives acknowledgments requesting an already transmitted segment. The sender

interprets this situation as congestion in the network and reduces its transmission

rate. The level of congestion perceived by the sender depends on the number of

sender’s segments contained in the burst. A burst drop affecting multiple flows

implies a synchronous throughput reduction in a large number of flows. To sum

up, the implementation of the assembly mechanism, e.g. choice of parameters,

number of segments from individual flows, amount of additional delay, etc., is

important for proper utilization of optical bandwidth. Many studies examine

the burst assembly mechanism and offer ways for better performance, but they

overlook the significance of the number of flows sharing an aggregator and there

is still room for considerable improvement.

In this thesis, we use an ns2 based [9] simulation tool (nOBS) [10] to evaluate

the performance of several TCP versions with respect to burst assembly parame-

ters. nOBS implements various burst assembly, scheduling and routing algorithms

and is developed to examine burstification, scheduling, contention resolution al-

gorithms and their effects on TCP performance. nOBS allows selection of the

number of aggregators per egress nodes, or equivalently number of flows sharing

an aggregator. We simulated TCP performance for a wide range of assembly

parameters, number of aggregators and network models using nOBS.

First, a single fiber optical network with Bernoulli loss model is simulated.

The behavior of TCP goodput is observed over various parameter ranges and

what seems to be contradictory results of previous studies turn out to be the

parts of a bigger picture. Also the effects of the mechanisms used to explain the

TCP performance, such as delay penalty or delayed first loss gain, are validated.

Contrary to common usage, where single aggregation buffer per egress router
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is used, we employ multiple buffers per egress router and show that the level

of synchronization between TCP flows destined to an egress node decreases as

we increase the number of aggregation buffers per egress router. Our results

indicate that using moderate number of buffers, it is possible to reach 15-50%

performance improvement. This implies a cost effective solution that comprises

the ingress router complexity versus improved bandwidth utilization.

Secondly, a simple optical network topology with Poisson background burst

traffic is simulated to see the distribution of burst loss probability versus burst

length. As in the previous case, TCP flows are generated by infinite sized FTP

traffic. It is seen that despite previous assumptions about burst loss probability

being independent of burst size, burst loss probability actually increases with the

length of the burst. The effect of number of assembly buffers per egress node is

also confirmed by the results of these set of simulations.

Finally, the latter network is simulated again, but instead of TCP flows car-

rying infinite FTP data, we used TCP flows with Poisson arrivals and bounded

Pareto flow lengths to understand the behavior of Internet traffic. The results

were similar to those of the previous simulations.

The organization of the thesis is as follows: in Chapter 2, related work is

presented. The nOBS simulator is explained in Chapter 3. The network model

and simulation results for burst size independent and burst size dependent loss

models are presented in Chapters 4 and 5, respectively. The conclusions of the

thesis is presented in Chapter 6.



Chapter 2

Burst Assembly of TCP Traffic in

OBS Networks

The need for assembly first emerged in OPS networks. Size-based assembly has

been employed by OPS networks and is also adopted later in the proposal of

OBS networks. In addition, OBS networks enabled the use of timer-based and

hybrid size/timer-based assembly. In this chapter, we first present some TCP

basics related to TCP performance. Then, the concepts of size-based, hybrid

size/timer-based and timer-based assembly is described. Finally, the chapter

concludes with the examination of the attempts made to name the factors that

affect TCP performance in the burst assembly mechanism.

2.1 TCP Basics

The TCP congestion control scheme is clearly explained in [8]. It is usually

the case that the sender sends CongWin amount of data in each RTT. In other

words, the size of the congestion window together with the end-to-end delay

determine the instantaneous transmission rate of the sender. The end-to-end

delay is affected by the additional assembly time, while the size of the congestion

window depends on the reception of acknowledgments.

7



CHAPTER 2. BURST ASSEMBLY OF TCP TRAFFIC IN OBS NETWORKS8

A timeout occurs when the sender does not receive any acknowledgments

within Retransmission Timeout (RTO). The RTO value is computed by the sender

based on estimated RTT and estimated deviation on RTT. On the start of a TCP

connection and after a timeout, the sender is in slow start phase and the value of

CongWin is set to one Maximum Segment Size (MSS). In this phase, the sender

increases CongWin by 1 for every acknowledged segment until CongWin reaches

Threshold . In other words, size of the congestion window, i.e. CongWin , is

doubled for every successfully acknowledged window. When CongWin reaches

Threshold , the sender switches to congestion avoidance phase, where the size

of the congestion window is increased by 1/CongWin for every acknowledged seg-

ment, or in other words CongWin is incremented by 1 for every successfully ac-

knowledged window.

An acknowledgment for an already acknowledged segment, i.e. an ACK in-

dicating that receiver is still expecting the same in-order segment, is called a

duplicate acknowledgment. A duplicate acknowledgment tells the sender that ei-

ther there is reordering through the network, or there is loss of some segments

from the window. Upon the reception of the third duplicate acknowledgment,

the sender decides that the network is congested, but not as heavily as in the

timeout case. How triple duplicate acknowledgment (TDA) is treated depends

on the TCP version.

When a TDA occurs, CongWin is halved, threshold is set to CongWin and the

phase is switched to congestion avoidance for TCP Reno whereas TCP Tahoe

treats a TDA equally with a timeout event [8]. TCP Sack (TCP with selective

acknowledgments) uses the same scheme to change CongWin as TCP Reno, but in

addition, option field is used to indicate the portion of the sender’s window that

has been correctly received by the receiver [11]. TCP Newreno differs from TCP

Reno by its reaction to multiple segment losses from a window. When multiple

packets from a window are lost, TCP Reno will halve its congestion window size

for every TDA and eventually reach timeout, whereas TCP Newreno transmits

one lost packet for every ACK indicating the next lost packet and hence avoids

timeout [11].
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2.2 Size-based Assembly

Detailed analysis of Internet traffic showed that IP traffic is bursty and its packet

length has a distribution with peaks at 40, 576 and 1500 bytes [12, 13]. The

self-similar traffic pattern and the diverse packet size distribution significantly

reduce the effectiveness of common contention resolution schemes of OPS for

high loads [12, 14]. The traffic shaping function of packet aggregation at the edge

routers and its improvements on OPS performance have been noted by [12, 13].

The basics of OPS packet assembly is similar to those of the OBS burst assembly

and the results obtained for OPS packet assembly can be extended to the OBS

aggregation case and vice versa in a qualitative manner.

The interworking unit (IWU) is responsible from packet assembly in each

edge OPS router. As the initial principles of OPS relied on synchronous mode

of operation and fixed packet size [12], the two design parameters of IWU turn

out to be the maximum payload size (MPS) and an assembly timeout. If IP

packets are larger than MPS, they are fragmented. If they are shorter, they are

aggregated into an optical packet of size MPS. If the MPS requirement is not

fulfilled for a timeout duration, the payload is padded up to MPS and sent into

the optical network to avoid excessive queuing delays. This scheme, which is also

used in OBS studies, will hereafter be referred to as size-based assembly.

The effects of size-based assembly algorithm over TCP performance in OPS

networks have been observed through simulations in [3]. For different values of

MPS, the timeout value is also changed accordingly. It is shown that for average

transmitter loads greater than 20%, aggregation improves TCP performance, but

using larger values of MPS yields poorer performance as a result of the additional

queuing delay.

Size-based assembly has also been studied by [15]. The process of padding

the optical packet up to MPS when timeout expires brings forth the necessity

to introduce packetization efficiency, which is defined as the ratio of data bits

to the payload size. The study examines the trade-off between packetization

efficiency and packetization delay. According to simulations driven by self-similar



CHAPTER 2. BURST ASSEMBLY OF TCP TRAFFIC IN OBS NETWORKS10

traffic, it is seen that small values of timeout causes the packetization efficiency

to decrease with increasing MPS. The incoming traffic rate is not enough to

fill the MPS-sized optical packet for small timeouts, therefore increasing MPS

just increases the number of padded bits and decreases efficiency. For a larger

timeout, packetization efficiency first increases with increasing MPS, but starts to

decrease after some MPS value. For the largest timeout, packetization efficiency

increases in a saturating manner with increasing MPS and gets very close to

1. Although not mentioned in the text, these results indicate that there are

regions in the chosen parameter ranges, some of where the timeout is the effective

threshold, while for others, the effective threshold is MPS. As another observation,

packetization delay is shown to decrease with increasing MPS. Packetization delay

increases with increasing timeout. TCP throughput is shown to increase with

increasing MPS and increasing timeout. It is also worth to note that packets

belonging to the same congestion window are not put together in the same optical

packet [15], but no such limitation is present for OBS burst assembly.

Packet aggregation in an OPS network is shown to improve TCP throughput

in [16] and it is noted that the improvement increases with optical packet size.

Full aggregation, which is the aggregation of packets destined to the same egress

node in the same optical packet, per-class and per-flow aggregation schemes are

compared from throughput and fairness aspects. Without ingress buffering, the

flow-based aggregation is found to give the worst performance as random arrivals

of large packets from many aggregation queues to the optical switch implies higher

contention probability. Flow-based aggregation may further cause synchroniza-

tion of flows, in which case packets from some flows are always favored over others.

In other words, per-flow aggregation degrades TCP fairness.

The impact of the size-based assembly on TCP throughput in OBS networks

constitutes the focus of [17]. Channel utilization improves when larger bursts are

used, but increasing burst sizes reduces the efficiency of FDLs, increases end-to-

end delays and increases the synchronization between TCP sources whose packets

share dropped bursts. This would mean simultaneous decrease of congestion

windows of many TCP sources. Using analytical models, the optimal burst size

is found to depend on the size of the guard bands between data bursts, FDL
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lengths, number of TCP sessions, optical channel bandwidth, RTT and average

packet size.

2.3 Hybrid size/timer-based algorithm

Apart from size-based algorithm, hybrid size/timer-based algorithm is also used

in the analysis of OBS networks. The size of the packet and the delay experienced

by the first IP packet in the aggregation buffer is tracked and checked against

time and size thresholds. Either the size of the buffer reaching the size threshold

or the delay of the first packet reaching timeout causes the generation of a burst.

TCP performance in OBS networks with hybrid size/timer-based algorithm is

evaluated in [18]. It is noted that TCP reacts to packet drops, end-to-end delay

changes and throughput changes. When a burst is dropped, all the TCP sessions

having packets in that burst react to the loss event and cause a network wide drop

in throughput. Burstification (burst assembly) is triggered when the burst reaches

size threshold for high input traffic rates, while assembly timeout becomes the

effective threshold for low input traffic rates. The granularity of FDLs also affect

the TCP performance in an OBS network. Increasing the burst size increases TCP

throughput. Another observation is that TCP sessions that are slower in rate

reach their maximum throughput at relatively smaller burst sizes. End-to-end

delay increases with increasing burst size threshold as well as increasing assembly

timeout. TCP throughput is seen to deteriorate with increasing assembly timeout

for low drop probabilities, but no significant change is observed for higher loss

probabilities. It is noted that fewer bursts are produced when the burst size is

increased resulting in less number of drops. From this expression, it is understood

that uniform burst loss model is assumed in this study. The need for a new metric

to achieve high goodput while experiencing acceptable delay is pointed out and

throughput/delay is given as an example for such a metric.
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2.4 Timer-based assembly

Timer-based assembly mechanism for OBS networks is proposed by [19]. When-

ever the delay experienced by the first packet in an assembly queue reaches the

assembly timeout, the burst is queued for transmission. If the burst is smaller

than the minimum burst length, it is padded up to the minimum burst length.

This algorithm limits the burst assembly delay. It also shapes self-similar internet

traffic so that improved queuing performance is obtained.

The timer-based and hybrid size/timer-based assembly algorithms have been

rediscovered by [20] as fixed-assembly-period (FAP) and min-burstlength-max-

assembly-period (MBMAP) algorithms, respectively. In addition, the adaptive-

assembly-period (AAP) algorithm is proposed. Similar to the calculation of

RTT [8], average burst length is obtained and divided by the bandwidth to get

the time required to transmit the average-length burst. Multiplication of this

value with the assembly factor α, which is greater than 1, yields the new assem-

bly timeout. The OPS and OBS performance in terms of goodput have been

compared and it is shown that timer-based OBS assembly performs better than

size-based OPS assembly. In comparison of the goodput of the three assembly

algorithms, it is claimed that the hybrid size/timer-based algorithm achieves as

good performance as the timer-based algorithm for most of the cases. It is said

that the adaptive algorithm performs better than timer-based algorithm while

the figures show minuscule improvement.

Another adaptive algorithm has been presented by [21]. Intuitively, bursts

with larger offsets have greater probability of success in making reservations.

This principle is used in many studies about Quality of Service (QoS) to ensure a

minimum bandwidth for a class of packets by assigning their bursts with offsets

larger than what is used for the rest of the bursts. In the study, the variation of

burst size is pointed out as a factor that forces larger offsets to ensure QoS. Using

larger offsets increase the end-to-end delay experienced by the packets. Therefore,

reducing the variation in the burst size comes up as a desirable property of a burst

assembly algorithm. Timer-based assembly, however, creates bursts with a high

variation of size. Another disadvantage of timer-based assembly is the continuous
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blocking problem. When two ingress nodes with same timeout value contend at a

core router, the control packets produced by these nodes will have the same time

difference. The contention will always be resolved in favor of the burst whose

control packet arrives early. As the time difference is constant, this means that

the bursts produced by an ingress router are always favored against the bursts

produced by the other ingress node in case of a contention. Another desirable

property that a burst assembly algorithm should have is to avoid the continuous

blocking, which can be achieved through the use of an adaptive timer. In the

proposed adaptive algorithm, the packets are aggregated into a FIFO assembly

buffer and the size of the queue is compared against predetermined Qlow and Qhigh.

Queue sizes smaller than Qlow results in decrements in so-called cross-over count,

and queue sizes larger than Qhigh causes the cross-over count to be incremented.

Successive increments/decrements causes the algorithm to increase/reduce Qlow,

Qhigh and burstsize parameters. This algorithm is claimed to adapt to changing

traffic demands and reduce the variation in burst sizes, however, the specifics as

to how the algorithm is implemented remain shallow, e.g. when the algorithm

is executed (on packet receptions or on periodic timeouts) or how the Qhigh and

Qlow should be chosen with respect to average burst size are not mentioned.

2.5 Impact of Burst Assembly on TCP Traffic

In this section, various factors that affect the performance of TCP traffic in OBS

networks are discussed.

2.5.1 Delay Penalty and Correlation Gain

The first study that attempts a thorough analysis of the impact of the burstifi-

cation process by naming the factors that affect TCP performance is [22]. One

of the effects of burstification is the increase in RTT and RTO values as a result

of the addition of assembly delay and consequent deterioration in TCP perfor-

mance as also noted by previous studies. The degradation of TCP performance



CHAPTER 2. BURST ASSEMBLY OF TCP TRAFFIC IN OBS NETWORKS14

as a result of assembly delay is called delay penalty. Another important effect of

burstification is the combined successful delivery or combined loss of the packets

contained in a burst. In other words, even for statistically independent burst

loss events, the packet loss events are highly time correlated. The impact of this

correlation on TCP performance is called the correlation benefit. As the level

of correlation depends on how many packets a burst contains from a particu-

lar TCP flow, it is necessary to differentiate TCP sources as slow, which have

1 packet from their congestion windows in a given burst, fast, which have their

entire congestion windows in a given burst, and medium sources, which have a

portion of their congestion windows in the given burst. The relationship between

the assembly timeout Tb, maximum congestion window size Wm, segment size,

L(bits), and access bandwidth, Ba(bps), is given as the following:

Fast sources
Wm.L

Ba

≤ Tb (2.1)

Slow sources
L

Ba

≥ Tb (2.2)

Medium sources
L

Ba

< Tb <
Wm.L

Ba

(2.3)

For a fast TCP source, when the burst containing the congestion window is lost,

as no acknowledgments will be received from the TCP destination, RTO will cause

the congestion window to drop to 1 and TCP sender will switch to the slow start

phase. For the bursts that are not dropped, the acknowledgments for the whole

window will cause the congestion window size to be quickly restored to a value

close to its maximum (Wm). When a burst is lost containing the packet from

a slow source, the loss of this single packet is recovered using the fast recovery

and fast retransmit by TCP Reno, which is the version analyzed in [22]. TCP

Reno throughput of slow and fast sources in OBS networks are expressed in terms

of RTT, including the assembly time, and burst loss probability, p. Simulation

results are shown to coincide with the analytical models. The correlation benefit,

Cb, is expressed as:

Cb = F.Dp , where F =
B

NB
and Dp =

RTT

RTT0

. (2.4)

Here, the burstification factor, F , is defined as the ratio of the TCP send rate with

and without aggregation and RTT0 denotes the round trip time in the absence of
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the assembly time. In other words, the correlation benefit is defined as the TCP

rate improvement caused by aggregation without the effect of additional assembly

delay. It is noted that correlation benefit is maximized with p = 1/Wm for fast

sources while it is constant at 1 with respect to p for slow sources. Its value lies

in between these two for medium sources. Increasing Ba increases burstification

factor for medium sources, but it does not affect slow or fast sources. In addition,

increasing assembly timeout, Tb, increases the segments per burst for medium

sources and consequently increases burstification factor.

2.5.2 Delayed First Loss and Retransmission Penalty

The analysis of factors that determine how the burst assembly mechanism affects

TCP throughput is studied further in [11], where correlation benefit is divided

into two sub-factors as the Delayed First Loss (DFL) gain and Retransmission

Penalty (RP). Retransmission penalty occurs as a result of the increase in trans-

mission time for retransmitting the lost segments. Delayed first loss is the delay

in time before a TCP sender receives indication for a lost segment. This delay

causes the congestion window reach to higher values and in result, the sender

achieves a higher throughput. A third factor called Loss Penalty (LP) is intro-

duced, which is defined as the throughput reduction as a result of a lost burst. In

terms of TCP throughput, B, the number of segments in a burst that are from

a particular flow, S, burst loss rate, p, round trip time without assembly, RTT0,

assembly timeout, Tb, maximum window size, Wm and the number of ACKed

rounds before the sending window size is increased, b :

LP Ratio =
B(with no loss)

B(with a burst loss rate p)
≈ Wm

√
2bp

3S
for small p. (2.5)

DP Ratio =
B(with RTT0)

B(with RTT)
≈ RTT0 + 2Tb

RTT0

(2.6)

DFL Gain Ratio =
B(the first loss is delayed)

B(the first loss is not delayed)
≈
√

S for small p. (2.7)
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RP Ratio =
B(1 retransmission)

B(S retransmissions)
≈ 1+

√
3Sp

2b
small p, large S, Newreno (2.8)

RP Ratio =
B(1 retransmission)

B(S retransmissions)
≈
√

3(1+

√
Sp

2b
) small p, large S, Reno (2.9)

The additional Tb in (2.6) compared to the Dp value in (2.4) comes from the fact

that unlike [22], the ACK segments are burstified in [11]. Given the above ratios,

the optimal assembly time is defined as:

T opt
b = arg max

Tb

{DFL Gain

RP × DP
} (2.10)

According to the simulation results presented in the study, TCP throughput first

increases then decreases as the assembly time threshold is increased for medium

and fast sources. For slow sources, however, the throughput always decreases.

When the TCP version performance is compared, it is seen that for relatively

low burst loss probabilities, Sack performance is the best, followed by Newreno,

and Reno performs the worst. When the loss probability is increased, all versions

perform very close to each other.

2.5.3 Burst Size and Interarrival Statistics

In [23], the sizes of the bursts produced by a timer-based algorithm is shown to

approximate a gaussian distribution. Added to that, the burst interarrival time

distribution for a size-based algorithm is more closely modelled with a gaussian

distribution compared to poisson burst arrivals. Unlike [22], this study argues

that burst assembly does not change the long range dependency of the Internet

traffic. It is shown that timer-based assembly performs better than size-based

assembly and it is noted that the performance of the hybrid size/timer-based

algorithm should be in between the performances of these two algorithms. The

concepts of delay penalty, loss penalty, retransmission penalty and delayed first

loss gain are revisited. It is claimed that the performance of Newreno TCP

should be the poorest compared to Sack and Reno, because Newreno transmits

1 lost segment in each round, while Sack quickly retransmits lost segments using

selective acknowledgments and Reno quickly restores congestion window size with
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slow start after reaching timeout as a result of continuously halving congestion

window.

2.5.4 Effect of TCP Version

The comparison of the performance of TCP implementations in OBS networks is

studied in [24]. When a burst containing the whole congestion window of a TCP

flow, i.e. a fast flow, is lost, TCP Reno, Newreno and Sack all react with a timeout

as RTO expires. If the burst contains just 1 segment from a flow, i.e. a slow flow,

all three versions halve their congestion windows and retransmit the lost segment

while switching to congestion avoidance phase. However, if the dropped burst

contains part of the congestion window of a flow, i.e., a medium flow, then each

TCP version behaves differently. As the Reno sender keeps receiving TDAs for the

segments in the lost burst, the congestion window will be halved for each TDA.

If congestion window size drops to 3 or below, than the sender will not receive

triple-duplicate-ACKs and with the expiration of RTO, Reno sender resets to a

congestion window size of 1 in slow start phase. On the other hand, a Newreno

source transmits 1 lost segment in each round until the whole segments in the

lost burst are retransmitted. Sack uses selective acknowledgments and quickly

retransmits the segments in a few rounds. The performance of Sack is noted to

be better than the performances of Reno and Newreno, but the paper proposes

a new TCP version, Burst TCP, to avoid false timeouts and shows performance

improvements in OBS networks with respect to other TCP versions.

In this chapter, we summarized previous work related to burst assembly and

its effects on TCP performance. Before moving on to our results about burst

assembly, we first introduce the nOBS simulator used in this thesis. In the next

chapter, components of the simulator are presented, the implementation of OBS

router functionalities are described and the ingress node model is given.



Chapter 3

nOBS: an OBS Simulator for

TCP Traffic

Figure 3.1 depicts an OBS network from a TCP sender’s point of view. TCP seg-

ments are routed by IP routers through electrical access links to an ingress router,

where they are aggregated into a burst. The burst waits in electrical buffers until

it is scheduled on an available wavelength. Then it traverses through a group

of optical core routers to reach the egress router. At this point, the topology of

the optical core network is ignored and modelled as a cloud. The egress router

takes out each individual IP packet and routes them to the TCP receiver through

electrical access links. The reverse path, which carries the acknowledgments from

the receiver is not shown for the sake of simplicity.

A simulator that is built for analyzing the effects of various OBS mechanisms

on TCP performance must ensure reliable TCP simulations. Therefore, a reliable

and publicly available TCP simulator, ns2 [9] (version 2.27), is chosen as the basis

for nOBS. ns2 provides implementations of different TCP versions, electrical and

satellite links, unicast and multicast nodes, applications and traffic generators

and many other useful components that can be used to simulate a large range of

scenarios. Nevertheless, it does not support optical elements required for OBS

simulations.

18
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Figure 3.1: A simple OBS network

nOBS extends ns2 components and defines new classes to introduce the opti-

cal domain. Ingress, core and egress node functionalities are combined into the

nOBS optical node on top of the ns2 node object. The edge nodes of an OBS

network, i.e., ingress and egress nodes, fulfill the burstification and deburstifica-

tion functions. The optical node architecture in nOBS allows users to specify the

parameters of the burst aggregation algorithm as well as how packets belonging

to different TCP flows that are forwarded to the same egress node, are mapped

into burstifiers. The edge nodes are also responsible for generating and trans-

mitting the burst control packet, which corresponds to the burst header. The

control packet has all the necessary information so that each intermediate optical

switch in the core OBS network can schedule the data burst and also configure

its switching matrix in order to switch the burst optically. nOBS uses the Just-

Enough-Time (JET) reservation protocol [7], where the edge node transmits the

optical burst after an offset time following the transmission of the control packet.

In JET, the control packet tries to reserve resources for the burst just sufficient

enough for transmission of the burst on each link it traverses. The core nodes in

nOBS perform the scheduling function using wavelength converters and FDLs,

if necessary. In nOBS, the wavelength converters and FDLs are combined into

pools that are shared among all ports. This sharing architecture is called Share-

per-Node (SPN), which achieves the best loss performance among other sharing

architectures [25]. The user can specify the number of FDLs and wavelength

converters in the pools at each node. The scheduling algorithms that are cur-

rently implemented in nOBS are Latest Available Unused Channel with Void

Filling (LAUC-VF) [26] and Minimum Starting Void (Min-SV) [27].

The architecture of an OBS node in nOBS is shown in Figure 3.2. The

BurstAgent class is responsible from aggregation of incoming IP packets into
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Figure 3.2: Optical node architecture in nOBS

assembly buffers and producing bursts. An optical source routing agent, Op-

SRAgent, is developed to provide separate layer of routing through the optical

network. OpSRAgent is also responsible from writing source routing informa-

tion to packet headers, checking the optical schedulers to see whether aggregated

bursts or incoming control packets can have successful reservations. Optical clas-

sifier, OpClassifier, is responsible from delivery and forwarding of packets to the

corresponding optical components. In Figure 3.2, ingress, core and egress node

functionalities are indicated by paths 1, 2 and 3 respectively.

The process of burstification (path 1) starts with a packet in electrical do-

main arriving at the optical node through an access link. This packet is first

processed by Optical Classifier (OpClassifier). Upon seeing that the next hop

for this packet is in the optical domain, OpClassifier forwards the packet to the

Burst Agent (BurstAgent). BurstAgent puts the packet in an assembly buffer

that corresponds to a burst and control packet pair. When a burst is ready

for transmission, its associated control packet is sent to OpClassifier and then

forwarded to Optical Source Routing Agent (OpSRAgent). OpSRAgent puts the
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optical domain routing information into the control packet and the corresponding

burst. It then checks for a suitable interval through the Burst Scheduler block.

This block includes OpSchedule, OpConverterSchedule and OpticalFDLSchedule,

which keep records of the reservations on outgoing channels, wavelength convert-

ers and FDLs, respectively. If a suitable interval is found, OpSRAgent sends the

control packet and schedules the burst to be transmitted after an offset time.

Otherwise, the burst is dropped.

OpSRAgent is basically an ns2 source routing agent improved to handle op-

tical packets. When the simulation scenario is described in the TCL code, all

nodes (electrical or optical) are commanded to install an OpSRAgent instance

and routes for each node to all possible destinations are determined using the

minimum hop routing. In all nodes, newly created packets are sent to OpSRA-

gent, which writes the path that will be used by the packet in the packet header.

In other words, if an application running on ingress router produces data to be

sent into the OBS network, the burstification path starts with OpSRAgent, where

the route information for the packet is written, followed by the OpClassifier which

will forward the packet to the BurstAgent.

In the case of optical forwarding (path 2), an optical packet is received by the

OpClassifier through an incoming WDM link. Since the next hop is in the optical

domain, OpClassifier forwards the packet to the OpSRAgent, which queries the

Burst Scheduler block for a valid reservation. If the optical packet is a control

packet and a reservation for the associated burst is possible, then the control

packet is forwarded to the corresponding WDM link. If the optical packet is a

burst and a reservation has been already made, the burst is forwarded to the

WDM link. Otherwise, the optical packet is dropped.

When the next hop for an optical packet is not in the optical domain, Op-

Classifier sends this optical packet to the BurstAgent for deburstification (path

3). If the optical packet is a control packet, it is dropped. If it is a burst, then

the packets inside the burst are sent to the OpClassifier, which forwards them to

OpSRAgent. OpSRAgent sends these packets through outgoing electrical links

towards their destination nodes.
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Figure 3.3: WDM link architecture in nOBS

The architecture of an optical link in nOBS is shown in Figure 3.3. This

structure is based on the existing ns2 link configuration. Instead of the store-and-

forwarding scheme of packet switched networks implemented in ns2, cut-through

forwarding is applied. When the loss model associated with the link determines

that an optical packet must be dropped, the packet is sent to OpNullAgent com-

ponent, which frees individual packets inside the burst.

The main components of nOBS, the classifier, the burst agent, the source

routing agent and the optical schedulers, are described below in more detail.

3.1 OpClassifier

A new classifier called OpClassifier is implemented in nOBS for classifying and

forwarding packets inside optical nodes. The id numbers of optical nodes in the

same domain as this node are given to OpClassifier in a TCL script by using the

command optic nodes and stored in a table called opticnodes. Therefore, OpClas-

sifier knows the nodes that are in the same OBS domain. When a packet arrives

to OpClassifier, OpClassifier checks the type and destination of the incoming

packet and handles the packet as follows:

• If the incoming packet is not an optical burst and the packet’s destination

address is not this node, OpClassifier checks the source routing table of the

packet. Looking up in the routing table of the packet, OpClassifier checks

whether the packet’s next node is in opticnodes. If it is, the packet needs
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to enter the OBS domain, furthermore the node that owns this OpClas-

sifier should act as an ingress node and apply burstification. Therefore,

OpClassifier forwards this packet to the burstifier agent called BurstAgent.

Otherwise, OpClassifier realizes that this packet is coming from the BurstA-

gent after the deburstification process. In this case, the packet is leaving

the OBS domain, so OpClassifier forwards this packet to the source routing

agent that will forward the packet to the next hop over an electronic link.

• If the packet is an optical burst and the packet’s destination address is

this node, it means that a burst has reached its destination. OpClassifier

forwards the packet to the BurstAgent for the deburstification process.

• If the packet is an optical burst and the packet’s destination address is not

this node, it means that this is a burst in transit. Therefore, OpClassifier

forwards this packet to the source routing agent that will forward it to the

next hop which is specified in the source routing table of the packet.

• If the packet is not an optical burst and the packet’s destination address

is this node, it means that the packet is coming from the BurstAgent after

deburstification process and the receiver of this packet is in this node. Op-

Classifier forwards this packet to the port classifier, which will forward the

packet to its destination agent.

3.2 BurstAgent

BurstAgent is responsible for the burstification of electronic packets and deburs-

tification of optical bursts. A single BurstAgent is attached to OpClassifier in

each optical node. When a new packet arrives from OpClassifier, BurstAgent

checks whether this packet is an electronic packet or an optical burst. If the

packet received from OpClassifier is an optical burst, BurstAgent disassembles

the IP packets inside the payload of the burst and sends these IP packets back

to the OpClassifier to be delivered to their destination agents.
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Figure 3.4: Ingress node model

If the packet is an electronic packet, BurstAgent compares the source rout-

ing table of the packet with the list of nodes contained in the table opticnodes

and finds the corresponding egress node from where this packet will leave the

OBS domain. Next, BurstAgent inserts the incoming packet to one of the as-

sembly queues responsible for burstifying packets destined for this destination

egress node. The assembly algorithm implemented in the BurstAgent is a hybrid

size/timer-based algorithm that keeps track of the size of the burst and the delay

experienced by the first packet in the burst. BurstAgent creates a burst when the

delay of the first packet reaches a given timeout, or the number of IP packets in

the burst reaches a threshold. In our ingress node model, the number of assembly

buffers per egress router, M , can be between 1 and the number of flows, N , as

shown in Figure 3.4. An incoming packet is forwarded to a per egress burstifier

queue group based on the routing information, and it is classified further into

an assembly buffer based on the flow ID depending on N and M. If an incoming

optical packet is the first packet in the assembly queue, BurstAgent starts the

burstification delay timer. When the burst is ready for transmission, BurstAgent

creates a control packet carrying all the necessary information for this burst. Be-

fore sending the burst, BurstAgent copies the packets in the assembly queue to

the burst’s payload. Then, BurstAgent sends the control packet to OpClassifier.

Sending only the control packet to OpClassifier is enough, because other agents
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in the node can reach the data packet by using a pointer contained in the control

packet pointing to the optical burst to be transmitted.

nOBS also allows the user to select whether ACK packets will be burstified or

not. Setting ackdontburst variable to 1 allows preventing burstification of ACK

packets. In this case, ACK packets are sent to the OBS network as soon they are

received and they are carried in the OBS network like ghost packets without any

dropping or queuing.

Subclasses of BurstAgent is derived for additional functionality. TrafficGen-

eratorBurstAgent generates optical bursts whose sizes are exponential with mean

1/µ and whose arrivals are Poisson with rate λ. This burst agent is used to

generate background traffic in OBS networks. VariableBurstAgent uses an as-

sembly timeout T + ε where ε ∼ N(0, σ). VariableBurstAgent is used to avoid

the continuous blocking problem [21] that occurs among ingress routers using

same assembly timeout and contending at a core router.

3.3 OpSRAgent

A new source routing agent called OpSRAgent is implemented in nOBS which

is responsible for adding the source routing information to packets, forwarding

the packets to links according to the routing information, and controlling when

and how to send optical packets using FDLs and wavelength converters. While

creating a simulation scenario with nOBS, all the nodes are configured with source

routing information within the TCL script. Electrical nodes are configured only

with ingress and egress routers of all OBS networks, while optical nodes are

informed of routes within the OBS subnetwork they belong. Using a separate

source routing module for optical nodes provides the abstraction, i.e., the cloud

structure composed of OBS subnetworks, of the core network within the general

topology as shown in Figure 3.1.

When OpSRAgent receives a packet, OpSRAgent first checks whether source

routing information is available in the packet header and whether this packet is
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an optical burst or a control packet. If there is no source routing information in

the packet header, OpSRAgent considers two scenarios:

1. If this packet is an electronic packet, OpSRAgent writes the routing infor-

mation to the header of the packet. Then, OpSRAgent checks whether the

next hop is an optical node in the same OBS domain. If this is the case,

OpSRAgent sends the packet to OpClassifier, which forwards the packet to

the BurstAgent for burstification. Otherwise, i.e., if the optical node is the

egress node for this packet, OpSRAgent forwards the packet to the next

node on an electronic link.

2. If this packet is an optical burst, it means that OpSRAgent has received

a newly created burst and control packet pair, so OpSRAgent writes the

routing information to the header of both the control packet and the burst.

After ensuring that the source routing information is available in the packet,

OpSRAgent checks whether the current node is the destination of this packet. If

this is the case, OpSRAgent sends the packet to the OpClassifier. Otherwise, if

it is an electronic packet, OpSRAgent sends the packet to the next hop via an

electronic link. If this is an optical packet, OpSRAgent tries to send it to an op-

tical link after checking the schedulers. First, OpSRAgent checks the scheduling

on this wavelength and link by sending the packet to OpSchedule. OpSched-

ule returns a result depending on the type of the packet and availability of the

channel.

If the packet is a control packet, OpSRAgent takes the following actions based

on the result received from the OpSchedule:

1. If there is no contention, OpSRAgent sends the control packet to the optical

link for transmission immediately. If this is the first hop of the control

packet, OpSRAgent sends the burst corresponding to this control packet to

the optical link after delaying the burst for H∆, where H is the number of

hops to be traversed by the burst and ∆ is the processing delay per hop.
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2. If there is a contention, OpSRAgent checks whether there are unused FDLs

or wavelength converters available at the node. If there is, OpSRAgent

retries the reservation request, by applying different combinations of avail-

able FDLs and converters and chooses the best schedule, if any, according to

the scheduling algorithm. OpSchedule learns the availability of FDLs and

converters from OpConverterSchedule and OpFDLSchedule, respectively,

which are described below. If available FDLs or converters cannot resolve

the contention, OpSRAgent drops the control packet.

If the packet is a burst, OpSRAgent takes the following actions based on the

result received from the OpSchedule:

1. If there is a reservation for the burst without any contention, OpSRAgent

sends the burst to the optical link. If there is a required FDL delay specified

in the reservation, OpSRAgent delays the burst before sending to the optical

link.

2. If there is no existing reservation for the burst, i.e., the control packet could

not succeed in making a reservation for the burst, OpSRAgent drops the

burst.

3.4 Optical Schedulers

Each optical node keeps a record of the reservations on outgoing channels, shared

FDLs and wavelength converters that are present at the node. OpSchedule holds

reservations on outgoing channels while OpConverterSchedule and OpFDLSched-

ule maintain schedules for wavelength converters and FDLs, respectively. The

wavelength converters and FDLs at each node are combined into pools that are

shared among all ports at the optical switch, i.e., share-per-node model. The size

of the wavelength converter and the FDL pools at each node can be set indepen-

dently by the user. The user also specifies the maximum FDL delay, which must

be limited due to space constraints and for preventing spurious TCP timeouts

that degrade the performance significantly [24].
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At the ingress node, bursts may be kept in the electrical buffers until they

are scheduled and then sent into the optical network. If OpSRAgent cannot find

a suitable interval for the burst, it checks possible combinations of wavelength

converters and FDLs depending on the node type. If a burst cannot be scheduled,

it is dropped. OpSchedule class is responsible for keeping, checking and making

reservations on all wavelengths of all links. OpSchedule is connected to the Op-

SRAgent. When OpSchedule receives an optical packet from the OpSRAgent, it

first checks the type of the packet. If the packet is a control packet, OpSchedule

tries to do a reservation for the burst specified in the control packet and returns

whether reservation is successful or not. If the packet is a burst, OpSchedule

searches for a reservation in its reservation table, which is made earlier by the

control packet, and returns whether there is a valid reservation or not. OpSched-

ule uses Latest Available Unscheduled Channel with Void Filling (LAUC-VF)

or Minimum Starting Void (Min-SV) scheduling algorithms in combination with

Just Enough Time (JET) signaling. OpSchedule uses a linked-list for storing the

reservation list. OpSchedule is responsible for calculating and updating the delay

between the control and burst packets.

OpConverterSchedule and OpFDLSchedule are very similar to OpSchedule.

These two schedulers are connected to the OpSRAgent, and they are responsi-

ble for keeping, checking and making reservations of converters and FDLs at the

corresponding nodal pools. They inform the OpSRAgent when OpSRAgent asks

for availability in the specified timeline. It is possible to choose whether multiple

bursts on a wavelength can use the same FDL subsequently, but the second burst

may enter the FDL before the first burst leaves the FDL, by using the single-

burst parameter from the TCL script. Both schedulers use linked lists for storing

the reservations. An important difference between these two schedulers and Op-

Schedule is that when OpSRAgent sends a control packet to the OpSchedule, if

reservation is possible, OpSchedule does the reservation directly. However, Op-

ConverterSchedule and OpFDLSchedule require a parameter called action. When

a control packet is sent to these schedulers, if action variable is set zero, these

schedulers only return whether reservation of converter or FDL is possible. They

do not do the reservation, unless action variable is set one. This is because the
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scheduling algorithm may use a combination of FDL and wavelength conversion

for resolving the contention, and the OpSRAgent must make sure that both the

queried FDL and converter are available. If both schedulers return an affirmative

reservation signal, then OpSRAgent informs the schedulers to perform the actual

reservations.

In this chapter, the architecture of nOBS was described. In Chapter 4, we

present the simulation results obtained by using nOBS for the burst-size indepen-

dent loss model. We first present the simulation results for the hybrid size/timer-

based assembly algorithm to evaluate the claims of previous work. Then, we focus

on the comparison of performances of different number of aggregation buffers us-

ing the timer-based algorithm. Finally, we investigate the TCP performance

improvement brought by increasing the number of burstifiers.



Chapter 4

Burst-size Independent Loss

Model

In this chapter, we first validate the previous results about burst assembly.

Both size-based and timer-based algorithms can be represented by the hybrid

size/timer-based algorithm. As indicated by (2.1), there is a relation between

the assembled burst size and the assembly timeout defined by the access band-

width. In other words, increasing/decreasing the burst size, or equivalently the

number of packets inside the burst, implies an increase/decrease in the assembly

time required to gather that many packets. Similarly, increasing the assembly

timeout causes an increase in the burst size as long as the access bandwidth is

constant. As discussed in Chapter 2, some studies indicate that increasing burst

size increases TCP performance, while others claim increasing assembly timeout

increases the delay on TCP sender and undermines performance. Some others

state that as assembly timeout is increased, the performance first increases, then

decrease. Therefore, our initial aim is to examine the impact of the burst assem-

bly mechanism on TCP performance for various burst timeout and size threshold

ranges.

30
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Figure 4.1: Single optical link topology

Secondly, the significance of the reduction in average sending rate as a re-

sult of synchronization of TCP flows is analyzed. Most of the studies use per-

destination buffering, where all the flows destined to an egress node share the

same aggregation buffer. When a burst produced by such an aggregation buffer

is dropped, all the flows that have packets in that burst decrease their sending

rates simultaneously. In order to examine the effect of using multiple aggregation

buffers per egress router, the ingress node model shown in Figure 3.4 is used. In

this model, M denotes the number of assembly buffers per egress node. TCP

flows are mapped into these assembly buffers based on a simple mapping, i.e.,

(flow_id mod M).

The topology used for studying the effects of burst assembly on TCP per-

formance with burst-size independent loss model is shown in Figure 4.1. For

simplicity, the core optical network is modelled as a single fiber with Bernoulli

distributed drop probability p to account for losses due to contentions in the core

network. This topology is similar to those used in [22, 16]. Moreover, uniform

burst loss is adopted in all the studies related to burst assembly. The optical

link in O2 → O1 direction and access links are lossless. Sources s1 − sN employ

infinite FTP flows to the respective destinations d1 − dN . ACK segments do not

experience drops or assembly delays on the return path. The optical duplex link

has 1Gbps bandwidth and 10ms propagation delay. Access links are duplex with

155Mbps bandwidth and 1ms delay. As also mentioned in [3], a maximum win-

dow size of 64 Kbytes is not sufficient for high-bandwidth delay networks, and
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since we would also like to eliminate factors other than burst assembly on TCP

performance, TCP receiver window size is set to 10000 segments. This means

that hardly any limits are implied on the congestion window of the sender by the

receiver. The total TCP goodput of s1 − sN (N = 10) as assembly timeout and

size threshold changes for p = 0.001, 0.01 and for TCP versions Tahoe, Reno,

Newreno and Sack are plotted in Figures 4.2-4.5, respectively.

For Tahoe, Reno and Sack, the simulations with infinite burst-size threshold,

i.e., timer-based assembly, are plotted on the largest size-threshold in the figures.

The actual maximum burst size reached by the timer-based assembly algorithm

is actually larger than the largest size threshold shown in the figures. For TCP

Newreno plots, the largest size-threshold also shows the performance of timer-

based assembly, however, the size-threshold is chosen to be slightly greater than

the largest burst size achieved by the timer-based assembly.

It is seen that the simulation results for all TCP versions and all values of the

number of burstifiers per egress node, M, the plots are similar under the same

loss probability p. In all the plots, increasing M improves TCP performance in

terms of goodput.

For a fixed timeout, it is observed that the goodput increases as the size

threshold is increased until the maximum achievable burst size corresponding to

the timeout is reached. Increasing the burst size threshold further has no effect on

goodput since the assembly algorithm acts as a timer-based burstifier for larger

size thresholds.

For a fixed burst size threshold, the goodput increases as the burstification

timeout is increased, but starts to decrease when the minimum assembly time

corresponding to current size threshold is exceeded. This can be explained by

looking at those cases where the congestion window is smaller than the burst

size threshold. TCP source transmits its window and starts to wait for acknowl-

edgments. Since resulting burst is smaller in size than the threshold, the burst

assembler waits for the timeout to expire. Consequently, when the burst timeout

is increased further, the goodput decreases.
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Figure 4.2: Goodput vs size-threshold and assembly timeout for TCP Tahoe
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Figure 4.3: Goodput vs size-threshold and assembly timeout for TCP Reno
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Figure 4.4: Goodput vs size-threshold and assembly timeout for TCP Newreno
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Figure 4.5: Goodput vs size-threshold and assembly timeout for TCP Sack
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Timer/size-threshold based algorithm reduces to size threshold for a timeout

of infinity, therefore, the performance at the largest timeout reflects the perfor-

mance of the size-based algorithm. On the other hand, the performance of the

timer-based algorithm is plotted on the largest size threshold. In other words,

these figures helps to compare the performances of the three burstification algo-

rithms. All the figures indicate that timer-based assembly performs the best.

Since the highest goodput is obtained by the timer-based algorithm, we focus

on timer-based assembly algorithm in the rest of this thesis to evaluate the impact

of the number of the burstifiers on TCP performance. The timer-based assembly

algorithm is simulated with a wider range of assembly timeouts and longer simu-

lations to achieve better results for TCP versions Reno, Newreno and Sack, since

these three versions are the mostly used ones in practice. Figure 4.6 shows the

outputs of these simulations. The goodput values for M = 1, 2, 5 and 10 are

plotted together for comparison. We observe that increasing the number of burst

assemblers significantly improves the goodput for all three TCP versions since

synchronization between large number of TCP flows is avoided as the number of

burstifiers is increased. At this point, it is necessary to show how TCP senders

adjust their transmission rates for different M values. As mentioned in Section

2.1, the size of the congestion window determines the instantaneous transmission

rate of the sender. The congestion window sizes of TCP sources S1 − S10 and

their sum is plotted for M =1, 2, 5 and 10 in Figures 4.7 and 4.8 for a sample

simulation point. The simulation point employs TCP Reno senders with burst

loss probability p = 0.01 and assembly timeout T = 22ms on the topology de-

picted in Figure 4.1. When M = 1, all the flows share the same aggregation

buffer. When a burst is lost, this burst contains segments from every flow, so

all flows decrease their congestion window sizes simultaneously. As seen in Fig-

ure 4.7(a), flows become synchronized and the sum of their congestion windows

show that the channel utilization drops severely after burst losses. For M = 2,

odd numbered flows, i.e. S1, S3, ..., S9 are aggregated in one buffer while the

rest of the flows are aggregated in the other buffer. Figure 4.7(b) shows that

flows sharing an aggregation buffer are still synchronized among themselves, but
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(d) p=0.01, Newreno TCP
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(e) p=0.001, Sack TCP
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Figure 4.6: Total goodput with timer-based assembly for N = 10, M = 1, 2, 5, 10
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Figure 4.7: Congestion window sizes for TCP Reno, p = 0.01, T = 22ms, M =
1, 2
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Figure 4.8: Congestion window sizes for TCP Reno, p = 0.01, T = 22ms, M =
5, 10
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the sum of the congestion windows implies that the overall level of synchroniza-

tion is reduced. According to Figure 4.8(a), even less flows are synchronized. In

Figure 4.8(b), no flows are synchronized and the sum of the congestion windows

is almost constant. To sum up, when the degree of synchronization is reduced by

increasing the number of burstifiers, the congestion windows of flows belonging

to different burst assemblers tend to balance each other and the link is better

utilized.

Figure 4.6 also shows that as the assembly time is increased, goodput first

increases, and then starts to decrease for all three TCP versions. In the region

where goodput increases with timeout, the delay penalty is small and DFL gain

is dominant, therefore increasing the burst size increases the goodput. On the

other hand, the improvement provided by DFL gain saturates after some timeout

value and the delay penalty begins to dominate, which causes the goodput to

deteriorate.

The correlation gain depends on the number of segments that are burstified

into a burst. In the direction where the assembly timeout is decreased, the

number of segments from any given flow decrease. For the simulation scenario

corresponding to Figure 4.6, the assembly timeout that defines the border of

the slow flow regime is given by (2.2) as 53.68µsec. In other words, timeouts

corresponding to slow flows are out of the assembly timeout region that we have

used in our simulations. As the congestion window sizes change, the flows become

fast flows when their congestion window sizes are below Ba.Tb and they become

medium flows as the CongWin exceeds this value. Therefore, Figure 4.6 shows

that the performance improvement brought by additional assemblers per egress

node are significant for medium and fast flows, but as we go towards the slow

flow regime, the improvement disappears and there is hardly any improvement

for slow flows.

Another important observation is that the rate of decrease in goodput as the

timeout is increased depends on loss probability p. When p is large, the congestion

window cannot increase to large values due to more frequent burst losses. In this

case, the increase in the timeout does not increase the burst size significantly
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Figure 4.9: Total goodput with timer-based assembly for N = 100, p = 0.01,
M = 1, 5, 20, 100 and Newreno TCP

and the increase in DFL gain with increasing timeout is not significant. As a

result, the goodput decreases more rapidly with increasing timeout due to the

delay penalty. On the other hand, larger bursts are generated as the timeout is

increased when p is small, and the DFL gain increases with the timeout. This

partially compensates the effect of the delay penalty, and the goodput does not

degrade much with the increasing throughput for all three TCP versions. In

addition, it is observed that a relatively low number of buffers may perform close

to the per-flow aggregation case. Since the cost of additional burstifiers can be

compromised by the improvement in goodput, employing moderate number of

buffers with respect to the number of flows constitutes a cost-effective solution.

Although all three TCP versions exhibit similar characteristics as the timeout

and the number of burstifiers are changed, TCP Sack achieves the highest goodput

among the three TCP versions. Sack outperforms the other two versions since it
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quickly retransmits the lost segments with selective acknowledgements. Reno and

Newreno have very close performances, however Newreno slightly outperforms

Reno.

In order to evaluate the effects mentioned up until this point in a more re-

alistic environment where the receive window is 64 KBytes and number of TCP

flows are sligtly larger, the same network is simulated with N = 100 Newreno

flows. The bandwidth of the optical link is set to 2.5 Gbps and the burst loss

probability p is set to 0.01. The MSS of TCP sources are set to 512 Bytes and

the receive windows are set to 128 MSS. Figure 4.9 shows the results of the sim-

ulations. The effect of the number of burst assemblers is similar to the previous

results obtained for N = 10. In addition, it is observed that a relatively low

number of buffers may perform close to the per-flow aggregation case. Since the

cost of additional burstifiers can be compromised by the improvement in good-

put, employing moderate number of buffers with respect to the number of flows

constitutes a cost-effective solution.

Another factor that differentiates these figures from prior ones is the window

size of the receivers. The sender’s congestion window usually stays under the

receiver’s window, but sometimes reaches values that are slightly larger. That is

why the optimal assembly timeout turned out to be faintly larger than 3.4ms, the

minimum assembly timeout required to create a burst of size 64KBytes. After

the optimal timeout, as the congestion window cannot grow further, DFL gain

stays constant at its maximum for large timeouts. Consequently, the effect of

DP on goodput can be seen more clearly for large values of the timeout, and the

goodput decreases more rapidly with increasing timeout compared to the case

with N = 10 flows.

In Table 4.1, the goodput enhancement of using multiple burstifiers with re-

spect to the single burstifier case, i.e., per destination burstification, is shown for

different TCP versions, number of TCP flows and loss probability. For N = 10

and p = 0.001, the goodput with per-flow burstification increases 33-65% com-

pared to the case with per-destination burstification for different TCP versions.

The goodput enhancement is largest with Reno and smallest with Sack. We also
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Table 4.1: Percentage goodput increase versus number of burstifiers for different
TCP versions and loss probability

p

0.001

0.01

N = 10
M Reno Newreno Sack

2 24.55 24.77 17.31
5 51.00 45.99 30.50
10 65.40 58.48 33.84

2 6.85 8.22 9.48
5 14.10 16.63 17.16
10 15.20 19.36 20.52

N = 100
M Newreno

5 28.82
20 36.99
100 39.17

5 13.53
20 17.67
100 18.78

observe that the goodput achieved with M = 5 is very close to the per-flow

burstification case. For N = 10 and p = 0.01, the goodput enhancement with

per-flow burstification with respect to per-destination burstification is about 15-

20%. Similarly, the goodput achieved with M = 5 is very close to the per-flow

burstification case. The burstification architecture at the edge router should be

designed taking into account both the goodput enhancement and additional man-

agement complexity of using multiple burstifiers, and M = 5 seems to provide

a nice compromise for this case. The goodput enhancement is shown also for

N = 100 and p = 0.001, 0.01 in Table 4.1 for TCP Newreno. The goodput en-

hancements are 18-39% for M = 100 with respect to M = 1, and most of the

gain achieved by M = 100 is provided with M = 20, i.e., by using one fifth of

the burstifiers.

Having modelled the optical core network as an optical fiber with Bernoulli

distributed loss probability, we showed how the results of previous works fit into

the larger picture and how assembly mechanism affects the TCP performance un-

der different loss probabilities and TCP versions. We discussed the improvement

that could be achieved using multiple aggregation buffers per egress node. In the

next chapter, we extend our studies to a more realistic network scenario where

the burst drop probability depends on the length of the burst.



Chapter 5

Burst-size Dependent Loss Model

In all the studies related to burst assembly, burst drop rate in the core network

is assumed to be independent of the length of the burst. Let us think of a core

network without FDLs or wavelength converters. When a core router receives a

control packet, the reservation request will be granted if the requested interval

does not overlap with any of the previous reservations. This is possible if two

conditions are satisfied. First, the reservation should start in a void (a non-

reserved time interval between two reservations). Secondly, the reservation should

end before the start of any other prereserved interval. The latter condition implies

that the duration of the reservation, or equivalently the length of the burst, is

important in the failure or fulfillment of the reservation request. The reservation

starts an offset time (H.∆) after the reception of the control packet where H is

the number of remaining hops and ∆ is the per-hop processing time of the control

packet. In the typical case where an OBS network contains multiple hops, bursts

arriving at a core node would have to fit into voids created by the bursts that are

destined to further hops. Consequently, drop probability of a burst should depend

on its length. In order to test this conjecture, the multihop core network seen

in Figure 5.1 is used. The background burst generator creates bursts destined

to D1 −D20. The size of these bursts are exponential with mean 1/µ and burst

arrivals are Poisson with rate λ. The bursts carrying segments of S1 − S20 try to

fit into voids created by the bursts from the burst generator. We examined the

45
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Figure 5.1: Topology used in simulations

scenario in two subsets as infinite size flows and Internet-like traffic sources.

5.1 Infinite size flows

Figure 5.1 shows the network topology used for studying the effects of burst length

dependent losses. Sources S1−SN employ an infinite FTP flow to the respective

destination D1−DN (N=20). Optical links have 1 Gbps bandwidth and 2.5 msec

propagation delay. The background burst generator produces bursts whose sizes

are exponentially distributed with 1/µ and burst arrivals are Poisson with rate λ.

All bursts are destined uniformly to the five egress nodes connected to D1−D20.

Access links have 50 Mbps bandwidth and 1 msec propagation delay.

Figure 5.2 shows the loss probability for each egress node as a function of

the burst length with the parameters 1/µ = 200 nsec, 1/λ = 2msec, M = 1,

the nodal processing delay ∆ = 50µsec and the assembly timeout T = 10msec.

The statistics of the bursts carrying segments of S1 − S20 are grouped into 10

bins according to the number of packets in the burst, which ranges from 1 to a

maximum value of 60 packets. It can be seen that the loss probability is relatively

high for the flows with smaller residual offset times, as expected. Moreover, the

loss probability increases as the burst size increases. The impact of void filling

mechanism in the core router scheduler becomes important for those bursts that

are closer to their destinations because they need to fit in the voids created

beforehand by the bursts that have larger residual offset times. Consequently,

the dependence of the loss probability on the burst size is strongest for the bursts
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Figure 5.2: Loss probability vs. burst length for different egress nodes

destined to D1 −D4. Such a correlation is not observed for the bursts destined

to D17−D20 since bursts destined to D17−D20 are not required to fit into voids.

In addition to the mechanisms mentioned in [23] such as DP, the loss penalty

and correlation gain, this observation brings forward another critical factor in

analysis of TCP performance in OBS networks. The significance of the burst

length dependent losses depends on the residual offset time, per-hop processing

delay (∆) and the burst transmission time.

Figures 5.3 and 5.4 plot the goodput and the average burst size as a function of

the burst assembly timeout for the nearest and farthest egress nodes, respectively,

and for different values of the number of burstification buffers, M , using the

parameters 1/µ = 200nsec, 1/λ = 2msec, ∆ = 50µsec, when TCP Reno is used.

We observe that for both destinations the average goodputs increase with the

number of burstifiers. It is also observed that the average burst size increases

linearly with the assembly timeout for flows destined to D17 − D20. On the

other hand, the average burst size first increases and then saturates for the flows



CHAPTER 5. BURST-SIZE DEPENDENT LOSS MODEL 48

destined to D1 − D4. This is due to the fact that the TCP flows destined to

D1 − D4 experience much more frequent burst losses and consequently they do

not achieve very large congestion windows. The saturation of the average burst

sizes coupled with the additional assembly delay cause the drop in the average

goodput for flows destined for D1−D4 as the assembly timeout increases. On the

other hand, the TCP flows destined for D17−D20 can achieve very large congestion

windows and the resulting burst sizes increase with the assembly timeout. The

correlation benefit achieved by having longer bursts is partially compensated by

the delay penalty, and the average TCP goodput does significantly change as the

burst assembly timeout is increased.

We observe from Figures 5.3 and 5.4 that the flows destined for D17 − D20

achieve much higher goodput compared with the flows destined for D1 − D4.

Although the flows destined for D17 − D20 experience larger delays, their much

smaller loss probability results in higher goodput.

The comparison of Figures 5.3 and 5.4 also reveal that the maximum goodput

for the flows destined for D1 − D4 are achieved at smaller values of the burst

assembly timeout compared with the flows destined for D17 − D20. In fact, the

maximum goodput is achieved before the burst size saturates for the flows des-

tined for D1 − D4. This is due to the fact that the loss probability increases

significantly as the burst size increases for the flows destined for D1 − D4 as

it was shown in Figure 5.2. Although the correlation gain is increasing with

the burst size, the burst length dependent nature of the burst losses causes the

average goodput to start decreasing before the average burst size reaches its max-

imum. A similar behavior is not observed in Figure 5.4 since the burst losses is

independent of the burst size for the flows destined for D17 −D20.

The performance improvement in the maximum average goodputs achieved

by using M = 2 and M = 4 with respect to the case of M = 1 for TCP Reno

and TCP Sack are shown in Tables 5.1 and 5.2, respectively. The results show

that the improvement in the average goodput is maximum for the flows destined

for closer egress nodes, and the average goodput improvement generally increases

with the increasing nodal processing delay ∆. The improvements are in the range
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Table 5.1: Percentage goodput increase as a function of the number of burstifiers
for TCP Reno

Destination
∆ (µsec) M 1-4 5-8 9-12 13-16 17-20 Avg.

50 4 16.91 8.15 6.86 2.91 2.43 6.22
50 2 6.47 4.22 4.19 3.28 1.36 3.87
100 4 34.82 26.83 8.61 6.21 1.89 6.91
100 2 13.91 7.78 2.85 4.91 0.82 2.69
200 4 26.78 35.79 31.73 6.70 15.52 23.15
200 2 13.86 14.86 12.36 4.31 6.01 6.70
500 4 26.49 27.83 31.22 34.97 15.95 36.92
500 2 13.36 10.94 14.53 16.76 3.27 10.24

Table 5.2: Percentage goodput increase as a function of the number of burstifiers
for TCP Sack

Destination
∆ (µsec) M 1-4 5-8 9-12 13-16 17-20 Avg.

50 4 39.41 8.47 8.79 5.43 0.38 4.91
50 2 19.72 4.76 3.73 3.15 0.04 3.03
100 4 48.81 54.93 13.05 10.35 0.62 6.33
100 2 26.21 25.25 6.09 8.68 0.46 2.72
200 4 44.79 57.58 45.30 6.91 0.46 24.45
200 2 25.43 25.01 26.07 4.74 0.00 4.35
500 4 47.83 38.83 48.91 54.20 1.29 37.88
500 2 24.76 17.81 25.86 25.44 0.73 8.07

of 17-35% for the closest nodes and the average goodput improvement over all

destinations is 6-37% for TCP Reno and M = 4. For the case of M = 2, the

average goodput increases are in the range of 3-10% compared to M = 1. The

performance improvements for TCP Sack are slightly larger compared to TCP

Reno.

5.2 Internet-like traffic sources

In this section, the infinite FTP flows of Section 5.1 are replaced by flows that

mimics the Internet traffic. The heavy tail and large variance in flow sizes of
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typical Internet flows are modelled with Bounded Pareto distribution [28] while

flows arrive according to a Poisson process with rate λ′ = 0.1 arrivals/sec. A

Bounded Pareto distribution is denoted by tail heaviness α, minimum flow size

k and maximum flow size p. The probability density function f(x), cumulative

density function F (x) and the n-th moment mn are given as follows [28]:

f(x) =
αkα

1− (k/p)α
x−α−1, k ≤ x ≤ p, 0 ≤ α ≤ 2 (5.1)

F (x) =
1

1− (k/p)α
[1− (k/x)α], k ≤ x ≤ p, 0 ≤ α ≤ 2 (5.2)

mn =
α

(n− α)(pα − kα)
(pnkα − knpα) (5.3)

In our simulations, background burst generator is operated with 1/µ =

200µsec, 1/λ = 2msec. The nodal processing delay is taken as ∆ = 50µsec.

Each IP router S1 − S20 is assigned with a flow generator, which produces TCP

Reno flows with Bounded Pareto size distribution and Poisson arrival pattern.

The flows assigned to S1 − S20 send their segments to the respective destination

D1 − D20. For each flow generator, Bounded Pareto parameters are α = 1.2,

k = 10MB, p = 1GB and flow arrivals are Poisson. TCP flow IDs are uniformly

distributed in {0, 1, 2, 3}, and M is chosen amongst 1,2 and 4.

The average goodput of the TCP flows is shown in Figure 5.5 for each egress

node. Once again, it is confirmed that increasing the number of assembly buffers

improves TCP performance. The goodputs of further egress nodes are relatively

high compared to the goodputs of nearer egress nodes. The reason for this behav-

ior is that the drop probability is lower for bursts with higher residual offsets. For

the egress of D1 −D4, the drop probability is so high that the DFL gain cannot

compensate the delay penalty as assembly timeout is increased, therefore good-

put constantly decreases. When we look at further egress nodes, it can be seen

that the effect of DFL gain becomes dominant and for the egress of D17 − D20,

the decrease in goodput for increasing assembly timeout is minimal.

The simulations for M = 1, M = 2 and M = 4 has been fed with the same

Bounded Pareto flows, enabling us to compute the ratios of the goodputs achieved
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Table 5.3: Percentage goodput increase as a function of the number of burstifiers

Destination
M D1 −D4 D5 −D8 D9 −D12 D13 −D16 D17 −D20

4 30.52 19.33 12.03 16.40 17.21
2 15.46 8.82 6.45 9.34 7.43

by any flow under M = 1, M = 2 and M = 4. Figure 5.6 shows goodput ratio

of M = 2 over M = 1 for each individual flow for each egress node. Similarly,

Figure 5.7 shows goodput ratio of M = 4 over M = 1 for each individual flow for

each egress node. The plots show that the variation of the goodput improvement

is very high for short flows while variation drops for longer flows. As a result

of Poisson arrivals and Bounded Pareto flow sizes, the number of flows sending

packets to the ingress node changes. As the number of flows changes, the sizes

of the bursts generated by the ingress node changes. The segments burstified

into large bursts experience higher drop probability, while the segments that

are burstified into shorter bursts experience lower drop probability. The serving

time of short flows are small compared to the rate of change of number of flows

arriving to the burstifier. In other words, the improvement ratios of the short

flows depend heavily on the instantaneous number of flows and therefore exhibit

larger fluctuations. The large flows, on the other hand, experience to a larger

extent the average performance of the system.

Figures 5.6 and 5.7 also show the average of the improvement ratios of in-

dividual flows that are grouped into 10 bins (indicated by the thick line). The

average improvement ratio stays mostly constant as the flow size increases, so

the TCP performance improvement brought by additional assembly buffers does

not depend on flow sizes. The numerical values for the average percentage good-

put increase for all flows as a function of the number of burstifiers is given in

Table 5.3. The results show that the improvement is the most significant for

the nearest egress node, while the improvement decreases for the further egress

nodes.
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Figure 5.5: Average goodput with timer-based assembly for N = 10, M = 1, 2, 4
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Figure 5.6: Improvement of goodputs of individual flows for M = 2 over M = 1
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Figure 5.7: Improvement of goodputs of individual flows for M = 4 over M = 1



Chapter 6

Conclusions

In this thesis, the performance of TCP over OBS networks is studied in terms

of the number of burstifiers used at the edge routers. Providing optical burst

switching extensions to ns2, the nOBS simulator enabled us to make reliable

TCP/IP performance evaluations in OBS networks. We used nOBS to examine

TCP goodput changes for the hybrid size/timer-based algorithm over a wide range

of assembly timeouts and size thresholds. We have shown that increasing the size

threshold improves goodput until the maximum burst size indicated by current

assembly timeout is reached. Increasing the burst size threshold further than

the maximum burst size does not affect goodput as the hybrid algorithm acts as

timer-based for size thresholds larger than the maximum burst size. Increasing

the assembly timeout improves goodput until the minimum assembly time for

the current size threshold is reached. Increasing the assembly timeout further

introduces additional delays and undermines TCP performance. Timer-based

assembly is shown to perform the best while size-based algorithm performs the

worst, and the hybrid algorithm performed in between these two algorithms.

We have shown that under the uniform burst loss assumption, the effect of

delay penalty is more severe for high burst loss probabilities, as the congestion

window sizes of TCP senders cannot reach to large values due to frequent losses

and the corresponding DFL gain remains incapable of overcoming delay penalty.
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Increasing the number of burst assemblers per destination reduces the neg-

ative effects of synchronization between TCP flows occurring as a result of lost

bursts containing packets belonging to multiple TCP flows. We show that TCP

goodput is increased significantly when edge routers with multiple burstifiers per

destination are used, and the goodput increases as the number of burstifiers in-

crease. This conclusion holds for different TCP versions and different burst loss

models. We argue that the edge router architecture can be designed with less

number of burst assemblers than the per-flow burstification in order to reduce

the complexity of managing large number of buffers while achieving nearly max-

imum goodput.
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