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Prof. Dr. A. Enis Çetin (Supervisor)

I certify that I have read this thesis and that in my opinion it is fully adequate,

in scope and in quality, as a thesis for the degree of Master of Science.

Assoc. Prof. Dr. Orhan Arıkan

I certify that I have read this thesis and that in my opinion it is fully adequate,

in scope and in quality, as a thesis for the degree of Master of Science.

Assoc. Prof. Dr. Uğur Güdükbay
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ABSTRACT

CLASSIFICATION OF AGRICULTURAL KERNELS
USING IMPACT ACOUSTIC SIGNAL PROCESSING

İbrahim ONARAN

M.S. in Electrical and Electronics Engineering

Supervisor: Prof. Dr. A. Enis Çetin

February, 2006

The quality is the main factor that directly affects the price for many agricul-

tural produces. The quality depends on different properties of the produce. Most

important property is associated with health of consumers. Other properties

mostly depend on the type of concerned vegetable. For instance, emptiness is im-

portant for hazelnuts while openness is crucial for the pistachio nuts. Therefore,

the agricultural produces should be separated according to their quality to main-

tain the consumers health and increase the price of the produce in international

trades. Current approaches are mostly based on invasive chemical analysis of

some selected food items or sorting food items according to their color. Although

chemical analysis gives the most accurate results, it is impossible to analyze large

quantities of food items.

The impact sound signal processing can be used to classify these produces

according to their quality. These methods are inexpensive, noninvasive and most

of all they can be applied in real-time to process large amount of food. Sev-

eral signal processing methods for extracting impact sound features are proposed

to classify the produces according to their quality. These methods are includ-

ing time and frequency domain methods. Several time and frequency domain

methods including Weibull parameters, maximum points and variances in time

windows, DFT (Discrete Fourier Transform) coefficients around the maximum

spectral points etc. are used to extract the features from the impact sound. In

this study, we used hazelnut and wheat kernel impact sounds. The success rate

over 90% is achieved for all types produces.
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ÖZET

TARIMSAL ÜRÜNLERİN ÇARPMA SESİ
KULLANILARAK SINIFLANDIRILMASI

İbrahim ONARAN

Elektrik ve Elektronik Mühendisliği, Yüksek Lisans

Tez Yöneticisi: Prof. Dr. A. Enis Çetin

Şubat, 2006

Kalite, tarımsal ürünlerin fiyatını doğrudan etkileyen bir faktördür. Ürünlerin

kalitesi, bu ürünlerin çeşitli özelliklerine bağlıdır. Bu özelliklerin en önemlileri

tüketicinin sağlığıyla ilgili olanlardır. Diğer özellikler genelde ilgilenilen ürüne

bağlıdır. Örneğin, fındıklar için boş ya da dolu olması önemliyken, antep

fıstıkları için açık ya da kapalı olması daha çok önemlidir. Tarımsal ürünler,

hem tüketicinin sağlığının korunması hem de ulaslararası ticarette ürünün daha

fazla değerli olması için kalitesine göre ayrılması gerekmektedir. Şu anda uygu-

lanan yaklaşımlar, seçilen ürünlerin kabuğundan çıkarılarak kimyasal olarak

ayrıştırılmasıyla ya da renge duyarlı algılayıcılarla bu ürunleri kalitesine göre

sınıflandırmaya çalışmaktadır. Kimyasal ayrıştırma yöntemi çok güvenilir ol-

masına rağmen, büyük miktarlardaki ürünün işlenip sınıflandırılması mümkün

olmamaktadır. Buna ek olarak, bu tip yöntemler ürünün kabuğundan ayrılmasını

gerektiren çok pahalı yöntemlerdir.

Tarımsal ürünlere ait çarpma seslerinin işlenmesi, ürünün kalitesine göre

sınıflandırılmasında kullanılabilir. Bu yöntemler ucuz, ürünün kabuğu kırılmadan

uygulanılabilir ve gerçek zamanlı olup çok fazla miktarda gıdanın sınıflandırılması

için kullanılabilmektedir. Ürünlerin kalitesine göre sınıflandırılmasında kul-

lanılan öznitelikleri çıkarmak için çeşitli işaret işleme yöntemleri önerilmektedir.

Bu yöntemler zaman ve frekans bölgesine ait yöntemleri kapsamaktadır.

Bu yöntemlerden bazıları, Weibul parametreleri, işaretten alınan kısımların

değişintisi ve maksimum değerleri, frekans bölgesinin maksimum değerinin

etrafındaki DFT (Discrete Fourier Transform - Ayrık Fourier Dönüşümü) kat-

sayıları olarak sayılabilir. Bu çalışmamızda, fındık ve buğday tohumları kul-

lanılmıştır. Tüm ürünler için % 90 oranının üzerinde başarı elde edilmiştir.
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Sınıflandırma, Gıda kalitesi, Aflatoksin, Mel-Cepstrum, Ana Bileşen Analizi
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Chapter 1

Introduction

Produce quality is the most important issue in food industry, because it does not

only affect the price of the produce, it is also a crucial issue for the customer’s

health in most cases. Produces should be separated according to their quality to

get more profit from the produce and to protect the consumer’s health. People can

separate produces of good quality from the ones of poor quality manually for some

fruits those are large in size. However, a small size produce such as wheat kernel

can not be separated in an efficient sort rate and accuracy manually. There are

several totally mechanical systems which can separate the produces sufficiently,

but the rate of classification is not excellent. An example of those machines is

illustrated in Figure 1.1 for pistachio sorting. The problem of poor accuracy of

classification can be solved by constructing more advanced sorting machines that

use some signal processing techniques to extract the features of the produce from

its impact sound and classify them according to these extracted features. Impact

acoustic signal processing can be used for some produces that can emit sound

when they hit to a metal surface. There were studies in the USA about pistachio

nuts and these studies will be introduced. In this thesis, hazelnuts and wheat

kernels are studied, because of their importance for Turkey.

Open pistachio nuts are more valuable than the closed ones. Closed pistachio

kernels can be cracked by mechanical machines; however , this can hurt the open

pistachio nuts, so the quality of the pistachio nuts decreases. For this reason it

1



CHAPTER 1. INTRODUCTION 2

Figure 1.1: Schematic of a typical mechanical system for separating closed-shell
from open-shell pistachio nuts. Courtesy of T. Pearson [1].

is critical to separate the pistachio nuts according to their openness. One of the

mechanical systems is illustrated in Figure 1.1, which separates open pistachio

nuts from the closed ones by picking the open pistachios up by a pin. However,

this type of system has a large classification error and there are many open-shell

pistachio nuts in closed-shell nuts.

The main quality measure for the hazelnut is the ratio of the kernel weight to

shell weight. Underdeveloped hazelnuts and hazelnuts containing underdeveloped

kernels negatively affect this ratio. If the ratio of kernel weight to gross weight

is less than 0.5 then some buyers reject the produce. Sometimes, a physiological

disorder such as plant stress from dehydration or lack of nutrients causes a hazel-

nut shell to develop without a kernel. In addition, a physical disorder such as

insect damage can stunt the maturation process and prevent a kernel from being

fully developed at harvest time. A nut with underdeveloped kernel appears like
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(a) (b)

Figure 1.2: The picture of underdeveloped (a) and full (b) hazelnuts. A nut with
underdeveloped kernel appears like a normal hazelnut from outside.

a normal hazelnut from outside as seen in Figure 1.2. Currently, raw hazelnuts

are processed by an “airleg” which is a pneumatic device to separate underde-

veloped hazelnuts from fully developed ones. However, these devices have high

classification error rates. There remains a need for more advanced systems to

improve upon the segregation of underdeveloped and full hazelnuts. In addition,

underdeveloped hazelnuts and hazelnuts containing underdeveloped kernels may

also contain the mold, Asperguillus flavus, which produces aflatoxin, a cancer

causing material [2]. Therefore, a more accurate classification of hazelnuts will

enhance food safety.

The kernel damage is one of the biggest reasons that degrade the quality of

flour. Such damage may occur in the form of fungal damage, and insect damage.

The fungi type can infect kernels before and after harvest. The most important

of these is Fusarium graminearum, which creates “scab” damage and may lead to

toxins known to cause cancer [3]. On the other hand, internal insect infestation

degrades the quality and value of wheat and is one of the most difficult defects to

detect. The kernels become infested when an adult female insect chews a small

hole into the kernel, about 0.05 mm in diameter, deposits an egg, and then seals



CHAPTER 1. INTRODUCTION 4

the egg with a mixture of mucus and the wheat that was chewed out. In the pupae

stage, the egg plug is the same color as the wheat surface so it is nearly impossible

to detect by external examination. When the egg hatches, the insect larvae

develop and consume tunnels inside the wheat kernel until it reaches maturity.

Finally, the insect exits the kernel by chewing an exit tunnel,“Insect Damaged

Kernel” (IDK). Infestation causes grain loss by consumption, contaminates the

grain with excrement and fragments, causes nutritional losses, and degrades end-

use quality of flour [4]. Levels of insect infestation are a major factor in the

grading of wheat quality. Therefore their percentage in the production/market is

limited by Food and Drug Administration(FDA) and United States Department

of Agriculture (USDA) standards [5].
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Kernel Processing and Aflatoxin

2.1 Produce Processing Techniques

2.1.1 Pistachio Processing

California pistachios are harvested in a period of two to three weeks in September.

They can be harvested when hulls of pistachios are ready to be separated from the

nut. Early harvest causes lots of underdeveloped pistachio nuts and late harvest

causes more nuts with toxin materials. Pistachios are collected by shaking the

tree and cause them to drop onto a collector. These nuts are carried to larger

trailer bins to be processed in the pistachio plant. Nuts are carried to these larger

bins in 24 hours after harvest. Pistachios and unwanted materials such as leaves

are separated and pistachios are hulled. After these processes, pistachios are put

into a water tank. The unhulled pistachios, most of the closed pistachios and hull

material floats while open shell pistachios sinks. The nuts are dried after this

process and put into a dry storage to be processed in the plant.

After the harvest is ended, these pistachios in storages are sorted according

to their size and color. The hull material can cause pistachio nuts to change the

color of their shells. These pistachios are not appropriate to be sold directly to

5



CHAPTER 2. KERNEL PROCESSING AND AFLATOXIN 6

the consumers. They can be used in processed produces (e.g., cake, ice cream).

They are sorted by an electronic monochrome color sorter machine by comparing

the nut with a background which has the same color as nut. There are more then

one type of pistachio trees, but, Pistachio vera is the only one of these types that

has sufficiently big fruits. Pistachio vera is also the only pistachio tree that has

open shells. Pistachio trees do not produces the same amount of fruits every year.

Actually they produce more fruits one year and less for next year. The pistachio

tree in California is developed in 1929 from the Iranian and Turkish seeds by the

US. Department of Agriculture. This US pistachio trees have large fruits and

high capacity.

2.1.2 Hazelnut Processing

Hazelnut is widely consumed in all over the world. Turkey produces 75% of the

world hazelnut production and Turkey is the largest hazelnut (85% worldwide)

exporter too. Turkey exports 80% of its hazelnut production and 20% is consumed

in national markets. The 80% of hazelnuts is used for chocolate industry, 15%

of hazelnut is used for making cake, biscuit and candy, and 5% of hazelnut is

consumed directly [6]. Hazelnut is a very nutritive produce and has a special

taste. Hazelnut contains vitamin E, vitamin B6, calcium, potassium and iron.

There are nearly 2 million people those are involving in the hazelnut industry in

Turkey. Turkey gains approximately 1 billion US dollars per year from hazelnut

exportation.

There are two types of hazelnuts. The first type is Giresun Type hazelnut,

which is generally grown in Giresun region of Turkey. Giresun Type hazelnuts

are well rounded and the highest quality hazelnut in the world. Other type of

hazelnut is the Levant Type which is grown in the northern regions other than

Giresun region. Levant Type hazelnuts have less fat than Giresun Type, however

they are more delicious and they are hazelnuts of better quality than any other

countries.

In Turkey, hazelnuts are harvested in August. The exact harvest time depends
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on the place of orchard. There are two types of harvest method. First one is to

drop the nuts down to the ground by shaking the tree. Second type is to directly

collect the nuts from tree by hand. First method is better however it is not

applicable for all hazelnut trees. The hazelnuts are spread onto the ground to

change their hull color. After this process hazelnut fruit is separated from its

hulls by a mechanical machine and again they spread onto the ground to dry

again. The drying takes from 10 to 15 days. The dried hazelnuts are separated

by another mechanical machine into underdeveloped and full hazelnuts. The

hazelnut experts examine these separated hazelnuts and decide to buy or reject

the hazelnut according to underdeveloped hazelnut to the full hazelnut ratio.

2.1.3 Wheat Processing

Wheat plant can be grown in many climates. Wheat requires a dry and hot

weather; otherwise its color can not be change to golden. For instance, corn is

used instead of wheat in northern Turkey . In Turkey, 20 million tones of wheat

kernel are produced.

The harvest time of wheat is changing according the climate. The harvest

starts in southern regions in early June, it continues in many regions in July and

finally it ends in eastern Turkey which has a high altitude in August. Wheat

is harvested by combine. It is very important to adjust the combine according

to the operator’s manual, because wheat yield depends on this adjustment. If

it is not adjusted, some of the wheat kernels can drop to the wheat field. After

harvesting the wheat it should be removed from the field as soon as possible.

Wheat is stored in a cool and dry bin to decrease the insect activity, to prevent

growth of storage mold and moisture.
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2.2 Aflatoxin

Aflatoxin is a toxic compound produced by a mold fungus, Aspergillus flavus,

in agricultural crops, especially peanuts, corn, rice, soybeans, pistachio nuts,

hazelnuts, and in animal feeds that have not been carefully stored [7]. Aflatoxin

can cause liver damage in humans, reduce the growth rate. Aflatoxin has caused

deaths in farm animals that consumed heavily infected feed [8]. Aflatoxin caused

hepatitis and death in more than 100 people who consumed severely infected

corn [9]; but, it is unusual to find food infected with aflatoxin to the degree that

it causes immediate health problems. Aflatoxin is also a known cancer-causing

substance that has been traced to increased chances of liver cancer after repeated

consumption of low levels (above 20 ppb.) of infected food [9]. Dichter et al.

[10] estimated that due to aflatoxin exposure in the United States, 58 to 158

people per year are inflicted with liver cancer. However, Yeh [11] reported that,

in southeast China where food regularly contains high aflatoxin concentrations,

91% of the liver cancer deaths in this area were in people who also tested positive

for hepatitis B1. Thus, people likely to be inflicted with liver cancer due to

aflatoxin may also have had hepatitis B1.

Agricultural kernels are sensitive to storage conditions. In a short time period

they can be contaminated with aflatoxin if the storage conditions are suitable for

aflatoxin contamination. This infection may cause quality decrease in agricultural

kernels. For instance, in hazelnut kernels, the contamination causes the kernels

to lost weight and results empty kernels. These nuts can also be classified as

underdeveloped hazelnuts, since underdeveloped kernels are also empty. In this

way, people can be protected from aflatoxin caused diseases by our proposed

system.
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Methods, Materials and Results

The main problem for developing a classification algorithm is the feature extrac-

tion. People generally do not sure which feature of a given signal is appropriate

for the signal. We have developed several feature extraction methods by process-

ing the impact sound signal of hazelnut kernels and wheat kernels to determine

which features are more important for a particular kernel. We will introduce the

previous work of T. Pearson et. al. [12] and then present our work [13] about

hazelnut kernels and wheat kernels.

3.1 Previous Work

In this work, Pearson et. al. [12] construct a prototype to classify the impact

sound of California pistachio nuts. The prototype of the system, methods and

results are presented in the following sections.

3.1.1 Pistachio Setup

The system was designed to feed pistachio nuts to an impact plate, record the

sound from the impact of pistachio on this impact surface, process the data

9
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according to the proposed feature extraction algorithms and classify the pista-

chios into either a closed shell or open shell pistachio as illustrated in Figure 3.1.

Actually, the real-time system with a DSP processor is constructed at Bilkent

University as seen in Figure 3.2.

Figure 3.1: Schematic of pistachio sorter based on acoustic emissions. Courtesy
of T. Pearson [1].

The slide was constructed of polished stainless steel angle iron to form a

declining to an impact plate. Impact plate is made of 50.8 × 50.8 mm polished

stainless steel bar. The mass of the plate should be large enough to eliminate

vibrations when the pistachio nut impacts.

A highly directional “shotgun” microphone was used to minimize the sur-

rounding sound effects. Output of microphone is connected to electronic card

that can perform several arithmetic operations in real time. This card has a

sampling frequency of 192kHz. When the pistachio nut drops onto the plate, the

photo detector sends a signal to the electronic card to start the recording. If the

dropped pistachio nut is classified as an open shell nut then an air valve is used to



CHAPTER 3. METHODS, MATERIALS AND RESULTS 11

Figure 3.2: Picture of pistachio sorter based on acoustic emissions at Bilkent
University.

reject this open shell pistachio nut. In this way open and closed shell pistachios

are detected and separated.

3.1.2 Melcepstrum

The duration of the impact sound from pistachio nuts is much shorter than a typ-

ical word and some phonemes; therefore, only one short-time window of duration

1.4 ms was used and only one set of mel-cepstrum coefficients was computed for

each nut. Let x be a vector containing N sound samples; mel-cepstrum coeffi-

cients are obtained by the following computations:

• Discrete Fourier transform (DFT) of the data vector x is computed using

the FFT algorithm and a Hanning window.
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• The DFT (x̂) is divided into M non-uniform sub-bands, and the energy

(i.e., i = 1, 2, . . . , M) of each sub-band is estimated. The energy of each

sub-band is defined as ei =
q∑

l=p

| x̂ (l) |2, where p and q are the indices of

sub-band edges in the DFT domain. The sub-bands are distributed across

the frequency domain according to a “mel-scale” which is linear at low fre-

quencies and logarithmic thereafter. This mimics the frequency resolution

of the human ear. Below 10 kHz, the DFT is divided linearly into 12 bands.

At higher frequency bands, covering 10 to 44 kHz, the sub-bands are divided

in a logarithmic manner into 12 sections. In this case, the Fourier domain is

divided linearly into 12 bands below 10 kHz, and the frequency range cover-

ing higher frequencies from 10 to 44 kHz is divided in a logarithmic manner

into 12 sections. Therefore, more emphasis is given to low-frequency infor-

mation than to high-frequency data. In other words, the DFT coefficients

are grouped into M = 24 sub-bands in a non-uniform manner.

• The mel-cepstrum vector c = [c1, c2, . . . , cK ] is computed from the discrete

cosine transform (DCT) [14]:

ck =
M∑
i=1

log (ei) cos [k (i− 0.5) π/M ] , k = 1, 2, ..., K (3.1)

where the size of the mel-cepstrum vector (K) is much smaller than data size N .

The mel-cepstrum sequence is a decaying sequence for sound signals. A value

of 20 was chosen for K, as coefficients with an index greater than K = 20 are

usually negligible. The DCT has the effect of compressing the log-spectrum,

thereby providing a small set of coefficients representing most of the variance of

the original data set. Another advantage of the DCT is that it is close to the

optimum Karhunen-Loeve transform [15] of highly correlated random processes;

thus, it approximately de-correlates the mel-scale logarithmic sub-band energies.

The basis of the DCT resembles the basis of the Karhunen-Loeve transform,

which is obtained by eigen-analysis of the autocorrelation matrix of the data. De-

correlated coefficients are more suitable to modeling than correlated coefficients.

In automatic speech and speaker recognition, it is observed that mel-cepstrum
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coefficients (ck) give better recognition performance than sub-band energies (ei)

or logarithmic sub-band energies, log(ei) [16].

(a)

(b)

Figure 3.3: Mel-cepstral coefficients of a pistachio nut with (a) open shell and (b)
closed shell.

3.1.3 Principle Component Analysis (PCA)

Let C be the correlation or covariance matrix:

C = E[(x− xm)(x− xm)T] (3.2)

where x represents the random sound vector, and xm is the mean of x. The

matrix C is an N by N matrix, where N is the size of data vector x. The

eigenvectors of this matrix represent the projection axes, or eigen-sounds of the
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data, and the eigenvalues represent the projection variance of the corresponding

eigen-sound. The eigenvectors correspond to large eigenvalues of C are usually

chosen as projection axes, as these explain most of the variance of the original

data set before the transformation. The correlation matrix is estimated from the

training set of L sound vectors (x1, x2, ..., xL) as follows:

Let X = [(x1 − xm)(x2 − xm) ... (xL − xm)] be the matrix of the training

vectors obtained by concatenating the sound vectors. The mean vector (xm) is

the average vector of the data set. An estimate of C is given by Ce = XXT. The

rank of matrix Ce is less than or equal to L. Usually, the training vectors are

linearly independent of each other; therefore, Ce has L non-zero eigenvalues:

XXTuk = λkuk , k = 1, 2, . . . , L (3.3)

where λk and uk are the eigenvalues and eigenvectors of Ce, respectively. The

largest L′ out of L eigenvalues are usually selected as a representative set of data,

and the corresponding eigenvectors are used in the PCA analysis-based recog-

nition systems. Projections of a sound vector (x) onto the first L1 eigenvectors

define a feature vector representing the signal x:

ωx = [ωx,1ωx,2... ωx,L1] (3.4)

where ωx,k = uk · (x− xm)

In some practical situations, Ce is too large for eigenvalue and eigenvector

estimation. This was the case with the pistachio data set used in this study, as

x contains N = 350 sound samples. This difficulty can be overcome by noting

that the eigensystem of XTX has the same non-zero eigenvalues as Ce, since

XXTXuk = λkXuk, where λk and uk are the eigenvalues and eigenvectors of Ce,

respectively. As a result, the reduced eigensystem of XTX ∈ RLxL can be solved

instead of Ce, as the size of the training set (L) is usually less than the number

of samples (N) in each data vector (x). The new eigenvalues are the same as

eigenvalues of the original system, but eigenvectors are wk = Xuk.
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3.1.4 Minimum Distance classifier

Minimum distance classifier uses a training set to estimate means, which are used

to compute Euclidean distances from an unknown sample to the centroid of each

class. The unknown sample is then classified into the class associated with the

smallest Euclidean distance to the group centroid. The line where the Euclidean

distance from each class is equal forms the decision boundary between the classes.

This method assumes spherical Gaussian distributions of the data, and works well

when the data is fairly well clustered.

3.1.5 Pistachio Nut Results

Pistachio nuts are classified using Principle Component Analysis (PCA) of Mel-

cepstrum coefficients and PCA of the sound amplitudes. The feature vectors are

fed into a minimum distance classifier. We also examine the effects of training

set size on the results.

In Table 3.1, classification results based on PCA of sound amplitudes are

presented. The first column lists the number of training sounds for each class.

The second and third columns list the percentage of correctly classified closed-

and open-shell nuts in the validation set containing 280 sounds, except for the

bottom row in which the validation set size was 270 because 30 nuts were used

for training.

Only two out of 280 closed-shell nuts were misclassified in all cases, corre-

sponding to 99.3% recognition accuracy for closed-shell nuts. The number of

misclassified open-shell nuts decreased as the number of training sounds increased,

up to the case in which 20 sound vectors were used in training each representative

vector. Beyond this level, improvement in the recognition performance was not

observed.

In Table 3.2, classification results based on PCA of the mel-cepstrum coeffi-

cients are presented. The first column lists the number of nuts used for training
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Table 3.1: Classification results for PCA of mel-cepstrum coefficients. The second
and third columns present the percent of correctly classified closed- and open-shell
nuts in a validation set containing 280 sounds.

No. of Training Nuts Closed Open
5 99.3 87.9
10 99.3 92.1
15 99.3 91.4
18 99.3 92.1
20 99.3 92.5

30[a] 99.3 92.5
[a] The validation set consisted of 270 nuts.

for each class. The second and third columns list the percentage of correctly

classified closed- and open-shell nuts in the validation set containing 280 sounds.

Open-shell nuts were correctly classified in all cases.

Table 3.2: Classification results for PCA of mel-cepstrum coefficients. The second
and third columns present the percent of correctly classified closed- and open-shell
nuts in a validation set containing 280 sounds.

No. of Training Nuts Closed Open
5 76.7 100
10 82.9 100
15 91.8 100
20 93.2 100

The method based on PCA features of sound amplitudes classified closed-

shell nuts more accurately than open-shell nuts. On the other hand, the method

based on mel-cepstral features classified open-shell nuts more accurately than

closed-shell nuts, as shown in Table 3.2. The most accurate recognition results

were obtained when PCA of sound amplitudes was combined with mel-cepstral

features, as summarized in Table 3.3.

The number of misclassified open-shell nuts dropped to four, which corre-

sponds to 98.6% recognition accuracy in open-shell nuts when the training set

comprised 20 closed-shell nuts and 20 open-shell nuts (bottom row of Table 3.3).
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Table 3.3: Classification results for both PCA of sound amplitudes and mel-
cepstrum coefficients. The second and third columns present the percent of cor-
rectly classified closed- and open-shell nuts in a validation set containing 280
sounds.

No. of Training Nuts Closed Open
5 99.6 96.8
10 99.3 98.2
15 99.3 98.2
20 99.3 98.6

Recognition accuracy of the closed-shell nuts remained the same (99.3%) after

linear combination.

3.2 Hazelnut Work

3.2.1 Setup

The hazelnut setup is similar to pistachio nut setup. They have impact plates

which are fed by chute or slide. Some of the setup components such as micro-

phones and impact plates are different.

In order to inspect nuts at high throughput rates, a prototype system was

set up to drop nuts onto a steel plate and process the acoustic signal generated

when nuts hit the plate. It is possible to process and reject 20-40 nuts per second

by the proposed system. Underdeveloped nuts could be removed by activation

of an air valve; however, this was not included for the hazelnut case as the main

objective was to ascertain the feasibility of detecting underdeveloped hazelnuts

by this method.

An experimental apparatus was fabricated to slide hazelnuts down a chute and

project them onto an impact plate, then collecting the acoustic emissions from the

impact. The impact plate was a polished block of stainless steel with dimensions
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(a) (b)

Figure 3.4: Typical impact sound signals from an (a) underdeveloped hazelnut
and (b) a full hazelnut. Note that the extremum of a full hazelnut is usually
higher than an underdeveloped hazelnut.

75× 150 mm and depth of 20 mm. The mass of the impact plate is much larger

than the hazelnuts in order to minimize vibrations from the plate interfering

with acoustic emissions from hazelnuts. A microphone, which is sensitive to

frequencies up to 20 kHz, was used to capture impact sounds. The sound card

in a typical personal computer was used to digitize and store the microphone

signals for analysis. The sampling frequency of the impact sound was 48 kHz.

A sample sound signal from underdeveloped and full hazelnuts is illustrated in

Figure 3.4 and sample sounds from 200 full and 200 underdeveloped hazelnuts

are illustrated in Figure 3.5.

3.2.2 Weibull Curve Fitting and Weibull Function Param-

eters

The shape of the time domain signal of underdeveloped and full hazelnuts is

different. The typical signals from underdeveloped and full hazelnuts can be seen
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(a)

Figure 3.5: Underdeveloped (top 200 rows) and full (bottom 200 rows) hazelnut
records. Each row represents a record.

in Figure 3.4. This feature extraction method is also used to separate the healthy

wheat kernels from the insect damaged wheat kernels.

The extremum of the signals is quite variable but, in general, the extremum

of full hazelnuts is higher than the underdeveloped ones. This is also valid for

wheat kernel sounds. To characterize this type of signal response, the signal was

modeled after transforming it in the following steps outlined below:

i. Rectify the signal by taking the absolute value at all points

ii. Non-linearly filter the signal by replacing the center data point with the

maximum value in a seven point window
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(a) (b)

Figure 3.6: Typical (a) underdeveloped and (b) full hazelnut impact sounds with
the rectified signals and Weibull functions which are fit to rectified signals.

iii. Estimate the four parameters of the Weibull function given by Equation 3.5,

which has a shape similar to the envelope of the processed time domain signal.

Y (t) =

{
cb
a

[
t−t0

a

]b−1
e−[ t−t0

a ]
b

, for t > t0

0 ,otherwise
(3.5)

Figures 3.6 and 3.7 show how Weibull function curve fits to the rectified

hazelnut and wheat impact sounds.

3.2.3 Exponential Function Fitting and Exponential

Function Parameters

The Weibull curve fitting is quite complex for a real-time application. A similar

but more simple functions can be used to model the impact sound in time do-

main. One of those functions is the exponential function with two parameters.

We used the same procedures as explained in Section 3.2.2 to characterize the
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(a) (b)

Figure 3.7: Typical (a) insect damaged kernel (IDK) and (b) good wheat impact
sounds with the rectified signals and Weibull functions which are fit to rectified
signals.

type of signal response. The only difference is we fit an exponential function as

shown in Equation 3.6 to the rectified signal instead of Weibull function. The

computation of exponential curve fitting takes less time than the computation of

Weibull function.

Y (t) = ae−
t
b (3.6)

Figures 3.8 and 3.9 show how Exponential function curve fits to the rectified

hazelnut and wheat impact sounds.
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(a) (b)

Figure 3.8: Typical (a) underdeveloped and (b) full hazelnut impact sounds with
the rectified signals and Exponential functions which are fit to rectified signals.

(a) (b)

Figure 3.9: Typical (a) Insect Damaged Kernel (IDK) and (b) Good wheat kernel
impact sounds with the rectified signals and Exponential functions which are fit
to rectified signals.
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3.2.4 Short Time Variances in Windows of Data

In addition to Weibull function, based envelope modeling of impact sounds, vari-

ances of these signals are also computed in short time windows. Weibull function

captures the shape of the recorded signal globally and the short-time variance

information models the local time domain variations in the signal. The short

time windows were 50 points in duration and incremented in steps of 30 points

so that each window overlapped by 20 points. The first window began 40 points

in front of the extremum. Eight short time windows were computed to cover the

entire duration of all impact signals. After all variances were computed, they

were normalized by the sum of all eight variances as follows

σni
2 =

σi
2

8∑
i=1

σi
2

(3.7)

(a) (b)

Figure 3.10: (a) Variances of short time windows of time domain signals in Fig-
ure 3.4 and (b) average variances from short time windows of time domain signals.

The parameters σni
2 and σi

2 are the normalized and computed variances from

window i with i = 1 being the first window and i = 8 being the last. This method
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captures the increased duration of the signals from underdeveloped hazelnuts. As

it is seen from Figure 3.10, the average normalized variances of the last three

windows are greater than that from full hazelnuts.

3.2.5 Line Spectral Frequencies (LSFs)

Linear predictive modeling techniques are widely used in various speech coding,

synthesis and recognition applications [16]. Linear Minimum Mean Square Error

(LMMSE) prediction based data analysis is equivalent to Auto-Regressive (AR)

modeling of the data. Line Spectral Frequency (LSF) representation of the Linear

Prediction (LP) filter was introduced by [17] and used in common cell phone

communication systems including the GSM and MELP speech coding systems,

[16]. In LMMSE analysis, it is assumed that the sound data can be modeled

using an m − th order linear predictor, i.e. xp [n] = a1x [n− 1] + a2x [n− 2] +

...amx [n−m] where x [n− k] is the sound sample at time instant (n− k) Ts is

the estimated sound sample at time instant nTs (Ts is the sampling period). The

error signal at index n is e [n] = x [n] − xp [n]. The filter coefficients ak are

determined by minimizing the mean-square error σ2
e = E

[
(x [n]− xp [n])2] [18].

The following set of linear equations is obtained by taking the partial derivative

of E
[
(x [n]− xp [n])2] with respect to the filter coefficients and setting the results

to zero

r [0] a1 + r [1] a2 + r [2] a3 + ... + r [m− 1] am = r [1]

r [1] a1 + r [0] a2 + r [1] a3 + ... + r [m− 2] am = r [2]

r [2] a1 + r [1] a2 + r [0] a3 + ... + r [m− 3] am = r [3]

: : : : + : :

r [m− 1] a1 + r [m− 2] a2 + r [m− 3] a3 + ... + r [0] am = r [m]

where r [k] represents the autocorrelation sequence of the zero mean sound data

r [k] = E [x [n] x [n− k]]. In practice, the autocorrelation sequence is directly

estimated from the data, i.e. r̂ [k] = 1
N

N−1−|k|∑
n=0

x∗ [n] x [n + k] where N is the

number of sound samples. In some cases, the above sum is normalized by (N−k)

instead of N leading to an unbiased estimate of the autocorrelation sequence. Line

spectral coefficients are computed from the linear prediction filter coefficients.The
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so-called m−th order inverse polynomial Am (z) is defined as Am (z) = 1+a1z
−1+

...+amz−m. The polynomial Am (z) is used not only in LSF computation but also

in spectrum estimation. Notice that σ2
e

Am(ejω)
is called the autoregressive spectrum

estimate of the sound data. In speech processing m = 10 is selected for speech

coding and recognition applications at a sampling frequency, fs, of 8000 Hz.

(a) (b)

Figure 3.11: Example frequency spectra magnitudes for an underdeveloped (a)
and a full hazelnut (b). Vertical lines correspond to phase angles of LSFs for each
nut.

In this thesis, LSFs are also used as feature parameters to represent im-

pact sounds. The LSF polynomials of order m + 1, Pm+1 (z) and Qm+1 (z)

are constructed by setting the (m + 1)-st reflection coefficient to 1 or −1. In

other words, the polynomials, Pm+1 (z) and Qm+1 (z) are defined as Pm+1 (z) =

Am (z) + z−(m+1)Am (z−1) and Qm+1 (z) = Am (z) − z−(m+1)Am (z−1). Zeros of

Pm+1 (z) and Qm+1 (z) are called the Line Spectral Frequencies (LSFs), and they

all lie on the unit circle in the complex z-domain. Zeros of Pm+1 (z) and Qm+1 (z)

uniquely characterize the LPC inverse filter Am(z), i.e., one can uniquely con-

struct the LP filter coefficients from the LSFs. Phase angles of the LSFs tend to

concentrate around spectrum peaks as shown in Figure 3.11. In these plots phase

angle range [0,π ] is mapped to range [0,24kHz] because the sampling frequency

was 48kHz. Due to this interesting property, LSFs represent the spectrum of the
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impact sound, and that is why they are selected as a set of sound features in this

study.

The LSF order m = 10 was chosen because best classification accuracy was

obtained when m = 10 as summarized in Tables 3.4 and 3.5. LSFs can be

computed very efficiently in real-time [17].

3.2.6 Extrema in Short Time Windows

The first 165 samples from 30th sample of the impact sound was divided into 11

no overlapping time domain windows and the extremum value of each window

was selected as a feature value. Extrema in short-time windows also captures the

envelope of the impact sound similar to the variances in short-time windows.

3.2.7 Frequency Domain Processing

A 256-point Discrete Fourier Transform (DFT) was computed from each signal

using a Hamming window. The 256-point window covers the impact sound of

hazelnuts starting at about 80 data points before the signal maximum slope,

which corresponds to the impact moment of the kernel. The magnitude of each

spectrum was computed and then low pass filtered using a 20-tap FIR filter

applied to remove jagged spikes in the spectra. The low pass filter has a cutoff

frequency of π
4

in the normalized DFT domain. As it is seen in Figure 3.11,

the frequency spectrum of underdeveloped nuts has a single major peak between

4 and 10 kHz. On the other hand, full hazelnuts generally have two peaks in

the same frequency range. In this example, peaks of the spectra of full hazelnuts

and underdeveloped nuts are clearly distinguishable; however there are significant

numbers of examples in which twin peaks of full hazelnuts are not clearly visible,

possibly due to noise. The frequency corresponding to the peak magnitude in the

frequency spectra was saved as a potential discriminating feature. In addition,

the 15 magnitude values before the peak and 15 points after the peak were saved

and normalized by the peak magnitude.
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3.2.8 Support Vector Machines

In a two-class problem, data on opposite sides of the centroids is given just as

much importance as data in-between centroids of the two classes. Sometimes

this data contributes to higher variance within a class and leads to erroneous

classifications when minimum distance classifier is used. In contrast, support

vector machines (SVM) Hearst [19], Schölkopf et al. [20] and Burges [21] seek to

define a boundary between classes that maximize the distance between training

set samples from different classes that happen to lie near each other. For example,

Figure 3.12 shows two hypothetical training sets that might be taken from a two

class training set. SVM seeks to define a boundary between two classes as a line

that intersects the minimum distance between the hulls (dotted line) between two

groups. Thus, classification by SVM is concerned only with data from each class

near the decision boundary, called support vectors, all other data is not relevant.

Algorithms have been developed to compute the boundary line as a polynomial,

sigmoid or radial basis function.

Support Vector Machine are used for isolated handwritten digit detec-

tion [22, 23, 24, 25], object recognition [26], face detection in images [27] etc. and

were used in this study to detect underdeveloped hazelnuts from fully developed

hazelnuts and healthy wheat kernels from insect damaged wheat kernels. SVMs

classifier increases the dimension of feature space by using a mapping function,

and linearly classifies the data in this dimensionally increased space. This effect

causes SVMs classifier to be nonlinear in feature space. The mapping function

maps a vector from a lower dimension to a higher or infinite dimension; how-

ever, a kernel function is used instead of the mapping function for training the

algorithm to ease computational load. Kernel functions are like vector multipli-

cation operations, but the effect of the kernel function is to multiply the vectors

in higher dimensions. Since the linear SVM algorithm only depends on the vec-

tor multiplication, there is no need to know the mapping function, if the kernel

function is given. In underdeveloped hazelnut detection, we used the radial base

function (RBF). In addition, other base functions did not improve the classifica-

tion accuracy for some examined cases. The SVM classification was performed
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Figure 3.12: Decision boundary determination by SVM using a linear kernel:
filled circles indicate feature vectors of the first class and underdeveloped circles
indicate feature vectors of the second class, respectively. Line (or hyperplane in
higher dimensions) separates the decision regions of the first and second classes.

using a software package called LIBSVM [28], which is a free SVM package. This

package scales the features between minus one and one. In addition, a two fold

cross validation is performed for non-randomly and randomly grouped data which

makes four different results for each experiment. The final results are the average

of these four experimental results. The LIBSVM package is written for many

programming languages. We used the C version of the package for this study.

3.2.9 Hazelnut Results

The classification results using each type of feature are given Tables 3.4 and 3.5.

The results using a combination of different feature types are given in Table 3.6.
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1. Weibull parameters : In this case Weibull parameters a, b, c, and t0 and R2 (the

coefficient of multiple determination for curve fitting) were used as features of

the hazelnut impact sound and a recognition accuracy of 95.2% is achieved in

Levant type hazelnuts.

2. Exponential function parameters : The parameters a and b were used as a

discriminating features of the hazelnut impact sound for this case. The recog-

nition accuracy of 96.2% is achieved. This function has more accurate results

than the Weibull parameters, moreover it is more simple and can be computed

faster.

3. Eight short-time variances : Comparing these features with the other features,

short-time window variances had the lowest classification performance, 89.8%

in Levant type hazelnuts.

4. Maxima in time domain: These features had the highest classification accu-

racy, 95.9% in Levant type hazelnuts.

5. Spectrum magnitude features : This feature vector alone leads to 93.8% recog-

nition accuracy. Spectrum magnitude features classified underdeveloped hazel-

nuts more accurately than full hazelnuts in Levant type hazelnuts.

6. 10th order Line Spectral Frequencies (LSFs): Overall recognition rate of 93.2%

was achieved when m=10th order LSFs were used in Levant-type hazelnuts.

Table 3.5 summarizes classification results for various order LSFs.

Table 3.4: Classification accuracies (%) obtained by different feature vectors for
Levant type hazelnuts.

Features Underdeveloped Full Overall
Weibull 95.9 94.7 95.2
Exponential 96.4 96.0 96.2
Short-Time Variances 87.5 91.8 89.8
Short-Time Maxima 95.5 96.2 95.9
Spectrum Magnitudes 94.6 93.1 93.8
m = 10th order LSFs 93.8 92.7 93.2
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Table 3.5: Classification accuracies (%) obtained by various orders of LSFs for
Levant type hazelnuts.

Order (m) Underdeveloped Full Overall
8 94.0 88.9 91.3
9 95.7 88.7 92.0
10 93.8 92.7 93.2
11 94.0 89.1 91.4
12 92.2 91.8 92.0

Table 3.6: Classification results obtained by composite feature vector contain-
ing Weibull parameters and short-time variances for Levant and Giresun Type
Hazelnuts.

Levant Type
Underdeveloped Full Overall

Weibull and Extrema 96.1 97.7 97.0
Exponential and Extrema 96.1 97.7 97.0
All Features 96.8 96.8 96.8
Extrema and LSFs 96.8 96 96.4

Giresun Type
Underdeveloped Full Overall

Variances, Extrema and LSFs 90.6 96.8 94.4
Weibull and LSFs 87.5 98.1 94.0
Extrema and LSFs 86.5 98.1 93.7

When all feature parameters were combined into a single vector and an SVM

with radial basis function kernel was used, an overall recognition accuracy of

96.8% was achieved, as shown in Table 3.6. Similar results were obtained with

SVMs using sigmoid and polynomial kernel functions. When Weibull parame-

ters and maxima parameters were combined into a feature vector, a recognition

accuracy of 97% was achieved. The feature vector comprising LSFs and time-

domain maxima information produced 96.8% classification accuracy for Levant-

type hazelnut. In Giresun Type hazelnuts, recognition rates were slightly lower;

this might be due to the smaller size of the data set. It may not be possible to

capture all the information about a classification problem with a small training

set. In this case, LSFs, short time variance, and maxima information produced
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94.4% classification accuracy. In addition, feature vectors comprising Weibull

parameters and LSFs had a classification accuracy of 94% for Giresun Type nuts.

Computation of Weibull parameters is an iterative process and can occasionally

take over 20ms to perform. More computationally efficient algorithms exist for

the other feature parameters, which can all be computed in real-time to realize

a system capable of processing more than 40 nuts/sec. Therefore, a feature vec-

tor combining LSFs and time-domain maxima appears best for classification of

underdeveloped and full hazelnuts in real-time applications. This vector carries

both time and frequency information of impact sounds.

3.3 Wheat Work

3.3.1 Wheat Setup

A schematic of the experimental apparatus for dropping wheat kernels onto the

impact plate, then collecting the acoustic emissions from the impact is shown in

Figure 3.1 which is same as the pistachio setup. The impact plate was a polished

block of stainless steel approximately 7.5× 5.0× 10 cm. The mass of the impact

plate is much larger than the wheat kernels in order to minimize vibrations from

the plate interfering with acoustic emissions from kernels. A microphone, which

is sensitive to frequencies up to 100 kHz, is used in order to sense ultrasonic

acoustic emissions from the wheat kernels. Microphone signal is digitized at a

sampling frequency of 192 kHz with 16 bit resolution. The data acquisition was

triggered using an optical sensor. After acquisition, the signal was first high pass

filtered using a single pole recursive filter with a cutoff frequency of 9,600 kHz to

eliminate 60 Hz noise, any DC offset.

3.3.2 Wheat Kernel Results

There are two types of kernels in our experiments. The first one is the healthy

kernels without insect infestation (GOOD) and the second type of wheat kernel
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is the insect damaged kernels (IDK).

The Weibull curve fit parameters a, b, c, t0 and R2, all eight normalized

variances from the short time windows, the frequency corresponding to the peak

DFT magnitude, 15 normalized DFT magnitudes before and after the peak DFT

magnitude, 20th order LSFs, and 11 extrema values were combined and used

as potential discriminating features. Besides, each type of features are used to

classify good and IDK kernels. The results are tabulated in Table 3.7

Table 3.7: Classification accuracies (%) obtained by different feature vectors for
wheat kernels.

Features IDK GOOD Overall
Weibull 86.3 94.0 91.0
Short-Time Variances 86.1 94.0 91.0
Short-Time Maxima 81.9 90.8 87.3
Spectrum Magnitudes 83.1 96.0 91.0
10th order LSFs 73.8 92.8 85.4
All Features 84.4 97.2 92.2
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Conclusion

A method, based on voice-recognition technology, was developed for detecting

several types of agricultural produces that may emit sound when they his a steel

plate. We deal with three types of agricultural produces, namely pistachio nuts,

hazelnuts and wheat kernels.

The methods in this thesis appear to be as accurate as the method developed

by Pearson [1]. Most importantly, they are low-cost sound based methods and

they can be implemented in real-time.

T. C. Pearson et. al. [12] used impact sounds of pistachio nuts in mel-cepstral

coefficients and PCA based classification system. The computational cost of

training phase of this system is higher than the recognition phase. In practice

training can be done off-line. Because the eigenvalues and eigenvectors of a large

dimension matrix are computed. On the other hand, the testing phase is simply

a matrix and a vector multiplication, so it can be implemented in real-time.

Furthermore a simple linear algebraic trick, as explained in Section 3.1.3, can be

used to cope with this computation difficulty.

Impact sounds of hazelnuts were analyzed and feature parameters describing

time and frequency domain characteristics of the acoustic emission signals were

extracted and combined into a feature vector. The feature vector obtained by

33
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combining LSFs and time-domain maxima, having both time and frequency in-

formation of the impact sound, enabled classification of underdeveloped and full

hazelnuts with over 97% accuracy by using an SVM-based classifier for Levant-

type hazelnuts. The prototype classification system uses computationally efficient

features and methods, thus requiring only modest computing hardware. The pro-

posed system has the capacity to process 20-40 nuts per second in real-time.

Hazelnut methods are also used to extract features from the wheat kernel

impact sounds. The recognition accuracy with over 92% is obtained with an SVM

classifier. These sounds have interesting waveforms. Some of the recordings have

virtually no signal or the amplitude of impact sound signal is too small compared

to the other records. However, we did not exclude these sounds and this situation

may affect the recognition accuracy for wheat kernels.

As a result, a low-cost, real-time sorting algorithms are proposed in this thesis

for some agricultural kernels. We introduced methods used by T. Pearson et. al.

[12] for pistachio nuts and proposed new methods for hazelnuts and wheat kernels.

Our proposed methods have similar classification accuracies as the pistachio nut

methods. These methods can be used to pick up the poor quality produce from

a mixture of good and poor quality produces for increasing the average produce

quality. In this way people will be healthier and lots of good quality produce will

be saved from getting into garbage.
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