
SLEEP SCHEDULING FOR ENERGY

CONSERVATION IN WIRELESS SENSOR

NETWORKS WITH PARTIAL COVERAGE

a thesis

submitted to the department of electrical and

electronics engineering

and the institute of engineering and sciences

of bilkent university

in partial fulfillment of the requirements

for the degree of

master of science

By

Tarık Yardibi

July 2006

I certify that I have read this thesis and that in my opinion it is fully adequate,

in scope and in quality, as a thesis for the degree of Master of Science.

Assoc. Prof. Dr. Ezhan Karaşan (Supervisor)

I certify that I have read this thesis and that in my opinion it is fully adequate,

in scope and in quality, as a thesis for the degree of Master of Science.

Assoc. Prof. Dr. Nail Akar

I certify that I have read this thesis and that in my opinion it is fully adequate,

in scope and in quality, as a thesis for the degree of Master of Science.

Asst. Prof. Dr. İbrahim Körpeoğlu

Approved for the Institute of Engineering and Sciences:

Prof. Dr. Mehmet Baray
Director of Institute of Engineering and Sciences

ii

ABSTRACT

SLEEP SCHEDULING FOR ENERGY

CONSERVATION IN WIRELESS SENSOR

NETWORKS WITH PARTIAL COVERAGE

Tarık Yardibi

M.S. in Electrical and Electronics Engineering

Supervisor: Assoc. Prof. Dr. Ezhan Karaşan

July 2006

Wireless sensor networks, which consist of many sensor devices communicating

with each other in order to sense the environment, is an emerging field in the

area of wireless networking. The primary objective in these wireless networks

is the efficiency of energy consumption. Since these networks consist of a large

number of sensors, allowing some of the nodes to sleep intermittently can greatly

increase the network lifetime. Furthermore, some applications do not require

100% coverage of the network field and allowing the coverage to drop below

100%, i.e., partial coverage, can further increase the network lifetime.

A sleep scheduling algorithm must be distributed, simple, scalable and en-

ergy efficient. In this thesis, the problem of designing such an algorithm which

extends network lifetime while maintaining a target level of partial coverage is

investigated. An algorithm called Distributed Adaptive Sleep Scheduling Algo-

rithm (DASSA) which does not require location information is proposed. The

performance of DASSA is compared with an integer linear programming (ILP)

based optimum sleep scheduling algorithm, an oblivious algorithm and with an

existing algorithm in the literature. DASSA attains network lifetimes up to 89%

iii

of the optimum solution, and it achieves significantly longer lifetimes compared

with the other two algorithms.

Furthermore, the minimum number of sensors that should be deployed in

order to satisfy a given partial coverage target with a certain probability while

maintaining connectivity is computed and an ILP formulation is presented for

finding the minimum number of sensors that should be activated within the set

of deployed sensors.

Keywords: Wireless Sensor Networks, Partial Coverage, Sleep Scheduling, Net-

work Lifetime

iv

ÖZET

KABLOSUZ DUYUCU AĞLARINDA ENERJİ

KORUNMASI İÇİN KISMİ KAPSAMALI UYKU

DÜZENLEMESİ

Tarık Yardibi

Elektrik ve Elektronik Mühendisliḡi Bölümü Yüksek Lisans

Tez Yöneticisi: Doç. Dr. Ezhan Karaşan

Temmuz 2006

Birbirleriyle haberleşen çok sayıda duyucudan oluşan kablosuz duyucu ağları,

kablosuz ağ alanında çığır açan bir teknolojidir. Bu kablosuz ağlarda en önemli

nokta enerji tüketimidir. Bu ağlarda yüksek sayılarda duyucular bulunduğundan,

bazı duyucuları aralıklı olarak uyuma moduna sokmak ağ ömrünü büyük oranda

arttırabilmektedir. Ayrıca, bir çok uygulama, yüzde yüzlük bir alan kaplaması

gerektirmez ve kapsama oranının yüzde yüzün altına düşmesine izin verilerek, ki

buna kısmi kapsama denir, ağ ömrünün daha da uzatılması sağlanabilir.

Duyucu ağları için tasarlanmış bir uyku düzenleme algoritması dağıtık, ba-

sit, ölçeklenebilir ve enerji kullanımında verimli olmalıdır. Tezimizde, kısmi

kapsama alanı ile ağ ömrünü uzatan bu tarz bir dağıtık algoritma tasarımı

sorunu incelenmiştir. Önerdiğimiz algoritma fiziksel yer bilgisi gerektirmeyen

dağınık ayarlanır uyku düzenleme algoritmasıdır (DASSA). DASSA algorti-

masının başarımını doğrusal tamsayı programlamasıyla bulunan en iyi uyku

düzenleme algoritması, duyucuların çevrelerinden habersiz oldukları bir algo-

ritma ve literatürde bulunan bir algoritma ile karşılaştırdık. Önerdiğimiz algo-

ritma en iyi çözüme oranla %89’a varan ağ ömrü ve diğer algoritmalara göre de

çok daha uzun ağ ömrü elde edebilmektedir.

v

Ayrıca, belirli bir olasılıkla bir kısmi kapsama hedefini sağlayabilmek ve

bağlantılı olabilmek için alana atılması gereken en az duyucu sayısı hesa-

planmış ve bu atılan duyucular arasından calışır durumda ayarlanması gereken en

küçük topluluğu bulmak için bir doğrusal tamsayı programlaması sunulmuştur.

Bu sonuçlar, kablosuz duyucu ağları için verimli tasarımlar yapmak için kul-

lanılabilir.

Anahtar Kelimeler: Kablosuz Duyucu Ağları, Kısmi Kapsama, Uyku

Düzenlemesi, Ağ Ömrü

vi

ACKNOWLEDGMENTS

Before all, I would like to thank to my supervisor Assoc. Prof. Dr. Ezhan

Karaşan for the continuous support and invaluable concern he has provided me

throughout this research. It is his most pleasant personality, understanding and

precise guidance which made this graduate study very enjoyable.

I would like to thank to Assoc. Prof. Dr. Nail Akar and Asst. Prof. Dr.

İbrahim Körpeoğlu for evaluating my thesis.

I am grateful to my family for never stopping to be on my side all the time

and always giving me whatever they can. Nothing would be possible without the

presence of them and the peaceful family environment they provided me during

my life.

Finally, I would like to thank to TÜBİTAK and Nortel Networks Netaş for

their financial supports during this graduate study.

vii

To Hatice & Cengiz

Yardibi ...

viii

Contents

1 Introduction 1

1.2 Motivation . 4

1.3 Contribution . 5

1.4 Thesis Outline . 6

2 Sleep Scheduling in Wireless Sensor Networks 7

2.1 Basic Concepts . 9

2.2 Sleep Scheduling Considering Only Coverage 11

2.3 Sleep Scheduling Considering Only Connectivity 14

2.4 Sleep Scheduling Considering Both Coverage and Connectivity . . 16

2.5 Other Work on Sleep Scheduling 19

2.6 Routing Protocols . 21

2.7 Partial Coverage . 23

2.8 Definition of Sensor Network Lifetime for Partial Coverage 31

2.9 Our Contribution . 32

ix

3 The Minimum Connected Set with Sufficient Coverage 34

3.1 Minimum Set of Nodes Satisfying Only Coverage 35

3.2 Minimum Set of Nodes Satisfying Coverage and Connectivity . . . 39

3.3 Minimum Connected Set of Nodes among Nmin Nodes Satisfying

GoC (ILPMinConCov) . 42

4 Centralized Optimum Sleep Scheduling 50

4.1 Network Model . 51

4.2 Optimum Scheduling Algorithms 53

4.2.1 Optimum Node Scheduling Without Aggregation (ILPNA) 55

4.2.2 The Centralized Algorithm (CA) 61

4.2.3 Optimum Node Scheduling With Full Aggregation (ILPFA) 63

5 Distributed Adaptive Sleep Scheduling Algorithm (DASSA) 68

5.1 Step I : Neighbor Discovery . 71

5.2 Step II : Scheduling Tier 1 Nodes 73

5.2.1 ILP implemented by the Sink (ILPSink) 73

5.2.2 Transmitting the Schedules 76

5.3 Step III : Scheduling Intermediate Nodes 78

5.4 Step IV : Scheduling Far Away Nodes 81

5.5 Step V : Transmitting and Forwarding Data 81

x

6 Performance Evaluation of Sleep Scheduling Algorithms 85

6.1 No Aggregation . 87

6.1.1 Further Analysis of DASSA and OSSA 102

6.1.2 Unequal Transmission and Sensing Ranges 107

6.2 Full Aggregation . 112

7 Conclusions 114

APPENDIX 117

A Algorithm Parameters 117

xi

List of Figures

2.1 Transmission and sensing ranges of a sensor node. 9

2.2 The tier numbers in a network. 10

2.3 The blind point problem when nodes turn off simultaneously. . . . 13

2.4 Sensor field and monitored field in DRS. 25

2.5 Additional nodes required for connectivity in DRS, I. 28

2.6 Additional nodes required for connectivity in DRS, II. 28

2.7 Reporting group of each node in Figure 2.8. 29

2.8 The routing loop problem in DRS. 30

2.9 GoC-L in a sample coverage plot for GoC = 0.9. 31

3.1 The network field divided into seperate regions. 36

3.2 Coverage area of a point in area A1, A2, A3 or A4. 38

3.3 Coverage area of a point in area B1, B2, B3 or B4. 38

3.4 Analytical and simulation results for a 100m by 100m network. . . 40

3.5 Analytical and simulation results for a 200m by 200m network. . . 40

xii

3.6 The coverage variable {vi}. 44

3.7 Minimum number of active nodes for a given GoC in a 200m-by-

200m network where Rs = 50m and Rt = 50m. 49

3.8 Minimum number of active nodes for a given GoC in a 300m-by-

300m network where Rs = 50m and Rt = 50m. 49

4.1 Number of packets received and transmitted when there is no ag-

gregation applied. 54

4.2 Number of packets received and transmitted when there is full

aggregation applied. 54

4.3 Forming the SID . 56

4.4 The flow variable fn
ij. 58

4.5 Centralized algorithm (CA) for finding the optimum sleep schedule. 64

5.1 Broadcast message format. 71

5.2 The first step of DASSA. 72

5.3 Tier numbers of the network in Figure 5.2. 72

5.4 Broadcast message transmitted by the sink. 76

5.5 The second step of DASSA. 77

5.6 The balanced structure of DASSA. 78

5.7 The third step of DASSA. 79

5.8 Broadcast message transmitted by the tier 1 nodes. 79

xiii

5.9 The final step of DASSA. 82

5.10 Flowchart of DASSA. 83

5.11 Operation of DASSA for a sample network. 84

6.1 Network topologies used in the simulations. 88

6.2 Optimum results for Topology 1 and Topology 2. 89

6.3 The optimum p for OSSA. 90

6.4 DASSA, OSSA and the optimum results for GoC = 0.9, Topology 1. 91

6.5 DASSA, OSSA and the optimum results for GoC = 0.8, Topology 1. 91

6.6 DASSA, OSSA and the optimum results for GoC = 0.7, Topology 1. 92

6.7 DASSA, OSSA and the optimum results for GoC = 0.9, Topology 2. 93

6.8 DASSA, OSSA and the optimum results for GoC = 0.8, Topology 2. 93

6.9 DASSA, OSSA and the optimum results for GoC = 0.7, Topology 2. 94

6.10 Performance of DASSA and OSSA with respect to the optimum. . 99

6.11 Energy and scheduling plots for GoC = 0.9 for Topology 1. 104

6.12 Energy and scheduling plots for GoC = 0.8 for Topology 1. 105

6.13 Energy and scheduling plots for GoC = 0.7 for Topology 1. 106

6.14 Coverage counts for GoC = 0.9 for Topology 1 in 62 rounds. . . . 108

6.15 Coverage counts for GoC = 0.8 for Topology 1 in 75 rounds. . . . 109

6.16 Coverage counts for GoC = 0.7 for Topology 1 in 93 rounds. . . . 110

xiv

6.17 Scheduling overhead of DASSA for Topology 1. 111

xv

List of Tables

3.1 Minimum number of nodes required to satisfy GoC for a 200m-

by-200m network field. 47

3.2 Minimum number of nodes required to satisfy GoC for a 300m-

by-300m network field. 48

6.1 Results of a 100 node network (Topology 1) for Rt = 50m,

Rs = 50m and a 200m-by-200m field. 94

6.2 Results of a 100 node network (Topology 2) for Rt = 50m,

Rs = 50m and a 200m-by-200m field. 97

6.3 Results of a 100 node network (Topology 3) for Rt = 50m,

Rs = 50m and a 200m-by-200m field. 97

6.4 Results of a 100 node network (Topology 4) for Rt = 50m,

Rs = 50m and a 200m-by-200m field. 97

6.5 Performance of the algorithms when parameters are same for all

topologies. 98

6.6 Results of a 150 node network (Topology 5) for Rt = 50m,

Rs = 50m and a 200m-by-200m field. 99

xvi

6.7 Results of a 200 node network for Rt = 50m, Rs = 50m and a

200m-by-200m field. 100

6.8 Results of a 200 node network for Rt = 50m, Rs = 50m and a

200m-by-200m field. 100

6.9 Results of a 400 node network for Rt = 50m, Rs = 50m and a

300m-by-300m field. 101

6.10 Tier sizes for Topology 1 for different Rt. 112

6.11 Results of a 100 node network (Topology 1) for Rt = 60m,

Rs = 50m and a 200m-by-200m field. 112

6.12 Results of a 100 node network (Topology 1) for Rt = 75m,

Rs = 50m and a 200m-by-200m field. 113

6.13 Results of a 100 node network (Topology 1) for Rt = 50m,

Rs = 50m and a 200m-by-200m field when there is full aggregation.113

A.1 Parameters of DASSA for Topology 1, 2, 3 and 4. 118

A.2 Parameters of OSSA for Topology 1, 2, 3 and 4. 118

A.3 Parameters of DASSA and OSSA for Topology 5. 118

A.4 Parameters of DASSA and OSSA for a 200 node network for

Rt = 50m, Rs = 50m and a 200m-by-200m field. 119

A.5 Parameters of DASSA and OSSA for a 400 node network for

Rt = 50m, Rs = 50m and a 300m-by-300m field. 119

A.6 Parameters of DASSA and OSSA for Rt = 60m, Rs = 50m and

Topology 1. 119

xvii

A.7 Parameters of DASSA and OSSA for Rt = 75m, Rs = 50m and

Topology 1. 119

A.8 Parameters of DASSA for Topology 1 with full aggregation. . . . 119

xviii

List of Abbreviations

AFECA Adaptive Fidelity Energy Conserving Algorithm

ASCENT Adaptive Self Configuring sEnsor Networks Topologies

ASD Adaptive Scheduling Depth

CA Centralized Algorithm

CCP Coverage Configuration Protocol

DASSA Distributed Adaptive Sleep Scheduling Algorithm

DRS Data Reporting group Scheduling

EC Effective Coverage

EDRS Enhanced Data Reporting group Scheduling

EOD Energy Optimization Depth

GAF Geographic Adaptive Fidelity

GoC Grade of Coverage

GoC-L Grade of Coverage Lifetime

GP Grid Parameter

GPS Global Positioning System

ILP Integer Linear Programming

ILPNA Integer Linear Program with No Aggregation

ILPFA Integer Linear Program with Full Aggregation

ILPMinConCov Integer Linear Program finding the MINimum

CONnected set satisfying the desired COVerage

ILPSink Integer Linear Program implemented by the SINK

LT Loss Threshold

MAC Medium Access Control

MEMS Micro Electro-Mechanical Systems

NAS Not Active Scheduling

NRN Number of Reporting Nodes

NP-hard Non-deterministic Polynomial-time HARD

xix

NSD Number of Selected Descendants

NT Neighbor Threshold

OGDC Optimal Geographical Density Control

OSSA Oblivious Sleep Scheduling Algorithm

PEAS Probing Environment and Adaptive Sleeping

PHY Physical

SEER Simple Energy Efficient Routing

SID Sorted node IDs

S-MAC Sensor Medium Access Control

SPIN Sensor Protocols for Information via Negotiation

WSN Wireless Sensor Network

xx

Chapter 1

Introduction

Recent advances in micro electro-mechanical systems (MEMS)1 technology have

made it possible to equip sensors used for sensing the environment with small

but powerful processors and wireless transceivers with moderate ranges. This

emerging Wireless Sensor Networks (WSN) technology consists of a large number

of sensors deployed across a geographic area to monitor the environment by

measuring physical parameters such as temperature, motion, sound, etc. [1].

The most common types of sensor networks are :

• Environmental sensor networks to monitor environmental changes in

oceans, forests, etc.

• Military sensor networks to monitor battlefields and detect enemy.

• Public sensor networks to provide security to buildings, malls, to monitor

traffic in a city.

• Healthcare sensor networks used in biomedical applications to monitor hu-

man body.

1Micro-Electro-Mechanical Systems (MEMS) is the integration of mechanical elements,
sensors, actuators, and electronics on a common silicon substrate through microfabrication
technology.

1

A wireless sensor network consists of a large number of nodes either deter-

ministically or randomly deployed, for instance, from an airplane, to monitor the

environment. Sensor nodes communicate with each other by multihopping, i.e.,

by using other sensor nodes in the network as relay nodes. In most applications,

all the sensor nodes are required to send their data to a special node called base

station or sink which links the sensor network to the end user, for instance to

an airplane passing above the network area. Sink is assumed to have abundant

energy resources, complex processing and high range transmission capabilities

together with sufficient memory.

One of the most important issues regarding the design of sensor networks

is power consumption since these networks consist of a large number of nodes

and are usually deployed in hazardous and remote areas where the replacement

of batteries is impossible. The most power consuming operation is data trans-

mission and reception. Control messages and sensing and processing operations

also contribute to the energy consumption. To use the limited energy sources

efficiently, several approaches have been introduced in the literature.

One common approach is data aggregation, in which multiple data packets

are combined into smaller sized packets by some processing before transmitting

so that the transmission and reception power levels decrease. For instance, in a

temperature monitoring sensor network, each node can only forward the average

of the temperatures it receives from its neighbors rather than forwarding all the

temperature values. The sink can then find the average temperature of the area.

A widely used method employing aggregation is clustering. In this method, nodes

are organized into clusters depending on some predefined method, e.g. random

clustering. Each cluster has a cluster head which transmits aggregated data

collected from the members of its cluster to the sink.

2

In cases where data of many individual nodes are requested, or where com-

bining the data requires high computational capability, aggregation is not a so-

lution. Consequently, another approach for efficient energy consumption is sleep

scheduling or density control which allows some of the deployed nodes to sleep

and conserve energy. Sleep scheduling controls the number of sensors in the

operating mode, which are sensing, receiving and transmitting data, such that

some user defined constraints are satisfied. For example, in a military sensor

network, the user may want the sensor nodes to forward their data to the sink

within a certain time limit or the user may want the event detection probability–

the probability that an event in the sensor field will be detected correctly– to be

larger than some value. The sleep scheduling mechanism has to evenly deplete

the energies of the bottleneck nodes, which are typically the nodes closer to the

sink, since all the network traffic has to pass through them to reach the sink, so

that the network lasts longer. Activating a small subset of nodes rather than all

the nodes will not only save energy, but it will also reduce the network traffic,

thus avoiding collision of packets and decreasing the delay of reporting data to

the sink.

While ensuring only a subset of nodes to be in the operating mode, the sleep

scheduling mechanism must fulfill two requirements: connectivity and coverage.

A sensor network is connected if every sensor node in the network can reach

every other node and the sink, possibly via multiple hops. Coverage is defined

as the area that can be monitored by the active sensors that can reach the sink.

Usually, it is assumed that a sensor node can monitor all the points within a

certain range, called the sensing range, around it.

The scope of this research is the development of an energy efficient, dis-

tributed sleep scheduling algorithm for wireless sensor networks that can easily

be implemented in many kinds of such networks without major modifications.

3

Sleep scheduling in sensor networks is a blossoming area which introduces many

benefits to the network in terms of energy efficiency and network traffic density.

1.2 Motivation

Sleep scheduling is a prevailing way of reducing energy consumption in a sensor

network. The challenge when some of the nodes do not operate in a sensor

network is to ensure the connectivity of the operating nodes and at the same

time to provide some minimum coverage while trying to keep the number of

active sensors to a minimum. In the lack of global knowledge of the network and

location information together with energy scarcity, the problem becomes even

harder. A solution which can be applied to general network topologies has to be

found and implemented.

Although there are numerous work in this area, there is still need for a pro-

tocol which can schedule node operation in an efficient and adaptive manner

without requiring location information, global network knowledge and the use

of excessive control messages. A location information gathering mechanism such

as the global positioning system (GPS) would be very expensive to employ in a

typical sensor network consisting of a very large number of sensors [2, 3]. Alter-

natively, only a certain fraction of nodes may have GPS and other nodes may

try to find their locations using the information provided by these nodes. This

is also costly due to the message exchange load and the results are not always as

precise as desired. Therefore, an algorithm which does not require any location

information would be of value.

Another important issue is that in some applications, it might be acceptable

to achieve a coverage ratio less than a hundred percent, i.e., partial coverage.

This fact can be exploited to extend network lifetime by the use of sleep schedul-

ing. Instead of operating for one week with a hundred percentage coverage, it

4

might be better to operate for three weeks with a ninety percentage coverage

in a temperature monitoring sensor network where the temperature at each in-

dividual point in the area is not so crucial. There is little work exploring this

tradeoff in the literature. We address the lack of such research and devise an

energy efficient node scheduling algorithm called the Distributed Adaptive Sleep

Scheduling Algorithm (DASSA).

1.3 Contribution

The node scheduling algorithm DASSA is simple to implement, requires no lo-

cation information, has little message overhead and extends network lifetime by

keeping the coverage percentage of the network above a user defined threshold

rather than one hundred percent. This approach is new for sleep scheduling

algorithms.

DASSA focuses on the nodes closer to the sink since all the network traffic

has to pass through these nodes. Also, when all the nodes in the one-hop-

neighborhood of the sink die, none of the remaining nodes can reach the sink

anymore causing the network to die. Therefore, DASSA carefully schedules the

activity of the nodes close to the sink depending on their residual energies and

number of neighbors. In DASSA, the sink is responsible for scheduling the ac-

tivities of the nodes close to itself. Note that the sink has plentiful amount

of communication and computational resources. This is a novel approach in

scheduling nodes near the sink.

Besides its simplicity, DASSA is fully distributed and minimizes the assump-

tions about the network. It is assumed that a multihop network structure exists,

i.e., every node cannot reach the sink by a single hop and no location information

is available. In DASSA, the nodes only have to perform simple computations such

as taking the maximum of a certain set of numbers. The algorithm is scalable

5

due to its simplicity and independency from impractical assumptions. This is

an important issue to be addressed since sensor networks consist of a very large

number of sensors.

DASSA can reach reach up to 90% of the optimum results when tuned prop-

erly. In the thesis, DASSA is compared with a second algorithm called OSSA

and an existing algorithm in the literature. DASSA and OSSA outperforms the

algorithm in the literature and DASSA outperforms OSSA in all the cases consid-

ered. As the desired coverage level decreases, DASSA achieves very close results

to the optimum. DASSA is a very flexible algorithm and with the proper tuning

of its parameters, it can achieve very high performance for many network sizes.

1.4 Thesis Outline

The rest of the thesis is organized as follows. Chapter 2 presents an overview

of existing sleep scheduling algorithms in the literature. In Chapter 3, the min-

imum number of sensors that have to be deployed in order to provide a certain

level of coverage with high probability is found and the minimum number of

connected nodes among these sensors which provide sufficient coverage is calcu-

lated using an integer linear programming approach. The chapter concludes with

some numerical results. Chapter 4 includes our centralized linear programming

approach to the sleep scheduling problem for finding the optimum sleep sched-

ules depending on the desired coverage level. Next, our proposed distributed

algorithm DASSA is described in Chapter 5. Comprehensive simulation results

of DASSA, a second algorithm OSSA and an existing work together with the

optimum results are provided in Chapter 6. Finally, the possibilities for future

work in the area together with the conclusion of the thesis is given in Chapter 7.

6

Chapter 2

Sleep Scheduling in Wireless

Sensor Networks

The major design objective for wireless sensor network applications is to min-

imize the energy consumption in order to maximize network lifetime. Among

various approaches for efficient use of energy including clustering [4, 5] and data

aggregation [6, 7], sleep scheduling is the most commonly used one.

To improve a sensor network’s reliability and extend its longevity, sensor

networks are deployed with high densities (up to 20 nodes/m3 [8]). However, if

all sensor nodes in such a dense deployment scenario operate at the same time,

energy will be consumed excessively. Also, packet collisions will increase as a

result of the large number of packets being forwarded in the network. In addition,

most of the data forwarded in the network will be redundant since when node

density is high, sensing regions of the nodes will overlap and the data of adjacent

sensor nodes will be highly correlated. In summary, sleep scheduling reduces

both energy consumption and network traffic by avoiding the transmission of

redundant data.

7

A practical sleep scheduling algorithm should both choose the minimum num-

ber of active nodes and satisfy user defined constraints. The non-sleeping nodes

must be chosen so that they are connected to the sink and they provide some

minimum coverage of the network field. User defined constraints may vary de-

pending on the application type. For instance, the user may want the network

to be connected and provide some minimum coverage for as long as possible or

the user may want the network to be connected and provide full coverage of the

network field while ensuring some minimum delay in gathering data.

Besides, the sleep scheduling algorithm must be simple, distributed and local-

ized. It must be applicable to many kinds of networks with minor modifications.

Due to the distributed nature of sensor networks, it must be a distributed ap-

proach and it should only use local information since each node has a limited

transmission range. It is also desirable not to require any location information

since it is very costly for a sensor network. Although sleep scheduling is not a

new approach to extending network lifetime, there is almost no work satisfying

all these requirements simultaneously.

The chapter continues with introducing the basic conceps that are widely used

in sensor network models. After this brief introduction, we discuss the algorithms

devised in the literature. The common requirements of most sensor network ap-

plications are to provide some level of coverage and to provide connectivity of the

sensor nodes. These requirements should always be considered together when de-

signing a sensor network. However, many studies in the literature consider these

two issues separately. Accordingly, first, sleep scheduling algorithms which con-

sider only coverage or only connectivity are presented and then algorithms which

consider coverage together with connectivity are discussed. Then, a different

class of sleep scheduling algorithms which try to maintain a certain number of

active sensors at every round without considering coverage is presented. A brief

discussion of routing protocols which can be used in conjunction with the sleep

8

R s

R t

sensing range

transmission range

Figure 2.1: Transmission and sensing ranges of a sensor node. Rt is the trans-
mission range and Rs is the sensing range.

scheduling algorithms is provided next. Finally, studies which exploit partial

coverage and maintain a coverage level less than one hundred percent for the

sake of longer network lifetime are presented.

2.1 Basic Concepts

A sensor network consists of a number of nodes, which are limited in terms of

energy, memory and processor speed, and a sink which is located at the origin

point (0, 0) of the field and has higher computation capability than other nodes

and abundant energy and memory resources. All sensor nodes are responsible for

sending their data to the sink. After collecting all data, the sink is responsible for

the rest of the process. For example, it might transmit data to a data gathering

point in a distant location using satellite communications.

Sensor nodes sense the environment by using sensors such as ultrasonic sen-

sors, temperature sensors, infrared sensors and etc. Each sensor node is associ-

ated with a transmission and a sensing range, Rt and Rs, as shown in Figure 2.1.

It is assumed that a sensor node can detect every event occuring within a dis-

tance less than or equal to Rs with probability 1 and cannot sense any event

9

sensor node

1
1

1

1

1

2
2

2

2

2

2

3

3

3

3 3

4

5

3

sink

Figure 2.2: Tier numbers in a sample network. Nodes at the edges of a two sided
arrow are in the transmission ranges of each other.

outside this distance. Similarly, two nodes can communicate with each other if

the distance between them is less than or equal to Rt.

Hop count and tier number are commonly used terms in the literature and

throughout this thesis. We use the terms hop count and tier number interchange-

ably. Nodes which can reach the sink in at least one hop are in tier 1, nodes which

can reach the sink in at least two hops are in tier 2 and so on. Figure 2.2 shows

the tier numbers of nodes in a sample network. Note that, hop counts are de-

termined by the transmission ranges of the sensor nodes, i.e., if a node is in the

transmission range of another node, then these two nodes have one hop distance

to each other.

Sensor nodes send their data to the sink depending on a data reporting model

which can be time driven, event driven, query driven or a combination of these

models. In the time driven model, sensor nodes periodically sense the environ-

ment and send their data towards the sink, whereas in the event driven model,

10

sensor nodes are only responsible for sending their data when a specific event

occurs. In query driven data reporting, nodes send data only when they receive

a query from the sink or another node in the network. It is assumed that a time

driven model is used for data reporting in this thesis.

After this brief introduction, we now proceed with the related work in the

subject.

2.2 Sleep Scheduling Considering Only Cover-

age

In a general sense, coverage can be defined as the area in the network field which

can be sensed by the sensor nodes, i.e., an area for which all the points in the

area are in the sensing range of at least one active sensor node. The coverage

problem addresses on finding the minimum set of sensors which can cover the

same area as the deployed sensors, thus avoiding redundant data transmissions

in the network. The sensing region of a node is generally assumed to be a disk

with radius equal to the sensing range of the sensor node. Other sensing models

can also be assumed [9].

In [10], two types of sensor nodes with different costs and sensing ranges

and a grid based network structure are assumed. One node type has a larger

sensing range than the other which is on the other hand cheaper. They find

the minimum cost placement of sensor nodes while ensuring that all grid points

are covered adequately with a linear programming approach. In addition, the

problem of determining the grid points to locate the sensor nodes such that the

grid positions of targets can be uniquely identified from the subset of sensors

that detect the targets is analyzed in the paper. Similarly, in [11], a linear

programming approach is used to determine the minimum number of sensors

11

which can cover a certain area. After a certain number of nodes are deployed

to a field according to a uniform distribution, the minimum set of sensor nodes

to cover the same area as the original network is found. Additionally, locating

several disjoint sets of sensor nodes which can cover the area is discussed. This

way, each subset can be scheduled to be operational during a different time slice

for providing a balanced operation which will increase the utilization of resources.

Related to this approach, in [12], a heuristic which finds mutually exclusive sets

of sensor nodes where each set entirely covers the network field is proposed. The

algorithm ensures that only one set is active at a time. Using only a subset of

nodes at each time saves energy while maintining the coverage.

In [13], it is determined whether the network area is k − covered, in the

sense that every point in the area is covered by at least k sensors. A sensor is

k perimeter covered if all points in the perimeter of its sensing area is covered

by at least k sensors other than itself. It is proven geometrically that, if each

sensor node is k perimeter covered, the whole network is k covered. Also, the

model can be extended to non-disk coverage models as long as the sensing re-

gions can be precisely defined. Using a geometrical approach in parallel to [13],

[14] proposes a backoff based node scheduling scheme in which nodes which are

redundant in terms of coverage are turned off. The idea is that if the whole

sensing area of a node can be covered by the its neighbors, then the node can

be turned off. However, if all the nodes decide to turn off simultaneously, then

blind points, which are areas not covered by any active node, will occur. For

example, in Figure 2.3, if nodes 1 and 5, whose sensing areas are totally covered

by their neighbors, decide to turn off at the same time, a blind point will occur.

Therefore, a random backoff procedure is presented in which nodes that decide

to turn off broadcast a message after a random backoff time. A node hearing this

broadcast message checks whether its coverage area is still covered by its awake

neighbors and acts accordingly. This way, blind points are avoided. It is claimed

12

6
4

3
2

1

5 6
4

3
2

Blind Point

Figure 2.3: The blind point problem when nodes turn off simultaneously.

that, if a node can determine the angle of its neighbors with respect to the loca-

tion of itself, then the node scheduling algorithm may be used without location

information. However, the results will be worse in the sense that more nodes will

be awake than necessary and assuming precise knowledge of angle information is

not practical. Also, for this algorithm to work properly, communication ranges

of nodes should be equal to twice the sensing range in which case full coverage

guarantees connectivity. Otherwise, the set of nodes selected to be active cannot

be guaranteed to be connected to the sink. [15] extends the work in [14] by

decreasing the number of active sensors even further and therefore increasing the

network lifetime.

A different coverage definition is introduced in [16] where Voronoi diagram

and Delaunay triangulation techniques are used to compute the maximal breach

path and maximum support path. Maximal breach path is a path in the sensor

field such that the distance from any point on this path to the closest sensor is

maximized. This gives the worst case coverage. The maximum support path is

the path in the sensor field such that the distance from any point on this path

to the closest sensor is minimized. This corresponds to the best case coverage.

If new sensors can be deployed such that the weight, which depends on the dis-

tance of sensor nodes from each point on the path, of the maximal breach path

is decreased, then worst case coverage will be improved. The same argument is

13

valid for the maximum support path. It is also claimed that worst case coverage

and best case coverage have an asymptotic behavior and increasing the num-

ber of randomly deployed sensors beyond a value does not make any significant

improvements.

Note that, unless otherwise stated, all the above references assume the disk

model for coverage and they are centralized. All of them require global knowledge

about the network, i.e., the number of nodes, the precise locations of nodes

and the neighbors of the nodes. Also, the algorithms used for the solutions

are generally complex and require long run times. Nevertheless, the analysis

described here are usually done before deploying the network to estimate its

behavior. For example by the work in [11], one can have an idea about how many

nodes will be redundant in the average. None of the above coverage maintenance

studies consider connectivity. They assume that the set of nodes which provides

the required coverage somehow can reach each other.

2.3 Sleep Scheduling Considering Only Connec-

tivity

A network is connected if all sensor nodes can reach the sink, which also means

that every node can reach each other, possibly by multiple hops. In this sec-

tion, we present sleep scheduling algorithms which only consider connectivity

regardless of coverage.

In [17], a Geographic Adaptive Fidelity (GAF) algorithm is introduced which

requires location information of the nodes. The algorithm divides the network

area into virtual grids. Nodes compute the grid which they belong to from their

location information. Grids are arranged so that any node in a grid can reach

all the nodes in the adjacent grids. This puts a bound on the grid size (less than

14

Rt/
√

5) and this bound is independent from the node density. Nodes switch

between sleeping, discovery and active states, with the requirement that one

node in each grid stays awake in order to ensure connectivity. In the discovery

state, nodes exchange discovery messages to find other nodes within the same

grid.

Similar to GAF, Span [18] aims to increase system lifetime by sleeping the

redundant nodes without making a substantial effect in connectivity. Span adap-

tively elects coordinator nodes which stay awake continuously while other nodes

remain in sleep mode and periodically check whether they should become a co-

ordinator. Obviously, the coordinator nodes spend much more energy than other

nodes. So, the coordinator role is rotated as time goes on. Nodes become co-

ordinators if two of its neighbors cannot reach each other directly or by one or

two coordinators. Coordinators refrain from their role if their neighbors do not

require them or if a certain time has elapsed. Nodes with higher energies be-

come coordinators with higher probabilities and this provides better utilization

of resources. Span uses geographic routing in which coordinators forward data to

the coordinator which is closest to the data gathering point. Geographic routing

uses location information for finding the shortest path. Although it is mentioned

that Span can also work without location information, it is not clear whether a

routing protocol not using location information can still function with only the

coordinator nodes Span chooses.

In ASCENT [19], nodes can be in one of the four states; test, passive, active or

sleep. ASCENT tries to keep the number of active neighbors of each node above a

user specified neighbor threshold (NT) value and to keep the data loss level below

a user specified loss threshold (LT). LT is measured at the sink from the number

and quality of the received data. In the test state, nodes test the environment

for satisfying the NT and LT requirements and change their states accordingly.

They move into the active state, or into the passive state. In the passive state,

15

nodes only listen to the environment and if they decide that there is no need

for them to be active, they finally move to the sleep state in which no energy is

consumed. A node in the active state forwards data until it dies. ASCENT does

not consider the residual energies of the nodes while determining the states and

this makes the algorithm unbalanced in terms of energy consumption at each

round. ASCENT does not use location information.

In AFECA [20], each node keeps a count of the number of its neighbors and

has a randomized sleep time proportional to this number. This results in more

nodes sleeping as the density of the network increases. The parameters of the

algorithm are chosen as to increase the probability of connectivity. AFECA does

not require location information.

2.4 Sleep Scheduling Considering Both Cover-

age and Connectivity

We will now turn our focus to the work considering both connectiviy and coverage

at the same time. Note that finding the minimum set of sensors which cover the

entire deployment area and are connected is an NP-hard problem [21].

A theoretical analysis of the connectivity with coverage problem is given

in [22] in which a grid based network is considered where each node can fail

probabilistically. A sufficient and necessary condition for connectivity with full

coverage of the deployed area is given as a function of the sensing range, which

is taken to be equal to the transmission range, number of nodes and probability

of failure. Additionally, it is shown that connectivity does not imply coverage.

The work presented in this paper assumes fixed locations for the nodes and the

randomness is due to node failure. This can be extended to the situation where

the randomness is due to node deployment as in [23].

16

There are a number of distributed algorithms for providing connectivity and

coverage at the same time. PEAS [24] is a distributed, probing based sleep

scheduling algorithm. Nodes wake up and probe their local neighborhood to find

out whether a working node exists within a certain probing range. If there is no

working node in its probing range, a node will start to operate, otherwise it will

sleep. Thus, the distance between two operating nodes is at most the probing

range. The algorithm requires nodes to adjust their power levels in order to

check the neighborhood only in the probing range which is not very practical.

If power level adjustment is not available, the probing range should be chosen

equal to the transmission range or location information would be required. The

algorithm does not gurantee complete coverage and is shown to form an asymp-

totically connected network if the transmission and probing ranges satisfy some

requirements. To sum, the algorithm gurantees neither coverage nor connectivity.

In CCP [25] and OGDC [26], it is proven that if the radio range is at least

twice the sensing range, complete coverage of a network field guarantees connec-

tivity. CCP schedules nodes to sleep depending on the coverage degrees of the

intersection points on a node’s sensing disk with its neighbors sensing disks. It

is proven that if all intersection points between any sensor node and any other

sensor node and all intersection points between any sensor node and the field

boundaries are k-covered, then the field is k-covered. They propose an eligibil-

ity algorithm which uses location information to determine whether a node can

sleep when the transmission range is larger than twice the sensing range. A node

decides to sleep if every location within its coverage is already k-covered by other

active nodes. Randomized backoff times are used to avoid shutting down nodes

at the same time. If the communication range is smaller than twice the sensing

range, the eligibility algorithm is combined with SPAN [18] to form a connected

covering set. CCP depends on location information.

17

In OGDC [26], it is proven that in order to cover a large region with the

minimum overlap of the selected sensors, at least one pair of disks must overlap

and the crossing points of these disks must be covered where disk refers to a

circular sensing area. First, the optimum location of a third disk to cover the

intersection points of two other disks with minimum overlapping sensing areas is

found. Then, OGDC tries to schedule nodes which are close to these optimum

locations to be operating. Nodes exchange messages containing their location and

their computation of the direction at which a working node should be located

at. The algorithm runs in rounds and at the beginning of each round, a set of

one or more starting nodes are randomly selected as working nodes. Nodes use

a backoff procedure to avoid collisions and simultaneous turning offs. A node

decides to operate if it is the closest node to the optimum location to cover the

intersection points of two working nodes. The backoff delay is directly related

to the distance of a node from this optimum location; as the node gets closer,

the delay decreases. If the node is in the optimum location, then the delay is

zero, so that the node does not sleep. In contrary, a node decides to sleep if its

neighbors cover its sensing area. Like CCP, OGDC requires location knowledge

and cannot be adapted to operate without this knowledge.

Also, [21] addresses the problem of connected coverage. A centralized ap-

proach is prepared for finding a subset of nodes which ensure both coverage and

connectivity. The algorithm yields a solution which is within O(log n) factor

of the optimum solution where n is the number of nodes in the network. Ad-

ditionally, a distributed version of the centralized algorithm is proposed. Both

the centralized and the distributed algorithm require location information. Also,

the distributed algorithm requires complex operations and reliable broadcast of

messages to all the nodes within 2r hops of each node, where r is defined as

the maximum communication distance between any two sensors whose sensing

regions intersect. Additionally, the value of r has to be calculated, which requires

a complex probabilistic analysis. Thus, some r values that can be used in place

18

of the exact r value are proposed. The distributed algorithm is heuristic based

and does not guarantee the O(log n) factor.

The references mentioned here are the most popular ones in the literature

regarding both connectivity and coverage. Further information about protocols

in this context can be found in a survey about energy efficient protocols [27].

2.5 Other Work on Sleep Scheduling

In addition to the references described in the previous sections, there are also

sleep scheduling algorithms in which the aim is to keep the total number of active

nodes in a network at a certain value by using feedback messages from the sink.

In [28], an algorithm which tries to maintain the total number of active sensor

nodes at a certain value throughout the network lifetime is proposed. Each sensor

node independently decides whether to sleep or to be active using the Gur game

strategy [29]. Each node has a finite, discrete time 2N state automaton consisting

of N negative and N positive consecutive states. Sensors change state depending

on a probability value sent from the sink. This probability depends on the total

number of active sensors at a given time and the desired number of sensors.

It is demonstrated that N = 3 provides good results. All sensors, including

the sleeping ones, listen for the information from the sink. This way, the total

number of sensors in the network converges to a constant value in the case where

nodes do not die. In the more realistic case where nodes die, the algorithm does

not converge to the desired value most of the time and makes big fluctuations. It

is assumed that the network has a star topology, i.e., all the nodes can reach the

sink in a single hop. Also, due to the nature of the Gur automata, the number

of active sensors is limited to the half of the total number of sensors, i.e., the

total number of active sensors can be held at a maximum of half of the number

of total sensors by this method.

19

Similar to [28], [30] uses feedback from the sink. [30] provides an improvement

to the work in [28] by using the mean expected lifetime of sensor nodes assuming

exponentially distributed lifetimes. In addition, a new algorithm for keeping

the number of active sensors at a given value is proposed. In this algorithm,

each node has a certain number of states, 3 states in the paper, and transmits

data according to its current state. A probability is assigned to each state, and

sensors transmit or do not transmit data depending on this probability. Sensors

make state transitions depending on the information they gather from the sink.

It is assumed that a random access communication protocol will be used which

uses acknowledgement packets. Therefore, after receiving a packet from a node,

the sink will send a packet depending on the number of active nodes, added to

the acknowledgement signal. The node makes a state transition depending on

this information; if the number of active nodes is less than the desired value, it

will transit to a state where it will make a transmission with higher probability.

With this acknowledgement scheme, sensors modify their states individually. It

is shown that this scheme outperforms the algorithm in [28]. This algorithm also

assumes a star topology for the network. The probabilities at each state affect the

algorithm performance and the initial probabilities affect the convergence time

to the desired total number. [31] extends the work in [30] by making a theoretical

analysis in which the effect of state probabilities on the mean and variance of

the total number of nodes which are active, named as QoS, are analyzed. The

choice of these probabilities creates a tradeoff between the diversity, which is the

equality of participation among sensors, and the variance of the QoS. Finally

in [32], an algorithm in which the participation among nodes is more balanced

and which does not use knowledge of the total number of available sensors is

proposed.

[30, 31, 32] are limited to communication protocols where acknowledgements

are used and together with [28] they assume that each node can reach the sink

in a single hop. It is not clear whether the algorithms may be used in a multihop

20

scenario and how the sink will send feedback to each node in such a case. Also,

[28, 30, 31, 32] do not address the importance of individual sensor nodes in terms

of coverage. Actually, they do not take coverage into account and only try to

maintain the total number of sensors at a certain value. The performance of

these algorithms gets worse as nodes die since neither of them considers the

residual energies of the nodes. Also, they suffer from fluctuations, which in some

cases make large differences in the total number of active nodes and the desired

number of active nodes.

In contrast to references described previously in this section, [33, 34] tries

to keep the total number of active sensors at a certain value by considering

the effects of the MAC and PHY layers. The same problems mentioned in the

previous paragraph remain in these works.

2.6 Routing Protocols

There are many routing protocols proposed for sensor networks in the literature.

Since the routing protocol used is not in the direct scope of this research and after

deciding the set of nodes which are connected and provide sufficient coverage,

many routing algorithms can be an alternative, we refer the reader to [35, 36].

These references include a detailed description and comparison of many routing

protocols.

We consider SEER [37] seperately from other protocols since it uses a similar

routing structure with ours. SEER is an event-driven (nodes transmit data when

they sense an event), source initiated (nodes do not flood an interest) routing

protocol. The algorithm starts with the network setup and neighbor discovery

phase. In this step, every node discovers its hop count with respect to the sink

and its neighbors and their remaining energy levels by broadcast messages. First,

the sink broadcasts a message and initiates this step. Then each node broadcasts

21

a message containing its hop count and remaining energy. At the next step, which

is the transmitting new data step, nodes forward data to their neighbor with the

smallest hop count and highest remaining energy. Before forwarding a message,

the remaining energy level entry for the neighbor is reduced by a certain amount.

Next, in the forwarding data phase of the algorithm, nodes receiving a message

update the energy entries in their list for the transmitting neighbor. These energy

values may not always be accurate since a node can be used by more than one

neighbor in forwarding data. Therefore, nodes broadcast energy update messages

in the energy update step, when their energies fall below a certain threshold.

This process is repeated from the beginning, i.e., from the network setup

and neighbor discovery phase, periodically to take into account node failures

and to maintain correct energy values, i.e., the network maintenance step of the

algorithm. SEER does not require location information and complex operations

at sensor nodes. SEER is shown to outperform the two most popular protocols

SPIN [38] and Directed Diffusion [39].

Finally, a different aspect of the routing problem is presented in [40]. This

work formulates the maximum lifetime routing problem as a multi commodity

flow integer linear program and proposes heuristic algorithms. [41] extends the

analysis of maximum lifetime routing problem to the latency domain. Basically,

they propose two linear programming approaches; the first one tries to minimize

the latency while minimizing energy consumption is the secondary objective and

the second one tries to minimize the energy consumption while minimizing the

latency is the secondary objective. It is shown that the second choice yields

comparable results in terms of lifetime and achieves a lower latency. However,

the first choice balances the energy consumption among nodes far better than

the second choice. Note that, this algorithm is centralized and requires global

network information.

22

2.7 Partial Coverage

In some applications, covering 100% of the sensor field continuously may not be

very critical. Instead, network lifetime can be prolonged if we keep the coverage

level below 100%. For example, in a temperature or humidity monitoring sensor

network, it may be sufficient to cover 90% of the total sensor field in order

to increase network lifetime. This is named as partial coverage. Also, in many

scenarios, the sensed data is highly correlated. Thus, covering 90% of the network

may be sufficient to obtain a global knowledge about the sensor field.

This concept is fairly new in sleep scheduling area and is not extensively

studied in the literature. [42] makes the definition of partial coverage and studies

the connected coverage problem with a given coverage guarantee. The theoretical

bounds for the number of active nodes to satisfy certain coverage while being

connected with a constraint on the transmission range are presented. Also a

heuristic algorithm is provided to show that the network lifetime increases as the

desired coverage percentage decreases.

pCover [43] proposes a distributed algorithm for the partial coverage problem.

According to the algorithm, all the nodes are in one of the four states: probing,

sleep, awake and readyoff. Every node calculates the percentage of its sensing

area that is covered by its awake neighbors, which is called the local coverage. A

node in the probing state turns on if its local coverage is lower than a threshold,

called the on threshold, whereas a node in the readyoff state turns off if its

local coverage becomes higher than a threshold, called the off threshold. By

varying the on and off thresholds, various coverage levels are obtained in the

network. pCover assumes all the nodes are aware of their locations and their

neighbors locations within a distance of 2Rs, where Rs is the sensing range of

a node. It is also assumed in the paper that the communication range is larger

than at least twice the sensing range. The second assumption makes it easier to

23

provide connectivity of the operating nodes, since the set of nodes selected for

sufficient coverage will be connected with high probability when Rt ≥ 2Rs. For

the energy consumption model, it is assumed that a node can function for 1000

minutes regardless of the number of its descendants which is also an impractical

assumption.

Finally, [44] finds an upper bound of lifetime when only a portion of the net-

work field is to be covered assuming that the deployed nodes form a homogenous

Poisson point process. The network lifetime is defined as the time until the cov-

erage ratio drops below the desired coverage. It is assumed that the transmission

range is larger than twice the sensing range.

A distributed and more practical algorithm which does not assume location

information and takes Rt = Rs is introduced in [45, 46] which exploits partial

coverage in a different objective than ours as to provide full coverage of the

network within some delay, such that the coverage percentage at each round is

lower than 100%. In other words, the algorithm tries to find disjoint sets of

sensors at each round of operation such that the coverage at each round is above

a user defined value and all of the sensors are able to report their data within a

certain delay. An important point is that this set of sensors has to be connected.

In order to ensure connectivity, the disjoint property may be violated. Note that,

in our work, we try to maximize the number of rounds which we can provide a

coverage level above a user defined threshold, whereas [46] tries to cover the

entire area within a certain number of rounds and at each round it tries to keep

the coverage level above a user defined threshold.

[46] contains and extends the work in [45] and proposes an implementable

algorithm. From now on, we refer to the work in [46] as Data Reporting group

Scheduling DRS.

24

Monitored Area

Sensor Deployed Area

sink sensor node

R

m

m

n

n

s R s

R s

R s

Figure 2.4: Sensor field and monitored field in DRS. Rs is the sensing range of a
sensor node.

As mentioned before, DRS tries to keep the coverage above a certain user

defined coverage level which we call Grade of Coverage (GoC) throughout the

thesis, where 0 ≤ GoC ≤ 1 and GoC equals 1 corresponds to 100% coverage of

the field, GoC equals 0.8 corresponds to 80% coverage of the field and so on.

It is assumed in DRS that the sensors are deployed over a larger area then the

monitored area which has a distance equal to the sensing range from the deployed

area as shown in Figure 2.4.

Assuming that the sensor nodes are uniformly distributed in the sensor de-

ployed area, the minimum number of sensors k, that should be deployed in order

to cover a certain percentage of the monitored area can be found by a proba-

bilistic analysis. Due to the structure assumed for the monitored and deployed

areas, the probability that a point is not covered by a sensor node is given as,

P =
F − S

F
(2.1)

where S is a circular disk centered at the point and has radius equal to

the sensing range of a node, i.e., S = πR2
s and F is the deployed area, i.e.,

25

F = n2 + 4nRs + πR2
s. This result comes from the fact that a point is not cov-

ered by a sensor node if the sensor node is at a distance greater than the sensing

range of a node.

The probability that a point is not covered by k sensors is equal to P k.

Therefore, the probability that a point is covered by any of the k sensors is

1− P k which gives the overall coverage of the area.

GoC = 1− P k (2.2)

The number of sensors k required to provide GoC can be found from Eq. (2.2)

and Eq. (2.1) in terms of the field parameters shown in Figure 2.4.

k =







log(1−GoC)

log
(

n2+4nRs

n2+4nRs+πR2
s

)







(2.3)

After this analysis, a randomization technique for selecting k reporting sensors

in each round is proposed in DRS. A data reporting group (RSsi
) is a set of

sensors which are selected to operate in a given round. There are δ =
⌊
|N |−1

k

⌋

data reporting groups, where N is the total number of sensor nodes including

the sink. Each node decides to operate at only one data reporting group with

a probability of 1/δ so that the expected value of the number of nodes at each

group is k.

Reporting cycle is the periodicity of a node to report its data. Sensors belong-

ing to a reporting group send their sensed data only in the round corresponding

to the group and wait until the next cycle. This way, all the area will be covered

within the cycle.

Nodes at each data reporting group have to be connected in order to send

their data to the sink. The estimate number of additional sensor nodes, named

as k̂, which will be required for connectivity, is computed in a probabilistic man-

ner. As we mentioned before, normally sensors are only active in the round

26

corresponding to their reporting groups. However, additional sensors from other

reporting groups have to be active in order to provide connectivity to the sensors

in the current reporting group. In Figures 2.5 and 2.6, there exists two data

reporting groups: square nodes and circle nodes. In Figure 2.5, square nodes are

transmitting and in Figure 2.6 circle nodes are transmitting. We can observe

that, some of the circle nodes are active when square nodes are transmitting in

order to provide connectivity for square nodes and vice versa. Note that the sink

is located at (0, 0) location.

The paper also proposes a distributed algorithm to connect the sensors in

each data reporting group. Each sensor node finds an upstream sensor as a next

hop node to reach the data gathering point which belongs to either the same

reporting group with the sensor or has the shortest hop distance to a sensor

with the same reporting group or to the sink. In this algorithm, nodes use setup

messages which contain the information about the node which is closest to the

same reporting group or the sink.

The algorithm is initiated with a setup message from the sink. The setup mes-

sage is denoted by S and is given as S =
{
RSsj

, (c1, O1), (c1, O1), . . . , (cl, Ol)
}
,

where 1 ≤ l ≤ δ, sj is the sender, Ol is the origin that resets cl, which is the hop

counter from Ol, to the receiver of this message, and RSsj
is the reporting group

of node j. cl is reset to 1 or −1 depending on RSsj
of the receiver sj, and it de-

creases or increases by one until it is reset. Also, each sensor keeps a record which

includes the current best candidate to reach the closest neighbor with all report-

ing sequences. This record is denoted as Rsi
, which is modified when S messages

are received, and is given as Rsi
= {(c1, O1, s1), (c2, O2, s2), . . . , (cl, Ol, sj)} where

sj is the best candidate to reach the reporting sequence l and cl is the hop dis-

tance to Ol. For example, if a node belongs to data reporting group 2, it will

forwards its data to sensor node s2. Setup messages S are based on Rsi
and are

broadcasted by each node. The detailed description of the algorithm is quite

27

−100 −80 −60 −40 −20 0 20 40 60 80 100
−100

−80

−60

−40

−20

0

20

40

60

80

100

x axis (meters)

y
ax

is
 (

m
et

er
s)

Figure 2.5: Additional nodes required for connectivity in DRS I. Square nodes
are transmitting. Circles are only active if they are required for connectivity.

−100 −80 −60 −40 −20 0 20 40 60 80 100
−100

−80

−60

−40

−20

0

20

40

60

80

100

x axis (meters)

y
ax

is
 (

m
et

er
s)

Figure 2.6: Additional nodes required for connectivity in DRS II. Circle nodes
are transmitting. Squares are only active if they are required for connectivity.

28

Sensor
Type

RS

100

010

001

011

Figure 2.7: Reporting group of each node in Figure 2.8. A cycle consists of three
rounds and a one in the RS column represents the round at which a node will
transmit, e.g., circle nodes will transmit at the first round at each cycle and will
not transmit at other rounds.

long to fit in this section and given in Figure 10 in [46]. As mentioned earlier,

some nodes from other reporting groups have to be active in order to provide

connectivity among all nodes belonging to a certain reporting group. Due to

this, some nodes may belong to more than one reporting group.

We have noticed that the proposed algorithm causes routing loops which

causes some of the nodes to be unconnected from the network. Thus, the initial

aim of all the sensor nodes sending their data within a certain time limit cannot

be achieved. The problem occurs due to the post-broadcast update case, in

which nodes update their Rsi
’s after broadcasting their S. Figure 2.8, which

is in the same structure as the scheme used in DRS, shows one possible loop.

Figure 2.7 shows the reporting groups of the nodes in Figure 2.8. In this case,

sensor s4 sets sensor s3 as its next hop and broadcasts a message. From this

message, node s3 sets s4 as its next hop since it assumes that it has a shorter

hop distance to the sink which causes a loop. In order to eliminate this problem,

we eliminate the post broadcast messages to avoid routing loops so that after a

node determines its next hop, it does not change its decision any more. We call

the algorithm with the routing loops eliminated the Enhanced Data Reporting

group Scheduling EDRS. Also, it is not mentioned clearly what the algorithm

does when nodes start to die. Therefore, we assume that the algorithm does not

take any action when nodes die when evaluating the performance of it.

29

b)

c)

d)

2s
4ss0sa)

2s
1s0s 3s

3s
1

4s

2s
1s0s 3s 4s

2s
1s0s 3s 4s

Relay s1(RSs1
= 100) s1(RSs2

= 100)

Seq. S = {(−1, s1), (1, s0), (1, s0)} S = {(−2, s1), (2, s0), (2, s0)}
RSs2

{(−1, s1, s1), (1, s0, s1), (1, s0, s1)} −
RSs3

− {(−2, s1, s2), (2, s0, s2), (2, s0, s2)}
RSs4

− −
Relay s3(RSs3

= 010) s4(RSs2
= 001)

Seq. S = {(1, s3), (−1, s3), (3, s0)} S = {(2, s3), (1, s4), (−1, s4)}
RSs2

{(−1, s1, s1), (−1, s3, s3), (1, s0, s1)} −
RSs3

− {(−2, s1, s2), (1, s4, s4), (−1, s4, s4)}
RSs4

{(1, s3, s3), (−1, s3, s3), (3, s0, s3)} −

Figure 2.8: The routing loop problem in DRS. s0 is the sink. a) Shows which
nodes are in the transmission ranges of each other. b) The first round in which
circle nodes belonging to RS = 100 are transmitting. c) The second round in
which square nodes belonging to RS = 010 are transmitting. d) The last round in
which triangular nodes are transmitting which have RS = 001. Note that nodes
s3 and s4 belong to two data reporting groups. They form a loop and cannot
reach the sink s0.

30

0 5 10 15 20 25 30
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Time

C
ov

er
ag

e
R

at
io

Figure 2.9: GoC-L in a sample coverage plot for GoC = 0.9.

2.8 Definition of Sensor Network Lifetime for

Partial Coverage

In [44], lifetime for partial coverage is defined as the time interval until the

coverage drops below GoC for the first time and in [47], it is defined as the time

it takes for the coverage to drop below, and never exceed a given threshold. Our

definition lies between these two definitions.

Due to node failures or temporary disconnectivity because of the scheduling,

network coverage can drop below a threshold for a round and then exceed the

threshold again. Therefore, we define the GoC lifetime (GoC-L) of the network

as the number of rounds for which the coverage ratio is greater than or equal

to GoC. We exclude the rounds where coverage drops below GoC but add all

the rounds to GoC-L where coverage exceeds GoC. Figure 2.9 shows a sample

coverage plot in which GoC-L corresponds to the number of circles not marked,

i.e., GoC-L = 20. According to the definition in [44], this lifetime is equal to 6

and according to the definition in [47], this lifetime is 24.

31

2.9 Our Contribution

A practical sleep scheduling algorithm has to be distributed, simple and scalable.

The algorithm should be distributed in the sense that nodes should only use

local information to decide their states. It should be simple since sensor nodes

do not have very powerful processors. Also, it should be scalable and adaptable

to many network configurations, independent from the number of nodes and the

field size. Nodes scheduled to be active should both satisfy coverage requirements

and should be connected.

In the literature, coverage and connectivity issues are considered separately

in many stuides which is not a practical solution. Also, most of the studies in

the area assume precise location information of nodes which is not available in

many practical sensor network applications. Most of the studies do not provide

an upper bound on the achievable network lifetime and only compare the pro-

posed algorithms with the case when no sleep scheduling is applied or with other

existing algorithms.

Also, the fact that the lifetime of a network can be extended by exploiting

partial coverage is not extensively studied in the literature and is a new approach

in sleep scheduling algorithms. Coverage requirement below one hundred per-

cent increases the possible selection of the active set of nodes. Thus, the sleep

scheduling algorithm has more choices when compared with the hundred per-

cent coverage case. It is challenging to choose the most efficient subset of nodes

in terms of energy consumption. We address the lack of research in the area

of partial coverage and introduce a heuristic sleep scheduling algorithm for this

purpose.

First, we provide an analysis of finding the minimum number of sensors that

should be deployed to an area in order to provide various coverage levels. We find

the minimum set of active sensors among these deployed sensors such that the

32

coverage requirement is satisfied. Before starting to design any sleep scheduling

algorithm, this analysis can be useful in determining how many nodes to deploy

to an area and in estimating how many of the deployed nodes are required to

satisfy the desired coverage level.

We provide an ILP formulation for finding the optimum sleep scheduling in

order to find out for how long can the network sustain a certain coverage level

when the nodes are scheduled in an optimum way. In evaluating a sleep schedul-

ing algorithm, an upper bound is very important for observing the performance of

the algorithm. Although the ILP formulation is centralized and requires global

knowledge about the network, the set of active nodes chosen by the optimum

algorithm at each round can be a valuable information for a sleep scheduling

algorithm design.

After this pre-deployment analysis, we propose a distributed algorithm for

sleep scheduling which does not require location information and is simple and

scalable. Nodes only use information they obtain from neighbors within their

transmission range. The algorithm uses the sink, which is assumed to have abun-

dant energy, to schedule nodes in the first tier of the network. Sink uses a simple

ILP formulation in order to choose the most energy efficient subset of nodes from

tier 1 to be active. Using the sink in such a procedure is a novel approach in sleep

scheduling. We also allow nodes in the network to schedule other nodes by using

local information. Since no location information is available, nodes are chosen

with some randomness. The undesired effects of the randomness is reduced by

using the sink and other nodes to schedule their neighbors. We compare our

algorithm with the optimum solution which provides an upper bound. Also, the

algorithm is compared with the DRS algorithm and another algorithm which we

propose in Chapter 6.

33

Chapter 3

The Minimum Connected Set

with Sufficient Coverage

Before deploying a sensor network to a remote area, the number of sensors to de-

ploy should be determined since this will directly affect the cost and performance

of the network. Also, finding the minimum number of nodes which can satisfy

user constraints while being connected among the deployed sensors is an impor-

tant issue since it reflects the redundancy in the network and is an important

data for a sleep scheduling algorithm. A sleep scheduling algorithm designed for

a network where this minimum number is very close to the deployed number of

nodes may differ completely from a sleep scheduling algorithm designed for a

network where this minimum number is very less than the deployed number.

In this section, first, an analysis for finding the minimum number of sensors

that should be deployed in order to provide a certain user defined coverage level,

named as Grade of Coverage (GoC), without considering connectivity, i.e., as-

suming every node can directly reach the sink node in one hop, is presented.

Note that 0 ≤ GoC ≤ 1 and GoC equals 1 corresponds to 100% coverage of the

field, GoC equals 0.8 corresponds to 80% coverage of the field and so on. Next,

34

this analysis is extended to find the number of nodes, with limited transmission

ranges, that should be deployed in order to satisfy GoC while being connected

with high probability. This way, we get rid of the impractical assumption of

a single hop network. Note that, since the deployment of nodes is a random

procedure, the number of nodes to be deployed should be selected so as to as-

sure coverage and connectivity with a probability close to 1. Finally, among the

deployed nodes, the minimum number of nodes which satisfy both coverage and

connectivity constraints is found.

3.1 Minimum Set of Nodes Satisfying Only

Coverage

When connectivity of the sensor nodes is not an issue, a theoretical expression

for the number of nodes to deploy in order to satisfy a certain GoC can be found

assuming a disribution function for the nodes.

As mentioned in Section 2.7, the work in [46] assumes that the sensor nodes

are deployed in a field as in Figure 2.4 in which the monitored field is constrained

to be at a distance Rs to the deployed field, where Rs is the sensing radius of

a node. Thus, the monitored area is not the same with the sensor deployment

area which is not a square.

Instead of making this peculiar assumption, we assumed that the nodes are

deployed over a square area, and the whole square area is monitored as shown

in Figure 3.1. Also, we do not assume that the deployment field has curves at

the four edges of the area as in Figure 2.4. This makes the calculations more

practical and also applicable to the setting used in this thesis. The analysis is

inspired from the analysis of [46], yet extends it to a more practical scenario. As

in [46], we assume that the nodes are uniformly distributed in the network field,

35

CA 1 2A

3A

4A

1B
2B

3B 4B

n

n

m

m

r

R

x

x
y

s

R s

R s

Figure 3.1: The network field divided into seperate regions. We assume that the
sensor deployed and the monitored areas are the same.

i.e., the horizontal and vertical coordinates of the nodes are two independent

random variables with uniform distributions.

The probability of a point in the field not being covered by a sensor node is

equal to the probability that the sensor node is at a distance larger than Rs, i.e.,

the probability that the sensor node is outside the area of a circle with radius

Rs centered at the point. However, this is not valid for every point in the field.

In a field as in Figure 3.1, points in regions A1, A2, A3 or A4 (A regions), in

regions B1, B2, B3 or B4 (B regions) and in region C, have different probabilities

of not being covered since in the A and B regions, a node should be outside a

non-circular area for not covering the point. The probability of a point in area C

of not being covered by a sensor is the same as in Eq. (2.1). Note that, because

of the assumptions, all the points are in region C in [46] since the monitored area

is inside the sensor deployed area with a distance of Rs, and thus a sensor node

should always be outside a circular area for not covering a point.

A point in A1 region is not covered if there is no sensor node in the unshaded

region of Figure 3.2. However, this area changes as the distance x shown in

36

Figure 3.1 changes. The probability of a point in A1 not being covered will be

equal to Eq. (2.1) with S equal to the integral of the unshaded area with respect

to x. This probability is the same for all A regions due to symmetry. The

unshaded area S ′ in Figure 3.2 for all points on a line with given distance x can

easily be calculated.

S ′
A(x) = πR2

s −R2

s arccos(1− x

Rs

) + (Rs − x)
√

R2
s − (Rs − x)2 (3.1)

Note that S ′
A(0) = πR2

s and S ′
A(r) = πR2

s/2. Now, we have to average S ′
A(x)

over all x distances to find the probability of point in region A not being covered.

A =
n

nr

∫ Rs

0

S ′
A(x)dx

= R2

s

(

π − 2

3

)

(3.2)

Similarly, a point in B1 region is not covered if there is no sensor node in the

unshaded region of Figure 3.3. However, this area changes as the distances x

and y shown in Figure 3.1 change. The probability of a point in B1 not being

covered is equal to Eq. (2.1) with S equal to the integral of the unshaded area

with respect to x and y. This probability is the same for all B regions. The

unshaded area in Figure 3.3 for a given distance x and y distance is given as

follows.

S ′
B(x, y) =

π/2 + arcsin(1− x
Rs

) + arcsin(1− y

Rs
)

2
R2

s +
(Rs − x)

√

R2
s − (Rs − x)2

2

+
(Rs − y)

√

R2
s − (Rs − y)2

2
+ (Rs − x)(Rs − y) (3.3)

We have to average S ′
B(x, y) over all x and y distances to obtain the probability

of not being covered.

B =
1

R2
s

∫ Rs

0

∫ Rs

0

S ′
B(x, y)dxdy

= Rs

(π

2
− 1

)

+ R2

s

(
π

4
+

7

12

)

(3.4)

Finally, multiplying the probability of a point in a given area (A, B, or C)

not being covered by any sensor node by the corresponding area, we obtain P

37

x R -x

R

s

a
a

.

.

S

S’

s

R

s

Figure 3.2: Coverage area of a point in area A1, A2, A3 or A4.

x R -x

a
a

.

.
C

y

R -y

bb
.

c

d

c

d

sR

sR

sRs

s

Figure 3.3: Coverage area of a point in area B1, B2, B3 or B4.

38

which is the probability of a general point in the field not being covered.

P =
n2

m2

(
m2 − πR2

s

m2

)

+
4nRs

m2

(
m2 − A

m2

)

+
4R2

s

m2

(
m2 −B

m2

)

=
1

m4

(
n2(m2 − πR2

s) + 4Rsm
2(n + Rs)− 4Rs(nA + RsB)

)
(3.5)

The probability of a point being covered by at least one sensor node among k

nodes is equal to GoC which is also equal to 1 − P k from which the minimum

number of sensors to satisfy GoC can be easily found.

k =

⌈

log(1−GoC)

log
(

1

m4 (n2(m2 − πR2
s) + 4Rsm2(n + Rs)− 4Rs(nA + RsB))

)

⌉

(3.6)

Figures 3.4 and 3.5 show the number of nodes obtained from Eq. (3.6) and

from simulations to provide various levels of GoC for a 100m-by-100m and a

200m-by-200m network, respectively, for various sensing radiuses. Every point

obtained from simulations in the plots are averages of 100 runs. The simulations

and Eq. (3.6) greatly overlap.

Although a uniform distribution for the locations of the sensor nodes is as-

sumed, any distribution can be used for finding k. The probability that a point

is not covered can be found by integrating the distribution function of the nodes

over the areas of Figures 3.2, 3.3 or a circular area depending on the location of

the point. Then, with a similar analysis to the one presented above, k can be

found.

3.2 Minimum Set of Nodes Satisfying Coverage

and Connectivity

In the previous section, connectivity was not considered and it was assumed

that every node can reach the sink node in a single hop. In this section, both

connectivity and GoC is considered. A limited transmission range equal to Rt for

39

0 10 20 30 40 50 60
0

10

20

30

40

50

60

70

80

90

100

analytical
simulation

Rs = 40m

Rs = 30m

Rs = 20m

Required Number of Nodes

C
o
ve

ra
g
e
 P

e
rc

e
n
ta

g
e
 (

%
)

Figure 3.4: Analytical and simulation results for a 100m by 100m network for
sensing radii 20m, 30m and 40m.

0 10 20 30 40 50 60
0

10

20

30

40

50

60

70

80

90

100

analytical
simulation

Rs = 35m

Rs = 50m

Rs = 75m

Required Number of Nodes

C
ov

er
ag

e
P

er
ce

nt
ag

e
(%

)

Figure 3.5: Analytical and simulation results for a 200m by 200m network for
sensing radii 35m, 50m and 75m.

40

each node is assumed and the minimum number of sensors which are connected

and satisfy GoC is found by using simulations. First, the minimum number of

uniformly deployed connected sensors which satisfy GoC with 0.95 probability

with 95% confidence is found. This minimum number of sensors is called Nmin. In

other words, when Nmin sensors are thrown with uniformly distributed locations

to a square field, they form a connected set which provides a coverage larger

than or equal to GoC with probability 0.95 with 95% confidence. In doing this,

we start from an initial guess and then by increasing this number by one at each

iteration we converge to Nmin.

Tables 3.1 and 3.2 show Eq. (3.6) and the Nmin values for a 200m-by-200m

and 300-by-300m network field, respectively, for Rt and Rs equal to 50m. The

second column in the tables shows the number of nodes k which satisfy GoC

without considering connectivity obtained from Eq. (3.6). The third column

labeled by Nmin represents the number of nodes that satisfies GoC while being

connected with the probability value given in the fourth column. Fifth and sixth

columns are the 95% confidence intervals for the corresponding probabilities and

1,000 runs are taken in computing these intervals.

There is a big difference between the number of nodes required to satisfy

GoC without considering connectivity and Nmin. For example, for GoC = 0.9 in

a 200m-by-200m field, only 14 nodes are required for coverage when connectivity

is not considered. However, in order to connect these nodes, we need an extra

29 nodes.

After finding Nmin, an integer linear program, called integer linear program

finding the minimum connected set satisfying the desired coverage (ILPMinCon-

Cov) is implemented which finds the minimum set of sensors, among these Nmin

deployed sensors, which satisfy coverage and connectivity constraints.

41

Note that, in deriving the numerical results, it is assumed that the sensor

locations are uniformly distributed. However, this approach can be applied to any

kind of sensor distribution since the linear program and the preceding analysis

only requires the locations of the sensor nodes as inputs and does not assume

any specific distribution.

3.3 Minimum Connected Set of Nodes among

Nmin Nodes Satisfying GoC (ILPMinConCov)

ILPMinConCov finds the minimum set of nodes among Nmin uniformly deployed

nodes which are connected and satisfy GoC. We assume that the field that will

be sensed is represented by a grid structure. A grid i is covered if it is in the

sensing range of at least one active node, i.e., at a distance less than or equal to

Rs to at least one active node, and it is not covered if it is not in the sensing

range of any active node. Grid Parameter (GP) represents the number of the

grids used to represent the field of the network. In our case, a grid corresponds

to a square and each grid is covered if at least one node covers the center of

this square, i.e., if the center of the square is in the sensing range of at least

one operating sensor node. Decreasing the size of each grid will increase the

precision of the coverage percentage calculations. However, it will also cause a

huge increase in computation time. We observed that using 4m-by-4m square

for each grid is a good choice in terms of computation time and precision for the

network field sizes we study. Thus, for a 200m-by-200m field, GP = 2500.

It is assumed that nodes which are scheduled to be active sense the environ-

ment and forward their data together with their descendants’ data towards the

sink. In forwarding the data towards the sink, nodes use their hop count with

respect to the sink as a reference and send data to their neighbors with smaller

hop counts. For example, a node which has an hop count 2, sends its data to

42

one of its neighbors with hop count 1. This way, routing loops are avoided and

nodes send their data by using minimum number of hops to the sink. Definitions

of hop count and tier number were given in Section 2.1.

Now, the inputs, decision variables and constraints in ILPMinConCov will be

described.

• N : Number of nodes in the network

• Ti : Tier number of node i, ∀i ∈ [1, N]

• si : Selection variable of node i, ∀i ∈ [1, N]

si =







1, node i is used in the minimum set

0, otherwise
∀i ∈ [1, N] (3.7)

• fij : The flow parameter

fij =







1, node i uses node j as its next hop

0, otherwise
(3.8)

∀(i, j) : {i ∈ [1, N], j ∈ [1, N]}

• vi : Coverage variable for grid i

vi =







1, center of grid i is covered by at least one active node

0, center of grid i is not covered by any active node
(3.9)

∀i ∈ [1, GP]

• cni : Coverage matrix of the field

cni =







1, center of grid i is in the sensing range of node n

0, otherwise
(3.10)

∀(n, i) : {n ∈ [1, N], i ∈ [1, GP]}

Inputs

The input parameters are N, Ti, cni.

43

Decision Variables

The decision variables in the linear formulation are fij, si, vi. Coverage variable

vi is shown for a sample network with a 4x4 grid and 5 active nodes in Figure 3.6.

1 32 4

5 6 7 8

9 10 11 12

13 14 15 16

active node

Rs

v1 = 0, v2 = 1, v3 = 0, v4 = 0
v5 = 0, v6 = 1, v7 = 1, v8 = 1
v9 = 0, v10 = 1, v11 = 1, v12 = 0

v13 = 0, v14 = 1, v15 = 0, v16 = 0

Figure 3.6: The coverage variable {vi} where Rs is the sensing range of the nodes.

Constraints

A node can only forward to a node with tier number less than its tier number.

fij = 0 if Ti ≤ Tj, ∀i, j (3.11)

The sum of the outgoing flows from a node is zero if the node is sleeping and

one otherwise.
∑

j

fij = si, ∀i (3.12)

44

No flow should be directed to a sleeping node.

fij ≤ sj, ∀i (3.13)

The following three equations are for the coverage requirements. If all the nodes

covering grid i are asleep, then grid i is not covered.

vi ≤
∑

n: cni=1

sn, ∀i (3.14)

If any of the nodes whose sensing area covers grid i is active, then grid i is

covered.

vi ≥ cnisn, ∀i, n (3.15)

The next constraint forces the number of covered grids to be larger than a certain

percentage, the GoC.
∑

i

vi ≥ GoC×GP (3.16)

Objective

The objective function is to minimize the number of connected sensor nodes

which satisfy GoC and is given below.

Minimize
∑

i

si (3.17)

The ILPMinConCov column in Tables 3.1 and 3.2 shows the results of the

integer linear program for the corresponding GoC values for a 200m-by-200m and

300-by-300m network field, repectively. The following two columns are the 95%

confidence intervals for the 100 runs taken for each GoC. In Table 3.2, the linear

program could not provide results for the 100% coverage case in finite amounts

of time, so that entry of the table is displayed as not available.

45

For some GoC values, ILPMinConCov results are below the theoretical num-

bers displayed in the second column. For example, for the 200m-by-200m net-

work, 14 uniformly distributed nodes are sufficient to provide 90% coverage.

However, among 43 nodes, there is a set of nodes with a population of 11.1

which can satisfy 90% coverage and which are connected. Since, these nodes

are selected from a larger number of nodes uniformly distributed in the area

and since they are not constrained to be uniformly distributed, ILPMinConCov

produces lower results than the theoretical value.

Figures 3.7 and 3.8 shows the plot of the minimum number of nodes (ob-

tained by ILPMinConCov) together with the confidence intervals that should be

active among Nmin uniformly deployed nodes in order to satisfy GoC given in

the horizontal axis.

46

GoC
Eq.

Nmin

Ave- Lower Upper ILPMin- Lower Upper

(3.6) rage Bound Bound ConCov Bound Bound

0.00 0 0 1.000 1.000 1.000 0.0 0.000 0.000

0.05 1 15 0.975 0.964 0.986 1.0 1.000 1.000

0.10 1 15 0.963 0.952 0.973 1.0 1.000 1.000

0.15 1 15 0.959 0.949 0.969 1.0 1.000 1.000

0.20 1 19 0.985 0.975 0.994 2.0 2.000 2.000

0.25 2 19 0.977 0.967 0.987 2.0 1.990 2.030

0.30 2 19 0.957 0.946 0.968 2.4 2.325 2.535

0.35 3 22 0.973 0.963 0.984 3.1 3.064 3.196

0.40 3 22 0.956 0.946 0.966 3.5 3.387 3.613

0.45 4 24 0.959 0.949 0.970 4.2 4.054 4.306

0.50 4 25 0.954 0.944 0.964 4.7 4.552 4.868

0.55 5 29 0.972 0.963 0.982 5.2 5.109 5.351

0.60 6 29 0.965 0.956 0.974 6.1 5.941 6.279

0.65 7 30 0.950 0.939 0.961 6.7 6.546 6.854

0.70 8 33 0.968 0.958 0.978 7.4 7.203 7.577

0.75 9 34 0.953 0.943 0.963 8.1 7.948 8.272

0.80 10 37 0.971 0.960 0.981 9.1 8.864 9.236

0.85 12 40 0.968 0.957 0.978 9.9 9.751 10.089

0.90 14 43 0.964 0.954 0.974 11.1 10.908 11.259

0.95 19 50 0.965 0.955 0.974 12.5 12.356 12.724

0.99 29 66 0.967 0.956 0.978 14.1 13.889 14.231

1.00 - 92 0.962 0.952 0.971 15.4 15.214 15.506

Table 3.1: Minimum number of uniformly deployed nodes found to satisfy GoC.
The results of Eq. (3.6), Nmin and ILPMinConCov for a 200m-by-200m network
for sensing and transmission radius of 50m for each node.

47

GoC
Eq.

Nmin

Ave- Lower Upper ILPMin- Lower Upper

(3.6) rage Bound Bound ConCov Bound Bound

0 0 0 1.000 1.000 1.000 0.0 0.000 0.000

0.05 1 33 0.954 0.943 0.964 1.0 1.000 1.000

0.10 2 42 0.964 0.954 0.974 2.0 2.000 2.000

0.15 3 48 0.961 0.951 0.970 2.8 2.763 2.917

0.20 3 49 0.957 0.945 0.969 4.0 3.978 4.102

0.25 4 52 0.958 0.948 0.968 5.1 5.014 5.206

0.30 5 53 0.961 0.951 0.970 6.3 6.208 6.452

0.35 6 56 0.968 0.958 0.977 7.5 7.387 7.673

0.40 7 59 0.957 0.946 0.967 8.8 8.647 8.953

0.45 8 62 0.966 0.956 0.976 9.9 9.779 10.041

0.50 10 65 0.955 0.944 0.966 11.6 11.381 11.840

0.55 11 65 0.955 0.944 0.965 12.8 12.660 13.000

0.60 12 69 0.959 0.948 0.970 14.2 13.964 14.336

0.65 14 67 0.963 0.942 0.985 15.9 15.720 16.120

0.70 16 75 0.964 0.954 0.974 17.3 17.010 17.670

0.75 19 77 0.960 0.950 0.969 18.7 18.531 18.909

0.80 22 79 0.962 0.952 0.972 20.7 20.509 20.971

0.85 25 84 0.953 0.943 0.962 22.6 22.349 22.891

0.90 31 92 0.960 0.949 0.971 25.0 24.653 25.247

0.95 40 104 0.959 0.948 0.970 27.3 26.991 27.589

0.99 61 135 0.953 0.943 0.963 30.1 30.348 30.632

1.00 - 218 0.959 0.947 0.970 n/a n/a n/a

Table 3.2: Minimum number of uniformly deployed nodes found to satisfy GoC.
The results of Eq. (3.6), Nmin and ILPMinConCov for a 300m-by-300m network
for sensing and transmission radius of 50m for each node.

48

0 10 20 30 40 50 60 70 80 90 100
0

2

4

6

8

10

12

14

16

Coverage Percentage

N
um

be
r o

f N
od

es
 fr

om
 IL

PC
on

C
ov

Figure 3.7: Minimum number of active nodes for a given GoC in a 200m-by-200m
network where Rs = 50m and Rt = 50m. Bars represent the 95% confidence
intervals of the simulation results.

0 10 20 30 40 50 60 70 80 90 100
0

5

10

15

20

25

30

Coverage Percentage

N
um

be
r o

f N
od

es
 fr

om
 IL

P
C

on
C

ov

Figure 3.8: Minimum number of active nodes for a given GoC in a 300m-by-300m
network where Rs = 50m and Rt = 50m. Bars represent the 95% confidence
intervals of the simulation results.

49

Chapter 4

Centralized Optimum Sleep

Scheduling

The aim of this thesis is to design a sleep scheduling algorithm which ensures

connectivity of the operating nodes and at the same time provides a coverage

ratio above a user defined level, named as Grade of Coverage (GoC), for as long

as possible. In this chapter, we find the maximum achievable lifetime of such a

network by using integer linear programming techniques. This maximum lifetime

is used in Chapter 6 to evaluate our distributed algorithm.

After describing the network model that is used throughout the thesis, two

ILP formulations for the cases when there is no aggregation and when there is

full aggregation is proposed. These linear formulations are combined together

with the algorithm given in Section 4.2.2 for finding the maximum number of

rounds for which the network coverage can be held above GoC.

50

4.1 Network Model

In this section, the basic concepts and assumptions about the network model

used in the thesis is introduced.

First of all, it is assumed that the sensor network is uniformly deployed, so

that the locations of the nodes are uniformly distributed in the area, to a square

area and consists of N nodes and 1 sink. Sink is located at the origin point (0, 0)

of the field and has higher computation capability than other nodes, i.e., it has

abundant energy and memory resources.

It is assumed that nodes which are scheduled to be active sense the environ-

ment and forward their data together with their descendants’ data towards the

sink. In forwarding the data towards the sink, nodes use their hop count with

respect to the sink as a reference and send data to their neighbors with smaller

hop counts. For example, a node which has an hop count 2, sends its data to

one of its neighbors with hop count 1. This way, the routing loops are avoided

and nodes send their data by using minimum number of hops to the sink. The

proposed algorithms choose the most energy efficient method in doing this. The

terms hop count and tier number are used interchangeably during the thesis.

Definitions of hop count and tier number were given in Section 2.1. We allow

nodes to forward data only to their neighbors with smaller hop counts because

when nodes are allowed to forward data to all their neighbors, the linear program

takes very long time. However, since the network is dense, this routing choice

will not result in a big performance difference.

The transmission range (Rt) and the sensing range (Rs) are constant, i.e.,

they cannot be modified by the sensor nodes. Also, the network is static, i.e.,

nodes are not mobile.

51

For the energy consumption, it is assumed that every sensor node has an

initial energy of Einit and every data packet transmitted consumes an energy

of Et and every packet received consumes an energy of Er. Also, additional

energy consumption is associated with the sleep and routing processes which are

described in the later sections.

Two schemes are assumed for data forwarding: in the first one, all the packets

have to be forwarded without any processing in the sensor nodes (no aggrega-

tion) and in the second one, all the packets are assumed to be combined into

a single packet before transmitting (full aggregation). No aggregation and full

aggregation cases are considered separately in proposing the ILP formulations

since in the no aggregation case, data from a node in tier X has to pass from

a node in tier X − 1, a node in tier X − 2, . . . , and a node in tier 1 to reach

the sink. In order to account for the energy consumption of each individual

node, a flow variable which contains the path as well as the source of the data

passing through the path has to be defined. However, in the full aggregation

case, since every node only transmits a single packet regardless of the number of

packets it receives, a flow variable which contains only the path of forwarding is

sufficient in calculating the energies. This discussion will become more clear in

the description of the flow variable in Section 4.2.1.

The impact of full aggregation in terms of the number of packets each node

has to transmit and receive is important. From Figure 4.1, where there is no

aggregation, it can be observed that the nodes closer to the sink carry very high

loads whereas in the full aggregation case, the number of one hop descendants is

more important than the tier number as illustrated in Figure 4.2. Note that, tier

1 nodes, when there is no aggregation, receive {6, 8, 11, 13} packets and trans-

mit {7, 9, 12, 14} packets respectively after including their own packets. So, a

total of {13, 17, 23, 27} high energy transceiver operations are required. How-

ever, in the full aggregation case, tier 1 nodes receive only {2, 2, 3, 4} packets

52

and transmit {1, 1, 1, 1} packets since they are assumed to combine each packet

into only one packet. Thus, a total of {3, 3, 4, 5} high energy transceiver opera-

tions are required. It is easy to notice the enormous difference in terms of energy

consumption in the no aggregation and full aggregation cases. Although, full

aggregation seems very energy efficient, it is impractical for many sensor network

applications since it may not be possible in many cases to combine data in such

a way and even if it is possible, individual sensor nodes may not have such high

processing capabilities.

We use a time driven data reporting model in which the data reporting oper-

ation is periodic and the network operation occurs in rounds. In order to realize

such a network operation, clocks in all sensors first need to be synchronized. A

MAC protocol, such as S-MAC [48], a commonly used MAC protocol which both

provides time synchronization among nodes and allows nodes to have their own

scheduling, can be used. Sensor nodes save energy by sleep and listen schedules

in the MAC layer in S-MAC.

At every round, active nodes send their data together with their descendants’

data to the sink. The proposed algorithms take place at the beginning of each

round and schedule nodes to sleep or to be active at that round. For each round,

the coverage ratio, which is the proportion of the covered area provided by the set

of connected active nodes to the entire sensing area is calculated and compared

with GoC and the energies of the nodes are dropped depending on the number

of packets they receive and transmit and on their scheduling operations.

4.2 Optimum Scheduling Algorithms

ILP formulations which aim to maximize the number of rounds in which the

network coverage is above GoC for the no aggregation and full aggregation cases

are described separately.

53

sensor node sink

0/1

0/1

2/3

0/1

0/1

0/1

0/1

1/2

0/1

1/2

2/3

0/1

2/3

6/7

7/8

13/14

4/5
2/3

1/2

0/1

1/2

2/3
5/6

11/12

0/1

0/1

0/1
0/1

8/9

3/4

2/31/2

0/1

0/1

0/1

1/2

2/3

2/3

0/1

0/1

1/2

0/1

42

recevied / # transmitted

Figure 4.1: Number of packets received and transmitted when there is no aggre-
gation applied.

sensor node sink

0/1

0/1

1/1

0/1

0/1

0/1

0/1

1/1

0/1

1/1

1/1

0/1

1/1

2/1

3/1

2/1

2/1
2/1

1/1

0/1

1/1

2/1
2/1

4/1

0/1

0/1

0/1
0/1

3/1

3/1

1/11/1

0/1

0/1

0/1

1/1

1/1

1/1

0/1

0/1

1/1

0/1

4

recevied / # transmitted

Figure 4.2: Number of packets received and transmitted when there is full ag-
gregation applied.

54

By the ILP formulations, the optimum sleep schedules of nodes and the op-

timum routing paths along which the selected active nodes will forward their

data are found. These optimum scheduling algorithms require exact positions

of sensor nodes, the remaining energies of all the nodes, global knowledge about

the network and long run times. They are also centralized, i.e., the schedules of

the nodes are computed at a central point with location and energy informations

and then somehow all nodes become aware of their schedules with some energy

cost. Therefore, these algorithms cannot be used in many practical sensor net-

work applications. However, the results of these ILP schemes will provide the

best possible scheduling of nodes and routing of packets while satisfying GoC.

These results will also allow us to evaluate and compare the performance of

the proposed distributed sleep scheduling algorithm which will be explained in

Chapter 5.

4.2.1 Optimum Node Scheduling Without Aggregation

(ILPNA)

In this section, an optimum node scheduling and routing scheme, for the case

when there is no aggregation, using an integer linear programming approach is

proposed. This algorithm is named as integer linear program with no aggregation

(ILPNA).

The formulation finds an optimum set of nodes which will operate during a

round such that the coverage constraint defined by the user is satisfied. In doing

this, the program aims to maximize the remaining energies of every node giving

priority to nodes with lower tier numbers, which are nodes closer to the sink,

and to nodes with lower energies. The energies of nodes reduce depending on

their descendant numbers and sleep modes, i.e., whether active or sleeping, at

each round. The program assumes global knowledge of the network.

55

In ILPNA, there is no aggregation so that nodes transmit the data of both

themselves and their descendants’, which contain their own descendants’ data

and so on. The total number of data packets which the node will receive has to

be known in order to calculate the amount of energy it will consume. Therefore,

a 3 dimensional flow parameter for discriminating the sources of the data packets

has to be used.

At the beginning of each round, the nodes are sorted according to their ener-

gies and tier numbers. First, the nodes are sorted with respect to their tier num-

bers in ascending order. Then, the nodes with the same tier number are sorted

with respect to their energy levels again in ascending order (see Figure 4.3).

Sorted IDs (SID) contains the node IDs of the sorted nodes.

Node ID Tier Number Energy

1 1 3

2 3 6

3 1 7

4 2 1

5 3 9

6 1 4

7 2 5

8 3 2

SID = [1, 6, 3
︸ ︷︷ ︸

T ier1

, 4, 7
︸ ︷︷ ︸

T ier2

, 8, 2, 5
︸ ︷︷ ︸

T ier3

]

Figure 4.3: Forming the SID.

ILPNA first tries to maximize the energy of node SID1. After finding a

solution for this objective, this result is added as a new constraint to the ILP

formulation in the next round. Then, ILPNA tries to maximize the energy of

node SID2 with the additional constraint in the energy of node SID1 and so on.

There are many choices for the energies of other nodes when the energy of node

56

SID1 is equal to the maximum value found by the program. Thus, it is better

to choose the best among these possible solutions. So, we continue adding the

previous solutions as constraints and try to maximize the energy of the next node

in the SID until a number called Energy Optimization Depth (EOD). Intuitively,

choosing this number as large as possible will give better results in the sense that

more nodes’ energies will remain as high as possible. Therefore, EOD is chosen

to be equal to the number of nodes (N) which yields the best possible solution

since in this case every nodes’ energy is maximized. It is interesting to note that,

in many cases, choosing EOD equal to the size of the tier 1 nodes yields exactly

the same results with choosing it equal to N in shorter run times. This is logical

since the bottleneck nodes in the network are the tier 1 nodes.

The algorithm used for the maximization of energies process described here

is given in Figure 4.5 and described in Section 4.2.2.

Parameters

Now, the constants and variables used in ILPNA will be described.

• N : Number of nodes in the network

• Ti : Tier number of node i, ∀i ∈ [1, N]

• ei : Energy of node i, ∀i ∈ [1, N]

• e
′

i : Energy of node i after the round, ∀i ∈ [1, N]

• si : Sleeping variable of node i, ∀i ∈ [1, N]

si =







1, node i is active

0, node i is sleeping
∀i ∈ [1, N] (4.1)

57

• fn
ij : The flow parameter (see Figure 4.4)

fn
ij =







1, node n uses path i→ j

0, otherwise
(4.2)

∀(i, j, n) : {i ∈ [1, N], j ∈ [1, N], n ∈ [1, N]}

sensor node i sink

2

1

9

10

3

6

7

4

5

8

0

i

13

11

12

14

f 1
1,0, f 2

2,1, f 2
1,0, f 3

3,0, f 4
4,3, f 4

3,0,
f 5

5,3, f 5
3,0, f 6

6,0, f 7
7,6, f 7

6,0, f 8
8,7,

f 8
7,6, f 8

6,0, f 9
9,0, f 10

10,9, f 10
9,0, f 11

11,12,
f 11

12,9, f 11
9,0, f 12

12,9, f 12
9,0, f 13

13,4, f 13
4,3,

f 13
3,0, f 14

14,0

Figure 4.4: The flow variable fn
ij. The fn

ij’s shown are equal to 1, others are equal
to 0.

• vi : Coverage variable for grid i, see Figure 3.6

vi =







1, center of grid i is covered by at least one active node

0, center of grid i is not covered by any active node
(4.3)

∀i ∈ [1, GP]

GP is defined in Section 3.3.

58

• cni : Coverage matrix of the field

cni =







1, center of grid i is in the sensing range of node n

0, otherwise
(4.4)

∀(n, i) : {n ∈ [1, N], i ∈ [1, GP]}

• xij : Variable to force each node to forward its own data and all received

data only to one link, i.e., to avoid splitting of traffic

xij =







1, node i uses node j as its next hop

0, otherwise
(4.5)

∀(i, j) : {i ∈ [1, N], j ∈ [1, N]}

• Et : Transmit energy per packet

• Er : Receive energy per packet

• Es : Energy per round consumed for sleep scheduling, which depends on

whether the node sleeps or not, the tier number of the node and the pa-

rameters ASD and NAS of the heuristic algorithm described in Chapter 5

• Erouting : Energy spent by each node at each round for exchanging routing

messages.

Constraints

Nodes can only forward to nodes with tier numbers less than its tier number.

fn
ij = 0 if Ti ≤ Tj, ∀i, j, n (4.6)

The next constraint expresses the conservation of flows. For the sink, the outgo-

ing flow is zero and the incoming flow corresponding to a source depends on the

sleep mode of that source. For the node itself, there is no incoming flow from

itself but an outgoing flow if the node is not sleeping. Otherwise, the input flow

59

and the output flow should be equal.

∑

j

fn
ij −

∑

j

fn
ji =







sn, i = n

−sn, i = sink

0, otherwise

∀n, i (4.7)

If the node sleeps, there should be no incoming and no outgoing flow through it.

fn
ij ≤ si, ∀n, i, j (4.8)

fn
ji ≤ si, ∀n, i, j (4.9)

The energy of a node will drop in direct proportion with the number of received

and transmitted data packets. Also, some additional energy is consumed de-

pending on the sleep schedule together with a constant energy consumption for

routing.

e
′

i = ei −
∑

n

∑

j

fn
ij · Et −

∑

n

∑

j

fn
ji · Er − Es − Erouting (4.10)

The energy of each node cannot become negative.

e
′

i ≥ 0, ∀i (4.11)

The next three equations force every node to forward all its data to only one

node. Thus, nodes are not allowed to split the traffic. We observed that allowing

nodes to split the traffic does not have a major effect in terms of the number of

rounds achieved. The recent work in [49] supports our observation by showing

that the energy savings of a splittable traffic strategy is relatively small when

compared to the unsplitted strategy. However, the scope of this work is totally

different from ours and they consider neither sleep scheduling nor coverage. But

even in this case, the effects of splitting the traffic are similar.

xij ≤
∑

n

fn
ij ∀i, j (4.12)

xij ≥ fn
ij ∀n, i, j (4.13)

∑

j

xij ≤ 1, ∀i (4.14)

60

The following three equations are for the coverage requirements. If all the nodes

covering grid i are asleep, then grid i is not covered.

vi ≤
∑

n: cni=1

sn ∀i (4.15)

If any of the nodes whose sensing area covers grid i is active, then grid i is

covered.

vi ≥ cnisn ∀i, n (4.16)

The last constraint forces the number of covered grids to be larger than a certain

percentage, the GoC.
∑

i

vi ≥ GoC×GP (4.17)

ILPNA described here has to be implemented many times as explained in Sec-

tion 4.2.1 and the algorithm that will be used for this purpose will be explained

next. Since this algorithm is the same for the aggregation and no aggregation

schemes, we first describe the algorithm and then proceed with the ILP formu-

lation for the full aggregation case.

4.2.2 The Centralized Algorithm (CA)

The centralized algorithm (CA) uses ILPNA multiple times in each round in

order to find the maximum number of rounds in which the coverage is above

GoC. As explained in Section 4.2.1, the initial objective of ILPNA is to maximize

the energy of node SID1, where SID contains the node IDs of the nodes sorted

according to their tier numbers and remaining energies. Then, the result of this

ILP is added as a constraint at the next round and the objective is modified to

maximize the energy of node SID2. Next, the result of this run is also added as

a constraint to the ILP and the objective is now to maximize SID3. This process

continues till the last node in the network. This way, the optimum value for

the energy of each node is found. The reason for employing such an iterative

61

process was explained in Section 4.2.1 and will be rephrased here. The energy

of node SID1 is maximized for possibly multiple alternatives of the energies of

other nodes. Therefore, adding this result as a constraint and maximizing the

energy of the next node in the SID chooses the best solution among this many

alternatives. When this process is repeated for all nodes, we find the best solution

for the energies of each node. Figure 4.5 shows how to use ILPNA to simulate

the network performance.

At the beginning of the algorithm, SID is formed as described in Section 4.2.1,

i.e., the nodes are sorted according to their energies and tier numbers (Step 1).

If a solution cannot be found for the LinearProgram, the program is termi-

nated. Note that if a solution to LinearProgram (Set Objective : Maximize

e
′

SID1
) can be found, which means that the LinearProgram has objective of max-

imizing e
′

SID1
which is the value that the energy of node 1 will take after the

round (see Section 4.2.1), then there is also a solution to LinearProgram (Set

Objective : Maximize e
′

SIDx
) for x = 2, . . . , EOD, (Steps 2-6). The reason will

become clear shortly. Note that LinearProgram corresponds to ILPNA.

The algorithm then adds the most recent solution, i.e., solution of LinearPro-

gram (Set Objective : Maximize e
′

SIDx−1
), as a constraint to the problem, (Steps

7 and 11), and changes the objective to Maximize e
′

SIDx
(Step 10) until energies

of all the nodes are maximized with additional constraints coming from previous

solutions. Note that EOD equals number of nodes N, (Step 9).

When a solution to LinearProgram (Set Objective : Maximize e
′

SID1
) is found

(let result denotes this solution), this means that there exists at least one solution

for which e
′

SID1
≥ result, i.e., at least the solution with e

′

SID1
= result. So, when

LinearProgram (Set Objective : Maximize e
′

SIDx
s.t. 1 < x ≤ EOD) is called,

we certainly have a solution if we have a solution for node 1.

62

Next, the algorithm updates the energies of each node as in equation (4.18)

(Step 14).

ei = ei −
∑

n

∑

j

fn
ij · Et −

∑

n

∑

j

fn
ji · Er − si · Es − Erouting (4.18)

The tier numbers of nodes have to be updated when necessary, i.e., when the

energies of nodes are not sufficient to participate in any network operation, in

other words when they die. When the energy of a node drops below a certain

level, named as CriticalEnergy, that node is deleted from the problem formu-

lation and then the tier numbers are updated accordingly, (Steps 15-18). After

a node’s energy drops below a certain level, the ILP may result in an infeasible

solution whereas a solution exists without that node. Applying Steps (15-18)

remedies this problem.

Finally, the SID is formed again, i.e., nodes are sorted with respect to their

new residual energies and tier numbers, the algorithm is run all over again until

no solution exists, (Step 20).

4.2.3 Optimum Node Scheduling With Full Aggregation

(ILPFA)

In this section, an optimum node scheduling and routing scheme, for the case

when there is full aggregation, using an integer linear programming approach is

proposed. This algorithm is named as integer linear program with full aggregation

(ILPFA).

ILPFA is very similar to ILPNA except that there is full aggregation in the

network. Every node first receives their neighbors’ data. Then, every node adds

its own data and combines all this data into a single packet. For example, a

node can perform simple operations such as finding the average, minimum or

maximum of the received data and its own data and only send one packet in

63

Centralized Algorithm:

1: Sort the Nodes According to their Remaining Energy and Tier Number (Form the

SID);

2: while 1==1 do

3: result←LinearProgram (Set Objective : Maximize e
′

SID1
);

4: if LinearProgram is Infeasible then

5: Terminate the Program;

6: else

7: LinearProgram (Add Constraint : e
′

SID1
≥ result);

8: end if

9: for x = 2 to EOD do

10: result←LinearProgram (Set Objective : Maximize e
′

SIDx
);

11: LinearProgram (Add Constraint : e
′

SIDx
≥ result);

12: end for

13: for i = 1 to N do

14: Update the Energy of Sensor Node i;

15: if ei ≤ CriticalEnergy then

16: Delete Node i from the Problem

17: Recompute Tier Numbers of Each Node

18: end if

19: end for

20: Sort the Nodes According to Their Remaining Energy and Tier Number (Form

the new SID);

21: end while

Figure 4.5: Centralized algorithm for finding the optimum sleep schedule

applications where individual data sensed from each sensor is not important.

Energy comsumption is defined depending on this situation as in Eq. (4.26).

In the full aggregation case, since the amount of data a node will receive

depends only on the number of its one hop neighbors which decide to forward

data to it, there is no need to introduce one more dimension to fij as in the no

aggregation case.

64

The objective function is exactly the same with the objective function of

ILPNA and SID is used in the same way as in ILPNA. The same procedure as

described in Section 4.2.1 is applied for maximizing the remaining energies.

Parameters

Now the constants and variables used in ILPFA are described.

• N : Number of nodes in the network

• Ti : Tier number of node i, ∀i ∈ [1, N]

• ei : Energy of node i, ∀i ∈ [1, N]

• e
′

i : Energy of node i after the round, ∀i ∈ [1, N]

• si : Sleeping variable of node i, ∀i ∈ [1, N]

si =







1, node i is active

0, node i is sleeping
∀i ∈ [1, N] (4.19)

• fij : The flow parameter

fij =







1, node i uses node j as its next hop

0, otherwise
(4.20)

∀(i, j) : {i ∈ [1, N], j ∈ [1, N]}

• vi : Coverage variable for grid i, see Figure 3.6

vi =







1, center of grid i is covered by at least one active node

0, center of grid i is not covered by any avtive node
(4.21)

∀i ∈ [1, GP]

GP is defined in Section 3.3.

65

• cni : Coverage matrix of the field

cni =







1, center of grid i is in the sensing range of node n

0, otherwise
(4.22)

∀(n, i) : {n ∈ [1, N], i ∈ [1, GP]}

• Et : Transmit energy per packet

• Er : Receive energy per packet

• Es : Energy per round consumed for sleep scheduling, which depends on

whether the node sleeps or not, the tier number of the node and the pa-

rameters ASD and NAS of the heuristic algorithm described in Chapter 5

• Erouting : Energy spent by each node at each round for exchanging routing

messages.

Constraints

Nodes can only forward to nodes with tier numbers less than its tier number.

fij = 0 if Ti ≤ Tj, ∀i, j (4.23)

The sum of the outgoing flows from a node is zero if the node is sleeping and

one otherwise.
∑

j

fij = si, ∀i (4.24)

No flow should be directed to a sleeping node.

fij ≤ sj, ∀i (4.25)

The receive energy depends on the number of neighbors using node i as their next

hops and the transmit energy is constant since every node sends only a single

packet if it is not sleeping. Also, some additional energy is consumed depending

on the sleep schedule together with a constant energy consumption for routing.

e
′

i = ei − si · Et −
∑

j

fji · Er − Es − Erouting, ∀i (4.26)

66

The energy of each node cannot become negative.

e
′

i ≥ 0, ∀i (4.27)

The following three equations are for the coverage requirements. If all the nodes

covering grid i are asleep, then grid i is not covered.

vi ≤
∑

n: cni=1

sn, ∀i (4.28)

If any of the nodes whose sensing area covers grid i is active, then grid i is

covered.

vi ≥ cnisn, ∀i, n (4.29)

The last constraint forces the number of covered grids to be larger than a certain

percentage, the GoC.
∑

i

vi ≥ GoC×GP (4.30)

Similar to ILPNA, ILPFA has to be run multiple times for each round. The

algorithm that is run using ILPFA is given in Figure 4.5 and further described

in Section 4.5. The only difference is in the energy update step, i.e., Step 19 in

Figure 4.5. Note that LinearProgram in Figure 4.5 corresponds to ILPFA in

this case. The energy spent at each round for the full aggregation case should

be calculated as follows.

ei = ei − si · Et −
∑

j

fji · Er − Es − Erouting, ∀i (4.31)

This concludes our discussion for the optimum sleep schedules of a network.

The proposed distributed approach to the problem is described next.

67

Chapter 5

Distributed Adaptive Sleep

Scheduling Algorithm (DASSA)

Distributed Adaptive Sleep Scheduling Algorithm (DASSA) schedules sensor

nodes in a dense sensor network to sleep or to operate while ensuring connectivity

of the operating nodes and keeping the coverage ratio of the sensor field above

a certain user specified value, named as Grade of Coverage (GoC), without any

knowledge of sensor locations. The algorithm uses a novel approach for schedul-

ing nodes closer to the sink, which are the critical nodes in a network since all

traffic has to pass through them to reach the sink. The algorithm is adaptive in

the sense that it reconfigures itself at the beginning of each round depending on

the residual energies of sensor nodes and continues operation until none of the

nodes in the network are able to reach the sink.

The primary objectives of any algorithm designed for a sensor network can

be classified as energy efficiency, computational simplicity and scalability.

Energy efficiency DASSA schedules many of the nodes in the network not to

operate as long as GoC is satisfied. This not only reduces the overall energy

consumption, but also the network traffic and packet collisions. Since the

total number of data forwarded in the network decreases and the sleeping

68

nodes do not spend any energy at all, the overall energy comsumption

of the network decreases. Also, DASSA chooses the set of nodes with

highest residual energies to be active which further contributes to its energy

efficiency.

Computational Simplicity Each node only performs simple calculations such

as finding the maximum number in a small set of numbers which makes

DASSA computationally simple.

Scalability Sensor networks consist of a large number of nodes and therefore any

practical algorithm designed for these networks must be scalable. DASSA

can be applied to dense and high population networks with only tuning

some of its parameters without any increase in the complexity.

As mentioned earlier, sensor nodes sense and forward data periodically in

rounds. At the beginning of each round, DASSA determines which nodes will

sleep and which nodes will operate during the round. Nodes which do not sleep

will sense data and transmit their own data together with other data received

from their neighbors. The overhead of DASSA is quite small since nodes make

simple computations and transmit small sized broadcast messages.

DASSA consists of five sequential steps. These steps are :

1. Neighbor discovery In this step, every node gathers information about

the nodes in their transmission range. This information includes the hop

counts, the remaining energies and the IDs of the neighbor nodes.

2. Scheduling tier 1 nodes Since every packet in the network passes through

one of the tier 1 nodes before reaching the sink, tier 1 nodes are the first

nodes in the network to die. Also, after all tier 1 nodes die, none of the

remaining nodes can reach the sink so the network dies. Therefore, it is

69

crucial to maximize the lifetime of the tier 1 nodes. This step is devoted

only to the scheduling of tier 1 nodes in the best possible way.

3. Scheduling intermediate nodes Although not as crucial as tier 1 nodes,

nodes which are closer to the sink but not in tier 1 are also very important

for the same reason explained for tier 1 nodes. Therefore, this step deals

with the scheduling of nodes close to the sink.

4. Scheduling far away nodes Nodes which are at the edges of the field are

not very effective in determining the lifetime of the network since these

nodes do not have many descendants and in many cases only forward their

own data. This step schedules these nodes in a simple way.

5. Transmitting and forwarding data After DASSA schedules each node,

nodes forward their data to their neighbor which is closest to the sink and

which has highest energy. The final step concludes the round.

In Chapter 4, centralized optimum scheduling algorithms which require exact

sensor locations, the remaining energies of all nodes, global network knowledge

and long run times were presented. However, as mentioned earlier, location in-

formation for a typical sensor network is not available and a centralized approach

cannot be used. These optimum algorithms are used in Chapter 6 to evaluate

the performance of DASSA.

The rest of this chapter describes each step of DASSA in detail. The flowchart

of DASSA is given in Figure 5.10.

70

5.1 Step I : Neighbor Discovery

In this step, all nodes in the network learn their tier numbers, their neighbor

IDs, and their neighbors’ remaining energy levels. For this, each node broad-

casts a packet which contains the fields of information shown in Figure 5.1 (see

Figure 5.2).

Node ID Residual Energy Tier Number

Figure 5.1: Broadcast message format.

Initially, the sink broadcasts a message with Tier Number field equal to 0.

The nodes receiving this packet set their tier number value to 1. Then, these

nodes broadcast a packet including the fields given in Figure 5.1 with the Tier

Number field set to 1. Nodes receiving packets with Tier Number 1, set their

tier numbers to 2. This way, the sink has Tier Number equal to 0, the one-hop

neighbors of the sink have Tier Number equal to 1, and so on.

To generalize, nodes receiving a broadcast packet with value Tier Number

set their tier number value to Tier Number + 1 and after waiting for a certain

time enough to receive the broadcast messages from all its neighbors from lower

tier numbers, they broadcast their own message containing the fields given in

Figure 5.1. When nodes receive broadcast messages from nodes with equal or

higher tiers, they do not modify their tier number value but store the information

about their neighbors (Node ID, Residual Energy and Tier Number). Figure 5.3

shows the tier numbers of each node after the first step of the algorithm.

71

sensor node sink node

Figure 5.2: Illustrating first step of DASSA; Nodes broadcast their ID, tier num-
ber and remaining energy level.

sensor node sink node

0

1

1

1

2

3

3

2

2

22

3

3
3

4

2

2

3

3

4

2

3

3

Not Connected

1

1
1

Figure 5.3: Tier numbers of the network in Figure 5.2 after the setup messages
are exchanged. Nodes at the edges of a two sided arrow are in the transmission
ranges of each other.

72

5.2 Step II : Scheduling Tier 1 Nodes

After each node discovers its local neighborhood, DASSA continues with the

next step in which the sink decides which nodes from tier 1 will be operating by

solving an integer linear program called ILPSink.

5.2.1 ILP implemented by the Sink (ILPSink)

After the neighbor discovery step ends, nodes in tier 1 broadcast the IDs of their

neighbors belonging to tier 2. This broadcasting is only done in the first step of

DASSA at the first round. Since we assume a static network, this process is not

repeated at each round.

In this ILP formulation, the sink, after receiving the node IDs, energy levels

and neighbor lists of tier 1 nodes, finds the minimum number of nodes from tier

1 with maximum remaining energy such that these nodes cover α percentage of

the nodes in tier 2.

There are three objective functions defined for ILPSink. Depending on the

network type, one can give better results than the others.

Parameters

For convenience, we will now describe the constants and variables used in

ILPSink.

• α : Fraction of nodes to be covered from tier 2 by tier 1 nodes, where

0 ≤ α ≤ 1

• ei : Remaining energy of node i

• Einit : Initial energy of every sensor node

73

• ε : 10−1/Einit

• Ti : The set of nodes in tier i

• Ci : Neighbors of node i from tier 2, ∀i ∈ T1

• n : Size of T2, i.e., the number of nodes in tier 2

• cij : Coverage of tier 2 nodes from tier 1 nodes

cij =







1, i ∈ T1, j ∈ T2, j ∈ Ci

0, otherwise
∀(i, j) : {i ∈ [1, N], j ∈ [1, N]}

(5.1)

• si : The sleep variable

si =







1, if i ∈ T1 is active

0, if i ∈ T1 is sleeping
∀i ∈ [1, size of T1] (5.2)

• li : Indicates whether a node in tier 2 is at least in the neighbor list of one

non-sleeping node from tier 1

li =







1, if i ∈ T2 is in the neighbor list of at least one active node in T1

0, otherwise
(5.3)

∀i ∈ [1, size of T2]

• w : Variable representing the node with minimum energy when objective

2 is used (see Eq. (5.9)).

Constraints

If at least one non-sleeping node from tier 1 has node j from tier 2 in its neighbor

list, then this equation forces the corresponding variable lj to be equal to one.

si.cij ≤ lj, ∀i (5.4)

74

If none of the active nodes from tier 1 cover node j from tier 2, then lj should

be zero meaning that node j is not covered.

lj ≤
∑

i

si · cij, ∀j (5.5)

The following equation determines what percentage of nodes from tier 2 will be

covered by the operating nodes in tier 1.

∑

i

li ≥ α · n (5.6)

Objectives

There are three objective functions considered in this thesis which can be used by

ILPSink. These are represented by the Objective parameter of DASSA, which

can be equal to 1, 2 or 3 if the objective function chosen is given by Eq. (5.7),

Eq. (5.8) or Eq. (5.10), respectively. The first objective function Eq. (5.7)

tries to minimize the number of active nodes from tier 1 and to maximize the

sum of the remaining energies of these active nodes. ε is used to give priority to

the objective of minimizing the number of active nodes. The second objective

function Eq. (5.8) tries to minimize the number of active nodes from tier 1 and

to maximize the minimum energy of the node which is selected to be active from

tier 1. Again ε is used for giving higher priority for minimizing the number of

active sensors. Finally, the last objective function Eq. (5.10) is very similar to the

first one except for a scaling factor. In this equation, the sum of the remaining

energies of the selected active sensors from tier 1 is given more importance as

compared to the first objective function. In our simulations, we observed that

the third objective function generally gives the best results. However, the other

two objective functions also give very close results and in some cases beat the

third objective function.

1. Minimize
∑

i

si − ε
∑

i

si · ei (5.7)

75

2. Minimize
∑

i

si − εwi (5.8)

Also the additional constraint

wi ≤ si · ei, ∀i (5.9)

3. Minimize
∑

i

(Einit − ei) · si (5.10)

Note that, as the energy of a node from tier 1 reduces below a certain level

such that it cannot participate in the network operation anymore and is dead, the

sink learns this information from the broadcast messages at Step I. Accordingly,

it reconstructs the list of tier 1 nodes which can continue operation and the list

of tier 2 nodes that the new set of tier 1 nodes cover. This brings no extra cost

since the sink knows which nodes in tier 2 are in the neighborhood of which

nodes in tier 1 by the message exchange occuring in the first round, Step I of

DASSA. Then, the sink solves ILPSink with its updated entries.

5.2.2 Transmitting the Schedules

After the sink finds the minimum number of nodes which will be active from

tier 1 by ILPSink, it broadcasts a packet in the form of Figure 5.4 containing

the node IDs of these nodes. When nodes from tier 1 receive this message, they

operate in the current round if their IDs are included or otherwise sleep as shown

in Figure 5.5.

Node ID 1 Node ID 2 Node ID n

Figure 5.4: Broadcast packet transmitted by the sink to the nodes in tier 1. n
represents the number of nodes which are selected to be active from tier 1.

76

operating node sleeping node

sink node undecided node

Figure 5.5: Illustrating second step of DASSA; The sink decides which nodes will
operate from tier 1.

With this step, a balanced selection of operating nodes from tier 1 is provided

without any location information. The reason for such a balanced choice of

operating nodes from tier 1 is the requirement to cover at least some α percentage

of nodes from tier 2 in the ILPSink formulation implemented in the sink (see Eq.

(5.4) - (5.6)). A balanced structure such as in Figure 5.6 a) is provided rather

than an undesired structure such as in Figure 5.6 b) with the help of the sink.

Since the most critical nodes in such network configurations belong to tier 1, such

a structure greatly enhances performance as compared to a random or other non-

feedback based method when there is no location information. Also, the sink not

only chooses a balanced structure but also chooses the active nodes from tier 1

which have the largest remaining energy. Since this procedure is applied at each

round, the algorithm provides balanced energy consumption for tier 1 nodes.

Recall that the sink was assumed to have abundant energy resources and high

computational capabilities. Thus, using the sink in such a process is reasonable.

77

operating node sleeping node

sink node undecided node

a) b)

Figure 5.6: The balanced structure of DASSA. a) Balanced structure obtained
by feedback from the sink when there is no location information. b) Unbalanced
structure which could result without any feedback from the sink and when there
is no location information.

5.3 Step III : Scheduling Intermediate Nodes

In the third step of the algorithm, nodes from tier 1 which were decided to be

active in the previous step choose which nodes will be active from the next tier,

i.e., tier 2, depending on the residual energy levels of these nodes. Every node in

tier 1 broadcasts the node ID of its neighbor with the highest remaining energy

(see Figure 5.7). After a node from tier 2 receives these messages, it decides to

operate if any of the messages contains its node ID and decides to sleep if none

of the messages contains its node ID.

In small scale networks, only the node with the greatest remaining energy

is selected, whereas in larger networks, the first two or more nodes with the

highest energies are selected to be active (recall that the energy information of

the neighbor nodes was retrieved in the first step of the algorithm). This number

is represented by the parameter Number of Selected Descendants (NSD) in the

78

operating node sleeping node

sink node undecided node

Figure 5.7: The third step of DASSA; Nodes which were decided to be active
in the second step of SSA, schedule their neighbors from the next tier. Dashed
arrows indicate that the received packet does not contain the receiver’s node ID
but intended to another node.

algorithm. Nodes from tier 1 broadcast a packet (see Figure 5.8), from which

the nodes in tier 2 learn their sleep state. NSD parameter can be different for

the nodes belonging to different tiers.

Node ID 1 Node ID 2 Node ID NSD

Figure 5.8: Packet transmitted from the nodes in tier 1 to the nodes in tier 2.
NSD is the node with NSDth highest energy.

Nodes from higher tier numbers than 1 can also schedule nodes from their

subsequent tiers to sleep or not to sleep. A parameter named Adaptive Scheduling

Depth (ASD) is used to determine how further this process will continue. The

nodes with tier number less than or equal to ASD schedule their neighbors from

the next tier depending on the energies of these neighbors. In some network

configurations, employing this structure only in the first tier gives good results

79

whereas in some network configurations, employing this structure up to the last

tier gives better results. Nodes with tier number up to ASD transmit a packet

to their subsequent tier with the structure given in Figure 5.8. Nodes in tier

number ASD + 1, which are the last nodes which this scheduling mechanism

goes up to, broadcast a packet if they will be active to the next tier since these

nodes will not determine their subsequent tier’s sleep schedule. This packet only

contains the node ID of the node transmitting it. The nodes with tier number

ASD + 2 will understand that the node with that node ID will not sleep from

this broadcast message. The nodes which decide to sleep do not transmit such a

packet.

In some cases, inactive nodes from tier 1 may also schedule nodes from tier

2. This will only reduce some energy from these nodes. The same argument can

be extended to other tiers as well, e.g., all the nodes in tier 2, whether decided

to be active or not, may schedule nodes from tier 3. Usually, employing such a

procedure in only tier 1 nodes is sufficient. Not Active Scheduling (NAS) param-

eter determines whether this option is used (NAS = 1) or not used (NAS = 0)

for tier 1 nodes.

DASSA schedules nodes with high residual energies to be active at each round.

This way the energy consumption among nodes is balanced. For example, assume

that we are at the beginning of the network operation. The energies of the active

nodes will become lower than the energies of their neighbors which are scheduled

to sleep. Thus, in the next round, one of the neighbors which was sleeping in

the previous round will be selected to be active since its energy will be higher.

Thus, the active role will be rotated among the nodes and the energies of the

nodes will be consumed in a balanced manner.

80

5.4 Step IV : Scheduling Far Away Nodes

In the last step of scheduling, nodes with tier numbers greater than or equal to

ASD + 2 randomly decide whether to sleep or not to sleep. They generate a

random number uniformly distributed in the interval [0, 1] and then compare this

number with ps. If the number is less than ps, they sleep, otherwise, they decide

to operate. After making a decision, the non-sleeping nodes broadcast a packet

containing their node IDs. Nodes from higher tier numbers use this information

in the network layer to route packets to non-sleeping nodes.

5.5 Step V : Transmitting and Forwarding Data

After each node decides its activity state, it forwards its data and its neigh-

bors’ data according to a simple routing procedure which will be explained next.

Nodes forward their data to their neighbors from the previous tier which has

the highest remaining energy. In addition to the other steps in which nodes with

higher remaining energies are scheduled to be active, this step ensures that nodes

with the maximum energies have higher loads. So, we apply a two-fold energy

balancing scheme; both in scheduling and in routing. Figure 5.9 illustrates the

last step of DASSA.

The flowchart of the DASSA is provided in Figure 5.10. Every node except

the sink runs this algorithm at the beginning of every round and then senses and

forwards data or sleeps for a round.

An example operation of DASSA for a 200 node network deployed in a 200m-

by-200m field with Rt and Rs equal to 50m is provided in Figure 5.11. The

nodes which are dead are marked with X. The empty circles are scheduled to

sleep and the black circles are scheduled to be active at the correspoding round.

At the last round, since all the tier 1 nodes connecting the sink to other nodes

81

operating node sleeping node

sink node

Figure 5.9: The final step of DASSA. Nodes which decide to operate forward
their data to the sink.

are dead, network operation ends although many of the nodes are still alive. This

reemphasizes the importance of the scheduling of tier 1 nodes.

In the following chapter, the performance of DASSA is evaluated and com-

pared with the optimum sleep scheduling algorithm, an oblivious scheduling al-

gorithm and an existing algorithm in the literature.

82

Start

Extract hop count and neighbor information
from these messages

Broadcast Node ID, Energy, Hop Count

Hop Count <= ASD

Receive Sleep State
 from

Previous Tier nodes
(from the sink

if Hop Count = 1)

Hop Count = ASD + 1

Schedule the first
NSD nodes from
the next Tier with

highest energies to be ON
if not sleeping, otherwise

sleep

Determine the sleep
state randomly

Broadcast a packet if not sleeping
for routing purposes

Receive sleep state from
previous

 (lower numbered) tiers

Yes

No

No

Yes

Participate in network
 operation if not sleeping

Finish

Receive neighbor discovery messages

Has the time allocated for the nodes from the previous
 tier to broadcast their neighbor dicovery messages elapsed?

No

Yes

Figure 5.10: Flowchart of DASSA. This algorithm is implemented by every node
at the beginning of each round.

83

−100 −80 −60 −40 −20 0 20 40 60 80 100
−100

−80

−60

−40

−20

0

20

40

60

80

100

x axis (m)

y
ax

is
 (m

)

−100 −80 −60 −40 −20 0 20 40 60 80 100
−100

−80

−60

−40

−20

0

20

40

60

80

100

x axis (m)

y
ax

is
 (m

)

(a) (b)

−100 −80 −60 −40 −20 0 20 40 60 80 100
−100

−80

−60

−40

−20

0

20

40

60

80

100

x axis (m)

y
ax

is
 (m

)

−100 −80 −60 −40 −20 0 20 40 60 80 100
−100

−80

−60

−40

−20

0

20

40

60

80

100

x axis (m)

y
ax

is
 (m

)

(c) (d)

−100 −80 −60 −40 −20 0 20 40 60 80 100
−100

−80

−60

−40

−20

0

20

40

60

80

100

x axis (m)

y
ax

is
 (m

)

−100 −80 −60 −40 −20 0 20 40 60 80 100
−100

−80

−60

−40

−20

0

20

40

60

80

100

x axis (m)

y
ax

is
 (m

)

(e) (f)

Figure 5.11: Operation of DASSA for a sample network. α = 0.95, ASD = 2,
NSD for tier 1 = 2, NSD for tier 2 = 1, ps = 1, Objective = 3, NAS = 0. (a)
Round 6, Coverage = 0.95. (b) Round 30, Coverage = 0.96. (c) Round 51,
Coverage = 0.92. (d) Round 87, Coverage = 0.72. (e) Round 96, Coverage =
0.41. (f) Round 99, Coverage = 0.

84

Chapter 6

Performance Evaluation of Sleep

Scheduling Algorithms

In this chapter, the performance of DASSA is investigated and compared with

the following algorithms: ILP based optimum algorithm, a second scheduling

algorithm we propose, the algorithm in [46] (both the original version and the

corrected version) and an algorithm which employs no sleep scheduling.

First, the results are compared for the no aggregation case for several network

topologies where Rt and Rs are equal. Then, the results for unequal Rs and Rt

are provided. The performances of the algorithms are also compared for different

network sizes and different node populations. Finally, the results for the full

aggregation case will be presented.

Now, the scheduling algorithms that will be compared in this chapter are

summarized.

No Sleeping It is assumed that none of the nodes sleep and they all are sensing

and transmitting data at every round. After using exchange messages as

in step I of DASSA (see Section 5.1), nodes send data to their neighbor

with the highest remaining energy and which has less hop count to the

85

sink. This algorithm provides the number of rounds that the network can

sustain without any sleep scheduling algorithm.

Optimum The algorithm finding the optimum results is centralized and knows

the locations and remaining energies of all the nodes in the network. By us-

ing this information in an ILP based algorithm as described in Chapter 4,

the maximum possible number of rounds that can be achieved is com-

puted. This provides us with an upper bound on evaluating our proposed

algorithm.

DASSA This is a distributed, simple and energy efficient algorithm which is

proposed and described in Chapter 5.

OSSA In Oblivious Sleep Scheduling Algorithm (OSSA), nodes are chosen ran-

domly with some probability p to sleep in each round oblivious of the

states of neighboring nodes. However, after deciding their sleep sched-

ules, nodes forward data using exchange messages as in step I of DASSA

(see Section 5.1) and the procedure described in step V of DASSA (see

Section 5.5), i.e., nodes send data to their neighbor with the highest re-

maining energy and which has less hop count to the sink. Therefore, only

the scheduling is random, but the routing is performed in an energy efficient

manner. Also, p is optimized for best performance.

DRS This algorithm is proposed in [46] in its original form. As mentioned

earlier, the algorithm suffers from routing loops which makes it impractical

to implement. In order to provide the results, it is assumed that the nodes

in a loop somehow learn this situation and do not spend any energy. Only

the data sent from the nodes not in routing loops is counted in calculating

the coverage.

EDRS This algorithm is the algorithm proposed in [46] with the correction we

proposed to avoid loops.

86

6.1 No Aggregation

The results presented in this section are for the case when there is no aggrega-

tion scheme applied, i.e., nodes forward every packet they receive without any

processing. This is more practical than full aggregation, which will be evalu-

ated later, since in most cases the data of many individual sensors are required

and aggregating the data requires high processing capabilities which may not be

available at each sensor node.

Figure 6.1 shows the network topologies of the five networks used for the

comparisons. The first 4 network consist of 100 nodes and the fifth network

consists of 150 nodes. The nodes are uniformly deployed in a 200m-by-200m

network field. There is a sink located at the origin point (0,0) of the field for

all deployments to which the nodes scheduled to be active forward their sensed

data. The optimum results obtained for these networks will give us a clear idea

of the performance of our heuristic algorithm. Larger networks with various field

dimensions and node populations are analyzed later. For finding the optimum

solutions, the CPLEX solver [50], which implements the simplex algorithm to

solve linear problems, is used.

We use a similar energy consumption model with [4] and [14]. Each sensor

reports a 2000-bit report message to the sink at each round and each message

transmission and reception consumes 0.1mJ. The exchange messages used at the

beginning of each round are 200 bits long and cost 10µJ. Receiving a sleep control

message which is 100 bits long costs 5µJ and transmitting a sleep control message

which is 100 bits long costs 5µJ. If Einit is chosen too low, the comparisons will

not be very accurate since the network will die very quickly. On the other hand,

if Einit is chosen too large, the optimum results will require very long run times.

We observed that Einit = 10mJ is a good choice in terms of accuracy and run

times for the first five topologies.

87

−100 −80 −60 −40 −20 0 20 40 60 80 100
−100

−80

−60

−40

−20

0

20

40

60

80

100

x axis (m)

y
ax

is
 (m

)

−100 −80 −60 −40 −20 0 20 40 60 80 100
−100

−80

−60

−40

−20

0

20

40

60

80

100

x axis (m)

y
ax

is
 (m

)

(a) (b)

−100 −80 −60 −40 −20 0 20 40 60 80 100
−100

−80

−60

−40

−20

0

20

40

60

80

100

x axis (m)

y
ax

is
 (m

)

−100 −80 −60 −40 −20 0 20 40 60 80 100
−100

−80

−60

−40

−20

0

20

40

60

80

100

x axis (m)

y
ax

is
 (m

)

(c) (d)

−100 −80 −60 −40 −20 0 20 40 60 80 100
−100

−80

−60

−40

−20

0

20

40

60

80

100

xaxis (m)

y
ax

is
 (m

)

(e)

Figure 6.1: Network topologies used in the simulations.
(a) Topology 1. (b) Topology 2. (c) Topology 3. (d) Topology 4. (e) Topology 5.
(a)-(d) have 100 nodes and (e) has 150 nodes.

88

0 10 20 30 40 50 60 63 70 76 80 90 94 100
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
C

ov
er

ag
e

Time

0 20 40 60 70 83 102
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Time

C
ov

er
ag

e

(a) (b)

Figure 6.2: Optimum Results for (a) Topology 1. (b) Topology 2.

For the first comparisons, Rt = 50m and Rs = 50m. In Section 6.1.2, the

results for unequal transmission and sensing ranges are also presented.

Figure 6.2 shows the optimum coverage plots for GoC = 0.9, 0.8, and 0.7 for

Topology 1 and Topology 2. As expected, the number of rounds the network can

sustain increases as GoC decreases. The optimum algorithm holds the coverage

above GoC in all rounds before the final round and then suddenly the network

operation stops. The values in the graphs are slightly above 0.9, 0.8, and 0.7 since

the resolution used at the linear program was 1 grid per 4 meters for feasible run

times, and the coverage values were calculated for 1 grid per 1 meter for better

accuracy.

For OSSA, we report the results obtained with p = p∗ where p∗ corresponds

to the optimum choice of p which maximizes the number of rounds for which

GoC constraint is satisfied. For Topology 1, Figure 6.3 illustrates the average

lifetime with respect to p. Increasing p above a certain level causes the network to

become disconnected and show poor performance. For this topology, p∗ = 0.60,

0.70, 0.76 for GoC = 0.9, 0.8 and 0.7, respectively. Note that OSSA is both

89

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

5

10

15

20

25

30

 Sleep Probability p

A
ve

ra
ge

 N
um

be
r o

f R
ou

nd
s

at
 w

hi
ch

 C
ov

er
ag

e
>=

 G
oC GoC = 0.7

GoC = 0.8
GoC = 0.9

Figure 6.3: The optimum p for OSSA for Topology 1.

optimized and uses an energy efficient routing algorithm at each round which

makes it a good algorithm for comparison purposes.

Figures 6.4, 6.5 and 6.6 show the coverage plots of DASSA and OSSA together

with the optimum results for GoC = 0.9, 0.8 and 0.7, respectively, for Topology

1. As GoC decreases, the gap between DASSA and the optimum result decreases

since the importance of exact location information decreases as GoC decreases.

Actually, for GoC = 0.8 and 0.7, the performance of DASSA is very close to the

optimum results. Also, it is important to note that DASSA provides a balanced

coverage plot in which the coverage maintains almost all the time above GoC up

to the time where it decreases below GoC. However, in OSSA, the coverage values

can fall well below GoC even at the first rounds due to randomness. Furthermore,

in DASSA, the coverage is held very close to GoC, whereas in OSSA the coverage

value is above GoC most of the time.

Figures 6.7, 6.8 and 6.9 show the coverage plots of DASSA, optimum algo-

rithm and OSSA for the second topology. The results are very similar when

compared with the results for the Topology 1. Again, OSSA does not provide

90

0 10 20 30 40 50 60 70
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Time

C
ov

er
ag

e

Optimum
DASSA
OSSA

Figure 6.4: DASSA, OSSA and the optimum results for GoC = 0.9, Topology 1.

0 10 20 30 40 50 60 70 80 90 100 110
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Time

C
ov

er
ag

e

Optimum
DASSA
OSSA

Figure 6.5: DASSA, OSSA and the optimum results for GoC = 0.8, Topology 1.

91

0 20 40 60 80 100 120
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Time

C
ov

er
ag

e

Optimum
DASSA
OSSA

Figure 6.6: DASSA, OSSA and the optimum results for GoC = 0.7, Topology 1.

a balanced coverage plot, whereas, DASSA keeps the coverage percentage above

GoC almost in all rounds up to which the coverage drops below GoC for the

first time. In OSSA, the coverage may drop very low, even to %0, which means

that the network cannot provide any data to the sink. DASSA does not suffer

from such a problem since the nodes are selected as to assure connectivity and

sufficient coverage. Also, the performance of DASSA is quite remarkable for

Topology 2 for GoC = 0.7.

Before presenting further results, we define Effective Coverage (EC) as the

area under the coverage plot where the coverage percentage is above GoC.

EC =
∑

k

c
′

k (6.1)

where

c
′

k =







0, ck < GoC

ck, ck ≥ GoC
(6.2)

ck is the coverage percentage at round k.

The results of all algorithms are presented in Table 6.1 for Topology 1. The

GoC-L column shows the number of rounds for which the coverage is above GoC,

92

0 10 20 30 40 50 60 70
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Time

C
ov

er
ag

e

DASSA
Optimum
OSSA

Figure 6.7: DASSA, OSSA and the optimum results for GoC = 0.9, Topology 2.

0 10 20 30 40 50 60 70 80 90 100 110
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Time

C
ov

er
ag

e

DASSA
Optimum
OSSA

Figure 6.8: DASSA, OSSA and the optimum results for GoC = 0.8, Topology 2.

93

0 50 100 150
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Time

C
ov

er
ag

e

DASSA
Optimum
OSSA

Figure 6.9: DASSA, OSSA and the optimum results for GoC = 0.7, Topology 2.

GoC = 0.7 GoC = 0.8 GoC = 0.9

GoC-L EC NRN GoC-L EC NRN GoC-L EC NRN

No Sleeping 9 889 89.1 9 889 89.1 8 889 96.2

Optimum 93 6901 8.9 75 6284 10.8 62 5778 12.7

DASSA 69 5306 10.2 43 3647 12.6 27 2516 20.4

OSSA 28.9 2483 21.2 22.3 2087 29.5 17.0 1657 35.7

DRS 22.1 1805 13.1 16.9 1506 16.3 11.2 1066 21.7

EDRS 24.2 1993 13.4 17.7 1585 16.6 12.7 1215 21.9

Table 6.1: Results of a 100 node network (Topology 1) for Rt = 50m, Rs = 50m
and a 200m-by-200m field. Einit = 10mJ.

EC is calculated from Eq. (6.1) and Number of Reporting Nodes (NRN) is the

average number of nodes whose packets reach the sink for the rounds where

coverage is above GoC. For the no sleeping case, NRN is below 100 since the

coverage is still above GoC when some of the nodes die.

Table 6.1 shows that DASSA outperforms OSSA, and DASSA and OSSA

outperform DRS and EDRS. Recall that, GoC-L is the number of rounds for

which the coverage is above GoC. Although the results of DRS and EDRS are

similar, one must use EDRS since DRS has routing loops and if these loops exist

the initial aim of [46] cannot be reached. There is a remarkable gain in DASSA

94

when compared with the no sleeping case. OSSA is an adaptive algorithm since

it chooses nodes with highest remaining energies as next hops, whereas DRS and

EDRS do not use energy information. Therefore, OSSA achieves much better

performance. The subset of active nodes are chosen randomly for each round in

DRS and EDRS at the beginning of the algorithm and a node reporting in a round

does not report in other rounds in a cycle if it is not required for connectivity

purposes. Usually, the set of nodes randomly selected to be active at only one

round is not sufficient to provide GoC which accounts for the poor performance

of DRS and EDRS.

As GoC decreases, the gap between DASSA and the optimum algorithm

decreases, whereas the gap between DASSA and other algorithms increases even

more. The reason is that as GoC decreases, OSSA, DRS and EDRS need to open

more nodes in order to assure connectivity. In other words, as GoC decreases, the

necessary number of nodes to assure GoC also decreases but in order to provide

connectivity of these randomly selected nodes, the probability of sleeping cannot

be increased very much. For OSSA, this can also be observed from Figure 6.3

where p∗ does not increase very much when GoC decreases from 0.9 to 0.7.

Therefore, the random algorithms cannot benefit from the fact that less nodes

should be activated for less GoC values. However, DASSA only activates the

necessary number of nodes for satisfying GoC and these nodes are connected

due to the nature of the algorithm. As GoC decreases, the importance of the

locations of the nodes becomes less important and thus DASSA can perform

better as compared to the optimum algorithm.

NRN column is important for evaluating the performance of the algorithms.

For GoC = 0.8 and 0.7, DASSA manages to keep the number of active nodes

close to the optimum number. However, for GoC = 0.9, since DASSA does not

have location information, it opens some redundant nodes in order to assure GoC

at each round. Also, OSSA, DRS and EDRS suffer from the same problem. Yet,

95

DASSA keeps the number of active nodes closer to the optimum number when

compared with the other algorithms.

The EC column shows us how well the coverage behaves with time since it is

the sum of the coverage values at the rounds for which coverage is above GoC.

Since this value is directly related to the number of rounds, same comments made

for the number of rounds are valid. As GoC decreases, the area comes close to

the optimum case, thus DASSA performs closer to the optimum. Also, from EC,

we can comment on how much is the coverage percentage held above GoC. For

example, for GoC = 0.9, EC of DASSA is 2516 and the number of rounds is

27. Thus, the average coverage per round is 2516/27 = 93.2 whereas for OSSA

the same value is 1657/17 = 97.5. We observe that OSSA cannot maintain a

coverage value close to the desired GoC.

Tables 6.2, 6.3 and 6.4 show the results of the algorithms for Topology 2,

3 and 4, respectively. Similar results are obtained as in Topology 1. As long

as the nodes are densely deployed so that they are scattered in a balanced way

in the area, such as in a uniform distribution, the algorithm gives similar re-

sults as compared to the optimum case. For these tables, DASSA is individually

tuned for each topology, i.e., we tune the parameters of the algorithm for the

best performance for the given topology, in order to compare with the optimum

algorithm. In other words, the best possible performance of DASSA is compared

with the optimum solution. Also, the performance of DASSA when it is com-

monly tuned for every topology is evaluated. The parameters of DASSA is tuned

for a 100 node network deployment. Table 6.5 shows the performance of DASSA

for this case. There is a little drop in the performance of DASSA. However, the

gain is still high with respect to OSSA and for GoC lower than 0.9, the gain is

remarkable.

Figure 6.10 shows the percentage of GoC-L obtained by DASSA and by OSSA

with respect to the optimum GoC-L. We observe that, both of the algorithms

96

GoC = 0.7 GoC = 0.8 GoC = 0.9

GoC-L EC NRN GoC-L EC NRN GoC-L EC NRN

No Sleeping 10 975 85.6 10 975 85.6 9 892 91.0

Optimum 101 7449 8.6 82 6830 10.4 69 6376 12.8

DASSA 90 6930 9.0 52 4476 14.3 30 2806 22.4

OSSA 32.5 2757 19.7 25.2 2332 27.6 18.3 1773 33.0

DRS 23.9 1940 12.5 17.1 1507 15.5 10.9 1034 21.2

EDRS 24.3 1972 12.6 17.3 1522 15.8 11.1 1047 21.2

Table 6.2: Results of a 100 node network (Topology 2) for Rt = 50m, Rs = 50m
and a 200m-by-200m field. Einit = 10mJ.

GoC = 0.7 GoC = 0.8 GoC = 0.9

GoC-L EC NRN GoC-L EC NRN GoC-L EC NRN

No Sleeping 13 1252 82.2 12 1175 85.2 11 1090 88.8

Optimum 109 8017 9.1 91 7581 10.8 77 7147 12.8

DASSA 75 5713 9.4 50 4322 14.7 31 2903 21.0

OSSA 33.0 2764 19.4 25.3 2331 27.7 18.1 1770 36.7

DRS 26.7 2191 13.0 18.8 1677 16.3 13.5 1292 21.5

EDRS 30.0 2476 13.2 21.6 1916 16.2 14.7 1403 21.6

Table 6.3: Results of a 100 node network (Topology 3) for Rt = 50m, Rs = 50m
and a 200m-by-200m field. Einit = 10mJ.

GoC = 0.7 GoC = 0.8 GoC = 0.9

GoC-L EC NRN GoC-L EC NRN GoC-L EC NRN

No Sleeping 9 863 76.4 8 786 76.4 8 786 79.4

Optimum 84 6215 8.9 67 5596 10.9 54 4997 13.8

DASSA 61 4705 8.9 34 2985 15.0 23 2154 21.4

OSSA 22.5 1968 23.0 17.0 1593 28.1 13.3 1299 34.3

DRS 23.4 1937 13.1 16.5 1481 16.3 12.1 1156 21.4

EDRS 25.8 2160 13.4 19.3 1543 16.5 13.2 1260 21.7

Table 6.4: Results of a 100 node network (Topology 4) for Rt = 50m, Rs = 50m
and a 200m-by-200m field. Einit = 10mJ.

97

Top. GoC = 0.7 GoC = 0.8 GoC = 0.9

Algorithm GoC-L EC NRN GoC-L EC NRN GoC-L EC NRN

1

Optimum 93 6901 8.9 75 6284 10.8 62 5778 12.7

DASSA 66 4932 8.8 43 3647 12.6 22 2058 21.3

OSSA 28.1 2374 19.7 21.7 2025 28.1 16.7 1630 34.9

2

Optimum 101 7449 8.6 82 6830 10.4 69 6376 12.8

DASSA 85 6576 9.2 45 3890 14.0 24 2251 19.3

OSSA 32.5 2757 19.7 25.2 2332 27.6 18.1 1757 34.6

3

Optimum 109 8017 9.1 91 7581 10.8 77 7147 12.8

DASSA 71 5525 10.3 50 4322 14.7 25 2331 20.7

OSSA 33.0 2764 19.4 25.3 2331 27.7 17.9 1741 34.8

4

Optimum 84 6215 8.9 67 5596 10.9 54 4997 13.8

DASSA 56 4428 9.6 31 2759 15.8 20 1902 21.6

OSSA 22.1 1883 19.9 17.0 1593 28.1 13.3 1309 35.1

Table 6.5: Performance of the algorithms when parameters are same for all
topologies.

show a steady behavior. DASSA achieves almost two times GoC-L when com-

pared to OSSA and the performance of the algorithm with respect to the optimum

case does not change much with topology. Figure 6.10 (a) shows the performance

when DASSA is individually tuned for each topoloogy and Figure 6.10 (b) shows

the performance of DASSA when it uses common parameters for every topology.

There is some drop in the performance for GoC = 0.9 but DASSA still performs

better than OSSA. For, GoC = 0.8 and 0.7, DASSA performance does not drop

much and there is noticeable gain with respect to OSSA. The parameters of

DASSA and OSSA used in obtaining the results are given in Tables A.1 and A.2,

respectively.

When the number of nodes in the network is increased, the performance of

DASSA is not affected much. Table 6.6 shows the performance of all algorithms

for a 150 node network deployed in a 200m-by-200m field which corresponds

to Topology 5. Therefore, we can say that the performance of DASSA is not

affected by node population as long as the network is dense.

98

T1 T2 T3 T4 T1 T2 T3 T4 T1 T2 T3 T4
0

10

20

30

40

50

60

70

80

90

100

Topology

P
er

ce
nt

ag
es

 w
ith

 re
sp

ec
t t

o
O

pt
im

um
 (%

)

GoC = 0.7

GoC = 0.8

GoC = 0.9

T1 T2 T3 T4 T1 T2 T3 T4 T1 T2 T3 T4
0

10

20

30

40

50

60

70

80

90

100

Topology

P
er

ce
nt

ag
es

 w
ith

 re
sp

ec
t t

o
O

pt
im

um
 (%

)

GoC = 0.7

GoC = 0.8

GoC = 0.9

(a) (b)

Figure 6.10: Black bars are the percentages of the number of rounds obtained by
OSSA and the white and black bars together are the percentages of the number
of rounds obtained by DASSA with respect to the number of rounds obtained by
optimum case. T1, 2, 3, 4 represent Topology 1, 2, 3, 4, respectively. a) DASSA
and OSSA are individually optimized for each topology. b) Same parameters are
used in DASSA and OSSA for every topology.

GoC = 0.7 GoC = 0.8 GoC = 0.9

GoC-L EC NRN GoC-L EC NRN GoC-L EC NRN

No Sleeping 16 1559 114.3 15 1483 119.8 15 1483 119.8

Optimum 172 12662 8.2 140 11657 10.4 120 11101 12.9

DASSA 125 9552.4 9.5 80 7076 14.8 49 4410 23.5

OSSA 61.2 5241 22.1 45.2 4214 30.2 33.7 3297 38.8

DRS 44.7 3641 12.8 31.2 2775 16.4 19.0 1808 20.6

EDRS 47.3 3872 13.0 33.2 2967 16.5 20.7 1969 20.8

Table 6.6: Results of a 150 node network (Topology 5) for Rt = 50m, Rs = 50m
and a 200m-by-200m field. Einit = 10mJ. The parameters used for DASSA and
OSSA are given in Table A.3.

99

GoC = 0.7 GoC = 0.8 GoC = 0.9

GoC-L EC NRN GoC-L EC NRN GoC-L EC NRN

No Sleeping 11.7 1148 163.0 11.4 1126 166.5 11.1 1107 171.7

DASSA 129.8 10065 9.0 86.2 7490 14.0 55.7 5340 22.1

OSSA 67.6 5807 21.4 52.4 4830 26.4 39.7 3886 38.2

DRS 40.7 3294 12.4 31.9 2819 15.8 19.7 1872 20.8

EDRS 44.6 3611 12.5 32.8 2910 15.9 20.9 1983 20.8

Table 6.7: Results of a 200 node network for Rt = 50m, Rs = 50m and a 200m-
by-200m field. All values are the averages of the results of the algorithms for 100
random (uniformly distributed) deployment of the network and Einit = 10mJ.
The parameters used for DASSA and OSSA are given in Table A.4.

GoC = 0.7 GoC = 0.8 GoC = 0.9

GoC-L EC NRN GoC-L EC NRN GoC-L EC NRN

No Sleeping 109.7 10933 191.3 109.3 11386 192.6 108.8 10867 193.3

DASSA 1377.2 108158 9.6 937.5 81987 14.8 623.8 60023 23.3

OSSA 748.5 65073 22 635.0 58799 27.1 473.7 46464 39.3

DRS 449.5 36312 12.4 330.4 29252 16.0 211.7 20111 20.6

EDRS 427.7 34702 12.6 330.8 29311 16.0 220.8 20968 20.7

Table 6.8: Results of a 200 node network for Rt = 50m, Rs = 50m and a 200m-
by-200m field. All values are the averages of the results of the algorithms for 100
random (uniformly distributed) deployment of the network and Einit = 100mJ .
The parameters used for DASSA and OSSA are given in Table A.4.

For a 200m-by-200m field with 200 nodes, 100 network deployments are sim-

ulated and the performance of DASSA and other algorithms are compared for

two different initial energy values of the nodes: Einit = 10mJ and Einit = 100mJ.

Note that the parameters of the algorithms used for each deployment are the

same. Table 6.7 shows that DASSA performs much better than OSSA and the

other algorithms. When Einit is 100mJ (see Table 6.8), the results are similar

with the Einit = 10mJ case.

Finally, for a 300m-by-300m field with 400 nodes, 100 network deployments

are simulated and the performance of DASSA and other algorithms are compared

for Einit = 50mJ. Again, the parameters of the algorithms are optimized once

and these same parameters are used in every deployment. Table 6.9 shows that

DASSA performs better than OSSA, and DASSA and OSSA perform much better

100

GoC = 0.7 GoC = 0.8 GoC = 0.9

GoC-L EC NRN GoC-L EC NRN GoC-L EC NRN

No Sleeping 23.6 2324 358.8 22.8 2265 365.0 22.2 2214 370.6

DASSA 203.8 16247 31.7 124.0 11212 55.0 89.0 8559 67.4

OSSA 122.5 10457 49.6 102.3 9605 67.8 82.8 8056 78.1

DRS 54.8 4363 26.8 43.7 3829 33.8 33.4 3156 44.5

EDRS 76.7 6166 27.4 59.5 5240 34.1 41.8 3160 45.3

Table 6.9: Results of a 400 node network for Rt = 50m, Rs = 50m and a 300m-
by-300m field. All values are the averages of the results of the algorithms for 100
random (uniformly distributed) deployment of the network and Einit = 50mJ .
The parameters used for DASSA and OSSA are given in Table A.5.

than DRS and EDRS. As the field size increases with Rt and Rs being constant,

the number of tiers increases. In DASSA, nodes in the first tier are selected in

a balanced manner by using the feedback from sink. However, as the number of

tiers increases, the randomness in DASSA increases due to the lack of location

information. Thus, DASSA starts to open redundant nodes in order to assure

good performance at each deployment and because of this, its performance gain

with respect to OSSA decreases. Yet, there is still an improvement with respect

to OSSA and as GoC decreases, the gap between DASSA and OSSA increases

even more since location information becomes less important.

The results for the last network shows that as the number of tiers in the

network increases, OSSA starts to approach the performance of DASSA. Thus,

for larger network field sizes, employing DASSA with a clustered approach us-

ing multiple sinks or a heterogenous deployment structure would be better. In

heterogenous deployments, two types of nodes are deployed to a field where one

type of nodes (Type 0) has higher energy than the other type of nodes (Type 1).

In such clustered schemes, every cluster will have small number of tiers and every

clusterhead, a sink or a Type 1 node, will implement ILPSink and schedule its

descendants. This way, the problem due to lack of information can be eliminated.

101

6.1.1 Further Analysis of DASSA and OSSA

Up to here, we have seen that DASSA outperforms OSSA in almost all the cases.

Now, the reasons underlying this performance gain will be investigated and it

will be shown how DASSA manages to yield results close to the optimum case.

The following parameters are compared for DASSA and OSSA.

• Total residual energy of the network is the sum of the remaining energies

of all the nodes in the network.

• The consumed energy at the network is the amount of total energy con-

sumed at each round and is found from the total residual energy difference

at two consecutive rounds.

• Number of nodes scheduled to be on is the number of nodes each algorithm

schedules to be active at each round.

• Number of connected nodes is the number of nodes which can reach the

sink at each round. Some of the nodes selected to be active may not be

able to reach the sink. That is why we define this parameter in addition

to the number of nodes scheduled to be active.

• Number of dead nodes at each round is the number of nodes that have

exhausted their batteries so far.

Figure 6.11 shows the parameters described previously in order. All the plots

are for Topology 1 and GoC = 0.9. The optimum algorithm consumes about the

same amount of energy at each round in a perfectly balanced manner. DASSA

consumes energy much efficiently than OSSA. Also, DASSA schedules nodes

to be active much better than OSSA. Figures 6.11 (c) and 6.11 (d) show that

OSSA cannot maintain the connectivity of the nodes which are scheduled to be

active, whereas DASSA shows little difference in the amount of nodes scheduled

102

to be active and the amount of nodes which can actually function since they

are connected. Without using location information, DASSA achieves very close

results to the optimum. From Figure 6.11 (e), we observe that the number of

useless nodes increases faster in OSSA. For the optimum algorithm, the number

of useless nodes increases in late rounds compared to DASSA and OSSA since the

optimum algorithm has global knowledge of all the nodes’ remaining energies and

therefore consumes energy in a more balanced way. Note that Figure 6.11 is in

correspondence with the coverage plot given in Figure 6.4 and the parameters of

each algorithm are plotted up to the round for which they can maintain operation.

For example, since the coverage plot for the optimum algorithm ends in round

63, the number of dead nodes is drawn up to round 63 in Figure 6.11 (e).

Figure 6.12 is for GoC = 0.8 and Figures 6.13 is for GoC = 0.7. The con-

sumed energy for DASSA when GoC = 0.8 and 0.7 is lower than the optimum

because at those rounds, coverage provided by DASSA is below the coverage

provided by the optimum algorithm which can be observed from Figures 6.5 and

6.6. As for GoC = 0.9, the energy is much more efficiently consumed than OSSA

and is in fact very close to the optimum energy consumption. Similarly, the

number of connected nodes are close to the optimum results. This is in direct

relation with the good performance of DASSA for GoC = 0.8 and 0.7.

Figure 6.14, 6.15 and 6.16 show the number of rounds each location in the

field is covered, i.e., the coverage count of each location, by DASSA, OSSA and

the optimum case for GoC = 0.9, 0.8 and 0.7, respectively. OSSA makes a peak

at the center of the field. The reason is that, after nodes start to die, OSSA can

only maintain the coverage of one or two nodes which are at a single hop to the

sink. Thus, the area in the proximity of the sink is covered more. Figure 6.14,

6.15 and 6.16 are in correspondence with the coverage plots for Topology 1 given

in Figures 6.4, 6.5 and 6.6. We observe from these figures that OSSA maintains

very low coverage levels at the last rounds which causes peaks to occur around

103

0 10 20 30 40 50 60 70
0.45

0.50

0.55

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1

Time

To
ta

l R
es

id
ua

l E
ne

rg
y

of
 th

e
N

et
w

or
k

Optimum
DASSA
OSSA

0 10 20 30 40 50 60 70
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Time

C
on

su
m

ed
 E

ne
rg

y
at

 th
e

N
et

w
or

k

Optimum
DASSA
OSSA

(a) (b)

0 10 20 30 40 50 60
0

5

10

15

20

25

30

35

40

45

50

Time

N
um

be
r o

f N
od

es
 S

ch
ed

ul
ed

 to
 b

e
O

n

Optimum
DASSA
OSSA

0 10 20 30 40 50 60 70
0

5

10

15

20

25

30

35

40

45

Time

N
um

be
r o

f C
on

ne
ct

ed
 N

od
es

Optimum
DASSA
OSSA

(c) (d)

0 10 20 30 40 50 60
0

2

4

6

8

10

12

14

16

18

20

Time

N
um

be
r o

f D
ea

d
N

od
es

Optimum
DASSA
OSSA

(e)

Figure 6.11: Energy and scheduling plots for GoC = 0.9 for Topology 1; (a)
Normalized total residual energy of all nodes with respect to 1J. (b) Normalized
total consumed energy at all nodes with respect to 30mJ. (c) Number of nodes
which are scheduled to be active at each round. (d) Number of nodes connected
to the sink at each round among the nodes which are scheduled to be active. (e)
Number of nodes which are dead at each round.

104

0 20 40 60 80 100 120
0.45

0.50

0.55

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1

Time

To
ta

l R
es

id
ua

l E
ne

rg
y

of
 th

e
N

et
w

or
k

Optimum
DASSA
OSSA

0 20 40 60 80 100 120
0

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1

Time

C
on

su
m

ed
 E

ne
rg

y
at

 th
e

N
et

w
or

k

Optimum
DASSA
OSSA

(a) (b)

0 10 20 30 40 50 60 70 80
0

5

10

15

20

25

30

35

40

45

Time

N
um

be
r o

f N
od

es
 S

ch
ed

ul
ed

 to
 b

e
O

n

Optimum
DASSA
OSSA

0 20 40 60 80 100 120
0

5

10

15

20

25

30

35

40

45

Time

N
um

be
r o

f C
on

ne
ct

ed
 N

od
es

Optimum
DASSA
OSSA

(c) (d)

0 20 40 60 80 100 120
0

2

4

6

8

10

12

14

16

18

20

Time

N
um

be
r o

f D
ea

d
N

od
es

Optimum
DASSA
OSSA

(e)

Figure 6.12: Energy and scheduling plots for GoC = 0.8 for Topology 1; (a)
Normalized total residual energy of all nodes with respect to 1J. (b) Normalized
total consumed energy at all nodes with respect to 20mJ. (c) Number of nodes
which are scheduled to be active at each round. (d) Number of nodes connected
to the sink at each round among the nodes which are scheduled to be active. (e)
Number of nodes which are dead at each round.

105

0 20 40 60 80 100 120 140
0.45

0.50

0.55

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1
To

ta
l R

es
id

ua
l E

ne
rg

y
of

 th
e

N
et

w
or

k

Time

Optimum
DASSA
OSSA

0 20 40 60 80 100 120 140
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Time

C
on

su
m

ed
 E

ne
rg

y
at

 th
e

N
et

w
or

k

Optimum
DASSA
OSSA

(a) (b)

0 20 40 60 80 100 120 140
0

5

10

15

20

25

30

35

Time

N
um

be
r o

f N
od

es
 S

ch
ed

ul
ed

 to
 b

e
O

n

Optimum
DASSA
OSSA

0 20 40 60 80 100 120 140
0

5

10

15

20

25

30

35

Time

N
um

be
r o

f C
on

ne
ct

ed
 N

od
es

Optimum
DASSA
OSSA

(c) (d)

0 20 40 60 80 100 120 140
0

2

4

6

8

10

12

14

16

18

20

Time

N
um

be
r o

f D
ea

d
N

od
es

Optimum
DASSA
OSSA

(e)

Figure 6.13: Energy and scheduling plots for GoC = 0.7 for Topology 1; (a)
Normalized total residual energy of all nodeswith respect to 1J. (b) Normalized
total consumed energy at all nodes with respect to 20mJ. (c) Number of nodes
which are scheduled to be active at each round. (d) Number of nodes connected
to the sink at each round among the nodes which are scheduled to be active. (e)
Number of nodes which are dead at each round.

106

the sink located at the origin (0, 0) of the field. The optimum algorithm balances

coverage very well in the field for every GoC even though the initial aim was to

maximize the number of rounds the coverage is above GoC and no constraint for

balanced coverage were introduced in the ILP formulations. Similarly, the aim of

DASSA is to maximize the number of rounds for which the coverage is above GoC

without any concern in balancing the coverage. However, also DASSA maintains

a balanced coverage at each location and achieves far better coverage counts than

OSSA. The far away locations are less covered in DASSA due to the parameters

chosen.

Finally, Figure 6.17 shows the percentage of the scheduling overhead at each

round for Topology 1. When GoC decreases, the energy consumption decreases

faster than the decrease in the overhead. That is why the overhead percentage

increases as GoC decreases. We observe that the scheduling overhead of DASSA

is around 5-15% as compared to the total energy consumption. Figure 6.17 is in

correspondence with Figures 6.4-6.6.

6.1.2 Unequal Transmission and Sensing Ranges

So far, it has been assumed that the sensing and transmission ranges are equal

to each other. However, this might not be the case all the time. Sensing range

being larger than transmission range is a rare case. Therefore, we analyze the

effect of increasing the transmission range with respect to the sensing range. The

sensing range is kept constant at 50m and the transmission range is changed to

60m and 75m. Topology 1 is used in the simulations.

Since DASSA is unaware of the locations of the sensor nodes, we do not

expect it to be affected by the changes in the transmission range. Actually,

when the transmission range increases with respect to the sensing range, we only

need to increase the number of nodes that a node will schedule to be operating

107

(a) (b)

(c)

Figure 6.14: The x and y axis correspond to the network field 200m-by-200m
size and the z axis is the number of rounds each of the locations in the field
are covered. The algorithms are run up to the number of rounds obtained from
the optimum algorithm, in this case for 62 rounds. The coverage counts of (a)
DASSA, (b) OSSA and (c) Optimum algorithm. The results are for Topology 1
and GoC = 0.9.

108

(a) (b)

(c)

Figure 6.15: The x and y axis correspond to the network field 200m-by-200m
size and the z axis is the number of rounds each of the locations in the field
are covered. The algorithms are run up to the number of rounds obtained from
the optimum algorithm, in this case for 75 rounds. The coverage counts of (a)
DASSA, (b) OSSA and (c) Optimum algorithm. The results are for Topology 1
and GoC = 0.8.

109

(a) (b)

(c)

Figure 6.16: The x and y axis correspond to the network field 200m-by-200m
size and the z axis is the number of rounds each of the locations in the field
are covered. The algorithms are run up to the number of rounds obtained from
the optimum algorithm, in this case for 93 rounds. The coverage counts of (a)
DASSA, (b) OSSA and (c) Optimum algorithm. The results are for Topology 1
and GoC = 0.7.

110

0 5 10 15 20 25 30
0

5

10

15

20

25
S

ch
ed

ul
in

g
O

ve
rh

ea
d

of
 D

A
S

S
A

 (%
)

Time
0 5 10 15 20 25 30 35 40 45 50 55

0

5

10

15

20

25

Time

S
ch

ed
ul

in
g

O
ve

rh
ea

d
of

 D
A

S
S

A
 (%

)

(a) (b)

0 10 20 30 40 50 60 70 77
0

5

10

15

20

25

Time

S
ch

ed
ul

in
g

O
ve

rh
ea

d
of

 D
A

S
S

A
 (%

)

(c)

Figure 6.17: Scheduling overhead of DASSA for Topology 1. Percentages are
with respect to the total consumed energy at each round. The plots are for (a)
GoC = 0.9, (b) GoC = 0.8 and (c) GoC = 0.7.

from its next tiers (by increasing NSD and decreasing ps parameters in DASSA).

Although impractical, if the transmission range becomes less than the sensing

range, then DASSA should be adopted to make more nodes to go into sleep

(by lowering NSD and increasing ps parameters of the algorithm). Also, ASD

parameter should be modified accordingly.

Tables 6.11 and 6.12 show the results of the DASSA, OSSA and optimum

case together with the no sleeping case for transmission ranges of 60m and 75m,

respectively. First, the number of rounds in the no sleeping case increases with

111

respect to the case when Rt = 50m. This is expected since more nodes are in the

single hop of the sink and thus the relaying burden on the tier 1 nodes decreases

as reported in Table 6.10. Next, there is not much difference in the ratio of the

number of rounds achieved by DASSA and the optimum results with respect to

Rt = 50m case. Also, when Rt = 75m, OSSA gives very close results to DASSA.

This is expected since when Rt = 75m, the network consists of only two hops

and the chosen set of nodes by OSSA are with high probability connected since

GoC is 0.9 and many nodes are opened. However, the gap still remains wide

open for GoC = 0.7 since as mentioned before, OSSA activates redundant nodes

in order to provide connectivity and cannot benefit from the lowering of GoC.

The number of nodes belonging to each tier number when Rt is changed is shown

in Table 6.10.

Rt 50m 60m 75m

of tier 1 nodes 17 24 42

of tier 2 nodes 38 63 58

of tier 3 nodes 41 13 0

of tier 4 nodes 4 0 0

Table 6.10: Tier sizes for Topology 1 for different Rt.

GoC = 0.7 GoC = 0.8 GoC = 0.9

GoC-L EC NRN GoC-L EC NRN GoC-L EC NRN

No Sleeping 14 1395 89.4 14 1395 89.4 14 1395 89.4

Optimum 145 10755 7.4 115 9613 9.4 96 8887 12.0

DASSA 116 9152 9.4 70 6327 15.3 48 4578 22.3

OSSA 54.9 3840 18.0 42.0 3362 20.0 32.1 2889 31.0

Table 6.11: Results of a 100 node network (Topology 1) for Rt = 60m, Rs = 50m
and a 200m-by-200m field. Einit = 10mJ. The parameters used for DASSA and
OSSA are given in Table A.6.

6.2 Full Aggregation

Although the full aggregation case is somewhat very optimistic in terms of prac-

ticality, the performance of DASSA is also evaluated for this case. Table 6.13

112

GoC = 0.7 GoC = 0.8 GoC = 0.9

GoC-L EC NRN GoC-L EC NRN GoC-L EC NRN

No Sleeping 27 2684 90.6 27 2684 90.6 26 2595 93.3

Optimum 243 17929 6.8 193 16093 8.2 175 16250 9.7

DASSA 222 18245 8.2 124 11387 12.8 85 8057 13.3

OSSA 142.9 12264 14.1 111.4 10267 18.2 81.4 7933 25.1

Table 6.12: Results of a 100 node network (Topology 1) for Rt = 75m, Rs = 50m
and a 200m-by-200m field. Einit = 10mJ. The parameters used for DASSA and
OSSA are given in Table A.7.

GoC = 0.7 GoC = 0.8 GoC = 0.9

GoC-L EC NRN GoC-L EC NRN GoC-L EC NRN

No Sleeping 16 1565 89.9 15 1494 89.9 15 1494 94.5

Optimum 104 7628 10.2 95 7890 12.1 82 7613 14.0

DASSA 76.8 6429 18.4 60.9 5517 23.3 42.3 4113 31.5

OSSA 58.2 5155 24.2 48.6 4558 29.2 38.7 3778 36.9

DRS 34.4 2834 13.4 29.2 2615 16.6 22.8 2178 21.8

EDRS 36.9 3051 13.5 31.0 2773 16.6 26.0 2490 22.1

Table 6.13: Results of a 100 node network (Topology 1) for Rt = 50m, Rs =
50m and a 200m-by-200m field when there is full aggregation. Einit = 5mJ. The
parameters used for DASSA and OSSA are given in Table A.8.

presents the performance of all the sleep scheduling algorithms described at the

beginning of the chapter. In contrast with the results obtained for no aggregation

case, OSSA now provides better results. However, for GoC = 0.8 and 0.7, there

is still a big improvement over OSSA when DASSA is employed. Note that, for

the full aggregation case Einit = 5mJ is used and the other energy costs are the

same as in the no aggregation case.

OSSA performs better in this case because opening more nodes for connectiv-

ity is not a big disadvantage anymore for OSSA since nodes combine all received

data and transmit only one packet. Note the difference in the NRN values for

DASSA and OSSA. Still, DASSA chooses nodes much more efficiently but since

there is full aggregation, this does not cause a big difference in energy consump-

tion.

113

Chapter 7

Conclusions

In this thesis, the problem of sleep scheduling in wireless sensor networks is in-

vestigated. Sleep scheduling activates only a subset of nodes which can maintain

user defined constraints in an energy efficient manner to prolong network lifetime.

In order to gain some insight into the problem, a theoretical analysis on the

number of nodes that should be deployed for various coverage levels without

considering connectivity is presented. Furthermore, the minimum number of

sensors that should be deployed in order to satisfy a given partial coverage target

with a certain probability while maintaining connectivity is computed and an ILP

formulation is presented for finding the minimum number of sensors that should

be activated within the set of deployed sensors. This pre-deployment analysis

can provide valuable information to a sleep scheduling algorithm design.

The optimum scheduling of nodes is found by using an ILP formulation which

provides the maximum number of rounds the network can satisfy a certain cov-

erage level. This approach is centralized and requires global knowledge of the

network. Next, a distributed, simple and scalable sleep scheduling algorithm

called DASSA is proposed. The main objective of DASSA is to find the min-

imum set of nodes which can satisfy the desired coverage without using any

location information and only using local information.

114

DASSA is compared with the optimum scheduling results, an oblivious al-

gorithm called OSSA and an existing work in the literature for various network

sizes and various number of nodes. DASSA and OSSA outperforms the work in

[46] and DASSA outperforms OSSA in all cases we considered. DASSA can reach

up to the 43%, 63% and 89% of the optimum algorithm for coverage levels of

90%, 80% and 70%, respectively, when tuned properly. DASSA is a very flexible

algorithm and with the fine tuning of its parameters depending on the network

size and number of nodes, it can achieve performances close to optimum.

As the number of tiers in the network increases, the gain provided by DASSA

algorithm decreases with respect to OSSA since the randomness in DASSA in-

creases. Thus, DASSA would benefit from a clustered network structure. A

multi-sink scenario where each sink employs DASSA could increase the perfor-

mance of the algorithm. DASSA can also be used in an heterogenous network,

where a subset of nodes have higher capabilities than the other type of nodes. In

such a network, high powered nodes can employ DASSA algorithm within their

clusters.

For future work, the performance of DASSA can be analyzed for a clustered

network and compared with OSSA. Also, the ILP based formulation can be

adjusted for finding the optimum scheduling for clustered networks. Partial

coverage is a new subject in the context of sleep scheduling and extending the

study in this thesis to the clustered case would be of value. Also, a more adaptive

version of DASSA where the parameters of the algorithm are modified as nodes

die may be studied. Finally, the parameters of DASSA should be tuned to

find the real optimum point of the algorithm by using exhaustive search. We

only reported the best possible runs we could find in limited time. Therefore,

the performance of the algorithm when the parameters are at the real optimum

values can be better when compared with the results we provide.

115

Sleep scheduling is a flourishing area in extending network lifetime and to-

gether with partial coverage, it could be the key to very long lifetime sensor

networks.

116

APPENDIX A

Algorithm Parameters

In this section, the parameters used in DASSA and OSSA for obtaining the

results in Chapter 6 are presented. Note that the NSD column is divided into

more than one columns in some of the tables. For that cases, ASD parameter

is larger than 1, and as we mentioned in Chapter 5, the NSD parameter differs

for each tier which are involved in scheduling their neighbors from the next tiers.

Thus, the number of columns under NSD should go up to ASD since only nodes

from tiers 1 to ASD schedule their neighbors. In other words, first column under

the NSD parameter in the tables is the number of nodes that each node from

tier 1 schedules, second column is the number of nodes that each node from tier

2 schedules and so on.

117

Top. # GoC α Objective ps NAS NSD ASD

1

90 0.65 3 1.00 1 2 1

80 0.93 3 1.00 1 1 1

70 0.99 3 1.00 0 1 1

2

90 0.99 2 1.00 1 2 1

80 0.97 3 1.00 1 1 1

70 0.93 1 1.00 0 1 1

3

90 0.51 3 1.00 1 2 1

80 0.93 3 1.00 1 1 1

70 0.93 3 1.00 0 1 1

4

90 0.96 2 1.00 1 2 1

80 0.96 2 1.00 1 1 1

70 0.91 2 1.00 0 1 1

Common

90 0.58 1 1.00 1 2 1

80 0.93 3 1.00 1 1 1

70 0.94 3 1.00 0 1 1

Table A.1: Parameters of DASSA for Topology 1, 2, 3 and 4.

Top. # GoC = 0.9 GoC = 0.8 GoC = 0.7

1 0.60 0.70 0.76

2 0.66 0.70 0.78

3 0.62 0.70 0.78

4 0.65 0.70 0.74

Common 0.64 0.70 0.78

Table A.2: p∗ of OSSA for Topology 1, 2, 3 and 4.

GoC α Objective ps NAS NSD ASD p∗

1 2

0.9 0.87 3 1.00 1 1 1 2 0.73

0.8 0.95 3 1.00 0 1 1 2 0.78

0.7 0.75 1 1.00 0 1 1 2 0.83

Table A.3: Parameters of DASSA and OSSA for Topology 5.

118

GoC α Objective ps NAS NSD ASD p∗

1 2

0.9 0.93 3 1.00 0 2 1 2 0.80

0.8 0.90 3 1.00 0 2 - 1 0.82

0.7 0.87 3 1.00 0 1 - 1 0.86

Table A.4: Parameters of DASSA and OSSA for 100 random deployments of a
200 node network for Rt = 50m, Rs = 50m and a 200m-by-200m field.

GoC α Objective ps NAS NSD ASD p∗

1 2 3

0.9 0.99 3 0.85 0 2 1 - 2 0.80

0.8 0.90 3 1.00 0 3 1 1 3 0.84

0.7 0.95 3 1.00 0 2 1 1 3 0.86

Table A.5: Parameters of DASSA and OSSA for 100 random deployments of a
400 node network for Rt = 50m, Rs = 50m and a 300m-by-300m field.

GoC α Objective ps NAS NSD ASD p∗

0.9 0.94 3 1.00 1 2 1 0.68

0.8 0.95 3 1.00 1 1 1 0.80

0.7 0.95 1 1.00 0 1 1 0.81

Table A.6: Parameters of DASSA and OSSA for Rt = 60m, Rs = 50m and
Topology 1.

GoC α Objective ps NAS NSD ASD p∗

0.9 0.98 2 1.00 1 1 1 0.75

0.8 0.98 2 1.00 1 1 1 0.82

0.7 0.97 1 1.00 0 1 1 0.86

Table A.7: Parameters of DASSA and OSSA for Rt = 75m, Rs = 50m and
Topology 1.

GoC α Objective ps NAS NSD ASD p∗

0.9 0.80 3 0.55 0 2 1 0.62

0.8 0.86 3 0.62 0 1 1 0.69

0.7 0.74 3 0.66 0 1 1 0.73

Table A.8: Parameters of DASSA for Topology 1 with full aggregation.

119

Bibliography

[1] I. F. Akyildiz, W. Su, Y. Sankarasubramaniam, and E. Cayirci, “Wireless

sensor networks: a survey,” Comput. Networks, vol. 38, no. 4, pp. 393–422,

2002.

[2] L. Hu and D. Evans, “Localization for mobile sensor networks,” in Tenth An-

nual International Conference on Mobile Computing and Networking (Mo-

biCom), 2004.

[3] N. Bulusu, J. Heidemann, and D. Estrin, “GPS-less low-cost outdoor local-

ization for very small devices,” IEEE Personal Communications, no. 2–3,

pp. 28–34, 2000.

[4] W. R. Heinzelman, A. Chandrakasan, and H. Balakrishnan, “Energy-

efficient communication protocol for wireless microsensor networks,” in

HICSS ’00: Proceedings of the 33rd Hawaii International Conference on

System Sciences-Volume 8, (Washington, DC, USA), p. 8020, IEEE Com-

puter Society, 2000.

[5] A. Manjeshwar and D. Agrawal, “TEEN: A routing protocol for enhanced

efficiency in wireless sensor networks,” in Parallel and Distributed Processing

Symposium., Proceedings 15th International, pp. 2009–2015, 2001.

[6] B. Krishnamachari, D. Estrin, and S. B. Wicker, “The impact of data ag-

gregation in wireless sensor networks,” in ICDCSW ’02: Proceedings of the

120

22nd International Conference on Distributed Computing Systems, (Wash-

ington, DC, USA), pp. 575–578, IEEE Computer Society, 2002.

[7] J. Heidemann, F. Silva, C. Intanagonwiwat, R. Govindan, D. Estrin, and

D. Ganesan, “Building efficient wireless sensor networks with low-level nam-

ing,” in SOSP ’01: Proceedings of the eighteenth ACM symposium on Oper-

ating systems principles, (New York, NY, USA), pp. 146–159, ACM Press,

2001.

[8] E. Shih, S.-H. Cho, N. Ickes, R. Min, A. Sinha, A. Wang, and A. Chan-

drakasan, “Physical layer driven protocol and algorithm design for energy-

efficient wireless sensor networks,” in MobiCom ’01: Proceedings of the 7th

annual international conference on Mobile computing and networking, (New

York, NY, USA), pp. 272–287, ACM Press, 2001.

[9] J. Liu, X. Koutsoukos, J. Reich, and F. Zhao, “Sensing field: coverage

characterization in distributed sensor networks,” in IEEE ICASSP, vol. 5,

pp. 173–176, 2003.

[10] K. Chakrabarty, S. S. Iyengar, H. Qi, and E. Cho, “Grid coverage for surveil-

lance and target location in distributed sensor networks,” IEEE Trans. Com-

put., vol. 51, no. 12, pp. 1448–1453, 2002.

[11] S. Meguerdichian and M. Potkonjak, “Low power 0/1 coverage and schedul-

ing techniques in sensor networks,” Technical Reports 030001, University of

California Los Angeles, January 2003.

[12] S. Slijepcevic and M. Potkonjak, “Power efficient organization of wireless

sensor networks,” in IEEE International Conference on Communications,

ICC, pp. 472–476, 2001.

[13] C. Huang and Y. Tseng, “The coverage problem in a wireless sensor net-

work,” in Proceedings of the 2nd ACM international conference on Wireless

sensor networks and applications (WSNA), pp. 115–121, 2003.

121

[14] D. Tian and N. Georganas, “A coverage-preserving node scheduling scheme

for large wireless sensor networks,” in First ACM International Workshop

on Wireless Sensor Networks and Applications, 2002.

[15] A. Boukerche, X. Fei, R. B. Araujo, and P. Patnaik, “A local information

exchange based coverage-preserving protocol for wireless sensor networks,”

in Proceedings of IEEE ICC, 2006.

[16] S. Meguerdichian, F. Koushanfar, M. Potkonjak, and M. B. Srivastava,

“Coverage problems in wireless ad-hoc sensor networks,” in Proceedings of

IEEE INFOCOM, 2001.

[17] Y. Xu, J. Heidemann, and D. Estrin, “Geography-informed energy conser-

vation for ad hoc routing,” in Proceedings of ACM MOBICOM, 2001.

[18] B. Chen, K. Jamieson, H. Balakrishnan, and R. Morris, “Span: An energy-

efficient coordination algorithm for topology maintenance in ad hoc wireless

networks,” in Mobile Computing and Networking, pp. 85–96, 2001.

[19] A. Cerpa and D. Estrin, “ASCENT: Adaptive self-configuring sensor net-

works topologies,” in Proceedings of IEEE INFOCOM, June 2002.

[20] Y. Xu, J. Heidemann, and D. Estrin, “Adaptive energy-conserving rout-

ing for multihop ad hoc networks,” research report 527, USC/ Information

Sciences Institute, October 2000.

[21] H. Gupta, S. Das, and Q. Gu, “Connected sensor cover: Self organization

of sensor networks for efficient query execution,” in ACM Mobile Adhoc

Network Symposium (MOBIHOC), pp. 189–199, 2003.

[22] S. Shakkottai, R. Srikant, and N. Shroff, “Unreliable sensor grids: Coverage,

connectivity and diameter,” in Proceedings of IEEE INFOCOM, April 2003.

122

[23] V. P. Mhatre, C. Rosenberg, D. Kofman, R. Mazumdar, and N. Shroff,

“A minimum cost heterogeneous sensor network with a lifetime constraint,”

IEEE Transactions on Mobile Computing, vol. 4, no. 1, pp. 4–15, 2005.

[24] F. Ye, G. Zhong, J. Cheng, S. Lu, and L. Zhang, “PEAS: A robust en-

ergy conserving protocol for long-lived sensor networks,” in ICDCS ’03:

Proceedings of the 23rd International Conference on Distributed Computing

Systems, (Washington, DC, USA), p. 28, IEEE Computer Society, 2003.

[25] X. Wang, G. Xing, Y. Zhang, C. Lu, R. Pless, and C. Gill, “Integrated cov-

erage and connectivity configuration in wireless sensor networks,” in Pro-

ceedings of Sensys, 2003.

[26] H. Zhang and J. C. Hou, “Maintaining sensing coverage and connectivity

in large sensor networks,” International Journal of Wireless Ad Hoc and

Sensor Networks, vol. 1, no. 1–2, pp. 89–124, 2005.

[27] M. Cardei and J. Wu, “Energy-efficient coverage problems in wireless ad

hoc sensor networks,” To be published in Computer Communications, special

issue on Sensor Networks.

[28] R. Iyer and L. Kleinrock, “QoS control for sensor networks,” in Proceedings

of the IEEE International Conference on Communications, 2003.

[29] M. Tsetlin, Finite Automata and Modeling the Simplest Forms of Behavior.

PhD thesis, V.A. Steklov Mathematical Institute, 1964.

[30] J. Frolik, “QoS control for random access wireless sensor networks,” in IEEE

Wireless Communications and Networking Conference, March 2004.

[31] J. Kay and J. Frolik, “Quality of service analysis and control for wireless

sensor networks,” in First IEEE International Conference on Mobile Ad Hoc

and Sensor Systems, October 2004.

123

[32] B. Liang, J. Frolik, and X. S. Wang, “A predictive QoS control strategy

for wireless sensor networks,” in Second IEEE International Conference on

Mobile Ad Hoc and Sensor Systems (MASS), November 2005.

[33] J. Misic, S. Shafi, and V. Misic, “Cross-layer activity management in an 802-

15.4 sensor network,” Communications Magazine, IEEE, vol. 44, pp. 131–

136, January 2006.

[34] B. Liang, J. Frolik, and X. S. Wang, “Maintaining reliability through activ-

ity management in 802.15.4 sensor networks,” in Second International Con-

ference on Quality of Service in Heterogeneous Wired/Wireless Networks,

August 2005.

[35] J. Al-Karaki and A. Kamal, “Routing techniques in wireless sensor networks:

a survey,” Wireless Communications, IEEE, vol. 11, pp. 6–28, December

2004.

[36] K. Akkaya and M. Younis, “A survey of routing protocols in wireless sensor

networks,” Elsevier Ad Hoc Network Journal, vol. 3, no. 3, pp. 325–349,

2005.

[37] C. J. Leuschner, “The design of a simple energy efficient routing protocol to

improve wireless sensor network lifetime,” MS thesis. Faculty of Engineering,

University of Pretoria. April 2005.

[38] J. Kulik, W. R. Heinzelman, and H. Balakrishnan, “Negotiation-based pro-

tocols for disseminating information in wireless sensor networks,” Wireless

Networks, vol. 8, no. 2–3, pp. 169–185, 2002.

[39] C. Intanagonwiwat, R. Govindan, and D. Estrin, “Directed diffusion: a

scalable and robust communication paradigm for sensor networks,” in Mobile

Computing and Networking, pp. 56–67, 2000.

[40] J.-H. Chang and L. Tassiulas, “Energy conserving routing in wireless ad-hoc

networks,” in Proceedings of IEEE INFOCOM, pp. 22–31, 2000.

124

[41] U. Monaco, F. Cuomo, T. Melodia, F. Ricciato, and M. Borghini, “Un-

derstanding optimal data gathering in the energy and latency domains of a

wireless sensor network,” To appear in Computer Networks (Elsevier), 2006.

[42] Y. Liu and W. Liang, “Approximate coverage in wireless sensor networks,”

in Proceedings of of 30th Annu. IEEE Conf. on Local Computer Networks,

IEEE Computer Society, pp. 68–75, November 2005.

[43] Y. Xu, J. Heidemann, and D. Estrin, “pCover: Partial coverage for long-lived

surveillance sensor networks,” tech. rep., Department of Computer Science,

Michigan State University, November 2005.

[44] H. Zhang and J. Hou, “On deriving the upper bound of α-lifetime for large

sensor networks,” in MobiHoc ’04: Proceedings of the 5th ACM international

symposium on Mobile ad hoc networking and computing, (New York, NY,

USA), pp. 121–132, ACM Press, 2004.

[45] W. Choi and S. K. Das, “Trade-off between coverage and data reporting

latency for energy-conserving data gathering in wireless sensor networks,” in

First IEEE International Conference on Mobile Ad Hoc and Sensor Systems,

October 2004.

[46] W. Choi and S. K. Das, “A novel framework for energy-conserving data

gathering in wireless sensor networks,” in Proceedings of IEEE INFOCOM,

March 2005.

[47] F. Ye, G. Zhong, S. Lu, and L. Zhang, “Energy efficient robust sensing

coverage in large sensor networks,” tech. rep., UCLA, 2002.

[48] W. Ye, J. Heidemann, and D. Estrin, “An energy-efficient MAC protocol

for wireless sensor networks,” in Proceedings of IEEE INFOCOM, pp. 1567–

1576, 2002.

125

[49] S.Tai, R.Benkoczi, H.Hassanein, and S.Akl, “A performance study of split-

table and unsplittable traffic allocation in wireless sensor networks,” in Pro-

ceedings of IEEE ICC, 2006.

[50] “Cplex solver.” http : //www.ilog.com/products/cplex/, June 2005.

126

