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ABSTRACT 

 

OPTIMIZATION OF TRANSPORTATION REQUIREMENTS 
IN THE DEPLOYMENT OF MILITARY UNITS 

 

İbrahim Akgün 
Ph.D. in Industrial Engineering 

Supervisor: Prof. Barbaros Ç. Tansel 
December 2005 

 

 We study the deployment planning problem (DPP) that may roughly be 

defined as the problem of the planning of the physical movement of military 

units, stationed at geographically dispersed locations, from their home bases 

to their designated destinations while obeying constraints on scheduling and 

routing issues as well as on the availability and use of various types of 

transportation assets that operate on a multimodal transportation network.  

The DPP is a large-scale real-world problem for which no analytical models 

are existent.  In this study, we define the problem in detail and analyze it with 

respect to the academic literature.  We propose three mixed integer 

programming models with the objectives of cost, lateness (the difference 

between the arrival time of a unit and its earliest allowable arrival time at its 

destination), and tardiness (the difference between the arrival time of a unit 

and its latest arrival time at its destination) minimization to solve the 

problem.  The cost-minimization model minimizes total transportation cost of 

a deployment and is of use for investment decisions in transportation 

resources during peacetime and for deployment planning in cases where the 
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operation is not imminent and there is enough time to do deliberate planning 

that takes costs into account.  The lateness and tardiness minimization models 

are of min-max type and are of use when quick deployment is of utmost 

concern.  The lateness minimization model is for cases when the given fleet of 

transportation assets is sufficient to deploy units within their allowable time 

windows and the tardiness minimization model is for cases when the given 

fleet is not sufficient.  We propose a solution methodology for solving all 

three models.  The solution methodology involves an effective use of 

relaxation and restriction that significantly speeds up a CPLEX-based branch-

and-bound.  The solution times for intermediate sized problems are around 

one hour at maximum for cost and lateness minimization models and around 

two hours for the tardiness minimization model.  Producing a suboptimal 

feasible solution based on trial and error methods for a problem of the same 

size takes about a week in the current practice in the Turkish Armed Forces.  

We also propose a heuristic that is essentially based on solving the models 

incrementally rather than at one step.  Computational results show that the 

heuristic can be used to find good feasible solutions for the models.  We 

conclude the study with comments on how to use the models in the real-

world.   

 

 

 

 

Keywords: large-scale optimization; military; transportation; mixed integer 

programming; min-max; deployment; mobility; restriction and 

relaxation; branch and bound. 
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ÖZET 

 

ASKERİ BİRLİKLERİN İNTİKALİNDE ULAŞTIRMA 
İHTİYAÇLARININ OPTİMİZASYONU 

 

İbrahim Akgün 
Endüstri Mühendisliği Bölümü Doktora 
Tez Yöneticisi: Prof. Barbaros Ç. Tansel 

Aralık 2005 
 

 Bu tezde, çok modlu bir ulaştırma ağı üzerinde işletilen farklı tipteki 

ulaştırma araçlarının çizelgeleme ve rotalama ile kullanım ve hazır bulunma 

hususlarına ilişkin kısıtları dikkate alarak, farklı coğrafi bölgelerde konuşlu 

bulunan askeri birliklerin, konuş yerlerinden kendilerine tahsis edilen görev 

bölgelerine fiziksel hareketlerinin planlanması olarak tanımlanabilecek İntikal 

Planlama Problemi (İPP) incelenmiştir.  Büyük çaplı gerçek bir dünya 

problemi olan İPP için mevcut literatürde şu ana kadar analitik bir model 

geliştirilmemiştir.  Bu çalışmada, problem detaylı olarak tanımlanmış ve 

akademik literature göre analiz edilmiştir.  Problemin çözümü için, maliyet, en 

erken varış zamanından sonraki gecikme (bir birliğin görev bölgesine gerçek varış 

zamanı ile müsaade edilen en erken varış zamanı arasındaki fark) ve en geç 

varış zamanından sonraki gecikme (bir birliğin görev bölgesine gerçek varış 

zamanı ile müsaade edilen en geç varış zamanı arasındaki fark) 

minimizasyonunu hedefleyen üç karışık tamsayı programlama modeli 

önerilmiştir.  Maliyet minimizasyonu modeli, bir intikalin toplam ulaştırma 

maliyetini minimize eder.  Model, barış zamanında ulaştırma kaynaklarına 

yapılacak yatırım kararlarının tespitinde ve operasyonun kısa zamanda 
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gerçekleşmesinin beklenmediği, maliyetleri dikkate alacak detaylı bir 

planlama yapmak için yeterli zamanın olduğu durumlarda intikal planlarının 

hazırlanmasında kullanılır.  En erken ve en geç varış zamanından sonraki 

gecikmeyi hedefleyen modeller, en büyüğün en küçüklenmesi (minimax) 

tipinde olup hızlı intikalin çok önemli olduğu durumlarda kullanılabilir.  En 

erken varış zamanından sonraki gecikme minimizasyonu modeli, birliklerin 

müsaade edilen zaman sınırları içinde intikali için ulaştırma araçları 

filosunun yeterli olduğu, en geç varış zamanından sonraki gecikme 

minimizasyonu modeli ise araç filosunun yeterli olmadığı durumlarda 

kullanılabilir.  Her üç modeli çözmek için bir çözüm metodolojisi 

geliştirilmiştir.  Çözüm metodolojisi, CPLEX tabanlı dal-sınır yöntemi 

uygulamasını önemli oranda hızlandıran gevşetme ve sınırlamanın etkin 

kullanımını içerir.  Orta büyüklükteki problemlerin maksimum çözüm 

zamanları, maliyet ve en erken varış zamanından sonraki gecikme 

minimizasyonu modelleri için bir saat, en geç varış zamanından sonraki 

gecikme minimizasyonu modeli için ise iki saat civarındadır.  Deneme 

yanılmaya dayalı Türk Silahlı Kuvvetleri’ndeki mevcut uygulamada, aynı 

çaptaki bir problem için optimal olmayan bir çözüm üretmek ortalama bir 

hafta almaktadır.  Çalışmada, ayrıca, modellerin tek bir adımda değil, 

artımsal olarak çözülmesine dayalı bir sezgisel yöntem önerilmiştir.  

Hesaplama sonuçları, sezgisel yöntemin modeller için olurlu çözümler 

bulmak için kullanılabileceğini göstermiştir.  Çalışmanın sonunda, modellerin 

gerçek hayatta nasıl kullanılabileceğine ilişkin yorumlar yer almıştır. 

 

Anahtar sözcükler: büyük-ölçekli optimizasyon; askeriye; ulaştırma; karışık 

tamsayılı programlama, en küçük-en büyük; intikal; sınırlama ve 

gevşetme; dal ve sınır yöntemi. 
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CHAPTER 1 

 

 

INTRODUCTION 

 

 In this dissertation, we study the deployment planning problem (DPP) that 

may roughly be defined as the problem of the planning of the physical 

movement of military units, including their troops, weapon systems, vehicles, 

equipment, and supplies, stationed at geographically dispersed locations, 

from their home bases to their designated destinations while obeying 

constraints on scheduling and routing issues as well as on the availability and 

use of various types of transportation assets that operate on a multimodal 

transportation network.  Large-scale applications arise in moving military 

forces at a time of conflict, threat, or crisis.  Similar planning needs may also 

arise for planning the movement of emergency response teams, together with 

their equipment and supplies, at a time of natural disaster. 

 

 In this chapter, we define the motivation behind our work, describe the 

problem in detail, and give an outline of the dissertation together with our 

contribution to the literature. 
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1.1.  Motivation 

 

The new threat perceptions of the countries since the end of the Cold War 

have mandated changes in the military strategy and hence in the structure of 

the armed forces of almost all countries.  The strategy of massing up large 

numbers of troops, weapon systems, equipment, and supplies in regions 

where an attack is anticipated has been replaced by a new strategy that 

envisions having smaller but more mobile forces stationed at widely 

dispersed locations with the capability to deploy (move, transport) troops, 

weapon systems, equipment, and supplies rapidly to contingency regions at 

the time they are needed.   

 

This strategy requires heavy investment in acquisition of cargo planes and 

sealift ships as well as maintaining a well-sized fleet of reliable ground 

transportation assets.  For instance, the US has made plans to spend close to 

$20 billion dollars from 1998 to 2002, which constitutes 7 percent of proposed 

military procurement spending over the period, to acquire new strategic 

(intercontinental) cargo planes and sealift ships (CBO, 1997).  This, combined 

with the fact that we are in an era of intense competition for funding, requires 

that investment plans for mobility be based on real transportation 

requirements and not on “gut feel” or “traditional” predictions.  This requires 

that transportation planners use tools based on scientific methods and be 

capable of creating implementable, effective, and efficient deployment and 

sustainment (the provision of personnel, equipment, supplies, and other 

logistics support to the units deployed to the battlefield) plans in a short time 

and answering what-if questions to predict the number and types of 
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transportation assets needed to support deployment and sustainment 

operations.   

     

While having to spend large sums of money for acquisition and 

maintenance of a well-composed pool of transportation resources is a 

necessary condition for effective deployment, availability alone does not 

guarantee smooth operation unless supplemented with carefully worked-out 

deployment plans.  In this regard, models and other tools developed for the 

analysis of deployment operations not only will help with the evaluation and 

assessment of investment decisions in transportation resources, but also with 

the planning and execution of cost-effective deployment and sustainment 

operations that may arise on short notice at a time of threat. 

 

 Literature review shows that there are several deployment/mobility 

analysis models.  However, the models are generally simulation based and 

that the existing simulation and optimization based studies address only 

certain parts of the problem.  McKinzie and Barnes (2003) review existing 

models and state that the major aspect lacking in the models is the use of 

advanced optimization techniques for estimating force closure, i.e., the arrival 

of units at their areas of operations, and that cumbersome, ineffective classical 

optimization algorithms or simplistic and ineffective greedy approaches are 

used to find solutions. 

 

 Turkish Armed Forces does not have a national deployment and 

sustainment planning tool.  It uses, as all other NATO members except the 

United States, NATO’s Allied Deployment and Mobility System (ADAMS) 

(Heal and Garnett, 2001) for making both national and international 
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deployment and sustainment plans.  ADAMS provides a structured approach 

to making deployment and sustainment plans; however, it has the same 

disadvantages pointed out by McKinzie and Barnes (2003).  Therefore, 

Turkish Armed Forces aims to develop optimization and simulation based 

deployment and sustainment planning tools as part of a capability planning 

system that is in the works at the Scientific Decision Support Center in the 

Turkish General Staff Headquarters. 

    

All of these issues motivate us to study the DPP.  In the dissertation, we 

break away from the existing literature and develop an all-encompassing 

optimization model and its variants all of which can be used to evaluate and 

assess investment decisions in transportation infrastructure and 

transportation assets as well as to plan and execute cost-effective deployment 

operations at different levels of planning.  We develop a solution 

methodology to solve the model and its variants and a heuristic that finds 

good feasible solutions in a short time.  We implement the models under 

consideration using deployment scenarios obtained from the Turkish Armed 

Forces.   

 

1.2.  Problem Description  

 

The DPP involves many military units stationed at various locations, i.e., 

their home bases.  At a time of crisis, a subset of them, which is determined by 

the nature and extent of the threat under consideration, is required to move to 

their specified destinations, i.e., areas of operations.  A call for movement is 

issued for the active set that specifies among other things the earliest times to 
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depart, the earliest and latest times to arrive, and other requirements that 

must be obeyed during movement.   

 

The deployable military units, generally main battle units such as 

companies or battalions, are required to develop and submit their deployment 

plans in compliance with the operational plan.  The current practice in Turkey 

is a bottom-up approach where each unit, starting from the lowest level in the 

existing military force structure, submits a plan of its own to the next higher 

level independent of other units.  Because plans from subordinating units are 

conceived independently, conflicts may arise in demanding the usage of the 

same transportation infrastructure and/or the same transportation assets at 

the same time.  The receiving unit in the hierarchy is expected to resolve these 

conflicts, readjust plans, and submit the revised plans to the next higher level.  

The lower level units are notified of any changes that have taken place during 

the process.  In many cases, it is very difficult, if not impossible, to de-conflict 

submitted plans from subordinating units.  It is typically done by manual 

methods or not done at all.  In fact, it is not unusual for plans to move up in 

the hierarchy to the highest level with no change at all; hence, de-conflicting 

usually occurs at the highest level.  It is a time consuming and tedious activity 

that may require several rounds of revisions with no guarantee of creating an 

implementable plan unless demands on the use of common resources at a 

time of crisis are quite relaxed or nonexistent. 

 

Deployable items that a unit has are pax (personnel/troops) and cargo 

(weapon systems, equipment, and supplies) that we collectively refer to as 

items.  In the deployment-planning context, it is assumed that items that are 

small enough to be placed in boxes are carried in boxes of certain sizes.  For 
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this reason, a planner needs only to deal with well-defined categories of 

items, e.g., tanks, armored personnel carriers, trucks, and boxes of predefined 

sizes.  Depending on the planning level of detail, items may be aggregated as 

necessary.  For example, items may be given as the total tons of cargo at a 

high-level planning function and as individual items with specified attributes 

(such as weight, width, length, and height) at a lower-level planning function.     

 

Because a unit’s integrity is of critical importance from a military 

perspective, it is desired to deploy a unit as a whole.  However, this is usually 

not physically possible or economical.  For this reason, a unit is usually 

deployed in components.  Although the number and configuration of 

components of a unit depend on the doctrine, the nature of the threat, available 

resources, the unit’s size, and other relevant factors, a unit is usually split into 

three components: an advance party, a pax party, and a cargo party.  An 

advance party consists of a small number of troops and a few cargo items of the 

unit that arrive at the destination ahead of time to prepare the destination for 

the arrival of the other two components.  A pax party consists of the main body 

of the troops of the unit while a cargo party consists of the unit’s cargo 

accompanied by a small number of troops.  Each deployment component may 

follow different routes but must be deployed as a whole, e.g., as a convoy.  In 

some cases, where the size of the component, the deploying strategy, and the 

resources do not allow the movement of a component as a whole, the 

component may be split into smaller sub-components (e.g., tanks in a cargo 

party), all of which are required to use the same route collectively or to move in 

a time-phased manner.  A sample splitting of items of a battalion-size unit is 

given in Figure 1.  Notice that a component is not a single entity with a certain 

size but a mix of different types of items with different quantities.     
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Figure 1.  A sample splitting of a unit into deployment components 
 

Certain precedence and/or synchronization relations may be present 

between components of a unit.  For example, the advance party must arrive at 

the destination before other components of the unit.  The pax and cargo 

parties may arrive at the destination simultaneously or the pax party may 

arrive before the cargo party.  Even a certain time span may be required to 

pass between the arrivals of components of a unit.  Similar relations may also 

be present between different units. 

 

A deployment planner finds all relevant data regarding deployable units 

in the operations plans.  Main data needed in the planning are where and 

when units are to be ready, their earliest departure times, their deployment 

components, what items deployment components of units are comprised of, 

and precedence/synchronization relations between components of a unit 

and/or units.   

 

How a unit moves from its home base to its destination depends on the 

transportation mode selected.  Ground transportation, railways, airlift, and 

shipping lanes are all possibilities.  A unit may use one or more of these in 

ITEMS QUANTITY 
Troops 500 
Tanks 14 
Pax Carrier 45 
2.5 Ton Truck 10 
5 Ton Truck 10 
2 m3 Box 40 

COMPONENTS ITEMS QUANTITY 
Troops 40 
2.5 Ton Truck 1 Advance Party 
2 m3 Box 3 

Pax Party Troops 450 
Troops 10 
Tanks 14 
Pax Carrier 45 
2.5 Ton Truck 9 
5 Ton Truck 10 

Cargo Party 

2 m3 Box 37 



 
 

 8

succession.  If a unit uses a single transportation mode from its origin to its 

destination, the same set of transportation assets is used during the entire 

journey.  If a combination of different transportation modes is used, then 

different sets of transportation assets are active on that unit at different time 

intervals.  This requires that the unit’s items be transferred from one set of 

transportation assets to another set at points of connection between different 

modes.  Such points are referred to as transfer points.  A transfer point is 

referred to as a point of debarkation (POD) for the supplying transport mode 

and a point of embarkation (POE) for the receiving transport mode for the unit.  

Main transfer points are harbors, airports, and rail stations.  Several zones, 

e.g., staging and marshalling zones, at transfer points prevent congestion and 

provide uninterrupted flow of items by providing sufficient space in and 

adjacent to the terminal area to enable deploying and supporting units to 

carry out loading/unloading, coordination, control, and preparation 

operations in harmony.  A marshalling area can be regarded as a 

waiting/parking place and a staging area as a service point.  In this regard, a 

capacity may be associated with a transfer point depending on the availability 

and capacity of material handling equipment and/or its physical 

characteristics, e.g., a certain number of docks at a seaport.  Similar zones may 

also be operated at home bases and destinations of units.       

 

Even though there is no limit on how many times a unit changes 

transportation mode, movement pattern of a unit generally includes three 

movement segments: from home base to a transfer point, from transfer point 

to another transfer point, and from transfer point to destination.  Each such 

change requires additional planning, coordination, and cooperation activities 

leading to potential delays and unforeseen problems.  For this reason, changes 
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between transport modes are avoided to the extent possible and changes of 

transportation assets are not allowed while moving in a given mode. 

  

A unit may use transportation assets from three different sources: from its 

own fleet (organic assets), from military transportation units, and/or from 

civilian transportation companies.    

 

Organic assets in possession of a unit may be used at will by the unit.  

However, for the usage of transportation assets from the other two sources, a 

request must be made to a transportation coordination center where all such 

requests are assessed.  In most cases, it is not possible for the center to meet all 

demands coming from different units due to physical and/or economical 

limitations.  In this regard, the center is expected, if possible, to allocate 

available transportation resources to demanding units in a time-phased 

manner in such a way that all units arrive at their destinations at the time they 

are needed.  If this is not possible, the center is expected to make suggestions 

to carry out the mission successfully, e.g., procuring additional transportation 

assets.  Even a change in the operational plan may be called for.   

 

In meeting the transportation requests of units, the transportation 

coordination center considers two issues: cost and time.  A costing structure is 

needed to decide how to source the needed transportation assets.  In general, 

a cost structure consisting of a fixed cost and a variable cost is assumed.  If a 

transportation asset is organic or supplied from a military transportation unit, 

the incurred cost for the transportation asset is generally the variable cost.  On 

the other hand, if a transportation asset belongs to a civilian company, both 
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fixed and variable costs are incurred where the fixed cost is the leasing or 

procurement cost.   

 

Time is of utmost importance in the deployment-planning context as it is 

no good if a unit is not ready at its destination on time.  In this regard, 

everything that affects the arrival time of a unit at its destination must be 

taken into account in the planning.  Main factors that affect arrival times are 

ready times for transportation assets to be available for the first time usage, 

travel times, and loading, unloading, and idle waiting times at home bases, 

destinations, or transfer points.  A ready time is of critical importance for 

transportation assets sourced from the civilian sector as companies are 

contracted to provide transportation assets at specified times and at specified 

locations.  Travel times are dependent on the speed at which transportation 

assets move.  If a unit uses ground transportation, it moves as a convoy and 

conforms to a pre-specified convoy speed.  The same is valid for railway 

transportation (as a train can also be taken as a convoy).  On the other hand, 

for sea and air transportation, transportation assets move at their regular 

speeds.  Loading and unloading times of transportation assets are known a 

priori; however, idle waiting times are not known a priori as they are 

determined by the availability of transportation assets and transportation 

infrastructure.  The availability of a transportation asset is determined by its 

ready time, travel speed, loading/unloading time, and idle waiting time as it 

circulates through the network.  Availability of the transportation 

infrastructure is generally related to capacity issues as in the case of transfer 

points.   
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In determining how many transportation assets of each type to allocate to 

a unit, loadability features of transportation assets are taken into account. 

Based on loadability, transportation assets are classified into four groups:      

 

1)  Pax: transportation assets that can carry only personnel (e.g., buses) 

( paxV ) 

2) Cargo: transportation assets that can carry only cargo (e.g., trucks, tank 

carriers, cargo planes) ( ocV arg ) 

3) Pax and Cargo: transportation assets that carry cargo and personnel in 

separate compartments (e.g., ships) ( bothV )  

4)  Mixed Pax and Cargo: transportation assets that carry cargo and 

personnel in a single compartment (e.g., trucks, some types of planes) 

( mixV ) 

 

For a transportation asset in class paxV , the number of passengers to be 

carried is determined by the number of seats on the transportation asset while 

for a transportation asset in class ocV arg , the amount of cargo to be loaded is 

determined by the weight, volume, and/or lanemeter capacities of the 

transportation asset.  Lanemeter capacity (typically expressed in terms of 

length but not necessarily related to the length of the transportation asset) is 

similar to the parking capacity of a parking area and generally used while 

wheeled and/or armored vehicles are loaded onto sealift and/or airlift assets.   

 

For a transportation asset in class bothV , the number of passengers and the 

amount of cargo to transport are determined separately as done for classes 

paxV  and ocV arg  as passenger and cargo carrying capacities for transportation 
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assets in this class do not interact with each other.  Constraints valid for 

classes paxV  and ocV arg  are also valid for bothV .   

 

For a transportation asset in class mixV , the same space is shared by both 

cargo and personnel and one displaces the other in discrete blocks that can be 

characterized by a step function.  When personnel are to be carried on a 

transportation asset, seats built in blocks of different sizes are to be installed 

on it.  The number of blocks to be installed is determined by the number of 

passengers.  The portion of the capacity that will be used for cargo is 

diminished each time a block of seats is added.  For example, assuming that 

seats are built in blocks of 18 seats, one block of seats for 1 through 18 

passengers and two blocks of seats for 19 through 36 passengers are installed 

on the transportation asset.  Note that the decrease in capacity is both weight-

wise and volume-wise and that the amount of decrease changes depending 

on the passenger, weight, and volume capacities as well as the number of 

seats in a block.   

 

One issue that is related both to the movement of items and to the 

loadability feature is that some cargo are self-deployable meaning that they do 

not need to be carried on a transportation asset on the parts of the 

transportation network on which they can move by themselves.  For example, 

tanks (generally moved on tank carriers but can self-deploy when necessary) 

and trucks are self-deployable in ground transportation.  A self-deployable 

can be an organic asset.  For example, a truck is self-deployable and an 

organic asset of a unit.  Thus, a self-deployable is treated as a transportation 

asset on those parts of the network on which it can move by itself.  

Furthermore, a self-deployable with some cargo on it can be loaded onto 
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another transportation asset, e.g., a truck with boxes may be loaded onto a 

plane.  This requires determining what to load onto a self-deployable item.  

What is done in practice is to pre-determine the loads of self-deployable items 

as units are to use their organic assets the first time in transporting some of 

their items.  In this respect, a self-deployable item and what is on it can be 

regarded as a single entity with a certain weight and volume.   

 

Coupling of a transportation asset and an item based on the loadability 

features alone is not sufficient.  The transportation infrastructure must also 

support the movement of both transportation assets and items with respect to 

physical characteristics, e.g., width of a tunnel/dock and strength of a bridge.  

Thus, analyses such as items-to-routes/locations and transportation assets-to-

routes/locations are needed.  Such analyses require intensive data and are 

possible only when supported by a well-organized information system.  In 

addition, prevailing practices based on current policies, strategies, doctrines, 

and security concerns must be taken account in determining what types of 

transportation assets and what parts of a transportation network can be used 

by a unit.   

 

In deployment planning, a planner needs to determine the routes to 

follow, schedule the movements, and allocate the transportation assets and 

the transportation infrastructure to the deploying units on a time basis so that 

all deploying units and their materiel arrive at their destinations at their 

required times while obeying constraints regarding priorities of the units, 

availability of resources (transportation assets, transportation infrastructure, 

material handling equipment, etc.), capacities, and any other specified issues.  

From a modeling point of view, three main problems are handled 
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simultaneously: routing, scheduling, and resource allocation.  Complications 

arise due to simultaneous handling of two types of flows: those of items and 

of transportation assets.  Transportation assets are the active agents in that 

they move the items to which they are assigned. They can be repeatedly used 

for moving different sets of items at different times. 

 

1.3.  Outline of the Dissertation and Contribution to the Literature 

 

 In Chapter 1, we give a detailed description of the problem. The literature 

review shows that no model that deals with the DPP as a whole exists.  For 

this reason, there does not exist an academic and detailed description of the 

problem.  Most of the relevant details are found in military field manuals that 

give information on various aspects of deployment.  However, no field 

manual seems to involve a complete description of the problem either.  In this 

regard, our first contribution is to give a detailed, complete, and academic 

description of a large-scale, real-world, and complicated problem.   

 

 In Chapter 2, we present the literature related to the problem.  In 

compliance with the lack of a complete description of the problem in the 

literature, there does not exist a scientific analysis of the problem with respect 

to the scientific literature.  For this reason, we do a comprehensive literature 

review of research areas related to the problem, namely, dynamic network 

flow, network design, vehicle routing, dynamic resource allocation, and 

mobility analysis problems.  We give a summary of the studies in these areas 

and explain why the models available in the literature are not able to capture 

various aspects of the DPP in its entirety.  As the DPP is related to the 

transportation planning problems, we also give an overview of transportation 
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systems in this chapter.  In this regard, giving an academic analysis of a 

complex problem is our contribution in Chapter 2.   

  

 In Chapter 3, we first give the abstraction of the problem.  Specifically, we 

define the underlying network, transportation assets, items (commodities) to 

be moved, and sets and data related to these three.  The abstraction is such 

that it gives a basis for a database.  Next, we give the formulation of the first 

model, a solution methodology to solve the model, and computational results 

obtained using the solution methodology.   

  

 The purpose of the first model, Cost Minimization Deployment Planning 

Model (CMDPM), is to plan the movements of units with a given fleet of 

transportation assets such that the sum of fixed and variable transportation 

costs is minimized.  This model may be of use for investment decisions in 

transportation resources during peacetime and for deployment planning in 

cases where the operation is not imminent and there is enough time to do 

deliberate planning taking cost into account.   

 

 The solution methodology is based on an effective use of a relaxation and 

restriction of the model that significantly speeds up a CPLEX-based branch 

and bound.  The solution times for intermediate sized problems are around 

one hour whereas it takes about a week in the Turkish Armed Forces to 

produce a suboptimal feasible solution based on trial and error methods.   

 

 In Chapter 4, we present two min-max models, Lateness Minimization 

Deployment Planning Model (LMDPM) and Tardiness Minimization Deployment 

Planning Model (TMDPM).  Lateness in the LMDPM is defined as the difference 
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between the arrival time of a unit and its earliest allowable arrival time at its 

destination while tardiness in the TMDPM is defined as the difference between 

the arrival time of a unit and its latest arrival time at its destination.  In this 

regard, the objectives in the LMDPM and TMDPM are to minimize maximum 

lateness and tardiness, respectively.  These models will be of use in cases 

where quick deployment is of utmost concern.  The LMDPM is for cases when 

the given fleet of transportation assets is sufficient to deploy units within their 

allowable time windows and the TMDPM is for cases when the given fleet is 

not sufficient.  We solve these models using the test problems and the 

solution methodology developed in Chapter 3.  Solution times for these 

models are also around one hour for intermediate sized problems. 

  

 In Chapter 5, we present a heuristic that involves essentially using the 

developed models iteratively to obtain quick feasible solutions for the 

problem.  

 

 Our contribution in Chapters 3 through 5 is that we provide manageable 

and solvable models for a large-scale, real-world problem for which analytical 

models are nonexistent.  In addition, we provide a heuristic algorithm that 

finds good feasible solutions. 

  

 In Chapter 6, we explain how the models can be used with the current 

practice, bottom-up approach, in the Turkish Armed Forces and with the 

proposed top-down approach.  We next give some what-if questions and 

explain how they can be answered by using the models and their output.  

Variations of the models are also given in this chapter.  Our contribution in 

this chapter is to establish the connection between real-world and theoretical 
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work by pointing out how decision making can be improved using the 

models.  In Chapter 7, we summarize the results of our study. 
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CHAPTER 2 

 

 

LITERATURE REVIEW 

 

 There has recently been a growing interest in the Supply Chain Management 

(SCM) in the business community.  This has led to a vast literature both in the 

theory and practice of the SCM concept.  Survey papers by Beamon (1998), 

Croom, Romano, and Giannakis (2000), Min and Zhou (2003), Slats et al. 

(1995), Stevens (1998), Tan (2001), and Thomas and Griffin (1996) give an 

extensive list of studies in this area.   

 

 Successful applications of the SCM concept in several business sectors (for 

example, Arntzen et al. (1995), Cohen et al. (1990), Lee and Billington (1995), 

and Martin et al. (1993)) have modified the way the military manages its 

supply chain.  The military has adopted business practices to solve some 

problems it encounters in operating its supply chain during peacetime.   

However, there are some problems particular to the military supply chain 

during wartime for which the business SCM theory and practices are 

insufficient.  The DPP is such a problem.    

 

 In this chapter, our first goal is to clarify why the business SCM models, 

specifically transportation planning models, fall short of solving the DPP.  To 
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this end, we first establish the relationship between commercial and military 

supply chains and the DPP and explain why and where the military supply 

chain is different from the business supply chain.  We then review the 

literature broadly related to the DPP, specifically, the literature on  

transportation planning and dynamic network flow problems, and discuss why 

existing studies in these areas are insufficient for dealing with the level of 

complexity inherent in the DPP. 

 

 The literature that directly addresses the DPP is grouped under the name 

of mobility analysis.  Our second goal in this chapter is to give mobility 

analysis literature and then explain in what ways existing mobility analysis 

models fall short of dealing with all aspects of the DPP. 

 

 The chapter is organized to first place the DPP in the basic context of 

transportation planning which we view as a subset of the general SCM 

literature.  To this end, the discussion of the directly related literature on the 

DPP, collectively referred to as the Mobility Analysis Problem (MAP), is 

deferred to the end of the chapter (Section 2.3.3).  The reader interested in the 

mobility analysis literature may skip to Section 2.3.3 without loss of 

continuity, but perhaps with some loss of perspective on where the DPP fits 

in the more general realm of transportation planning and of SCM. 

 

Although there is a literature regarding SCM deployment, e.g., Shapiro 

(2003), this term refers to inventory deployment where the modeling focuses on 

closing/opening plants/distribution centers and determining inventory levels 

for open plants or distribution centers.  In this regard, the DPP and the SCM 
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deployment problem are structurally quite different despite the use of the 

term “deployment” in both.       

 

2.1.  Military and Commercial Supply Chains and Deployment Planning 

 

The main goal of both commercial and military supply chain systems is to 

ensure that the right commodity is available at the right location, at the right 

time, and in the right quantity.  However, the consequences of not achieving 

this goal are different for the commercial sector and the military.  If this goal 

is not met in a commercial supply chain system, the cost is essentially a profit 

loss.  On the other hand, if this goal is not met in a military supply chain 

system, then the cost is human life that results from the failure of a mission, 

sometimes with catastrophic results.  In this regard, no monetary value can 

justfully be attributed to the success or failure of a military supply chain 

system and the importance of correct and timely planning in a military 

context cannot be overemphasized.  

 

Kress (2005) divides the military supply chain into peacetime and wartime 

supply chains.  He points out that peacetime supply chain is similar to a 

business supply chain and that the military adopts best business supply chain 

practices to manage its system during peacetime.  Thus, planning and 

operating a military supply chain during peacetime is similar to planning and 

operating a business supply chain.  This similarity allows analytical planning 

tools available for business supply chains to be used for peacetime supply 

chain.   
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Wartime supply chain refers to a supply chain whose malfunction may be 

disastrous.  It has three components: deployment, sustainment, and 

redeployment of military units.  Deployment is simply the physical 

movement of military units (including troops, equipment and supplies) from 

their home bases to their areas of operations.  During a deployment, units 

carry their organic equipment and a basic load of supplies so as to be capable 

of engaging in a confrontation with the enemy or carrying out an operation 

for a designated length of time (e.g., three days) without relying on external 

support.  However, at the end of the designated time, deployed units must get 

enough and timely sustainment for subsequent effectiveness in an operation.  

The sustainment refers here to the provision of personnel, logistics, and other 

support.  Redeployment is essentially a deployment to peacetime locations or 

to another operations area.  In this regard, deployment and sustainment 

planning are of key concern in a wartime supply chain. 

 

Kress (2005) argues that wartime supply chain is different from a 

business/peacetime supply chain.  He points out the following discrepancies: 

The operations are generally routine, long-term, and small-scale in the 

peacetime while the operations are rare, short-term, and (extra) large-scale in 

the wartime.  As a result of this, the flow through the network is sparse, e.g., 

single trucks, in the peacetime while it is massive, e.g., convoys of trucks, in 

the wartime.  The operating network in the wartime changes depending on 

the movements of units in the operations areas while it is stationary in the 

peacetime.  In the peacetime, there are uncertainties in the demands, costs, 

and lead times.  In the wartime, the operations are carried out in a hostile 

environment and hence there are uncertainties in the survivability and 

success of the operations in addition to uncertainties that are prevailing in the 
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peacetime.  In the peacetime, economical solutions are preferable and hence 

cost is the main planning consideration.  Planners have a chance to choose 

which demand to meet, to meet a demand at a later time, or not to meet a 

demand at all.  In the wartime, however, operational success is the main 

planning consideration and cost is of secondary concern.  Planners do not 

have a chance to choose which demand to meet as any unmet demand may 

cause failure of a mission.  As a result of these issues, the modeling approach 

is microscopic and service level measures are relaxed in the peacetime.  In the 

wartime, on the other hand, the modeling approach is macroscopic and 

service level measures are strict.   

 

The aforementioned discrepancies between the two chains do not allow 

analytical planning tools developed for peacetime supply chain to be used for 

wartime supply chain; specialized analytical tools are needed for wartime 

supply chain.   

 

Analytical tools are needed for both peacetime and wartime decisions 

regarding wartime supply chain.  Peacetime decisions regarding wartime 

supply chain are essentially strategic decisions, e.g., national supply levels or 

transportation capabilities determined as a function of threat and national 

capabilities.  These decisions are actually related to investment decisions.  

Wartime decisions regarding wartime supply chain are operational, e.g., 

theater-level deployment and employment, and tactical, e.g., combat unit’s 

logistics support. 
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In this dissertation, we develop optimization models that are of use for 

both wartime and peacetime decisions regarding the deployment planning of 

military units.   

 

2.2.  A Classification of Transportation Systems 

  

 Crainic (2003) classifies transportation systems into customized/door-to-

door transportation and consolidation transportation. 

 

2.2.1.  Customized/Door-to-Door Transportation  
 

 In customized/door-to-door transportation, transportation services are tailored 

to the specific needs of the customer.  Truckload Trucking (TL) is one example 

of door-to-door transportation.  It arises in distributing goods over long 

distances.  In the TL, a truck is usually dedicated to each customer.  When the 

customer calls, a truck with a driver or a driving team is assigned to it.  The 

truck is moved to the customer-designated location, and it is loaded.  It then 

moves to the specified destination.  At destination, the truck is unloaded, and 

the driver calls the dispatcher to give its position and requests a new 

assignment.  The dispatcher may indicate a new load, ask the driver to move 

empty to a new location where demand should appear in the near future, or 

have the driver wait and call later.  

 

 In this regard, the truckload carrier operates in a highly dynamic 

environment.  There is little information regarding future demands, travel 

times, waiting delays at customer locations, precise positions of loaded and 

empty vehicles at later moments in time.  Thus, there is certainly a need to 
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respond to customer requests in a timely fashion and predict the effects of 

today’s decisions on future decisions.  

 

2.2.2.  Consolidation/Service Transportation 
 

 In consolidation transportation, demands of several customers are served 

simultaneously by using the same vehicle or convoy.  Transportation services 

are not tailored to specific needs of the customers.  Regular transportation 

services are established with certain operating characteristics, e.g., routes and 

schedules, to satisfy the expectations of the largest number of customers.  For 

example, origin, destination, intermediary stops, departure time from origin, 

arrival time at destination, departure/arrival times from/at intermediary 

stops, capacity, and speed of a container ship moving from port A to port B 

are determined and proposed to the customers.  Less-than-truckload trucking  

companies, railways, shipping lines, and postal and express shipment services 

may offer this type of transportation.  Consolidation transportation is 

characterized by the existence of terminals where cargo and vehicles are 

consolidated, grouped, or simply moved from one service to another.     

 

 The operating infrastructure in consolidation transportation consists of a 

rather complex network of terminals connected by physical or conceptual 

links.  Air and sea lines correspond to the latter while road, highways, and 

rail tracks are examples of the former.   

 

 In consolidation transportation, a transportation demand is defined 

between given points of the transportation network, i.e., origin and 

destination, together with commodity-related physical characteristics, e.g., 
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weight and volume.  Particular service requirements, e.g., delivery conditions 

and type of vehicle, may also be requested.  The transportation service 

provider moves commodity/freight by a large number of vehicles: rail cars, 

trailers, containers, ships, etc.  Vehicles usually move on pre-specified routes 

and sometimes follow a given schedule.  Vehicles may move individually or 

in convoys such as rail or barge trains.  Convoys are formed and dismantled 

at terminals.  Other operations at terminals include freight sorting and 

consolidation, its loading onto or unloading from vehicles as well as vehicle 

sorting, grouping, and transferring from one convoy to another.   

 

 Terminals may be in different designs and sizes and specialized for certain 

operations.  Major consolidation centers/terminals are referred to as hubs.  The 

hubs are linked by high frequency and capacity services, e.g., planes and 

ships.  There are also terminals where freight and vehicles are consolidated at 

the beginning and end of freight’s journey.  These terminals are linked to 

hubs by feeder services, i.e., spoke links.  It is possible that a terminal be linked 

to more than one hub.  Local delivery and pick-up operations are usually 

arranged by these terminals.       

 

 To clarify the notion of consolidation transportation, we now focus on 

specific transportation modes.   

 

 A railway transportation system is composed of single and/or double track 

lines that link many large and small classification yards, where rail cars are 

grouped and trains are formed, pick-up and delivery stations, junction points, 

etc.  The process begins when the customer issues an order for a number of 

empty cars or when freight is brought into the loading facility following a 
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pick-up operation.  At the appropriate yard, rail cars are selected, inspected, 

and then delivered to the loading point.  Once loaded, cars are moved to the 

origin yard (possibly the same) where they are sorted, classified, and 

assembled into blocks.  A block is a group of cars, with possibly different final 

destinations, arbitrarily considered as a single unit for handling purposes 

from the yard where it is put together to its destination yard where its 

component cars are separated.  Rail companies use blocks to take advantage 

of some of the economies of scale related to full train loads and the handling 

of longer car strings in yards.  The block is eventually put on a train and this 

signals the beginning of the journey.  During the long-haul (intercity) part of 

the journey, the train may overtake other trains or may be overtaken by trains 

with different speeds and priorities.  When the train travels on single-track 

lines, it may also meet trains traveling in the opposite direction.  Then, the 

train with the lowest priority has to give way and wait on a side track for the 

train with the higher priority to pass by.  At yards where train stops, cars and 

engines are regularly inspected.  Also, blocks of cars may be transferred.  

When a block finally arrives at destination, it is separated from the train, its 

cars are sorted, and those having reached their final destination are directed 

to unloading station.  Once empty, the cars are prepared for a new 

assignment, which may be either a loaded trip or an empty repositioning 

movement.   

 

 Similar to rail transportation, Less-than-truckload-trucking (LTL) 

networks may encompass different types of terminals.  Local traffic is picked 

up by small trucks and is delivered to end-of-line terminals where it is 

consolidated into larger shipments before long-haul movements.  

Symmetrically, loads from other parts of the network may arrive at end-of-
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lines to be unloaded and moved into delivery trucks for final delivery.  

Breakbulks are terminals where traffic from many end-of-line terminals is 

unloaded, sorted, and consolidated for the next portion of the journey.  

Breakbulks are the hubs of LTL networks as major yards are the hubs of rail 

transportation systems. 

 

 LTL transportation follows the same basic operational structure described 

for rail but on a simpler scale and with significantly more flexibility.  In 

addition, a truck is only formed of a tractor and one or several trailers (when 

more than one trailer is used, these are smaller and are called pups).  

Consequently, terminal operations are generally simpler; freight is handled to 

consolidate outbound movements but there are no convoy-related operations.  

However, LTL transportation may become rather complex when the option to 

use rail (the trailer-on-flat-car – TOFC) for long distances. 

 

 Intermodal container transportation may be viewed as either 

customized/door-to-door or consolidation transportation.  For the customer, it 

is door-to-door transportation.  When requested, containers are delivered, 

loaded, moved through a series of terminals and vehicles (of which the 

customer has little knowledge even when the exact position of the shipment is 

available), and are delivered to final destination where the goods are 

unloaded.  For the service provider, i.e., shipping company, it is a 

consolidation transportation system.  Containers from many customers must 

be moved to a port by truck, barge, or rail, or a combination of these.  At the 

port, containers are grouped and loaded on a ship.  The ship follows a 

prespecified route and a tight schedule and delivers the containers at the 

destination port.  From the destination port, a land transportation system 
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delivers the containers to the final destination by using a variety of modes 

and terminals.  A hub system may be operated between major ports.  

Container transportation systems that operate solely on land may also be 

encountered.  In this case, rail trains and inland terminals usually play the 

role of ships and ports.         

 

 A similar argument may be made for express letter and small package 

services.  For customers, it is obviously a door-to-door transportation.  For the 

company, it is a consolidation transportation system that usually makes use of 

various air, truck, and rail services.  The company implements a Vehicle 

Routing Problem-type of service to interact with its customers and collect and 

distribute letters and packages.  The collection and distribution centers where 

mail is sorted and consolidated play a role similar to that of end-of-line 

terminal in LTL transportation.  To reach its destination, a letter or package 

usually passes through at least one major hub.  These terminals are similar to 

breakbulks in LTL.  To link its national hubs and major collection and 

distribution centers, the company may operate its own planes or may use 

scheduled passenger flights or train services.  When distances are not long, 

trucks may also be used. 

 

 It is useful to differentiate between moving people and freight.  The above 

classification is essentially for freight transportation; however, the 

aforementioned operating characteristics can be applied to moving people.  

For example, selecting some airport terminals as hubs is also an operating 

strategy in operating airlines.  What is important in the context of moving 

people is that airlines, passenger trains and bus companies typically run fixed 

schedules over fixed routes that are planned months in advance.  This allows 
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people to arrange their travel plans around a fixed schedule.  Freight 

transportation, however, is operated in a dynamic environment which may 

require operational plans to be modified frequently, e.g., on a daily basis.  

This does not mean that no long-term or medium-term planning is made in 

freight transportation.  For example, freight companies have to determine 

locations of terminals, which is a long-term and strategic decision.   

 

 Planning levels in transportation are classified into strategic, tactical, and 

operational.  Strategic planning is concerned with long-term planning.  

Decisions at the firm/service level include the design of physical network, 

and, the location of major facilities, e.g., terminals, the acquisition of major 

resources, e.g., locomotives.  Strategic planning at the international, national, 

and regional levels deals with transportation networks or services of several 

carriers simultaneously.  Tactical planning is concerned with medium-term 

planning.  It aims to determine an efficient allocation of resources.  Decisions 

at this level include the design of the service network that may consist of the 

determination of the routes and types of service to operate, service schedules, 

vehicle and traffic routing, repositioning of the fleet for use in the next 

planning period.  Operational planning is concerned with short-term planning.  

It is made by local management, yard masters, and dispatchers in a highly 

dynamic environment where the time factor plays an important role and 

detailed representations of vehicles, facilities, and activities are needed.  

Decisions at this level include scheduling crews, services, maintenance 

activities; routing and dispatching of vehicles and crews; dynamic allocation 

of scarce resources. 
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 Transportation planning problems that are studied in the literature and 

that fall into one or more of the aforementioned planning levels can be 

classified into Network Design, Vehicle Routing, Driver Assignment, Crew 

Scheduling, Dynamic Fleet Management, Empty Vehicle Distribution, and 

Intermodal Container Operations Problems.  Of these problems, network design 

problem is considered as strategic and tactical while others are considered as 

operational.  It is common to consider all problems except network design 

and vehicle routing problems as Dynamic Resource Allocation Problems, e.g., 

Powell (2002).   

  

 All of these problems have been studied extensively in the literature and 

hence the literature is too rich to discuss all of them.  We give in the following 

a selective review of studies that are notably more important.    

 

2.3.  Literature Review 

 

 The DPP is related to the transportation planning problems in the 

literature.  However, before giving literature related to these problems, we 

discuss dynamic network flow problem because many transportation planning 

models turn out to be dynamic network flow models.  In addition, time 

component, i.e., dynamic aspect, inherent in the DPP requires using a time-

dynamic network in the modeling of the problem.     

 

2.3.1.  Dynamic Network Flow Problem (DNFP) 
 

 The DPP is related to the Dynamic Network Flow Problem (DNFP) because 

routing occurs over time.  Ford and Fulkerson (1958, 1962) generalize 
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standard definition of a network by introducing an element of time, ending 

up with a dynamic network.  The purpose in the DNFP is to model decision 

problems over a time horizon T .  The common characteristics are networks 

with transit times ijτ  and capacities iju  on an arc from node i  to node j .  The 

transit time of an arc specifies the amount of time it takes for flow to travel 

through a particular arc and the capacity of an arc specifies a flow rate 

entering an arc for each point in time.      

 

The research on DNFP has two main directions with respect to the 

modeling of time, namely, discrete and continuous-time (Fleischer and 

Skutella, 2002).  In discrete-time DNFP, time is discretized into steps of unit 

length.  In each step, flow can be sent from node i  to node j  through an arc 

),( ji  where flow arrives at node j  ijτ  steps later.  Ford and Fulkerson  (1958, 

1962) introduce time-expanded networks in which dynamic flows can be 

described and computed.  A time-expanded network contains a copy of the 

node set of the underlying static network for each discrete time step.  

Furthermore, for every arc in the static network with integral transit time ijτ , 

there is a copy between all pairs of time layers with distance ijτ  in the time-

expanded network.  Thus, a discrete dynamic flow in the given network can 

be interpreted as a static flow in the corresponding time-expanded network.  

This allows applying optimization techniques developed for static flows in 

solving dynamic flow problems.  However, the drawback of this approach is 

that the size of the underlying time-expanded network may be enormously 

large due to the linear dependency of the size of the time-expanded network 

on the number of time steps.   
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 In the case of continuous-time DNFP, the flow on an arc ),( ji  is a function 

++→RRfij : .  However, there is a strong connection between the two types.  

Many results and algorithms developed for the discrete time DNFP can be 

carried over to the continuous-time DNFP.  The most commonly used 

approach is to consider a sequence of discrete-time intervals in which the data 

is kept constant.  Obviously, this approach implies a certain level of error.  

The smaller the time intervals are, the smaller this error becomes, i.e. the more 

accurately the model represents the current flow's evolution, but at the 

expense of blowing up the size of the network.   

  

 Aronson (1989) and Powell et al. (1995) give a comprehensive survey of 

dynamic network flows.  Below are some results from the literature.   

 

 Maximum Dynamic Flows.  In the Maximum Dynamic Network Flow 

Problem, the problem is to send the maximal possible amount of flow from a 

source node s  to a sink node t  within time horizon T .   Ford and Fulkerson 

(1958, 1962) show that a solution obtained for a static network flow problem 

in the given network can efficiently be used to find a dynamic flow by 

decomposing it into flows on paths.  Their method starts to send flow on each 

path at time zero and repeats at each time period as long as there is enough 

time left in the time horizon T  for the flow to arrive at the sink.  A dynamic 

flow obtained using this structure is called temporally repeated.   

  

 Earliest Arrival and Latest Departure Flow.  In the Earliest Arrival Flow 

Problem, the purpose is to find a single feasible dynamic flow from a source 

node s  to a sink node t  within a specified time horizon T  that maximizes the 

total amount of flow reaching the sink by every time step up to and including 
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T .  Gale (1959) proves that such flows always exist but does not develop any 

algorithms to find such flows.  Wilkonson (1971) and Minieka  (1979) give 

pseudo-polynomial time algorithms to compute such flows.  Minieka (1979) 

also studies the Latest Departure Flow Problem, in which the purpose is to find a 

single feasible dynamic flow from a source node s  to a sink node t  within a 

specified time horizon T  that maximizes the total amount of flow departing 

from the source after every time step (subject to the constraint that the flow is 

finished by time T ).  The flow that occurs when these two types of problems 

are solved simultaneously is called a Universally Maximum Dynamic Flow.   

  

 Quickest Flows.  In the Quickest Flow Problem, the problem is to send a 

given amount of flow f  from a source node s  to a sink node t  in the shortest 

possible time.  This problem can be solved in polynomial time by 

incorporating the algorithm of Ford and Fulkerson (1958, 1962) for the 

maximum dynamic problem.  Burkard et al. (1993) develop a faster algorithm 

that solves the quickest ts −  flow problem in strongly polynomial time.   

  

 In the Quickest Path Problem, a quickest flow that uses only a single path is 

sought.  Chen and Chin (1990), Rosen et al. (1991), and Hung and Chen (1991) 

show that the problem can be solved in polynomial time.   

 

 The Evacuation Problem is a multi-source single-sink version of the quickest 

flow problem.  Given a vector of supplies, the problem is to find a feasible 

dynamic flow that satisfies all supplies in the minimum overall time, if such a 

flow exists.  Berlin (1979) and Chalmet et al. (1982) study this problem as a 

means of modeling emergency evacuation from the buildings.  Jarvis and 

Ratliff (1982) show that three optimality criteria may be achieved 
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simultaneously: (1) an earliest arrival schedule that maximizes the total flow 

into the sink by every time step, (2) overall minimization of the time required 

to evacuate the network, and (3) minimization of the average time for all flow 

to reach the sink.   

 

 Quickest Transshipments.  The quickest transshipment problem is a multi-

source multi-sink version of the quickest flow problem.  Given a vector of 

supplies and demands at the nodes, the purpose is to find a dynamic flow 

with the minimum possible time horizon that satisfies all supplies and 

demands.  Unlike standard network flows, this multiple-source, multiple 

sink, single commodity flow over time is not equivalent to an ts −  maximum 

flow over time.  Hoppe (1995) and Hoppe and Tardos (2000) describe the first 

polynomial time algorithm to solve this problem.  They use the chain 

decomposable flows that generalize the class of temporally repeated flows.  

However, their algorithm is not practical because a submodular function 

minimization is required for a subroutine.   

 

 The quickest transshipment problem is closely related to the Dynamic 

Transshipment Problem in which the goal is to move the appropriate amount of 

flow through the network within the pre-specified time horizon T , if possible.  

Hoppe (1995) and Hoppe and Tardos (2000) develop first polynomial time 

algorithm for this problem as well. 

 

 Minimum-Cost Dynamic Flows.  The quickest flow problem and dynamic 

maximum-flow problem can be generalized by defining additional costs on 

the arcs.  The problem may be to find either a quickest flow within a given 

cost budget or a minimum-cost flow with a given time horizon.  Klinz and 



 
 

 35

Woeginger (1995) prove that the minimum-cost dynamic flow problem is NP-

hard even for the special case of series parallel graphs.  They also show that 

the problem of computing a maximum temporally repeated flow with 

minimum cost is strongly NP-hard. 

 

 Multi-Commodity Dynamic Flows.  Single commodity dynamic flow 

problems can be extended to include multiple commodities.  However, 

although there is substantial literature on the static multi-commodity flow 

problem, there exists hardly any result on dynamic multi-commodity flows.  

Only recently, Hall, Hippler, and Skutella (2003) prove that multi-commodity 

dynamic flow problem without costs and without storage of flows at intermediate 

nodes is NP-hard.  (Storage of flows at intermediate nodes is an issue that 

arises in the dynamic network flow setting.) For single commodity flow 

problems, Fleischer and Skutella (2003) show that storage of flow at 

intermediate nodes is unnecessary even in the NP-hard setting with costs.  

However, Fleischer and Skutella (2002) prove that, for the quickest multi-

commodity flow problem, there exist cases where the time horizon of an 

optimal solution increases when storage of flow is prohibited.   

 

 In the studies mentioned so far, the assumption is that dynamic networks 

do not change with time, i.e., edge capacities and transit times are 

deterministic.  However, there may be cases in which a network changes with 

respect to time-varying characteristics, e.g., a dynamic (stochastic) dynamic 

network.   There are also some results for these networks, e.g., Minieka (1974) 

and Halpern (1979).  Minieka (1974) studies the maximum dynamic flow 

problem where an arc is associated with time intervals when the arc is deleted 
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(added) from (to) the network.  Halpern (1979) considers the maximum 

dynamic flow problem where edge capacities change over time.   

 

 Despite the fact that the DPP is defined on a dynamic network where 

prespecified flow is to be moved between certain origin-destination pairs, it 

cannot be characterized simply as a DNFP with side constraints.  The main 

difference arises from the fact that the problem structures are different.  In the 

DNFP, a single type of entity, i.e., commodities/items, moves through the 

network whose arc capacities and arc transit times are given as deterministic 

or stochastic parameters.  In the DPP, however, two types of entities, 

commodities/items and transportation assets, move through the network.  For 

a flow of items to occur on an arc at a certain time period, the arc must be 

activated at that specific time by allocating transportation assets with sufficient 

capacity and appropriate loadability characteristics to deliver those items.  

However, this allocation of transportation assets is also a problem to be 

solved optimally, e.g., to minimize cost such that units arrive at their 

destinations at their required times.  Thus, arc capacities are determined 

endogenously, i.e., in the model, and hence are not parameters but variables.  

Similarly, arc transit times are not predefined parameters as they are 

determined by the type and speed of transportation assets assigned to arcs at 

a certain time.  In addition to “variable” arc capacities limiting the flow of 

items, parametric arc capacities limiting the flow of transportation assets and 

items through a node and/or arc may also be defined.     

 

 With this problem structure, the DPP can be regarded, disregarding 

multimodality, unsplittability, and precedence issues, as a hybrid 

multicommodity dynamic network flow-vehicle routing problem.  (Note that 
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the problem is a multicommodity flow problem even when there is a single 

unit because it comprises several items.)  However, as will be clear in the 

coming paragraphs, vehicle routing problem in the context of the DPP is 

different from usual vehicle routing problems.  One may argue that an 

optimal flow for transportation assets (items) is determined and then an 

optimal flow for items (transportation assets) is obtained given optimal flow 

of transportation assets (items), i.e., sequential planning may be proposed.  

This approach may be appropriate in the context of business transportation 

planning problems where several firms/organizations are responsible for 

managing several parts of the transportation system.  This is also 

commensurate with the planning levels discussed in the previous paragraphs.  

However, in the context of the DPP, there is only one optimizer that must 

coordinate all activities that will take place on the transportation system.  

Hence, the movements of both items and transportation assets must be solved 

simultaneously taking into account interactions between flow of items and 

that of transportation assets, which adds a new level of complication not dealt 

with in the theory of DNFP.     

  

 Literature regarding DNFP shows that dynamic network flow problem 

with unsplittable flow property and dynamic network flow problem with 

time windows have not been studied.  We think that these properties of the 

DPP may contribute to the theory of the DNFP.  For example, to send a given 

amount of flow from a source to a sink in the shortest possible time with 

unsplittable flow requirement can be regarded as an extension of the quickest 

path problem.  Similarly, maximizing flow through a network by allocating 

different time windows for each origin-destination pairs can be regarded as 

an extension of the maximum-dynamic network flow problem.  Thus, several 



 
 

 38

research problems regarding DNFP theory can be derived from given 

properties of the DPP. 

 

2.3.2.  Transportation Planning Problems 

 

2.3.2.1.  Strategic and Tactical Level Problems 

 

 In this section, we consider network design problems at the strategic and 

tactical levels.     

 

2.3.2.1.1.  Network Design Problem (NDP) 

 

 Network Design Problem (NDP) at international, national, or regional level 

deals with the movements of several commodities through a multimodal 

transportation network and services of several carriers simultaneously.  The 

main purpose of this planning is to adapt a given transportation system to 

modifications in its environment.  Some factors that affect the transportation 

system are changes to existing infrastructure, construction of new facilities, 

changes in the volume of production, trade, and consumption, introduction of 

new technological advances, and changes to environmental conditions.  These 

issues are often part of a cost-benefit analysis and comparative studies of 

investment alternatives.     

 

 Crainic (2003) notes that the study of multicommodity freight flows over a 

multimodal network is not mature in contrast to passenger transportation 

where car and transit flows over multimodal networks has been studied 
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extensively and put into practice, e.g., Florian and Hearn (1995) and Cascetta 

(2001). 

  

 Network optimization models are seen as appropriate models to address 

planning issues at this level.  Guelat, Florian and Crainic (1990) and Crainic et 

al. (1990) give a review of these studies.  Crainic (2003) presents a modeling 

framework based on Guelat, Florian and Crainic (1990).  The modeling 

framework includes a multimodal network comprised of modes, nodes, links, 

and intermodal transfers.  Multiple commodities (people or freight) are 

moved between origin-destination pairs by specific vehicles and convoys 

through the network.  The model allows a detailed representation of 

transportation infrastructure, facilities, and services and the simultaneous 

assignment of multiple commodities to multiple modes.  A mode is a means 

of transportation with its own characteristics such as vehicle type, capacity, 

and cost measures.  A mode may represent a particular transportation service, 

an aggregation of several carrier networks, and transportation network 

infrastructures.  Intermodal transfers at a node are modeled as link to link 

transfers.  The decision variables in the proposed model are only the flows of 

commodities.  Vehicle and convoy traffic on the network is deduced from the 

values of the decision variables.  Applications of this modeling framework 

can be found in Crainic, Florian, Leal (1990), Guelat, Florian and Crainic 

(1990), Crainic et al. (1990), Crainic, Florian, and Larin (1994), and Crainic et 

al. (2002).  

 

 The NDP at this level aims to establish a transportation system taking 

several transportation modes and carriers into account.  Because this suggests 

a single optimizer coordinating various functions in the system, there is a 
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degree of similarity between the DPP and the NDP.  However, the proposed 

model of the NDP is essentially a multicommodity flow model where only the 

flow of commodities is considered.  The purpose is essentially to allocate the 

flow of commodities to several carriers or modes to minimize cost.  The flow 

of vehicle traffic is determined given the flow of commodities, i.e., a 

sequential planning approach is used while in the DPP these decisions are 

simultaneous.  Moreover, time aspect, i.e., scheduling, is not dealt with in 

compliance with the strategic planning level.  Thus, the proposed model of 

the NDP is not appropriate for the DPP.      

 

 When the NDP is considered at the company level, e.g., by a freight 

carrier, some questions to address are where to locate facilities including, for 

example, loading and unloading terminals, consolidation centers, rail yards, 

or intermodal platforms as well as what type of equipment to install in each 

facility, on which lines to add capacity, and what types of lines or capacity to 

add.  These issues are the subject of location and logistics network design 

models.   

 

 Location models can be classified into covering models, center models, and 

median models (Crainic and Laporte, 1997).  Covering models locate facilities 

such as health clinics, post offices, libraries, and schools at the vertices of a 

network so that demand vertices are covered by a facility.  Center models 

locate p  facilities such as fire or ambulance stations at the vertices of a 

network in order to minimize the maximum distance between demand points 

and their closest facilities.  Median models locate p  facilities at vertices on the 

network and allocate demand between facilities in order to minimize the total 

weighted distance between demand points and their closest facilities.  Two 
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problem classes, namely, production-distribution and hub location problems, 

extend modeling features of these problems by taking into account the 

potential economies of scale associated with the consolidation of cargo and 

passengers.  Although these issues are certainly a part of the problem of 

designing a distribution system, a part of sustainment planning, they are not 

considered in the context of the DPP.  We refer the reader to Miirchandani 

and Francis (1990), Daskin (1995), Drezner (1995), Labbe, Peeters, and Thisse 

(1995), Labbe and Louveaux (1997), Laporte (1988), Federgruen and Simchi-

Levi (1995), O’Kelly (1987), Campbell et al. (2002) in Chapter 12 of Drezner 

and Hamacher (2002) for additional information on location models.  

 

 Logistics network design models simply aim to determine what links and 

with what capacity to open in the network to satisfy demand for 

transportation at the lowest possible cost.  The cost is calculated as the sum of 

the total fixed cost of links opened and the total variable cost of using the 

links.  Transportation demand is defined between origin-destination pairs.  

Main decision variables are whether a link is opened or not and the amount of 

flow of all commodities on the links.   

 

 Clearly, logistics network design issues are also a part of sustainment 

planning.   However, they are not considered in the context of the DPP.  

Additional information on logistics network design models can be found in 

Magnanti and Wong (1986), Minoux (1986), Ahuja et al. (1995), Nemhauser 

and Wolsey (1988), Salkin and Mathur (1989), and Balakrishan, Magnanti, and 

Mirchandani (1997). 
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 Network design problems that have been covered up to now are strategic 

level problems.  Now, we focus on the tactical level network design problems.  

These problems are of interest to the companies that operate consolidation 

transportation systems and are related to the planning of operations.  Hence, 

they are also referred to as operational.  Crainic (2003) refers to these 

problems as service network design problems and classifies the main decisions 

at this level into four groups: 

 

(1) Service selection:  The routes – origin and destination terminals, 

physical route and intermediate stops – on which services will be 

offered and the characteristics of each service.  Frequency or scheduling 

decisions are part of this process. 

(2) Traffic distribution: The itineraries (routes) used to move the flow of 

each demand: services used, terminals passed through, operations 

performed in these terminals, etc. 

(3) Terminal policies: General rules that specify for each terminal the 

consolidation activities to perform.  For rail applications, these rules 

would specify, for example, the blocks into which cars should be 

classified (the blocking policies) as well as the trains that are to be 

formed and the blocks that should be put on each train (the make up 

rules).  An efficient allocation of work among terminals is an 

important policy objective.   

(4) General empty balancing strategies, indicating how to reposition empty 

vehicles to meet the forecast needs of the next planning period. 
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 Assad (1980), Crainic (1988), Delorme, Roy, and Rousseau (1988), and 

Cordeau, Toth, and Vigo (1998) give reviews of tactical level models.  

Network optimization models seem to be the ones mostly used and we are 

going to discuss some of them in this section.  Crainic (2003) classifies them 

into frequency and dynamic service network design models.   

 

 Frequency network design models address questions such as: What type 

of service to offer?  How often over the planning horizon to offer it?  Which 

traffic itineraries to operate?  What are the appropriate terminal workloads?  

There are two approaches used to formulate service frequencies.  In the first 

one, service frequencies are explicit integer variables.  In the second one, 

“operate or not” binary decision variables are used and service frequencies 

are derived from traffic flows subject to minimum service levels.  The output 

of these models is the transportation or load plan used to determine daily 

operating policies.  These models can also be used to answer what-if 

questions in strategic planning.  Dynamic service design models aim to plan 

schedules and to support decisions related to if and when services depart.  

These models are also considered as operational. 

 

 The network optimization model offered by Crainic and Rousseau (1986) 

uses explicit decision variables to determine how often each selected service 

will be run during the planning period.  The resulting model is a multimodal 

multicommodity model that integrates service selection and traffic 

distribution problems with general terminal and blocking policies.  The 

network represents a physical network over which the carrier operates.  

Nodes in the network represent terminals where particular operations are 

carried out.  Each service is defined by its route through the network, i.e., by 
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its origin, destination, intermediary terminals where the service stops and 

work may be performed on its vehicles and cargo, capacity on each link of the 

route, and service class that indicates characteristics such as the mode, 

preferred traffic or restrictions, speed and priority of the service, etc.  

Transportation demand is defined in terms of volume, e.g., the number of 

vehicles, of a certain commodity to be moved between two terminals in the 

network.  Empty vehicles may be included as commodities to be moved 

between given origin-destination pairs.  Traffic moves according to itineraries.  

An itinerary for a commodity/product specifies the service path used to move 

some or all of the corresponding demand, i.e., origin, destination, and 

intermediary terminals where operations are to be performed, the sequence of 

services between each pair of consecutive terminals where work is performed, 

the commodity class that indicates characteristics such as priority, minimum 

service level, preferred transportation mode, etc.  Service frequencies define 

how often each service is run during the planning period.  To design the 

service network means to determine the frequency of each service in the 

planning period such that the demand is satisfied.  Main decision variables 

are service frequencies and flow of commodities using itineraries.  Workloads 

and general consolidation strategies for each terminal in the system are 

derived from these variables.  The objective is to minimize the sum of the 

fixed cost of operating a service and the variable cost of moving commodities 

using itineraries.  The delays incurred by vehicles, convoys, and freight due 

congestion and operational policies at terminals and on the roads are 

incorporated into the objective function by defining appropriate costs.  

Penalties may also be defined when service quality standards are announced 

for not meeting standards.   
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 Rail transportation applications of the proposed modeling framework can 

be found in Crainic (1984), and Crainic, Ferland, and Rousseau (1984) while 

LTL applications can be found in Delorme, Roy, and Rousseau (1989). 

 

 The transportation planning model for LTL motor carriers introduced by 

Powell and Sheffi (1983) is an example of service network design model in 

which service frequencies are not explicitly formulated as integer variables.  

In this model, the network is composed of nodes and links where nodes refer 

to terminals and links refer to potential direct services between two terminals.  

Two types of terminals are considered: end-of-lines where freight originates 

and terminates and breakbulks where freight is consolidated.  The network 

design decisions are to determine services between end-of-lines and 

breakbulks and between breakbulk terminals.  The flow between end-of-lines 

is disregarded as it is rare in LTL service.   

 

 The main decision variables are binary service design decisions that show 

whether the carrier offers a service on a link, i.e., between two terminals, the 

volume of traffic on a link with a certain destination, the volume of traffic 

handled at a breakbulk terminal, and flow of empty trailers on a link.  Service 

frequency – the number of trailers dispatched from a terminal to another over 

the planning period – is defined as a function of the volume of LTL traffic 

between two terminals.  The objective is to minimize the total cost of 

dispatching trailers, moving the loaded and empty trailers, and handling 

freight in terminals while satisfying demand and ensuring that freight 

itineraries obey routing restrictions.   
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 Authors implement a heuristic procedure based on a hierarchical 

decomposition of the problem into a master problem and several 

subproblems.  The master problem is a simple network design problem where 

the total cost is computed for given selected services.  The design is modified 

by adding or dropping one arc at a time.  Each time the design is modified, 

the subproblems are solved and the objective function is evaluated.  The first 

subproblem routes the loaded LTL trailers.  The second problem is an empty 

balancing problem where supply and demand is adjusted to account for 

timing conditions not included in the original formulation. 

 

 Other references regarding this modeling framework can be found in 

Powell and Scheffi (1986, 1989), Powell (1986a), Lamar, Sheffi, and Powell 

(1990), and Braklow et al. (1992). 

 

 In deterministic dynamic service network design problem, time dimension is 

introduced into the formulation.  This is usually achieved by using a time-

expanded network.  In the network representation, a service starting from its 

origin in a given period arrives (and leaves in the case of intermediary stops) 

later at other terminals.  Services thus generate temporal service links 

between different terminals at different time periods.  Temporal links that 

connect two representations of the same terminal at two different time 

periods may represent the time required by terminal activities of the freight 

waiting for the next departure.  Additional arcs may be used to capture 

penalties for arriving too early or too late. 

 

 There are two main decision variables.  The first ones are the integer 

decision variables associated with each service.  When restricted to binary, 
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these variables indicate whether the service leaves at the specified time.  

When several departures are allowed in the same period, general integer 

variables must be used.  The second decision variables are continuous flow 

variables that represent the volume of freight through the network.   

 

 The resulting formulations are network design models similar to the ones 

in the case of static network.  However, time dimension significantly increases 

the size of the network.  The size of the network and additional constraints 

required by time dimension make these problems harder to solve than static 

ones.  The pioneering effort of Morlok and Peterson (1970) that integrates 

blocking, train formation, and train scheduling results in a very large mixed 

integer model.  As a result, no solution method or application has been 

offered for the model and only heuristics methods have been used so far.  

    

 Farvolden and Powell (1994) present a dynamic service network design 

model for LTL transportation.  The formulation allows for several departures 

in the same period.  An efficient primal-partitioning with column generation 

algorithm is used to solve the freight routing problem for a given service 

configuration.   

 

 Haghani (1989) attempts to combine the empty car distribution problem 

with train make-up and routing problems.  The dynamic network includes 

normal and express modes for each service route for each time period, but 

traffic on each link is prespecified and access to express links is restricted to 

given markets.  Travel times are fixed.  Linear functions are used for costs and 

delays, except for classification, which makes use of a convex congestion 

function.  The dynamic service network design has continuous empty and 
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loaded car flows and integer engine flows.  A heuristic decomposition 

approach is used to solve simpler problems.  The study shows that 

performance, in terms of operating costs, obtained by using an integrated 

formulation is better than performance obtained by using traditional 

hierarchical approach.   

 

 Gorman (1998) also attempts to integrate the various network design 

aspects into a scheduled operating plan that minimizes operating costs, meets 

the customer’s service requirements, and obeys operation rules of a particular 

railroad.  Model simplifications must be introduced in order to achieve a 

comprehensive mathematical network design formulation.  The solution 

method includes generating candidate train schedules using a tabu-enhanced 

genetic search and evaluating their economic, service, and operational 

performances.  A major US railroad has used this model for strategic scenario 

analysis of their operations (Gorman 1998a).   

 

 Several other network design models make use of binary mixed integer 

network flow formulations to address railroad operations, e.g., Keaton (1989, 

1991, and 1992), Newton, Barnhart, and Vance (1998), and Barnhart, Jin, and 

Vance (2000). 

 

 Kuby and Gray (1993) develop a model for the design of the network of an 

express package delivery firm.  It is a path-based network design model 

where multistop, aircraft routes (restricted to at most one stop) are selected in 

and out of a given hub.  Paths are generated a priori and the model is solved 

by a standard mixed integer package.  Analyses illustrate the cost-

effectiveness of a design with multiple stops over a pure hub-and-spoke 
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network.  Kim, Barnhart, and Ware (1999) propose more comprehensive 

models for the design of the multimodal version of the problem.  In the 

model, several hubs and aircraft types are considered while trucks perform 

pickup and delivery activities as well as transportation over limited distances.  

The problem is further complicated by time window restrictions on pickup 

and delivery times at major collection centers as well as on the sorting periods 

at hubs.  One product is considered in the application.  The authors combine 

heuristics to reduce the size of the problem, cut-set inequalities, and column 

generation.  Branch and bound is then used to obtain an integer solution.  

 

 The design of postal networks and services forms a class of problems very 

close the ones just mentioned.  The reorganization of the German postal 

services belongs to the same problem class but on a more comprehensive 

scale.  To bring the problem down to a manageable size, Grünert and 

Sebastian (2000) decompose it into several subproblems: the optimization of 

night airmail network, the design of the groundfeeding and delivery 

transportation system, the scheduling operations.  Vehicle routing models 

and techniques, which we are going to cover shortly, are used for routing and 

scheduling tasks.  A discrete dynamic network design formulation is also 

proposed.  The air network design formulation is further decomposed into a 

direct flight problem and a hub system problem, both of which result in fixed 

cost, multicommodity, capacitated network design formulations.  The authors 

propose using combinations of tabu search and branch and bound to solve the 

models. 

 

 The main decisions at the tactical level are certainly related to the 

decisions in the DPP.  However, both deterministic and dynamic service 
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network design models fall short of solving the DPP.   A service actually 

refers to a transportation asset with a certain route (and schedule).  Thus, each 

transportation asset with a different route (and schedule) can be considered as 

a different service.  As a service is characterized by its route and capacity and 

transportation demand is defined in terms of the service capacity offered, the 

problem in these models essentially turn out to be sharing transportation 

demand among services (transportation assets).  Each time a service is 

selected, transportation demand is reduced in the amount equal to the service 

capacity.  Thus, only the movement of one type of entity, i.e., transportation 

assets, is considered without dealing with the content of the load on a 

transportation asset, which is not sufficient in the DPP.   

 

2.3.2.2. Operational Level Planning Models 

 

 Strategic and tactical plans can be drawn up to guide operations, but the 

operational capabilities of a firm/organization ultimately determine its 

performance.   

 

 In operational level planning, two factors, time and stochasticity are 

emphasized.  Time factor is important because customer requests must be met 

in real time, time restrictions must be obeyed, and the impact of today’s 

decisions on future decisions must be taken into account.  Stochasticity is of 

concern because there are many uncertainties in real life, e.g., travel time 

between two points, the volume of transportation demand, etc.  These two 

characteristics must be reflected in the models and methods aimed at 

operational planning and management issues. 
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2.3.2.2.1.  Vehicle Routing Problem (VRP) 

 

 The Vehicle Routing Problem (VRP) arises especially in distributing and 

collecting letters and packages.  In the VRP, there is a set of demand points 

dispersed in a geographic region and a daily demand of a specific commodity 

has to be delivered daily to each of the demand points.  The daily demand at 

each demand point is known and usually different at different demand 

points.  The deliveries to demand points are to be made from a central depot 

and sufficient supply is always available at the depot.  A fleet of capacitated 

vehicles is to serve the demand points and direct travel distances between the 

demand points and the depot are known.  It is assumed that a vehicle’s load 

capacity exceeds the demand of each demand point and that a vehicle is 

allowed to visit each demand point exactly once (sometimes multiple visits to 

a demand point are allowed, e.g., split delivery).  The objective is to find a set 

of routes for the vehicles, where each route begins and ends at the depot, 

serves a subset of the customers without violating the capacity constraints, 

while minimizing the total length of the routes.  Bodin et al. (1983) and 

Golden and Assad (1988) give comprehensive surveys on the VRP.       

 

   Several variants of the VRP have been studied depending on the features 

incorporated.  One variant that has gained considerable interest is the VRP 

with Time Windows (VRPTW) or the Vehicle Routing and Scheduling Problem 

(VRSP).  In this problem, the requirement is to make deliveries to the demand 

points within their pre-determined time windows, i.e., earliest delivery time 

and delivery deadline are imposed.  In this problem, both spatial and 

temporal aspects of vehicle movements are considered.  Golden and Assad 
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(1986) and Solomon (1987) give a considerable amount of the analysis on the 

VRSP.   

 

 Desrochers et al. (1990) propose a classification scheme for the VRSPs to 

cover variants of the problem that have been studied in the literature.  They 

propose to classify a VRSP based on several characteristics: (1) addresses 

(number of depots, type of demand, e.g., whether the customers are located at 

the nodes and/or edges or the customers correspond to an origin-destination 

pair, address scheduling constraints, e.g., whether there are no scheduling 

constraints or time windows are allocated, address selection constraints, e.g., 

whether all/some addresses are visited, etc., (2) vehicles 

(homogeneous/heterogeneous fleet, fixed or variable fleet size, physical 

characteristics of the vehicles, e.g., whether they have compartments or not, 

scheduling constraints), (3) problem characteristics (the network underlying 

the problem, e.g., directed and undirected, or mixed, service strategy, e.g., 

whether splitting of the customer demand is allowed, vehicles are allowed to 

start a route at a depot and finish at another depot, or one or more routes per 

period are allowed, relations between addresses and vehicles, e.g., whether 

precedence relations and depot-address, address-address, depot-vehicle, 

address-vehicle,  vehicle-vehicle restrictions exist or not, and (4) objectives 

(minimize route duration, vehicle costs, the penalty implying the deviation 

from preferred service level.).  Desrochers et al. (1998) propose a model base 

and algorithm selection system based on Desrochers et al. (1988).  Bodin  

(1990) survey practical VRSPs and discuss how information technology is 

used in solving these problems. 
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 In the VRSP literature, many of the characteristics outlined above are 

treated individually.  Most studies focus on the basic VRSP formulation of 

Desrochers et al. (1988) to deal with different characteristics of the problem.  

Dror and Trudeau (1990) study the split delivery routing and propose 

heuristics based on splitting and merging routes.  Fisher et al. (1995) discuss 

the pick-up and delivery routing problem with a homogeneous fleet in which 

loads are in integer truckloads.  Their objective is to minimize total travel cost 

with the restriction that a vehicle cannot carry more than one order at a time.  

With these assumptions, the problem is solved as a network flow problem.  

Ribeiro and Soumis (1994) study the multi-depot version of the problem as an 

integer multi-commodity flow problem assuming non-split delivery.  

Although a homogeneous fleet is used, the problem is treated as a multi-

commodity flow problem because vehicles leaving different depots represent 

different commodities as each vehicle is tracked with its origin depot.  The 

problem turns out to be the assignment of trips to vehicles such that each trip 

is carried out by one vehicle and the number of vehicles at each depot is not 

exceeded.  Ribeiro and Soumis show that linear programming relaxation of 

the integer multi-commodity flow formulation gives a good lower bound.  

Malandraki and Daskin (1992) study the vehicle routing problem with time-

dependent arc distances.  In this problem, the travel time between two 

demand points or between a demand point and the depot depends on the 

distance between the points and the time of day, e.g., rush hour, etc.  They 

develop mixed integer programming formulations treating travel times as 

step functions and give several heuristics. 

   

 Because the vehicle routing problem is NP-hard, heuristics and 

optimization algorithms are of special interest.  In this regard, extensive 
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discussions on heuristics algorithms can be found in the literature.  See, for 

example, Laporte (1992) and Fisher (1995).  Recent examples of global search 

heuristics (e.g., simulated annealing, tabu search, etc.) designed for solving 

these problems can be found in Rodriguez et al. (1998) and Gendreau et al. 

(1999). 

 

 The usual setting of the VRSP focuses on planning local delivery and pick-

up operations such as those of UPS and other delivery firms.  Although VRSP 

is relevant to the DPP, this setting is too restricted to be used in the planning 

of operations in the context of deployment planning.  In the VRSP, the 

assignment of individual vehicles to demands is of concern and the purpose is 

to develop a single route for each vehicle to satisfy demand.  A second route 

for a vehicle is determined only after it finishes its first route, which means 

actually solving another VRSP.  In the DPP, a set of vehicles may be assigned 

to the same job, i.e., convoy formation is of concern, and an itinerary 

consisting of successive assignments to different jobs (as opposed to a single 

job/route) is to be determined simultaneously.  Because a demand in the 

VRSP is defined in terms of vehicle capacity, the capacity of transportation 

asset is depleted at each point the vehicle visits.  The content of a 

load/package is not important to the carrier/planner because the load is not 

reusable from the planner’s point of view in the sense that it disappears from 

the system as soon as a vehicle is assigned to it.  This makes it unnecessary to 

model a load explicitly in these models because there is no need to assign 

other vehicles to the same load.  In the DPP, on the other hand, a load is 

reusable and may have to be carried on different types of vehicles at different 

time intervals.  Similarly, transportation assets to deploy in the DPP are 

reusable as they can be allocated to different loads at different time intervals.  
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Multimodality in the DPP actually complicates the definition of a customer.  

In the VRSP, a vehicle is expected to visit a demand point in the given time 

window.  In the DPP, time window is assigned to the final destination of the 

unit.  Thus, unless there is a single mode where the origins, destinations, and 

time windows are known exactly, the definition of a customer is not clear.  

For example, the planner cannot know to what transfer point a unit moves 

after it leaves its origin and what time it arrives there.  In the VRSP, there is no 

such thing as the movement of empty vehicles, which is one of the main 

planning issues in the DPP.  To sum up, the DPP is different from the VRSP in 

many respects and cannot be used to plan operations in the DPP.  However, it 

can be used in the planning of sustainment operations.   

 

2.3.2.2.2.  Dynamic Resource Allocation Problem (DRAP) 

 

 In the DRAP, tasks arriving over time are realized by a set of reusable 

resources of different types.  For example, empty vehicles, trailers and rail cars 

are allocated to the appropriate terminals; motive power tractors and 

locomotives to services; crews to vehicles or services; loads to driver-truck 

combinations; empty containers from depots to customers and returning 

containers from customers to depots; and so on.     

 

 Crainic (2003) lists the following common characteristics of these problems: 

 

(1) Some future demands are known, but most can only be forecasted, 

and unpredictable requests may happen. 

(2) Many requests materialize in real or quasi-real time and must be 

acted upon in relatively short time. 
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(3) Once a resource is allocated to an activity, it is no longer available for 

a certain duration (whose length may be subject to variations as well). 

(4) Once a resource becomes available again, it is often in a different 

location than its initial one. 

(5) The value of an additional unit of a given resource at a location 

greatly depends on the total quantity of resources available (which are 

determined from previous decisions at potentially all terminals in 

previous periods) and the current demand. 

  

 Powell (1996) studies the problem of assigning drivers for a truckload 

motor carrier to handle loads that arise over time.  He classifies the elements 

of the fleet management problem into supply management and demand 

management, which are in general valid for other application areas as well.  

The supply management includes (1) what driver (resource) to assign to a load 

(demand), (2) repositioning empty drivers (excess capacity), (3) routing and 

scheduling of the driver (resource) while moving a load and the demand 

management includes (1) load (demand) acceptance/rejection, i.e., carrier may 

accept or reject certain loads based on capacity or system balance 

considerations and (2) load (demand) solicitation, i.e., the carrier may wish to 

aggressively solicit freight out of specific regions or in specific lanes to correct 

short-term  balance problems.  The assignment of a resource to a task 

produces a profit, removes the task from the system, and modifies the state of 

the resource. 

 

Brown and Graves (1981) develop an integer programming formulation 

for the real-time routing and scheduling problem for petroleum tank trucks.   

The purpose of the model is to determine routes for trucks to meet known 
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(deterministic) customer demands.  Bell et al. (1983) develop a set 

partitioning formulation for real-time routing and scheduling of tanker 

trucks in the distribution of industrial gases.   

 

 Hane et al. (1995) study the fleet assignment problem, which is to 

determine which type of aircraft should fly each flight segment given a flight 

schedule and a set of aircraft.  They develop a large-scale multicommodity 

flow problem with side constraints defined on a time expanded network and 

explain the methods they use to improve the solution time of the model.   

     

 In the crew scheduling problem, crews are assigned to vehicles and 

convoys in order to support the planned operations.  It finds applications 

especially in airline industry, e.g., Ball and Roberts (1985), Crainic and 

Rousseau (1987), and Marsten and Shepardson (1981).  Given a fixed set of 

flights, the purpose is to develop an itinerary for each crew so that all flights 

are covered at least cost.  There are also numerous other issues related to 

manpower management such as the scheduling of reserve crews, terminal 

employees (e.g., Nobert and Roy 1998), maintenance crews, etc.  The resulting 

mixed-integer formulation is usually very large and addressed by column 

generation and branch-and-price techniques. See, for example, Barnhart and 

Talluri (1997), Desrosiers et al. (1995), Desaulniers et al. (1998).  Crew 

scheduling issues in the freight transportation industry have rarely been 

studied, e.g., Crainic and Roy (1992). 

 

One major problem in transportation planning is the empty vehicle 

distribution problem.   That there are geographic differences in demand and 

supply of each commodity often results in an accumulation of empty vehicles 
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in regions where they are not needed and in deficits of vehicles in other regions 

that require them.  Then, vehicles must be moved empty, or additional loads 

must be found, in order to bring them where they will be needed to satisfy 

known and forecasted demand in the following planning periods.  This 

operation is known as repositioning or empty balancing and is a major 

component of what is known as fleet management.  In its most general form, 

fleet management covers the whole range of planning and management issues 

from procurement of power units and vehicles to vehicle dispatch and 

scheduling of crews and maintenance operations.  However, the term 

designates a somewhat restricted set of activities: allocation of vehicles to 

customer requests and repositioning of empty vehicles. 

 

 Empty balancing is a major objective of dispatchers and a central component 

of planning and operations of most transportation firms.  Although it is 

considered as operational, it must also be considered at the tactical level.  For 

example, in rail transportation, empty rail cars are put on the same trains as 

loaded ones and thus contribute to an increase in the number of trains, in the 

volume of vehicles handled in terminals and, ultimately, in system costs and 

delays.  For planning purposes, the demand for empty cars may be 

approximated and introduced in tactical model by viewing empties as another 

commodity to be transported, e.g., Crainic, Ferland, and Rousseau (1984).  A 

similar approach may also be used for the planning of 

multimodal regional or national systems, e.g., Crainic, Florian, and Leal 

(1990).  The issue is also relevant in LTL trucking where empty balancing is an 

integral part of a transportation plan.  In this case, a load plan is first 

obtained for the actual traffic demands, and an empty balancing model is 
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then solved to reposition the empties, e.g., Roy and Delorme (1989) and 

Braklow et al. (1992).  

 

Dejax and Crainic (1987) give a review studies in this area spanning the 

whole spectrum of modeling approaches from simple static transport 

models to formulations that integrate the dynamic and stochastic 

characteristics of the problem.    

 

The first empty vehicle allocation models are straightforward 

transportation formulations, e.g., Leddon and Wrathall (1967), Misra 

(1972), and Baker (1977).  In these models, the distribution of empty cars 

is optimized to minimize the total cost using given estimations of future 

supply and demand of empty cars of a homogeneous fleet at the yards of the 

network, and the cost in car-hours usually, for each pair of yards. 

 

The second modeling approach considers the time aspect explicitly.  

Starting with contributions of White (1968) and White and Bomberault 

(1969) for rail car distribution, and of White (1972) for container allocation, 

many models that deals with the distribution of empty vehicles are in the 

form of a dynamic transshipment network optimization model, e.g., Herren 

(1973, 1977) and McGaughey, Gohring, and McBrayer (1973).  Linear 

programming and network flow algorithms are usually applied to solve 

the model.  This line of research is still very active today; however, the 

formulations are more complex.  Multiple commodities, substitutions, and 

integer flows are some of the characteristics that add realism to these 

formulations, e.g., Shan (1985), Chih (1986), Turnquist and Markowicz (1989), 

Markowicz and Turnquist (1990), and Turnquist (1994).  There are also 
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studies that impose additional conditions on empty vehicle distribution 

such as limited hauling capacity for empties and predefined itineraries, e.g., 

Joborn (1995), Holmberg, Joborn, and Lundgren (1998), Joborn et al. (2001). 

  

 Shan (1985) and Chih (1986) present multicommodity network flow 

models for empty freight car distribution where each commodity represents 

freight cars of one specific type owner.  The purpose of the model is to 

determine which cars should be used to meet the demands of the customers.  

Joborn (1995) and Holmberg et al. (1998) develop a multicommodity network 

flow model that considers the capacity restrictions on trains for repositioning 

of empty freight cars and the arrival and departure times of the trains with 

the modeling assumptions.         

 

Another modeling approach in empty vehicle distribution considers 

uncertainties explicitly.  The first comprehensive effort in this direction is 

by Jordan and Turnquist (1983) for rail transportation.  The formulation 

aims to maximize the profits of the firm and integrates revenues from 

performing the service as well as various costs from moving cars between 

yards, holding them at yards, or from not filling orders due to stockouts.  

The model structure is again a multicommodity dynamic network.  

Stochasticity of supply, demand, and travel times is explicitly considered.  

The resulting model is a nonlinear optimization formulation.   

 

Powell (1986) develops dynamic network models for the dynamic 

vehicle allocation problem, in which a fleet of vehicles are to be managed 

over space and time, with random arc capacities.         
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A similar approach is proposed by Beaujon and Turnquist (1991) for a 

model that simultaneously considers vehicle inventories at terminals and 

their allocation in order to answer fleet-sizing issues.  The whole research 

area addressing the dynamic allocation of limited resources in uncertain 

environments naturally continues with these important developments. 

  

Powell et al. (1995a) propose a new modeling approach that addresses 

dynamic resource allocation problem as a logistics queuing network.  This 

approach views the system as a network of double-ended queues, 

comprised of a queue of vehicles waiting to serve customers, and a queue 

of customers waiting to be served by a vehicle.  This modeling approach 

provides flexibility in modeling complex operations by decomposing large 

dynamic problems into sequences of small problems that deal with one 

location at a time, one time period at a time.   

 

 Powell and Carvalho (1997) extend this approach to multi-commodity 

problems, e.g., heterogeneous fleet.  Powell and Carvalho (1998) test this 

approach in the management of a fleet of flatcars for a railroad.  Their study 

results in two interconnected dynamic resource allocation models, one to 

optimize the flows of trailers and containers owned by the railroad, and the 

second to optimize the flows of the flatcars.  They solve the models 

sequentially: They first optimize the movements of trailers and containers and 

then add the planned movement of empty equipment to the customer-driven 

demands to move loads.       

 

Other studies regarding this approach can be found in Carvalho (1996), 

Carvalho and Powell (2000), Powell and Carvalho (1998a), Powell (2002). 
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 In the DPP, we do not deal with driver assignment and crew scheduling 

problems.  We assume that sufficient number of drivers and crews will be 

available.  Hence, these two problems are not relevant to the DPP.  The 

dynamic fleet management problem is related to the DPP.  However, the 

issues pointed out for the VRSP all apply to fleet management problem and 

hence the models addressing the fleet management problem are not sufficient 

to solve the DPP.   

 

 Empty vehicle allocation problem, also a part of the fleet management 

problem, is related to the DPP; however, models addressing the empty 

vehicle allocation problem are not sufficient for the DPP.  In these models, 

only a single type of entity, i.e., empty vehicles, is moved through a network 

to meet demands for empty vehicles.  Loaded vehicles are not modeled 

explicitly as they are assumed to be predetermined.  Routing is essentially 

simple because vehicle movements occur between terminals rather than on a 

physical network.  The purpose is not to develop itineraries for empty 

vehicles.  Once empty vehicles are assigned to a task, they are considered out 

of the system or assumed to enter the system after a certain time.  Hence, the 

movements of vehicles are not tracked.        

 

 Although the movement of empty and/or loaded cars on the trains 

resembles the movement of items on transportation assets, the existing 

models for this problem have the following features, which are similar to the 

ones mentioned in the previous paragraphs, that make them insufficient to 

solve the DPP: (1) In most models, the routing of freight cars is not considered 

explicitly; the flow requirements are generally defined from one terminal to 

the other.  (2) Although train routing, train makeup, and car distribution 
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should be integrated, either the train routing or car flows are accepted as 

given and one decision is based on the other given one.  (3) Timetable for 

trains, e.g., arrival/departure times of trains and available train capacities, are 

generally accepted as given.  Because the loading, unloading, and other 

operations at yards are included in the timetable, such issues are disregarded 

in the modeling. 

 

 It is appropriate to differentiate between convoy formation in the context 

of rail transportation and convoy formation in the context of the DPP.  In rail 

transportation, the point is to form blocks of cars to be able to handle them as 

a single entity; cars are formed into blocks taking their final destinations into 

account.  This problem is generally called the blocking problem for which 

specialized models are developed.  In the DPP, a convoy is formed due to the 

need to move a deployment component as a whole.  In this regard, a “natural 

block” is automatically created.  It is still possible that a blocking problem be 

solved in the DPP when rail transportation is used.  In this case, the idea 

would be essentially to bring natural blocks to form new ones.  However, it is 

likely that there will not be a need for such a blocking operation as a natural 

block will usually form a train.  Note that several types of cars, i.e., ones that 

carry personnel and ones that carry cargo, may comprise a block as ground 

vehicles of different types, e.g., trucks, buses, and tank carriers, may comprise 

a convoy for ground transport.        

 

In all, transportation planning models in the context of the SCM do not 

address routing, scheduling, and resource allocation issues in the DPP 

simultaneously.  Models in the literature deal with only certain parts of 

transportation systems, e.g., local delivery and rail transportation.  This is a 
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natural result of the fact that several firms/organizations own several parts of 

the transportation system and that they only concentrate on planning issues 

relevant to them.  Thus, there does not seem to be a comprehensive model 

that studies the movement of commodities/items through several 

transportation systems, i.e., transportation modes and different types of 

services, using a system approach.  As the responsibilities are shared among 

several organizations and hence a hierarchical planning approach is adopted, 

the models, in addition to addressing only certain parts of the transportation 

system, are directed at routing, scheduling, or resource allocation depending 

on the planning level.  For example, when scheduling issues are studied, 

routing issues are assumed given or other simplifying assumptions are 

adopted.     

 

Due to inadequacy of existing transportation planning models to address 

the DPP, the need for specialized models are foreseen/realized by some 

researchers.  In the next section, we give literature regarding those studies.   

 

2.3.3.  Mobility Analysis Problem (MAP) 
 

The models that directly address the DPP are grouped under the name of 

military mobility models.  Although there is a concerted effort to develop 

models in this area for more than 20 years, the literature review shows that 

the attempts to solve the problem are generally simulation based and that the 

existing simulation and optimization based studies address only certain parts 

of the problem.   
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Schank et al. (1991) review and analyze a number of strategic mobility 

models.  They evaluate the attributes and limitations of the major existing 

models up to that time, and determine whether another computer model is 

necessary.  The study concentrates on resource planning, which is typically 

long-range force planning and programming.  The study indicates that the 

strategic mobility models examined have the following shortcomings:  they 

do not optimize the usage of transportation assets; they all work in one 

direction only; they have limited credibility outside the organizations that use 

them; they do not sufficiently recognize uncertainty; they have narrow, rigid 

objective functions; and their output measures do not adequately serve 

analysts’ needs.  They recommend that those broader-based trade-off analyses 

be addressed using new formulations of traditional mathematical 

programming procedures and off-the-shelf software.   

 

McKinzie and Barnes (2003) review current, legacy, and supporting 

military mobility models.  They focus on four major ones in current use: 

Global Deployment Analysis System (GDAS), Joint Flow and Analysis System 

for Transportation (JFAST), Model for Intertheater Deployment by Air and 

Sea (MIDAS), and Mobility Simulation Model (MobSim©).      

  

 Table 1 compares the models with respect to task coverage.  When a model 

addresses a task completely within its own  framework, an X is placed in the 

table for the associated task.  If the model obtains a task or part of it from 

another model, then an O is placed in the table.  If the task is not available 

when using the model, then the cell for the associated task is left blank. 
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Table 2 shows how the models do calculations for each of the stages 

within the deployment process.  Calculations are performed either by 

simulation or by a simplified mathematical calculation.  An (S) denotes that 

the model simulates the stage and a (C) indicates that the model provides a 

simplified calculation for the stage. 

 

Table 3 compares the models with respect to several features such as 

operating platform (UNIX or PC and software requirements), ease of use by 

analysts and planners, level of tracking detail for both cargo and pax and 

transportation assets, the ability to model multiple port pick up and drop off 

locations for each airplane/ship modeled, and set up and run times.    

 

Table 1.  Comparison of the models with respect to task coverage. (X : the task 
is covered  completely within the model’s framework, O : the model obtains 
the task or part of it from another model, Blank : task is not available within 
the model) (McKinzie and Barnes, 2003) 
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Table 2.  Comparison of the models with respect to type of calculations used 
for each stage of the deployment process (S : simulation,  C : simple 
calculation) (McKinzie and Barnes, 2003) 

 

 

 In scheduling transportation assets and assigning cargo and pax, GDAS 

uses route insertion techniques over a rolling time horizon.  Once the 

schedule and assignments are complete, it performs a deterministic 

simulation to determine the actual arrival, departure, loading, unloading and 

queuing events at each facility.  In JFAST, schedules are generated by using 

only a simple greedy heuristic.  JFAST assesses cargo and pax based on 

priorities and schedules the cargo and pax starting from the highest priority 

to the lowest.  So, there is no optimization process considered in the system.  

MIDAS uses a greedy feasible solution obtained by a one-pass greedy 

algorithm.  MobSim does not find the optimal assets, but it attempts to a find 
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good transportation asset mix within MobSims scheduling algorithm. When 

cargo and PAX are ready to move, MobSim randomly looks for vehicles by 

type by first looking at existing idle vehicles.  If no vehicle exists, it creates a 

new vehicle subject to constraints on total number of vehicles to be used.  

 

Taking into account all of the above issues, McKinzie and Barnes (2003) 

conclude that “the major aspect that is lacking in the models today is the use 

of advanced optimization techniques for estimating force closure. Each 

mobility model described in this paper either uses cumbersome ineffective 

classical optimization algorithms or simplistic and ineffective greedy 

approaches to find solutions.  This aspect was addressed as a shortcoming in 

the models eleven years ago (Schank et al., 1991) and remains the major 

shortcoming today.” 

 

Table 3.  Comparison of models (X : ability exists, A : air, S : sea, TPFDD : 
time-phased force deployment data – See Section 3.2 for TPFDD) (McKinzie 
and Barnes, 2003)   
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  Following is a review of analytical studies that aim to use mathematical 

programming formulations for mobility analysis. 

 

Wing et al. (1991) describe the Mobility Optimization Model (MOM) 

developed at the Naval Postgraduate School (NPS).  It is a time-dynamic 

model that includes both airlift and sealift assets, but has a single-channel 

topology and hence is not designed to capture the airlift system’s 

transportation network.  Yost (1994) describes THRUPUT developed at the US 

Air Force Studies and Analysis Agency (AFSAA).  It is a time-static strategic 

airlift model on a general routing network.  Weng (1994) describes THRUPUT 

II also developed at NPS.  It is a time-dynamic model with the ability to route 

aircraft through a general network and combines the features of MOM and 

THRUPUT.  THRUPUT II is extended in Morton, Rosenthal, and Weng (1996).  

However, the model does not consider aerial refueling, crew scheduling and 

transshipment options.  Other studies to improve the model include several 

theses that examine stochastic airlift models (Goggins, 1995), route generation 

techniques (Turker, 1995), route prioritization (Toy, 1996), and aggregation 

schemes (Fuller, 1996).  THRUPUT II is reported to serve as a real-world test 

problem for the development of a solution methodology for large-scale 

staircase linear programs, described in Baker (1997) and Baker and Rosenthal 

(1998).    

 

In parallel with the THRUPUT modeling efforts at NPS, a group at RAND 

has developed a similar model called CONOP (CONcept of OPerations).  It 

captures many details not incorporated in THRUPUT II: aerial refueling, flow-

balance and utilization constraints for crews, options for direct delivery 

versus delivering cargo that is subsequently transshipped by in theater 
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aircraft, and optional in-theater recovery bases where aircraft may receive 

services and crew changes.  On the other hand CONOP does not offer 

sufficient resolution with respect to ownership (the associated military unit) 

of the cargo being delivered.  Killingsworth et al. (1994) uses CONOPT to 

conduct an investigation of the utility of aerial refueling tanker aircraft within 

the strategic air mobility system.   

 

Baker et al. (1999, 2002) describe NRMO (NPS/RAND Mobility Optimizer), 

which is a large-scale linear programming model and merges CONOP’s 

ability to examine alternative delivery strategies and THRUPUT II’s ability to 

track cargo ownership for optimizing strategic airlift capability.  The NRMO 

routes cargo and troops through a specified network with a given fleet of 

aircraft subject to many physical and political constraints.  The model 

captures various aspects of an airlift system in a deployment, including aerial 

refueling, tactical aircraft shuttles, and constraints based on crew availability.  

The authors state that the model is designed to provide insight into issues 

associated with designing and operating an airlift system but not to provide 

operational flight schedule recommendations.  Some example usages of the 

model that the authors list are allocating resources that govern the processing 

capacity of airfields, assessing the relative performance of different mixes of 

aircraft types, evaluating investment (or divestment) decisions in airfields, 

and studying roles for aerial refueling aircraft.       

 

Of the military mobility models, the closest one to ours is the NRMO.  

However, NRMO and our model are different from each other with respect to 

several aspects.  The underlying network in our model is a physical 

transportation network consisting of highways, railways, flight routes, and 
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shipping lanes while in NRMO the network of interest is a simpler one 

defined by airports and arcs corresponding to direct flights between them.  

One major difference between our model and NRMO is that moving a 

deployable unit from its home base to its destination requires determining a 

route of movement on the physical transportation network in our problem 

whereas routing decisions are absent in NRMO since direct flights between 

on-load and off-load bases (airports) (with a stopover for refueling as 

necessary) predetermines the routing structure.  Another major difference is 

the requirement of a convoy formation for movement in our model while no 

convoy formation is required in NRMO (each flight is a convoy by itself).  The 

scheduling issues encountered in our model is substantially more complicated 

than in NRMO due to carrier changes at transfer points as well as the 

presence of possible synchronization and precedence requirements that must 

be obeyed during movement.  Finally, the fact that the underlying network in 

our model is multi-modal causes additional complications in resource 

allocation at transfer points that arise from the need to handle transfer of 

items between different transportation assets of different modes.  A 

comparison of the NRMO and our model in more detail is given in Chapter 3 

(the end of Section 3.2).     

      

Niemi (2000) modifies and extends the existing deterministic NRMO 

model to include stochastic parameters.  He introduces stochastic ground 

times into the model to bring desired flexibility and hedging against 

uncertainty into the airlift system.  

 

Özdamar and Ekinci (2002) develop an optimization model to provide 

decision support in dispatching commodities (e.g., medical materials and 
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personnel, food, specialized equipment, etc.) to distribution centers in affected 

areas during military crises and natural disasters complying with the time-

dependent supply and demand.  With respect to a military operation, this 

problem addresses the sustainment of military forces after they are deployed 

to their areas of operations.  In their model, they assume a multimodal 

network composed of supply/demand locations and direct routes (arcs) 

belonging to one or more transport modes between them.  A prespecified 

traversal time is associated with each arc depending on its mode, i.e., the 

traversal time of an arc does not vary with respect to type of transportation 

asset.  They do neglect delay times due to loading, unloading, and mode 

switching operations at the nodes.  Hence, the model does not actually 

address multimodality.  Notice that this network structure is similar to but 

simpler than that of the NRMO and hence there are no routing decisions.  

Remarks made for scheduling, unsplittability, precedence/synchronization 

issues in the NRMO are valid for this model as well.  The problem turns out 

to be assigning available transportation assets at a node to arcs emanating 

from that node such that sufficient capacity to transport commodities is 

provided on the arcs.  The model is essentially a combination of two 

multicommodity network flow models, one for commodities and one for 

transportation assets, where each node is a holdover node in the sense that an 

inventory of transportation assets and commodities is allowed.   

 

In all respects, the DPP appears to stand out as a unique and multi-faceted 

problem for which existing models in the literature fall short of.  In this 

dissertation, we break away from the existing literature and give an all-

encompassing optimization model that deal with all aspects of the DPP 

simultaneously. 
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CHAPTER 3 

 

 

COST MINIMIZATION DEPLOYMENT PLANNING 
MODEL 

  

 In this chapter, we give the abstraction of the DPP, the formulation of the 

cost minimization deployment planning model in which the objective is to plan the 

deployment of units with minimum transportation cost, a solution 

methodology to solve the model, and computational results using the solution 

methodology. 

 

3.1.  Abstraction of the Problem    

 

  We may view the DPP as posed on a network )~,~(~ ANG=  defined by the 

union of five sub-networks 51,...,),~,~(~
== iANG iii , corresponding, respectively, 

to ground, rail, air, sea, and inland-water transportation.  We assume each 

)~,~(~
iii ANG =  is connected and directed.  The node and arc sets are defined by 

U
5

1=
=

i
iNN ~~  and U

5

1=
=

i
iAA ~~  where 51 AA ~,...,~  are assumed to be disjoint.  Multiple 

arcs belonging to the same or different transportation modes between nodes i  

and j  are allowed and differentiated by assigning a different arc number to 

each arc in the network.  Nodes that are common to at least two of the node 
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sets iN~  are transfer nodes where a switch occurs in movement from one 

transportation mode to another.   

  

 Let { }uU ,...,1=  be the active set of units that need to be deployed.  For each 

Uu∈ , a source-destination pair ( )uu ts ,  is specified with Nsu
~∈  denoting the 

home base and Ntu
~∈  denoting the designated destination.  For convenience, 

let :~{ NiNS ∈= node i  is an us  for some }Uu∈  and :~{ iD NiN ∈= node i  is a ut  for 

some }Uu∈ .  Some nodes may be both in SN  and in DN .  Let TRN  be the set 

of nodes that are transfer points (harbors, airports, rail stations).  We refer to 

all remaining nodes as transshipment nodes, i.e., TRDST NNNNN ∪∪−= ~ , 

generally used as control points to check the movement of a unit.  Define also 

iAF  and iAB  to be the forward and backward stars of node i , respectively, 

where iAF  ( iAB ) consists of arcs whose tails (heads) are at node i . 

  

 An item list uI  is given for each unit Uu∈  that specifies the set of items 

(personnel, equipment, and supplies) to be moved for that unit.  We assume 

uI  is partitioned into ( )uq  subsets ( )uq
uu II ,...,1  where each subset defines a 

component that must be moved as a whole.  In the current practice, ( ) 3=uq , 

corresponding to advance, pax, and cargo parties.  For each unit Uu∈ , three 

parameters ,, uu ae  and ub are given specifying, respectively, the earliest time 

to depart from us  and the earliest and latest times to arrive at ut .  The same 

earliest and latest times are valid for all components and hence for all items of 

unit u .   
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 For modeling purposes, we assume that all data regarding the to-be-

deployed items of all units are arranged in a list as exemplified in Table 4.  

Each line on the list refers to a particular item that belongs to a particular 

deployment component of a particular unit.  A line specifies the associated 

item’s quantity (in number of units) (column 5), the earliest time to depart 

from its origin (column 6), the earliest and latest times to arrive at its 

destination (columns 7 and 8), the dimensions for one unit of it, transportation 

assets and parts of the transportation network it can use, and any other 

related data.   

 

 As an indexing convention, each deployment component of each military 

unit is assigned a distinct index { }*...,,, qg 21∈  where *q  is the total number of 

components (i.e., ∑
∈

=
Uu

uqq )(* ).  Similarly, each line, i.e., a particular item in 

possession of a particular component g , is assigned a distinct line index c .  

The indexing is done in such a way that components that belong to the same 

military unit and items that belong to the same deployment component are 

consecutively numbered.  Table 4 illustrates both indexing conventions 

(columns 1 and 9) on a typical item list.  Table 4 gives the item list for two 

military units A and B.  The last column in Table 4 indicates that unit A has 

two components, numbered 1 and 2, while unit B also has two components, 

numbered 3 and 4.  The list, if expanded, goes on with unit C, D, E, etc., where 

the components belonging to these units receive consecutively increasing 

numbers.  In Table 4, components 1 and 2, i.e., 1=g  and 2=g , have 1 and 

components 3 and 4, i.e., 3=g  and 4=g , have 6 different items.  Thus, there 

is a total of 14 items, each of which is given a different number to refer to a 

particular item in a particular component.  Notice that the indexing of items is 
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not to number each individual item of a certain type.  For example, 1=c  in the 

list (of Table 4) refers to “200 troops of component 1” while 2=c  refers to “50 

troops of component 2,” not an individual troop.    

 

 Most data regarding items is obtained from data regarding units, e.g., the 

parameters cc ae , , and cb  are derived from uu ae , , and ub , respectively, where 

uIc∈ .  τ  is the reference time at which the whole deployment activity begins. 

 

 The first indexed item in each deployment component i
uI  is designated as 

the leader item for that component with the understanding that all other 

items in that component follow the same route and the schedule as does the 

leader. 

 

 For a given unit u , there may be certain precedence requirements between 

components of u  (such as, an advance party must arrive at ut  before a pax or 

cargo party).  There may also be a synchronization requirement between two 

components, say g  and g ′ , if components g  and g ′  must arrive at a node 

simultaneously.  Precedence and synchronization requirements are given in 

any convenient form (e.g., as a list) and incorporated into the model as side 

constraints.  It is also possible to have precedence or synchronization 

requirements between components that belong to different units whose home 

bases or destinations coincide.   
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Table 4.  A portion of an item list  (τ +h  means that item is ready for 
movement or to be at its destination h time periods after the day the 
movement is announced to start). 

Line 
Index 
( c ) 

Unit 
Deploy-

ment 
compo-

nent 

Item Qty. 
 

ce  
 

 

ca  
 

 

cb  
 

Compo- 
nent 

Index 
( g ) 

1 Unit A Pax Troop 200 τ +3 τ +13 τ +15 1 
2 Unit A Cargo Troop 50 τ +3 τ +13 τ +15 2 

3 Unit A Cargo M-60 Tank 5 τ +3 τ +13 τ +15 2 
4 Unit A Cargo Pax Carrier 14 τ +3 τ +13 τ +15 2 
5 Unit A Cargo MRC Truck 5 τ +3 τ +13 τ +15 2 
6 Unit A Cargo 2 m3 Box 5 τ +3 τ +13 τ +15 2 
7 Unit A Cargo 1.5m3 Box 10 τ +3 τ +13 τ +15 2 
8 Unit B Pax Troop 200 τ +4 τ +10 τ +14 3 
9 Unit B Cargo Troop 50 τ +4 τ +10 τ +14 4 

10 Unit B Cargo M-60 Tank 5 τ +4 τ +10 τ +14 4 
11 Unit B Cargo Pax Carrier 14 τ +4 τ +10 τ +14 4 
12 Unit B Cargo MRC Truck 5 τ +4 τ +10 τ +14 4 
13 Unit B Cargo 2 m3 Box 5 τ +4 τ +10 τ +14 4 
14 Unit B Cargo 1.5m3 Box 10 τ +4 τ +10 τ +14 4 

 

  

We now focus on transportation assets.  We assume that there is a list of 

transportation assets where each line on the list is indexed by v  and refers to 

transportation assets of a type (truck, tank, armored vehicle, cargo plane, etc.), 

from a source (organic, common use, civilian), and at a location (home base if 

organic, the most recent location at the time a call for deployment is issued if 

common use or civilian), i.e., the set of transportation asset types is 

partitioned into subsets based on location and source type.  Additionally, 

each line v  on the list specifies the quantity (available number) of 

transportation asset v , the particular transport mode(s) on which 

transportation asset v  can move, the loadability feature (pax, cargo, separate 

pax and cargo, mixed pax and cargo), weight, volume, and lanemeter 
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capacities (if applicable) of transportation asset v , the indices of items that  

can be carried by transportation asset v  (e.g., a truck can carry only boxes or 

personnel whereas a plane can carry boxes, armored vehicles, and personnel), 

the ready, loading, unloading, and travel times, fixed and variable costs 

associated with transportation asset v .  Travel times of transportation assets 

are determined based on regular speeds of transportation assets or based on 

predetermined speeds, e.g., a convoy speed, on all arcs on which they can 

move.  Additional columns may also be added to the list as necessary to 

identify other relevant attributes of transportation assets.  For example, planes 

may be grouped as large-body and small-body planes.  Such groupings are 

especially useful in defining capacities on the transportation network.  

 
 
Table 5.  A portion of a list of transportation assets. (TA: transportation asset) 

Line 
Index 
( v ) 

Source 
Loca- 
tion 

TA 
Type Qty 

Load 
Type 

Weight
Cap. 
(ton) 

Fixed 
Cost ($) 
(x1000)

Load/ 
Unload 

Time 
(hour) 

Travel 
Time 

per km 
(min) 

TA 
Group 

( w ) 

1 Unit A X Tank 
Carrier 

10 Cargo 75 125 1 1.2 1 

2 Unit A X Truck A 10 Cargo 5 50 1 1.2 2 
3 Unit A X Truck B 5 Cargo 10 75 1 1.2 2 

4 Unit B X Tank 
Carrier 

10 Cargo 75 125 1 1.2 1 

5 Unit B X Truck A 10 Cargo 5 55 1 1.2 2 
6 Unit B X Truck B 5 Cargo 10 80 1 1.2 2 
7 Firm A Y Truck A 5 Cargo 5 150 1 1.2 2 
8 Firm A Y Truck B 5 Cargo 10 65 1 1.2 2 
9 Firm A Y Truck C 5 Cargo 10 90 1 1.2 2 
 

  

 A portion of a list of transportation assets is given in Table 5.  The first 

column in the table gives the index v  that is assigned to each line on the list.  

By convention, v  refers to a particular source, location, and type.  Lines are 
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indexed by v  in such a way that all transportation assets in possession of a 

military unit or a civilian company are consecutively numbered to form a 

block.  Transportation assets in a given block share a common location (the 

home base of the military unit or the location of the civilian company that 

identifies that block).  For example, 2=v  in Table 5 refers to trucks of type A 

in possession of Unit A at location X while 7=v  refers to trucks of type A in 

possession of Firm A at location Y.  The last column in Table 5 differentiates 

transportation assets according to their types only regardless of their location 

or to which military unit (civilian company) they belong to.  For example, 

1=w  refers to tank carriers while 2=w  refers to trucks.  Such groupings are 

especially useful in defining capacities on the transportation network.  

 

We define U
5

1=
=

m
mVV  as the set of transportation asset indices where 

51,...,, =mVm  contains the indices of transportation assets belonging to 

transportation mode m .  In the model, we differentiate transportation modes 

implicitly by allowing transportation assets of different transportation modes 

to move on the appropriate arcs.  For example, if the transportation asset is a 

ship, then this transportation asset is allowed to move only on the arcs of the 

sea transportation network. 

 

Transportation assets are classified into four groups depending on their 

loadability features: Pax, transportation assets that can carry only personnel 

(e.g., buses) ( paxV ); Cargo,  transportation assets that can carry only cargo (e.g., 

trucks, tank carriers, cargo planes) ( ocV arg ); Pax and Cargo, transportation 

assets that carry cargo and personnel in separate compartments (e.g., ships) 

( bothV ); and  Mixed Pax and Cargo, transportation assets that carry cargo and 
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personnel in a single compartment (e.g., trucks, some types of planes) ( mixV ).  

While loading cargo and/or personnel onto a transportation asset, depending 

on the group that transportation asset belongs to, weight, volume, and/or 

lanemeter capacities of the transportation asset are taken into account such 

that the total number, weight, volume, and/or length of the loaded cargo 

and/or personnel onto a transportation asset do not exceed the transportation 

asset’s seat, weight, volume, and/or lanemeter capacities.  Here, we focus on 

transportation assets that are in class mixV  as issues related to transportation 

assets in other classes are clear.  (Please see Section 1.2  for more details).   

 

Remember that for a transportation asset in class mixV , the same space is 

shared by both cargo and personnel and one displaces the other in discrete 

blocks that can be characterized by a step function.  This is due to the fact that 

seats are built onto the transportation assets in blocks of different sizes, not 

one by one.  Figure 2 illustrates a sample situation.  In the figure, the change 

in volume capacity of a transportation asset against the number of passengers 

is shown.  It is assumed that the volume capacity of the transportation asset is 

500 cubic units, that there are 18 seats in a seat block, and maximum 

passenger capacity of the transportation asset is 90.  Thus, each block 

mounted on the transportation asset consumes 100 cubic units of the volume 

capacity of the transportation asset.  Thus, the remaining volume capacity of 

the transportation asset can be expressed as an equation as follows: 

100
18

500 ×⎥⎥
⎤

⎢⎢
⎡−=

PityolumeCapacRemainingV  where P   is the number of 

passengers and ⎡ ⎤.  is the ceiling function.   
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Figure 2.  Volume Capacity versus Number of Passengers 

 

To generalize the above situation, we define the parameters below.   

vnseatbl  number of seats in a block for a unit of transportation asset v  

vCapP  maximum passenger carrying capacity of a unit of transportation  

asset v   

vCapVol  volume capacity of a unit of transportation asset v   

 

For a transportation asset in class mixV , we can define a volume reduction 

factor.  This factor is used in calculating the reduction in volume capacity of 

the transportation asset depending on the number of passengers (thus the 

number of blocks of seats added) mounted on it.  Let vvolredfac  be the volume 

reduction factor for a transportation asset v  when a block of seat is installed 

onto it.  That is, v
v

v
v CapVol

CapP
nseatbl

volredfac ×= . 
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In the above example, this value is 100.  That is, adding one block of seats 

consumes 100 cubic units of volume capacity.  So,  

vvv volredfac
nseatbl

PCapVolityolumeCapacRemainingV ×⎥⎥
⎤

⎢⎢
⎡−= . 

 

The exact solution of this problem may be handled in several ways.  

However, using an approximate solution is also possible.  The reason is 

twofold.  First, we need additional variables and constraints to handle the 

problem that will make the model more complex.  Second, such details are 

disregarded in practice, i.e., if five troops are to be carried on a transportation 

asset, it is highly likely that one block of seats is not installed and the troops 

travel mostly seated on other items.  That is, gains obtained by adding more 

complexity to the model may not be significant enough to justify the added  

complexity of the model.      

  

One approximation is to define a volume for each troop.  Note that this 

value is not fixed but changes depending on the transportation asset, its pax 

and volume capacities.  Using the above parameters, the volume of a 

passenger for a unit of transportation asset v  is computed as 

v

v
v CapP

CapVol
paxVolume = .    

 

This value is multiplied with the number of troops mounted on the 

transportation asset to find the capacity consumed by the passengers.  Then, 

PpaxVolumeCapVolityolumeCapacRemainingV vvv ×−= .   
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 This logic is used in formulating volume capacity constraints for 

transportation assets in class mixV .  As to the weight capacity constraints for 

these transportation assets, it is easy because the change in weight capacity is 

linear.  Thus, decreasing weight capacity for each mounting passenger by a 

standard passenger weight, i.e., paxweight , is sufficient.      

 

 The issue of self-deployable items, i.e., items that are to be treated as 

transportation assets on some parts of the transportation network, (see Section 

1.1 for details) is solved by defining dummy transportation assets that are 

allowed to carry only self-deployable items and setting weight and volume 

capacities of the artificially-defined transportation assets depending on 

whether they are capable of carrying other items as well.  If a self-deployable 

item cannot transport other items (e.g., a tank), then weight and volume 

capacities of the corresponding artificially-defined transportation asset are set 

to the weight and volume of the self-deployable item.  If a self-deployable 

item of a unit can carry other items (e.g., a truck), then the items  of the unit 

that can be carried by the self-deployable of the unit are firstly planned to be 

moved on the self-deployable (taking weight and volume capacities of the 

self-deployable into account).  That is, the load of a self-deployable item, if 

any, is predetermined.  In developing deployment plans, a self-deployable 

and its load is regarded as a single entity with a certain weight and volume.  

The weight and volume of the corresponding artificially-defined 

transportation asset is set accordingly.    

 

 To take into account loading and unloading times of transportation assets 

in the formulation, we define different travel times for empty and loaded 

transportation assets.  We assume that the travel time of a unit of 
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transportation asset v  on arc l  when it is loaded, loaded
lvtrv , includes the travel 

time of a unit of transportation asset v  on arc l  when it is empty, empty
lvtrv , plus 

loading and/or unloading times of transportation asset v  if the tail and/or 

head node of the arc is a source, destination, or transfer point.  For example, if 

a unit of loaded transportation asset v  leaves a source node i  on an arc 

iAFl∈ , then loaded
lvtrv  includes empty

lvtrv  plus loading time of v .  Similarly, if a 

unit of loaded transportation asset v  arrives at a demand node i  on an arc 

iABl∈ , then loaded
lvtrv  includes empty

lvtrv  plus unloading time of v .  If both head 

and tail nodes are transshipment nodes, then loaded
lvtrv  is the same as empty

lvtrv .  

This issue will be made clearer when the second modification to the network 

is explained in the coming paragraphs. 

     

 We assume that the transportation network )~,~(~ ANG=  is node-wise 

capacitated.  Node capacities are expressed in terms of the number of 

transportation assets that can pass through the node per unit time and are 

generally defined by working capacities of the handling and 

loading/unloading equipment and personnel available at that node.  They can 

be taken as infinity for most nodes, but finite capacities are generally assigned 

to source, demand, and transfer points as well as to critical nodes such as 

major intersections and bridges. 

 

 The model proposed here is arc-wise uncapacitated.  One reason for this is 

that arc capacities, if present, can easily be accommodated by introducing 

artificial dummy nodes on arcs as necessary and assigning appropriate node 

capacities to the artificial nodes.  The other reason for leaving out arc 

capacities is that arcs of the sea and air transport networks essentially have 
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unlimited capacity except for those rare cases where an air corridor or a 

shipping lane might be expected to carry a heavy traffic load leading to 

possible congestion.  This may be the case, for example, if intense sea traffic is 

expected through the Bosphorous that connects Marmara Sea to Black Sea in 

İstanbul.  In such a case, redefining the node capacities at both ends of the 

Bosphorous will correctly impose an upper limit on the sea traffic allowed to 

pass through the Bosphorous.  As for surface transportation, the imposed 

convoy speeds in ground and rail transportation naturally regulate the traffic 

in these parts of the network in such a way as not to lead to any congestion 

when roads or railways are temporarily closed to civilian traffic to allow for 

free passage of military convoys.  These considerations well justify the 

absence of arc capacities from the proposed model.  Nevertheless, arc 

capacities can easily be handled by the model if needed. 

 

 For modeling purposes, we make two modifications on the network 

)~,~(~ ANG= .  The first modification is to add a single super node dn , and a set 

dumA  of directed arcs of the form ),( ind  for each node Ni ~∈  that houses at least 

one transportation asset.  The super node is a dummy node that represents a 

virtual pool of transportation assets available anywhere in the network.   A 

given transportation asset is drawn from dn  for its first time usage in the 

system.  Note that the dummy arc ),( ind  is used for initial activation of 

transportation assets whose initial location is node i .  To provide the 

activation of transportation assets on the correct dummy arc, they are allowed 

to move only on the dummy arc ),( ind .  This is possible because our indexing 

convention distinguishes transportation assets based on their initial locations.   
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Let iinitV  be the set of transportation asset indices v  for which the initial 

location is node i .  Let 0≥vready  be the ready time of transportation asset v .  

For example, 0>vready  represents the contracted time to make transportation 

asset v  available from a civilian company.  Let vfixcost  be the fixed cost 

associated with the initial activation of transportation asset v .  For dummy 

arc ),( ind , we associate two vectors of size iinitV , one representing the ready 

times and the other representing the fixed costs.  Whenever there is a demand 

for transportation asset v  from a node k , this (empty) transportation asset is 

either directed to node k  from the super node dn  (if it has not already been 

used in the system) or from some node k ′  at which the last usage of it has 

terminated.  In the former case, the transportation asset traverses the dummy 

arc ),( ind  at a cost of vfixcost  and with an arc traversal time of vready . The 

empty transportation asset is then routed from i  to k .  

 

 

 

 

 

 

Figure 3.  Second modification of the network. 

 

The second modification we make on the network is to add a replica i′  for 

nodes i  at which loading/unloading operations are expected to take place, i.e., 

transfer nodes, sources, and destinations (as necessary).  Mode-free directed 

arcs of the form ),( ii ′  and ),( ii′  are also added for each replicated node.  The 

modification is depicted in Figure 3.  It is convenient to view node i′  as a 

Parking node 

i  

i  

i′  

Transport Mode 1 Transport Mode 2 Mode-free 

Server node
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“server” node, where the actual loading/unloading operations take place, and 

i  as a “parking/waiting lot” for a transportation asset.  We define PN  as the 

set of parking/waiting nodes and refer to server nodes with their original 

names, i.e., source, demand, and transfer nodes.  A transportation asset v  

which is to get service at node i′  goes through node i  before and after getting 

service.  Define ),( ANG=  to be the network obtained from )~,~(~ ANG=  after the 

dummy nodes and arcs are added to it.  

 

This modification of the network helps to define node capacities and 

handle timing issues appropriately.  If a transportation asset is not to get 

service at node i′ , it just passes through node i  without stopping or spends 

an idle time, e.g., time to comply with a time-wise constraint, at the node.  If a 

transportation asset is to get service at node i′ , it must move from node i  to 

node i′  before getting service and from node i′  to node i  after getting service.  

To incorporate an appropriate service time for a transportation asset at a 

server node, the associated loading and/or unloading times are taken as travel 

times of the transportation asset on the arcs ),( ii ′  and ),( ii′  depending on 

whether the transportation asset arrives (leaves) at (from) node i′  empty or 

loaded.  For example, if a transportation asset leaves loaded from node i′  to 

node i , a non-zero loading time is assigned to the transportation asset 

whereas a zero load time is assigned if the transportation asset is empty.  If 

node i′  is not available for service at any time, the transportation asset spends 

an idle time at node i  until it becomes available.  A transportation asset may 

also spend an idle time at a server node (e.g., waiting for an item to arrive).  

Such idle times at the nodes are handled by inventory variables 

appropriately. 
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From a modeling viewpoint, there are two types of flows on the network: 

those of items and of transportation assets.  The transportation assets are the 

active agents in that the items cannot flow by themselves unless engaged with 

transportation assets.  In this sense, flows of transportation assets are coupled 

for a length of time with items and then disengaged again upon arrival at a 

destination.  We may view everything taking place on a time-expanded 

network to keep track of scheduling and time-dependent issues associated 

with movements.  We define T  to be the set of all time periods and cTD  to be 

the subset of T  consisting of time periods at which item type c  is allowed to 

be at a destination.  That is, { }ccc btaTtTD ≤≤∈= :  where ca  and cb  are the 

earliest and latest time at which items of type c  are allowed to be at 

destination. 

 

Given the network settings as described above, together with a list of 

transportation assets and item lists for active units, the deployment planning 

problem involves decisions on (1) the route each deployment component is to 

follow, (2) the schedule of the movement on this route (departure times from 

home bases, pass times through transshipment and transfer points, arrival 

times at destinations, load/unload times at origin, destination, and transfer 

nodes), (3) the transportation assets and the transportation network each 

component uses on its route, (4) the load compositions of transportation 

assets allocated to each deployment component, (5) the routings of empty 

transportation assets subsequent to unloading at destinations, (6) the schedule 

of the movements of transportation assets while loaded and empty, and (7) a 

sourcing strategy of transportation assets for a successful deployment of 

units. 
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3.2.  Model formulation 

 

Based on the modeling conventions mentioned in the foregoing section, 

we now give a mixed integer programming model, Cost Minimization 

Deployment Planning Model (CMDPM), for planning and executing force 

deployment.  The model handles the deployment process from home bases to 

destinations addressing issues regarding the scheduling, routing, and use of 

transportation assets in moving a unit’s troops, weapon systems, equipment, 

and supplies.  

 

The objective function used in the model is to minimize the sum of fixed 

and variable transportation costs.  In this respect, this model is of use, in the 

first place, for investment decisions regarding transportation assets and 

transportation infrastructure.  The model is also of use for cases in which 

there is enough time to create deliberate deployment plans that take costs into 

account.      

  

The constraints in the model can be grouped into 

• Flow-balance constraints for transportation assets, 

• Node capacity constraints, 

• Constraints for coupling transportation assets and items, 

• Flow-balance constraints for items , 

• Prioritization/precedence constraints, 

• Group/Convoy formation constraints.  
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Major assumptions of the model are listed below. 

 

A1. Transportation assets, once they leave their origins, are allowed to 

wait at their final destinations and not required to return to their origins 

until they are assigned to another unit. This is reasonable as transportation 

assets are stationed to forward-support units after a deployment. We note 

that it may also be possible to allocate pooling areas close to final 

destinations for transportation assets.  

 

A2. Ready, travel, loading, and unloading times are deterministic and 

discrete.  

 

A3. Deployment plans are made so as to deploy all personnel and cargo. 

Non-delivery of items is not allowed. This is reasonable, as otherwise 

some missions in the operational plan cannot be achieved.       

 

Set restrictions that ensure compatibility between transportation assets 

and items or transportation assets and the transportation infrastructure are 

omitted in the formulation to avoid notational clutter. Such restrictions are 

assumed present implicitly. 
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3.2.1.  Cost Minimization Deployment Planning Model (CMDPM) 
 

3.2.1.1. Sets 

 

Sets related to nodes: 

N  All nodes in the network ),( ANG=  ),( Nji ∈  (Modified network) 

SN  Set of nodes that are home bases of the units  

DN  Set of nodes that are destinations of units  

TN  Set of nodes that are transshipmet nodes for the units 

TRN  Set of nodes that are possible transfer points (terminals) for units 

PN  Set of nodes that represent waiting/parking places at source, demand, 

and transfer nodes 

dn  the super dummy node assumed to hold all transportation assets  

 

Sets related to arcs: 

A  Set of arcs in the network ),( ANG=  ),( All ∈′  

dumA  Set of dummy arcs in the network  

iAF  Set of arcs whose tails are at node i  (the forward star of node i ) 

iAB  Set of arcs whose heads are node i  (the backward star of node i ) 

vA  Set of arcs on which transportation assets of index v  are allowed to 

move 

cA  Set of arcs on which items of index c  are allowed to be transported 

 

 

 

 



 
 

 92

Sets related to deployment components and items: 

G  Set of all deployment-component indices ( Ggg ∈′, ) 

C   Set of all item indices ( Ccc ∈′, ) 

gC  Set of indices of items that are in deployment component g   

CFIRST  Set of indices of leader items in all deployment components 

paxC  Set of indices of items that are troops (personnel) 

ocC arg  Set of indices of items other than troops )( arg paxoc CCC −=  

laneC  Set of indices of items for which lanemeter capacity is to be taken 

into account while loading onto a transportation asset 

iCS  Set of indices of items for which node i  is a source 

iCD  Set of indices of items for which node i  is a destination 

iCT  Set of indices of items for which node i  is allowed to be a 

transshipment point  

iCTR  Set of indices of items for which node i  is allowed to be a transfer 

point  

icCP  Set of indices of items that have a lower priority in arriving at a 

node i  than items of index c  (This is derived from the precedence 

relations between deployment components.) 

inodeC  Set of indices of items that are allowed to use node i  

larcC  Set of indices of items that are allowed to use arc l  

vTAC  Set of indices of items that are allowed to be transported on 

transportation assets of index v  
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Sets related to transportation assets: 

W  Set of indices of transportation asset groupings, e.g., large-body, small-

body planes ( Ww∈ ) 

V  Set of indices of all transportation assets ( Vv∈ ) 

wgrV  Set of indices of transportation assets in a group w  of transportation 

assets (e.g., trucks) 

paxV  Set of indices of transportation assets that can carry only personnel  

ocV arg  Set of indices of transportation assets that can carry only cargo 

bothV  Set of indices of transportation assets that can carry cargo and 

personnel in separate compartments   

mixV  Set of indices of transportation assets that can carry cargo and 

personnel in a single compartment  

laneV  Set of indices of transportation assets for which lanemeter capacity is to 

be taken into account (e.g., a ship) 

inodeV  Set of indices of transportation assets that are allowed to use node i  

larcV   Set of indices of transportation assets that are allowed to use arc l  

citemV  Set of indices of transportation assets that can carry items of index c  

 

Sets regarding time periods: 

T  Set of time periods ),( Ttt ∈′  

cTD  Subset of time periods at which items of index c  are allowed to be at 

(destination) node i , i.e., [ ]ccc baTD ,=  where ca  and cb  are the earliest 

and latest times at which items of index c  are allowed to be at 

destination 
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3.2.1.2.  Data 

 

Data related to items: 

cweight  weight of one unit of item c  

cvolume  volume of one unit of item c  

clength  length of one unit of item c  

cdemand  the number of units of item c  to be deployed  

stdpaxw  predetermined, standard weight for a person 

ce  the earliest time at which items of index c  are allowed to leave  

their origin, i.e., home base 

ca   the earliest time at which items of index c  are allowed to be at 

their destination 

cb  the latest time at which items of index c  are allowed to be at their 

destination 

 

Data related to transportation assets: 

vfixcost  the cost of activating a unit of transportation asset v  for the first 

time, i.e., a fixed cost for activating a unit of transportation asset v  

lvtrvcostf  travel cost when a unit of transportation asset v  moves loaded on 

arc l  

lvtrvcoste  travel cost when a unit of transportation asset v  moves empty 

(not loaded) on arc l  

vavailVeh  number of units of transportation asset v  initially available at the 

dummy super node dn   

vWCap  weight capacity of a unit of transportation asset v  
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vVCap  volume capacity of a unit of transportation asset v  

vPCap  pax capacity of a unit of transportation asset v  

vLCap  lanemeter capacity of a unit of transportation asset v  

vPaxVol  the volume consumed by a passenger on a unit of transportation 

asset v   (this parameter is defined appropriately to handle the 

issue regarding mixVv∈  with a good approximation; 

vvv PCapVCapPaxVol = )  

loaded
lvtrv  travel time of a unit of transportation asset v  when it is loaded  

empty
lvtrv  travel time of a unit of transportation asset v  when it is empty 

vready  ready time of a unit of transportation asset v  

 

Data related to transportation network: 

iwParkC  the parking capacity of node i  at a time for transportation assets 

in group w   

iwSerC  the service capacity of node i  at a time for transportation assets in 

group w   

 

3.2.1.3.  Decision Variables 

 

lvtTF  number of units of transportation asset v  that start moving loaded on 

arc l  at time t  

lvtTE  number of units of transportation asset v  that start moving empty on 

arc l  at time t  

lcvtCT  number of units of item c  that start moving on arc l  via a unit(s) of 

transportation asset v  at time t  
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ivtIV  the number of units of transportation asset v  remaining at node i  at 

time t  

ictIC  the number of units of item c  remaining at node i  at time t   

lctY  zero/one variable which is 1, if a unit of item c  is assigned to start 

moving on arc l  at time t  and 0, otherwise  

 

3.2.1.4.  Model 
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∑∑
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Constraints for Component Unity 
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Non-negativity Constraints  
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Initial Conditions 
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Objective function ( 1 )  minimizes the sum of fixed and variable 

transportation costs.  A fixed cost is incurred when a transportation asset is 

drawn into the system for the first time from the pool of transportation assets 

and a variable cost is incurred when it circulates through the network either 

empty or loaded. 

 

Constraints ( 2 ) , ( 3 ) , and ( 4 )  ensure the flow-balance of each 

transportation asset at the super node (the pool of transportation assets) and 

at the remaining nodes for each time period.  The initial inventory levels of 

transportation assets at the super node are set to their available numbers at 

their ready times.  Hence, the number of units of transportation asset v  drawn 

from the pool is at most equal to the available number of v .  Constraints ( 4 )  

provide the flow-balance of transportation assets after they are drawn from 

the super node.  As an inventory of transportation assets is not allowed at 

transshipment nodes, the initial condition (24) is stated accordingly.  

 

Constraints (  5 ) and ( 6 )  ensure that node capacities are observed at 

server and parking nodes at each time period.    Node capacities are defined 

by the maximum number of transportation assets in each transportation asset 

group w  (ground vehicles, large-body planes, etc.) that can get service and 

wait/park at a node for each time period.  Recall that each source, demand, 

and transfer node is split into a server node and a waiting/parking node and 

that a transportation asset goes through a waiting/parking node before and 

after receiving service.   

 

 Constraints ( 7 ) -(12), which are of identical form but expressed 

differently as dependent on the loadability group that the transportation 
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assets belong to, are used to couple transportation assets and items by taking 

into account number, weight, volume, and lanemeter capacities on each arc at 

each time point.  

 

Constraints (13)-(19) ensure the flow-balance of each item at each node for 

each time period.  Constraints (13)-(14) and (15)-(16) are demand and supply 

constraints, respectively.  Notice that items are allowed to arrive at (leave 

from) their destinations (home bases) within their allowable time windows 

(after their earliest departure times).  Constraints (13) and (17) are needed for 

each item to allow a coupling of that item with a transportation asset at the 

source and at transfer nodes while constraints (18)-(19) are needed for each 

item and transportation asset to disallow a new coupling at the transshipment 

and parking nodes as well as at the source and demand nodes of other items.  

Note that an inventory of items is not allowed at transshipment nodes either.  

 

 Constraints (20) and (21) require that all items in a deployment 

component move as a whole.  Constraints (20) are the usual all-or-nothing 

constraints that ensure that the amount of items on the move at a time be 

either zero or equal to the whole quantity available of that item. Constraints 

(21) ensure that when an item of a component starts moving at a time period, 

so do the other items of the component.   

 

 Constraints (22) provide precedence relations between items in arriving at 

a node (and hence between deployment components).  These constraints 

establish time-wise dependency relations between different items.  For an 

item to arrive at a node through a specific arc at a given time, all items with a 

higher priority than that of the item under consideration must arrive at that 
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node through one of the arcs incoming to that node prior to that time.  This 

must be checked on all incoming arcs to the node for each time period by 

taking into account different travel times on the arcs.  Constraints (22) can 

also be used to require a certain time span between different items, i.e., use 

spanc ttte −<′≤  instead of ttec <′≤  in the summation on the right-hand side of 

the constraint where spant  is the time span required between two items.  

Constraints (21) and (22) can also be expressed using only the binary 

variables lctY  because tclYdemandCT lctc
v

lcvt ,,,∀=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∑ .  However, we do not 

use this form as it is computationally more expensive to solve the model with 

this form than with the form presented above.   

 

Notice that constraints (13)-(17) and (20)-(22) are expressed only for 

leader items instead of all items.  Constraints (21) establish the dependency 

between leader and non-leader items in each deployment component.  Flow-

balance constraints (18) and (19) are needed for all items to ensure that the 

set of transportation assets assigned to a deployable unit remains intact 

during the unit’s journey except possibly at transfer points.    

 

The decision variables regarding both items and transportation assets are 

allowed to take on fractional values.  Among these variables, item inventory 

variables ictIC  always take on integral values as items are required to move as 

a whole.  Item flow variables lcvtCT  also take on integral values if item c  is 

allowed to be coupled with only transportation asset v  due to constraints 

(20).  If item c  is coupled with two or more transportation assets, then lcvtCT  

may take on fractional values.  In this case, the solution can easily be modified 

so that item c  is allocated to its assigned transportation assets in integral 
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values.  This is possible because the total delivery capacity of transportation 

assets assigned to carry item c  suffices to transport item c  (due to 

unsplittable flow requirement of an item).  The decision variables regarding 

transportation assets may take on fractional values.  In this case, the fractional 

values are rounded up.  This is reasonable in the context of the DPP.  A unit is 

required (1) to move as a whole and (2) to be ready at its destination between 

its earliest and latest arrival times. To satisfy these two requirements, it may 

be necessary to deploy a unit without fully using the capacities of 

transportation asset(s) assigned to it.  In a sense, being economical is 

secondary to getting the job done (i.e., delivering the items).  Increasing the 

time windows at which units are to be ready at their destinations and/or 

reducing the sizes of the deployment components is likely to create more 

economical solutions.  In such a case, the model’s solution has a fractional 

number of transportation assets because its objective is to minimize the sum 

of the fixed and variable transportation costs.  Hence, the degree of error 

resulting from rounding up is of small scale.  Furthermore, our computational 

results show that the average number of fractional variables in the solutions is 

about 0.15% of total number of fractional variables in the problems.    

 

The number of nonnegative (fractional) variables in the CMDPM can be 

expressed as ( ) ( ) ( ) ( )TNVCTVAC ××++×××+2  where .  is the 

cardinality of the associated set.  Similarly, the number of binary variables is 

equal to TGA ×× .  Notice that the number of binary variables is not equal 

to TCA ××  because the variables are defined only for leader items. 
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The number of constraints for each constraint group is as follows: 

( ) VnNVT d +−+×  for flow-balance constraints of transportation assets, 

( ) ( )PTRDS NNNNTW +∪∪××  for node capacity constraints, 

( ) ( )[ ]bothpaxmixbothocdum VVVVVTAA ∪++∪×××− arg2  for coupling constraints, 

( )[ ]
( ) ( ) ( )

∑∑∑ ∑
−−∈∪∪∈∈∈∈ ∩∈∈

×+×+++−+
iiDSPiTiTR CDCSCcNNNiCTcNiCFIRSTc CFIRSTCTRcNi

cc TVTVTeTTD
,,,

2

 for flow-balance constraints of items, ( )
( )
∑

∈−∈

−+×
id AFlnNi

CFIRSTCCFIRSTT
,

 for 

component-unity constraints, and 
( )

∑
∩∈′∈∈∈ CFIRSTCPcCFIRSTcABlNi iciD

T
,,,

 for 

precedence constraints.   

 

Having given the formulation of the CMDPM, we now compare the 

NRMO model developed by Baker et al. (1999, 2002) and the CMDPM in more 

detail.  For this purpose, we first give the problem structure in the NRMO and 

then consider the formulation.   

 

In the NRMO, the single-mode network represents an air transportation 

network.  The node set is composed of aerial ports of embarkation (APOEs), 

aerial ports of debarkation (APODs), and enroute, forward operating, shuttle 

bed down, and aerial refueling bases.  A deployable unit’s pax and cargo are 

moved from a prespecified APOE to a prespecified APOD or to a forward 

operating base (FOB).  A direct delivery from an APOE to an FOB is possible 

but cargo destined for an FOB can be dropped at an APOD and then 

transshipped to the FOB by shuttle aircraft between the APOD and the FOB.  

An aircraft leaving from an APOE can either go through an enroute base or 

fly nonstop to the APOD.  An aircraft may move through a refueling base and 

to a shuttle beddown base as needed.  With this problem structure, the node 
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set N  in the NRMO is composed of source, demand, and transshipment 

nodes, i.e., TDS NNNNN ∪∪∪= , while }{ dPTRTDS nNNNNNN ∪∪∪∪∪=  in 

the CMDPM.  Each node in the NRMO is defined such that it is only in one 

node group, which predetermines how transportation assets and pax/cargo 

move through the network. 

 

Arcs connecting the nodes in the NRMO are direct flight routes.  Routes 

are distinguished from each other depending on whether it is a direct 

delivery, transshipment, refueling, empty-return, etc.  Thus, an assignment of 

an aircraft to an arc predetermines its route, the operations it will undergo 

(e.g., unloading), and the times needed for travel, loading, unloading, 

refueling, etc.  Similarly, an assignment of a deployable unit’s pax and cargo 

to an arc predetermines its movement structure.  This greatly simplifies the 

coordination required between aircraft and pax/cargo (because both aircraft 

and pax/cargo move through the network according to the predetermined 

structure).  It becomes sufficient to assign transportation assets to arcs and 

pax/cargo to aircraft.  With respect to our set definitions in the CMDPM, the 

arc set A  in the NRMO represents all routes between onload, offload, and 

transshipment bases.  The arc set is classified into subsets such as ,, trdir AA  

and retA  to represent direct delivery, transshipment, and return arcs.  As a 

result, the underlying network in the NRMO is much simpler than the one in 

the CMDPM.   

 

In the NRMO, data regarding deployable units are given in the time-

phased force deployment data (TPFDD) form.  The TPFDD gives, POE, POD, 

and FOB (if any), available-to-load and required delivery dates, the number of 

shorts tons of bulk, oversize and outsize cargo, and the number of troops for 



 
 

 105

each deployable unit.  With respect to our representation, G  denotes the set 

of deployable units, each of which has four types of items (pax, bulk, outsize, 

and oversize) to be moved.  Thus, a single index c  may be associated with 

each cargo class in each deployable unit G .  This allows us to define 

,,,,,, arg larciiiocpax CCTCDCSCC  and TAC  to refer to the same sets in the 

CMDPM.   

 

In the NRMO, the fleet of transportation assets consists of a fleet of planes.  

Planes are differentiated based only on their types.  With respect to our 

representation, V  represents the set of types of planes.  mixocpax VVV ,arg, , 

,, larcinode VV  and citemV  are modified accordingly.   

 

All decision variables in the NRMO are allowed to take on fractional 

values.  The primary decision variables specify the number of aircraft 

missions for each deployable unit, for each aircraft type, via each eligible 

route, in each time period.  Another set of decision variables tracks the 

delivery of short tons of each deployable unit for each cargo class.  Additional 

variables account for empty movements of aircraft, role changes of aircraft, 

and crew availability.  The decision variables in the NRMO and CMDPM are 

similar with the exception one main difference.  In the CMDPM, there is a 

need to track the movement of pax/cargo through arcs explicitly.  In the 

NRMO, however, this is not required and hence there are no decision 

variables tracking the amount of pax and cargo moved through an arc.  In the 

NRMO, only delivery of short tons of each deployable unit by an aircraft type 

is tracked.  In a sense, the index l  is removed from the definition of lcvtCT , i.e., 

cvtCT ,  and index c  is added to the definition of lvtTF , i.e., lcvtTF  such that    
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cvtCT  represents the amount of c  arriving at destination via v  in time period t  

and lcvtTF  represents the number of missions of aircraft v  to move c  through 

route l  in time period t .   

 

The objective in the NRMO is to minimize a weighted sum of penalties for 

late delivery and nondelivery plus some secondary terms.  This can be 

achieved in the CMDPM by defining appropriate penalties and associating 

zero ready times for transportation assets, and adding upper bounds on the 

number of aircraft drawn through the dummy arc that links the super node 

and the original location of a given type and number of aircraft.  Because new 

aircraft can be added to the fleet at any time, constraints (3) may be modified 

to take this into account such that the inventory from the previous period is 

added to the right-hand side and the availability of aircraft is time dependent.   

 

The flow-balance of transportation assets in the NRMO is much simpler 

than that in the CMDPM.  In the CMPDM, constraints (4), which are valid 

with the second modification, are expressed in such a way as to take into 

account the fact that the movement patterns of transportation assets at the 

source, demand, and transfer nodes are not known in advance.  In the NRMO, 

however, the movement patterns of transportation assets are predetermined.  

Hence, constraints (4) can be split into much simpler flow-balance constraints 

for source, demand, and transshipment nodes.  Specifically, constraints are 

expressed as 01 =−−+ ∑∑
∈

−−
∈ i

empty
lv

i ABl
trvtlvtiv

AFl
lvtivt TEIVTFIV

,,  for tvNi s ,,∈  source 

nodes and as 01 =−−+ ∑∑
∈

−
∈

−
ii

loaded
lv

ABl
lvttiv

AFl
trvtlvlvivt TEIVTFIV ,,,  for tvNi D ,,∈ .  Note 

that transshipment nodes act as source and demand nodes for different types 

of aircraft.  Hence, flow-balance constraints at transshipment nodes are the 
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same as above except that they are expressed for appropriate types of aircraft.  

Flow-balance constraints at nodes such as shuttle beddown and refueling are 

defined as 01 =−−+ ∑∑
∈

−−
∈ i

loaded
lv

i AFl
trvtlvtiv

AFl
lvtivt TFIVTFIV ,,  for tvNi s ,,∈  and as  

01 =−−+ ∑∑
∈

−−
∈ i

empty
lv

i AFl
trvtlvtiv

AFl
lvtivt TEIVTEIV

,,  for tvNi s ,,∈ . 

 

Node capacity constraints (5) and (6) are also valid with the second 

network modification.  In the CMDPM, a node capacity is defined in terms of 

the number of transportation assets that can get service and park at a time.  In 

the NRMO, however, a node capacity is defined in terms of time periods.    

This is reasonable because each route through which an aircraft arrives at a 

node predetermines the aircraft’s ground, loading/unloading, and refueling 

times.  Thus, the consumed capacity of a node in the NRMO is obtained by 

multiplying the number of aircraft arriving at a node with appropriate service 

times and summing all of them.   

 

Constraints (7) and (12) for coupling transportation assets and items are 

similar in nature.  However, because there are no explicit decision variables 

tracking the movement of pax and cargo through an arc in the NRMO, the 

left-hand side of constrainsts is the amount of pax and cargo of a deployable 

unit moved by a specific aircraft type, i.e., cvtCT  for tvc ,, , and the right-hand 

side is the capaciy of the number of missions of that specific aircraft type 

through all arcs to move associated unit’s pax and cargo, i.e., 

∑ ×
l

lcvtTFcapacity  for tvc ,, .   
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Demand satisfaction constraints (13) and (14) are similar to the ones in the 

NRMO with the exception that no inventory variables are defined for 

pax/cargo and non-delivery of items is allowed.  Thus, the left-hand side is 

the sum of the amount of cargo moved by all possible arrival options of 

pax/cargo over allowable time periods and the amount of non-delivered pax 

and cargo.  Flow-balance constraints at transshipment nodes in the NRMO are 

essentially the same as constraints (18) in the NRMO except that they are 

defined only for items and not for item and vehicle pairs.  Notice that 

constraints (13)-(14) and (18) are defined for all items in the NRMO and for 

only leader items in the CMDPM.      

 

In the NRMO, there are no constraints resembling (15)-(17), (19), and (20)-

(22).  There are constraints regarding the crew availability, aircraft utilization 

and aircraft-hours consumption which we do not address in the CMDPM in 

compliance with the purpose of the model.   

 

3.3.  Computational results for CMDPM  

 

 Table 6 summarizes the characteristics of the problems generated to test 

the performance of the CMDPM.  In the test problems, three networks of 

different sizes are used.  The numbers of nodes and arcs are, respectively, 13, 

18, 25 and 48, 77, and 109.  Five problems are generated for each network by 

setting the number of item indices to 4, 8, 16, 32, and 64.  Four deployment 

components consisting of equal number of item indices are assumed in all 

problems.  The home bases of the components are different for all problems, 

i.e., four source nodes.  There are three destinations for problems 1 through 10 

and four destinations for the remaining ones.  A precedence relationship is 
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established between two components in arriving at the destination for 

problems 1 through 10.  In all problems, the deployment components can use 

six different indices of transportation assets that are located at three different 

locations.  A time window of 20 time periods is allocated to units to arrive at 

their destinations for the smallest-size network and a time window of 40 time 

periods for the remaining two networks.  The time span of the planning is 100 

time periods in all problems.  The number of fractional and binary variables 

and the number of constraints in the test problems are given in the table.  The 

GAMS codes of all test problems are given in the CD on the back cover of the 

dissertation. 

  

Table 6.  Characteristics of the generated test problems. (FV : fractional 
variables, BV : binary variables, C : constraints)  

Pr.Id. N  A  SN  DN  G C V TD T Number
of FV

Number 
of BV 

Number  
of C

1 13 49 4 3 4 4 6 20 100 189400 19600 60742
2 13 49 4 3 4 8 6 20 100 312200 19600 68308
3 13 49 4 3 4 16 6 20 100 557800 19600 93352
4 13 49 4 3 4 32 6 20 100 1049000 19600 189772
5 13 49 4 3 4 64 6 20 100 2031400 19600 334335
6 19 77 4 3 4 4 6 40 100 296200 30800 78076
7 19 77 4 3 4 8 6 40 100 488600 30800 185041
8 19 77 4 3 4 16 6 40 100 873400 30800 264068
9 19 77 4 3 4 32 6 40 100 1643000 30800 626026

10 19 77 4 3 4 64 6 40 100 3182200 30800 1482804
11 25 109 4 4 4 4 6 40 100 417400 43600 123811
12 25 109 4 4 4 8 6 40 100 689000 43600 279813
13 25 109 4 4 4 16 6 40 100 1232200 43600 607781
14 25 109 4 4 4 32 6 40 100 2318600 43600 1478113
15 25 109 4 4 4 64 6 40 100 4491400 43600 2975420

 

 The computational tests are implemented on a 1.5 GHz PIV PC with 1.5 GB 

RAM by using ILOG CPLEX 9.0 and by letting the models run until the 

desired optimality criterion is attained or for eight hours (28800 CPU seconds) 

at maximum.  The solution times at which LP relaxation (at the root node) is 
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solved and 10%, 5%, and 0% deviation from optimality are achieved are 

recorded in all computational studies.    

 

 Table 7 gives the solution times of the CMDPM for problems 1 through 5 

where constraints ( 2 )  and ( 3 )  are not used, i.e., an infinite number of 

transportation assets of each index is assumed.  Table 7 shows that the 

solution times of CMDPM based on a direct use of CPLEX 9.0 are not good 

enough to be used in a real-world application.  The optimal solutions of the 

CMDPM are obtained only for problems 1 and 2 in around 5,000 CPU 

seconds.  However, even the root solutions cannot be obtained for problems 4 

and 5 in the allocated time.  Hence, a solution methodology to improve the 

solution times of the CMDPM is needed for real-world applications. In what 

follows, we give the proposed methodology and the solution times based on 

it. 

 

Table 7. Solution times of CMDPM (CPU seconds).  A “-“ for a corresponding 
optimality criterion shows that the branch and bound jumps to a solution 
with a lower optimality criterion. 

CMDPM  

Pr.Id. Root 10% 5% 0% 

1 10.42 - - 48.67
2 267.22 3623.99 - 4536.65
3 2511.03 - - 5182.31
4 11980.34 NO INTEGER SOLUTION 
5 NO ROOT SOLUTION
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3.4.  Proposed solution methodology 

 

 The proposed solution methodology includes finding a relaxation and 

restriction of the CMDPM and then using their solutions in solving the 

CMDPM.  Let *
RELz , CMDPMz , and *

RESx  denote the optimal objective function 

value of the CMDPM-REL, the lower bound for the optimal objective function 

value of the CMDPM, and the optimal solution of the CMDPM-RES, 

respectively.  The procedure works as follows: (1) Solve the CMDPM-REL 

using CPLEX and set CMDPMz  to *
RELz .  (2) Solve the CMDPM-RES using 

CPLEX and set its solution *
RESx  as a starting solution of the CMDPM.  The 

objective function value corresponding to *
RESx  is an upper bound on the 

optimal objective function value of the CMDPM.  (3) Solve the CMDPM using 

CPLEX with the given initial starting solution and lower bound.  The details 

of the solution methodology are depicted in Figure 4. 

 

 If the time available to solve the CMDPM is restricted, time limits to solve 

the CMDPM-REL, CMDPM-RES, and/or CMDPM may be set by the user.  

Thus, it is possible that some models are not solved to optimality.  In such a 

case, the solution methodology is modified as follows.  If the CMDPM-REL is 

not solved to optimality within the given time limit, the lower bound RELz  for 

the optimal objective function value *
RELz  of CMDPM-REL obtained at the end 

of the time limit is set as the CMDPMz .  If the CMDPM-RES is not solved to 

optimality, then the solution RESx  of the CMDPM obtained at the end of the 

time limit is set as the initial starting solution for the CMDPM.  The CMDPM 

is then solved with the given lower bound and the given initial starting 

solution.  If the CMDPM is not solved to optimality within the set time, then 
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the solution reached at the end of the time limit is used as a feasible solution.  

Such an approach may be of use when the user wants to have simply as good 

a solution as is practicable when the time limit is reached. 

 

  The CMDPM-REL is obtained by relaxing some requirements in the 

CMDPM.  In the CMDPM, a deployment component is required to move as a 

whole from its origin to its destination.  In the CMDPM-REL, however, this 

requirement is observed only on the arcs outgoing from (incoming to) source, 

demand, and transfer nodes, i.e., a deployment component is not required to 

move as a whole on the intermediate arcs.  In the CMDPM, items can move 

only when coupled with transportation assets.  In the CMDPM-REL, this is 

required only on the arcs outgoing from (incoming to) source, demand, and 

transfer nodes.  Thus, items can move by themselves without being assigned 

to transportation assets on the intermediate arcs.  In the CMDPM, flow-

balance of all items is observed at all nodes and coupling of an item and a 

transportation asset is not allowed to change in the same transport mode.  In 

the CMDPM-REL, however, flow-balance at all nodes is required only for 

leader items.  Non-leader items appear only on the arcs outgoing from 

(incoming to) source, demand, and transfer nodes.  Thus, coupling of a non-

leader item and a transportation asset is allowed to change on the same 

transport mode.    

 

 The CMDPM-REL is formulated by restricting some of the constraint-

defining sets to their subsets, thereby deleting the related constraints.  

Specifically, we redefine constraints ( 7 ) -(12) and (20)-(21) for )( inout AAl ∪∈  

and constraints (18) and (19) for CFIRSTc∈ .  Here, U
)( TRDS NNNi

iout AFA
∪∪∈

=  and 
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U
)( TRDS NNNi

iin ABA
∪∪∈

=  are the sets of arcs outgoing from source, demand, and 

transfer nodes and incoming to source, demand, and transfer nodes, 

respectively. 

 

 The CMDPM-RES is obtained by fixing the time periods at which 

deployment components arrive at destinations and transfer points.  The 

CMDPM-RES is formulated by fixing the values of the decision variables lctY  

that correspond to inAl∈  and ictIC  in the CMDPM.  In deciding the values of 

the decision variables to fix, the solution of the CMDPM-REL is used.  The 

values of the decision variables lctY , inAl∈ , and ictIC  in the solution RELx  of 

CMDPM-REL are set to the values of the corresponding decision variables in 

the CMDPM.  The CMDPM-RES determines the routes and schedules of the 

deployment components and the allocation of transportation assets and 

transportation infrastructure given the arrival times of the deployment 

components at destinations.  Hence, the CMDPM-RES is solved to optimality 

in a very short time.  

 

 One main question is whether the CMDPM-RES may be infeasible or not. 

There is a possibility of infeasibility when the number of transportation assets 

is not sufficient to make the deployment components ready at their fixed 

times.  However, this is a strong indication, based on our empirical studies, 

that the CMDPM itself is infeasible because the availability of transportation 

assets is checked in the CMDPM-REL.  In such a case, our suggestion is to 

change data, e.g., increase the number of available number of transportation 

assets or change the time windows at which units are to be at their 

destinations, and restart the solution methodology.     
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Figure 4.  The solution methodology 

 

3.5.  Computational results for the proposed solution methodology 

 

We test the performance of the proposed solution methodology using the 

test problems 1 through 15 defined in Table 6.  The model is tested for both an 

unlimited and limited supply of transportation assets.   

 

Table 8 and Table 9 give the solution times in CPU seconds for unlimited 

and limited fleet sizes, respectively, for CMDPM-REL and CMDPM-RES.  The 

CMDPM 
Obtain CMDPM-REL

Define constraints (7)-(12), and (20)-
(21)  for )( inout AAl ∪∈ , and (18)-

(19) for CFIRSTc∈  of CDPM 

*
RELz  

Obtain CMDPM-RES
Set lctY  corresponding to 

inAl∈  and ictIC  in *
RELx  to 

corresponding variables in 
CMDPM 

*
RELx  

Solve CMDPM-RES

CMDPM-REL 

CMDPM-RES 

Set *
RESx  as an initial starting 

solution of CMDPM 

*
RESx  

Set *
RELCMDPM zz =  

Solve CMDPM

Solve CMDPM-REL 
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solution times for CMDPM are not presented because the optimal objective 

function values of the CMDPM-RES are either equal to or slightly greater than 

(the difference is less than 0.01%) those of the CMDPM-REL and the optimal 

solutions of CMDPM-RES are feasible for CMDPM for all problems.  That is, 

the optimal solutions of the CMDPM-RES are also optimal for the CMDPM. 

 

Table 8. Solution times of CMDPM-REL and CMDPM-RES (CPU seconds).  A 
“-“ for a corresponding optimality criterion shows that the branch and bound 
jumps to a solution with a lower optimality criterion. 

CMDPM-REL CMDPM-RES Pr.Id. 

 Root 10% 5% 0% 0% 

Total 
Solution 

Time 

1 10.64 348.21 373.37 405.91 7.69 413.60
2 67.94 - - 792.12 8.56 800.68
3 47.25 - 54.40 197.17 4.64 201.81
4 92.48 - 97.88 553.61 5.63 559.24
5 112.92 - 115.437 574.10 4.28 578.38
6 80.67 - - 115.60 3.91 119.51
7 314.23 - - 362.34 5.08 367.42
8 456.25 - - 514.73 6.97 521.70
9 344.76 - - 457.54 12.90 470.44

10 609.78 - - 612.36 23.94 636.30
11 176.60 - - 472.06 6.68 478.74
12 567.06 - - 854.23 5.78 860.01
13 562.66 - - 565.47 12.07 577.54
14 554.52 - - 557.93 22.35 580.28
15 805.44 - - 1035.90 45.27 1081.17

 

 

The results in Table 8 and Table 9 can be considered in two groups, one for 

the results of problems 1-5 and the other for the results of problems 6-15.  The 

total solution times for the latter group range from 119.51 (Pr. 6) to 1081.17 

(Pr. 15) CPU seconds in Table 8 and from 193.17 (Pr. 6) to 4005.64 (Pr. 13) CPU 
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seconds in Table 9.  On the average, the solution times of the CMDPM-REL 

account for more than 98% of the total solution times.  The times at which the 

root solution and the optimal solution of the CMDPM-REL are reached are 

very close to each other because the optimal solutions are obtained at the root 

node or after fathoming a small number of nodes in the branch and bound 

algorithm.  No solution times of the CMDPM-REL are presented in the fields 

corresponding to the optimality criteria of 10% and 5% because the branch 

and bound jumps directly to the optimal solution from the first integer 

solution with a 20-30% gap between the lower and upper bounds. 

 

Table 9. Solution times of CMDPM-REL and CMDPM-RES (CPU seconds).  A 
“-“ for a corresponding optimality criterion shows that the branch and bound 
jumps to a solution with a lower optimality criterion. 

CMDPM-REL CMDPM-RES  
Pr.Id. 

 
Root 10% 5% 0% 0% 

Total 
Solution 

Time 
1 12.834 961.50 1098.66 1404.79 5.76 1410.55
2 96.55 - - 1270.85 7.21 1278.06
3 109.75 115.42 - 499.82 3.45 503.27
4 86.27 98.36 - 572.47 4.43 576.90
5 153.95 156.39 - 965.26 6.87 972.13
6 130.17 - - 182.10 11.07 193.17
7 498.36 - - 519.33 16.02 535.35
8 918.48 - - 935.56 28.07 963.63
9 836.21 - - 881.91 46.44 928.35

10 1169.78 - - 1203.05 98.48 1301.53
11 253.70 - - 2983.39 21.99 3005.38
12 1597.69 - - 3755.53 31.44 3786.97
13 2881.34 - - 3959.07 46.57 4005.64
14 2238.60 - - 2310.08 84.79 2394.87
15 2276.52 - - 2375.29 191.33 2566.62
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The total solution times for problems 1-5 range from 201.81 (Pr. 3) to 

800.68 (Pr. 2) CPU seconds in Table 8 and from 503.27 (Pr. 3) to 1410.55 (Pr. 1) 

CPU seconds in Table 9.  As in problems 6-15, the solution times of the 

CMDPM-REL account for more than 98% of the total solution times.  

However, unlike in the problems 6-15, the times at which the root solutions 

and the optimal solutions of the CMDPM-REL are reached are not close.  The 

average ratios of the root solution times to total solution times of the 

CMDPM-REL for problems 1-5, 6-10, and 11-15 are about 12%, 84%, and 76% 

in Table 8 and 12%, 90%, and 80% in Table 9. The branch and bound 

algorithm finds a first integer solution in a very short time (in seconds) after 

the root solution. The gap between the lower and upper bounds is about 20% 

for problems 1-2 and between 5% and 10% for problems 3-5.  The upper 

bounds, i.e., the first integer solutions, are very close to the optimal solutions 

and the branch and bound algorithm finds a first integer solution in a very 

short time (in seconds) after the root solution.  However, the branch and 

bound spends around 90% of the total solution times to increase the lower 

bounds.  For example, for problem 1 in Table 8 (Table 9), the difference 

between the integer solution obtained at 38.55 (22.26) seconds and the optimal 

solution obtained at 405.91 (1404.79) seconds is less than 0.001%.  This 

combined with the results for problems 6-15 leads one to think that the 

optimal solutions are close to the upper bounds.    

 

 The solution times in Table 9 are worse than those in Table 8.  This is 

expected.  The worst case is for problem 13 where the solution time in Table 8 

is about one seventh of its corresponding solution time in Table 9 while the 

best case is for problem 4 where the solution time in Table 8 is about 97% of 

its corresponding solution time in Table 9.  
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 There are no preceding results to compare with ours.  However, solution 

times in Table 8 and Table 9 are really encouraging for a real world 

application as it is known by experience that it may take a planner about one 

week to come up with a feasible, not optimal, detailed deployment plan for 

the size of the problem that we deal with.  

 

The solution times in all tables are obtained under certain parameter 

settings of the CPLEX.  Our experience shows that using the bound 

strengthening has the effect of worsening the solution times almost ten times.  

Using cuts also has an adverse effect on the solution times.  The aggressive 

scaling parameter improves the solution times of the CMDPM-REL but 

worsens those of the CMDPM-RES and the CMDPM.  The algorithm used to 

solve the LP relaxations at the nodes is primal simplex for the CMDPM-REL 

and CMDPM and dual simplex for the CMDPM-RES.  The steepest-edge 

pricing is good for the CMDPM-REL while the devex pricing is good for the 

CMDPM-RES and the CMDPM.  In addition, best bound node strategy in 

selecting a node, and pseudo costs in selecting branching variable improves 

the solution times of the models. 

  

 Computational results show that the CMDPM-REL and the CMDPM-RES 

obtained from the solution of the CMDPM-REL provides so good a lower 

bound and an upper bound, respectively, that an optimal (near-optimal) 

solution to the CMDPM can be obtained without having to solve the 

CMDPM.  Why the CMDPM-REL provides so good a bound is explained as 

follows.  In the CMDPM, the movement of a component as a whole, the 

coupled movements of items of a component and transportation assets, and 

tracking the movements of all items of a component are required on all arcs 
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from the origin to the destination of a component.  In the CMDPM-REL, these 

are required only on the arcs adjacent to the origin, the destination, and 

possible transfer points of a component.  In this regard, the number of 

transportation assets used to deploy a component at the origin and transfer 

points of a component is essentially the same in both CMDPM and CMDPM-

REL; however, the routes they follow in CMDPM and CMDPM-REL may 

differ.  With respect to cost, this means that fixed costs incurred in both 

CMDPM and CMDPM-REL are essentially the same; however, variable costs 

may differ.  Thus, the objective function values of CMDPM and CMDPM-REL 

are close to each other as their objective functions are the same.  What is done 

in the CMDPM-RES is actually to correct the relaxed requirements.  In this 

regard, we can mainly focus on improving the solvability of the CMDPM-

REL.       

 

3.6.  Conclusion 

 

 In this chapter, we have abstracted the DPP and developed the CMDPM, 

Cost Minimization Deployment Planning Model, to solve it.  The solution times 

for CMDPM based on a direct use of CPLEX 9.0 are not good enough to be 

used in a real-world application.  In this regard, we have proposed a solution 

methodology that involves an effective use of a relaxation and restriction 

strategy that significantly speeds up a CPLEX-based branch and bound.  The 

solution times for intermediate sized problems are around one hour at 

maximum, whereas it takes about a week in the Turkish Armed Forces to 

produce a suboptimal feasible solution based on trial-and-error methods for a 

problem of the same size.     
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 The CMDPM aims to develop deployment plans with minimum cost.  The 

model can be used for evaluating and assessing investment decisions in 

transportation infrastructure and transportation assets as well as for planning 

and execution of cost-effective deployment operations.  This model is of use 

in cases where carrying out a deployment operation in a short time is not 

important, i.e., the operation is not imminent, and cost is of primary concern.    

 

 In the next chapter, we give two models that will be of use in cases where 

carrying out deployment operation in a short time is of utmost concern and 

cost is of secondary concern.    
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CHAPTER 4 

 

 

LATENESS AND TARDINESS MINIMIZATION 
DEPLOYMENT PLANNING MODELS 

 

 In Chapter 3, we have introduced the CMDPM, Cost Minimization 

Deployment Planning Model.  The CMDPM is expected to be of use in cases 

where there is a need to create cost-effective deployment plans.  Such 

planning needs may occur when the operation is not imminent and hence 

there is enough time to create deliberate deployment plans taking cost into 

account.  Examples of such planning needs occur when updating operations 

plans for potential contingencies on a routine basis or when deploying units 

for exercises, international operations, e.g., peace support operations, or other 

purposes during peacetime.  The CMDPM is also expected to be of use when 

evaluating and assessing investment decisions regarding transportation 

infrastructure and transportation assets.     

 

 Although plans are made for possible contingencies from peacetime, 

events at an actual crisis typically do not evolve as predicted in contingency 

plans.  In fact, there may arise a contingency which is not at all considered in 

the peacetime.  In the former case, a refinement or a complete change of 

operations plans may be required, which leads to changes in deployment 
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plans.  In the case of a new contingency not considered at peacetime, a new 

operations plan must be prepared from scratch.  In both cases, the approach 

used in planning is different from the one used at peacetime.      

 

 During a crisis, the success of the operation is the main planning 

consideration.  Because the timely movement of units is the primary measure 

for success, time is of primary concern while cost is of secondary concern.  In 

contrast, because cost is the main planning consideration at peacetime, the 

deployment plans offered by the CMDPM are expected to target at minimum 

amount of resources used.  As a result, the CMDPM will suggest deployment 

plans that use the whole range of time windows of deployable units to the 

extent possible, i.e., arrival times of many deployable units at their 

destinations may be close to the upper bounds of their allowable time 

windows.  Hence, such plans leave little or no time to the units to compensate 

for possible delays caused by unexpected events (such as malfunctions of 

equipment/transportation assets or enemy attacks on some parts of the 

transportation network).  Such delays are likely to cause some deployable 

units not to arrive at their destinations within their time windows.  In this 

regard, deployment plans that draw the arrival times at destinations towards 

the lower bounds of time windows may be more valuable during wartime to 

protect against possible delays caused by unexpected events.  Why plans from 

peacetime are not prepared with this in mind is due to the fact that several 

possible contingencies are considered simultaneously during peacetime and 

that resources must be allocated to several contingencies such that a balance is 

established.  However, in actuality only one or two contingencies are realized 

at the same time.  Thus, all national resources can be directed towards 

thwarting off the imminent, realized threat(s).  In addition, the nature and 
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extent of the threat may directly dictate that units be deployed to their 

destinations in the shortest possible time within their time windows.  Such 

situations may usually occur after units’ initial deployments to their 

destinations, e.g., a redeployment of a unit to another operations area may be 

needed.  In this regard, deploying units to their destinations as soon as 

possible may be of primary concern to the planners during a crisis.  We refer 

to this criterion as that of minimizing the maximum lateness.  This can be 

achieved by minimizing the maximum of the differences between the units’ 

arrival times at their destinations and their earliest allowable arrival times. 

 

 Although plans are made to deploy all units to their destinations within 

their allowable time windows, there may be cases that prevent this goal from 

being realized.  For example, national resources may not be sufficient or some 

events may cause delays in the deployment of units.  This means that some 

deployable units arrive at their destinations after their allowable latest arrival 

times.  In such cases, the logical objective for operations planners is to draw as 

much as possible the arrival times of units to their latest allowable arrival 

times whenever such arrivals occur later than the latest permissible arrival 

time.  We refer to this objective as the minimization of tardiness.  This can be 

achieved by minimizing the maximum of the differences between units’ 

arrival times at their destinations and their latest allowable arrival times.  

 

 In this chapter, we propose two min-max models, one minimizes lateness 

and the other minimizes tardiness, to address the above cases, and report 

computational results based on the solution methodology given in Chapter 3. 
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4.1.  Modeling Time 

 

 The formulations of both models are based on the modeling structure of 

the CMDPM.  Hence, decision variables and constraint sets in the CMDPM 

with minor changes are used in the formulations.  This allows us to use the 

solution methodology developed for the CMDPM.   

 

 In the CMDPM, there are no decision variables tracking the 

departure/arrival times of units from/at the nodes of transportation network.  

Hence, there is a need to extract arrival times without changing the modeling 

structure of the CMDPM.   

 

 Different formulations are possible to extract arrival times using the 

modeling structure in the CMDPM.  Actually, it is possible to extract arrival 

times without defining any additional variables.  For example, the arrival time 

of an item c  (items of index c ) at node i , icAT , may be defined as 

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
×= ∑

∈
− c

tvABl
trvtlcvic demandCTtAT

i

loaded
lv

,,
, .  To justify this expression, observe 

first that item c  is required to move as a whole by constraints (20) so that 

item c   activates only one of the arcs incoming to i , i.e., iABl∈ , only once.  

Thus, ( )ctrvtlcv demandCT loaded
lv−,  takes the value of 1 only once.  This is why the 

summation is over all time periods and all incoming arcs at i , iABl∈ .  

Although it is possible to use this given formulation or other formulations 

using only the decision variables of the CMDPM to extract arrival times, our 

experimentation with different formulations has led us to use the following 
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formulation for better computational results.  The formulation is closely 

related to the one given above and is as follows: 

 

ictc
vABl

trvtlcv XdemandCT
i

loaded
lv

=⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
∑

∈
−

,
,  tci ,,  (25) 

icttic XtAT ×=max  ci,  (26a) 

∑ ×=
t

ictic XtAT  ci,  (26b) 

ictic XtAT ×≥  tci ,,  (26c) 

 

 In this formulation, ictX  is a binary variable that takes on the value of 1 if 

item c  arrives at node i  at time t  and 0 otherwise.  Due to the unsplittable 

flow requirement provided by constraints (20), all terms in the summation on 

the left-hand-side of (25) are zero except one term which is 1.  Consequently, 

ictX  takes on the value of 1 for exactly one t  value while it is 0 for all other 

values of t .  Then, there remains only to multiply ictX  with the time index to 

extract the correct arrival time for item c  at node i .  This is done by either 

constraint (26a), (26b), or (26c). 

 

4.2.  Lateness Minimization Deployment Planning Model (LMDPM) 

 

 In this section, we introduce the Lateness Minimization Deployment Planning 

Model (LMDPM).  The objective in the LMDPM is to minimize the maximum 

lateness and hence is of min-max type.  The purpose is to minimize the 

maximum of the differences obtained by subtracting the units’ earliest 

allowable arrival times at their destinations from the arrival times of units 

determined in the model.  The model aims to develop a deployment plan for 
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deployable units in which the arrival times of units at their destinations are as 

much close to the lower bounds of their allowable time windows as possible.    

 

 All the modeling artifacts used in the development of CMDPM are valid in 

the development of LMDPM.  Thus, all sets, data, and decision variables 

regarding the network, deployable items, transportation assets, and time 

periods are used as defined in Chapter 3.  Now, we give the formulation of 

the LMDPM. 

 

4.2.1.  Model (LMDPM) 
 

Objective Function 

( )cictatCDCFIRSTcNiXYICIVCTTETF
aXt

ciD

−×
≥∩∈∈ ),(,,,,,,,

MaxMinimize   (27)

 

Constraints 

In addition to Constraints ( 2 )-(24), 

ictc
vABl

trvtlcv XdemandCT
i

loaded
lv

=⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
∑

∈
−

,
,  ciD atCDCFIRSTcNi ≥∩∈∈ ),(,  (28)

                                           { }10,∈ictX  tci ,,  (29)

  

 The LMDPM is obtained by using the first option (26a) for modeling time.  

The objective function (27) minimizes the maximum of the differences 

between arrival times of leader items at their destinations and their earliest 

allowable arrival times.  This is equivalent to minimizing the maximum 

lateness of deployment components as well as that of units because a 

deployment component can be tracked only by its leader item and the arrival 
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time of a unit at its destination is equal to the largest of the arrival times of its 

components.  Notice that the term ictXt×  gives the arrival time of the leader 

item c  of a component as explained in constraints (26a) through (26c).  

Subtracting earliest allowable arrival time ca  of the leader item c  at its 

destination from its earliest arrival time, ictXt× , defines the deviation of the 

arrival time of the component from its earliest allowable time.  Hence, 

minimizing the maximum of these differences requires that the arrival times 

of deployment components at their destinations be as close to their earliest 

allowable times as possible.  Constraints (28) are the same as constraints (25) 

except that they are defined for restricted sets in compliance with the 

objective function.   

 

 Because the objective function is nonlinear, the resulting model is a 

nonlinear mixed integer program.  However, it can easily be linearized by the 

usual linearization method used for min-max objective functions.   

 

 The term ( )cictatCDCFIRSTcNi
aXt

ciD

−×
≥∩∈∈ ),(,

Max  in the objective function (27) is 

equal to the smallest number z  that satisfies ( )cict aXtz −×≥Max  for 

ciD atCDCFIRSTcNi ≥∩∈∈ ),(, .  For this reason, LMDPM is equivalent to the 

Lin-LMDPM, Linearized LMDPM, given below.       
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Linearized LMDPM (Lin-LMDPM) 

 

Objective Function 

z
zXYICIVCTTETF ,,,,,,,

Minimize  (30)

 

Constraints  

In addition to constraints ( 2 )-(24) and (28)-(29), 

cict aXtz −×≥   
ciD atCDCFIRSTcNi ≥∩∈∈ ),(,  (31)

( ) c
at

ict aXtz
c

−×≥ ∑
≥

  )(, iD CDCFIRSTcNi ∩∈∈  (32)

   

 In the Lin-LMDPM, constraints (32) are not actually the result of the 

linearization of the LMDPM.  Constraints (32) are obtained by summing over 

time component on the right-hand-side of constraints (31) and, accordingly, 

dropping time component from the sets for which constraints (31) are defined.  

Constraints (32) do not change the feasible space due to the unsplittable flow 

requirement that ensure that the variable ictX  take on the value of 1 only once 

for a leader item c  for all time periods.  Notice that if the LMDPM is modeled 

using the second option (26b) for modeling time, the linearization process 

ends up only with constraints (32).  In this regard, constraints (31) and (32) 

can be used stand-alone as well as together. 

 

 The preference to use both constraints (31) and (32) in the Lin-LMDPM is 

for computational improvement.  Our experience has shown that Lin-

LMDPM with only one of the constraints (31) and (32) is computationally bad.  

When constraints (31) are used alone, the objective function value of the LP 
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relaxation of the Lin-LMDPM, i.e., the lower bound, is too low.  Hence, it 

takes a lot of time to increase the lower bound.  When constraints (32) are 

used alone, the lower bound increases dramatically.  However, the 

summation over all time periods creates too many fractional values in the 

solution.  When constraints (31) and (32) are used together, solution times 

decrease significantly.  

 

 To see how constraints (32) increase the lower bound, assume that the 

earliest time for a leader item c  (unit) to arrive at its destination is 60.  

Assume also that in the solution of the LP relaxation, 50.=ictX  for 65=t  and 

70=t , i.e., unsplittable flow requirement is violated.  Thus, without 

constraints (32), the right-hand-side of constraints (31) is 527605065 .. −=−×  

and 25605070 −=−× .  for 65=t  and 70=t , respectively.  On the other hand, the 

right-hand-side of constraints (32) is 576050705065 .)..( =−×+× .  It is clear that 

constraints (32) dramatically increase the lower bound.   

 

4.2.2.  Computational Results 
 

 We test the performance of the Lin-LMDPM by using the same test 

problems, computer, solver, stopping criteria, and solution methodology used 

for testing the performance of the CMDPM.   

 

 The relaxation Lin-LMDPM-REL and the restriction Lin-LMDPM-RES of 

the Lin-LMDPM correspond to the relaxation CMDPM-REL and the 

restriction CMDPM-RES of the CMDPM, respectively.  The Lin-LMDPM-REL 

is obtained in the same way the CMDPM-REL is obtained, i.e., redefine 

constraints ( 7 ) -(12) and (20)-(21) for )( inout AAl ∪∈  and constraints (18) and 
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(19) for CFIRSTc∈  and keep the objective function and all other constraints in 

Lin-LMDPM as is.  The formulation of the Lin-LMDPM-RES is the same as 

that of the CMDPM-RES with the exception that the values of the decision 

variables ictX , DNi∈ , are also fixed in addition to the values of the decision 

variables lctY  that correspond to inAl∈  and ictIC  in the Lin-LMDPM. 

 

When the fleet size is not restricted, it is clear that the objective function is 

zero because the model fixes the arrival times of deployable units to their 

earliest allowable times by drawing as many transportation assets as needed 

from the pool of transportation assets.  The solution times for this usage of the 

model are in seconds and hence not presented.   

 

Table 10 gives the solution times in CPU seconds for limited fleet sizes for 

the Lin-LMDPM-REL and the Lin-LMDPM-RES.  The solution times for the 

LMDPM are not presented because the optimal objective function values of 

the Lin-LMDPM-RES are equal to those of the Lin-LMDPM-REL and the 

optimal solutions of the Lin-LMDPM-RES are feasible for the Lin-LMDPM for 

all problems.  That is, the optimal solutions of the Lin-LMDPM-RES are also 

optimal for the Lin-LMDPM. 

 

 The total solution times in Table 10 range from 37.70 (Pr. 1) to 2104.85 (Pr. 

15) CPU seconds where the solution times of the Lin-LMDPM-REL account 

for more than 98% of the total solution times of the Lin-LMDPM as in the case 

of the CMDPM.  The root solutions of the Lin-LMDPM-REL are obtained in 

relatively short times.  However, a first integer solution is not found in a very 

short time after the root solution unlike in the case of the CMDPM.  A first 

integer solution is generally found in later phases of the branch and bound 
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algorithm.  The gaps between the first integer solutions and the lower bounds 

range from 60% to 90%.  It turns out that that the optimal solutions are 

generally close to the first integer solutions and a significant amount of time is 

spent to increase the lower bound.    

 
 
Table 10.  Solution times of Lin-LMDPM-REL and Lin-LMDPM-RES (CPU 
seconds).  A “-“ for a corresponding optimality criterion shows that the 
branch and bound jumps to a solution with a lower optimality criterion. 

Lin-LMDPM-REL Lin-LMDPM-RES  

Pr.Id. 

 
Root 10% 5% 0% 0% 

Total 
Solution 

Time 

1 1.66 - - 36.58 1.12 37.70
2 6.14 - - 37.16 1.17 38.33
3 4.30 - - 55.75 3.67 59.42
4 16.56 - - 319.13 4.94 324.07
5 43.36 - - 491.11 5.64 496.75
6 9.77 - 155.34 306.00 2.98 308.98
7 58.52 - - 178.00 4.66 182.66
8 121.84 - - 973.20 5.12 978.32
9 85.59 - - 651.97 8.49 660.46

10 99.63 - 837.56 903.45 17.21 920.66
11 15.83 - - 357.78 4.32 362.10
12 82.48 - - 342.08 4.59 346.67
13 96.19 - - 1616.11 7.43 1623.54
14 54.94 - - 636.91 17.25 654.16
15 58.83 - - 2062.13 42.72 2104.85

 

  

 The solution times in Table 10 are obtained under certain parameter 

settings of the CPLEX.  Our experience shows that using the bound 

strengthening and cuts has an adverse effect on the solution times as in the 

case of CMDPM.  Although the aggressive scaling parameter is good for the 

CMDPM, it is not for the Lin-LMDPM-REL and hence only standard scaling is 
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used.  The algorithm used to solve the LP relaxations at the nodes is primal 

simplex for the Lin-LMDPM-REL and the dual simplex for the Lin-LMDPM-

RES.  The pricing, branching, and node-selecting strategies used are devex 

pricing, strong branching, and best bound node, respectively.   

 

 Computational results show that the Lin-LMDPM-REL and the Lin-

LMDPM-RES obtained from the solution of the Lin-LMDPM-REL provides so 

good a lower bound and an upper bound, respectively, as in the case of the 

CMDPM that an optimal (near-optimal) solution to the Lin-LMDPM can be 

obtained without having to solve the Lin-LMDPM.  In this regard, we can 

again mainly focus on improving the solvability of the relaxation Lin-

LMDPM-REL.       

 

4.3.  Tardiness Minimization Deployment Planning Model (TMDPM) 

 

 In the LMDPM, it is implicitly assumed that it is possible to deploy all 

units to their destinations within their time windows, i.e., the problem is 

feasible.  However, there may be cases where the problem is infeasible.  

Although there may be long-term decisions (such as increasing the processing 

capacity of an airfield) to get rid infeasibility, short-term and implementable 

decisions are of high value during a crisis.  One possible short-term decision, 

relative to increasing the capacity of an airfield, is to increase the fleet size at 

the expense of increased cost and coordination requirements, e.g., to 

communicate with civilian companies for determining appropriate 

transportation assets and getting them to sign a lease.  Another decision is to 

change time windows the units are assigned to.  Then, there comes decisions 

on determining which ones and how much to change, which are not easy to 
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make.  Another option is to give priorities to units and allow units with low 

priorities to arrive at their destinations later than required, i.e., after their 

latest arrival times.  In this case, how many low-priority units and how late 

they will be are arising questions.  One viable decision during a crisis is to 

allow late deliveries but require that lateness after latest arrival times, which we 

call tardiness, be minimized.  The purpose of this section is to introduce the 

model developed for this purpose. 

 

 We call the second model Tardiness Minimization Deployment Planning 

Model (TMDPM).  The objective in the TMDPM is to minimize maximum 

tardiness and hence is of min-max type.  The purpose is to minimize the 

maximum of the differences obtained by subtracting the units’ latest 

allowable arrival times at their destinations from the arrival times of units 

determined in the model.  The model aims to develop a deployment plan in 

which the arrival times of units that cannot be deployed within their time 

windows at their destinations are drawn to their latest allowable arrival times.    

 

 The development of the TMDPM is similar to that of the LMDPM.  The 

decision variables, sets, and data used in the TMDPM are the same as those in 

the LMDPM. 
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4.3.1.  Model (TMDPM) 
 

Objective Function 

( )cictbtCDCFIRSTcNiXYICIVCTTETF
bXt

ciD

−×
≥∩∈∈ ),(,,,,,,,

MaxMinimize  (33) 

 

Constraints 

In addition to Constraints ( 2 ) -(12), (15)-(24), and (28)-(29), 

01 =−− ∑
∈

−−
vABl

trvtlcvticict
i

loaded
lv

CTICIC
,

,,  
ciD atCFIRSTcCDcNi ≥∈∈∈ ,,,  

 
(34)

cict demandIC ≡  TtCFIRSTcCDcNi iD =∈∈∈ ,,,  
 
(35)

  

 The objective function (33) is the same as objective function (27) except 

that ca  in the inner term is replaced by cb , i.e., it minimizes the maximum of 

the differences between arrival times of leader items at their destinations and 

their latest allowable arrival times.     

 

 Constraints (34) and (35) are the same as constraints (13) and (14), 

respectively, except that the set of time periods for which constraints (13) and 

(14) are defined are expressed for cat≥  and Tt=  instead of cTDt∈  and cbt= , 

respectively.  These changes in constraints (13) and (14) are needed because 

units are allowed to arrive at their destinations at any time after their earliest 

allowable times, not only within their time windows. 

  

 The TMDPM is a nonlinear mixed integer program that can be linearized 

in the same way LMDPM is linearized. 
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 The term ( )cictbtCDCFIRSTcNi
bXt

ciD

−×
≥∩∈∈ ),(,

Max  in the objective function (33) is 

equal to the smallest number z  that satisfies ( )cict bXtz −×≥Max  for 

ciD btCDCFIRSTcNi ≥∩∈∈ ),(, .  For this reason, TMDPM is equivalent to the 

Linearized TMDPM, Lin-TMDPM, given below. 

 

Linearized TMDPM (Lin-TMDPM) 

 

Objective Function 

z
zXYICIVCTTETF ,,,,,,,

Minimize  (36)

 

Constraints  

In addition to constraints ( 2 ) -(12), (15)-(24), (28)-(29), and (34)-(35), 

cict bXtz −×≥
 

ciD btCDCFIRSTcNi ≥∩∈∈ ),(,  (37)

( ) c
bt

ict bXtz
c

−×≥∑
≥

 )(, iD CDCFIRSTcNi ∩∈∈  (38)

  

 Note the resemblance between constraints (31)-(32) and constraints (37)-

(38), respectively.    

 

4.3.2.  Computational Results 
 

 We test the performance of the Lin-TMDPM in the same way we have 

tested the Lin-LMDPM.  The relaxation Lin-TMDPM-REL and the restriction 

Lin-TMDPM-RES of the TMDPM are obtained in the same way the relaxation 

Lin-LMDPM-REL and the restriction Lin-LMDPM-RES are obtained, 

respectively.       
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Table 11 gives the solution times in CPU seconds for limited fleet sizes for 

the Lin-TMDPM-REL and the Lin-TMDPM-RES.  The solution times for the 

TMDPM are not presented because the optimal objective function values of 

the Lin-TMDPM-RES are equal to those of the Lin-TMDPM-REL and the 

optimal solutions of the Lin-TMDPM-RES are feasible for the Lin-TMDPM for 

all problems.  That is, the optimal solutions of the Lin-TMDPM-RES are also 

optimal for the Lin-TMDPM. 

 

The solution times in Table 11 range from 112.33 (Pr. 1) to 6747.23 (Pr. 5) 

CPU seconds.  As in the cases of CMDPM and Lin-LMDPM, the solution times 

of the relaxation Lin-TMDPM-REL account for more than 98% of the total 

solution times of the Lin-TMDPM.  The root solutions of the Lin-TMDPM-REL 

are obtained in relatively short times.  However, a first integer solution is in 

later phases of the branch and bound algorithm.  The gaps between the first 

integer solutions and the lower bounds range from 80% to 90% because the 

lower bounds are close to zero.  However, the branch and bound generally 

jumps to the optimal solutions after finding a first integer solution, i.e., the first 

integer solution is generally optimal or close to optimal.   

 

 The solution times obtained for the Lin-TMDPM by using the solution 

methodology are not as good as the ones obtained for the Lin-LMDPM.  

However, they still seem promising for real-world applications when 

compared to the average time of one week needed to develop a deployment 

plan in the current practice.  One reason for the increase in solution times is 

that the change of time windows from [ ]cc ba ,  to [ ]Tac ,  increases the size of 

the feasible set of solutions which in turn increases the times spent in the 

algorithm. 
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Table 11.  Solution times of Lin-TMDPM-REL and Lin-TMDPM-RES (CPU 
seconds).  A “-“ for a corresponding optimality criterion shows that the 
branch and bound jumps to a solution with a lower optimality criterion. 

Lin-TMDPM-REL Lin-TMDPM-RES  

Pr.Id. 

 
Root 10% 5% 0% 0% 

Total 
Solution 

Time 

1 1.98 - - 110.24 2.09 112.33
2 9.55 - - 498.98 5.43 504.41
3 16.92 - - 189.45 3.46 192.91
4 40.31 - - 312.17 6.36 318.53
5 85.39 - - 6742.41 4.82 6747.23
6 17.00 - - 393.59 3.19 396.78
7 35.62 - - 662.87 5.62 668.49
8 220.28 - - 4376.65 5.49 4382.14
9 142.30 - - 3468.33 15.87 3484.20

10 73.01 - - 3882.67 27.76 3910.43
11 18.60 - - 380.47 4.39 384.86
12 43.43 - - 632.35 7.15 639.50
13 80.89 - - 1773.67 14.05 1787.72
14 71.11 - - 893.33 29.53 922.86
15 65.19 - - 1018.30 38.64 1056.94
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CHAPTER 5 

 

 

A HEURISTIC ALGORITHM 

 

 The solution methodology developed to solve the three models, CMDPM, 

Lin-LMDPM, and Lin-TMDPM, finds optimal solutions to intermediate-size 

problems in about one hour.  The current practice of trial-and-error finds 

feasible, not optimal, solutions to problems of the same size in about one 

week (including data collection, communication, ratification, etc.).  This 

shows that using analytical models improves both the solution quality and 

the solution time and hence embedding the models into a decision support 

system may be of great value to decision makers.     

 

 One of the main considerations in using a large-scale model such as ours 

in a decision support system is the solution time of the model.  The 

expectation is, of course, to obtain high-quality, i.e., optimal or near-optimal, 

solutions in a reasonable amount of time.  However, this is almost always not 

possible unless the model of concern has a special structure that facilitates its 

solution.  In such cases, the most commonly used approach is to use a 

heuristic algorithm to solve the problem.  The good of a model at this point is 

that it helps one to determine empirically how good the heuristic solutions 

are.    
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 The solution times that we have obtained for the test problems by using 

the solution methodology lead one to think that the problems of larger sizes 

will be solved in a reasonable amount of time and that the models and the 

solution methodology can be embedded into a decision support system.  

However, a reasonable amount of time cannot be guaranteed for all 

situations.  In the dissertation, the DPP is formulated, in essence, as a hybrid 

of multicommodity dynamic network flow and vehicle routing problems, 

which are both NP-hard.  Hence, the solution methodology based on direct 

use of CPLEX is highly likely to be insufficient to solve problems beyond a 

certain size in a reasonable amount of time.  This, combined with the fact that 

finding a feasible solution in a short time is of utmost value especially in crisis 

situations, makes it necessary to resort to heuristic solutions.   

  

 The purpose of this chapter is to propose a heuristic algorithm to solve the 

DPP and to compare heuristic objective functions and solution times for the 

test problems with those of the proposed solution methodology. 

 

5.1.  Heuristic Algorithm   

 

 The heuristic mainly involves solving a model in an iterative mode such 

that different sets of variables are fixed, suppressed, and/or set free at each 

iteration.  The output of the heuristic is a solution feasible for the model of 

concern.  In this regard, it is model-based and can be regarded as a means of 

finding a feasible solution for a model.  Now, we define the heuristic for the 

CMDPM-REL. 
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The Heuristic Algorithm 

 

Initialization. Suppose that we have a problem with 2≥G , i.e., there is more 

than one deployment component to be moved, and that the problem is 

modeled using the CMDPM-REL.  If there is a single deployment component, 

solve the CMDPM-REL directly without resorting to the heuristic.  Let ∅=′G  

where G′  refers to the set of deployment-component indices for which an 

arrival time at destination has been determined. 

 

Basic Iteration: 

As long as ∅≠G , 

 Select a member Gg∈  

 If ∅=′G ,  

  Solve CMDPM-REL for only g  and gCc∈ . 

  Record the values of the variables ictIC  for )(, gD CCFIRSTcNi ∩∈∈  and 

lctY  for )(,, giD CCFIRSTcABlNi ∩∈∈∈  in the solution RELCMDPMx −  as 

ictIC  and lctY , respectively. 

 If ∅≠′G , 

  Set ictIC  for )(,, gD CCFIRSTcGgNi ∩∈′∈∈  and lctY  for 

)(,, giD CCFIRSTcABlNi ∩∈∈∈  in the CMDPM-REL to the 

corresponding values ictIC  and lctY , respectively. 

  Solve the CDPM-REL for gG ∪′  and )( gGCc ∪′∈  (with fixed ictIC  and 

lctY  for )( gGCc ∪′∈ )   
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Record the values of the variables ictIC  for )(, gD CCFIRSTcNi ∩∈∈  and 

lctY  for )(,, giD CCFIRSTcABlNi ∩∈∈∈  in the solution RELCMDPMx −  as 

ictIC  and lctY , respectively. 

 Set gGG −= . 

 Set gGG ∪′=′ . 

 

Termination: 

If ∅=G , then the solution RELCMDPMx −  obtained in the last iteration is a 

feasible solution to the CMDPM-REL. 

 

 The basic idea in the heuristic is to solve the CMDPM-REL incrementally 

rather than at one step.  In the first iteration, the heuristic solves the model 

with only one deployment component, say g , disregarding all other 

deployment components }{gGg −∈′ .  That is, all decision variables related to 

gc ′∈  where }{gGg −∈′  are suppressed.  In the second iteration, a deployment 

component }{ˆ gGg −∈  is selected and the model is solved for only 

deployment components g  and ĝ  where the arrival time of deployment 

component g  at its destination is fixed at the value obtained in the first 

iteration.  In the third iteration, the model is solved for three deployment 

components, g , ĝ , and a deployment component }ˆ,{~ ggGg −∈ ,  but this time 

the arrival times of both g  and ĝ  are fixed at the values obtained in the 

previous iteration.  The procedure goes on in the same manner until all 

deployment components are processed.   

 

 It is clear that the solution obtained by using the heuristic is feasible for the 

model.  However, there is a possibility that the heuristic does not find a 
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solution, i.e., the heuristic concludes that the model is infeasible, when the 

original model is actually feasible.  Such a situation is possible, for example, 

when the available number of transportation assets is too limited or when the 

time windows assigned to the units are too narrow.  Because the arrival times 

of deployment components are fixed in the heuristic at each iteration, it is 

likely that the number of transportation assets used in the heuristic solution 

will be greater than that used by solving the model in a single pass to 

simultaneously make all deployment components ready within their time 

windows.  However, because the objectives are the same, there should not be 

a significant difference in the number of transportation assets used in both 

solutions.  Hence, an infeasibility encountered in the heuristic procedure is a 

strong indication that the original model itself may be infeasible.  Such a 

quick infeasibility result may be of great value to transportation planners as 

well as to decision makers because they can reevaluate the fleet size and time 

restrictions of the units at the beginning of the operation.  Even if the actual 

model is not feasible, infeasible termination in the heuristic strongly indicates 

that the actual model is tightly constrained and that the feasible set is quite 

small.  In such cases, solving the model exactly using the proposed exact 

methods will likely generate optimal feasible solution in much less time than 

would be expected of the average feasible instance for which the feasible set is 

comparatively quite large.    

 

 The solution, hence the objective function, obtained by the heuristic may 

change depending on the order in which the deployment components are 

added to the model.  In this regard, the heuristic may be repeated with 

different sequences until a solution with the lowest objective function is 
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obtained.  In such a case, the maximum number of repetitions is G ! if there 

are no any precedence relations between deployment components.   

 

 Instead of enumerating all possible situations to come up with the lowest-

objective function, it is possible to develop several approaches to add the 

deployment components into the model.  One approach may be to add 

deployment components in the order determined by how far their 

destinations are; starting from the deployment component whose destination 

is the farthest as well as starting from the one whose destination is the closest.  

Another approach may be to add the deployment components in the order 

determined by how long it takes to move a deployment component when it is 

the only one to be moved, i.e., disregarding all other deployment components.  

Because there are many factors affecting the solutions, it is not easy to offer an 

approach that will give good solutions for all possible cases.  In the 

dissertation, we add deployment components by their initially assigned 

indices but show that changing the order may significantly change the 

objective function values.  What is noteworthy at this point is that the order in 

which the deployment components are added may determine whether the 

heuristic finds a solution or not.  Hence, changing the order in which the 

components are added may help obtain a solution when the heuristic cannot 

find a solution.       

 

 Although the proposed heuristic is given for the CMDPM-REL, it can 

easily be applied to solve other models as well.  The heuristic algorithm to 

solve CMDPM is the same as the one given for CMDPM-REL except that 

CMDPM-REL in the algorithm is replaced by CMDPM.  As to the heuristic 

algorithm for the Lin-LMDPM and Lin-TMDPM, and their relaxations, the 
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same is valid except that ictX  is used, in addition to the variables ictIC  and 

lctY , to fix the arrival times of deployment components.   

 

 The set of variables to fix in the heuristic can be extended.  The ones given 

in the algorithm are selected considering the solution time and the objective 

function value as well as the possibility of infeasibility.  The idea is to set free 

as many decision variables as possible so that the objective function and the 

possibility of infeasibility get as low as possible.  However, this increases the 

solution time of the heuristic.  In this regard, the tradeoff between these three 

issues must be taken into account in determining the set of variables to fix.  

We think that the set of variables given to fix in the heuristic is essentially the 

minimum.   

 

 In addition to fixing arrival times of deployment components at their 

destinations, it is possible to fix the departure times of deployment 

components from their origins as well as from transfer points.  It is even 

possible to fix the transportation assets and the route a deployment 

component follows, i.e., the variables lcvtCT  and lvtTF .  However, it is highly 

likely that this will increase the possibility of infeasible termination.   

 

5.2.  How to use the heuristic 

 

 The heuristic can be used stand-alone or as a part of the solution 

methodology.  When the heuristic is used stand-alone, it is directly used to 

obtain a feasible solution for CMDPM, Lin-LMDPM, or Lin-TMDPM.  The 

solution obtained by the heuristic is also feasible for the relaxation of the 

corresponding model.  The reservation about this usage of the heuristic is that 
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the expected gains with respect to solution time may not be realized because 

this usage does not take advantage of improvements in the solution time 

provided by the proposed solution methodology.     

 

 When the heuristic is used as part of the solution methodology, it is used 

to find a feasible solution for the relaxation of the model of concern.  The 

feasible solution of the relaxation may be used in two ways.  In the first one, it 

is used as an initial starting solution for the relaxation.  That is, the “Solve the 

relaxation” step of the solution methodology is implemented with a feasible 

solution for the relaxation.  It is expected that this will decrease the solution 

time of the relaxation and hence the total solution time because the relaxation 

solution time constitutes about 98% of the total solution of the proposed 

solution methodology.  In the second one, the feasible solution of the 

relaxation is regarded as the final solution of the relaxation and hence the 

“Obtain the restriction” step of the solution methodology is implemented 

with the feasible solution obtained by the heuristic.  In this usage, the solution 

methodology may be stopped after obtaining a solution for the restriction as 

the solution for the restriction will be feasible for the original model.  This 

may be preferred when time is too limited to obtain a deployment plan.  Note 

that the heuristic may also be used in the “Solve the restriction” and “Solve 

the original model” steps of the solution methodology as well.  However, it 

may not be worth to do that because time spent in these two steps constitutes 

a small portion of the total solution time of the solution methodology.     

 

 In our computational tests regarding the heuristic, we use the heuristic to 

solve the relaxations of the models to be able to compare results with those 

presented in the previous chapters.   
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5.3.  Computational Results 

 

 One of the main questions in designing and using a heuristic is to 

determine how far the heuristic solutions are from optimal solutions.  In this 

section, we explore the answer to this question empirically by comparing the 

objective function values of the test problems obtained by the heuristic for the 

relaxations with those obtained by solving the corresponding relaxations 

directly.  For comparison, we use the simple statistic 
*
REL

*
REL Heuristic,%

z
z×100  where 

*
RELHeuristic,z  refers to optimal objective function value obtained by the heuristic 

while *
RELz  refers to optimal objective value obtained by solving the relaxation 

directly.  Now, we give the comparison results for the CMDPM-REL, Lin-

LMDPM-REL, and Lin-TMDPM-REL, respectively.     

 

 Table 12 gives the objective function and the comparison statistic values 

for the CMDPM-REL.  The results presented in the table are obtained by 

adding deployment components into the algorithm in the order of 3, 4, 2, and 

1, respectively.  Of these components, deployment components 3 and 4 have 

the same destination where the deployment component 3 has a higher 

priority than the deployment component 4.  The results in Table 12 show that 

the heuristic terminates feasible for 14 problems out of 15; the heuristic 

terminates infeasible for only Problem 5 (which is in fact feasible).  The 

objective function values *
RELHeuristic,z  obtained by the heuristic and objective 

function values *
RELz  obtained by solving the relaxation directly are the same 

(or the gap is less than 0.01%) for 10 problems (Problems 6 through 15) out of 

14.  The largest gap between the objective function values is for Problem 4 
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with a value of 75.65%.  The average and standard deviation of the 

comparison statistic values are 13.96% and 25.42%, respectively.          

  

Table 12.  Comparison of the heuristic and optimal objective function values 
of the CMDPM-REL.  

 
Pr.Id. *

RELHeuristic,z  *
RELz  

*
REL

*
REL Heuristic,%

z

z×100  

1 1817183 1483865 122.46% 
2 2226944 1595856 139.55% 
3 4437892 2813069 157.76% 
4 12073405 6873491 175.65% 
5 infeasible 13877031 - 
6 1017431 1017431 100.00% 
7 1596084 1596062 100.00% 
8 2955359 2955340 100.00% 
9 6916499 6916499 100.00% 

10 13879744 13879744 100.00% 
11 1017467 1017467 100.00% 
12 1596305 1596305 100.00% 
13 2955628 2955594 100.00% 
14 6875618 6875481 100.00% 
15 13881081 13880981 100.00% 

  

 One reason behind the large gaps for Problems 1 through 4 is that the time 

windows assigned to the units are much tighter for these problems than those 

of Problems 6 through 15 (they are cut by one half) although the amount of 

items to be moved are the same.  One other reason is related to the type of the 

objective function.  Because the objective is to minimize the cost, the model 

seeks to use the range of time windows as much as possible to reduce costs.  

In this regard, the arrival times of the first two components are highly likely 

to be at the lower and upper bounds of their time windows.  This requires 

that more transportation assets be drawn from the pool so that the remaining 
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deployment components arrive at their destinations within their time 

windows.   

 

 When the deployment components are added by their index numbers, i.e., 

1, 2, 3, and 4, respectively, 5 out of 15 problems turn out to be infeasible.  The 

reason for this is as follows.  Because the deployment component 4 has a 

lower priority than the deployment component 3, it is to arrive at its 

destination later than deployment component 3.  However, because of the 

comments regarding the type of objective function given in the previous 

paragraph, the model sets the arrival time of the deployment component 3 to 

the upper bound of the time window which is the latest arrival time of the 

deployment component 4.  Hence, when the deployment component 4 is 

added, the model becomes infeasible.  It is possible to get rid of this type of 

infeasibility by requiring a deployment component with a higher priority not 

to arrive at destination at the upper bound of its time window or by changing 

the time window slightly, e.g., one unit of time period, while adding the 

component with a lower priority.   

 

Table 13 gives the objective function and the comparison statistic values 

for the Lin-LMDPM-REL.  The results presented in the table are obtained by 

adding deployment components into the algorithm in the order of 1, 2, 3, and 

4, respectively.  The results in Table 13 show that feasible solutions are 

obtained for all problems.  The objective function values *
RELHeuristic,z  obtained 

by the heuristic and objective function values *
RELz  obtained by solving the 

relaxation directly are the same for 7 problems (Problems 1, 3, 4, 5, 8, 9, and 

10) out of 15.  The largest gap between the objective function values is for 

Problems 13 and 15 with a value of 38.46%.  The average and standard 
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deviation of the comparison statistic values are 11.85% and 15.37%, 

respectively. 

 
 
Table 13.  Comparison of the heuristic and optimal objective function values 
of the Lin-LMDPM-REL.  

 
Pr.Id. 

*
RELHeuristic,z  *

RELz  
*
REL

*
REL Heuristic,%

z

z×100  

1 13 13 100.00% 
2 14 13 107.69% 
3 13 13 100.00% 
4 13 13 100.00% 
5 16 16 100.00% 
6 23 22 104.55% 
7 23 22 104.55% 
8 24 24 100.00% 
9 24 24 100.00% 

10 24 24 100.00% 
11 32 25 128.00% 
12 32 25 128.00% 
13 36 26 138.46% 
14 32 25 128.00% 
15 36 26 138.46% 

 

 As a good example of how the order in which the deployment 

components are added changes the objective function values, we solve the 

Problems 11 through 15 by adding the deployment components in the reverse 

order, i.e., 4, 3, 2, and 1.  The results are presented in Table 14.  The objective 

function values turn out to be the same for all five problems.  When these 

results are combined with those in Table 13, the average and standard 

deviation of the comparison statistic values are 1.12% and 2.42%, respectively.          
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Table 14.  An example of how the objective function values are dependent on 
the order in which deployment components are added into the model. 

Pr.Id. 
 

*
RELHeuristic,z  *

RELz  
*
REL

*
REL Heuristic,%

z

z×100  

11 25 25 100.00%
12 25 25 100.00%
13 26 26 100.00%
14 25 25 100.00%
15 26 26 100.00%

 

Table 15 gives the objective function and the comparison statistic values 

for the Lin-TMDPM-REL.  The results presented in the table are obtained by 

adding deployment components in the order of 1, 2, 3, and 4, respectively.  

The results in Table 15 show that feasible solutions are obtained for all 

problems.  The objective function values *
RELHeuristic,z  obtained by the heuristic 

and objective function values *
RELz  obtained by solving the relaxation directly 

are the same for 7 problems (Problems 1, 3, 4, 5, 8, 9, and 10) out of 15.  The 

largest gap between the objective function values is for Problems 13 and 15 

with a value of 166.67%.  The average and standard deviation of the 

comparison statistic values are 59.11% and 69.72%, respectively.          

 

  As another good example of how the order in which the deployment 

components are added changes the objective function values, we solve the 

Problems 11 through 15 by adding the deployment components in the reverse 

order, i.e., 4, 3, 2, and 1.  The results are presented in Table 16.  The objective 

function values turn out to be the same for all five problems.  When these 

results are combined with those in Table 15, the average and standard 

deviation of the comparison statistic values are 8.89% and 18.76%, 

respectively.          
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Table 15.  Comparison of the heuristic and optimal objective function values 
of the Lin-TMDPM-REL.  

 
Pr.Id. *

RELHeuristic,z  *
RELz  

*
REL

*
REL Heuristic,%

z

z×100  

1 3 3 100.00%
2 4 3 133.33%
3 3 3 100.00%
4 3 3 100.00%
5 6 6 100.00%
6 3 2 150.00%
7 3 2 150.00%
8 4 4 100.00%
9 4 4 100.00%

10 4 4 100.00%
11 12 5 240.00%
12 12 5 240.00%
13 16 6 266.67%
14 12 5 240.00%
15 16 6 266.67%

 

Table 16.  An example of how the objective function values are dependent on 
the order in which deployment components are added into the model. 

 

Pr.Id. 
*

RELHeuristic,z  *
RELz  

*
REL

*
REL Heuristic,%

z

z×100  

11 5 5 100.00%
12 5 5 100.00%
13 6 6 100.00%
14 5 5 100.00%
15 6 6 100.00%

 

 One other question to answer in designing and using a heuristic is how 

much the solution time is improved by using the heuristic.  To answer this 

question, we compare the solution times obtained by applying the heuristic to 

solve the relaxations and those obtained by solving the relaxations directly.  
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 Table 17 through Table 19 give the solution times of the test problems for 

CMDPM-REL, Lin-LMDPM-REL, and Lin-TMDPM-REL, respectively, 

obtained in both ways together with the comparison statistic 
REL Heuristic,

REL

T
T , where 

REL Heuristic,T  refers to solution time obtained by the heuristic while RELT  refers 

to solution time obtained by solving the relaxation directly. 

 

 To compare the solution times, we focus only on the problems solved to 

optimality by the heuristic algorithm.  The heuristic finds optimal solutions 

for the CMDPM-REL for only Problems 6 through 15 and Table 17 shows that 

the solution times of the heuristic are better with a mean of 2.78 times and 

with a standard deviation of 1.29 times for those problems.  The heuristic 

finds optimal solutions for Problems 1, 3-5, and 8-15 (including the ones 

obtained by changing the order of adding deployment components) for the 

Lin-LMDPM-REL and Lin-TMDPM-REL.  Table 18 shows that the solution 

times of the heuristic are better with a mean of 9.04 times and with a standard 

deviation of 9.22 times for the Lin-LMDPM-REL for the stated problems.  

Similarly, Table 19 shows that the solution times of the heuristic are better 

with a mean of 17.95 times and with a standard deviation of 11.95 times.  

Combining the results regarding solution times with the ones regarding the 

optimal objective function values shows that the heuristic can find good 

feasible solutions in relatively short times and possibly optimal or near-

optimal solutions when the problem on hand is analyzed before using the 

heuristic to determine the order of deployment components to add.   
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Table 17.  Comparison of the solution times of the heuristic and optimal 
solutions of the CMDPM-REL.  

Pr.Id. RELT  RELHeuristic,T  
REL Heuristic,

REL

T

T  

1 1404.79 46.74 30.05
2 1270.85 190.33 6.67
3 499.82 186.65 2.67
4 572.47 178.54 3.21
5 965.26 102.08 9.46
6 182.10 98.67 1.85
7 519.33 466.98 1.11
8 935.56 342.23 2.73
9 881.91 291.43 3.03

10 1203.05 663.87 1.81
11 2983.39 513.55 5.81
12 3755.53 991.05 3.79
13 3959.07 1415.46 2.80
14 2310.08 934.56 2.47
15 2375.29 1009.68 2.35

Table 18.  Comparison of the solution times of the heuristic and optimal 
solution of the Lin-LMDPM-REL.  

Pr.Id. RELT  RELHeuristic,T  
REL Heuristic,

REL

T

T  

1 36.58 9.87 3.71
2 37.16 5.05 7.36
3 55.75 5.40 10.32
4 319.13 8.89 35.89
5 491.11 53.95 9.10
6 306.00 45.55 6.72
7 178.00 15.33 11.61
8 973.20 159.06 6.12
9 651.97 93.67 6.96

10 903.45 154.05 5.86
11 357.78 74.08 4.83
12 342.08 57.03 5.99
13 1616.11 1318.53 1.23
14 636.91 41.62 15.30
15 2062.13 656.54 3.14
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Table 19.  Comparison of the solution times of the heuristic and optimal 
solution of the Lin-TMDPM-REL  

Pr.Id. RELT  RELHeuristic,T  
REL Heuristic,

REL

T

T  

1 110.24 45.95 2.39
2 498.98 8.16 61.15
3 189.45 7.92 23.92
4 312.17 15.05 20.74
5 6742.41 208.84 32.28
6 393.59 106.72 3.69
7 662.87 25.66 25.83
8 4376.65 355.41 12.31
9 3468.33 113.21 30.64

10     3882.67 147.47 26.33
11 380.47 99.60 3.82
12 632.35 18.83 33.58
13 1773.67 326.5 5.43
14 893.33 43.60 20.49
15 1018.30 295.32 3.44
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CHAPTER 6 

 

 

FROM THEORY TO PRACTICE 

 

 In this chapter, we explain how the proposed models can be used in the 

real world.  In this respect, we discuss how the output of a model can be used 

to derive a deployment plan, what other variations of the models might there 

be, what type of what-if questions can be answered, and how the models can 

be used in the bottom-up and top-down deployment planning approaches.  

 

6.1.  Deriving a deployment plan from the output of the model   

 

 The output of the model can be used to determine deployment plans of 

units as well as the allocation schedules of transportation assets and the 

transportation infrastructure as follows.  

 

 Recall that the first indexed item in each deployment component is 

designated as the leader item for that component with the understanding that 

all other items in that component follow the same route and the schedule as 

does the leader.  In this regard, it is sufficient to keep track of only the leader 

item in each deployment component to obtain the route and movement 
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schedule of that component.  A deployment plan for a unit is obtained by 

combining the movement plans of the deployment components of the unit.     

 

 The values of the decision variables lcvtCT  are used as the main input to 

get the movement plan of a deployment component.  We first explain how the 

route and movement schedule for a deployment component g  is obtained.  

Suppose that leader
gc  is the leader item of g .  For now, assume that there is one 

unit of leader
gc , i.e., 1=leader

gcdemand , and that only one unit of transportation 

asset v′  can carry the leader item.  Because the decision variable lcvtCT  gives 

the units (amount) of item c  that starts moving on arc l  at time t  via 

transportation asset v , the route and movement schedule of g  is obtained 

from the arcs l  and time periods t  for which 1=′ tvcl leader
g

CT ,,, .  As an example, 

suppose that 174 =′,,, vcleader
g

CT , 1129 =′,,, vcleader
g

CT , 1156 =′,,, vcleader
g

CT , and 

12213 =′,,, vcleader
g

CT .  (Note that 1=′ tvlTF ,,  for 13694 ,,,=l  and 2215127 ,,,=t .)  Thus, 

the deployment component g  follows the route consisting of the arcs 

numbered 4, 9, 6, and 13 in the given order.  The movement schedule of g  on 

the arcs 4, 9, 6, and 13 is at time periods 7, 12, 15, and 22, respectively.  

Because g  uses the same vehicle on the given route, i.e., single mode, 12-7=5, 

15-12=3, and 22-15=7 correspond to travel times of transportation asset v′  on 

arcs 4, 9, and 6, respectively.  Supposing that the travel time of v′  on arc 13 is 

6, g  arrives at its destination at time period 28 after 21 time periods it starts 

moving from its origin at time period 7.   

 



 
 

 157

 Now, suppose that 15=leader
gcdemand  and that the number of units of 

transportation asset v′  is 10 and hence not sufficient to carry all of leader
gc .  In 

this regard, transportation asset v ′′  is used to carry 15-10=5 units of leader
gc .  In 

this case, for the same route and movement schedule, the values of the 

decision variables lcvtCT  are 1074 =′,,, vcleader
g

CT , 574 =′′ ,,, vcleader
g

CT , 10129 =′,,, vcleader
g

CT , 

5129 =′′ ,,, vcleader
g

CT , 10156 =′,,, vcleader
g

CT , 5156 =′′ ,,, vcleader
g

CT , 102213 =′,,, vcleader
g

CT , and 

52213 =′′ ,,, vcleader
g

CT  because all items are required to move as a whole.  (Note that 

10=′ tvlTF ,,  and 5=′′ tvlTF ,,  for 13694 ,,,=l  and 2215127 ,,,=t  assuming that both 

one unit of v′  and v ′′  can carry only one unit of leader
gc .) So, if more than one 

type of transportation asset is used to carry a leader item on an arc, it is 

enough just to follow the values of variables lcvtCT  for a fixed transportation 

asset, either v′  or v ′′ .  Actually, to get the route and movement schedule of a 

component what is important is at what arcs and time periods the variables 

lcvtCT  are nonzero, rather than their quantities. 

 

 If the deployment component g  uses a combination of different 

transportation modes, the route and movement schedule is found for each 

transportation mode in a similar manner, i.e., follow at what arcs and time 

periods the decision variables lcvtCT  become non-zero for a fixed 

transportation asset on each mode.  

 

 As a convention, loading and unloading times of transportation assets are 

incorporated into travel times of transportation assets on the arcs.  Hence, the 

time at which a deployment component starts moving from its origin or a 

transfer node is actually the time at which loading operation for that 
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deployment component starts.  The time at which a deployment component 

arrives at its destination or a transfer point is actually the time at which the 

unloading operation terminates, i.e., the time at which the unloading 

operation for the deployment component starts is found by subtracting from 

the arrival time of the component the unloading time of the transportation 

asset in which the component has arrived.  In the first example above, 

assuming that loading and unloading times of v′  are 1, the loading operation 

at the home base of g , origin
gi , starts and ends at time periods 7 and 8, 

respectively.  Similarly, the unloading operation at the destination of g , dest
gi , 

starts and ends at time periods 27 and 28, respectively.   

 

 A deployment component may be assumed to be waiting idle at all time 

periods at which it does not move or undergo any loading or unloading 

operations.  In this respect, the deployment component g  waits idle at its 

origin origin
gi  for time periods 1 through 7 and at its destination dest

gi  for time 

periods 28 through T , the planning horizon.  In the model, this is tracked by 

the values of the decision variables ictIC .  For our example, the values of the 

decision variables in the output are 1=tci leader
g

origin
g

IC ,,  for 71,...,=t  and 

1=tcleader
g

dest
g

IC ,,  for Tt ,...,28=  when 1=leader
gcdemand .   

 

 The values of the decision variables lcvtCT  and ictIC  give the time-based 

allocation of transportation infrastructure to a deployment component in 

addition to the route and movement schedule of a deployment component.  

For example, 174 =′,,, vcleader
g

CT  means that arc 4 is allocated to the deployment 

component at time period 7 for the duration of the travel time of v′  on arc 4.  
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Whether another deployment component is allocated to the same arc at the 

same time is determined depending on the capacity of the arc.  Similarly, 

1=tci leader
g

origin
g

IC ,,  for 71,...,=t  means that origin
gi  is allocated to the deployment 

component for 71,...,=t .   

 

 Now, we explain how to determine the allocation of transportation assets 

to deployment components.  

 

 The allocation of transportation assets to deployment components can be 

determined by using the values of the variables lcvtCT  and lvtTF .  The 

variables lcvtCT  give the number of units of items of index c  carried via 

transportation assets of index v  on an arc l  at a time period t  and the 

variables lvtTF  give the number of units of loaded transportation assets of 

index v  on an arc l  at a time t .  Thus, the number of units of transportation 

assets v  that are used to carry items of index c   on an arc l  at a time epoch t  

can be determined by using the information provided by the values of lcvtCT  

and lvtTF .  In this regard, determining the transportation assets used to carry 

all items of a deployment component gives the allocation of transportation 

assets to that deployment component.   

 

 Notice that lcvtCT  give also a coupling of items of index c  with 

transportation assets of index v  on an arc l  at a time period t .  If 

transportation assets of index v  are coupled with only items of index c , then 

the value of the decision variable lvtTF  on the arc l  at time t  gives the number 

of units of transportation assets of index v  assigned to carry item c .  

Returning to our example, for 1=leader
gcdemand , 174 =′,,, vcleader

g
CT  and 174 =′,,vTF  
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mean that one unit of transportation asset v′  is assigned to deployment 

component g  to carry the leader item leader
gc  on arc 4 at time period 7 for the 

duration of the travel time of v′  on arc 4.  Similarly, for 15=leader
gcdemand , 

1074 =′,,, vcleader
g

CT , 574 =′′ ,,, vcleader
g

CT , 1074 =′,,vTF  and 574 =′′ ,,vTF  mean that 10 units 

of transportation assets of index v′  and 5 units of transportation assets of 

index v ′′  are assigned to carry the leader item on arc 4 at time period 7.  

Assuming that the deployment component g  follows the route and 

movement schedule given above, v′  and v ′′  are assigned to g  from time 

period 7 to time period 28.    

 

 If transportation assets of index v  are coupled with items of different 

indices, then the items can be assigned to transportation assets by taking the 

capacities of the transportation assets into account.  As an example, suppose 

that the deployment component g  has item leadernon
gc −  in addition to the leader

gc  

and that one unit of v′  can carry 2 units of leadernon
gc − .  (Recall that one unit of 

v′  can carry only one unit of leader
gc .)  Assuming that 15=leader

gcdemand  and 

10=−leadernon
gcdemand , 20 units of v′  are needed to carry leader

gc  and leadernon
gc − .  In 

compliance with this, the values of the variables on arc 4 at time period 7 are 

1574 =′,,, vcleader
g

CT , 1074 =′− ,,, vc leadernon
g

CT , and 2074 =′,,vTF .  Of these 20 units of v′ , 15 

are allocated to carry leader
gc  and 5 are allocated to carry leadernon

gc − .  If one unit 

of transportation asset v~  is sufficient to carry both leader
gc  and leadernon

gc − , then 

the values of the variables are 1574 =′,,, vcleader
g

CT , 1074 =′− ,,, vc leadernon
g

CT , and 

174 =,~,vTF .   
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 A complication may arise when more than one deployment component 

starts moving on an arc at the same time.  In this case, if the transportation 

asset is big enough to move items of all components, e.g., a ship, and if the 

routes of all components are the same, then there is not any problem as the 

transportation asset is assigned to all deployment components at the same 

time.  In the context of the example, we may assume that 1=tvlTF ,~,  for 

13694 ,,,=l  and 2215127 ,,,=t , respectively.  If the routes of deployment 

components differ, then some caution is needed as this is also related to the 

rounding of the variables lvtTF .  Now, suppose that the deployment 

component g  follows the route 13694 ,,,=l  and that the deployment 

component g ′  follows the route 1211104 ,,,=l  (where arcs 12 and 13 are 

incoming to different nodes).  Thus, although both components start moving 

on arc 4 at time period 7, their routes differ at the end of arc 4.  Assuming that 

both components are exactly the same, the values of the variables in the 

output are 50.,~, =tvlTF  for 1369 ,,=l  and 121110 ,,=l .  Then, 50.,~, =tvlTF  is 

rounded up, i.e., two units of v~  start moving on arc 4 at time 7, as explained 

in Chapter 3.  In this respect, it is suggested to start from the destination of a 

deployment component in obtaining the movement plan of that component.     

 

 If several numbers of units of transportation asset v~  are used by different 

components, then the allocation of transportation assets is made by taking 

into account the size and the number of units of items as well as the capacity 

of a single unit of transportation asset.  The rounding operation is repeated as 

needed.   
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 The allocation of transportation assets to deployment components also 

gives the routes and movement schedules of loaded transportation assets.  

The routes and movement schedules of empty transportation assets are 

obtained similarly by using the values of the decision variables lvtTE .  That 

the values of the inventory variables ivtIV  are greater than zero at a node 

shows that the transportation assets are waiting idle at that node (e.g., waiting 

for another deployment component to arrive).   

 

 The output of the models gives also a sourcing strategy for transportation 

assets.  Because each transportation asset index refers to transportation assets 

of a type from a source type at a location, a sourcing strategy for 

transportation assets can be obtained by using the values of the decision 

variables lvtTE  corresponding to dumAl∈ .    

 

6.2.  How to use the models in creating deployment plans 

 

 Deployment plans are created by using bottom-up or top-down 

approaches.  The current practice in the Turkish Armed Forces is the bottom-

up approach.  In this approach, units, starting from the lowest-level with 

planning responsibility, develop deployment plans and send their plans to a 

higher level unit until the highest-level command responsible for the 

operation develops its deployment plan.  For instance, companies prepare 

their deployment plans and send them to a higher-level unit, battalion, in 

accordance with the military force structure.  Battalions receiving plans from 

their companies bring their companies’ deployment plans together, prepare 

their deployment plans and send them to a higher-level command, brigade.  

The problem with this approach is that deployment plans of units may 
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conflict in the sense that they may demand the usage of the same resources, 

transportation infrastructure and transportation assets, at the same time.  For 

example, deployment plans of companies of a battalion or different battalions 

may conflict because each company develops its deployment plan 

independent of other companies.  For this reason, what is expected at each 

level while plans go up in the hierarchy is that conflicting deployment plans 

are resolved (de-conflicted) and lower-level units are asked to change their 

plans appropriately.  For instance, a battalion resolves conflicting plans of 

their companies and a brigade conflicting plans of its battalions.  However, it 

is very difficult or even impossible depending on the number of units 

participating in an operation to resolve conflicting plans manually.  Even 

though de-conflicting is possible, the approach does not create cost-effective 

plans.   

 

 The latter top-down approach aims to prevent conflicts beforehand.  In 

this approach, the process starts from the highest level and ends when the 

lowest-level commands prepare their deployment plans.  To prevent conflicts 

in advance, starting from the highest level, units provide guidance to their 

sub-units and sub-units develop their plans based on the guidance provided 

to them.  For example, a brigade (battalion) may determine time intervals at 

which each of its battalions (companies) may use a transportation mode(s) 

and a transfer point(s).  Then, each battalion (company) prepares its 

deployment plan based on the given information.  After the lowest-level 

commands prepare their plans, they send them through the hierarchy up to 

the highest-level command.   At each level, plans of sub-units are united and 

revised.  Such an approach, in addition to preventing conflicts from the 
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beginning, will help develop cost-effective plans because the process 

considers the entire system.   

 

 Despite the disadvantages of the bottom-up planning approach, it is 

preferred by high-level commands to impose responsibility on the low-level 

commands.  It is also preferred by low-level commands because they would 

like to have some initiative in the operation they are going to carry out.  One 

other reason for the preference of the bottom-up approach is that there does 

not exist tools to help develop deployment plans using top-down approach.  

 

 The models developed in this dissertation can be used in both planning 

approaches.  The idea in the heuristic algorithm can directly be applied to 

develop a deployment plan by using the bottom-up planning approach.  For 

example, each company of a battalion develops its deployment plan 

independent of other companies of the battalion by using a model, say, 

CMDPM.  The battalion receiving the plans of its companies may use the 

models in the first place to see whether the plans of the companies are 

implementable, i.e., to see whether there are any conflicts.  This can easily be 

done by fixing some information, e.g., the allocation of transportation assets 

to units.  If there are any conflicts or if there are not any conflicts but there is a 

need for revision of the plans, the battalion may use the heuristic algorithm to 

develop a deployment plan for the battalion.  The order in which the 

companies are added can easily be determined by the battalion commander 

depending on the criticality of the mission a company is expected to execute.  

The battalion may either create a plan from scratch or fix anything desired.  In 

any case, the battalion informs its companies of any changes made in the 

plans of the companies.  After developing its deployment plan, the brigade 
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sends its plan to the brigade.  The brigade receiving plans from its battalions 

goes through the same process.  The process goes on similarly until the 

deployment plan for the highest level command is developed. 

  

 When the top-down planning approach is used, one should not expect to 

get deployment plans of all deployable units by running a model only once at 

the highest level except when the problem of concern is of moderate size.  In 

this approach, there is a need for a set of models that can create deployment 

plans with different levels of detail depending on the planning level.  For 

example, a model capable of creating coarse deployment plans that show 

when and using what transportation modes the units are moved may be 

sufficient for the highest level command.  On the other hand, a model capable 

of developing deployment plans that show what transportation assets carry 

what items of each unit is of value at lower levels command.  However, this is 

not sufficient for the lowest level command as the loading plan of each 

transportation asset must be known at this level.  Hence, a model that keeps 

track of individual transportation assets and items are needed at the lowest 

level command. 

 

 In the top-down approach, a model appropriate for the highest level 

command is run and necessary information that will guide the lower-level 

units to develop their deployment plans is revealed.  For example, the day at 

which a unit is to be at destination or the transportation mode a unit is to use 

is revealed to the units.  Units receiving the guidance from the highest level 

develop deployment plans appropriate for their planning levels using 

appropriate models and reveal necessary information to their lower-level 

units.  This process goes on until the lowest level commands develop their 
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detailed deployment plans.  The plans are then sent to the highest level 

through the military hierarchy where at each level the plans are united and 

revised.   

 

 The modeling structure presented in the dissertation allows the models to 

be run with data of different levels of detail.  For example, for a high-level 

planning, items for each unit may be aggregated as pax and cargo or as pax 

and bulk, oversize, and outsize cargo as in Baker et al. (1999, 2002).  In this 

case, a line on the item list represents the number of pax or the amount of 

bulk, oversize, and outsize cargo.  Data structure regarding transportation 

assets is modified accordingly, e.g., the capacities are expressed to represent 

carrying capacities for bulk, oversize, and outsize cargo.  Similarly, the node 

and arc representations in the underlying network may be also aggregated.  

On the other hand, the model can be modified to track individual 

transportation assets and items for a low-level planning.  In this case, each 

item index and transportation asset index refers to an individual item and a 

transportation asset. The decision variables regarding transportation assets 

and items are defined as binary variables, e.g., lcvtCT  is defined to be 1, if item 

c  starts moving on arc l  via transportation asset v  at time t ; 0, otherwise. 

Constraints ( 3 ) , (14), (16), and (20)-(22) are modified accordingly. The 

right-hand sides of constraints ( 3 ) , (14), and (16) are set to one.  

Constraints (20) are removed and constraints (21) and (22) are modified, 

respectively, as follows:  
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6.3.  Some other model variations 

 

 The CMDPM, LMDPM, and TMDPM are actually three variations of the 

deployment planning problem.  In this section, we mention some other 

variations.   

 

 When the resources are not sufficient to deploy all units within their time 

windows, the TMDPM can be used to create deployment plans in which the 

arrival times of units not deployed within their time windows are drawn to 

their latest arrival times.  In the TMDPM, all units are of the same importance.  

For this reason, the model does not differentiate between units and 

determines freely which units to deploy within their time windows and 

which units not to deploy.  Thus, the solution of the TMDPM may have some 

high-priority units not deployed within their time windows.  (Note that this is 

different from precedence relations between deployment components/units.)  

To prevent this situation from occurring, one approach might be to assign 

priorities to the units and require that the sum of the priorities of the units 

deployed within their time windows is maximized.  Note that this approach 

allows the non-delivery of some units.  To formulate this problem, we define 

a new decision variable cβ  that shows the amount of item c  not delivered 

within its time window.  Note that it is sufficient to define this variable only 

for the leader items that 0=cβ  or cc demand=β  due to the unsplittable flow 

requirement.  Assuming that the priority of an item, cprior , is obtained 

properly from the priorities of the units, the Priority Maximization Deployment 

Planning Model (PMDPM) is given below. 
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Priority Maximization Deployment Planning Model (PMDPM) 

 

Objective Function 
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Constraints  

In addition to constraints ( 2 ) -(12) and (14)-(24), 
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 The objective function (41) maximizes the sum of the priorities of the units 

deployed within their time windows while the constraints (42) allow the non-

delivery of items at destination nodes. 

 

 When the resources are not sufficient, one other approach might be to 

assign penalties to the units for not delivering them.  In this case, the objective 

is to minimize the sum of the penalties of units not deployed within their time 

windows.  This problem is closely related to the PMDPM and can easily be 

formulated by changing only the objective function of the PMDPM.  

Assuming that the penalty for not delivering an item c , cpenalty , is obtained 

properly, the Penalty Minimization Deployment Planning Model (PnMDPM) is 

given below. 
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 Penalty Minimization Deployment Planning Model (PnMDPM) 

 

Objective Function 
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Constraints  

Constraints ( 2 ) -(12), (14)-(24), and (42). 

 

 Other model variations may be obtained by adding several constraints to 

the current models.  For example, a budget constraint such as 

BudgetTE
tvAl
lvt

dum

≤∑
∈ ,,

 may be added to the CMDPM.  Constraints that set 

minimum and maximum limits on the number of transportation assets for 

each type, location, and/or source used to deploy units may be added, e.g., 
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6.4.  Sample questions that can be answered by using the models 

 

 The first usage of the models is to evaluate and assess investment 

decisions regarding transportation assets and transportation infrastructure.  

In developing a good investment plan, the trade-off between the deployment 

cost and deployment time must be observed, not only the cost.  For this 

reason, the CMDPM must be used in conjunction with the LMDPM and the 

TMDPM.  A figure that shows lateness and tardiness values for different cost 

values may be an invaluable support to the decision makers.  Such figures 
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will help the decision makers to develop investment plans robust enough to 

support many different scenarios. 

  

 The second usage of the models is to develop a deployment plan.  

Depending on the situation, one of the three models may be used.  For 

example, when updating operations plans for potential contingencies on a 

routine basis or when deploying units for exercises, international operations, 

e.g., peace support operations, or other purposes during peacetime, the 

CMDPM may be used.  On the other hand, during a crisis, the LMDPM and 

TMDPM may be of more value as they create plans directed towards the 

execution of an operation.  In both cases, the analysts or the decision makers 

need to answer several questions before making the final decision.  We now 

give examples of questions that can be answered or that should be asked. 

 

 The first question is of course whether it is possible to carry out a 

deployment successfully with the given number, type, and locations of 

transportation assets and the given capacities of transportation infrastructure.  

If not possible, i.e., if the problem is infeasible, one question is what the 

earliest times are at which units can be deployed.  This question can be 

answered by solving the TMDPM.  One other question to ask is what 

additional numbers of transportation assets of each type are required to carry 

out deployment within the required time windows.  This can be obtained by 

solving the CMDPM without constraints ( 2 ) -( 3 )  and with constraints that 

set lower limits on the number and type of transportation assets for each type 

to their available numbers.  Another question in the case of infeasibility is to 

determine what units cannot be delivered.  This can be found by using the 

output of the TMDPM.  However, assigning priorities or penalties and then 
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determining the units not delivered within their time windows may be of 

more value to decision makers, i.e., solving PMDPM or PnMDPM.   

 

 If the problem is feasible, one may ask what the earliest time is to deploy 

units and this can be answered by solving the LMDPM.  In case of feasibility, 

the decision makers may want to know how long the movements of units 

may be delayed, i.e., how robust the plan is.  This can be obtained by 

subtracting the arrival times of units from their latest permissible arrival 

times, i.e., slack times of units are found.   

     

 Regardless of whether or not a problem is feasible, the following 

appropriate what-if questions may be asked by the analysts or decision 

makers:  What happens if the available numbers of some types of 

transportation assets are increased/decreased?  What happens when the time 

windows of some units are enlarged/tightened?  What happens if the 

processing capacity of an airfield/port is increased/decreased?  What happens 

if a transportation asset not in the inventory is procured?  What happens 

when the sizes of the deployment components are changed?  What happens 

when the travel times on certain arcs are increased?  What happens when the 

waiting time at a node suddenly increases?  What happens if a bridge or an 

airport is destroyed by an attack?  What happens when certain number of 

transportation assets are destroyed?  What happens when a unit on the move 

is destroyed?  What happens when some units are required to use certain 

routes or transportation assets?      

 

 The answers to the above questions change depending on whether the 

problem is feasible or depending on which model(s) is used.  For example, 
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increasing the available number of some transportation assets may turn an 

infeasible problem into a feasible one.  On the other hand, in case of 

feasibility, this may draw the arrival times of the units to their earliest 

allowable times if the LMDPM is used.  If the CMDPM is used, the additional 

transportation assets may not change anything if they are more expensive 

than the other ones.  On the other hand, if they are cheaper, then the 

allocation of transportation assets to the units and hence arrival times at 

destinations may change.  When the processing capacity of an airfield/airport 

is increased, an infeasible problem may become feasible.  However, it may not 

have any effect on the solution if the airfield is not a busy one.  If the waiting 

time at a node increases suddenly, a feasible problem may be infeasible.  

However, if the waiting time remains within the range of the parameters in 

which the problem is feasible, then only the arrival times of units may be 

increased.   

 

 Possible effects of all of the above questions may be answered similarly.  

However, they are beyond the scope of this study.  The point is that one 

should not try to solve the models from scratch to answer the effects of all 

questions.  The focus should be on determining the effects without having to 

solve the models from scratch.  For example, when a bridge is destroyed, 

there is no need to change the deployment plans of all units but only the plans 

of those units that use the bridge.  For this purpose, the deployment plans of 

all units not required to use the bridge are fixed including allocation of 

transportation assets and transportation infrastructure and the model is 

solved with fixed plans.  If a unit required to use the bridge is on the move at 

the time the bridge is destroyed, the movement of the unit may be delayed if 

it is possible to repair the bridge in the slack time of the unit.  If it is not 
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possible to repair the bridge in the slack time, the model is solved by 

regarding the last location of the unit as the origin of the unit and the 

allocated transportation assets and deployment plans of all other units as 

fixed.  Similar arguments may be made to answer the effects of other what-if 

questions. 
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CHAPTER 7 

 

 

CONCLUSION 

 
 In this dissertation, we study the deployment planning problem (DPP) 

that may roughly be defined as the problem of the planning of the physical 

movement of military units, stationed at geographically dispersed locations, 

from their home bases to their designated destinations while obeying 

constraints on scheduling and routing issues as well as on the availability and 

use of various types of transportation assets that operate on a multimodal 

transportation network.   

 

 The DPP is a large-scale, real-world problem.  However, there does not 

exist a complete and academic definition of the problem.  Hence, we first give 

a detailed and formal description of the DPP in Chapter 1.  In Chapter 2, we 

give an analysis of the problem with respect to the scientific literature.  Our 

analysis shows that several features of the problem are studied individually 

in different research areas related to dynamic network flow, network design, 

vehicle routing, dynamic resource allocation, and mobility analysis problems.  

However, there seems to be no study that deals with the problem as a whole 

at a level of detail and complexity we have undertaken.  The existing models 

are far from being sufficient to model and solve the DPP.   
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In Chapter 3, we first give an abstraction of the problem.  Specifically, we 

define the underlying network, transportation assets, items (commodities) to 

be moved, and sets and data related to these three.  The abstraction is such 

that it gives a basis for a database.  Next, we define and formulate the Cost 

Minimization Deployment Planning Model (CMDPM) where the purpose is to 

plan the movements of units with a given fleet of transportation assets such 

that the sum of fixed and variable transportation costs is minimized.  The 

CMDPM is expected to be of use for investment decisions in transportation 

resources during peacetime and for deployment planning in cases where the 

operation is not imminent and there is enough time to do a deliberate 

planning that takes costs into account.  As the solution times of the CMDPM 

are too poor to be used in a real application, we develop a solution 

methodology based on an effective use of a relaxation and restriction of the 

model that significantly speeds up a CPLEX-based branch and bound.  The 

solution times for intermediate sized problems are around one hour whereas 

it takes about a week in the Turkish Armed Forces to produce a suboptimal 

feasible solution based on trial and error methods.  

 

 In Chapter 4, we present two min-max models, Lateness Minimization 

Deployment Planning Model (LMDPM) and Tardiness Minimization Deployment 

Planning Model (TMDPM).  Lateness in the LMDPM is defined as the difference 

between the arrival time of a unit and its earliest allowable arrival time at its 

destination while tardiness in the TMDPM is defined as the difference between 

the arrival time of a unit and its latest allowable arrival time at its destination.  

In this regard, the objectives in the LMDPM and TMDPM are to minimize 

maximum lateness and tardiness, respectively.  These models are expected to 

be of use in cases where quick deployment is of utmost concern.  The LMDPM 
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is an appropriate model for cases when the given fleet of transportation assets 

is sufficient to deploy units within their allowable time windows while the 

TMDPM is appropriate for cases when the given fleet is not sufficient.  We 

solve the LMDPM and the TMDPM by using the same solution methodology 

developed in Chapter 3.  Solution times for these models are also around one 

hour for intermediate sized problems. 

 

 In Chapter 5, we present a heuristic algorithm where the basic idea is to 

solve a model incrementally, adding one unit at a time, rather than solving 

the model for all units simultaneously.  At iteration k , the model is solved 

with k  deployment components given the arrival times of 1−k  deployment 

components obtained in the previous 1−k  iterations.  The process goes on in 

the same manner until all deployment components are added to the model.   

 

 Our experience shows that the order in which the deployment components 

are added greatly affects the objective function value of the heuristic 

algorithm.  However, computational results show that if the time windows 

and the number of transportation assets are not too restricted, the heuristic 

finds optimal or near-optimal solutions.  Of the 15 test problems, 10 problems 

are solved to the optimality for the relaxation of the CMDPM and 12 problems 

are solved to optimality for the relaxations of the LMDPM and TMDPM.  The 

solution times of the heuristic are also much better than those obtained by 

solving the models directly.  The results regarding both the objective function 

values and the solution times show that the heuristic is highly likely to give 

good feasible solutions in short times. 
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 In Chapter 6, we explain how the output of a model can be used to derive a 

deployment plan, what other variations of the models might be, what type of 

what-if questions can be answered, and how the models can be used in the 

bottom-up and top-down deployment planning approaches.   

 

 Our contribution in this study is many-fold.  We formally describe a large-

scale, real-world, and complicated problem for which an academic and 

detailed description does not exist.  We organize and simplify the problem 

such that it is understandable.  We do an academic analysis of the problem 

with respect to the literature in several related research areas.  Our review 

shows that there does not exist a study that deals with the problem as a whole 

and hence the problem is new to the literature.  Our review also shows that 

some properties of the problem may lead to new research topics in the well-

known problems such as network flow, dynamic network flow, and vehicle 

routing and scheduling.  We abstract the problem and develop large-scale 

MIP models that can be used for different purposes.  We propose an effective 

solution methodology and heuristic to solve the models.  Finally, we relate the 

models’ solutions to the real world in such a way that a layman can 

understand and explain what kinds of what-if questions can be answered by 

using the models.  Thus, we provide the basis for a decision support system 

together with its database structure that can be used by decisionmakers at 

different levels.   

 

 Some future research directions may be as follows.  The models that we 

have developed are flow-based.  Another approach in modelling the problem 

may be to use assignment variables instead of flow variables.  Then, the 

results of both models may be compared.  In the models, the network, items 
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and transportation assets are represented in the detail that the results of the 

models can be used for operational planning.  However, the models can easily 

be modified for tactical and strategic planning such that the network, 

transportation assets, and items are aggregated to a certain level.  One study 

may use an aggregated formulation and compare the results to see how 

resolution is lost, if any.  In the dissertation, we use a solution methodology 

based on an effective use of a relaxation and restriction of the model to solve 

the models.  Another approach may be to use decomposition techniques such 

as Benders or Lagrangean relaxation.  In the dissertation, we develop a 

heuristic whose results are dependent on the order in which deployment 

components are processed in the heuristic.  However, we cannot make 

suggestions on an appropriate sequence.  Hence, a study may focus on 

experimenting with the heuristic by using problems of different 

characteristics to come up with suggestions on the sequence in which 

deployment components are processed.  Finally, another study may focus on 

how to modify a current solution given that some conditions in the problem 

change. 
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