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ABSTRACT 

3D RECONSTRUCTION OF POINT CLOUDS USING MULTI-

VIEW ORTHOGRAPHIC PROJECTIONS 

 

Osman Topçu 

M.S. in Electrical and Electronics Engineering 

Supervisor: Prof. Dr. Levent Onural 

June 2006 

 

A method to reconstruct 3D point clouds using multi-view orthographic projections is 

examined. Point clouds are generated by means of a stochastic process. This stochastic 

process is designed to generate point clouds that mimic microcalcification formation in 

breast tissue. Point clouds are generated using a Gibbs sampler algorithm. Orthographic 

projections of point clouds from any desired orientation are generated. Volumetric 

intersection method is employed to perform the reconstruction from these orthographic 

projections. The reconstruction may yield erroneous reconstructed points. The types of 

these erroneous points are analyzed along with their causes and a performance measure 

based on linear combination is devised. Experiments have been designed to investigate 

the effect of the number of projections and the number of points to the performance of 

reconstruction. Increasing the number of projections and decreasing the number of points 

resulted in better reconstructions that are more similar to the original point clouds. 

However, it is observed that reconstructions do not improve considerably upon increasing 

the number of projections after some number. This method of reconstruction serves well 

to find locations of original points.  

 

 

Keywords: 3D reconstruction, visual hull, shape from silhouettes, volumetric intersection, 

point clouds, Gibbs sampler, orthographic projection 
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ÖZET 

NOKTA BULUTLARININ ÇOK YÖNLÜ ORTOGRAFİK İZDÜŞÜMLERİNDEN 

GERİ ÇATMALARININ ELDE EDİLMESİ 

 

Osman Topçu 

Elektrik ve Elektronik Mühendisliği Bölümü Yüksek Lisans 

Tez Yöneticisi: Prof. Dr. Levent Onural 

Haziran 2006 

 

Üç-boyutlu nokta bulutlarının ortografik izdüşümlerinden geri çatmalarının elde 

edilmesine yönelik bir yöntem sınandı. Nokta bulutlarını oluşturmak için rasgele süreçler 

kullanıldı. Nokta bulutlarının meme dokusunda bulunan mikrokalsifikasyon oluşumunu 

modellemesi için rasgele süreçler tasarlandı. Nokta bulutları bir Gibbs örnekleme 

algoritması kullanılarak oluşturuldu. Nokta bulutlarının istenilen yönlerden ortografik 

izdüşümleri elde edildi. Elde edilen ortografik izdüşümlerden nokta bulutlarının geri 

çatmalarını elde etmek için hacimsel kesişim yöntemi uygulandı. Ortaya çıkan nokta 

bulutlarının geri çatmalarında hatalı noktaların oluşabildiği gözlendi. Bu hatalı noktalar, 

oluşma sebeplerine göre sınıflara ayrılarak, doğrusal birleşime dayanan bir performans 

değerlendirme ölçütü belirlendi. İzdüşüm ve toplam nokta sayısının performansa etkisinin 

araştırılması için deneyler tasarlandı. İzdüşüm sayısının arttırılması ve toplam nokta 

sayısını azaltılması gerçek nokta bulutlarına daha çok benzeyen geri çatmalar ortaya 

çıkmasını sağladı. Fakat izdüşüm sayısının arttırılmasının bir noktadan sonra performansa 

fazla bir etkisinin olmadığı anlaşıldı. Bu geri çatma yöntemi nokta bulutlarını oluşturan 

noktaların yerlerinin belirlenmesi için kullanılabilir.  

 

 

 

Anahtar Kelimeler: Geri çatma, görsel zarf, silüetlerden şekillendirme, hacimsel kesişim, 

nokta bulutları, Gibbs örnekleyicisi, ortografik izdüşüm 
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Chapter 1 

 

Introduction 

 

1.1 Statement of the Problem 

 

Perspective projection maps points A and B to points a and b on the plane, 

respectively, as can be seen in Figure 1 where O represents the focal point.  

 

 

Figure 1 Perspective projection 

 

Orthographic projection is a special case of perspective projection. When the focal 

point O in Figure 1 goes to infinity along the optical axis, those rays in Figure 1 become 

perpendicular to the image plane, thus, the projection becomes orthographic. 
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Orthographic projection has been used by architects and engineers for illustration 

purposes. More information on orthographic projection can be found in Chapter 3. 

Finding shape from orthographic projections is usually studied to improve software 

for engineering drawings. Senda [18] reconstructs solids from three orthographic views. 

These views are top, side and front views. Senda uses ridgelines to construct surfaces and 

surfaces to construct the solid. Wang [19] studied the same problem and proposed a new 

method to perform reconstruction in a short time. Wang uses 2D vertices to get 3D 

candidate vertices, 3D candidate vertices to get 3D candidate edges. From 3D candidate 

edges, he gets candidate faces, and from this, a 3D solid model is constructed. The 

algorithm provides faster execution because he uses “boundary representation” and 

“constructive solid geometry” methods. Liu [20] comes up with a matrix-based approach 

to this problem. He represents conics in matrix form and constructs the 3D solid model 

using this matrix along with projection matrices. 

Silhouettes provide us information about the object. It is possible to extract 

information about shape of an object by exploiting the silhouette information. Laurentini 

[12] who was inspired by Brady [16] proposed the idea of finding shape from silhouettes 

of an object from different viewpoints. He called the resulting shape found from 

silhouettes as “visual hull” of an object. In his paper [12], he implicitly claims that every 

object has a visual hull just like they have a convex hull. Visual hull of an object is 

defined as the closest approximation of an object obtained from silhouettes [12]. 

Volumetric intersection method is used to generate visual hull of an object using 

silhouettes from different viewpoints. Lines starting from the optical center of the image 

plane and passing from the pixels belonging to the silhouette are intersected. This method 

is called “volumetric intersection”. 

Srinivasan [29] used volumetric intersection method for 3D reconstruction along with 

a contour based strategy. He assumed that each object can be represented by parallel 

stacked contour planes that correspond to sampling in the third dimension. He developed 

a data structure to represent object contours lying on stacked parallel planes. Surface 

intersection method applied to the multi-view binary contour images was followed by a 

contour intersection step to generate a 3D contour representation of objects.  
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Matusik [13] used visual hull concept in a real-time virtualized reality application to 

catch up with timing requirements. His visual hull reconstruction method is image-based 

rather than silhouette-based. He computed visual hull of an object that is followed by 

texture mapping using images taken from reference views. 

Point clouds are used to express the group of locations whose values are nonzero in a 

3D lattice. Point clouds are chosen to be reconstructed because some kinds of lesions 

appearing in some medical imaging techniques can be modeled using them. An example 

of such lesions is grouping of microcalcifications visualized by a mammatome apparatus 

(see Figure 3). Those lesions are assumed to be grouped in the tissue. Therefore, point 

clouds stand for opaque regions that mimic those lesions. Locations of point clouds 

should be obtained exactly by the reconstruction process for subsequent operation. Carr 

[17] uses basic trigonometry and parallax shift to locate breast lesions.  

The purpose of this thesis is to reconstruct point clouds from multi-view orthographic 

projections. Point clouds are generated through stochastic processes. Their orthographic 

projections are generated from any possible viewpoint. Point correspondences between 

these orthographic projections could not be found correctly. For this reason, volumetric 

intersection method is carried out to reconstruct point clouds from multi-view 

orthographic projections. A performance measure is devised to assess reconstructions 

upon observing erroneous reconstructed points. A series of experiments are performed to 

investigate the effect of number of projections and number of points to reconstruction.  

 

1.2 Motivation 

 

At the beginning, the motivation was to devise a method that automates the 

localization of breast lesions. Current mammatome technology require a physician to 

mark the lesion locations on mammography images. Triangulation using the 

corresponding marks on mammography images is applied along with basic trigonometry 

to find the 3D locations of breast lesions in a mammatome apparatus. Breast biopsy is 

done using a needle following the localization of breast lesions. In this work, the 

desirable course of study was to devise a method that automates 3D localization of breast 

lesions from actual mammatome images.  Lesion positions were to be extracted from the 
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input mammatome images using image processing techniques. Moreover, volumetric 

intersection method was to be applied to find candidate locations of the lesions in the 

desirable course of study. Proper error correction methods are to be applied to improve 

the presicion and accuracy of lesion locations. However, we could not followed this 

course of study: we were not able to receive sufficient amount of real mammatome data. 

We made some attempts to collaborate with research centers studying breast cancer so 

that they could provide us with mammatome images. The attempts failed and we chose to 

proceed without using real data. Indeed, there was not enough time or resources to seek 

further for sources of mammatome data. So, we changed the purpose of this thesis. The 

main purpose was redefined to be the reconstruction of 3D point clouds from their 

orthographic projections.  

Therefore, we artificially generated data using orthographic projections of point 

clouds. They are generated inside a discrete 3D lattice using stochastic methods. The 

stochastic methods are designed in such a way that points are distributed inside a discrete 

3D lattice according to a desired distribution. Point clouds may be designed to represent 

lesions in breast tissue. Indeed, a thorough study should have carried out to derive 

statistics of distribution of lesions in breast tissue so that point clouds can statistically 

model lesions. However, there was not enough mammatome images to derive statistics of 

distribution of breast lesions and a study that derives the statistical distribution of breast 

lesions was not encountered in the literature. For this reason, we generated point clouds 

such that we believe that they mimic lesions in breast tissue to the best of our judgement. 

Orthographic projections of point clouds are generated and these orthographic projections 

are used as input data to this method. 

 

1.3 Scope and Outline of This Thesis 

 

This thesis is about 3D reconstruction of point clouds using multi-view orthographic 

projections. The proposed reconstruction method is developed using the visual hull 

concept and the volumetric intersection method. There are six chapters in this thesis. 

Chapter 1 is the introduction with background information. Chapter 2 explains the 

statistical methods used in point cloud generation. Gibbs sampler algorithm is explained 
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in this Chapter as well. 3D reconstruction using multi-view orthographic projections is 

the subject of Chapter 3. Visual hull concept is explained in Chapter 4. Results of the 

proposed reconstruction method as well as performance evaluation and comparison of the 

reconstructions are included in Chapter 5. Conclusions and future work are the subjects 

of Chapter 6. 
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Chapter 2 

 

Point Cloud Generation Using 3D 

Stochastic Methods 

 

Let L denote the set of all locations in a finite discrete 3D lattice and let s denote a 

location on the lattice. The finite discrete 3D lattice has the shape of a cube for the sake 

of simplicity. Discrete locations inside the finite discrete lattice are elements of the set L. 

These locations, denoted by s∈L, are composed of three components as [ ]T
zyxs =  

where x, y, and z are integers representing the cartesian coordinate variables and T stands 

for transpose operator. Now, let f be the function that maps L into B where { }1,0=B . A 

point is defined as a single location, s, inside the finite discrete 3D lattice such 

that ( ) 1=sf . A point corresponds to a sample of an opaque region. It is used in the same 

meaning as opacity in this thesis. According to the same argument, binary 0 corresponds 

to transparency whereas binary 1 corresponds to opacity. Therefore, point clouds can be 

defined as the set PC, LPC ⊆ , that is composed of s such that ( ) 1=sf . Point clouds can 

contain any integer number of points in the closed interval [0,N
3
] where N is one side-

length of the cubic finite discrete 3D lattice. 

Figure 2 illustrates a finite discrete 3D lattice structure. In this Chapter, point clouds 

are generated using a stochastic model. Before going into the details of the stochastic 

model, the motivation of utilizing point clouds is explained below. 

Microcalcifications are tiny spots of calcium in the breast. They are a sign of 

harmless cancer type that can turn into harmful type in a decade. They are formed when 

calcium ions start to accumulate on cell membranes in breast tissue. Coordinates of 

microcalcifications are used in localization of such lesions for biopsy. The distribution of 

microcalcifications in breast tissue differs from patient to patient. The point clouds are to 
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mimic the opaque regions in X-ray tomography like microcalcifications. They correspond 

to regions whose intensity is distinguished from their neighborhoods.  

 

 

 

Figure 2 3D discrete lattice structure 

 

 

 

Figure 3 Digital Mammography image illustrating microcalcifications in breast tissue 
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2.1 The Stochastic Process 

 

Finite discrete 3D lattice structure has been defined and illustrated in Figure 2. Point 

clouds are going to be generated inside a finite discrete 3D lattice, L. The stochastic 

process generates point clouds in three steps: (1) choosing cluster centers according to 

uniform distribution, (2) determining cluster size, shape and orientation, and (3) 

generating texture of clusters using Gibbs sampler. A cluster is a group of points gathered 

around some center that is called as “cluster center”. 

 

2.1.1 Cluster Centers 

 

The cluster centers are initially chosen to be random vectors of three elements, 

namely, [ ]T
cbap =  where {a, b, c} are uniform random variables in the interval 

[ )1,0  and p∈L. The random vector p is scaled to lattice dimension by using a linear 

scale factor so that the cluster centers are distributed inside the discrete 3D lattice in a 

uniformly distributed fashion. The elements of p are rounded to the nearest integer after 

scaling operation. The cluster centers do not have to indicate opacity. Random processes 

are used because lesion distribution changes from patient to patient in an indeterministic 

way. Point clouds are generated from points clustered around the cluster centers. These 

points that are clustered around a cluster center are generated by stochastically processing 

cubes.  

 

2.1.2 Cluster Size, Shape and Orientation 

 

Cluster size, shape and orientation are determined by means of operations on cubes 

involving random variables. Before explaining the operations, cube is defined in the 

following. A cube is a region in a discrete 3D lattice defined by the equality, ( ) 1=sf  

where [ ]T
zyxs =  in the region with the constraint; dxxx oo +<≤ , dyyy oo +<≤ , 

dzzz oo +<≤ . The variables x, y, z, x0, y0, z0, and d are integers. The variable d is used 
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to denote the side-length of the cube, x0, y0, and z0 stand for the reference corner 

coordinate variables of the cube. 

Cubes with random side-lengths and random reference corner locations are generated 

around each cluster center. We choose { }3,2,1∈d  according to probability density given 

in Equation (1). 

 

                                             ( ) { }







∈
==

otherwise

iif
idP

0

3,2,1
3

1

                                               (1) 

 

The reference corner coordinates of each cube are generated using a sequence of 

operations involving random variables. The purpose of these operations is to generate 

clusters distributed in an ellipsoidal region with correlated coordinates. A Gaussian 

random vector, [ ]T
zyxx 000= , is generated where 000 ,, zyx  represent the 

reference corner coordinates. Those random variables representing reference corner 

coordinates are zero mean but their variances are random in the interval [1, 3) according 

to uniform distribution. Therefore, cubes are created inside arbitrary ellipsoidal regions 

created by varying variances in each cartesian coordinate. Later, Gaussian random vector, 

x, is multiplied by a rotation matrix that is illustrated in Equation (2). The purpose of this 

operation is to correlate coordinates of cubes and thus clusters. The rotation matrix, A, in 

Equation (2) is created by multiplying three rotation matrices each rotating around one of 

x, y and z axes with random rotation angles, α, β, γ, respectively. The corresponding 

equation of this matrix multiplication is also given in Equation (2). The Gaussian random 

variables, α, β, and γ, that denote rotation angles in radians have zero mean and unit 

variance. The rotation operation is performed with respect to the corresponding cluster 

center. Each element of the resulting random vector representing reference corner 

coordinates of each cube, x', is scaled by a factor proportional to a side-length of the 

cubic discrete 3D lattice, L. This scaling operation has no effect on the means of 

reference corner coordinates whereas it scales their variances by a factor proportional to 

the square of the smallest side-length of L. The resulting reference corner coordinates 

after all of the described operations are floating point numbers with respect to their 
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cluster center. These floating point numbers are rounded to the nearest integer so that 

they correspond to elements of L. 
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User defined number of cubes of random dimension are distributed around all those 

randomly obtained cluster centers. The uniform pseudo-random number generator called 

Mersenne Twister (MT) [1] generates all the random numbers. The Gaussian random 

numbers that are derived from uniformly distributed random variables are zero mean and 

unit variance [2].  

 

2.1.3 Cluster Texture - Gibbs Sampler 

 

The purpose is to process cubes described in section 2.1.2 such that the resulting point 

clouds resemble lesion distribution like that of microcalcifications. Gibbs sampler is 

employed in converting floating small cubes into point clouds whose texture simulates 

breast microcalcifications.  

Let D denote the region containing a cube and its surrounding voxels inside the 

discrete 3D lattice. D consists of coordinates δ, ε, ζ where δ, ε, ζ denote integers 

satisfying 0 ≤ δ ≤ d+1, 0 ≤ ε ≤ d+1, 0 ≤ ζ ≤ d+1 and d is the side-length of the cube. The 

range of δ, ε, ζ extend from 0 to d+1 to contain the surrounding voxels where the 

coordinate (1, 1, 1) represent the reference corner of the cube. There is a mapping from 

domain D to a binary pattern as denoted by w(D). Each possible outcome of this 

mapping, is given as, 

      

( ) Bw ∈= δεζδεζ χχχχχ :,...,...,,, 010001000  

                                        10,10,10 +≤≤+≤≤+≤≤ ddd ζεδ .                                  (3) 
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δεζχ represents the elements of binary number set, B, at the lattice coordinate (δ, ε, ζ). 

For simplicity, locations on D are represented by si and sj and formulated as { }isD = . 

So, w can also be defined in terms of lattice locations as w(si). Similarly, w' is also a 

binary pattern defined on D as w'(D) and it can be defined in terms of lattice locations as 

w'(si). Let Ω represent the set of all realizations of this mapping. Thus, { }w=Ω  where w is 

a binary pattern over the lattice denoting realizations of the mapping and d+2 is the side-

length of the region D. The Gibbs distribution that is related to δεζχ is a probability 

measure denoted by P on Ω as, 

 

                                                          
( )wU

ewP
−

Ζ
=

1
)( .                                                    (4) 

 

In Equation (4), Z stands for the normalization constant, and U(w) is the energy function 

associated with each sample function [24,25]. 

Before expanding the energy function, cliques and clique potentials are going to be 

defined. Given a 3D lattice, a clique is a subset of the lattice. The set of all cliques that is 

denoted by Q is the same as all the subsets of the lattice. Examples of one–voxel subsets 

and two–voxel subsets in a 2D lattice can be seen in Figure 4. The set of all one–voxel 

cliques are denoted by Q1 and that of two–voxel cliques are represented by Q2. There are 

( )3
22 +d  cliques defined in a cubic 3D lattice with a side-length of d+2. Clique potential is 

a function defined on each such clique. Clique potentials are chosen to be position 

independent in our model.  

Since cliques are defined on lattice locations, notation for lattice locations are going 

to be used in place of cliques as well. Therefore, If ( )1111 ζεδ=s  and 

( )2222 ζεδ=s , ( ) { }1,01 ∈sw  and 11 Qs ∈ . Similarly, ( ) ( ) ( ) ( ) ( ){ }1,1,0,1,1,0,0,0, 21 ∈ssw  

and ( ) 221 , Qss ∈ .
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Figure 4 Single-voxel clique and examples of two-voxel cliques 

 

The energy function U(w) is given by, 

 

                                                            ( ) ( )∑
∈

=
Qq

q wVwU                                                     (5) 

 

where q denotes individual cliques, Q denotes the set of all cliques, and Vq represents the 

clique potential in Equation (5). Illustrations about cliques can be found in [7] and in 

Figure 4. In this interpretation, majority of two-voxel cliques and cliques that have more 

than two voxels are found out to have zero clique potential after a series of calculations 

given in Equation (8). Only those two-voxel cliques that are in the 26-neighborhood of 

each other have position independent non-zero clique potentials. Therefore, the sum of 

clique potentials, ∑
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In Equation (6), 
isη represents the 26-neighborhood of si in D. 26-neighborhood is the 

neighborhood scheme involving 26 voxels around the primary voxel. Rubik’s cube is 

used to illustrate this neighborhood scheme in Figure 5. 

 

 

Figure 5 Rubik’s cube to illustrate 26-Neighborhood 

 

Gibbs distributed probability, P(w), has been explained until now. The Gibbs sampler 

generates sample outcomes from this distribution. Each sample is an element of Ω. 

Samples are generated as a result of an iterative algorithm. Gibbs sampler starts with the 

initial pattern over the region D where D is defined in Subsection 2.1.3. The basic idea 

behind Gibbs sampler is to compare Gibbs probability (or energy) of the pattern 

containing all voxels inside the region D with Gibbs probability (or energy) of the 

modified pattern. The modification involves inversion of the binary value of a randomly 

picked voxel inside D. Therefore, binary value of a randomly chosen voxel of the current 

pattern is inverted resulting in a new pattern. And, Gibbs probability (or energy) of the 

current pattern is compared with that of the new pattern. At each iteration, if the new 

pattern yields more probable pattern (or lower energy) with respect to the Gibbs 

distributed probability (or energy) of the current pattern, then the new pattern is adopted 

as the current pattern. If, however, the new pattern has less probability, then the new 

pattern is adopted with a probability equal to the ratio of probability of the new pattern to 

the probability of the current pattern. If we denote the current pattern with w and the new 

pattern with w', the Gibbs sampler becomes,  
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and this is iterated four times the number of all voxels in w for randomly selected voxels. 

The Gibbs sampler algorithm starts with the same pattern in each case. It is proved in 

[7] that the iterative algorithm yields a Gibbs sample for every starting configuration if 

there is enough number of iterations. It is empirically found that the iteration converges 

to a Gibbs sample when number of iterations is more than four times number of all 

voxels. This empirical derivation is supported by [7] where convergence properties of 

Gibbs sampler algorithm are established. 

Equation (7) is further simplified by canceling all one-voxel clique potentials except 

for the clique potential of randomly picked voxel and by canceling all two-voxel clique 

potentials formulated in Equation (6) except for clique potentials composed of two 

neighboring voxels involving the randomly picked voxel. The cancellation is because that 

only a single voxel is changed when going from w to w'. All the other voxels have the 

same values as before. Therefore, clique potentials with respect to these unchanged 

voxels are the same and they yield further simplification. The cancellation and 

simplification is given in Equations (9) and (10). Before applying simplification and 

cancellation, difference of Gibbs energies of any two patterns w and w' are given as, 
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The simplification is given in Equation (9) where the pattern w' is same as w except 

for the value of a single voxel, sv. Starting with Equation (8), ( )( )∑
∈

′
1

1

Qs

i

i

swV  can be 
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expanded as; ( )( ) ( )( ) ( )( )vi
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same as w except for the value of sv. Therefore, Equation (8) can be written as; 
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After canceling similar terms in Equation (9) and applying the clique potentials given in 

Equation (6), simplification in Equation (10) is obtained. 
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The algorithm is iterated four times the number of all voxels in the entire region. The 

resulting pattern is a Gibbs sample. The algorithm is illustrated in Figure 6 in 2D using a 

square in place of a cube. The initial pattern involves a 2D 3 by 3 square white region 

surrounded by black region as illustrated in Figure 6.a. The dimension of patterns in 

Figure 6 is 5 by 5. After one step of the iteration, the pattern shown in Figure 6.b is 

generated. After five steps, the pattern in Figure 6.e is generated. After 100 steps that is 4 

times the total number of pixels, the pattern in Figure 6.f is generated. 

Each cluster is processed as described and the Gibbs sample is placed inside the 3D 

lattice. If two overlapping clusters are encountered while placing a Gibbs sample inside 

the discrete 3D lattice, then values of the latter cluster overwrites the previous one. The 

described three step random process in subsections 2.1.1, 2.1.2 and 2.1.3 completes the 

generation of the point cloud. 

 

     

a)                                       b)                                      c) 

     

                              d)                                         e)                                     f)                   

 Figure 6 Illustration of Gibbs sampler algorithm in 2D using a 3 by 3 square white region 

surrounded by black region as an initial pattern. a, b, c, d, e, f indicate evolutions with the iteration. 
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The algorithm can be summarized as follows: 

For the designated cube, start with the pattern over the region D that contains a cube and 

its surrounding voxels as described in subsection 2.1.3. Although there is no obligation 

for the initial pattern, this pattern is chosen for easy implemention. 

1. Randomly pick a voxel, sv, inside the current pattern, according to uniform 

distribution. Generate a new pattern by inverting binary value of sv.   

2. Compute the difference of energy functions, U(w')-U(w), as given in Equations 

(9) and (10). 

3. Compute r that is given in Equation (7) using the result of Step 2. 

4. If r ≥ 1, then adopt the new pattern as the current pattern and jump to Step 1. 

5. If smaller, r < 1, then adopt the new pattern as the current pattern with probability 

equal to r and jump to Step 1. 

The loop is stopped when the number of iterations reaches four times the number of all 

voxels inside D. 
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Chapter 3 

 

Reconstruction from Multi-View 

Orthographic Projections 

 

3.1 How to Generate Orthographic   Projections of 

Point Clouds 

 

Point clouds are generated on a discrete 3D lattice as described in Chapter 2. After 

generating point clouds, their projections are going to be computed. Orthographic 

projection is used in this work rather than perspective projection because it models 

parallelized rays utilized in some medical imaging techniques. 

Orthographic projection is a projection without scaling. The parallel rays incident on 

the projection plane are perpendicular to the plane. Orthographic projection of three 

points is illustrated in Figure 7. 

 

 

Figure 7 Orthographic projections of three points in space 

 

The X and Y coordinates are preserved in this projection but the depth information (Z 

coordinate) is lost. During orthographic projection operation, the Z value is zeroed out as 

can be seen from the matrix operation,  
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where λ denotes the projection plane coordinates, Ω denotes the orthographic projection 

matrix, and Λ denotes the world coordinates of the points in homogenous coordinates.  

Homogenous coordinates stem from homogenous equation of the form 

0=+++ dwczbyax  where a, b, c, d are scalars and x, y, z, w are homogenous 

coordinate variables [27]. The w variable represents the scale factor. The scale is d in the 

equation above. Variables a, b, and c are divided by the scale d to convert into cartesian 

coordinates. Therefore, homogenous [a b c d]
T
 is equivalent to [a/d b/d c/d]

T
 in cartesian 

coordinates. Homogenous coordinates are used to represent conic equations correctly in 

matrix and/or vector form. The difference between homogenous and cartesian 

coordinates is the addition of a new dimension, w. The scale in the matrix equations 

above is 1. 

The operation of taking orthographic projection of point clouds is illustrated in Figure 

8. Suppose there are three projection planes with normal vectors and points scattered in a 

3D lattice as shown in Figure 8. There is a center of rotation where all normal vectors of 

projection planes intersect if they are not parallel. Orthographic projections of those 

points are taken using imaginary parallel rays retrograde to normal vectors of projection 

planes. The projection planes can have any possible orientation always facing the discrete 

3D lattice. Imaginary parallel rays are constantly chosen to be perpendicular to the target 

projection plane. 
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Figure 8 Cross-section of projection planes and point clouds 

 

 

Imaginary parallel rays pass through the 3D lattice in the opposite direction of the 

normal vectors of the projection planes. If they confront points during their travel, they 

hit the point; therefore, that is the end of their travel. Thus, binary 1s appear in the 

corresponding pixels of the projection planes when they encounter a point during their 

travel. If they do not confront anything, they reach the projection plane and a binary zero 

appears in the corresponding pixels of the projection planes. 

These parallel rays are designed to have any orientation. However, if continuous line 

model is adopted, then those continuous rays will pass through intervoxel space (see 

Figure 11). Detection of those lines running into points during their travel in the 

intervoxel space is experimented to be error-prone. For this reason, discrete line model is 

adopted in place of continuous line model for those parallel rays. Discrete parallel rays do 

not pass through intervoxel space unlike continuous ones. They pass through lattice 

elements along their paths. In other words, discrete rays travel in a direction by visiting 

nearest lattice elements as can be seen in Figure 9. In Figure 9, there are three discrete 

parallel rays shown by gray color on a screen composed of pixels. There are two more 

identical white-colored rays in between those three rays. It can be seen from Figure 9 that 

discrete parallel rays span the discrete 2D lattice and they do not intersect. We can 

generalize this conclusion and claim that discrete 3D parallel rays also span discrete 3D 

lattice and they do not intersect as well. Furthermore, notice that, each pixel on digital 

rays in Figure 9 is connected to another pixel in its 8-neighborhood. 8-neighborhood 

scheme is used in generating those rays so that parallel rays do not intersect with each 
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other whereas they do intersect if 4-neighborhood scheme is adopted. Neighborhood 

schemes in the plane are illustrated in Figure 10. The crosses are in the 4-neighborhood, 

the dots and crosses together are in the 8-neighborhood of the large point at the center.  

 

 

Figure 9 Parallel discrete lines 

 

 

Figure 10 Figure illustrating 4-Neighborhood and 8-Neighborhood 

 

Figure 11 Continuous line in a 2D discrete lattice 
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3.2 How to Extract Depth Information from 

Orthographic Projections 

 

There are numerous works in the literature that are dedicated to finding the lost 

information from projections in many ways and for various purposes [4, 5, 6, 15, 17]. In 

this thesis, finding the depth information of points forming point clouds inside a 3D 

lattice is one of the goals. One of the ways to do this is to devise search algorithms to find 

point correspondences between projection images. After finding point correspondences, 

rays emanating from those locations at different images are intersected using 

triangularization. The resulting intersection gives the coordinates of the reconstructed 

point. If point correspondences are not found correctly, then the reconstruction will not 

be the same as the original point clouds.  

Figure 12 and 13 are orthographic projection images of point clouds taken from 

different viewpoints. The point clouds are generated as described in Chapter 2 and their 

orthographic projection is taken as explained in Chapter 3 Section a. In this Section, 

experiments that were carried out to find the depth information of point clouds are 

explained.  

 

 

 

 

Figure 12 Orthographic projection of point clouds 
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Figure 13 Orthographic projection of point clouds from different viewpoint 

 

We are going to investigate projection images to devise methods for reconstruction. The 

white regions in Figures 12 and 13 indicate regions having a value of binary 1 and the 

black regions indicate regions having a value of binary 0. Those binary images are scaled 

for illustrative purposes. The two clusters at top left in Figure 13 are overlapped in Figure 

12 as a result of projections from different viewpoints. The remaining clusters in Figure 

13 have minor differences when compared to corresponding clusters in Figure 12 if 

observed carefully. Distinctive pixels in both figures are those that have different value 

than surrounding pixels. White pixels surrounded by black ones and black pixels 

surrounded by white pixels form those distinctive pixels. 

The first approach was to apply block matching algorithm to find point 

correspondences. However, this algorithm did not yield satisfactory results due to merged 

clusters and some of the blocks could not be matched. Hierarchical block matching 

algorithm was applied to improve results of block matching algorithm and to allow 

matching algorithm to have smaller blocks when necessary. This also did not result in 

satisfactory results. The last experiment was to apply Lowe’s scale invariant feature 

transform [30] into those images. Only a small number of feature points could be 

extracted. The number of those feature points was not enough to calculate the angle 

between normal vectors of the projection planes. Although the experimented algorithms 

yield satisfactory results with grayscale images, they failed to function properly in binary 

projection images. One of the reasons is that amplitude information is not present in 

binary images. 
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If correspondences were found correctly, then rays emanating from matched points 

would be intersected. The coordinates of the intersection of those rays would be claimed 

to belong to the original point. However, when the correspondences are not found 

correctly, then reconstructed object will be different from the original one. Therefore, if 

correct point correspondences cannot be found, then algorithms involving point 

correspondences should be given up. An alternative method is to intersect all the rays 

emanating from white pixels of all projection images instead of intersecting them one at a 

time. It is experienced from the previous method that there will be intersection points that 

do not belong to the original point clouds. These points will be handled by further 

processing. Figures 20 and 21 illustrate intersection of rays. These rays travel in the 

direction of normal vectors of their planes. This method is called volumetric intersection 

and explained in Chapter 4. The intersection points form clouds of points called visual 

hull of point clouds. Visual hull is also explained in Chapter 4. Obviously, the resulting 

reconstruction has more points than the original point clouds. Therefore, this thesis 

continues with methods devised to improve reconstructions of point clouds.  
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Chapter 4 

 

Visual Hull 

 

4.1 Convex Hull 

 

Suppose we have a set S in multi-dimensional space. S is defined to be convex if any 

line segment joining any two points, m∈S and n∈S, is inside the set. In Figure 14, the 

second set is not convex whereas the first is because the line joining m and n contains 

points outside the set S [8, 9, 10, 11].  

 

Figure 14 Convex and non-convex sets 

 

Figure 15 A line segment, a triangle and a tetrahedron 

 

A line segment is an example of one-dimensional convex set. A triangle is the 

example of two-dimensional convex set with minimum number of vertices. Likewise, an 

example of three-dimensional convex set is a tetrahedron (Figure 15). Notice that, the 

points on a line segment can be computed using linear combination of its endpoints. 

Moreover, the points inside a triangle can be computed from the linear combination of its 
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vertices. Likewise, the linear combination of corners of a tetrahedron gives the points 

inside it. These linear combinations should be such that the coefficients must be 

nonnegative and they must add up to 1. This is called the convex combination [8, 9, 10, 

11]. Suppose there are k points that form a convex set namely x1, x2,…, xk. Then, convex 

combination is formulized as: 

 

            1...0... 212211 =+++∀≥+++ kikk andiwithxxx ααααααα        (12) 

 

Convex hull is also a convex set. Convex hull of S is the smallest convex set that 

contains S. In other words, it is the intersection of all convex sets containing S. All the 

points contained in the convex hull of S can be calculated using convex combinations of 

points of S. The proof is trivial. 

Before going into the convex hull in a plane, I need to define the extreme points. A 

point in S is not an extreme point if it lies on the open line segment formed by any two 

points in S. Moreover, a point is not an extreme point if it lies inside the triangle formed 

by three points that are element of S, not on the triangle. Those points that are not one of 

the above are extreme points. Therefore, the convex hull of extreme points is the same as 

the convex hull of the point set. So, in order to find the convex hull of S, all I need to do 

is to find the extreme points and connect them in some order. There are numerous 

algorithms to compute the convex hull in plane. A few of them are “quickhull” [8, 10], 

“Graham scan” [8, 10, 11] and “incremental algorithm” [10, 11]. An illustration of a 

convex hull in a plane is given in Figure 16 where extreme points are the ones connected 

with lines. 

 

 

 

Figure 16 A set of points in plane and their convex hull 
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Convex hull is a polyhedron in space which looks like the one given in Figure 17. 

Convex hull in space can be treated in the same way convex hull in plane is treated. Some 

of the 3D convex hull computation algorithms are extensions of 2D algorithms into 3D. 

Convex hull in space may be computed using the “incremental algorithm” [8, 10], “gift 

wrapping” [10] or the “randomized incremental algorithm” [10]. 

 

 

 

Figure 17 Convex hull of a polyhedron in space 

 

4.2 Visual Hull 

 

Consider the traffic signs in Figure 18. 

 

 

 

Figure 18 Traffic signs 

 

There is a silhouette of a man walking: a pedestrian. From this silhouette, we 

understand that there is a regulation related to pedestrians. Similarly, the sign with a 

silhouette of falling rocks tells us that rocks may fall or have fallen. Those signs with 

silhouettes of a bus and a bike give us useful information as well. Indeed, our brains 

recognize objects from the silhouette information provided. The information provided by 
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silhouettes is not detailed and can be deceptive as well. However, there exist situations 

where detail or ambiguity is not critical. The concept of visual hull emerged from the idea 

of using silhouette information in 3D reconstruction. 

The visual hull is a 3D concept. The aim is to recognize or to recover the shape of an 

object. Constructing visual hull of an object requires volumetric intersection method that 

is explained in Chapter 4, Subsection c. Briefly, volumetric intersection method intersects 

cones from all the silhouettes to get the visual hull. The tops of these cones are the optical 

centers of the images. In this thesis, orthogonally projected images are used, therefore, 

cones become cylinders. Visual hull that is constructed using the volumetric intersection 

method with respect to proper viewpoints approximates an object. The closeness of this 

approximation depends on the number of silhouettes, convexity of the object and the 

width of the viewing region. If the object is equal to its visual hull, then the volumetric 

reconstruction is perfect [12]. Convex hull contains the visual hull and together they 

contain the object. In mathematical notation: CH(Θ)⊇VH(Θ)⊇Θ where Θ denotes the 

object [12]. Taking projections of an object and its visual hull with respect to same 

viewing regions result in equivalent silhouettes. Moreover, two objects can be 

distinguished from their silhouettes according to the same viewpoint if and only if their 

visual hulls are different [12]. Otherwise, they yield the same silhouettes from the same 

viewpoints. 

 

4.3 Volumetric Intersection Method 

 

The volumetric intersection method is applied to build the visual hull of point clouds. 

Let Vi denote the cylindrical volume constructed by sweeping the i
th

 silhouette; then the 

volumetric intersection method provides the visual hull, VH, built from n silhouettes 

according to 
i

n

i
n VVH

1=
= I  [13]. As n becomes infinitely large and all possible viewpoints 

are included, VHn converges to a shape called VH∞ of the object of interest. Figure 19 

illustrates this method using two silhouettes. 

There are two image planes in Figure 19 each with square silhouettes in them. Those 

square silhouettes are swept in the normal directions of their planes and the volume 
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emerged by their intersection is the visual hull. This volume is highlighted using white 

color in Figure 19. If the silhouettes were taken by perspective projection, then cones 

were to be intersected [12, 13]. 

The volumetric intersection algorithm developed in this thesis emanates parallel 

discrete lines from silhouettes in the normal direction of the projection planes. 

Considering those 3D lattice locations as bins, each line adds 1 to the bin as they pass 

through. Therefore, the intersections of all silhouettes are those bins that have a value 

equal to the number of silhouettes. The coordinates of those bins are gathered to construct 

the visual hull of point clouds. 

 

 

Figure 19 Illustration of volumetric intersection method. Squares are swept to generate the cube 
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4.4 Removal of Undesired Reconstructions 

 

The visual hull of point clouds is not equal to the original point clouds for most cases. 

In order to always have perfect reconstruction; the number of projection planes has to be 

larger than the number of points. The reason for this is illustrated in Figures 20 and 21. 

 

Figure 20 Reconstruction of 2 points using 2 image planes 

 

 

Figure 21 Reconstruction of 2 points using 3 projection planes 

 

Figure 20 illustrates volumetric reconstruction method using 2 image planes each 

consisting of 2 “white” pixels. The resulting reconstructed points are A, B, C, and D. 

Points A and D alone gives the same silhouettes on both projection planes. Likewise, C 

and B give the same silhouettes. Even A, B, C, and D all together do so. There is an 

ambiguity in this reconstruction. There are three candidates for original points. This 

ambiguity is eliminated by introducing a new projection plane as in Figure 21. Points B 

and C remain the only solution of this reconstruction. From the above discussion, we can 

conclude that total number of points should be less than the number of distinct projection 
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planes for perfect reconstruction from silhouettes of any arrangement of points. Although 

there are cases where less number of silhouettes than total number of points yield perfect 

reconstructions, this statement offers perfect reconstruction for majority of cases. Of 

course, there are exceptions to this statement. Any closed volume whose interior voxels 

are empty, i.e. 0, is an exception to this statement. No matter how many different 

projections are used, they always yield a reconstruction with occupied interior voxels. 

When the total number of points exceeds the number of distinct projection planes, 

aliases or incorrect reconstructions are likely to occur as in Figure 20. Larger number of 

silhouettes than the total number of points in 3D discrete lattice has to be used to avoid 

this kind of error in reconstructions. However, this is not possible in reality. When total 

number of points gets reasonably large, it is not possible to design required number of 

distinct projections. Therefore, this kind of error is likely to occur in volumetric 

reconstruction. The approach adopted to deal with this error is to adjust number of 

projection planes and their orientation so that this kind of error is minimized.  

Another source of undesired reconstructions is that digital lines having smaller angle 

between them do not intersect at a single voxel; instead they intersect over several 

consecutive voxels due to the discrete nature of those lines. See Figure 22 for an 

illustration. 

 

 

Figure 22 Two digital lines intersecting in more than one pixel 
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Therefore, several consecutive voxels are reconstructed representing a single voxel. 

Projection planes whose normals have dot product close to 0 should be used in taking 

projections to avoid multiple voxels representing a single voxel. This is illustrated in 

Figure 23. 

 

 

Figure 23 Intersection of right angled lines 
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Chapter 5 

 

Experiments, Performance Assessment 

and Comparison 

 

Simulation software is developed that takes orthographic projections of point clouds 

as input and generates a video file as output. The video file is created to display both 

original and reconstructed point clouds side by side. Original point clouds lies on left of 

the frame whereas reconstructed point clouds on the right. The time axis of the generated 

video is the same as the z axis of discrete 3D lattice. Another software is also developed 

to generate point clouds and their orthographic projections. This software is pipelined 

into the simulation software. 

The reconstructed point clouds that are yielded by simulation software contain 

erroneous reconstructions in most of the cases. The reasons for these erroneous 

reconstructions are mentioned in Subsection 4.4 along with the ways to avoid them. Since 

those ways are unrealizable in most practical cases, a performance measure is designed to 

determine the best reconstruction within the limitations. The designed performance 

measure is chosen to be a linear combination. It is based on penalizing erroneous 

reconstructed points according to their types. The penalties are in the form of weights. 

Heavy penalty corresponds to a large weight. If a point that appears in the original data is 

not reconstructed, then this error is heavily penalized. This kind of error is labeled as 

‘type 3’ and it is denoted by subscript 3. If multiple consecutive voxels are reconstructed 

for a single voxel as illustrated in Figure 22, then this kind of error is labeled as ‘type 1’ 

and denoted by subscript 1. Type 1 error is lightly penalized. Rest of the errors are 

labeled as ‘type 2’ and denoted by subscript 2. Type 2 error is moderately penalized. The 

proposed measure is given as:  332211 WNWNWNM ×+×+×=  where M denotes 

performance measure, N1 and W1 denote number and weight of type 1 error, N2 and W2 

denote those of type 2 error, N3 and W3 do those of type 3 error. The weights are fixed for 
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each type of error in every performance measure computations; the numbers of each type 

of erroneous voxels are computed in each run. 

A point cloud consisting of a single point at a known location inside the 3D lattice is 

generated. Projections of this single point are generated for detecting type 1 errors. These 

projections are exactly the same as those projections used in reconstructing the original 

point clouds. Visual hull of this single point is constructed from projection images of this 

point as described in Chapter 4. The visual of a single point yields either a single 

reconstructed point as shown in Figure 23 or multiple consecutive points as illustrated in 

Figure 22 depending on the orientation of projection planes. If there are multiple 

consecutive voxels, then their number and orientation with respect to the original point is 

determined. The number and orientation of multiple consecutive voxels are used to detect 

type 1 errors. Therefore, for each correctly reconstructed voxel, multiple consecutive 

voxels are searched according to the number and orientation determined. If, however, 

visual hull of a single point at a known coordinate yields a single point at the same 

coordinate, then type 1 error does not exist in the reconstructed point clouds with the 

current orientation of projection planes.  

Type 3 errors are detected simply by checking if reconstructed data does not have any 

of the points of the original data. The author has scarcely experienced type 3 error in the 

experiments.  

Type 2 errors are detected after type 1 and type 3 errors. Simply, those reconstructed 

points that do not belong to the original data and that are not type 1 and type 3 errors are 

picked as type 2 error. 

The purposes of this Chapter are to reconstruct point clouds, assess their 

reconstructions and study parameters affecting the reconstruction. If possible, conditions 

for perfect reconstruction of point clouds are going to be investigated, as well. A simple 

experiment involving a point cloud of several points is going to be performed for the 

reconstruction. Moreover, another experiment using point clouds containing spread 

points is going to be carried out to bring more insight into the results of the first 

experiment. Error types are planned to be analyzed with these two experiments as well. 

Furthermore, reconstructions that are performed using increasing number of projections 

are going to be rated according to the performance measures devised above. This 
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assessment is supposed to reveal the relation of performance of reconstruction to 

increasing number of projections. With the observation that number of points also affects 

reconstruction, reconstructions are planned to be assessed also by varying the number of 

points.  

A series of experiments has been designed to investigate the reconstructed point 

clouds. There are two degrees of freedom in this method of reconstruction, namely, the 

number and the orientations of projections. Total number of points cannot be directly 

manipulated by the user because it is defined as a result of stochastic processes. In order 

to observe its effect to performance of reconstruction, total number of points is fixed by 

deleting points after total number of points reaches a predetermined value. Experiments 

are carried out to investigate the effects of number and orientations of projections on 

reconstruction of point clouds as well as the effect of total number of points. The first 

experiment is performed to demonstrate the effect of number of reconstructions on a 

single point cloud. Indeed, this experiment gives readers an idea about the relation of 

total number of points and number of projections that was introduced in Figures 20 and 

21. The first simulation of this experiment is carried out using 3 projections of the point 

cloud. Figure 24 illustrates used rays. These rays are perpendicular to each other. 

Volumetric intersection method is applied to those projections as described in Chapter 4. 

A video file is generated to display both reconstructed and original point cloud. A chosen 

frame of this video file is shown in Figure 25. There are more points in the reconstructed 

data than the original data as seen in Figure 25. The hypothesis for this sort of 

reconstruction is that the number of projections is not sufficient. The simulation 

continues with the same point cloud using 4 projections. A fourth projection with a 

different orientation is added to the previous projections. A video is generated to display 

contents of both original and reconstructed point clouds. The ray directions used in this 

reconstruction are illustrated in Figure 26. The same frame shown in Figure 25 with the 

same data points is displayed in Figure 27. The additional projection image provides 

improvement in reconstruction as can be seen upon comparing Figure 25 and Figure 27. 

But still, reconstructed and original pattern are not identical.  
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Figure 24 Ray directions indicating orientation of projection planes that are used to generate the 

reconstruction displayed in Figure 25 

 

 

Figure 25 A frame of video file displaying the original data on the left and the reconstructed data on 

the right side 

 

 

Figure 26 Ray directions indicating orientation of projection planes that are used to generate the 

reconstruction displayed in Figure 27 

 

Figure 27 Another frame displaying both the original and the reconstructed data 
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Therefore, another projection is added to the simulation to observe its effect. This 

additional projection is chosen to be perpendicular to the previous one to reduce the 

volume of intersection. The ray directions are illustrated in Figure 28 and the 

corresponding video frame is displayed in Figure 29. Reconstruction from 5 projection 

images resulted in the same pattern in both reconstructed and original frame. Upon 

comparing Figures 25, 27, and 29, it can be concluded that increasing the number of 

projection images increases performance of reconstruction in general, as expected. 

 

 

 

 

Figure 28 Ray directions indicating the orientation of the projection planes that are used to generate 

the reconstruction displayed in Figure 29 

 

 

 

 

 

Figure 29 Video frame showing original data and its reconstruction 
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Now, we have an idea of the effect of number of projections on the reconstruction. 

However, the point cloud used in the previous experiment contained a small number of 

points clustered around some region. Reconstruction of such data is simple and 

successfully carried out in most cases. The second experiment aims to bring more insight 

into the observation made in the first experiment and aims to make conclusion derived 

from the first experiment more concrete. The point cloud data is composed of points that 

are spread over the finite discrete 3D lattice. Moreover, improvement in the 

reconstruction of several frames is observed as the number of projections is increased. 

Five frames of output video files are analyzed with respect to increasing number of 

projections. Figure 30 illustrates the results of the first simulation of this experiment. The 

orientations of projection planes used in this simulation are shown in Figure 24. Three 

projection planes are used in this simulation. 

Figure 30 has five cross-sections that display frames 76, 77, 78, 79, 83 of output 

video file. These frames are chosen by the author so as to provide the reader the 

reconstruction of cross-sections with various point distribution. Moreover, the first four 

frames are consecutive so reconstruction in the third dimension can be observed as well. 

In the cross-section at the top of Figure 30, there are erroneous reconstructions that 

belong to error type 2. Those erroneous points appear both in the neighborhood of the 

original points and in the inter-space of point clouds. The same arguments are valid for 

the other cross-sections as well. We conclude that the number of projections, three, is not 

sufficient to yield satisfactory reconstructions with this point clouds. Therefore, we keep 

on simulating by adding another projection to those of previous simulation. Ray 

directions of this simulation are illustrated in Figure 26. The resultant frames are shown 

in Figure 31. This time erroneous reconstructions in the inter-space of clouds of points 

are reduced significantly. However, erroneous reconstructions in the neighborhood of the 

original points dominate in this simulation. Therefore, simulation continues by adding 

another projection. Ray orientations are shown in Figure 28. The results are displayed in 

Figure 32. 
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Figure 30 Frames 76, 77, 78, 79, 83 of output video. Three projections whose ray directions are 

shown in Figure 24 are used in this reconstruction.  
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Figure 31 Frames 76, 77, 78, 79, 83 of output video. Four projections whose ray directions are shown 

in Figure 26 are used in this reconstruction. 



 41 

 

 
 

 
 

 
 

 
 

 

 

 

Figure 32 Frames 76, 77, 78, 79, 83 of output video. Five projections whose ray directions are shown 

in Figure 28 are used in this reconstruction. 
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The erroneous reconstructions in the inter-space of point clouds are completely 

disappeared in all frames in Figure 32. Those that are in the vicinity of original points are 

reduced but not completely gone. So, experiment continues with next simulation by 

adding an extra projection to see what can be achieved with this data. The ray directions 

of this simulation are shown in Figure 33. Figure 34 illustrates the resultant frames. 

Reconstruction is performed using six projections of point clouds. Reconstructed frames 

and original ones look more alike in this simulation when compared to previous ones. 

Although, there are a few extra reconstructed points that may be unimportant in some 

applications, experiment continues with the next simulation using seven projections. 

 

 

 

 

 

 

Figure 33 Ray directions indicating orientation of projection planes that are used to generate the 

reconstruction displayed in Figure 34 
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Figure 34 Frames 76, 77, 78, 79, 83 of output video. Six projections whose ray directions are shown in 

Figure 33 are used in this reconstruction. 
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Figure 35 Ray directions indicating orientation of projection planes that are used to generate the 

reconstruction displayed in Figure 36 
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Figure 36 Frames 76, 77, 78, 79, 83 of output video. Seven projections whose ray directions are shown 

in Figure 35 are used in this reconstruction. 
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Figure 36 illustrates that frames 79 and 83 achieved perfect reconstruction. The other 

frames got improvements in their reconstructions. Seven projections have been enough to 

achieve this result. To investigate ways resulting in perfect reconstructions, experiment 

continues with simulations involving larger number projections that are formed by adding 

a new projection to previous ones each time.  

 

 

Figure 37 Ray directions indicating orientation projection planes that are used to generate the 

reconstruction displayed in Figure 38 

 

 

 
Figure 38 Frames 76, 77, 78 of output video. Eight projections whose ray directions are shown in 

Figure 37 are used in this reconstruction. 



 47 

Frames 76, 77, and 78 indicate slight improvements in reconstruction in Figure 39 

while frames 79 and 83 remain to illustrate perfect reconstruction. Frames 79 and 83 are 

not displayed in Figure 38 for this reason. Furthermore, we keep on simulating by adding 

another projection plane to the planes of previous reconstruction as shown in Figure 39. 

Frames 76 and 77 in Figure 40 do not provide any improvement when compared to those 

in Figure 38 whereas frame 78 provided slight improvement in reconstruction. The rest of 

the frames already got perfect reconstructions. Like before, we add a new projection 

plane as shown in Figure 41. 

 

Figure 39 Ray directions indicating orientation of projection planes that are used to generate the 

reconstruction displayed in Figure 40 

 

 

 
Figure 40 Frames 76, 77, 78 of output video. Nine projections whose ray directions are shown in 

Figure 39 are used in this reconstruction. 
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Figure 41 Ray directions indicating orientation of projection planes that are used to generate the 

reconstruction displayed in Figure 42 

 

 

 

 

 
Figure 42 Frames 76, 77, 78 of output video. Ten projections whose ray directions are shown in 

Figure 41 are used in this reconstruction. 
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Frames 76 and 78 of this simulation do not demonstrate any improvement while 

frame 77 performed small improvement as seen in Figure 42. So, we keep adding new 

projections to already existing projection planes as illustrated in Figure 43. Frames 76 

and 78 achieved perfect reconstruction in this simulation using 11 projections shown in 

Figure 44. Frame 77 kept improving monotonically.  

 

Figure 43 Ray directions indicating orientation of projection planes that are used to generate the 

reconstruction displayed in Figure 44 
 

 

 

 
Figure 44 Frames 76, 77, 78 of output video. 11 projections whose ray directions are shown in Figure 

43 are used in this reconstruction. 



 50 

 

Figure 45 Ray directions indicating orientation of projection planes that are used to generate the 

reconstruction displayed in Figure 46 

 

 
Figure 46 Frame 77 of output video. 12 Projections whose ray directions are shown in Figure 45 are 

used in this reconstruction. 
 

By comparing Figures 44 and 46, it is seen that reconstruction of frame 77 does not 

improve however; the reconstruction improves by using 13 projections as shown in 

Figure 48.  

 

Figure 47 Ray directions indicating orientation projection planes that are used to generate the 

reconstruction displayed in Figure 48 
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Figure 48 Frame 77 of output video. 13 Projections whose ray directions are shown in Figure 47 are 

used in this reconstruction. 
 

 

Figure 49 Ray directions indicating orientation of projection planes that are used to generate the 

reconstruction displayed in Figure 50 

 

Figure 50 Frame 77 of output video. 27 Projections whose ray directions are shown in Figure 49 are 

used in this reconstruction. 
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After a sequence of simulations, it has been observed that reconstruction does not 

improve upon introducing larger number of projections each time. Simulations continued 

by adding a new projection each time until there are 27 projections shown in Figure 49. 

Figure 50 demonstrate that the reconstruction is perfect in this frame as well. Therefore, 

increasing number of projections improves reconstruction, as expected. 

It has been observed until here that increasing the number of projections yields more 

satisfactory reconstructions. Instead of performing simulations using projections whose 

normal vectors are perpendicular to each other, a new simulation is carried out using 

projection planes whose ray directions are illustrated in Figure 51.  

 

 

Figure 51 Ray directions used in generating projections. Each ray direction corresponds to a 

projection plane whose normal lies in the opposite direction of the corresponding ray direction. 
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Figure 52 Means of performance measures obtained from 50 simulations each involving 200 points. 
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Figure 53 Average standard deviations of performance measures obtained from 50 simulations each 

involving 200 points. 

 

Figure 52 illustrates means of performance measures obtained from 50 simulations 

each involving 200 points and the same projections. The number of projections is 

increased up to 15 projections to investigate the effect of number of projections towards 

performance measure. The number 3 in the x-axis of Figure 52 corresponds to three 

projections whose ray directions are the first 3 ray directions in Figure 51. Projections 

using the first four ray directions in Figure 51 are equivalent to four projections that are 

formed by adding the fourth projection in Figure 51. Likewise, nine projections are taken 

using the first nine ray directions in Figure 51 in generating Figure 52. The same is true 

for Figure 53 except that it illustrates average of standard deviations of performance 

measures over 50 experiments. There is a considerable decrease in average performance 

measure in Figure 52 until there are nine projections. Upon increasing number of 

projections after nine projections, average performance measure decreases at a much 

slower rate. Therefore, nine projections is the breakpoint of slope of Figure 52 and Figure 
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53. It can be concluded that reconstructions do not improve greatly after nine projections 

whose ray directions are as shown in Figure 51.  

The next experiment aims to investigate the effect of total number of points in the 

discrete 3D lattice to the performance of reconstruction. For this reason, simulations 

using increasing number of projections have been performed by increasing the number of 

points by 50 each time. The average of performance measures in logarithmic gray level 

are displayed as an image in Figure 54.  

 

 

Figure 54 Average performance measure displayed in logarithmic gray level. The x-axis stands for 

number of projections while y-axis for number of points. 

 

The average is taken over 300 performance measures for each pixel in Figure 54 

resulting from 300 simulations. For a fixed number of points, the performance measure 

decreases until there are nine projections for each number of points. However, the 

decrease is weak after nine projections for any number of points. The ray directions of the 

projection planes can be seen in Figure 51. Therefore, it is observed that reconstructions 

do not improve considerably after there are nine projections.  
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Figure 55 Standard deviation of performance measures is displayed in logarithmic gray level. The x-

axis stands for number of projections while the y-axis represents the number of points. 

 

Standard deviation of performance measures is displayed in logarithmic scale in 

Figure 55. This figure has the same axes as Figure 54. The standard deviation of 

performance measure indicates the impact of the pattern of point clouds on performance 

measure and thus reconstruction. The impact is noticeable until there are nine projections 

for each number of points. After there are 11 projections, the distribution of points has a 

slight effect on reconstruction.  
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Chapter 6 

 

Conclusions and Future Work 

 

Inspection of a method to reconstruct point clouds using multi-view orthographic 

projections is the subject of this thesis. Point cloud generation is performed by using 

stochastic processes. Generated point clouds mimic microcalcification formation in breast 

tissue. The point cloud generation includes the Gibbs sampler algorithm. Multi-view 

orthographic projections of point clouds are generated. Reconstruction from these 

orthographic projections is performed using volumetric intersection method. It is possible 

to encounter erroneous reconstructed points. These erroneous points are classified 

according to their causes and a performance measure based on linear combination is 

devised. The effect of the number of projections and the number of points to performance 

of reconstruction are investigated through experiments. Better reconstructions that are 

more similar to the original point clouds are generated by increasing the number of 

projections and decreasing the number of points. However, it is reported that 

reconstructions do not improve considerably as the number of projections are increased 

after some number. This method of reconstruction is suitable to find locations of original 

points.  

Perfect reconstructions of point clouds are achieved that are exactly the same as the 

original point clouds in a number of simulations. There are reconstructions that are barely 

different from the original data along with reconstructions that are noticeably different. 

However, original point clouds are included in almost all the simulations as expected. 

The devised performance measure helps to assess reconstructions. Erroneous 

reconstructed points are classified based on their causes. Three classes of errors are 

detected; (1) errors due to discrete lines intersecting in more than one voxel as illustrated 

in Figure 22, (2) errors due to false intersections of discrete lines, (3) errors resulting 

from unreconstructed points of original data. Each class is given weights according to 

their degree of importance. Weights are multiplied by number of points in each class and 
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linear combination of the results gives the performance measure. Therefore, smaller the 

performance measure, the better the reconstruction. Better reconstructions are carried out 

as number of projections from different viewpoints is increased. Decreasing total number 

of points resulted in better reconstructions as well. For this reason, perfect reconstructions 

occur when number of projections is large enough and total number of points is small 

enough as expected. In addition, it is also observed that reconstruction does not improve 

considerably after some number of projections. 

The author tried search algorithms to find correct correspondences between 

orthographic projections of point clouds. Search algorithms failed to find correct 

correspondences. Therefore, this method based on volumetric intersection is adopted. 

This method does not require search for correct correspondences neither by machine nor 

human. Therefore, it is faster than those that require search algorithm and it is less likely 

to suffer from errors made in finding correct correspondences.  

Carr [17] proposes methods to improve accuracy of localizations of breast lesions so 

that breast biopsy can be done using a needle. His method of localization involves search 

for lesions performed by a physician. Searching for lesions is followed by triangulization 

using basic trigonometry. He [17] reported in his paper that physicians cannot 

differentiate and thus his method fails to reconstruct lesions that are obscured by other 

lesions. This method reconstructs points even if they are obscured by other points and 

thus invisible in projection images.  

In a future work, the reconstruction of point clouds using real digital mammography 

images could be considered. Since digital mammography images are not binary images, 

further processing of these images is required to apply volumetric intersection method. 

Additional errors are going to be introduced to this method like imperfect parallelization 

of low-dose X-rays when this method is used with real mammography images. Moreover, 

noise in these images has to be handled properly. 
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