
PARPATOH: A 2D-PARALLEL
HYPERGRAPH PARTITIONING TOOL

a thesis

submitted to the department of computer engineering

and the institute of engineering and science

of bilkent university

in partial fulfillment of the requirements

for the degree of

master of science

By

Evren Karaca

January, 2006

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Bilkent University Institutional Repository

https://core.ac.uk/display/52940113?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

I certify that I have read this thesis and that in my opinion it is fully adequate,

in scope and in quality, as a thesis for the degree of Master of Science.

Prof. Dr. Cevdet Aykanat (Advisor)

I certify that I have read this thesis and that in my opinion it is fully adequate,

in scope and in quality, as a thesis for the degree of Master of Science.

Prof. Dr. Ayhan Altıntaş

I certify that I have read this thesis and that in my opinion it is fully adequate,

in scope and in quality, as a thesis for the degree of Master of Science.

Asst. Prof. Dr. İbrahim Körpeoğlu

Approved for the Institute of Engineering and Science:

Prof. Dr. Mehmet B. Baray
Director of the Institute

ii

ABSTRACT

PARPATOH: A 2D-PARALLEL HYPERGRAPH
PARTITIONING TOOL

Evren Karaca

M.S. in Computer Engineering

Supervisor: Prof. Dr. Cevdet Aykanat

January, 2006

Hypergraph partitioning is a process that is being used to find solutions for

optimization problems in various areas, including parallel volume rendering, par-

allel information retrieval and VLSI circuit design. While the current partitioning

methods are adequate for hypergraphs up to certain size, these methods start to

fail once the problem size exceeds this threshold.

In this thesis we introduce ParPaToH, a parallel p-way hypergraph partition-

ing tool that makes use of a 2-D decomposition to reduce the communication

overhead and implements a parallel-computing friendly version of the accepted

multi-level partitioning paradigm to generate its partitioning. We present new

concepts in hypergraph partitioning that lead to a coarse-grain parallel solution.

Finally, we discuss the implementation of the tool in detail and present experi-

mental results to demonstrate its effectiveness.

Keywords: Multilevel hypergraph partitioning, parallel computing.

iii

ÖZET

PARPATOH: BIR 2-BOYUTLU PARALEL
HİPERÇİZGE BÖLÜMLEME ARACI

Evren Karaca

Bilgisayar Mühendisliği, Yüksek Lisans

Tez Yöneticisi: Prof. Dr. Cevdet Aykanat

Ocak, 2006

Hiperçizge bölümleme, hacim boyama, bilgi getirme ve VLSİ devre tasarımı gibi,

değişik alanlardaki en iyileme sorunlarını çözmek için kullanılan bir işlemdir.

Varolan bölümleme yöntemleri bell irli bir boya kadar olan hiperçigeler için

çalışıyor olsa da, bu boyu aşan hiperçizgeler için yetersiz kalmaktadır.

Bu tezde, iletişim yükünü azaltmak için 2-boyutlu bir veri bölümlemesi kul-

lanan ve kabul görmüş çok-düzeyli bölümleme paradigmasını parallel işlemeye uy-

gun hale getirmiş bir p-yön parallel hiperçizge bölümleme aracı olan ParPaToH’u

takdim ediyoruz. Büyük ölçekli iletişime izin veren yeni hiperçizge bölümleme

kavramlarını açıkladıktan sonra, aracın yapısını detaylı bir şekilde anlatıp, etk-

ililiğini gözler önüne seren deney sonuçlarını sunuyoruz.

Anahtar sözcükler : Çok-düzeyli hiper çizge bölümleme, paralel işleme.

iv

Acknowledgement

I would like to express my gratitude to Prof. Dr Cevdet Aykanat for his

supervision, guidance, encouragement and patience during the development of

this thesis.

I would to thank my thesis committee members, Prof. Dr. Ayhan Altıntaş

and Asst. Prof. Dr. İbrahim Körpeöğlu, for reading my thesis and providing

valuable comments.

This thesis would not be what it is without the environment of mirth and

thought provided by the “parallel guys”, Ali, Ata, Barla and Tayfun. I would

like to especially thank Bora for his ideas that contributed much to this thesis.

Finally, I would like to thank my family for their invaluable support and trust

in me.

v

Contents

1 Introduction 1

1.1 Organization of the Thesis . 2

2 Background 3

2.1 Preliminaries . 3

2.1.1 The hypergraph . 3

2.1.2 Hypergraph Partitioning 4

2.1.3 State of the art in sequential partitioning 5

2.2 Applications of Hypergraph partitioning 9

2.3 Related work . 10

2.3.1 Sequential Hypergraph Partitioning 10

2.3.2 Parallel Hypergraph Partitioning 11

3 Parallel Hypergraph Partitioning 12

3.1 Reasons for parallelizing . 12

3.2 Difficulties in parallelization . 12

vi

CONTENTS vii

3.3 Data distribution . 13

3.3.1 One-dimensional decomposition 14

3.3.2 Two-dimensional decomposition 14

3.4 Parallel partitioning methodology 17

3.4.1 The elongated V-cycle . 17

3.4.2 Parallel algorithm design considerations 17

3.4.3 Restrictions of ParPaToH 19

4 Implementation 20

4.1 Coarsening . 20

4.1.1 Matching . 21

4.1.2 Merging . 23

4.1.3 Crossing-over . 23

4.1.4 The termination of coarsening phase 24

4.2 Initial Partitioning . 24

4.2.1 Parallel initial partitioning 25

4.3 Refinement . 26

4.3.1 Uncoarsening . 26

4.3.2 Improving the cut . 27

5 Experimental Results 35

5.1 Cut vs. time . 35

CONTENTS viii

5.1.1 Tunable parameters . 36

5.1.2 Time dissection . 39

5.2 Scaling . 39

6 Discussions & Conclusions 43

6.1 Evaluation of the results . 43

6.2 Ideas for future work . 43

6.2.1 Generalization and improvement of the current code-base . 44

6.2.2 Merging identical nets . 44

6.2.3 Different refinement algorithm 44

6.2.4 Other features . 44

6.3 Conclusion . 45

List of Figures

2.1 A hypergraph and its matrix representation 4

2.2 Sequential multi-level hypergraph partitioning 7

3.1 2D data distribution . 16

3.2 Parallel hypergraph partitioning 18

4.1 Explanation of terms . 21

4.2 Crossing-over in action . 24

4.3 Rotating the refinement schedule 30

5.1 The time dissection of a V-cycle 42

ix

List of Tables

5.1 Properties of the partitoned hypergraphs 36

5.2 Effects of the refinement count on the cut size 37

5.3 The effects of the refinement count on the partitioning time . . . 38

5.4 Effects of coarsening depth on the cut 39

5.5 Effects of coarsening depth on the execution times 40

5.6 Effects of crossing-over on the cut 41

5.7 Effects of crossing-over on the execution times 41

5.8 Scaling to multiple processors . 42

x

Chapter 1

Introduction

Hypergraph partitioning, is used to find solutions to many problems in various

fields. Among these are parallel computing problems such as parallel sparse-

matrix vector multiplication [6], sparse matrix permutation for parallel LU and

QR factorization [2], performance analysis [14], and parallel volume rendering [5]

as well as other research fields including VLSI design [16], software design [4],

and spatial databases [12].

Although several sequential partitioning tools exist (such as PaToH [7] and

hMeTiS [16]) that find good quality solutions to the problem, the nature of the

algorithms used in these restrict the partitionable hypergraph size to a certain

value. Larger hypergraphs cannot be partitioned successfully with these as they

no longer fit into the main memory of the system and the tools either fail to work

completely or work extremely slowly.

One way to partition large hypergraphs is to parallelize the hypergraph par-

titioning process and exploit the resources of multiple computers. The research

community is actively working on this issue and has recently sucessfully demon-

strated the viability of parallel hypergraph partitioning tools [25],[13]. These

tools, however, are still in their infancy and, unlike its serial counterpart, there

are no well studied and accepted methods is parallel hypergraph partitioning.

1

CHAPTER 1. INTRODUCTION 2

In this thesis, we present a parallel hypergraph partitioning implementation

that is being developed concurrently, yet independently, with these other tools.

It makes use of a 2-D partitioning of the hypergraph to reduce the communica-

tion overhead and introduces several novel concepts that allows a coarse-grain

parallelization of the multi-level hypergraph partitioning algorithm.

1.1 Organization of the Thesis

The organization of thesis is as follows: Chapter 2 gives background informa-

tion about the hypergraph partitioning problem, describes current solutions and

discusses the currently available tools for hypergraph partitioning. Chapter 3

re-examines the hypergraph partitioning problem from a parallel implementation

viewpoint and presents our solutions to the appearing issues. Chapter 4 explains

the implementation of the tool in detail. Chapter 5 presents experimental results.

Chapter 6 discusses that various strengths and weaknesses of the tool, discusses

the plans for future improvement and presents conclusions that can be drawn

from the current implementation.

A small note regarding the word “processor” in this document. It is used

exclusively to mean a node in a cluster, a single processing entity that has its

own computational capabilities and memory. It is not meant to be interpreted

as a single processor in a shared memory system. (In fact this paper was not

written with these systems in mind)

Chapter 2

Background

2.1 Preliminaries

2.1.1 The hypergraph

A hypergraph is a generalized form of the graph data structure. A hypergraph

H=(V,N) consists of a set of vertices V and a set of nets N [3]. Each net ni in

N connects a subset of vertices in V, which are said to be the pins of ni. Each

net ni has a cost ci and each vertex vj has a weight wj.

2.1.1.1 The matrix form

Another way of representing a hypergraph, H, is a sparse, binary matrix, A, of

dimensions V × N , where V = |V| and N = |N | denote the number of nets and

vertices of H respectively. In this matrix, aij is 1 if vertex vi is a pin of net nj,

and 0 if this is not the case. An example illustrating the two forms is given in

Figure 2.1. In this representation, a hypergraph would be a graph if number of

ones in each column in its matrix representation is exactly two.

The degree of a net ni is defined as the number of its pins. The degree of

3

CHAPTER 2. BACKGROUND 4

v4

v3

v2

v1

v5

n1

n4

n6

n3n2

n5

A =

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

1 0 0 1 1 0

1 1 1 0 0 0

0 0 1 0 0 1

1 1 1 1 0 0

0 0 0 0 1 1

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

Figure 2.1: A hypergraph and its matrix representation

vertex vj is defined as the number of nets vj is a pin of.

2.1.2 Hypergraph Partitioning

Π = {V1,V2, . . . ,VK} is a K-way vertex partition if each part Vk is non-empty,

parts are pairwise disjoint, and the union of all Vk forms V. The weight Wk of

part Vk is the sum of the weights of the vertices forming Vk. In Π, a net is said

to connect a part if it has at least one pin in that part. The connectivity set Λj

of a net nj is the set of parts connected by nj. The connectivity λj = |Λj| of a

net nj is equal to the number of parts connected by nj. If λj =1, then nj is an

internal net. If λj >1, then nj is an external net and is said to be at cut. In Π,

the weight Wk of a part Vk is equal to the sum of the weights of vertices in Vk,

i.e., Wk =
∑

vi∈Vk
wi.

The K-way hypergraph partitioning problem [1] is defined as finding a vertex

partition Π for a given hypergraph H=(V,N) such that a partitioning constraint

is maintained while a partitioning objective is optimized. Although other options

are possible, typically, the partitioning constraint is to maintain a given balance

criterion on the part weights, and the partitioning objective is to minimize an ob-

jective function defined over the cut nets. The frequently used objective functions

CHAPTER 2. BACKGROUND 5

include the cut-net metric

cut(Π) =
∑

nj∈Ncut

cj, (2.1)

where Ncut is the set of cut nets and the connectivity−1 metric [21]

cut(Π) =
∑

nj∈Ncut

cj(λj−1), (2.2)

in which each cut net nj contributes cj(λj−1) to the cost cut(Π) of partition Π.

In this work, the connectivity-1 metric is used.

2.1.3 State of the art in sequential partitioning

The hypergraph partitioning problem is unfortunately a difficult problem in terms

of time complexity. Finding the optimal solution is known to be NP-hard; hence,

heuristic algorithms that run in polynomial time and generate sub-optimal solu-

tions are utilized.

Initially, the problem was solved by partitioning the flat hypergraph, recur-

sively bisecting until the number of desired partitions were reached. Kernighan-

Lin (KL) based heuristics were used for the hypergraph partitioning because of

their short run-times and good quality results. The KL algorithm is an itera-

tive improvement heuristic originally proposed for graph bipartitioning [19]. The

KL algorithm, starting from an initial bipartition, performs a number of passes

until it finds a locally minimum partition. Each pass consists of a sequence of

vertex swaps. The same swap strategy was applied to the hypergraph biparti-

tioning problem by Schweikert-Kernighan [23]. Fiduccia-Mattheyses (FM) [15]

introduced a faster implementation of the KL algorithm for hypergraph parti-

tioning.

In these early implementations, k-way hypergraph partitioning was performed

CHAPTER 2. BACKGROUND 6

through pairwise part refinement. The 2-way FM/KL algorithms were run on the

initial k-way partition multiple times, each time refining different pairs of parts

to generate a final, k-way, refinement.

Later, two schools of thought on how k-way partitionings should be performed

emerged. The recursive bisection approach is to only perform bipartitionings and

to repeat the large V-cycle on the produced partitions separately to divide the

hypergraph even further. The other is the direct k-way method, it generates k

parts in the initial refinement phase and projects this to form a k-way partitioning

directly.

Unfortunately, the performance of the FM algorithm applied on the flat hy-

pergraph deteriorates for large and very sparse hypergraphs. Here, sparsity of

graphs and hypergraphs refer to their average vertex degrees. To alleviate this

problem, the multi-level partitioning paradigm was proposed. In this paradigm,

the flat hypergraph is not partitioned straight away; instead, it goes through a

three-step procedure, consisting of the coarsening, initial partitioning and refine-

ment phases. This three-step procedure is also referred to as the V-Cycle.

Broadly speaking, the multilevel refinement paradigm operates incrementally.

At each level in the coarsening phase, the input hypergraph is “coarsened”; a

new, smaller hypergraph is generated from the input hypergraph through the

formation of supervertices. The coarsest hypergraph undergoes initial partition-

ing, the formation multiple parts. This partition is projected, level-by-level, onto

successively finer hypergraphs, undergoing refinement at each level to improve

the cut.(Figure 2.2)

2.1.3.1 Coarsening

At each level of the coarsening phase, the vertices of the hypergraph are merged

to form supervertices. Each supervertex has a weight equal to the sum of its

constituent vertices and is connected to the union of the nets that the constituent

vertices were connected to. A net that is exclusively connected to the constituent

vertices, internal nets, of the supervertex vanishes from the next-level hypergraph.

CHAPTER 2. BACKGROUND 7

Multi−level coarsening

Initial partitioning

Vm

4

Vm

3

Vm

2

Vm

1

H`

H0

Hm
Hm

VmHm

V`
2

V`
1

V`
4

V`
3

H
`

V0
3V0

1

V0
4V0

2

H
0

Multi-level refinement (direct k-way)

Figure 2.2: Sequential multi-level hypergraph partitioning

CHAPTER 2. BACKGROUND 8

The idea behind this is twofold: to reduce the number of vertices that need to

be processed and increase the degrees of the vertices. The first translates into a

significant gain in processing time due to the nature of the heuristics; the second

allows vertices to represent a more global view of the hypergraph allowing more

informed vertex moves.

The decision of which vertices to merge is made using one of several different

match heuristics. Heavy connectivity matching (HCM) is one that performs well.

This heuristic tries to merge vertices based on the total cost of common nets

between them; two vertices that share many nets with a high cost are considered

good candidates to merge. In some implementations vertices are only allowed

to make one merge in each pass, other implementations allow restricted multiple

merges. These two approaches are termed matching- and agglomerative-based

clustering, respectively.

Each level of the coarsening phase generates a new, smaller hypergraph.

Coarsening terminates when the number of vertices in this hypergraph is low

enough.

2.1.3.2 Initial partitioning

In the initial partitioning phase, the coarsest hypergraph is partitioned. As the

coarsest hypergraph is small, methods that give good results but are infeasible

with larger hypergraphs can be applied. Furthermore, as the problem size is

small, algorithms can be run multiple times and the best result can be taken.

2.1.3.3 Refinement

The refinement phase projects the partition of small, coarser hypergraphs to the

larger and finer hypergraphs. This projection starts with the partitioning ob-

tained from the initial partitioning phase. Each level in the coarsening phase

has a corresponding level in the refinement phase. First, the hypergraph is un-

coarsened: the effects of the corresponding level’s coarsening are undone and

CHAPTER 2. BACKGROUND 9

supervertices are broken down. Internal nets are restored. The constituent ver-

tices are assigned to the part of their supervertex. Then a refinement heuristic,

such as FM [15] or KL [19], is applied to improve the cut while maintaining the

balance of the parts. The produced partition is used as the initial partition in

the next refinement level; unless it was the final level of the refinement, in which

case it is taken as the final partitioning.

2.2 Applications of Hypergraph partitioning

Hypergraph partitioning has been used in VLSI design since 1970s [23]. The ap-

plication of hypergraph partitioning in parallel computing is started by the work

of Catalyurek and Aykanat [6]. This work addresses 1D partitioning of sparse

matrices for efficient parallelization of matrix vector multiplies. Later, Catalyurek

and Aykanat [8, 9] and Vastenhouw and Bisseling [28] proposed hypergraph par-

titioning models for 2D partitioning of sparse matrices. In these models, the

partitioning objective is to minimize the total volume of communication incurred

due to the parallelization while avoiding computational imbalance in the proces-

sors. These matrix partitioning models are utilized in different applications which

involve repeated matrix-vector multiplies, such as computation of response time

densities in large Markov models [14] and restoration of blurred images [27].

In the parallel computing domain, hypergraph-partitioning-based models em-

ploying objective functions other than minimizing the total volume of communi-

cation exist. For example, Aykanat, Pinar and Catalyurek [2] develop models for

permuting sparse rectangular matrices into singly-bordered block diagonal form

for efficient coarse-grain parallelization of linear programming, LU factorization

and QP factorization problems. Their models try to minimize the size of the bor-

der, which corresponds to minimizing the overhead of the coordination task, while

providing load balance over the diagonal block sizes and thus on computational

loads of processors. Another example is the communication hypergraph model

proposed by Ucar and Aykanat [26] for considering message latency overhead in

parallel sparse matrix vector multiples based on 1D matrix partitioning.

CHAPTER 2. BACKGROUND 10

Besides matrix partitioning, hypergraph partitioning models have also been

proposed for use in other parallel and distributed computing applications. These

include workload partitioning in data aggregation [10], image-space-parallel direct

volume rendering [5], and scheduling file-sharing tasks in heterogeneous master-

slave computing environments [20],[18].

Finally, we should note that hypergraph partitioning also finds application in

problems outside the parallel computing domain such as road network cluster-

ing for efficient query processing [12], pattern-based data clustering [22], reduc-

ing software development and maintenance costs [4], topic identification in text

databases [11] and for processing spatial join operations [24].

2.3 Related work

2.3.1 Sequential Hypergraph Partitioning

Although hypergraph partitioning is widely used in both academia and industry,

the number of publicly available tools is quite limited. In fact, there are only

two sequential hypergraph partitioning tools that we are aware of: hMeTiS [17],

PaToH [6].

hMeTiS [17] is the earliest hypergraph partitioning tool, published in 1998 by

Karypis and Kumar. It contains algorithms for both recursive bisection-based

and direct K-way partitioning. The objective functions that can be optimized

using this tool are the cut-net and sum of external degrees metrics. The tool has

support for partitioning hypergraphs with fixed vertices.

PaToH [6] is published in 1999 by Catalyurek and Aykanat. It is a multi-

level, recursive bisection-based partitioning tool with support for multiple con-

straints and fixed vertices. The built-in objective functions are the cut-net and

connectivity-1 cost metrics. A high number of heuristics for coarsening, initial

partitioning and refinement phases are readily available in the tool for use by the

end users.

CHAPTER 2. BACKGROUND 11

2.3.2 Parallel Hypergraph Partitioning

Unlike sequential partitioners, parallel hypergraph partitioners are under active

development. To our knowledge there are two available tools: parkway and the

hypergraph partitioning component of the Zoltan toolkit. Both implement a

parallel version of the multi-level partitioning paradigm to generate their results.

2.3.2.1 Parkway

Parkway is the hypergraph partitioning tool developed by Trifunovic and Knot-

tenbelt [25]. It makes use of a 1D decomposition of the hypergraph and uses

fine-grain approaches in generating the result. It utilizes a novel hashing tech-

nique that assures an even distribution of the data generated during the various

stages of computation. Vertices are replicated at processor boundaries and com-

munication is performed in batch format. It performs direct k-way partitionings.

2.3.2.2 Zoltan

Zoltan is an open-source library of parallel partitioning and load balancing meth-

ods [13]. A component of this library is a parallel hypergraph partitioning tool

that makes use of a 2D distribution of the hypergraph. It is coarser grained

when compared to Parkway and makes use of the 2D distribution of the data to

communicate more effectively. To generate k-way partitionings Zoltan makes use

of the recursive bisection paradigm, but modifies it so that each part is further

processed by different processor sets.

Chapter 3

Parallel Hypergraph Partitioning

3.1 Reasons for parallelizing

As stated in previous chapter, the current methods for hypergraph partitioning

are able to partition a given hypergraph up to a certain size. Beyond this limit,

the partitioning costs become overwhelming as the data structures used in the

partitioning no longer fit into the memory and page swapping is performed by

the operating system. As the operations performed are usually dependent on

the ready availability of the hypergraph, massive hits in processing speed can

be observed. While today RAM is cheap and bountiful, computers with large

processing capabilities that can handle large amounts of RAM are expensive and

scarce. Parallel hypergraph partitioners provide a more affordable solution in

partitioning larger hypergraphs.

3.2 Difficulties in parallelization

Unfortunately, hypergraph partitioning is not an easily parallelizable task. The

main reason for this is the same that led to the parallelization: the traditional

methods of processing require a large portion of the hypergraph to be available.

12

CHAPTER 3. PARALLEL HYPERGRAPH PARTITIONING 13

Successful coarsening algorithms need to examine individual vertices along with

their entire neighbor sets; without that information the algorithms cannot make

good decisions. Similarly, the refinement algorithms make decisions with the

information contained in the entire inter-part boundary. All of the data that is

required to run the algorithms have to be made available, if the data is in the

other processor’s domain it has to be fetched first.

This data distribution problem is compounded by the fact that the opera-

tions performed in traditional hypergraph partitioning make many small updates

instead of few large ones. The coarsening methods look at all the vertices, one-by-

one, and decide which of its neighbors it should be matched to. The refinement

algorithms similarly look at all the vertices at the part boundaries separately and

compute the effects of moving one vertex to the other part with respect to the

cut. If these updates should occur across processors boundaries communication is

required. The ideal solution to this problem would be to modify the partitioning

algorithms.

These two issues need to be resolved in a successful parallel hypergraph par-

titioning tool.

3.3 Data distribution

As said, one of the issues greatly affecting performance is the distribution of

the hypergraph that is to be processed. The näıve solution to this would be to

divide the hypergraph directly and to communicate among processors whenever

a computation requires data that is not available. In practice, this would require

large amounts of communication and make the partitioning time unfeasibly long.

Therefore, more refined approaches to distributing the hypergraph among the

processors are needed.

CHAPTER 3. PARALLEL HYPERGRAPH PARTITIONING 14

3.3.1 One-dimensional decomposition

A more advanced solution would be to replicate the data at the processor bound-

aries, thereby avoiding excessive communication when accessing the data. Com-

munication would only be necessary if, either the properties of the elements at

the boundary changes, or the data is redistributed and the boundary is no longer

valid.

This is the approach taken in Parkway [25]. First, nets are distributed among

processors; then, vertices belonging to those nets are assigned to those processors.

When nets belonging to different processors compete for the ownership of a ver-

tex, all processors are given the data required to use that vertex in calculations,

but one processor is assigned the responsibility to allow access to that vertex.

The algorithms used in processing the hypergraph are similar to their sequential

versions, with some programming improvements to reduce the communication

further.

This simplistic approach taken in the partitioning algorithms leads to other

issues. When communication occurs, it takes place in the form of many short

bursts aimed at the entire processor set. As the underlying architecture is message

passing, a large start-up overhead is incurred at each transmission. Additionally,

as the messages may be between any pair of processors, determined more or

less randomly, it is hard to predict the time spent on communication. Finally,

the run time of the partitioner depends heavily on the initial distribution of the

hypergraph. If the distribution is bad, the number of replicated vertices will

increase and consequently the time spent on coordinating network flow between

the processors will increases. To avoid this the authors of Parkway [25] assume

that the initial data is distributed contiguously.

3.3.2 Two-dimensional decomposition

We, along with Zoltan [13], make use of a two-dimensional (2D) distribution of

the data. This means that, unlike Parkway [25], both the nets and the vertices can

CHAPTER 3. PARALLEL HYPERGRAPH PARTITIONING 15

span multiple processors. This has the advantage that, when using a mesh-like

processor arrangement, most communication occurs either in rows or columns.

This regularizes the communication pattern and thus makes the computational

and communication loads of the individual processors more even. Additionally,

we have adjusted our refinement algorithms so that the communication occurs

less frequently but with more data, thus reducing the total time penalties due to

communication start-up.

In our application, the data is distributed among the processors in a struc-

tured manner. If the processor arrangement is seen as a mesh, the nets and

vertices of the hypergraph are distributed among the processor columns and rows

respectively. This means that all processors in the same column of the mesh are

responsible of a particular set of nets and all the computations using those nets

will be performed by those processors exclusively. The same concept is applied

to the mesh’s rows and the hypergraph vertices. If the hypergraph is seen as a

matrix as described in Section 2.1.1.1, the assignment of nets and vertices to pro-

cessors can be seen as a (
√

k×
√

k)-way rectilinear partitioning of the hypergraph

matrix, AH into k matrix blocks. Here, each matrix block (α, β) is stored and

processed by the α-th processor in the β-th row. In order to achieve balance in

storage, nets and vertices are distributed among the processor columns and rows

in a scatter (round-robin) manner.

Figure 3.1 shows the storage of a hypergraph, with 5 vertices and 6 nets. The

initial hypergraph, A undergoes a (2 × 2)-way rectilinear partitioning. Each of

the 4 sub-matrices is assigned to a processor. Nets in the original hypergraph

may translate into multiple nets on different processors, this may lead to the

formation of single pin nets. Nets with same net ids in a processor column are

still considered the same net; however, these nets are virtual in the sense that

each processor knows only its portion of the net.

CHAPTER 3. PARALLEL HYPERGRAPH PARTITIONING 16

(b)

(c)

(a)

v2

v3

v1 v2

v4

v5v5

v4

v1

n1

n4

v3n2

n2

n3

n3

n5

n5

n6

n6

v2

v3

v1 v2

v4

v5v5

v4

v1

n1

n2
n3

n4

v3

n5

n6

A =

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

1 0 0 1 1 0

0 0 1 1 0 0

1 1 0 1 0 1

0 1 1 0 1 1

0 0 1 0 0 0

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

Figure 3.1: 2D data distribution: (a) The hypergraph matrix A is distributed
to 4 processors. (b) The hypergraph distributed to 4 processors (c) The same
hypergraph, with added virtual nets

CHAPTER 3. PARALLEL HYPERGRAPH PARTITIONING 17

3.4 Parallel partitioning methodology

Multilevel partitioning has been applied successfully in sequential hypergraph par-

titioning, resulting in increased partition qualities and reduced execution times.

Hence, it is a good starting point for a parallel partitioner. However, care has to

be taken that the applied algorithms are suitable for a parallel environment.

3.4.1 The elongated V-cycle

One way to look at the operation of ParPaToH is a way of elongating the “arms”of

the V-cycle used in sequential hypergraph partitioning. Figure 3.2 shows the

stages of a V-cycle. The large input hypergraph is coarsened until it reaches a

size that can be partitioned comfortably by a sequential partitioner. This small

hypergraph is replicated among the processors and a parallel initial partitioning

procedure performed with the aid of a sequential hypergraph bipartitioner. The

resulting k-way partition is used as a starting point for the distributed parallel

refinement procedure.

It is interesting to note that since the sequential partitioner used during the

initial partitioning phase is PaToH – a multilevel partitioner – the other parallel

phases can be seen as additional coarsening and refinement steps tacked on to

the V-cycle of PaToH. Another interesting issue is that although the parallel

refinement is direct k-way, i.e., a k-way partition is projected in the refinement;

the parallel initial refinement itself makes use of recursive bisection to generate

that partition.

3.4.2 Parallel algorithm design considerations

As mentioned in Section 3.2, using the current sequential algorithms directly is not

possible without incurring large performance penalties. It is, however, possible

to sacrifice some of those algorithms’ accuracy and use coarse-grain algorithms

that can work with partial data and generate few, large updates instead of many

CHAPTER 3. PARALLEL HYPERGRAPH PARTITIONING 18

Recursive−bisection−based parallel initial partitioning

Multi−level parallel coarsening

V
m

3

Vm

4

Vm

3

Vm

2

Vm

1

H`

H0

Hm
Hm

VmHm

V`
2

V`
1

V`
4

V`
3

H
`

V0
3V0

1

V0
4V0

2

H
0

V
m

1
V

m

4
V

m

2

Multi-level k-way parallel refinement

Figure 3.2: Parallel hypergraph partitioning

CHAPTER 3. PARALLEL HYPERGRAPH PARTITIONING 19

small ones. These properties are good for parallel computing; the first allows the

processors to work without having to resort to expensive communication, whereas

the second allows communication that can be performed efficiently. The details

of the algorithms will be given in Chapter 4.

3.4.3 Restrictions of ParPaToH

Unfortunately, the ParPaToH implementation at the time of this writing is just

an initial version and is far from perfect. While it performs the basic hypergraph

partitioning operation, it lacks several features of sequential partitioners and has

a few restrictions on the partitioning.

The first of these is a restriction on the number of parts a hypergraph can

be divided into. The current implementation is restricted to a number that is an

even numbered power of two (4, 16, 64, 256. . .). This is usually not a problem as

clusters generally are built in powers of two to allow hypercube-like communica-

tion, and it is not uncommon for them to have a square number of nodes to allow

communication in a balanced grid formation.

Another one is a requirement on the number of processors. Currently, the

number of processors performing the partitioning must be equal to the number of

parts. Fortunately, this case is quite common in the parallel computing domain,

where hypergraph partitioning is used to distribute data among processors and

the parts represent the data elements a processor should be assigned.

Finally, it has to be said that none of the “advanced” features of sequential

hypergraph partitioners are present. This means that there is no support for

fixed vertices, uneven part sizes, multiple versions of algorithms that can be used

during that partitioning or the ability to perform dynamic re-partitionings on

already performed data. This list is by no means complete.

Chapter 4

Implementation

In this chapter, the implementation details of ParPaToH are described. Unless

otherwise specified, the phase names (such as “refinement” or “matching”) in this

chapter refer to their parallel versions. The terms row vertices or row set refer

to the set of hypergraph vertices that are assigned to a same row of processors.

Similarly, the term column nets or column set refer to the set of nets that are

assigned to a single processor column. The term local hypergraph refers to the

sub-hypergraph formed by the row vertices and column nets of a processor. The

term row hypergraph refers to the vertex-induced sub-hypergraph formed by the

vertices in a row set. See Figure 4.1 for a graphical representation.

4.1 Coarsening

During the coarsening phase, the input hypergraph is gradually made smaller,

using a HCM-like matching algorithm to determine the merging candidates. After

the merge is performed on suitable vertices, a “crossing-over” operation takes

place. This operation exchanges a half of a processor row’s row vertices with the

half of another processor row’s row vertices. This exchange prevents the vertex

space in which he matching is performed from being restricted to a
√

k-th of the

entire vertex set, and can be seen as bringing in fresh candidates for merging.

20

CHAPTER 4. IMPLEMENTATION 21

� � � � � � � � � � �
� � � � � � � � � � �
� � � � � � � � � � �

� � � � � � � � � � �
� � � � � � � � � � �
� � � � � � � � � � �

� � �
� � �
� � �

� � �
� � �
� � �

v3, v4

n1, n2

Figure 4.1: Explanation of terms: The doubly-hatched region forms a local hyper-
graph, the singly-hatched region a row hypergraph. The nets of the first processor
column, n1 and n2 form that column’s net set.The vertices of the second processor
column, v3 and v4 form that row’s vertex set.

Coarsening is completed in several levels, each containing the matching, merging

and crossing-over steps.

4.1.1 Matching

The matching operation is restricted when compared to a sequential matching.

Vertices are only allowed to merge within their row set. Furthermore, the match-

ing decisions are based on the lossy agglomeration of
√

k local decisions.

4.1.1.1 Local Affinity

The only matching information that can be computed in our setup, without

having to resort to communication, is the similarity of two vertices with respect

to the processor’s column set. We name the numeric representation of similarity,

affinity. The affinity is computed by running the HCM algorithm on the local

hypergraph.

CHAPTER 4. IMPLEMENTATION 22

The affinity itself is a poor measurement of the overall similarity of two ver-

tices. However, if we gather all of the affinity information from a processor row

and add the affinities together we get the sequential HCM values for the row

hypergraph. Unfortunately, gathering the information in a row is an expensive

operation: Each pair of neighbor vertices contribute to the communication. Fur-

thermore, there is no pattern in the communication, as a processor cannot, on

its own, determine the connectivity of two vertices on the rows it does not know

about.

4.1.1.2 Row affinity

The solution to this issue lies in the observation that only the highest value for a

vertex is used when determining the matching. The lower values are only needed

if a vertex has highest affinity to a vertex that is already matched, in which case

it should be matched with the second highest, and if that fails with the third

highest etc. If there was a way to determine and send the only the affinity values

that are processed, the amount of communication could be dramatically reduced.

While this is a chicken-and-egg problem (the highest row affinity values cannot

be known without gathering all of the local values and the local values cannot be

gathered efficiently without knowing the highest row affinity values) a heuristic

approach could be used in determining the row affinity.

The proposeda approach is as follows: for each vertex in the local hypergraph,

the neighbors and their affinities are calculated. The processors in the last column

create an affinity array and insert the q most affectionate neighbors and their

affinities (q is an external, user-customizable parameter). If a vertex has less

than q neighbors, then it stores all of its neighbors’ affinities. Then, these arrays

are passed west on the processor rows, toward the first columns, concurrently.

Once a processor receives the array from the east, it may make changes on it

before passing it on. There are two types of changes that can be made. If, for

a given vertex, there is a more affectionate neighbor not appearing in the array,

the least affectionate of those in the array is replaced with the local one. If a

neighbor in the local hypergraph also appears in the array, the affinity value in the

CHAPTER 4. IMPLEMENTATION 23

array belonging to that neighbor is incremented by the local amount. When the

affinity arrays arrive at the first processor column of the processor mesh and those

processors make their modifications, the final form of the arrays are redistributed

to the rows; merging starts.

This approach is not guaranteed to find the q most affectionate neighbors for

each vertex in the row set. However, the resulting affinity array gives a heuristic

overview of the information contained in the row.

4.1.2 Merging

Merging is performed using the information in the affinity array exclusively. All

of the vertex pairs in the array are first sorted on the affinity. Then, starting from

the most affectionate pair, each vertex is matched to another. A vertex is only

allowed to match an unmatched vertex. If a vertex cannot be matched, because it

has no (remaining) neighbors, it stays unmatched. A new hypergraph is created

with the reduced vertex size. Note that the old hypergraph is not discarded as it

will be used in the corresponding level of the refinement phase.

4.1.3 Crossing-over

If the coarsening did not include a crossing-over step, the matching would be

severely constrained. The only matches would be within the row set, and global

information would be lost. To prevent this, after each merging step, one-half of

the row vertices are exchanged. This exchange also includes information about

the vertices weight and net connectivity information. The processors to which

half of the vertices are sent and from which the new vertices are received change

with each coarsening level. Figure 4.2 demonstrates how they are chosen so that

after a few coarsening levels, the vertices are well distributed.

CHAPTER 4. IMPLEMENTATION 24

��
��
��
��
��
�

��
��
��
��
��
�

������
������
������
������
������
���

������
������
������
������
������
���

������
������
������

��
��
��

��
��
��

��
��
�� 	
		
		
	

��
��
��

��
��
��

��
�
������
���
��
� ������
���
��
�
������
���
������
���

������
���
��
� ������
���
������
���

��
�
��
� ������
���
��
���

��
��

��
��
��

��
��
��

!�!!�!
!�!
""
"
##
#
$$
$
%%
%
&&
&

''
'
((
(

))*
* +�++�+,
,
-�--�-.
.

/�//�/0�00�0

1�11�12
2 3�33�34�4
4�4556

6

7�77�78
8

99
99
99
99
99
9

::
::
::
::
::
:

;;
;;
;;
;;
;;
;

<<
<<
<<
<<
<<
<

(a) (b) (c) (d)

Figure 4.2: Crossing-over in action: At each crossing over half of the vertices are
exchanged with a different processor. After log2

√
k cross-overs the initial vertex

distribution is dispersed over all processors

4.1.4 The termination of coarsening phase

The coarsening phase stops on two conditions: either the hypergraph is small

enough or the size of the hypergraph has not shrunk significantly in the current

level. Both conditions require the size of the hypergraph to be known after each

coarsening level. This is accomplished by communicating and summing up the

sizes of the hypergraph in a processor column.

4.2 Initial Partitioning

The initial partitioning is performed on the coarsest hypergraph. As the hy-

pergraph is small enough, it can be gathered and replicated onto all processors

without causing much difficulty. At this point, a sequential k-way hypergraph

partitioner could be run on the small hypergraph on all nodes and the partition-

ing with the best cut among all the ones produced could be declared as the initial

partitioning. While this is a good method, which was actually used during earlier

versions of ParPaToH, a modest increase in performance can be obtained by a

rather coarse-grain parallelization of the initial partitioning phase.

CHAPTER 4. IMPLEMENTATION 25

4.2.1 Parallel initial partitioning

The parallel version of the hypergraph partitioning can be seen as a näıve paral-

lelization of the recursive bisection schema.

The small hypergraph is first gathered and replicated on all processors in

the system. This can be simply and efficiently accomplished by letting each

processor gather its respective row hypergraph; communicating along the rows of

the processor mesh to gather parts form all of the processors in the row. Then
√

k

columnwise all-reduce type communications are performed in parallel to gather

the individual row hypergraphs. These are merged together to form the global,

coarsest hypergraph.

Once the coarsest hypergraph is replicated, all of the processors perform a

bisection on the hypergraph. The result is a partition array of size equal to

the number of vertices in the coarsest hypergraph. It will be referred to here

as the part array. It denotes which part each vertex belongs to. Note that

we are performing a bisection on the part array. The part imbalance values

of the partition are also calculated based on that bisection. These cuts and

imbalance values are distributed among all processors and the processor with the

best cut, whose imbalance is below a threshold, is chosen to be the source for the

partitioning. That processor broadcasts its part array to the others. Until this

point, all of the processors are doing the same work.

After the initial bipartitioning is complete, half of the processors take the

responsibility for further partitioning one of the two parts and the other half

of the processors take the other part. Each processor group generates a sub

hypergraph induced by one of the two vertex parts of the coarsest hypergraph;

each of the two processor groups creates an even smaller sub-hypergraph that

contains only vertices belonging to one of the parts. Each of the halves then

bisect their sub-hypergraph once more, obtaining 2 more parts.

Again the best partitioning is chosen, the best of each of the processor groups

are again divided into two, which further perform a bisection on the new, even

CHAPTER 4. IMPLEMENTATION 26

smaller vertex-part-induced sub-sub-hypergraph. This cycle continues until the

bisectionings generate k parts in total. As k is a power of 2, the number of cycles

is exactly log2k. Once the final partitioning is made, and the best cut found, the

many small binary part arrays are merged into a single, final, k-ary part array,

which is the end result of the initial partitioning phase.

It may not be obvious at first why the parallel version is faster than that

sequential version. The parallel implementation not only calls the sequential

partitioner multiple times, but also has communication between the processors.

The secret in the acceleration lies in the fact that bisections can be performed

significantly faster than k-way partitionings. The decrease in number of target

parts, coupled with the fact that the sub-hypergraphs get geometrically smaller

makes the parallel version more efficient.

4.3 Refinement

Refinement, like its sequential version, is a phase composed of multiple levels and

each level in the coarsening phase has its refinement counterpart. Each refinement

level is composed of two stages: the uncoarsening stage, where the effects of the

corresponding coarsening are undone, and the pairwise-refinement stage, where

the cut is tried to be reduced even further.

4.3.1 Uncoarsening

The act of coarsening, while making the hypergraph smaller, causes a loss of

information. This information needs to be recovered before the refinement can

improve the cut. Additionally, as the ownership of the vertices change after

the uncoarsening, the part array belonging to the current vertex set has to be

constructed.

CHAPTER 4. IMPLEMENTATION 27

4.3.1.1 Decross-over

While the initial crossing-over required a large amount of communication, the

only information needed to perform a decross-over at a processor is the part

array of vertices that were “sent away” during the corresponding crossing-over.

This information can be obtained by communicating with the processor in the

row that currently owns the vertex. The current owner is known as the exchange

was performed in a structured manner and it is trivial to reverse the order.

4.3.1.2 Unmerging vertices

Once the partial remote part array has been obtained, this can be combined with

half of the local part array to derive the part array for the next level. As the one

level coarser hypergraph was not discarded during the coarsening, a hypergraph

that contains the unmerged form of the vertices already exists. The only act

that needs to be performed is the propagation of the part information to the

larger hypergraph, by assigning the supervertices’ part numbers to its constituent

vertices.

4.3.2 Improving the cut

Once the hypergraph is uncoarsened, the cut can be further improved with the

new information. Our algorithms used are quite unlike their contemporary serial

counterparts, which either only perform 2-way (the recursive bisection approach),

or perform a simultaneous k-way refinement (the direct k-way approach). The

recursive-bisection scheme is faster, but needs the entire V-cycle to be repeated

k−1 times, this would be expensive in our parallel case. k-way refinement is slower

than its 2-way counterpart but has the advantage that the entire partitioning can

be generated in one V-cycle. Both have the disadvantage of performing multiple

small updates.

We believe that the solution to the parallel refinement problem does not lie in

CHAPTER 4. IMPLEMENTATION 28

these algorithms optimized for sequential execution. Instead, we propose that the

“old way” of refinement, the pairwise refinement approach as described in [19],

allows a coarse-grain parallel solution. The main advantage of this method is

that it allows for independent operations on multiple disjoint vertex sets. Our

basic idea is the same as the original approach: to perform multiple pairwise

refinements, with different pairs, until all (or most) of the possible pairs are

processed. Since we can perform multiple pairwise refinements in parallel, we

believe that the original reason of this method’s dismissal, its slowness, can be

overcome.

Unfortunately, the distributed nature of the hypergraph prevents us from

using the old method directly. The main issue is that the local hypergraph is not

aware of the state of the nets in the other processors in the same mesh column.

Thus freeing a net from the cut in the local view may not translate into a gain

in the global view. However, the additional knowledge of the nets’ connectivities

to different parts on the other processors allows us to reduce this partial pairwise

refinement problem to a hypergraph refinement with fixed vertices problem.

To to enable this reduction, two additional, fixed vertices whose part numbers

are the parts to be refined are added to the hypergraph. These serve as anchors

to the nets whose gains do not improve in the global view. If a new hypergraph

is generated, where nets that are remotely attached to the two parts to be refined

are made to have an additional pin to the relevant anchors, this hypergraph,

once partitioned, will generate partitions that incorporate the global information

in the refinement.

We implement a reduction to this model, but apply it on row hypergraphs to

make the operation coarser grained. We make use of a net-to-part connectivity

matrix to extract the global net-part connectivity information.

4.3.2.1 The refinement cycle

Our refinement algorithm operates on a local copy of the row hypergraph. While

the collection and replication of the row hypergraph is admittedly an expensive

CHAPTER 4. IMPLEMENTATION 29

procedure, it only needs to be collected once per refinement level and can be used

for all of the refinement cycles in the current level.

In each refinement cycle, k/2 non-overlapping pairwise refinement operations

are performed on the hypergraph simultaneously (i.e., all vertices are processed

exactly once during each cycle). The refinement cycle is further divided into√
k sub-cycles. In each sub-cycle all of the row hypergraphs undergo

√
k/2 si-

multaneous pairwise refinements, so that after the
√

k sub-cycles all of the row

hypergraphs are refined with k/2 pairwise refinements in total. Since the union

of all of the row hypergraphs form the entire hypergraph, after the completion of

the sub-cycles the entire hypergraph is refined with respect to the k/2 parts.

4.3.2.2 Scheduling

Each refinement cycle starts with the determination of a pairwise refinement

schedule. The schedule first determines the k/2 pairs. Then it assigns the pairs

in a round-robin manner to the
√

k processor rows. Finally the
√

k/2 pairs of

each row are assigned, again in a round-robin manner, to the processors of each

row. The resulting schedule is that the first half of each processor row is assigned

one pair and the remaining are assigned none. Currently, the pairing of parts and

their distribution are random, using a shared seed.

This part-to-processor assignment is only valid for the first refinement sub-

cycle. After each sub-cycle the schedule is “rotated”, so that each processor

is assigned to the parts that were processed by the neighbor processor in the

previous row (the northern neighbor). See Figure 4.3 for a visualization of this

rotation.

4.3.2.3 The connectivity matrix and global part weights

The net-to-part connectivity matrix, δ, is a large, two-dimensional, matrix of

size k × N that contains the connectivity of all nets to parts. If, in the global

hypergraph, the net ni contains m vertices that are in part j, then δj,i = m. This

CHAPTER 4. IMPLEMENTATION 30

15/162/11

10/136/9

8/14 5/12

1/3 4/7

1/3 4/7

15/162/11

8/14 5/12

1/3 4/7

15/162/11

8/14 5/12

10/136/9

8/14 5/12

1/3 4/7

10/136/9

15/162/11

10/136/9

(a) (b) (c) (d)

Figure 4.3: Rotating the refinement schedule: After each sub-cycle the parts to
be pairwise refined are rotated within the column

matrix is used to provide the global view when performing pairwise refinement

on the row hypergraphs.

Before the matrix is created, the refinement schedule needs to be determined.

To create the matrix the following steps are taken: First the local δ matrix is

computed. This generates a k×Nc sized matrix, where Nc is the numbers of nets

in the processor column c. This matrix is sent row-by-row to the processor in the

current column whose row, according to the refinement schedule, will process that

part. Note that it is possible for a processor to send to itself. For each part its

row is responsible for, the processor forms a merged δ matrix by superimposing

and adding the received δ matrices. At the end of the operation, each processor

contains the δ matrices of
√

k parts, since there are
√

k pairs to be refined. How-

ever, these δ matrices are only partial. They only contain information about the

nets in the current processor column. A second communication is performed and

each processor sends the partial data matrices to the processor who will process

the part; again, using the refinement schedule. In the current implementation,

each processor will either refine two parts or no parts at all. Hence, the number

of rows gathered in the final step is at most two.

The generation of the global δ matrix (δg) is expensive, and has to be per-

formed at the beginning of each cycle.

There is only one more action that needs to be performed before the actual

pairwise refinement can begin. Each processor calculates the k part weights for

the row hypergraph. Then, using an all-reduce operation, the part weights of the

CHAPTER 4. IMPLEMENTATION 31

entire hypergraph are obtained.

4.3.2.4 Pairwise refinement on the row hypergraph

Finally, the pairwise refinement can be run on the parts of the row hypergraph.

Each processor only refines the row hypergraphs vertices that belong to the parts

assigned to that processor by the refinement schedule. During this refinement the

information contained in the δg matrix is used to obtain global information. The

actual refinement is performed using PaToH’s refinement routines. However, since

those are unable to make use of the δg matrix, the problem has to be modified to

a form that is understandable by them, the problem of fixed-vertex refinement.

The problem of performing pairwise refinements on the row hypergraphs (in-

stead of the whole hypergraph) is that we loose information. The gain of moving

one vertex to another part cannot be calculated accurately without knowing all

neighbors of that vertex. By constructing a row δ matrix (δr) and comparing it

to the δg matrix we can gain additional data. A δr matrix is a local version of

the δg matrix; it only contains net-to-part connectivity values restricted to the

row hypergraph’s vertices and the parts to be refined by the current processor.

As the row hypergraph is available in full, this can be calculated locally. As a

pairwise refinement operation is performed, this δr matrix will have two rows, .

By knowing how many of a net’s vertices belong to a specific part and com-

paring that value to its counterpart on the row hypergraph, we can determine

if a move in the row hypergraph will result in a gain in the global hypergraph.

If, for example, the net ni is connected to part m with 3 vertices in the global

hypergraph (i.e., the ith entry in the δg row belonging to part m is 3) but only

2 of them are in the row hypergraph (i.e., the ith entry in the δr matrix row

belonging to part m is 2) any moves of those will not affect the cut. If all of the

3 vertices were available, however, moving all three away from part m would lead

to a decrease in the cut.

Another problem that is caused by the local view is that the local part balances

are not an indicator of the overall balance. This problem can be easily remedied

CHAPTER 4. IMPLEMENTATION 32

by taking the (previously calculated) global part weights into account during the

execution of the refinement algorithms.

We solve both problems by a reduction of the problem to a hypergraph re-

finement with fixed vertices problem.

First, a part-induced sub-hypergraph of the row hypergraph is formed. This

makes sure that no redundant work is performed by the algorithms and only the

parts that are to be refined are processed. Two additional vertices are added to

the new hypergraph, one for each part. These fixed to prevent their move and

will act as anchors to nets whose vertices’ moves will improve the cut on the

row hypergraph, but will not make a difference in the global hypergraph. This

anchoring will provide the routines with the global information by telling them

that there is an unmovable vertex and that moving the remaining vertices away

form the unmovable vertex will not make a difference. It has to be noted that,

when nets are anchored to both parts there is no way of preventing that net from

appearing in the global cut. Hence these nets can be removed, along with any

vertices that are unique to them, from the new hypergraph.

Providing the global part weight information in the new hypergraph can be

accomplished setting the two anchor vertices weights to the global part weights.

This new hypergraph can after these modifications be processed by the sequen-

tial hypergraph refinement routines. The routine implement the FM refinement

algorithms, modified to make vertex fixing possible. The resulting part array is

used to form a list of vertices that change parts. After each subsequent sub-cycle,

the updates performed in that sub-cycle will be appended to this list. This list

will be row broadcast at the end of the refinement cycle (so that the entire row is

aware of the changes made to their vertices and can update their local and row

hypergraphs).

CHAPTER 4. IMPLEMENTATION 33

4.3.2.5 Preparing for the next sub-cycle

Before the next sub-cycle can begin two pieces of information needs to be updated

and passed to the processor that will process the currently processed parts.

The first of these is the updated δg matrix. It needs to be updated to reflect

the changes that occurred in the refinement. More specifically, nets whose vertices

are in different parts after the refinement need to be updated in the δg matrix.

The second of the updates is the change in the global part weight due to the

moving vertices. This is simply equal to the old part weights minus the weights

of leaving vertices, plus the weights of the incoming vertices.

Once these two updates are computed they are transmitted to the processor

that will next process the currently refined parts. Although “rotating” the δg

matrix in this manner is expensive, the communication pattern is regular and

point-to point.

4.3.2.6 Run-length encoding

Observation has shown that the δg matrix usually contains many zero elements.

This is due to the fact that a net is usually only connected to a few of the k

parts and hence the part connectivity for the remaining parts are zero. We have

exploited this sparseness with a run-length-encoding algorithm to compress the

data to be transmitted. This allows us to reduce the communication amount

while constructing and rotating the δg matrix significantly. Size reductions up to

80% of the original size were observed during experiments.

4.3.2.7 Putting the parts together

At this point it would be wise to summarize a single refinement pass, in full, to

prevent any confusion. Each refinement level has multiple refinement cycles, and

each refinement cycle has
√

k sub-cycles. Each refinement cycle refines all of the

CHAPTER 4. IMPLEMENTATION 34

k parts of the global hypergraph in a pairwise manner. In each refinement sub-

cycle k/2 processors perform concurrently refinement operations on the disjoint

part-induced row hypergraphs.

First, the row hypergraph is gathered and replicated. This is done only once

in each level. A refinement cycle begins. A refinement schedule is formed. The

δg matrix is formed and distributed to the processors that will use it in the first

refinement sub-cycle. The global part weights are computed and replicated. A

refinement sub-cycle begins. A δr matrix is calculated using the row hypergraph.

A smaller sub-hypergraph is formed from the row hypergraph using the δg and

δr matrices. That smaller sub-hypergraph’s cut is improved using a refinement

alogrithm that allows fixed vertices. The vertices that change part are noted and

the part changes are updated in the δg matrix. The δg matrix, along with the

part weights of the updated parts is rotated. The refinement sub-cycle ends. This

sub-cycle is repeated k times. The previously noted vertex changes are broadcast

to the processor row, the row and local hypergraph are updated. The refinement

cycle ends, but is repeated a number of times to ensure the cut is thoroughly

improved. A refinement level ends, the global hypergraph is uncoarsened, and

this process repeats until the last level of uncoarsening has been improved upon.

The resulting final part array is gathered from the processors and returned.

Chapter 5

Experimental Results

Here, we present how our tool behaves in real life. This data was on a 16-

processor Linux WareWulf Cluster using the LAM implementation of the MPI

message passing interface. We examine the quality of the cuts generated by the

tool and discuss its scalability to multiple processors.

5.1 Cut vs. time

Several batches of experiments were run on different hypergraphs, each illustrat-

ing the effects of modifying one of the parameters detailed below. The average of

10 runs each are reported in the tables below. The maximum allowable imbalance

was given to be 10%; this was met in all cases by the partitioner. In order to

examine the quality of the output generated by the tool in relation to the output

generated by sequential partitioners, the cut values are given normalized to the

cuts of a sequential partitioner, PaToH, running with default parameters.

12 different hypergraphs were partitioned, ranging from the quite small (big

and ebp1) to quite large ones (cage 13 and stomach). All of the hypergraphs

partitioned were derived from readily available symmetric-square matrices. Ta-

ble 5.1 gives an overview of the processed hypergraphs. In the experiments, Cage

35

CHAPTER 5. EXPERIMENTAL RESULTS 36

Table 5.1: Properties of the partitoned hypergraphs

Hypergraphs Net & Vertex Count Pin Size
Zhao 33861 166453
Big 13209 91465
Cage 11 39082 559722
Cage 12 130228 2032536
Cage 13 445315 7479343
Epb1 14734 95053
Epb2 25228 175027
Epb3 84617 7463625
G7jac050sc 14760 157990
K3plates 11107 378927
Mark3jac060 27449 170695
Olafu 16146 1015156
Stomach 213360 3021648

13 could not be partitioned 4-way due to its size, hence when results are given

for 4-way partitionings it is left blank.

5.1.1 Tunable parameters

Our tool can be adjusted to generate a partition based on a cut/time trade-off.

Better cuts are possible by spending more time on the refinement. We examine

this parameter with different partition sizes. Another factor the affects the quality

and the execution time is the maximum coarsening depth, how small the coarsest

hypergraph should be made. We examine and discuss the depth. Finally, we look

at the “crossing-over” and see how it affects the result.

5.1.1.1 Refinement count

The refinement count is the number of cycles at each refinement level. The results

of partitioning hypergraph with differing refinement counts are given in Tables 5.2

and 5.3

CHAPTER 5. EXPERIMENTAL RESULTS 37

Table 5.2: Effects of the refinement count on the cut size

4-way partition 16-way partition
Hypergraph RC=1 RC=2 RC=4 RC=1 RC=4 RC=10
Zhao1 1.20 1.17 1.08 1.25 1.19 1.11
Big 1.18 1.16 1.12 1.07 1.06 1.05
Cage 11 1.10 1.02 0.99 1.36 1.22 1.10
Cage 12 1.18 1.07 0.99 1.59 1.27 1.09
Cage 13 - - - 1.82 1.36 1.11
Epb1 1.04 1.02 0.99 1.03 1.03 1.02
Epb2 1.41 1.18 1.14 1.20 1.13 1.10
Epb3 1.02 0.99 0.95 2.15 1.95 1.67
G7jac050sc 1.04 0.93 0.91 1.10 1.07 0.97
K3plates 0.99 0.99 0.98 1.10 1.08 1.08
Mark3jac060 1.70 1.34 1.17 1.47 1.33 1.19
Olafu 1.15 1.10 1.11 1.18 1.14 1.09
Stomach 1.28 1.12 1.09 1.62 1.32 1.16

Predictably, the more cycles are performed in this step, the smaller the result-

ing cut gets. However this gain comes with a significant increase in processing

time. A ten-fold repetition of the refinement cycle improves the quality in the

cut of Cage 13 to a value close to the sequential partitioner’s cut, but this effect

is only achieved through a tripling in the processing time.

5.1.1.2 Coarsening depth

The coarsening depth also affects the cut. Three different batches of 16-way

partitionings were performed where the partitioner was told to coarsen until 100,

500 and 1000 vertices remained per part in the global hypergraph. The result of

the runs are given in Tables 5.4 and 5.5.

It can be seen that the more information is given to the initial partitioner,

the better the initial partitioning will be; this quality improvement propagates

to the final cut. Furthermore, since the sequential partitioning routines are more

efficient and effective than their parallel counterparts; using them in a highly

coarse-grained parallelization still allows them to work effectively.

CHAPTER 5. EXPERIMENTAL RESULTS 38

Table 5.3: The effects of the refinement count on the partitioning time in seconds

4-way partition 16-way partition
Hypergraph RC=1 RC=2 RC=4 RC=1 RC=4 RC=10
Zhao1 2.66 3.44 4.51 1.57 1.62 2.83
Big 3.33 3.06 4.61 0.69 0.79 1.03
Cage 11 1.84 2.28 2.75 2.69 3.73 5.12
Cage 12 1.96 2.31 2.97 10.80 17.18 27.03
Cage 13 - - - 44.68 65.26 117.09
Epb1 4.58 5.17 6.13 0.82 0.83 1.69
Epb2 3.69 5.61 5.95 1.09 1.20 1.58
Epb3 4.61 5.34 6.43 2.51 3.33 4.84
G7jac050sc 3.02 3.31 4.95 0.89 1.21 1.30
K3plates 1.72 1.93 2.46 1.01 1.03 1.17
Mark3jac060 3.41 3.76 4.83 1.02 1.38 1.86
Olafu 1.26 1.45 1.79 1.66 1.79 2.13
Stomach 4.49 5.22 5.46 9.87 14.12 23.36

The down side of increasing the coarsening depth to higher values is the

communication time that needs to be spent to distribute the coarsest hypergraph

increases; this explains the increase in time for Zhao1 at 500 and 1000 vertices

per part.

5.1.1.3 Effects of crossing-over

While crossing-over during the refinement “makes sense” quality-wise, does the

gain in quality justify the large amount of communication performed? The answer

to his turns out to be yes, the relatively large increase in quality justifies the extra

time spent on data distribution and processing. This can be seen in Tables 5.6

and 5.7

In some cases, crossing-over actually reduces the total run time. Crossing-over

allows a better refinement, increasing the number of formed supervetices per level.

As the number of levels in the V-cycle depend on the size of the hypergraph, more

effective merging decreases the total number of levels, which in turn tranlates into

a reduction in execution times.

CHAPTER 5. EXPERIMENTAL RESULTS 39

Table 5.4: Effects of coarsening depth (given in vertices/part) on the cut.

Hypergraph 100 v/p 500 v/p 1000 v/p
Zhao1 1.47 1.19 1.14
Big 1.36 1.06 0.97
Cage 11 1.34 1.22 1.17
Cage 12 1.40 1.27 1.27
Cage 13 1.75 1.36 1.33
Epb1 1.23 1.03 0.99
Epb2 1.33 1.13 1.05
Epb3 2.14 1.95 1.76
G7jac050sc 1.13 1.07 0.98
K3plates 1.30 1.08 0.97
Mark3jac060 2.07 1.33 1.25
Olafu 1.26 1.14 1.04
Stomach 1.64 1.32 1.26

5.1.2 Time dissection

Figure 5.1 shows the normalized times for the individual phases in a 16-way parti-

tioning, a refinement count of 4 and a coarsening depths of 500 vertices par part.

As can be seen, for larger hypergraphs (like Cage 13 and Stomach), refinement

takes up a significant portion of the total partitioning time. In smaller hyper-

graphs (like big and epb1) the initial partitioning phase dominates the overall

execution time.

5.2 Scaling

The smaller hypergraphs in the above list were partitioned 16-way on a single

computer to examine the scalability of the tool. As the tool requires the presence

of 4 instances for a 4-way partitioning, multiple processes were started on the

computer. We believe that this is a valid test as the communication is simulated

using fast memory transfers and thus can be neglected. Only small hypergraphs

were used as we wanted to prevent paging; this would skew the results unfairly

CHAPTER 5. EXPERIMENTAL RESULTS 40

Table 5.5: Effects of coarsening depth (given in vertices/part) on the execution
times (in seconds)

Hypergraph 100 v/p 500 v/p 1000 v/p
Zhao1 2.64 1.62 1.73
Big 1.34 0.79 0.48
Cage 11 5.19 3.73 3.21
Cage 12 21.13 17.18 16.13
Cage 13 84.76 65.26 61.68
Epb1 1.06 0.83 0.55
Epb2 1.80 1.20 0.92
Epb3 4.37 3.33 2.85
G7jac050sc 1.57 1.21 0.67
K3plates 1.47 1.03 0.88
Mark3jac060 2.43 1.38 1.42
Olafu 1.56 1.79 1.56
Stomach 18.26 14.12 12.95

toward the parallel partitioner.

Table 5.8 shows that despite the network communication overhead the parallel

partitioner performs better in its distributed form, yielding an execution time that

is around a half of the single processor execution.

CHAPTER 5. EXPERIMENTAL RESULTS 41

Table 5.6: Effects of crossing-over on the cut

4-way partition 16-way partition
Hypergraph Crossing-Over No Crossing-Over Crossing-Over No Crossing-Over
Zhao1 1.08 1.11 1.19 1.21
Big 1.12 1.09 1.06 1.07
Cage 11 0.99 1.04 1.22 1.22
Cage 12 0.99 0.99 1.27 1.34
Cage 13 - - 1.36 1.52
Epb1 0.99 1.16 1.03 1.03
Epb2 1.14 1.21 1.13 1.17
Epb3 0.95 1.39 1.95 2.66
G7jac050sc 0.91 0.98 1.07 1.07
K3plates 0.98 0.99 1.08 1.08
Mark3jac060 1.17 1.34 1.33 1.61
Olafu 1.11 1.11 1.14 1.19
Stomach 1.09 1.27 1.32 1.64

Table 5.7: Effects of crossing-over on the execution times (in seconds)

4-way partition 16-way partition
Hypergraph Crossing-Over No Crossing-Over Crossing-Over No Crossing-Over
Zhao1 1.58 1.63 1.62 2.11
Big 0.53 0.61 0.79 0.78
Cage 11 3.34 3.05 3.73 3.33
Cage 12 18.95 18.55 17.18 16.10
Cage 13 - - 65.26 62.61
Epb1 0.66 0.64 0.83 0.96
Epb2 1.15 1.44 1.20 1.28
Epb3 3.48 4.35 3.33 3.17
G7jac050sc 0.84 0.81 1.21 0.78
K3plates 0.65 0.67 1.03 1.07
Mark3jac060 1.38 1.57 1.38 1.66
Olafu 1.41 1.40 1.79 1.75
Stomach 20.58 20.86 14.12 16.05

CHAPTER 5. EXPERIMENTAL RESULTS 42

Z
ha

o

B
ig

C
ag

e
11

C
ag

e
12

C
ag

e
13

E
pb

1

E
pb

2

E
pb

3

G
7j

ac
05

0s
c

K
3p

la
te

s

M
ar

k3
ja

c0
60

O
la

fu

St
om

ac
h

Datasets

0.0

0.2

0.4

0.6

0.8

1.0

N
o

rm
al

iz
ed

 t
im

e
d

is
se

ct
io

n
 o

f
p

h
as

es

Reading
Coarsening
Gathering
Init. partitioning + scattering
Refinement

Figure 5.1: The time dissection of a V-cycle

Table 5.8: Scaling to multiple processors

Hypergraphs 1 Processor 4 Processors
Zhao1 3.36 1.58
Big 0.99 0.53
Cage 11 7.75 3.34
Epb1 1.13 0.66
Epb2 2.50 1.15
G7jac050sc 1.65 0.84
K3plates 1.34 0.65
Mark3jac060 2.92 1.38

Chapter 6

Discussions & Conclusions

6.1 Evaluation of the results

The inital results of our parallel hypergraph partitioner are promising. Even

though the implementation is incomplete, given enough processing time, parti-

tions of a quality similar to sequential partitioners can be achieved. We believe

that this justifies the validity of our 2D data distribution and parallel pairwise

refinement model.

6.2 Ideas for future work

There are many improvements that could be implemented in the future. Some of

these are described below.

43

CHAPTER 6. DISCUSSIONS & CONCLUSIONS 44

6.2.1 Generalization and improvement of the current

code-base

Restrictions of the current code should be removed. This includes the restrictions

on k, restrictions on the number of processors used to perform the cut and the

processor arrangement. Furthermore, refinement should be modified to allow all

of the processors to participate.

6.2.2 Merging identical nets

Merging identical nets is the act of finding multiple nets that share the same pins

and merging them into a single net with a cost equal to the sum of the merged

nets’ costs. It can be used to decrease the number of nets during the coarsening,

reducing the processing times for all of the subsequent operations.

6.2.3 Different refinement algorithm

We are unhappy with our refinement implementation. A custom made refinement

could be written that does not incur the problem reduction overhead. Further-

more, such a custom algorithm could also be adjusted to allow a two-level gain

scheme in which local information is taken into account along with global infor-

mation, breaking ties in favor of a better local cut.

6.2.4 Other features

Features found in sequential partitioners could be added. These include vertex

fixing, partitioning into uneven parts and dynamic repartitioning.

CHAPTER 6. DISCUSSIONS & CONCLUSIONS 45

6.3 Conclusion

While the current version is far from being an ideal hypergraph partitioner, it

provides a good starting point for the future. As its partitioning quality and

speed improves it will provide an efficient and effective solution to the parallel

hypergraph partitioning problem.

Bibliography

[1] C. J. Alpert and A. B. Kahng. Recent directions in netlist partitioning: A

survey. VLSI Journal, 1995.

[2] C. Aykanat, A. Pinar, and Ü. V. Çatalyürek. Permuting sparse rectangular

matrices into block-diagonal form. SIAM J. Scientific Computing, 2004.

[3] C. Berge. Graphs and Hypergraphs. North-Holland Publishing Company,

1973.

[4] R. H. Bisseling, J. Byrka, S. Cerav-Erbas, N. Gvozdenovic, and M. Lorenz.

Partitioning a call graph. In Second International Workshop on Combinato-

rial Scientific Computing (CSC05), Toulouse, France, June 2005.

[5] B. B. Cambazoglu and C. Aykanat. Hypergraph-partitioning-based remap-

ping models for image-space-parallel direct volume rendering of unstructured

grids. Revised manuscript submitted to IEEE Transaction on Parallel and

Distributed Systems 2005.

[6] Ü. V. Çatalyürek and C. Aykanat. Hypergraph-partitioning-based decompo-

sition for parallel sparse-matrix vector multiplication. IEEE Trans. Parallel

and Distributed Systems vol. 10, no. 7, pp. 673–693, 1999.

[7] Ü. V. Çatalyürek and C. Aykanat. Patoh: A multilevel hyper-

graph partitioning tool, version 3.0. Bilkent University,Department of

Computer Engineering, Ankara, 06533 Turkey. PaToH is available at

http://bmi.osu.edu/ umit/software.htm, 1999.

46

BIBLIOGRAPHY 47

[8] U. V. Çatalyürek and C. Aykanat. A fine-grain hypergraph model for 2d

decomposition of sparse matrices. In Proceedings of the 15th International

Parallel & Distributed Processing Symposium, page 118, 2001.

[9] U. V. Çatalyürek and C. Aykanat. A hypergraph-partitioning approach for

coarse-grain decomposition. In Proceedings of the 2001 ACM/IEEE Confer-

ence on Supercomputing, page 28, 2001.

[10] C. Chang, T. M. Kur, A. Sussman, U. V. Çatalyürek, and J. H. Saltz. A

hypergraph-based workload partitioning strategy for parallel data aggrega-

tion. In SIAM Conference on Parallel Processing for Scientific Computing,

2001.

[11] C. Clifton, R. Cooley, and J. Rennie. Topcat: Data mining for topic identi-

fication in a text corpus. Transaction on Knowledge and Data Engineering,

16(8):949–964, 2004.

[12] E. Demir, C. Aykanat, and B. B. Cambazoglu. Modeling and clustering of

spatial networks for aggregate queries: A hypergraph approach. Submitted

to Information Systems 2005.

[13] K. Devine, E. Boman, R. Heaphy, R. Bisseling, and Ü. V. Çatalyürek. Par-

allel hypergraph partitioning for scientific computing. To appear in IEEE

International Parallel & Distributed Processing Symposium, 2006.

[14] N. J. Dingle, P. G. Harrison, and W. J. Knottenbelt. Uniformization and

hypergraph partitioning for the distributed computation of response time

densities in very large markov models. J. Parallel Distrib. Comput., 2004.

[15] C. M. Fiduccia and R. M. Mattheyses. A linear-time heuristic for improving

network partitions. In Proceedings of the 19th ACM/IEEE Design Automa-

tion Conference, pages 175–181, 1982.

[16] G. Karypis, R. Aggarwal, V. Kumar, and S. Shekhar. Multilevel hypergraph

partitioning: Applications in vlsi domain. IEEE Trans. Very Large Scale

Integration Systems, 1999.

BIBLIOGRAPHY 48

[17] G. Karypis and V. Kumar. hmetis: A hypergraph partitioning package.

Technical report, Dept. of Computer Science, University of Minnesota, 1998.

[18] K. Kaya and C. Aykanat. Iterative-improvement-based heuristics for adap-

tive scheduling of tasks sharing files on heterogenous master-slace environ-

ments. Accepted for publication in IEEE Transaction on Parallel and Dis-

tributed Systems.

[19] B. W. Kernighan and S. Lin. An efficient heuristic procedure for partitioning

graphs. Bell System Technical Journal, 1970.

[20] G. Khanna, N. Vydyanathan, T. Kurc, U. Catalyurek, P. Wyckoff, J. Saltz,

and P. Sadayappan. A hypergraph partitioning based approach for schedul-

ing of tasks with batch-shared io. In Proceedings of Cluster Computing and

Grid, 2005.

[21] T. Lengauer. Combinatorial Algorithms for Integrated Circuit Layout. Wiley,

Chichester, U.K., 1990.

[22] M. M. Ozdal and C. Aykanat. Hypergraph models and algorithms for data-

pattern-based clustering. Data Mining and Knowledge Discovery, 9(1):29–57,

2004.

[23] D. G. Schweikert and B. W. Kernighan. A proper model for the partitioning

of electrical circuits. In Proceedings of the 9th Workshop on Design Automa-

tion, pages 57–62. ACM/IEEE, 1972.

[24] S. Shekhar, C.-T. Lu, S. Chawla, and S. Ravada. Efficient join-index-

based spatial-join processing: A clustering approach. IEEE Transactions

on Knowledge and Data Engineering, 14(6):1400–1421, 2002.

[25] A. Trifunovic and W. Knottenbelt. Parkway2.0: A Parallel Multilevel Hy-

pergraph Partitioning Tool. In Proc. 19th International Symposium on Com-

puter and Information Sciences, volume 3280 of Lecture Notes in Computer

Science, pages 789–800. Springer, 2004.

BIBLIOGRAPHY 49

[26] B. Ucar and C. Aykanat. Encapsulating multiple communication-cost met-

rics in partitioning sparse rectangular matrices for parallel matrix-vector

multiplies. SIAM J. Scientific Computing, 25(6):1837–1859, 2004.

[27] B. Ucar, C. Aykanat, M. Pinar, and T. Malas. Parallel image restoration

using surrogate constraints methods. Submitted to Journal of Parallel and

Distributed Computing.

[28] B. Vastenhouw and R. H. Bisseling. A two-dimensional data distribution

method for parallel sparse matrix-vector multiplication. SIAM Review,

47(1):67–95, 2005.

