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Abstract

STOCHASTIC JOINT REPLENISHMENT PROBLEM: A
NEW POLICY AND ANALYSIS FOR SINGLE LOCATION
AND TWO ECHELON INVENTORY SYSTEMS

Banu Yiiksel ézkaya
Ph.D. in Industrial Engineering
Advisor: Prof. Ulkit Giirler
December 2005

In this study, we examine replenishment coordination strategies for multiple
item or multiple location inventory systems. In particular, we propose a new,
parsimonious control policy for the stochastic joint replenishment problem. We
first study the single location setting with multiple items under this policy. An
extensive numerical study indicates that the proposed policy achieves significant
cost improvements in comparison with the existing policies. The single location
model also represents a two-echelon supply chain for a single item with multiple
locations, where the upper echelon employs cross docking. We then extend our
model to incorporate multi-location settings where the upper echelon also holds
inventory. Our modeling methodology based on the development of the ordering
process by the lower echelon provides an analytical tool to investigate various joint
replenishment policies. An extensive numerical study is conducted to determine
the performance of the system and identify regions of dominance across policies.
Keywords: Stochastic joint replenishment problem, multi-item inventory

system, two-echelon inventory system
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RASSAL TOPLU SIPARIS PROBLEMI: YENI BIR POLITIKA
VE TEK VE IKI DUZEYLI ENVANTER SISTEMLERININ
ANALIZI

Banu Yiiksel ézkaya
Endiistri Mihendisligi Doktora
Tez Yoneticisi: Prof.Dr. Ulkii Giirler
Aralik 2005

Bu calismada cok trunli ve cok yerlesimli envanter sistemleri i¢in koordineli
siparig verme stratejileri incelenmigtir. Rassal toplu siparig verme problemi i¢in
kolay uygulanabilen yeni bir kontrol politikasi onerilmigtir. Ik olarak bu politika
altinda tek yerlegsimli ve cok tirtnli bir envanter sistemi incelenmistir. Kapsamh
olarak yapilan sayisal bir caligma ile 6nerilen politikanin mevcut politikalara gore
onemli maliyet azalmalar: sagladigi saptanmigtir. Incelenen tek yerlegimli model
ayni zamanda tek urtnli ve tust dizeyin gecis noktasi olarak kullanildigi iki
dizeyli bir tedarik zincirini de temsil etmektedir. Bu model st diizeyin envanter
tuttugu iki dizeyli envanter sistemlerini de incelemek tizere genigletilmigtir. Alt
diizeyin siparig verme siirecinin geligtirilmesine dayali olan metodoloji farkli toplu
siparig verme politikalarini analitik olarak incelememizi saglamigtir. Incelenen
sistemde farkli toplu siparig verme politikalarin tustinlik sagladigi bolgeleri
tanimlamak i¢in kapsaml bir sayisal caligma gerceklegtirilmigtir.

Anahtar sozcukler: Rassal toplu siparis problemi, ¢ok Ttrinli envanter

sistemleri, iki dizeyli envanter sistemleri
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Chapter 1
Introduction

The management of multi-echelon or multi-item inventory systems has been one
of the most challenging issues both in practice and theory for years. This has
become even more critical in the recent years with the concept of supply chain
management. The coordination and integration are the key terms to reduce
costs and increase the efficiency in an inventory system, which has become
possible with the recent advances in information technology. Therefore, effective
utilization of available information about the inventory status among the different
locations/items in the inventory system is crucial. In this study, we study
coordinated replenishment policies in both single-location /multi-item and single-
item /multi-location inventory settings. Specifically, we study the stochastic joint
replenishment problem (SJRP) in different settings.

SJRP was originally described in a single-location and multi-item inventory
system. It is the determination of replenishment and stocking decisions for NV
different items to minimize the expected total ordering, holding and shortage costs
per unit time in the presence of random demands and ordering cost structures
with first-order-interaction. The first-order-interaction structure for ordering
costs is defined as the setting where (see Balintfy [15] and e.g. Federgruen and
Zheng [32]) there are (i) a common fixed cost associated with a replenishment
order regardless of its composition, and (ii) an item-specific fixed cost for each

item that is included in the replenishment order.
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The ordering cost structure presents an opportunity to exploit the economies
of scale in replenishment by ordering items jointly. Such joint replenishment
opportunities occur when it is possible to include several different items in the
same delivery order or when the items are purchased from the same supplier or
they share the same transportation vehicle. Hence, effective joint replenishment
policies are needed.

Under a stochastic joint replenishment policy, when an item is taken in
isolation, it experiences exogenously generated opportunities of replenishment
with reduced fixed costs, ie., it can order with item-specific cost rather than
common fixed cost. When a reordering decision for an item is triggered by
its own inventory position, this may generate opportunities of replenishment at
reduced cost for the other items. Clearly, these aspects are inter-related and
may influence the performances of the policies. However, we believe that the
generation of the replenishment opportunity arrivals is crucial in understanding
the SJRP. In a multi-item setting, the employed policy is the generator of the
opportunity arrival process. Hence, by choosing a particular policy to employ, we
also choose a particular mechanism to generate the replenishment opportunities
to the system. In the presence of such replenishment opportunities with reduced
costs, it is intuitive that it may be beneficial to reorder an item at some (or all) of
these opportunity arrivals which are no longer the demand instances for the items.
Obviously, the overall costs incurred by the inventory system depends greatly
on how these opportunities arrive at the system, which, to our understanding,
also differentiates the performances of the policies. It is also important to have
parsimonious joint replenishment policies, operating with fewer control policy
parameters and easier to model and optimize.

The determination of these opportunity generation mechanisms and hence
joint replenishment policies in multi-item inventory systems is a real problem
faced by retailers and is an integral part of supply chain management in
general. Moreover, it is becoming an increasingly important problem due to the
recent trend among manufacturers and retailers to reduce their supplier bases

(Harland [43]). It is estimated that major Original Equipment Manufacturers
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(OEM’s) have reduced the number of their suppliers by 25% since the mid-
1990s. A best practice study reports that world-class companies operate with
97% fewer suppliers for A-category items, when compared with the average (The
Hackett Group, www.thehackettgroup.com). Another survey reveals that, 80%
of the firms directly considered the potential cost savings due to the reduction
of transaction costs among multiple suppliers (Cousin [26]). In their recent
works, Erhun and Tayur [29] and Cachon [17] also report particular instances
of considerable cost savings achieved by exploiting the economies of scale due to
joint replenishment opportunities.

As will be explained in the next Chapter, the SJRP has been usually
addressed in single-location and multi-item inventory systems. Despite the
successful implementation of efficient coordinated replenishment policies in many
retail companies (www.smartops.com) and considerable cost savings achieved, as
reported in Erhun and Tayur [29] and Cachon [17], little theoretical work has
been done to evaluate the benefits of these coordinated policies in multi-echelon
inventory theory.

In this study, we consider the stochastic joint replenishment problem both in
single-location /multi-item and single-item /two-echelon inventory settings.

We begin with a review on the relevant literature of this study in Chapter 2.
In Chapter 3, we propose a new class of control policy for the stochastic joint
replenishment problem in a single-location/multi-item inventory system. The
proposed (Q,S,T) policy makes use of the advantages of both continuous and
periodic review policies in a parsimonious manner. We derive the expressions
for the key operating characteristics of the inventory system for both unit and
compound Poisson demands.

Chapter 4 presents the results of an extensive numerical study which has been
conducted to study the sensitivity of the policy to various system parameters
and to assess the performance of the proposed policy over the existing policies
in the literature. We have found that the proposed policy provides significant
savings over the existing policies for items similar in their cost structures

and individual demand rates. The proposed policy achieves its performance
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levels with parsimony which reduces the computational requirements for the
optimization and provides an easy implementation in practice.

The single location model provided also represents a two-echelon supply chain
for a single item, where the upper echelon employs cross docking. In Chapter 5,
we extend our model to incorporate a single-item, multi-location setting where the
upper echelon also holds inventory. We study a policy class under the stochastic
joint replenishment problem in a two-echelon divergent inventory system. We
propose a general methodology to analyze the considered policy class. The
framework we provide is only based on the development of the ordering process
by the lower echelon.

Our modeling methodology provides us an analytical tool to investigate
various joint replenishment policies under the considered policy class. Chapter 6
presents the detailed analysis for four different joint replenishment policies within
the considered policy class and present expressions and approximations for the
key operating characteristics of the model under each policy. We also give insights
on the behaviour of the operating characteristics of these policies.

Chapter 7, we present the results of the detailed numerical study which
assesses the performance of the policies within the considered policy class in a
two-echelon divergent inventory system. We provide discussions on the allocation
of the costs within the echelons and the comparison of echelon costs across the
policies. We also present the advantage of allowing the warehouse to hold stock
instead of employing cross-dock at the warehouse.

In the last chapter, some concluding remarks about the study and future
research directions are provided. We also provide a table for the notation we use

throughout the study in Appendix.



Chapter 2
Literature Review

In this chapter, we provide a review on the relevant literature about this study. In
Section 2.1, the literature on the stochastic joint replenishment problem will be
provided. Section 2.2 discusses the analytical models on common policies studied

in two-echelon divergent inventory systems.

2.1 Literature on SJRP

Although the stochastic joint replenishment problem is practically important,
the solution for this problem is notoriously difficult. To our knowledge, Ignall
[45] is the only study that attempts to find the structure of the optimal joint
replenishment policy with stochastic demand. It has been shown that the optimal
policy may have a very complex structure even for two items with zero lead
time, due to the dependence between the order quantity of an item and the
inventory level of the other at an ordering instance. Based on this finding, one
may conjecture that the optimal policy for N items would involve control surfaces
defined by the inventory levels of other items considered in the replenishment.
Even if the exact structure is found, it would be too complex to compute and
implement it in practice. Hence, most of the existing approaches to the problem
have been confined to the evaluation of some intuitive policy classes that are

relatively easy to compute and implement.
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The stochastic joint replenishment problem differs from its deterministic
counterpart (JRP) greatly in terms of modeling methodologies and the employed
policy structures arising from the deterministic nature of demand. Therefore,
the vast body of research on JRP falls outside the scope of this study. We
refer the reader to Aksoy and Erenguc [2] and Goyal and Satir [39] for extensive
reviews of the works in deterministic demand environments. The literature on the
stochastic joint replenishment problem can be classified into two major streams
based on the type of policy class under consideration. In our review, we follow

this classification.

2.1.1 Can-order Policies

This stream of research has begun with the earliest work on joint replenishment
with stochastic demand by Balintfy [15] who introduced the continuous review
(s,c,S) joint ordering policy - also called the can-order policy. The policy
operates as follows. When the inventory position of an item 2 crosses s;, a
replenishment order is triggered to raise its inventory position to 5;. At the
same time, any other item j with an inventory position at or below its can-
order point, ¢; (s; < ¢; < S;) is also included in the replenishment, raising its
inventory position to 5;. Despite its benign structure, the analytical treatment
of the system under this policy is extremely difficult even in the presence of unit
Poisson demands. Balintfy [15] only provides an initial insight into the problem
with a queuing-based approach. A special case with ¢ =S — 1 and s = 0 in
a 2-item inventory system facing identical unit Poisson demands with zero lead-
time has been analyzed by Silver [67]. Under the assumption that shortages
are not allowed and with the objective of minimizing ordering and holding costs
per unit time, Silver [67] proves that the can-order policy is always better than
independent control if the cost of placing an order for two items is equal to
that for a single item; and, otherwise, there exists a critical value of the joint
ordering cost only below which it is preferable to use joint replenishment. An

exact analysis has been possible for this special case because the inventory levels
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of both items provide regeneration points at the order instances and, hence, the
renewal reward theorem is applicable. However, the same approach cannot be
used for the general case. Therefore, different approximate models and solution
methods have been proposed in the literature.

A common approximation technique proposed by Silver [69] is to decompose
the N-item problem with unit Poisson demands into N single-item problems
facing unit Poisson demands and Poisson special replenishment opportunities.
The resulting single-item problem has been analyzed by Silver [68] and solved
optimally by Zheng [80]. The same decomposition technique has later been
extended to compound Poisson demand by Thompson and Silver [75] and
Silver [70]. Using a similar decomposition approach, Federgruen et al. [31]
propose a semi-Markov decision model and use a policy-iteration algorithm
to solve for the optimal values of the control policy parameters. We denote
this policy by (s,¢,S)p. Van Eijs [77] and Schultz and Johansen [65] have
illustrated that the decomposition method assuming a Poisson arrival process
for the special replenishment opportunities can lead to poor performance of
the can-order policies. Instead, they propose using Frlang distributions in the
decomposition. The optimal values of the policy parameters are obtained through
policy iteration and simulation-based updating of the stochastic process governing
the opportunities. Melchiors [53] has proposed to use a new compensation
approach and been able to improve the previous approximations of the continuous
can-order policies for unit Poisson demands. We denote this policy by (s, ¢, S)as.
However, the approach and the approximations used require extensive iterative
computations and may result in significant deviations from simulated costs in
some cases. Recently, Johansen and Melchiors [46] proposed a periodic review
version of the can-order policy which performs well when there is high demand
variation across the items.

As the above summary indicates, almost all of the works on the can-order
policy have focused on alleviating the inherent modeling complexities arising from
the nature of the policy class. Another major difficulty with the can-order policy

is the size of the optimization problem. For an N-item setting, the continuous
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review (s, ¢, S) policy employs 3V control policy parameters, whereas the periodic
review counterpart has 3N 4 1 policy parameters.

For completeness, we also cite Liu and Yuan [52] who study the can-order
policy in a two-item inventory system with correlated demand processes, and Van
der Duyn Schouten [76] who considers quantity discounts within the framework
of can-order policies.

For realistic operating environments, this implies extensive numerical
optimization effort. Coupled with the iterative nature of the decomposition
techniques developed in the literature, the can-order policy appears to be a
prohibitively tedious control policy class. Therefore, a number of researchers
have proposed control policies that are more parsimonious (i.e. with fewer control
policy parameters) and/or easier to model and optimize. We discuss such policies

next.

2.1.2 Other Policies

The continuous review (@), S) policy was first proposed by Renberg and Planche
[60], and subsequently studied by Pantumsinchai [58] with Poisson demand.
Under the (@Q,S) policy, when the aggregate consumption since the previous
order reaches (), all items are raised up to the vector of order-up-to levels, S.
The policy employs N + 1 policy parameters in an N-item setting. This policy
has been motivated by, and is suitable for, environments where the items have
to be procured at a pre-determined quantity, such as a truckload size due to
transportation limitations. An exact analysis is presented in Pantumsinchai [58]
and the numerical findings indicate that the performance of (@), S) policy vis a
vis the can-order policy is remarkable for high ordering cost, small number of
items and low shortage costs, whereas, the latter performs better only with small
ordering costs.

Cheung and Leung [24] study the (@), S) policy for a two-item inventory system
in a replenishment/quality control context and illustrated that the sampling

plan in coordinated replenishments is more complex than that of independent
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replenishments and therefore decreases the cost savings owing due to joint
replenishment.

Atkins and Iyogun [4] propose two base-stock periodic review policies for
unit Poisson demands, developed on the basis of a lower bound on the cost rate
established previously by the authors (Atkins and Iyogun [3]). The first policy P,
imposes the same review period length 7' for all items, and the inventory levels of
all items are raised to their order-up-to levels defined by S. The policy employs
N 4+ 1 policy parameters. The second policy M P is a modified periodic policy
that utilizes item-specific review period lengths based on the afore-mentioned
lower bound; it uses 2N policy parameters. Their numerical study indicates that
the proposed policies dominate the (s, c,S) policy except when the fixed ordering
costs are small.

As reported in Pantumsinchai [58], the performance of the M P policy is
comparable to that of the (@), S) policy. An extension of the P policy of Atkins
and Iyogun [4] to compound Poisson demand is provided by Fung et al. [37] under
a service level constraint. They observe that this extension results in significant
cost reductions over can-order policy especially when the lead-time is large.

Viswanathan [79] recommends a new policy class. Under the proposed policy,
P(s,8), one uses an independent, periodic review (s, .5) policy for each item with
a common review interval, T'. This policy employs 2N + 1 policy parameters for
an N item setting. An approximate solution is provided under the assumption
that an order is placed at each review epoch. An extensive comparison of the
P(s,8) policy is made with the M P, (Q,S), (s,c,S) policies. It is found that
P(s,S) dominates the other policies especially when the holding costs are high
compared to the backorder costs.

Cachon [17] proposes another periodic review policy - called the (@, S|T') or
minimum quantity periodic review policy. Under (@, S|T') policy, the system is
reviewed every T' time units, and any item j is ordered up to its maximum level
S; it a total of at least () demands have accumulated for the items. In an N-item
inventory setting, the (Q,S|T") policy employs N 4 2 parameters. Cachon [17]
also considered shelf-space and truck capacities for the SJRP.
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In a very recent study, Nielsen and Larsen [56] proposed the (s, S) policy in
which inventories are reviewed only when () total demands accumulate since the
last review instance. At the review instance, any item j, the inventory position
of which is less than or equal to its reorder level s;, is ordered up to S;. This
policy employs 2N 4 1 policy parameters for an N -item setting. In operating
environments with identical demand and cost structures for the items, the policy
reduces to the (@), S) policy. Over a small test bed, the policy was found to be
superior to the previously proposed policies.

As the above discussion of the existing policies illustrates, the stochastic joint
replenishment problem is an open research area for the development of more

efficient computational methods and control policies.

2.2 Literature on Two-Echelon Divergent

Inventory Systems

The theory of stochastic multi-echelon inventory models has been essentially
developed during the last two decades. For a general overview of this
development, we refer to Axséter [6] and Federgruen [30]. Since there are a vast
number of studies in this area, we will restrict ourselves only to the literature
on two-echelon divergent inventory systems. Note that in two-echelon divergent
systems, each retailer at the lower echelon is supplied from only one stocking
point at the upper echelon.

Most of the ordering policies studied in the literature are built around two
major policy classes. In our review, we will follow these classes and also mention
a few studies that utilize the centralized information in a two-echelon inventory

system.

2.2.1 Installation Stock Policies

One of the most common policies used in multi-echelon inventory systems is the

installation stock policy. Here, the inventory control is completely decentralized
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in the sense that the ordering decisions at a certain installation are solely based
on installation stock, i.e., the inventory position at this installation and do not
require any information about the inventory situation at the other installations.

There are three main approaches for the evaluation of these policies in

divergent systems:

1. The first approach is to approximate the effective leadtime time of a retailer
order, which consists of a deterministic leadtime and a random waiting
time resulting from stock-outs at the warehouse. This approximation is the

basis of the approach of Sherbrooke [66] for the METRIC model where each

facility employs a one-for-one ordering policy.

2. The second approach is to aggregate all retailers as a single retailer and
determine the outstanding orders of this retailer. The outstanding order
at this retailer is disaggregated among the retailers which provides the
computation of the inventory and backorder levels of the retailers. Using
this approach, Simon [71] provided the exact expressions for the METRIC
model. Graves [40] used this exact approach to optimize the inventory levels
in the system. Graves [40] also provides a two-moment fit for the number

of outstanding orders at a retailer.

Moinzadeh and Lee [55] and Lee and Moinzadeh [51], [50] presented
several approximations for the number of outstanding orders and provided

optimization procedures for both one-for-one and batch ordering policies.

3. The last approach matches every supply unit with a demand unit. By
keeping track of an arbitrary supply unit from the moment it enters the
system until it exits by fulfilling a demand, it is possible to calculate the

holding and backorder costs associated with this unit.

This idea first appeared in Svoronos and Zipkin [73] to calculate the average
backorders at the retailers and the average inventory level at the retailers

and the warehouse under (@), R) policy at each installation.
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Later, Axsater [5] calculated the holding and backorder cost of an arbitrary
unit for the case where one-for-one replenishment policy is employed at
each installation. Axsater [5] also derives lower and upper bounds on the
optimal base stock levels. The cost function derived in Axsater [5] was
later used by Axsater [7] to calculate the cost function of (@, R) policy
with unit Poisson demand and identical retailers. Forsberg [36] extended
the analysis to non-identical retailers. Forsberg [35] presented an exact
model based on the model developed in Forsberg [36] to analyze the case
of Erlang inter-demand times. In Forsberg [35], approximations based on
the analysis of Erlang inter-demand times were also presented to analyze
the case of more general inter-demand time distributions. This approach
was also used by Axséter [9] to calculate the exact probability distribution
of the inventory level of the retailers under (@, R) policy with compound
Poisson demand and identical retailers. With non-identical retailers and
compound Poisson demand, Forsberg [34] and Axséter [8] have used the cost
function of Axsater [5] to provide an exact cost rate function of order-up-to
policy and an approximate solution for (@, R) policy, respectively. More
recently, Cachon [16] used this approach to calculate the average inventory,
backorders and fill rates for periodic review (R,n@)) policies with discrete

batch demand.

2.2.2 Echelon Stock Policies

The cost effectiveness of an installation stock policy is obviously limited due to
the lack of information about the entire system. A simple way to eliminate this
disadvantage is to incorporate the information about the inventory levels at the
lower echelons. The echelon inventory position at an installation is obtained
by adding the inventory positions at the installation and all of its downstream
installations.

The echelon stock concept was first introduced by Clark and Scarf [25]. They

proved that order-up-to policies based on echelon stock are optimal for serial
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inventory systems under periodic review and ordering costs incurred only at the
highest echelon. Rosling [61] proved that the assembly systems can be interpreted
as serial systems and hence echelon stock order-up-to policies are also optimal
for assembly systems when the ordering costs are zero. Similarly, Axsater and
Rosling [11] have shown that echelon stock (@), R) policies dominate installation
stock (@, R) policies.

Axséter and Junnti [12] compared the installation and echelon stock policies
through simulation for random demands in a two-echelon divergent inventory
system and illustrated that neither policies dominate the other in all settings.
On the other hand, Axsater and Junnti [12],[13] calculated the worst case
performance of the installation stock policy compared with echelon stock policy
for constant demand case.

Chen and Zheng [22] considered a two-echelon inventory system where each
facility operates under an echelon stock (R, n@) policy. For unit Poisson demand
at the retailers, they provide an exact method to compute the average holding
and backorder costs in the system. The exact method is based on disaggregating
the backorders at the warehouse among the retailers. For compound Poisson

demand, they also provide an approximate solution.

2.2.3 Joint Replenishment Policies

To the best of our knowledge, there are a few studies that consider joint ordering
decisions in a two-echelon divergent inventory system.

Axsater and Zhang [14] have proposed a model where the warehouse uses a
regular installation stock policy but the retailers employ a new type of policy,
(Q,, R,). Under the proposed policy, when the sum of the inventory positions
decline to a joint reorder point, R, (the number of demands accumulated in the
system reaches (), units), the retailer with the lowest inventory position orders
a batch quantity, (),. The proposed policy, in comparison with installation and
echelon stock policies, gives slightly higher costs.

In a more recent study, Cheung and Lee [23] have studied the (@), S) policy
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for the retailers. Similar to multi-item setting the policy operates as follows:
When the cumulative demands over all the retailers reach () units, an order is
placed at the supplier to replenish the retailer to their maximum levels S;. Under
a continuous review (@), R) policy employed at the warehouse, they present an
exact analysis of the model and give lower and upper bounds for the case where
the stock rebalancing is carried out at the retailers.

Observe that, under both of these policies, although the warehouse employs
a (@, R) policy, the material flow in the inventory system is identical to a system
where the warehouse operates under an echelon stock policy. The mentioned
two policies only differ in the way the ordered units are distributed among the
retailers.

Recently, Gurbuz et al. [41] proposed a hybrid policy for a two-echelon
inventory system with the upper echelon employing cross-dock. The proposed
policy is a hybrid combination of the special can-order policy with ¢ = s —1
and (Q,S) policy, ie. the inventory position of all retailers are raised up to
S whenever any retailer’s inventory position drops to s or the number of total
demands accumulated at the retailers reaches () units. The proposed policy is
compared with (@, S), the special can-order policy and a periodic review order-
up-to policy.

Lastly, we also cite recent studies by Cetinkaya and Lee [20], Axsater [10],
Cetinkaya and Bookbinder [18], Kiesmiiller and de Kok [48], Cetinkaya et al. [19],
[21] which study different aspects of consolidation policies under VMI programs.
These consolidation studies differ from the joint replenishment studies because
the consolidation policies let the replenishment orders coming from the retailers
wait for a certain time or until a certain quantity is consolidated at the warehouse.
The mentioned studies except Kiesmiiller and de Kok [48] usually consider the
problem from the perspective of the vendor, ie. the warehouse and the effect of
the consolidation policies on the performance of retailer is ignored.

The above review on the existing policies in divergent inventory system
illustrates that the stochastic joint replenishment problem in multi-echelon

inventory theory is also an open research area for the development and
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implementation of new models and policies and analysis of them.
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Chapter 3

A New Policy for the SJIRP

As explained in the literature review in the previous chapter, the solution of
the stochastic joint replenishment problem is extremely difficult. Hence, most of
the existing approaches to the problem have been restricted to the evaluation of
some intuitive policy classes that are relatively easy to compute and implement.
In this chapter, we propose a new class of control policy for the stochastic joint
replenishment problem. The (@), S, T') policy, proposed herein, makes use of the
advantages of both continuous and periodic review policies in a parsimonious
manner.

The main assumptions of the model and the proposed policy will be explained
in Section 3.1. Section 3.2 presents a preliminary analysis which will be followed
by the development of the expressions for the key operating characteristics in
Section 3.3. In Section 3.4, we will generalize the proposed policy to the case

with compound Poisson demand.

3.1 The Proposed Policy

We consider a continuous review, multi-item inventory system with N > 2
items facing unit external demands generated by independent and stationary
unit Poisson processes with rate A; (¢ = 1,2,...,N). All unmet demands are

assumed to be backordered. Items are supplied from an ample supplier and

16
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delivery lead times are constants given by L; for item ¢. Although we consider
a single-location model, we assume that the lead times may differ across the
items since, as indicated in Tersine [74] and Ouyang et al. [59], lead time usually
consists of the transportation time, which is common for the items and setup and
load-unload times, which may be different.

The system is continuously reviewed; and, hence, the records for the last
replenishment epoch, as well as the time elapsed since then and the total demand
arrived to the system after the last order are all available in the system.

The fixed ordering costs in the system have two components: a common
ordering cost, K., which is charged every time a replenishment order is placed
and a fixed item specific ordering cost k;, for item ¢ that is added if item ¢ is
included in the order. The common ordering cost, K is associated with the fixed
transportation/ordering cost and is independent of the number of items involved
in the order. The item specific ordering cost is the cost of adding one more item in
the replenishment order and possibly results from reviewing the individual items
as well as load-unload processes. This ordering cost structure, so-called first-order
interaction was first introduced by Balintfy [15] and presents an opportunity to
exploit the economies of scale in replenishment by ordering items jointly and,
hence, requires an effective coordination mechanism among the items.

Holding cost is charged at h; per unit of item ¢ held in stock per unit time.
Two types of shortage costs are incurred: a time weighted shortage cost at p;
per unit backordered of item ¢ per unit time and a fixed penalty cost of =; for
every unit of item ¢ that is not immediately satisfied. We assume that the cost of
monitoring the inventory system is negligible and we ignore the unit purchasing
costs since all demand is eventually satisfied.

Under the assumed cost structure, the objective is to minimize the expected
total cost per unit time. We propose below a joint replenishment policy that
unifies the time and the inventory position considerations for the placement of
orders. Note that the inventory position at any point in time is defined as the on-
hand inventory plus on order minus backorders. The proposed policy is formally

stated as below:
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Policy: Monitor all inventory positions continuously, and raise the inventory
positions of the items up to S = (S1,5%,...,5n)

i) whenever a total of Q) demands accumulate for the items or

it) at time kT if at least one demand occurs in ((k — 1)T,kT] with no demand
arrivals in (0, (k — 1)T7],

whichever occurs first.

We shall refer to this proposed policy as the (Q,S,T) policy, where S is
the vector denoting the maximum inventory positions of the items, and T
and () correspond, respectively, to the time and inventory triggers. In the
sequel, we use the term decision epoch to refer to an instance at which either
a replenishment order is placed or merely an inventory review is made without
any order placement. To clarify the distinction, consider the following cases.
Suppose that a total of () demands have arrived before T' time units have elapsed
since the last decision epoch; then, an order is placed at the instance of the ()’th
demand arrival, which constitutes a decision epoch. Alternatively, suppose that
T time units have elapsed before a total of () demands have arrived. At this
instance, the inventory review may or may not result in an order placement. If
at least one demand has arrived in T units of time, reordering will occur and the
placement of an order constitutes the decision epoch. However, if no demand has
arrived within the 7" units of time, then the decision is not to order anything, and
the decision epoch coincides with an inventory position review instance. Thus,
we use a decision epoch to refer to an instance at which either a replenishment
order is placed or only an inventory review action is taken. Due to the Poisson
demand process, we immediately see that decision epochs constitute regenerative
instances for the system. We will also elaborate on the implementation of the
policy in Section 3.2.

The (@, S,T) policy is a hybrid of the continuous review (@, S) policy, first
proposed by Renberg and Planche [60], and the periodic review (S,T') or P policy
of Atkins and Iyogun [4]. Thus, it attempts to exploit the benefits of two separate
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policies. As expected, it reduces to these two policies in the limit: as T' — oo,
we obtain the (@), S) policy; and, as ) — oo, we obtain the (S,T') policy.

The replenishment quantity under the (Q,S,T') policy is a random variable; it
may be as small as one unit and cannot exceed () units. This is in contrast with
the (@,S) policy, which imposes a constant reorder size. Hence, the (Q,S,T)
policy may not fully exploit the economies of scale in joint ordering in every
order instance in comparison with the (Q,S) policy. We have observed this
disadvantage in many cases in our numerical results presented in Chapter 4.
However, the cause of this diseconomy, namely, the introduction of the time
trigger, T', helps in another way and compensates for this inefficiency. Under
the (@,S) policy, the inter-order times are random. To be specific, they have
Erlang_(¢) distribution, which may have quite long tails. The introduction of
T' cuts such long tails, as it imposes an upper bound on the time between two
consecutive decision epochs (and, thereby, reorder times). Therefore, (Q,S,T)
policy also aims to decrease the variance of the inter-order time. The (Q,S,T)
policy also makes use of the advantages of continuous and periodic review policies
by providing opportunities either at demand arrivals or review instances.

Previously, we have indicated that the generation of replenishment opportu-
nity arrivals is crucial in understanding the idea behind SJRP. Under (Q,S)
policy, the internally generated joint replenishment opportunities arrive in a
non-Markovian fashion (e.g. time between two consecutive opportunities is
Erlangg distributed). The presence of a time-based reorder trigger provides
the opportunity of pro-active reordering in the presence of non-Markovian total
demand process/replenishment opportunity arrivals. We know from Katircioglu
[47] that a time-based reorder trigger is optimal for single-location models with
non-Markovian demands (see also Moinzadeh [54] and Tekin et al. [28]).

Time trigger also provides a check against the excessive imbalances of demands
across the items. To see this, consider a hypothetical case when we have, say,
() — 3 total demand arrivals since the last decision epoch. It may be the case that
all of those demands have come for only one item, say j. The inventory level of

item j may then be dangerously low - we may even be experiencing shortages.



Chapter 3. A New Policy for the SJRP 20

If we were using the (Q,S) policy, item j would have to wait for three more
demands to arrive to the system to give its order. However, if we are using the
(@Q,S,T) policy, there is the possibility that T" time units since the last decision
epoch will have elapsed much before the arrival of those next three demands to
the system, and item j will give its order at the time trigger. This will protect
item j against shortages better than the (Q),S) policy. If after 7" time units
since the last review instance or the replenishment order, an order has not been
placed yet, i.e., ) demands have not accumulated, the policy places an order for
the items in anticipation of the placement of a possible near future order. By
doing so, the items can be replenished in a more reliable way to handle for the
leadtime uncertainty and to protect against shortages. Hence, we would expect
the introduction of T' to improve the (@), S) policy.

Next, we present some preliminary results needed to derive the operating

characteristics of the system.

3.2 Preliminary Analysis

In this section, we obtain two entities: the joint distribution of the order size and
the inter-order time; and the steady-state distribution of the individual inventory
positions of the items.

First, we introduce some notation. Let r; be the probability that the demand
is for item ¢, given that a demand arrival has occurred. Since the demand process

is Poisson, r; = A;/Ao, where Ay = Y2

i=1 Aj is the system demand rate. Let
X,,n = 1,2,..., denote the random variable representing the arrival time of
the nth system demand after the last decision epoch which could be either a
demand instance or a time trigger. Since inter-arrival times of the demands are
exponential, the time until next demand (forward recurrence time for the demand
process since the last decision epoch) is also exponential and therefore X, has
an FErlang_n distribution with scale parameter Ag. Let f(x,k, A) and F(x,k, )

be the probability density and the cumulative distribution functions of an Erlang

random variable with shape and scale parameters k and A, respectively. For any
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cumulative distribution function F, we use F' =1 — F.

Under the (Q,S,T) policy, we define a cycle as the time between two
consecutive order placement decisions. A cycle starts every time a positive
replenishment order is given (raising the inventory positions to S). Under the
proposed policy, there may be multiple decision epochs, separated by intervals
of length T" within a cycle. We denote the total number of such decision epochs
by M, which is a geometric random variable. We present two realizations of the

evolution of a cycle in Figure 3.1.

IP(t) IP(t)
Cycle Cycle
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Figure 3.1: Realizations for a cycle

Figure 3.1(a) refers to a realization where, in the first (M — 1) > 0 intervals
of length T' since the last order placement decision, no demand has arrived and
in the next interval of length T', less than () but more than one demands have
arrived to the system, triggering a reorder decision based on the time threshold.
Hence, the length of the cycle is MT. Figure 3.1(b) refers to a realization where,
in the first (M — 1) intervals of length T since the last order placement decision,
no demand has arrived as in Figure 3.1(a), but before T" more time units elapse,
() demands arrive, triggering a replenishment. Hence, the length of the cycle
is random with a value between (M — 1)T and MT. As mentioned above, M
is a random variable which is geometrically distributed, with parameter ¢y =

po(0, AoT'), where po(x, ) denotes the probability mass function of a Poisson
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random variable at x, with rate A.

For clarity and later use, we make the following definitions. Let [ P;(¢) denote
the inventory position of item ¢ and I P(t) denote the total inventory position
of the system at time ¢. Then, IP(t) = vazl I1P(t) < vazl S; = St. Also let
N1;(t) denote the net inventory level of item ¢ at time ¢. In order to illustrate the
behavior of the inventory system under the proposed policy, we depict a particular
realization in Figure 3.2. Figures 3.2(a) and 3.2(b) show the inventory positions
and net inventory of item 1 and item 2, respectively. Figure 3.2(c) displays the
corresponding total inventory position. In the following, we briefly narrate the
time sequence of the events and the decisions taken. In this illustration, we have
S;1 =5,9 =3, () =3 and some T" > 0 as the policy parameters; initially both
items are at their maximum stocking levels. For generality, we assume that lead
times for individual items are different. That is, an order consisting of units
for both items will be received at different times by the two items. We assume
Ly > Ly > 0. At time t = #1, a demand arrives for item 1, at ¢ = #3, a demand
arrives for item 2 and at time ¢ = t3(< 7T'), another demand arrives for item
1. At this instance, the number of demands accumulated in the system reaches
Q) = 3. This triggers an order placement at ¢ = ¢35 which brings the inventory
position of item 1 to S7 and of item 2 to S3. This order consists of three units,
two of which are for item 1 and the remaining one unit is for item 2. At this
point, there is one outstanding order in the system and both items are awaiting
some delivery. At time ¢4 = f3 + Lo, the unit for item 2 in the order placed at 3
arrives, raising the net inventory of item 2 to three. At time ¢5, a demand arrives
for item 1 and drops its inventory position to four and its net inventory to two
(since item 1 is still awaiting its delivery). At time tg = t35+ T, a total of T' time
units have elapsed since the last order was placed; therefore, an order is placed
as triggered by the policy. The order size is one and only item 1 is included in
this order since no demand has arrived for item 2 between ¢ = t5 and ¢ = t5. At
time t;, another demand arrives for item 1 decreasing its inventory position to
four and its net inventory to one. Note that, between tg and tg = t3 4+ L, there

are two outstanding orders for item 1 whereas there is no outstanding order for
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item 2. At time ¢ = {g, the units in the order given at time ¢3 are received by
item 1 and its net inventory is raised to three. A demand for item 2 arrives at
time ¢t = tg dropping both the inventory position and net inventory to two. At
time t19 = tg + 1', another order is placed; its order size is two, one unit for each
item. At tyo, there are two outstanding orders for item 1 and one outstanding
order for item 2. The process goes on further.

Let Y and ()¢ denote random variables corresponding to the cycle length (i.e.
the inter-order time) and the order size, respectively. For convenience, we shall
use the term joint density for joint density/probability mass function of random
vectors when some components are discrete and others are continuous random
variables. Let fyo,(y,q) denote the joint probability density function of ¥ and
()o. We have the following result as proved in the Appendix.

Lemma 3.2.1

6 polq, AoT') ty=mlm>10<qg<@
fY7Qo(y7Q) =

Proof: See Appendiz.

Using the above lemma, we can find the marginals, which will be of use in

the sequel.

Corollary 3.2.1
(a) The probability mass function Pg,(q) = P(Qo = q) of Qo is given by:

pol(q, A1) /(1 — ¢o) it 0<g<@
Po,(q) =
Po(Q —1,X0T)/(1—¢o) if ¢=0Q

(b) The p.d.f., fy(y), of Y is given by:
gb_l[Po(Q—l,)\oT)—¢o] if mZ l,y:mT

Irly) =
Py — (m = DT, Q,h) it m>1,(m—1)T <y <mT
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Figure 3.2: Evolution of Ordering Process
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where Po(x, A) denotes the Poisson cumulative distribution function with rate \.

Proof: See Appendiz.

The next step is to obtain the steady-state distribution of inventory positions
of the items.

As already mentioned in Section 3.1, each decision epoch is a regeneration
point for the system, since the inventory positions of all the items are at their base-
stock levels at these instances under the (Q,S,T') policy. Referring to Stidham
[72], we know that the steady-state distributions of the inventory positions of
items exist.

Fort > 0 and 1 < < N, define the three-dimensional stochastic process,
&(t) = {N;(1), No(t), Z(1)}, where Z(t) denotes the time elapsed at time ¢ since
the last decision epoch, and N;(t) and Ny(t) denote, respectively, the number of
demands for item ¢ and for all other items that have arrived over Z(t) time units.
A particular state that &;(¢) visits at time ¢ will be denoted by {n;,ng, z}. Then,
g:(t,n;,ng, z) denotes the probability density function of &;(¢). Assuming that a

steady state density exists, we have the following result:

Proposition 3.2.1 The steady state p.d.f., denoted by gi(n;, no,z) is given by

the following expression:
gi(niv no, Z) = Copo(ni, )\Z'Z)po(no, ()‘0 - )‘Z)Z) (31)

for0 < z < T and 0 < ng+n; < Q—1,n0 > 0,n; > 0, where Cy s the
normalizing constant given by

-1

Co = [/T Po(Q — 1. Mot)dt

=0

Proof: See Appendiz.

Due to the nature of the control policy which ensures constant inventory
positions at decision epochs, there is a one-to-one correspondence between the
observed demands and the inventory positions of items. If n; demands have

arrived for item ¢ after the last decision epoch, the inventory position of item ¢
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is S; —n;. Hence, from Proposition 3.2.1, we can immediately obtain the steady-

state distribution of the inventory position of item 1.

Proposition 3.2.2 Let @;(x) denote the steady-state probability that the inven-

tory position of item ¢ is x. Then,

@i(Si —mni) = ™ >

k=0

Q—1-n; L .
Co ( tn ) r?i(l—ri)kF(T,k—l—ni—l—l,)\o)

1

for0<n; <Q —1.
Proof: Using Proposition 3.2.1, we have,

Q-1-n; .7
pilSi—ni) = Y / gi(ni, k, 2)dz
k=0 z=0
Q—-1-n; .
= Co >, / Opo(ni, Aiz)po(k, (Ao — Ai)z)dz
k=0 =

== Co dz

S i s s T B

o /=0 n;! k!

dz

Q-1-n; Mg — )‘z k k‘|‘nz 1T e~z ( )\ z ) htn
= G 2 Z(n'o-l—k—l—l)(ll)/ 0 (0)1

k=0 )\01 an 2=0 (k + nz)
Gt ( k+ n;

— ) r?i(l—ri)kF(T,k—l—ni—l—l,)\o)
Ao f

=0 n;

Now, we are ready to formulate the operating characteristics of the inventory

system.

3.3 Operating Characteristics

In this section, we derive the expressions for the expected cycle length, the
order placement rate, the probability that a particular item is included in
a replenishment order, and, the expected values of the steady state on-hand
inventory and backorder levels. These expressions are then used to construct the

expected cost rate function.
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We begin with expected cycle length, E[Y]. As detailed in the Appendix, we
have:
TPy(Q — 1, AT n QPo(Q, T
1 —¢o Ao(1 — ¢o)

In each cycle, the common ordering cost is incurred once. Hence, the common

ElY]

(3.2)

ordering cost rate is simply K/FE[Y]. In each replenishment, item specific ordering
costs are also incurred. To obtain the item specific ordering cost rate, one needs
to find the items that are included in any given order. The probability that item
¢ is included in an order of size ¢ (1 < ¢ < @ )is 1 — (1 —r;)?, where r; = X\;/ Ao
as defined before. Letting 6; denote the probability that item 2 is included in a

replenishment order, we have

Q
0; = Z_:PQO(Q)[l—(l—ﬁ)q] (3.3)

where Pg,(q) is given in Corollary 3.2.1.

To compute the expected on-hand inventory level and the expected number of
backorders at any time, we employ the standard argument of Hadley and Whitin
[42] as follows: Consider the system at time instances ¢ and ¢ 4+ L;, where [L; is
the constant replenishment leadtime of item z. Note that all outstanding orders
at time ¢ will have arrived in the system by time ¢t 4+ L; and nothing on order at
time ¢ will have arrived by time ¢ + L;. Then, the on-hand inventory of item s,
OH;(t+ L;), and the backorder level of item ¢, BO;(t + L;) at time t + L; can be

written as:

OHZ(t + LZ) == maX(]Pi(t) — Di(t,t + LZ], 0) (34)
BOz(t—I-LZ) == maX(Di(t,t—l—Li] — ]Pz(t),()) (35)

Here, D;(t,t+ L;] is the number of demands arriving for item ¢ during (¢, + L;]
and has a Poisson distribution with rate A;L;. Notice that since the demand is
Poisson, D;(t,t 4 L;] is independent of I P,(t).

In view of Equations (3.4)-(3.5), we can find the steady state inventory levels
at time t + L; by conditioning on the steady state distribution of the inventory

position at time .
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At steady state, we have the probability mass function of on-hand inventory

level OH; and backorder level, BO; as follows:

min(S;,y;)
P(OH; =vy;) = S pilnipo(ni —yi, ML) 0 <y; <S; (3.6)
n;=8;—Q+1
S
P(BO; =y;) = S ilnipo(ni +yi, ML) yi >0 (3.7)
n;=8;—Q+1

Hence, at steady state, we have E[OH;] and E[BO;] as follows:

Si
yi=1
yi=1
The steady state probability that there is no stock on hand of item z, ¢; is given
as follows:
Si
v, = 1= P(OH; =y, (3.10)
yi=1

We can now construct the expected cost rate AC(Q), S, T') for the whole system
using Equations (3.2) - (3.10).

K+YyY ko, & al al
=1 =1 =1
(3.11)
Then, the optimization problem is defined as follows:
&gAﬂQSJU
s.t.
QezZtSezV.T>0
(3.12)

Although an explicit expression is provided in Proposition 3.2.1 for the steady
state distribution of inventory positions, the complicated nature of the expressions
for the operating characteristics does not allow for an analytical investigation of
the unimodality or the convexity of the objective function. We comment on the

numerical observations about this issue in Chapter 4.
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3.4 Extension to Compound Poisson Demand

Although unit Poisson demand assumption is commonly made in inventory
models, the Poisson distribution may exhibit a poor fit to demand data in certain
environments since it may not capture the variability of demands sufficiently.
But the data may have a coefficient of variation significantly greater than that
of a Poisson random variable with the appropriate mean. In this section, we,
therefore, extend our results to a more general setting where items face batch
demands that arrive according to a Poisson process but with a random batch size
which is independent of the arrivals. Specifically, we assume that customers who
demand item ¢ arrive according to a Poisson process with rate A; and demand
x units of item ¢ with probability v;(z), for ¢ = 1,2,--- N and = = 1,2,---.
Let vz(k)(:zj), k = 1,2,--- denote the probability that z units of item ¢ have
been demanded by k customers who arrived for item ¢. Incidentally, vl(k)(:zj)
is the kth convolution of the demand size distribution v;(z). Also let V()
be the distribution function of demand size for item 2. We retain all of the
other assumptions and the corresponding notation introduced in the previous
sections. Additionally, we assume that if the on-hand inventory is not sufficient
to satisfy fully an arriving customer’s demand, the demand is partially filled
with the available stock and the rest is backordered. We propose the following
generalized (Q,S,T) policy:

Policy: Monitor all inventory positions continuously, and raise the inventory
positions of the items up to S = (51,52, ..., 5v) whenever
i) the total inventory position of the items crosses Y0, Si — Q or
it) at time KT if at least one demand occurs in ((k— 1)T,kT| with no demands
in (0, (k—1)T],
whichever occurs first.

We call this policy as generalized because there are two fundamental
differences between the unit and compound Poisson demand cases: (i) the order
size with compound Poisson demand may now exceed () units since the total

inventory position is allowed to cross Y | Sy — ) whereas it is limited by @ for
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unit Poisson demand, and (i) the number of units demanded in a replenishment
cycle may not be equal to the number of customer arrivals since each customer
may demand more than one unit of an item.

The derivation of the expressions for the operating characteristics for the
compound Poisson case is based on the methodology used for the unit Poisson
demands but is modified slightly to account for the mentioned differences as
explained below.

Let N denote the set of all the items comprising the inventory system, and
O denote a subset of A. Also let we(q, k) be the probability that k customers
demand a total of ¢ units for the items in the set ©. Then, for ¢ > £ > 1,
O={},i=1,2,---,N, welq, k) = vl(k)(q). For¢g>k>1,0 =N, we have
wo(g. k) = S e e ) o )

zilzs! . !
Zﬁlqi:q
and for ¢ >k >1,0 =N\{i},i=1,2,---, N, we can write

k!

w@(qvk) = Z
{ Py =k
Zj;éi q; = 4

w5 (@)
Co g 3.13
} $1!..$Z’_1!$Z’+1!..xN! gr] v] (QJ) ( )

where 7#; = A; /(Ao — A;) for j # i. Observe that, for unit Poisson demand, we
have we (¢, k) = 1 only for ¢ = k.

Now, let po(¢, Aoz, ©) be the probability that a total of ¢ units are demanded
of items in set © in z time units by the customers arriving according to a
compound Poisson process with rate Ag (= Y_;co Ai) and batch size with p.m.f.

given by we(q, k). Then,
g
po(q, Xez,0) = Y po(k, Aoz )wel(q, k).
k=0

The joint probability density function of Y and ¢)o for the compound Poisson

demand case can now be expressed as follows.
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Lemma 3.4.1

o polq, AT, N) if y=mT,m>1,0<q¢<Q

Fraoy,q) = ol | |
P T o S0 O (o T4 1, o) [ ey — )]

if m—-—1D)T<y<mlT.m>1,q>Q
Proof: See Appendiz.

We next present the marginal distributions of ¥ and )y, without giving the

proof, which are directly obtained from Lemma 3.4.1.

Corollary 3.4.1 Under compound Poisson demand,
(a) The probability mass function Pg,(q) = P(Qo = q) of Qo is given by:

ﬁO(Q7)‘NT7N)/(1_¢O) if 0<q<Q
Poolq) =

Sy S Polk, AT wn (G, k) (S rivig = )] /(1= ¢0) it ¢>Q
(b) The p.d.f., fy(y), of Y is given by:

0 g Pola. TN it om > 1y =mT

g=1

L S Ty — (m = DT, k4 1 o)wn (G k) (2, Vi@ =1 = )]

it m>1,(m—-—1T<y<mT

Using Corollary 3.4.1(b), E[Y] can be written as:

Q-1 T
BY] = 3 polg; W N)——;
2l e
10— k+1 T¢o
LU S F(T k4 2,00) + 7285 F(T k41, o)

+ >

= 5wk (SN V@ — 1 - ) (3.14)

We next present the steady state p.d.f. of &(¢). Recall that &(¢) is a three
dimensional stochastic process, {N;(t), No(t), Z(t)}, where Z(t) denotes the time
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elapsed at time t since the last decision epoch, and N;(t) and Ny(t) denote,
respectively, the number of demands for item ¢ and for all other items that have
arrived over Z(t) time units.

Analogous to the unit Poisson demand case, we have the following result:

Proposition 3.4.1 The steady state p.d.f. of the stochastic process £;(1) is given

as follows:

gi(ni,no, 2) = Cipo(ni, Az, {11)po(no, Ay iz AN\ {7}})

forO0<z<T and 0 <nog+n;, <Q—1,n90>0,n;>0,2=1,2,--- N where Cy

is the normalizing constant given by

Q-1Q-1-ng .7
S [ el @z (Do Apnayz Nz

no=0 n;=0

01:

Proof: See Appendiz.

Using the fact that the inventory positions of the items are at their order-up-to
levels at the ordering instances, we obtain, as before, the steady state distribution

of the inventory position of item ¢ from proposition 3.4.1:

Proposition 3.4.2

Q-1-n;
ei(Si—ni) = C1 Y /Zzoﬁo(nm)\{z’}zv{i}) po(no, Apny iy 2, AN\ {7} })d=

n0:1

for0<n, <Q-1,:=1,2,---,N.

Finally, for 2 = 1,2,---, N, we can write
min(S;,y;)
POH;=y;) = Y qilndpoln —yi AL {i}) 0 <y <5 (3.15)
n;=8;—Q -1
Sy
P(BOi=y;) = Y.  eilndpo(ni +yi, AL {i}) 9 >0 (3.16)
n;=8;—Q -1

Note that the results of Lemma 3.4.1, Propositions 3.4.1 and 3.4.2 and the

expressions in Equations (3.15) and (3.16) for the compound Poisson demand
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case are similar to those given in Lemma 3.2.1, Propositions 3.2.1 and 3.2.2 and
the expressions in Equations (3.6) and (3.7) for the unit Poisson demand case
except for the modified probabilities. We note that the equations provided in
this section reduce to the ones of unit Poisson demand given in Sections 3.2 and
3.3 for v;(1) = 1.

Since the (S,7T) and (Q,S) policies are special cases of the (@), S,T') policy,
the above generalization provides the compound Poisson demand counterparts of

these policies, as well.



Chapter 4

Numerical Results for (Q,S,T)
Policy

In the previous chapter, we have proposed a new parsinomious policy for the
stochastic joint replenishment problem in a single-location multi-item setting.
In this chapter, our aim is to discuss the computational results regarding the
proposed (@, S,T) policy. We first present our results for unit Poisson demand
and then provide some results regarding the extension to compound Poisson.

In Section 4.1, we point out some issues regarding the behaviour of
AC(Q,S,T) with respect to decision variables and the search algorithm employed.
In Section 4.2 we discuss the sensitivity of the optimal policy parameters
with respect to various cost and system parameters. Section 4.3 presents the
performance of the proposed (Q,S,T) policy with unit Poisson demand over a
wide range of experimental setting. The experimental test beds used include
the standard one which was previously used in the literature for comparison of
any proposed stochastic joint replenishment policy as well as new test beds to
illustrate the impact of different system parameters on the performance of the
proposed policy. In Section 4.4, we include a discussion on the performance of

the proposed policy under compound Poisson demand.

34
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4.1 Computational Issues

Before we proceed with the results of our numerical study, we note that, we
use two types of search algorithms in this chapter, the details of which will be
explained below. In this section, we also present some remarks on the behavior
of the AC(Q,S,T).

In view of the optimization problem (3.12) presented in Section 3.3, under
(@, S, T) policy, it is easy to observe that for a given (@), T') pair, the optimization
problem to find S* can be decomposed into N independent sub-problems in each
of which we solve for S} separately. This separability property greatly reduces
the complexity of the optimization problem.

In a preliminary study, we investigated and observed the unimodality of
AC(Q,S,T) through an iterative search algorithm over a broad solution space
with randomized initial points. A total of 100 initial points Q and S were
randomly selected over the following ranges:

Qe [1, max(10Q,,, 1000)], S e [1,Q: + 10 [X\;L;]] where

N N

Qi = \/QAZ([(TZ—I-]CZ)/}LZ fOI’ i:1,2,...

N

Y

and [z] denotes the smallest integer larger than or equal to x. Q),,, and Q; values
correspond to the optimal order quantities of all and the individual items under
EOQ model with corresponding ordering, holding costs and demand rates and
provide a basis to determine the search space for the optimal policy parameters
(see Pantumsinchai [58] and Golany and Lev-er [38]).

One iteration of our iterative search algorithm consisted of three consecutive
optimization problems for one of the policy decision variables while keeping the

other two constant.

T = argmingAC(Q,S,T)
S = argmingAC(Q,S,T)
Q = argming AC(Q), S T)
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The iterative algorithm starts with a randomly selected Q and S, and ends either
when the same policy parameter values are obtained in two consecutive iterations
or the number of iterations reaches 1000. The search space for unimodality
investigation consists of @ € [Q™", Q™*], T € [T™™" T™=<] S, € [Smin, Smae]
for + = 1,2,..., N with increments of Ag = 1,Ar = 0.01,Ag, = 1 and the

boundaries of the search space are given by

Q™" = max(1,Q,), Q" = max(10Q,,,1000)
Tmin _ 0562m2n/)\07 Tmar _ 1‘5Qmax/)\0
Slmm = min(Qi, ()\ZLZ—‘ ), S;nax == Qz + 10 ’()\ZLZ—‘

These limits for (), S, T parameters are chosen so that the search space includes
a wide range of parameter sets including extreme values.

In Figure 4.1, we present different realizations of AC(Q,S,T) with respect
to each policy parameter while we keep the other two parameters constant. The
figures illustrate that AC(Q,S,T')is a well behaved function with respect to each
parameter and at each iteration of the iterative algorithm described above, the
optimal parameter is obtained having searched over a very wide range of the
parameter.

In our test problems, we have observed that the solution of the algorithm
converged to the same policy parameter values for all 100 starting points.
Incidentally, we have never hit the maximum number of iterations. Clearly, this
does not guarantee the optimality. However, given the very broad range of the
starting points, the optimization search space and the well behaviour of the cost
function, the observed convergence can be taken as an experimental indication
for unimodality.

Having observed the unimodal property numerically, in the remainder of our
numerical studies, we employed an exhaustive search algorithm for finding the
optimal parameter values of the proposed policy as outlined below.

For optimization, we employ exhaustive search over a large solution space.
The search space consists of ) € [Q™", Q™**],T € [T™", 1™, S; € [Smin, Smaz]
for + = 1,2,..., N with increments of Ag = 1,Ar = 0.01,Ag, = 1 and the
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Figure 4.1: Behaviour of AC(Q,S,T) with respect to each policy parameter
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boundaries of the space are given by

Qmm = maX(lv Qm)v Qm(w = maX(5Qm7 Qm + 200)7
Tmin — 05szn/)\07 Tmar _ 1‘5Qmax/)\07
SP = min(Qi, [NiLi]), ST = Qi+ 5 [MLi]

The employed search algorithm is provided as below:
Search Algorithm:
1.0. Set Q,,, Qm", Qmoe, Tmin Tmaer
2.0. For each @ € [Q™", Q"] by Ag
2.1. For each T € [T™", T™%] by Ar
2.1.1. For each item i € {1,2,..., N}
2.1.1.1. Set Q,, S, §maz
2.1.1.2. For each S; € [S%.;,., S%au] DY As,
2.1.1.2.1. Calculate EF[OH,], E[BO;],; according to Equations
(3.8),(3.9),(3.10).
2.1.1.3. Set SF = argmin{h; F]OH;] + p; E[BO;] + m\iv; }.
2.1.2. Compute E[Y] and §; for i = 1,2,..., N according to Equations
(3.2)-(3.3).
2.1.3. Compute AC(Q,5*,T) with ) given in (2.0) and 1" given (2.2)
according to Equation (3.11).
3.0. Set (Q*,T™) = argminAC(Q), S, T).
This search algorithm is used to find the optimal policy parameters and

optimal cost rate which are presented in the following sections.

4.2 Sensitivity Analysis

In this section, our aim is to illustrate the general behaviour of the optimal
policy parameters and the average cost rate of the (@), S,T) policy with respect
to different cost and system parameters. For the sensitivity analysis, we use an
experimental test bed in which N = 4 and all items are assumed to be identical in

their cost, demand and lead time parameters. Therefore, for the sake of simplicity,
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we drop the item index ¢ from cost, system and policy parameters. We also
consider only unit demands.

Table 4.1 illustrates the experimental set and the results. Notice that the
experimental points represent a wide range of parameters from very high service
levels with low ordering and high backorder costs to lower service levels with high
ordering and low backorder costs. We also note that we consider only one type
of backorder costs in our sensitivity analysis.

As explained in the previous chapter, under the proposed policy, there are
two reorder trigger mechanisms as discussed above. To better assess the impact
and advantage of the time trigger 7', of the proposed policy, we also report the
probability Hr, that a replenishment order is given by the time trigger. From
Corollary 3.2.1.b, Hy can be calculated as follows:

Mo = 3 fe(mT)= 3 65 (@~ LAGT) ~ (4.1)

m=1
1

= 1= %[PO(Q — 1, A1) — 0]

We present the optimal policy parameters, (Q*,S*,T™), the optimal cost rate

function, AC*, and H} calculated at (Q*,7*) in Table 4.1 for identical item
specific ordering costs, k; =20, : =1,...,4.

We observe that the behavior of the policy parameters with respect to system
parameters is quite intuitive. We discuss the general findings below in some
detail.

The effect of increasing the common ordering cost, K, is to delay the order
placement by increasing Q* and/or T*, as expected. However, the increase in
T™ is usually more pronounced than the change in @*. We also note that T
is, in general, smaller than */\g, which is the average time for Q* demands to
accumulate at the system level. Thus, T™ acts as a proactive trigger. But, as K
increases, we lose this property and T* becomes very close to or larger than QQ*/ Ao.
The loss of the proactiveness of the time trigger is also manifest in a decrease in
‘H’; with increasing K. Therefore, the proactive behaviour dominance of placing

the orders at the review intervals reduces as K increases. Increasing the common
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L =02 L =06

Parameters Q* S* T AC* HL Q* S* T AC* HL

K =20 h=2 =30,p=0 | 173 75 0.518 463.14 0.703 | 183 113 0.549 495.50 0.700
7T=0,p=30 | 190 64 0.573 371.20 0.678 | 198 100 0.597 391.01 0.683

3

h=6

3

=30,p=0 | 106 55 0.320 866.72 0.626 | 115 92  0.347 967.83 0.634
T=0,p=30 | 122 43  0.370 606.42 0.618 | 129 78  0.390 657.24 0.635

K =50 h=2

3

=30,p=0 | 200 83 0.605 513.21 0.668 | 207 119 0.625 544.51  0.680
=0,p=230 | 216 60 0.658 417.29 0.637 | 221 105 0.671 435.77  0.670

3

h=6 =30,p=0 | 119 56  0.360 949.11 0.626 | 127 96 0.384 1045.13 0.633
Ao = 320 T=0,p=30 | 137 46 0.416 679.54 0.599 | 144 81 0.436 726.69  0.627

3

K =100 h=2

3

=30,p=0 | 236 90 0.720 583.10 0.626 | 244 129 0.741 614.02 0.668
T=0,p=30 | 251 78 0.768 483.58 0.623 | 260 114 0.790 500.48 0.666

h=6

3

=30,p=0 | 139 63 0.422 1069.96 0.622 | 150 101 0.456 1158.16 0.621
7T=0,p=30 | 157 50 0.481 785.33 0.587 | 169 86  0.517 828.01  0.599

K =150 h=2

3

=30,p=0 | 264 97 0.811 645.31 0.601 | 272 135 0.835 673.21 0.608
T=0,p=30 | 282 85 0.846 541.20 0.578 | 291 121 0.901 556.93  0.585

h=6

3

=30,p=0 | 160 68 0.495 1174.19 0.540 | 166 104 0.509 1258.15 0.586
T=0,p=30 | 177 54 0.531 877.53 0.520 | 185 89  0.560 916.96  0.585

K =20 h=2

3

=30,p=0 | 212 97  0.425 566.18 0.703 | 225 151 0.450 604.33 0.721
T=0,p=30 | 235 84 0.470 454.55 0.702 | 243 136 0.486 474.74 0.708

h=6 7=30,p=0 | 132 72 0.266 1067.17 0.639 | 142 126 0.284 1188.82 0.676
7T=0,p=30 | 149 58  0.299 743.65 0.636 | 156 109 0.313 799.07 0.656

K =50 h=2

3

=30,p=0 | 244 104 0.496 628.19 0.641 | 254 158 0.515 662.74 0.659
T=0,p=30 | 266 91 0.539 511.29 0.623 | 274 143 0.552 529.27 0.639

h=6

3

=30,p=0 149 76 0.301 1170.13 0.636 156 129 0.316 1284.45 0.641
™ =0,p=30 169 62 0.338 833.79 0.608 177 113 0.354 883.75 0.629
\o = 480
K =100 h=2

3

=30,p=0 | 291 116 0.594 716.50 0.628 | 298 169 0.605 746.93 0.665
=0,p=30 | 310 111 0.620 593.00 0.626 | 315 152 0.642 608.18  0.644

3

h=6

3

=30,p=0 | 173 83 0.352 1319.24 0.612 | 182 135 0.368 1423.15 0.647
T=0,p=30 | 198 68  0.405 964.22 0.593 | 202 118 0.404 1007.37 0.609

K =150 h=2

3

=30,p=0 | 327 125 0.669 792.16 0.621 | 335 178 0.670 820.19 0.637
=0,p=30 | 353 111 0.723 664.03 0.618 | 358 162 0.716 677.01 0.602

3

h=6

3

=30,p=0 | 193 88 0.395 144790 0.588 | 203 140 0.415 1544.54 0.597
T=0,p=30 | 222 73 0.460 1078.09 0.523 | 227 123 0.466 1115.97 0.579

Table 4.1: Sensitivity Results with respect to K, h,p, 7, L, Ao, N =4 and k = 20

ordering cost also results in larger values of S* so as to avoid stockouts due to
the resulting delay in the reordering decision.

As the unit holding cost, h increases, all optimal policy parameters decrease.
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That is, reordering decisions are made more frequently. The inventory positions
of the items are raised up to lower levels to prevent the increase in the average
inventory level resulting from more frequent orders. At the same time, we also
observe that Hj generally decreases with h. This implies that the system has
a tendency to give the orders which are triggered by the accumulation of ()
demands, rather than being made at the time trigger for higher values of h.
This is already expected because the average inventory levels increase with the
introduction of a finite time trigger and hence the system tries to reduce the effect
of increased inventory levels by decreasing T' more.

The delivery lead time of the items and the system demand rate (or,
equivalently, the individual item demand rates) also have a considerable effect
on the optimal policy parameters. As the lead time increases, ¢)* and S* both
increase and T™ values usually increase due to increasing (*. However, as the
system demand rate Ag increases, Q* and S* get large but T gets smaller. On the
other hand, we observe that H% is generally increasing overall in A\ and L. That
is, for higher demand rates and/or lead time, the reordering decision is given
more frequently by the time trigger. This is also to be expected because longer
lead time or larger demand rates increase the risk of stock-outs during lead time,
so the proactive option of the policy becomes more desirable and is more often
used, which explains the higher values of 'H.

When higher service levels are desired, ie. the system works with unit shortage
costs, m rather than time weighted backorder costs, p, orders are given more
frequently and the items are replenished to higher levels, ie. S* values increase,
as expected. We also observe that 7™ and @)* both decrease considerably as
the inventory system starts working with unit backorder costs instead of time
weighted backorder costs. However, the decrease in 7™ is more significant than
that of @), so that H% increases with higher values of service levels. We also
observe that, with lower service levels, the decrease in H’ values with increasing
K is usually more noticeable. Therefore, it comes out that for the systems working
with higher service levels, the proactive behaviour of the proposed policy keeps

its importance even with high values of K.
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Finally, the optimal cost rate, AC™ is increasing in K, h, 7, [ and Ay across
the entire test bed, as expected.

We will next present the performance of the (Q,S,T') in the following section.

4.3 Comparison with Existing Policies

In this section, we examine the efficacy of the proposed control policy. In
particular, we examine the cost improvements achieved by the proposed policy
and attempt to identify the operational environments in which it is beneficial
to implement the proposed policy in lieu of the existing ones in the literature.
Note that all of the available models have been developed only for unit demands
and hence this section is also devoted to the comparison of the policies with unit
Poisson demands similar to Section 4.2.

For policy comparisons, we introduce the notation below. We let AC%
denote the optimal cost rate of a given policy P where P can be one of the
following: Our proposed (@,S,T) policy; P(s,S) in Viswanathan [79]; (Q,S)
in Pantumsinchai [58] (and Ranberg and Planche [60]; the can-order policies,
(s,c,S)r and (s, c,S)y, as calculated in Federgruen et al. [31] and in Melchiors
[53], respectively; and, Q(s,S) in Nielsen and Larsen [56]. Note that we have
excluded the P and MP policies in Atkins and Iyogun [4] since they have
previously been shown to be inferior to the aforementioned policies in the
literature.

As a measure of the performance of the proposed (Q,S,T) policy, we use the
percentage improvement Ap% over policy P as follows:

ACE — ACg s 1)

Al s

AP% x 100

A positive entry for %Ap, by definition, means that the proposed policy
dominates policy P. Similarly, a higher value for %Ap indicates that the (Q,S,T)
policy achieves a higher cost improvement over policy P.

Before we proceed with the results regarding the comparison of the policies,

we first clarify some points on how the optimal cost rate of a policy P, ACH
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values are obtained for each policy.

Among the considered policies, the analysis for the proposed (Q,S,T') policy
and (@, S) and M P policies are exact. Therefore, the corresponding AC% values
are also exact.

For the inventory system operating under the P(s, S), the model construction
is based on the assumption that an order is placed for at least one item at
every review interval. Similarly, the model presented in Nielsen and Larsen
[56] for Q(s,S) policy assumes that at least one item is ordered whenever @)
demands accumulate on the system. Due to the complicated nature of the can-
order policy, the models considered herein, namely, (s, c,S)r and (s,¢,S)y are
approximations. Hence, the models and the cost functions corresponding to these
four policies are only approximations. Consequently, the best policy parameter
values for these policies are obtained with the approximate cost functions. An
alternative to compute the corresponding true AC% under these policies is to
simulate the inventory systems with the given policy parameter values. The
simulation results for AC(g¢s), and ACcs),, have already been reported in
Viswanathan [79] and Melchiors [53], respectively, and were used directly in our
numerical study. For the Q(s,S), P(s,S) policies, we solved for the best policy
parameters using the approximate cost functions as developed in Viswanathan
[79] and in Nielsen and Larsen [56], and then simulated the inventory systems
operating under these two policies to obtain the corresponding true ACZ)(S,S) and
AC]*D(S,S)' In our simulations, we used a run length of 100,000 ordering instances
with a warm-up period of 10,000 order placements, and 100 replications to obtain
the corresponding cost figures.

Hence, the ACZ)(S,S) and AC]*;(&S) values used for comparison are different from
those reported in the corresponding literature. However, we should also mention
that in the vast majority of the cases, the difference between the simulated and
the approximate cost functions are not discernible.

Our numerical study indicates that the performances of joint replenishment
policies and, thereby, the dominance of one over the others depends greatly on

the cost and demand rate structures prevalent among the items. Therefore, we
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present our policy comparisons in two groups.

4.3.1 Atkins-Iyogun and Viswanathan Experimental
Test Beds

For the first part of our policy comparisons, we use two test beds. The first one
-the Atkins-Iyogun test bed-, consisting of 19 instances, was initially introduced
by the authors for their sensitivity study (Atkins and Iyogun [4]) and has
subsequently been adopted as a standard test bed for presenting the performance
of any proposed stochastic joint replenishment policy. The second one -the
Viswanathan test bed [79]- has been developed by the author for comparing the
robustness of the P(s,S) policy against the Atkins-Iyogun policies, and considers
a more extensive set of cost parameter combinations (120 instances). These two
sets both consider 12 items with the same demand, lead time and item-specific
ordering cost values with different combinations of K, h, p and . Note also
that the performance of the Q(s,S) policy over the Viswanathan test set was
not reported before in the literature. Hence, the numerical study also provides
detailed performance results on this policy for the first time in the literature.

Before we proceed with individual comparisons, we present a summary of
our findings over all experiment instances (139 total) in the Atkins-Iyogun and
Viswanathan sets. We observed that the proposed (Q,S,T') policy is the best
policy in 100 out of 139 instances with an average improvement of 1.14% and the
maximum improvement of 3.55% over the next best policy in these instances. In
the remaining 39 cases, (s, S) is the best in 24; P(s,S) is the best in 8; and,
(s,c,S)as is the best in 7 instances. In the 24 cases where ()(s,S) is the best,
the average improvement over the next best one is 0.86%. The corresponding
figures are 0.65% and 0.47% for P(s,S) and (s, c, S)as policies, respectively. We
also see that M P, (Q),S) and (s, ¢, S)p policies are never the best ones over these
instances.

Next, we discuss our findings for each test bed separately, beginning with the

Atkins-Iyogun test bed. This set consists of 12 items; the items have identical
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shortage and unit holding costs but differ in their item specific ordering costs,
demand rates and delivery lead times. The item-specific costs are as follows:
k; = {10, 10,20, 20, 40, 20, 40,40,60,60,80,80}, the demand rates are given by
A = {40, 35,40, 40, 40, 20, 20, 20, 28, 20, 20,20}, and the lead times are taken as
L; =4{0.2,0.5,0.2,0.1,0.2,1.5,1.0,1.0,1.0,1.0,1.0,1.0,1.0} for s = 1,---,12. We
tabulate the problem parameters common to all items in Table 4.2. In Table
4.2, we also report the corresponding AC(*Q,S,T) and %Ap under the five policies
considered. Note that, in each experimental instance, the best policy among five

is depicted by bold face figures.

Problem Parameters AC(*Q,S,T) AP(S,S)% A(st)% AQ(S,S)% A(SVCVS)M%

K =50 1109.90 1.01 5.60 0.27 -0.09

K =100 1174.21 0.91 3.22 0.25 3.15

T =30,p=0,h =2 K =150 1234.12 0.56 1.37 -0.24 4.46
K =200 1282.29 0.22 0.45 -0.58 5.69

K =250 1323.02 0.31 0.00 -0.46 6.58

T=30,p=0,h=6 K =150 2279.97 -0.58 1.05 -1.22 1.45
K =20 878.91 0.82 8.54 0.36 -0.80

K =50 928.40 0.59 5.34 0.07 1.72

T=0,p=30,h =2 K =100 990.02 0.80 2.62 -0.40 4.44
K =150 1044.04 -0.11 0.76 -0.77 5.94

K =200 1087.17 -0.21 0.02 -0.84 6.92

K =100 1635.98 -0.79 2.39 -1.29 1.47

T=0,p=30,h=6 K =150 1717.94 -0.70 0.82 -1.23 1.69
K =200 1786.89 -0.51 0.01 -1.07 1.90

K =20 2294.78 1.33 10.12 5.93 0.83

K =50 2395.45 1.33 7.70 4.67 1.63

T=0,p=30,h=20 | K =100 2533.82 1.10 5.34 3.57 1.46
K =150 2739.46 -2.02 4.13 3.52 -1.35

K =200 2721.67 2.59 0.49 3.48 3.60

Table 4.2: Performance of (Q,S,T) Policy in the 12-item Atkins-Iyogun Test
Bed

We observe that the dominance of the proposed policy is not monotone across
the experiment instances. The (@), S,T') policy performs better than all other
existing policies in 6 out of 19 experiment instances.

For the remaining 13 experiment instances, it is dominated in 10 cases by
Q(s,S), twice by (s,c,S)u, and once by P(s,S). We see that the (Q,S) policy
is never the best policy. Across the entire Atkins-Iyogun set, the average savings
achieved through the implementation of the proposed policy in lieu of each of the
existing policies are as follows: 0.35% over P(s,S), 3.39% over (@), S) 0.74% over
Q(s,S) and 2.65% over (s,c,S)y. In the instances where the proposed policy
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gives the best solution, the average improvement over the next best policy is
1.03% whereas over the instances where the proposed policy is dominated by one
of the existing policies, the average deviation from the best solution is —0.77%.

When we examine the experiment instances where (Q,S,7T) and Q(s,S)
are the best two policies, we observe the following: In the instances where
Q(s,S) performs better, the average (under)performance of the (Q),S,T) policy
is —0.66%. In the instances where (Q,S,T) performs better, its average
(over)performance is 2.32%. We also observe that (@), S,T) policy achieves lower
common ordering, and backorder cost rates than Q(s,S) policy. On the other
hand, the advantage of Q(s,S) over (Q,S,T) policy usually results from lower
item-specific ordering and holding cost rates both achieved by imposing reorder
levels. A similar observation is also true for P(s,S) policy.

It is interesting to note that the (@, S) policy performs so poorly with an
average underperformance of 3.39% compared to the proposed policy. With the
incorporation of the time trigger, i.e. increasing the dimensionality by one,
we achieve significant improvements. An untabulated observation about the
comparison of optimal policy parameters of (@), S) and (Q,S,T') policies is that
S* values of (@,S,T) policy are generally smaller than that of (Q,S) policy.
Q" of (Q),S,T) is also larger than that of (©),S). On the other hand, the time
dimension T' adjusts the frequency of reordering decisions. Therefore, (Q,S,T)
policy uses smaller maximum inventory positions by using an effective proactive
ordering mechanism. We observe that as K increases, A s)% decreases quite
significantly. In view of the sensitivity results explained in Section 4.2, this is
expected since the system uses the proactive ordering option less with increasing
T'. 1t is also interesting to observe that A sy% values are generally higher with
lower service levels, ie. # = 0,p = 30, h = 20. This can be explained by higher
values of H7 obtained for higher service levels which results in higher ordering
cost rates.

Another interesting (untabulated) observation is that (Q,S,T) has, in all
instances, resulted in a higher optimal system fill rate than the other four policies.

In particular, (Q,S) and @(s,S) policies have resulted in significantly lower
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optimal system fill-rates. Obviously, this may have important implications for
inventory settings with non-linear shortage costs and service level constraints.

The performance of the proposed policy is somewhat mixed over the cost
parameter set; a clear dominance region is not discernible. However, a general
observation is that the proposed policy performs best for lower shortage, higher
holding and lower common ordering costs. Although lower K values correspond
to the cases where proactive ordering (i.e., placing the orders at review epochs)
becomes the dominant reordering mode, higher holding and lower shortage costs
usually correspond to cases where the proactive ordering becomes less important.
Therefore, the trade off between the savings in the backorder and holding costs
and the increase in the ordering cost rates determines the advantage of the
proposed policy. This will be more prominent in the Viswanathan experimental
set below.

The second data set used in policy comparison is the one generated by
Viswanathan [79]. For this set, the demand rates, lead times and item specific
ordering costs are retained as in the standard 12-item problem set of Atkins-
Iyogun; and different values are considered for the remaining costs as follows:
r = 0, K € {20,50,100,200,500}, h € {2,6,10,200,600,1000}, and p €
{10, 50,100, 1000, 5000, 10000, 20000}. The considered instances and the results
are tabulated in Tables 4.3 and 4.4. (We note that comparison with (s, c,S)y
has been made for the 36 instances reported in the study by Melchiors [53] to
ensure fairness in comparing simulation-based results for the latter.)

The (@, S, T) policy performs better than all other existing policies in 94 out
of 120 experiment instances. For the remaining 26 experiment instances, it is
dominated in 14 cases by Q(s,S), 7 times by P(s,S) and 5 times by (s, ¢, S)a.
As in the Atkins-Iyogun set, (@, S) is never the best policy.
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Over all the 120 experiment instances, the average savings achieved through
the implementation of the proposed policy in lieu of each of the existing policies
are as follows: 1.25% over P(s,S), 4.16% over (@), S) and 1.07% over Q(s, S), and
0.82% over (s,¢,S)u

As in the Atkins-Iyogun set, the dominance of the proposed policy is not
monotone across the experiment instances. In the cases where the proposed policy
gives the best solution, the improvement over the next best policy is 1.13%. Over
these 94 instances, the maximum saving was observed to be 3.55%.

To give a broader view of the policy performances, comparison summaries
are presented in two tables: Table 4.5 and Table 4.6. In both tables, we have

included summaries of the unreported results on M P and (s,c,S)p, as well.

Policy | Parameter | (Q,S,T) Q(s,S) (S,C,S)}J P(s,S) (@,9) MP (s,c,S)p
Dimension
@,S,1) 4 143 (115)  1.85 (47) 1.63 (111) 4.05 (139) 4.94 (138) 10.59 (135)
Q(s,8) 25 | 0.94 (24) © o 357(17) 057 (117) 297 (139) 3.80 (139)  10.08 (122)
(s,e,9)1, 36 | 0.85(8)  1.01(38) 0.83 (34)  3.39 (46)  5.67 (44)  7.25 (55)
P(s,S) 25 | 0.85(28)  2.48 (22)  2.66 (21) o325 (125) 3.70 (139)  10.78 (117)
(Q,S) 13 - (0) (0)  3.36(9)  0.59 (14) 2.38 (91)  12.85 (83)
MP 24 | 0.20 (1) (0)  2.91 (11) S(0)  2.03 (48) 12.49 (7 )
(s,c,S)r 36 | 1.20(4)  0.87 (17) S(0) 042 (21)  3.65 (56) 412 (60)

Table 4.5: The summary comparison of policies over Atkins-Iyogun and
Viswanathan sets across pairwise dominated instances. (1) (s, ¢, S)as is compared
over 55 total instances.

In Table 4.5, we provide a pairwise comparison in a matrix form across
instances where one policy dominates the other. The first column lists the polices
in the chronological order in which they have been proposed in the literature; the
second column reports the number of control parameters that a particular policy
employs for the standard test bed of 12 items. Each element of the matrix reports
two entities: the average improvement in the expected total cost rate achieved by
policy P; over policy P; in the experiment instances where P; dominates P;; and,
the number of such instances in parentheses. The first row of the table gives the
performance of the proposed policy in comparison with the other policies. For
example, we see that (@), S,T') dominates ((s,S) in 115 out of 139 considered

instances; and, the average improvement in such instances achieved over Q(s, S)
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is 1.43%. Similarly, the proposed policy is better than (s, ¢, S)y with an average
improvement of 1.85% in 47 out of 55 considered instances, so on and so forth.

In Table 4.6, we provide an overall comparison of the average performance of
the policies. Similar to the previous table, we list the policies in the chronological
order that they have appeared in the literature, the dimension of each policy,
and present the average percentage difference in the expected total cost rate
under policy P; versus P;. Note that in creating this table, we consider all of
the experiment instances, where P; may or may not dominate P;. Hence, we
have negative averages for certain pairs. For instance, the (@), S) dominates the
P(s,8) policy in 9 of 139 instances. On the other hand, the optimal cost rate
of (Q,S) policy is, on the average, 2.73% higher than that of P(s,S) policy. A
positive entry indicates that policy P; provides that much average percentage
improvement in the cost rate over P;. A negative entry indicates that the
performance of P; is inferior by that much, on average, in comparison with P;.
The first row gives the performance of the proposed policy (@, S, T) with respect
to the existing policies. Overall, we see that (), S, T') achieves an improvement of
1.03% over Q(s,S), 1.46% over (s, ¢, S)a, 1.13% over P(s,S), 4.05% over (Q,S),
4.90% over M P, and 10.25% over (s, c,S)p.

Policy | Parameter | (Q,S,T) Q(s,S) (S,C,S)}J P(s,S) (@,S) MP  (s,c,S)p
Dimension
(Q,S,T) 14 - 1.03 1.46 1.13 4.05 4.90 10.25
Q(S,S) 25 -1.00 - 0.32 0.12 2.97 3.80 9.22
(s,¢,9)1, 36 -1.41 -0.25 - 2027 229  3.96 7.25
P(s,S) 25 .10 -0.10 0.31 - 287 3.70 9.12
(@Q,8) 13 -3.81 -2.83 212 -2.73 - 0.6 6.20
MP 24 -4.59 -3.62 -3.94 -3.50 -0.77 - 5.32
(s,c,S)r 36 865  -T.74 637  -T.66  -4.83 -4.07 R

Table 4.6: The overall average performance of policies over Atkins-lIyogun and
Viswanathan sets across all instances. (1) (s,c,S)y is compared over 55 total
instances.

When viewing these statistics, we should bear in mind a couple of issues. First,
the comparisons are made between policies that have already been demonstrated
to perform well. The chronological listing enables one to see the evolution of

the performances of the policies studied over time, as well. Second, in multi-item
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settings, the total system cost are substantial in nominal terms; hence, expressing
improvements in percentages inevitably understates their impact. Especially,
in operating environments where margins are known to be notoriously low, as
in retail industry, an improvement of even a couple of percentage points does
have a substantial impact on profitability. (e.g. Fisher et al [33]. In particular,
take the case of a major home-improvement retailer with a pretax profit margin
of 5.8% and a return on asset (ROA) of 2.7%. If this company could cut its
inventory related costs by just 3%, its pretax profits would increase 37%, and
the pretax profit margin would rise to nearly 8%. Therefore, the improvements
that the proposed (@), S, T') policy achieves over the existing ones are comparably
significant. Moreover, the proposed policy attains such performance levels with
parsimony - compare N + 2 policy parameters of (Q),S,T) versus 2N + 1 of
Q(s,S) and P(s,S) or 3N of the can-order policies. The simpler (Q),S) with 13
policy parameters is no match with an average underperformance of 3.81%. This
low dimensionality reduces the computational effort in optimization enormously
and eases implementation in practice greatly. Viewing the comparisons in this
broader perspective, we can conclude that the proposed policy provides significant
improvements over the existing policies in terms of cost savings, optimization
effort and ease of implementation and that this performance is robust over a
broad range of environmental parameters.

Although used as a benchmark testbed, the Atkins-Iyogun and Viswanathan
sets exclude an important category of settings in which joint replenishment
is commonly practiced - settings where the items have similar ordering cost
structures and/or demand rates. Therefore, the impact of the overall system
demand rate and of the diversity of demand rates among items is an aspect of
stochastic joint replenishment which has not been studied in the literature before.

In the next section, we focus on such demand rate affects.
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4.3.2 Impact of Demand Rates

To examine the effects of system or item demand rates, we constructed our own
test bed with insights from the Atkins-Iyogun set. Since we have identified Q(s, S)
and P(s,S) policies as the only viable alternatives to our proposed policy in the
above comparisons, in this part of our numerical study, we compared (Q,S,T)
with only those two and (Q,S) as a special case to illustrate the advantage of
proactive ordering. We begin with the effect of system demand rate on the

performance of the control policies.

F ]l A ACoSs ) | Bpss)% | B8 | Bgss)%
20 1059.86 4.81 3.65 3.60
20 40 1502.78 3.79 1.18 1.17
60 1858.18 2.13 1.15 1.15
80 2156.14 1.17 0.06 0.06
20 1250.47 3.17 1.25 1.24
40 40 1775.37 2.27 1.05 1.05
60 2178.50 1.64 0.98 0.99
80 2523.70 0.99 0.72 0.72
20 1409.07 217 1.05 1.05
60 40 2012.24 0.91 0.91 0.92
60 2468.62 0.41 0.18 0.18
80 2847.50 0.24 0.14 0.13

Table 4.7: Performance of ((),S,T) Policy for Identical Items with Different
Demand Rates and Item-specific Ordering Cost, N = 8 K = 150,L = 0.2, h =
6,7 =30,p=0

We consider N = 8 identical items with K = 150, h; = h = 6, =; = # = 30,
pi = p =0and L;, = L = 02 and k; = k = {0,20,40,60} for all i.
With identical item demand rates, we consider the system demand rates as
Ao = {160, 320,480,640}. We present our results for £ = {20,40,60} in Table 4.7
and for k=0 in Figure 4.2.

In all instances, the proposed policy dominates the existing policies. The
average savings achieved through the implementation of the proposed policy in
lieu of each of the existing policies are as follows: 2.19% over P(s,S), 1.43%
over (@,S) and Q(s,S). There is not any discernible difference between the
performances of (Q,S) and (s, S) as also reported in [56]. We observe that the
performances of the policies become alike as system demand rate increases. As

the demand rate of each item increases, the advantage of each policy somewhat
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offsets the disadvantage of them. For instance, (), S, T') policy gives lower holding
and backorder cost rates than the other policies and as demand rate increases
the difference in holding and backorder cost rates across policies increases. On
the other hand, as the demand rate increases the proactive ordering behaviour
becomes more dominant (See Table 4.1) and hence the ordering cost rates increase
and eliminates the advantage coming from the backorder and holding costs. For
instance, for £ = 40 and A = 20, holding, backorder and ordering cost rates
for (@,S,T) policy are 674.11, 120.92, 455.44, respectively. The corresponding
figures for P(s,S) and (Q,S) (or Q(s,S)) policies 681.37,133.50,475.13 and
677.39, 125.90,469.98, respectively. For A = 80, the holding, backorder and
ordering cost rates are 1362.19, 162.15, 999.36 for (Q,S,T) policy; 1419.55,
178.14, 950.31 for P(s,S) policy; 1378.13, 170.16, 970.33 for (Q,S) (or Q(s,S))
policy.

It is also observed that the advantage of the proposed policy decreases with
increasing k, possibly resulting from the larger increase in the item specific

ordering cost rate.

N=8, K=150, L=0.2, h=6, 7=30, p=0, k=0

& P(s,9)

05 I I I I I
20 30 40 50 60 70 80

Figure 4.2: Performance of (@), S,T) Policy for Identical Items with Different
Demand Rates and N =8, K =150,L =0.2,h =6,7r =30,p =0

Next, we examine the effect of item demand rates while keeping the system

demand rate constant. This is equivalent to examining the effect of number of
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items that are jointly replenished for a given system demand rate. Hence, we
consider the set of NV identical items with Ay = 320, K = 150, k;, = k = 20,
hi=h=6,1,=7=30,p,=p=0foralle=1,---,N. We vary the number
of items and lead times as N = 2,4,6,8,10,12 and L; = L = 0.2,0.4,0.6. Note
that individual demand rates are also equal to each other in this set. The results

are presented in Table 4.8 and Figure 4.3.

L | N|ACosT | Bps$)% | Bg8)% | Bgiss)
2 1130.21 5.87 4.60 4.60

4 1319.60 4.85 3.26 3.26

0.4 6 1492.23 4.65 2.94 2.93
8 1550.21 4.20 2.83 2.82

10 1760.81 1.14 0.38 0.38

12 1918.50 0.29 0.09 0.08

2 1193.20 5.59 4.67 4.67

4 1271.01 5.03 3.39 3.38

0.6 6 1524.10 4.30 3.01 3.00
8 1608.83 3.47 2.40 2.40

10 1799.12 1.44 0.83 0.82

12 2009.97 0.41 0.30 0.30

Table 4.8: Performance of ((),S,T) Policy for Identical Items with Different
Lead-time and Number of Items, Ay = 320, K = 150, h = 6,7 = 30

In all cases, the proposed policy dominates the other policies. The average
savings achieved through the implementation of the proposed policy in lieu of
each of the existing policies are as follows: 3.56% over P(s,S), 2.29% over (Q, S)
and Q(s,S). As also presented in Table 4.7, a peculiarity of the Q(s,S) policy
strikes out immediately: Incorporation of individual trigger levels s does not
improve the much simpler (@), S) policy noticeably in the case of identical items.
In comparison with the (Q,S) policy, we observe, however, that introduction of
a time trigger in the (Q,S,T) policy provides significant savings. The savings
under the proposed policy are much pronounced for small number of items. As,
N grows large, the difference between the performances of the policies starts
diminishing; however, P(s,S) is much slower in this respect. We observe that
the effect of lead time is not monotone.

The last issue we investigate is the impact of demand rate diversity among the
items on the policy performances. In Table 4.9, we report a representative case

of N = 4 items with identical cots parameters of K = 150, # = 30, p = 0, k = 20,
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$)\D:320‘ L=0.2, K=150, k=20, h=6, =30, p=0$

Figure 4.3: Performance of (@), S,T) Policy for Identical Items with Different
Number of Items and \g = 320, K =150, L. = 0.2,k =20, h =6, =30,p =0

h = 6 and identical lead times of L = 0.2 and a system demand rate of Ay = 320.
As tabulated, we consider various groupings of demand rates among the items.
In the first block (instance 1), all items have equal demand rates and it may be
viewed as a reference instance. The rest of the instances attempt to generate
groupings of differing demand rate diversity among the items, producing ’lop-
sided’ spread of demands. In the second and third blocks (instances 2 through 5
and 10 through 13), three items are identical, one is different. In the third block
(instances 6 through 9), items are grouped into two identical pairs. In the last
block (instances 14 through 18), all four items have different demand rates.

The proposed policy dominates the existing policies in this set, as well. The
average savings achieved through the implementation of the proposed policy in
lieu of each of the existing policies are as follows: 3.76% over P(s,S), 3.88% over
(@Q,S) and 2.66% over Q(s,S). The average savings over the next best policy is
2.60%.

For the improvement achieved through the proposed policy we make the
following observations. For the first 13 instances, we see that, as diversity
among item demand rates increases, the savings of the proposed policy also

increases due to the demand diversification structure. For the last block, the
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opposite is true when we compare the proposed policy against P(s,S) and (s, S).
Furthermore, for the last block, the improvement is significantly smaller than
those for other instances. We also note that as item demand rates become more
dissimilar, performances of P(s,S) and Q(s,S) approach that of the proposed
policy. Considering the next best policy, we observe an interesting change of
dominance among the policies. In the first 13 instances, performances of Q(s,S)
and (@), S) are almost identical and they both dominate P(s,S). However, in
the last block (instances 14 through 18), when items have identical unit cost
structures but are dissimilar greatly in their individual demand rates, we observe
a shift so that Q(s,S) performs significantly better than (@,S). Furthermore, in
the same region, P(s,S) starts to dominate Q(s,S), albeit by a small margin.
Such changes in dominance is not only of interest for theory but of importance
for practice of supply chain design and management. It would be interesting to

investigate the joint location-allocation-replenishment problem in a supply chain.

A1 Ag A3 Ag AC(Q,S,T) AP(S,S)% A(st)% AQ(S,S)%
80 80 80 80 1191.08 5.11 3.58 3.58
70 70 70 110 1080.65 4.75 2.30 2.30
60 60 60 140 1049.18 5.12 2.45 2.45
50 50 50 170 1018.61 6.24 2.78 2.78
40 40 40 200 998.95 6.40 3.12 3.12
70 70 20 20 1131.88 4.12 3.79 3.78
60 60 100 100 1109.69 4.56 3.98 3.98
50 50 110 110 1087.92 5.09 4.21 4.21
40 40 120 120 1066.60 5.40 4.34 4.34
70 83.33 83.33 83.33 1166.47 3.27 2.66 2.66
60 86.67 86.67 86.67 1154.93 4.02 2.77 2.77
50 20 20 20 1143.49 4.30 2.99 2.99
40 93.33 93.33 93.33 1132.17 4.55 3.21 3.21
70 60 100 20 1170.55 1.58 5.27 1.78
70 50 110 20 1173.22 1.31 5.36 1.56
70 40 120 20 1177.38 0.92 5.49 1.01
70 30 130 20 1179.07 0.55 5.61 0.77
70 20 140 20 1179.53 0.34 5.93 0.56

Table 4.9: Performance of (Q,S,T') Policy for Non-Identical Items-Additional
Set, K =150,k =20,h =6,7 =30,p =10

In summary, we conclude that the performance of the proposed policy is

influenced by the structure of the demand rates within the system, as expected.
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4.3.3 Impact of Fill Rate Constraints

In this part of the numerical study, we solve the optimization problem under
fill rate constraints for the items instead of using time-weighted and/or unit

backorder costs. Therefore, the optimization problem can be stated as:

K+ YN ko, &
%‘thiE[OHi]

=1

min AC@.S, 1) = —

subject to

vy >, i=1,2,...,N

where 1), is the target fill rate for item i.

The (@, S,T) policy under fill rate constraints is also solved using the search
algorithm in Section 4.1 except that in step 2.1.1.3 we have S¥ = min{S; : 5; >
1,%; > ,;} and we do not construct the limits, S™" and 5™, For (Q,S) policy,
the optimal policy parameters are solved by using the search algorithm in Section
4.1 with T' — oo and the modification for step 2.1.1.3. For P(s,S) and Q(s,S)
policies, we enumerate a large number of policy parameters and cost rates and the
optimal policy parameters are found by selecting the minimum cost rate function
satisfying the target fill rate constraint.

We present the performance of the proposed policy for different values of ).
in Table 4.10. We only included the P(s,S), (@,S), and Q(s,S) for numerical
comparison under fill rate constraints since these policies are previously shown

to dominate the other policies.

P Q.8 7) P(s,8) Q8 Q(s, 8)

v | Acosm) oc HC | Apis s oc HC | Ag s oc HC | ags s oc HC
0.99 1050.04  567.11  550.11 8.16 45152 68518 6.02 55327  561.08 6.02 553.13  561.08
0.95 1002.18  526.81  475.37 723 42221 64223 418 51827  525.62 419 518.27  525.62
0.90 975.26  510.22  465.02 6.15  403.19  632.05 3.25  499.93  507.02 3.24  499.84  507.02
0.85 946.53  492.19  454.24 5.14 39498  600.20 2.56  481.96  488.80 2.55  481.87  488.80
0.80 910.11  469.18  440.92 412 37817  569.53 2.18  461.70  468.25 219  461.70  468.25

Table 4.10: Performance of (Q,S,T) Policy for Identical Items with Different
Fill Rates, \g =320, L. =02, N =2, K =150,h =6

In our results, we assumed \g = 320, N =2, L = 0.2, K =150,k =20, h = 6,

We have numerically observed that the performance of the proposed policy is

more significant with higher fill rate constraints. When compared with (@, S) or
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Q(s, S) policies, this may be explained by the higher stock that the other policies
should have in order to achieve the target fill rate constraints and hence the
difference of holding cost rate between different policies increase. As the fill rate
constraints get more relaxed, the difference in the holding cost rates is smaller so
that the Ap% values decrease. Moreover, the (@, S,T') policy achieves the target
fill rate consraints in a more tight way, i.e. for ¢» = 0.99, v = 0.9903 whereas
¥ = 0.9912 for both (Q,S) or Q(s,S) policies. Similarly, for 1) = 0.80, we have
Y = 0.8005 for (Q,S,T) policy and the corresponding value is 0.8019 for (@), S)
or (Q(s,S) policies. This can be explained by the continuous time dimension
of the proposed policy. When compared with P(s,S) policy, the advantage of
(@Q,S,T) policy also comes from the lower holding costs. However, there is not a
monotone behaviour for the fill rates achieved by P(s,S) policy when compared
with (Q,S,T). 3 values obtained are 0.9906 and 0.8002 for ¥» = 0.99 and 0.80,

respectively.

4.4 Batch Demand

Finally, we study the impact of batch demand arrivals. In the previous chapter,
we presented an exact methodology to analyze the proposed (Q,S,T) policy
under compound Poisson demand. However, it is very difficult to carry out a
numerical analysis with compound Poisson demand if the batch size distribution
of the items is not closed under convolution. Because, in that case it becomes
almost impossible to calculate we(q, k) especially for higher values of ¢, k and/or
N from computational point of view.

Therefore, to illustrate the performance of (Q,S,T') policy, we consider the
case where all items are identical in demand rate and cost parameters. The
demand is assumed to follow a compound Poisson process with an overall rate
Ao/N and a geometrically distributed demand size with parameter p for all items.
Therefore, the £’th convolution of the batch size follows a negative binomial
distribution with parameters k£ and p. Since the rest of the policies have not been

generalized for compound demand processes, we can only report the comparison
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between (@), S,T') and (@, S) which is its special case. To make a fair comparison
across different demand size parameters, we fix the average number of units
demanded per time, Ag/p = a. We set « = 320, L = 0.2, K = 150, k£ = 20,
h=6,7=30,p=0. Wevary p € {0.2,0.5} and N € {2,4,6,8,10,12}. We use

0% to denote the variance of demand size.

Batch Dist. Unit (o4 = 0) Geo(p = 0.5),(cq = 2) Geo(p = 0.2),(0q = 20)
N[ ACqgsm | 28" | ACgsr) | 2@8)” | ACqs ) | Ae8)”

2 1058.91 5.21 1082.34 6.14 1105.18 6.54

4 1191.08 3.58 1225.67 4.13 1276.10 4.72

6 1358.01 1.86 1398.98 2.15 1453.01 3.19

8 1502.78 1.18 1576.14 1.29 1604.26 1.76

10 1681.29 0.46 1723.09 1.02 1775.20 1.24

12 1861.19 0.32 1903.21 0.68 1952.15 0.95

Table 4.11: Performance of (Q,S,T) Policy for Identical Items with Different
Number of Items and Compound Poisson Demand, o = 320, L = 0.2K = 150,k =
20,h =6,7r =30,p=0

We present the performance of (Q),S,T) policy in the presence of batch
demands in Table 4.11. We observe the intuitive finding that as the variance of
the demand size increases, the savings due to the introduction of a time trigger
also increase. As in the unit demand case, the savings decrease with the number

of items, NV, but at a slightly slower rate.



Chapter 5

SJRP in a Two-Echelon

Inventory System

In the previous two chapters, we have presented a new policy for the Stochastic
Joint Replenishment Problem in a single-location, multi-item setting and
compared the performance of the proposed policy with those of the existing ones
in the literature. The single-location, multi-item model also corresponds to a
two-echelon supply chain where the upper echelon employs cross docking. In this
chapter, we extend our model to incorporate a single-item, multi-location setting
where the upper echelon also holds inventory.

In Section 5.1, we present the assumptions of our model and introduce the
ordering policies for both echelons. The modeling methodology presented here
is based on the development of the ordering process by the lower echelon and
provides an analytical tool to investigate various joint replenishment policies
under a more general policy class. In Sections 5.2, we explain the proposed
framework for the analysis of the warehouse and the retailers. Note that the
proposed methodology is not specific to a particular policy but is applicable to

any policy that satisfies the characteristics of the considered class.

61
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5.1 Model Assumptions

We consider a single-item, divergent two-echelon inventory system with a single
warehouse and N retailers. The retailers face stationary and independent unit
Poisson demands with rates A\; ¢ = 1,2,..., N and all unmet demands are
backordered at every installation. Provided that the ordered amount is available,
the lead time from the warehouse to retailer ¢, L; is constant. The warehouse
gives orders to an external supplier with ample stock and lead time for deliveries

is a constant, Ly (See Figure 5.1).

Ample supplier

Lo

Retailers

A J A2 A N-1 AN

Figure 5.1: Illustration of a Divergent Two-FEchelon Inventory System

The system is continuously reviewed and all the information regarding the
last replenishment epochs at each installation; the time elapsed since then; the
total demand that has arrived at the system subsequent to an order placed is
available. The records related with the timing of the orders also enable us to
review the system periodically.

The ordering costs associated with the inventory system are the warehouse
fixed ordering cost Ky and a common fixed cost K associated with a retailer order.
To enhance the impact of joint replenishment and fully utilize the economies of
scale in replenishments, we assume that the retailer specific ordering costs are

negligible.
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Holding costs per unit per time are charged at every installation with rates
ho and h; for the warehouse and retailer i, respectively. Moreover, hq includes
the holding cost of the items from the time the order is released from the outside
supplier until it reaches the warehouse. Also note that in the sequel, we assume
that the inventory is charged at the retailer’s expense from the instance it leaves
the warehouse. Backorder costs are difficult to measure and determine and
hence backorder costs at the retailers are handled implicitly by considering fill
rate constraints, ie. the proportion of demand delivered immediately from the
retailers’ stock. Furthermore, we assume that the cost of monitoring the inventory
system continuously is negligible.

While satisfying the orders at the warehouse, the following is assumed:

1. The integrality of the orders placed by the retailers at the warehouse is
preserved. This means that, if an order arrives and the existing on-hand
inventory is not sufficient to satisfy the order, then the existing inventory
is kept at the warehouse while the entire order waits until an inventory of
an adequate size accumulates at the warehouse as outstanding orders. This

is also referred to as the no-lot-splitting assumption.

2. The orders of the retailers are satisfied in the sequence they were placed,
ie. order crossing is not allowed. That is, even if there is enough stock on-
hand at the warehouse to satisfy an order, that order will be backordered if
there is a previously placed order for which the existing on-hand inventory

is reserved.

Under the assumed cost structure described above, our objective is to
minimize the expected total cost per unit time subject to fill rate constraints at
the retailers. With this objective, we consider a system in which the warehouse

employs the following continuous review (s,5) ordering policy:

Policy of the warehouse (s, 5): When the inventory position of the
warehouse crosses so, a replenishment order is placed at the outside supplier to

raise it up to Sy.
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The ordering cost structure of the retailers presents an opportunity to exploit
the economies of scale in the replenishment. Therefore, instead of installation
stock policies, we propose that all retailers are included in every possible
replenishment opportunity, e.q. a retailer triggers an order because its inventory
position drops to its reorder level or the number of demands accumulated in the
system reaches a truckload size, to take full advantage of savings in the ordering

costs. We consider four different policies which are briefly described as below:

1. (@,S,T) Policy: Monitor all inventory positions continuously, and raise
the inventory positions of the items up to S = (S1,52,...,5N)
i) whenever a total of Q) demands accumulate for the items or
it) at time KT if at least one demand occurs in ((k — 1)T,kET] with no
demand arrivals in (0,(k —1)T1,
whichever occurs first. This policy has been recently proposed by Ozkaya
et al. [57] in a single location, multi-item setting and in Chapter 3 of this

thesis.

2. (Q,S) Policy: Raise the inventory positions of the retailers up to S =
(51,52, ...,5Nn) whenever a total of ) demands accumulate for the retailers.
This policy was previously studied by Cheung and Lee [23] for a two-echelon

inventory system.

3. (@, S|T) Policy: Monitor all inventory positions every T time units, and
raise the inventory positions of the retailers up to S = (51, 5,...,5v) if a
total of at least () demands have accumulated in the system.

This policy was previously studied by Cachon [17] in a single-location and

multi-item inventory system considering shelf space and truck capacities.

4. (8,8 —1,8) Policy: Whenever the inventory position of a retailer i drops
to its reorder level, s;, raise the inventory positions of the retailers up to
S - (51752,...75]\7).

The policy is a special case of (s, ¢,S) can-order policy where ¢ = S —1



Chapter 5. SJRP in a Two-Echelon Inventory System 65

which were previously studied by Silver [67] with two items and zero lead

time and Van Eijs [77] in a more general multi-item setting.

For each of the above four policies, the instances at which the orders are
placed at the warehouse are regenerative points for the retailers. This follows
since the unit demand process is Poisson and at each order trigger instance, the
inventory position of the retailers are at their order-up-to levels. These policies
only differ in how/when the orders are placed, ie. how the ordering instances are
generated.

The regenerative structure of these policies at the ordering instances enable
us to develop a framework for the analysis of them under a more general policy

class P described as below:

Policy of the Retailers (P): At each ordering instance, raise the inventory

positions of the retailers to S = (S1,52,...,5n).

The structure of policy class P makes use of the idea of joint replenishment.
Under the joint replenishment policy class P, when a retailer is taken in isolation,
it experiences exogenously generated opportunities of replenishment with no
additional fixed ordering costs. In the presence of opportunities of replenishment
at no additional ordering cost, it is intuitive that a retailer may choose to reorder
at these opportunity arrivals since this would reduce the ordering costs in the
system. Therefore, each retailer ¢ whose inventory position is below S; at an
opportunity arrival instance chooses to use the replenishment opportunity and
raises its inventory position to order-up-to level, S;. If the retailer specific ordering
costs were positive the order-up-to structure of the considered policy class would
not be cost-effective. We also note that although the policy class P is quite
general, the M P policy of Atkins and Iyogun [4] does not belong to class P since
the retailers are not regenerative due to retailer specific review intervals.

Figure 5.2 illustrates the ordering process of the retailers under the (@), S, T')
policy within the class P. Let I P;(t) denote the inventory position of retailer ¢ at
time . We present the time sequence of events and the decisions taken in terms

of the retailer ordering process. We have N =25, =9,5, =6 () = 8 and some
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T > 0 as the policy parameters and initially both retailers are at their maximum
stocking levels. Until time ¢; = T', 3 and 2 demands arrive for retailers 1 and 2,
respectively. Since T' time units have passed before () demands have accumulated
at the system, an order is placed at ¢ = ¢; which brings the inventory position
of retailer 1 to 57 and of retailer 2 to S3. At time t, = 27", a total of T" time
units have elapsed since the last order was placed; therefore, an order is placed
as triggered by the policy. The order size is one and only retailer 2 is included in
this order since no demand has arrived for retailer 1 between ¢t = ¢; and ¢ = 7.
At time t = #3(< ¢y + T), Q"demand after the last order was placed arrives and
hence an order is triggered. This order is composed of 5 and 3 units for retailers

1 and 2, respectively. The process goes on further in the same manner.
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Figure 5.2: Illustration of Ordering Process of Retailers under Policy Class P

We note that, under all the suggested policies within the class P, the order

size, the inter-order time, the number of retailers included in each order and
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the order quantity of each retailer in an order are all random. These will be
explained in more detail in Chapter 6. Since ordering instances are regenerative
points at the retailers’ level, the mentioned characteristics of consecutive orders
are independent of each other.

Now, consider an order of size ()9 = ¢ placed at the warehouse and let R;(q)
be the random variable representing the order quantity of retailer ¢ in this order
with probability mass function, Pg,)(m;). Ri(q) = m; implies that the inventory
position of retailer ¢ just before the order of interest is placed is S; — m; and we
clearly have SN | Ri(q) = q.

Another important feature of our model is that the size of an order is not
independent of the corresponding inter-order time. Therefore, the cumulative
demand at the warehouse constitutes a compound renewal process where the
inter-order time, Y and order quantity, Qo have a joint density, fy.g,(y,q). Also,
let Pg,() and fy () be the probability mass function of )y and probability density
function of Y with corresponding cumulative distribution functions Fg,() and
Fy ().

Now, suppose that at time ¢ = 0, the inventory positions of the retailers are
at S = (51,5,...,9v) and let (Y1,Q1) = (y1,q1), (Y2, Q2) = (y2,¢2), ... be the
inter-order time and order quantity of the consecutive orders after time¢ = 0. Let
X1, Xg, ..., X, be independent and identically distributed replicants of a random
variable, X. The n** convolution of X is denoted by X" = " X; with the
convention that X(®) = 0. Since, the convolutions of ¥ and Qo will be used quite
frequently in the sequel, we also let F\,, Q(n)(y q) = P(Y" < y,Qén) = q).
Notice that, although F' usually represents distribution functions, by an abuse
of notation, we will let F' denote the sub-distribution function of Y and QO .

Then, we have
Py g @) = [ Fpn gt i n>0y>04>0 (5.

Here, f,(, Q(n)(y q) is the joint density of Y (") and QO and given by

Fyom g = 3 Hfm0 yiqi) i n>0,y>0,¢>0
A(n,y,q) 1=
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where A(n,y,9) = {(y1,01), (W2, 42)s -5 (Ynr00) s Xt yi = v, Ziigi = 3 I
n=0,y>0,4¢=0, we have Fy(n)an)(y,q) =1.

Let Do(t1,12], Do[t1,t2) and Dg(t1,t2) be the total number of units demanded
from the warehouse in half-closed intervals (1, t5], [t1,%2) and (11, 12), respectively.

Next, we obtain the probability mass function of Dy(0,7].
Lemma 5.1.1 Let o(t, k) denote the probability that Do(0,t] is k. Then,

Fy (1) it k=0
ot k) =
S O o Fyy g (t =y, k)dFy (y) if k>0

Proof: Observe that the event {Do(0,t] =k} ={Y1 >t} f k=0 and
{Do(0,1] = k} = {0, Vi <t < I YL, 30, Qi = k) for k> 0.
Hence, for k=0, ¢(0,t) = F'y(t) and for k >0

k) — P(Y ) <1 QY = k)
PY™W 4Y,4, <t QY = Yo = y)dFy(y)

0

Pt k) = PY™ <1,00"

By gt k) =

t

t

Fy(n)7Qg")(t - Y, k)dFY(y)

@\ﬁ\ll

Fy(n)an)(t, k) -

=0

where the last equation follows from the independence of Y41 and (30, Vi, 30 Q).

5.2 Proposed Framework

In this section, we will present a general framework to analyze the operating

characteristics of the inventory policies within the policy class P.

5.2.1 Analysis at the Warehouse

We first consider the analysis at the warehouse level and derive the steady-state

distribution of the inventory position, the waiting time distribution of an order
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placed at the warehouse and the on-hand inventory of the warehouse and the
order placement rate at the warehouse.

As explained above, the warehouse faces a compound renewal demand where
the inter-order time Y and the order quantity )y have a joint density given
by fv.g,(y,q). The warehouse employs a continuous review (sg, Sg) ordering
policy where sg and Sy are the reorder and order-up-to levels of the warehouse,
respectively. Each instance at which a retailer order is placed at the warehouse is
a regeneration point for the retailers. Since each warehouse order is triggered by
a retailer order and raises the inventory position of the warehouse up to Sy, the
warehouse ordering epochs are regenerative for the warehouse. Hence, we know
that the steady-state distribution of the inventory position of the warehouse exists
(See Stidham [72]).

For ¢t > 0, define the two dimensional stochastic process, £(t) = {1 P(t), Z(t)},
where [ Py(t) denotes the inventory position at time ¢ and Z(¢) denotes the time
between ¢ and the last order arrival at the warehouse. The states of £(¢) will be
denoted by (7, z) where (¢,2) € [so+1,80+2,...,5)]x[0,00). Let ¢(t,4,z) denote
the probability density function of £(t). Assuming a steady state distribution

exists, we have the following result:
Lemma 5.2.1 (a) The steady state p.d.f., denoted by g(i,z) is given by
g(i,2) = CiFy(z) for (i,2)€[so+1,50+2,...,50)] x[0,00) (5.2)

where C; are normalizing constants and obtained by solving (5.3) and (5.4) below

simultaneously.
Z:;Siso-l-l Zgij—so CJPQO(Q) if =50
Ci = (5.3)
201 CiPoy(j — 1) if 1€so+1,5042,...,5 —1]
So
S = 1/EY] (5.0
J=s0+1

(b) Let I Py correspond to the inventory position of the warehouse at steady state.
Then, the distribution of 1P is given by

T, = P(]POZZ):CZE[Y] i6[80+1780+2,...750]
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(c) Let f7((2) denote the probability density function of Z(t). Then, the steady-
state p.d.f. of Z(t), denoted by fz is given by

fz(z) = Fy(2)/E[Y] for z2>0
Proof: See Appendix.

A common approach in analyzing a multi-echelon inventory system is to separate
the levels so that each level can be modeled as a single location inventory system
whose parameters relate to some characteristics or performance of the upper and
lower echelons. There are several ways to express the dependency of the upper
and the lower echelons. To analyze the operating characteristics at the lower
echelon, we need the waiting time of an order at the upper echelon which will
determine the effective lead time of an order that a retailer faces. Waiting time of
an order is an important performance measure of a warehouse for the backorders
and it provides a linkage between the warehouse and the retailers.

Consider the time instances where the orders are placed at the warehouse.
Suppose that at time ¢ an order of size ¢ has just been placed at the warehouse
and we are interested in the distribution of Wy(?, ¢), the waiting time of the order
of size ¢ which is placed at the warehouse at time t. Wy(t, ¢) is the time that
elapses between the arrival of the order at the warehouse, ¢, and the release of it

from the warehouse (See Figure 5.3).

An order of sizeq The order of sizeq
is placed at the warehouse is released from the warehouse
Wo(t,a)
time
t t+W, (t,0)

Figure 5.3: Illustration of waiting time of an order at the warehouse

We next present the following result which will be frequently used for the

derivation of the waiting time distribution of an order.

Lemma 5.2.2 As t — oo, [Fy(t) and Do(t,t + 7] are independent ¥ 7 > 0.
Proof: See Appendiz.
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Lemma 5.2.2 is evident for unit Poisson/compound Poisson demand due to the
memoryless property. However, the mentioned independence is not obvious for a
demand structure where the inter-demand time and demand size have a bivariate
distribution. Sahin [63] has provided the proof for continuous demands. Based
on Sahin [63], Kruse [49] has argued that the independence result also holds for
discrete renewal demand where the inter-arrival times are independent of the
demand sizes but has not provided any proof.

In inventory literature, there are only a few studies on waiting time
distribution of orders in an (s, .5) inventory system. To the best of our knowledge,
Kruse [49] is the only study that derives the waiting time distribution of an order
of random size with renewal discrete demand. Kruse [49] identifies each unit in
a demand of size ¢ by an index j (j = 1,2,...,¢) and derives the waiting time
distribution of each unit in the demand. We will use a similar approach to that
of Kruse [49] to compute the steady-state distribution of the waiting time of an
order of size ¢q. However, we will also allow sg to be negative and consider the
joint distribution of Y and ()¢ whereas Kruse [49] only assumed non-negative
8o values and independence of the demand sizes and the inter-demand time.
Recently, Kiesmiiller and de Kok [48] also considered the waiting time of an
order arriving according to a compound renewal process (approximated as mixed
Erlang distribution) under (s, Q) policy where s > 0.

Before we go on with the derivation of the waiting time distribution, we
would like to point out some remarks on how retailer orders are satisfied at the
warehouse.

i) There may be more than one warehouse order which is used to satisfy a retailer

order.

it) Although the retailer orders are placed in batches, it is more convenient to
think of the items in a batch as if they have arrived one after the other in a

chronological order.

i1¢) In conjunction with observation (i¢) above, since partial shipments are not

allowed, waiting time of an order is the waiting time of the last unit in a particular
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order.

iv) Due to the FIFO assumption while satisfying the orders, we have the following
main observation: k' unit of a batch order placed by the retailer is satisfied by
the first warehouse order placed at or after a retailer order which covers the S
item before the k' unit in the batch order at the retailer, counted backwards
in time. This observation will become more clear with the example illustrated

below.

X : retailer orders
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Figure 5.4: Illustration of satisfying an order at the warehouse - Example

We depict a graph of consecutive retailer and warehouse orders in Figure 5.4.

We consider 9 retailer orders arriving at the times tq, s, ..., t9, respectively with

O :warehouse orders
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order sizes (J;,¢t = 1,2,...,9 indicated in the graph. We assume that so = 16
and Sy = 20 and the inventory position of the warehouse just before time ¢; is
T Py(t7) = 20. With the given retailer orders, the warehouse orders are placed at
times t3,15,t7,t9. We are interested in how the order of size ()9 = 9, placed at
time ¢t = 14 is satisfied.

Firstly, we think of this order of 9 units, as if it is composed of 9 unit demands
that have arrived one after the other. The retailer order covering the 20" (that
is the S} item before the first unit in the order at time ¢ = t4 is placed at time
ty since Y3, Qr = 19 < 20 and Y3_, Q1 = 21 > 20. The retailer order covering
the 20" item before the second unit of the order at time ¢ = ¢4 is placed at time ¢,
because 3 3_5 Qr+1 =19 < 20 and 35_, Q1+ 1 =20 > 20. In a similar manner,
for this illustration, the retailer order covering the S{* item before the j' unit
in the order is given at t; if Z?:k-H Qi+j—1<Spand %, Q;+7—1> So.
Therefore, the retailer order that covers the 20" (Sg*) item before the 9" unit of
the order placed at g is placed at time 4.

The first warehouse order placed after or at the retailer orders arriving at
1,12, 15 1s given at time t3 and hence the first four units in the retailer order placed
at time tg are satisfied by this warehouse order. Similarly, the first warehouse
order after the retailer orders placed at t4 and t5 is given at time t5. Therefore,
the last five units are satisfied by this warehouse order placed at ¢5. For this
example, the order of size ¢ = 9 is satisfied by two warehouse orders and since
we do not allow partial shipments the retailer order is totally satisfied whenever
the warehouse order placed at time t5 arrives. Therefore, the waiting time of
the order is the waiting time of the ¢ = 9" unit in the order. The retailer and
warehouse orders corresponding to each unit in the order given at time t = tg are
presented in Figure 5.5.

Since we do not allow partial shipments, an order of size ¢ can be satisfied
without delay if there are at least ¢ units on-hand and none of them has been
tagged to a previous order. In view of the remarks given above, we next consider
the different cases for Wy (%, ¢) with respect to the values of sq and 1 Fy(¢™), which

is the inventory position of the warehouse just before the order arrives.
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Figure 5.5: Retailer and warehouse order corresponding to units in the order -
Example
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i) Suppose sg > 0. An arriving order is satisfied either by a warehouse order
which has been placed previously or by the order triggered by itself. Therefore,
0 < Wolt,q) < Lo.

e Suppose that an arriving order of size ¢ finds [ Py(t7) > ¢. The order will
wait at most 7(7 < Lo) units of time if and only if the ¢'* unit of the order
is satisfied by one of the items of [ FPy(t + 7 — Lg), which will be available

as on-hand inventory by time ¢ + 7. Therefore,

{Wo(t,q) <7} & {IP(t+ 17— Lo) — Dot + 17— Lo, t) > q} for 7 < Lo (5.5)

e Now, suppose that the order finds I Py(¢~) < ¢. Then, this order is satisfied
by the warehouse order that is triggered by itself. Hence, the waiting time
of the order is L.

{Wolt,q) = Lo} & {ITF(17) < ¢} (5.6)

it) Now, suppose so < 0. In this case, the order of interest may have to wait for

the next warehouse order placed, we may also have Wy(?,¢) > Lo.

e If the arriving order finds [ Py(t7) > ¢, we have the same scenario as s > 0.

Therefore, we can write

{Wo(t,q) <7} & {IP(t+7—Lo) — Dot + 17— Lo,t) > q} for 7 < Lo (5.7)

e If the order finds I Py(t~) < q + so, then this order itself triggers an order

placement. The waiting time of the order is therefore Ly.
{Wol(t,q) = Loy & {IH(17) < so+4q} (5.8)

o Now, suppose that the order of size ¢ arriving at time ¢ finds sg + ¢ <
IPy(t7) < ¢. Then, this order can neither be satisfied by a previously

placed warehouse order nor can trigger a warehouse order itself. Therefore,
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it will wait for the arrival of the next warehouse order. If a warehouse order
is triggered in (¢t,t + 7 — Lo it will be available by time ¢ + 7 and hence
Lo < Wo(t,q) S T.

{Lo < Wo(t,q) <7} {IP(t7) — Dolt,t+7 — Lo) < so} for 7> Lo (5.9)

In view of the arguments presented above, we next present the steady-state

distribution of the waiting time of an order.

Lemma 5.2.3 The steady-state distribution of the waiting time of an order of
size ¢, Fy,(g)(7) is given as follows:
(a) For sq >0,

Z;Simax(so-}l,q) k Oﬂ—z (LO -7, k) i 7< LO

Fyy)(7) = .
1 if 7> L
(b) For sy <0,
S i wip(Lo — 7, k) T < Ly
Bgp(1) =3 1 =0, L™ 7= Lo

Zz 50-|—q—|—1 ZZ P 1 (T - Lka) T > LO

Proof: See Appendiz.

In light of the above discussions, an order placed at the warehouse waits for a
random amount of time if the entire order quantity is not immediately available
on at the shelf. This results in an effective lead time, T;(¢) for an order of size
q for retailer « which is composed of the lead time L; for retailer z and the order
waiting time at the warehouse, Wy(¢). Hence, we have T;(q) = L; + Wy(q).

Next, we consider OHy(t), the on-hand inventory level at time t. To compute
the on-hand inventory level at the warehouse at any time, we employ the standard
argument of Hadley and Whitin [42] and consider the system at the time instances
t and t+ Lo, where Lg is the constant replenishment time of the warehouse. With
this choice of the time interval, we observe that all outstanding orders at time ¢

and no orders placed afterward have arrived by time ¢ 4+ L.
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In the standard argument of Hadley and Whitin [42] with unit Poisson
demands single retailer or single item, the inventory position at time ¢ and the
demand during lead time are sufficient to find the on-hand inventory or backorder
level at time ¢, together with the above observation. However, in the present
setting of joint replenishment with more than one retailer and bivariate behaviour
of (Y,Qo), the inter-order time and the order quantity, as well as the integrality
assumption regarding order release policy at the warehouse, similar information
is not sufficient to determine the on-hand inventory level. To illustrate this

complication, we consider the example below:

I | | time

ILg=4 ILo=-1 IL=-3 ILe-7
OH R —— OHF4 ———»OHF74 — OH O:4
BOGO0 — = BOG5 —— = BO37 — = BOgFl1

time

4 — > Ilg?2 — = llg=383 — - ILg=7

— OH =2 ~ OH 52 =~ OH
OH 0—4 0 g

BOGO —— = BOG0 ————*=BOF5 —— BO 59

time

4 —-——» g0 ——=1Ilg=2 - ILg=7
_ OH=0__ . OHg0 . OHs0
OHG4 ———= 0 2 T

BOO=0 —_— BOO=04>BOO:2 - - BOO=7
Figure 5.6: Effect of order sequences on on-hand inventory at the warehouse

Suppose that the initial inventory level, I Ly, on-hand inventory, OH, and
backorder level, BOy of the warehouse are 4, 4 and 0, respectively. Suppose also
that three orders have generated a total of 11 units with order sizes 5, 2 and 4

in a fixed time interval. We also assume that initially there are no outstanding
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orders at the warehouse and no warehouse orders are triggered during the time
interval that we consider. Figure 5.6(a) presents Lo, OHy and BOq values after
each order when the sequence of the orders is 5, 2 and 4. Since the initial on-
hand inventory (OHy = 4) is not enough to satisfy the first order of size 5, it
is backordered and the existing 4 units in stock are reserved for the first order.
Therefore, neither the second nor the third order can be satisfied directly from
the existing on hand inventory. After the third order, there are four units in
stock which are still reserved for the first order with a total of 11 backorders
and inventory level of -7. Figure 5.6(b) and Figure 5.6(c) correspond to the
alternative cases in which the sequence of the orders are switched to 2, 5, 4
and 4, 2, 5, respectively. In both of these cases, the units of the first order are
satisfied directly from the existing inventory on-hand. In Figure 5.6(b), there are
2 units left in stock after the first order is satisfied but they are not sufficient
to satisty any further orders, resulting in 9 backorders and 2 units on hand. In
Figure 5.6(c), no units are left after the first order is satisfied and, hence, we
have 7 backorders after the third order arrival. Notice that the inventory levels
at the end of the third order are the same for all realizations whereas the on-hand
inventory and backorder levels are different and determined by the sequence of
the orders.

As the above discussion indicates, in order to find the on-hand inventory,
we need the sequence of the order quantities as well as the inter-order times in
addition to the information in the Hadley and Whitin [42] setting. Suppose that
at time ?, the state of the system is £(t) = ([FP(1), Z(t)) = (¢,2). We next

consider the possible cases in detail:

1. If the total number of units demanded during the interval ¢ and ¢ + Lo,
Do(t,t+[/0] < 7 then OHo(t+L0) == Z—Do(t,t+[/0] Here, Do(t,t+[/0] =k
if a total of n < k orders are placed, te. 37, Y; < 2+ Lo, Z?:"'ll Y, > 2+ Lo

and a total of k units are demanded in n orders, 37" | Q; = k.

2. If Do(t,t 4 Lo) > i, there may or may not be on-hand inventory at time

t + Lo due to the restriction on the order release policy at the warehouse.
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Therefore, the inventory level at time ¢ + Ly can not be determined solely
by (i,z) and Do(?,t + Lo]. Rather, the sequence of the size of the orders
arriving during (£,t + Lo] is needed to find OHy(t 4+ Lo) as also illustrated

in an example in Figure 5.6.

Suppose that the total number of units demanded between time ¢ and time
t+ Lo exceeds i at the (n+ 1)’st order for the first time. That is 3741 V3 <
2+ Lo, X0, Qr < 1 and Y721 Qp > 7 hold. Due to order integrality on
delivery, the (n + 1)’st order can not be satisfied immediately from stock
even though OHy(t + Lo) = ¢ — 3 j_; Qr > 0. Hence, Q41 units will be
backordered as well as all the orders arriving after the n 4+ 1’st order until

time ¢ 4+ Lg (if there are any) although there are still ¢ — Y-} _, @y sitting in

inventory at time ¢ 4+ Lg.
In view of these scenarios, given (1 Py(t), Zo(t)) = (¢, 2), we can write O Ho(t + Lo)
as follows:
) if {Y1>Z—|-L0} or {Y1§L0—|-Z,Q1>i}

OHo(t+ Ly) = (5.10)
i—k i Y Y <24 Lo, Qi =k, Qs > i

for 0 <k<i,n>1

Lemma 5.2.4 Let OHy denote the steady-state on-hand inventory of the
warehouse. Then, the distribution of OHy is given by

Vi = P(OHy = 1) = C; /_0 Py(Lo+2)+ D [Frao(Lo+2.5) — Frao(#.j)]| dz

7=1+1
o So—’i o0 k 0O LO+Z
—I_FQO(i) Z Z Z CZ-I-k/ O/t FY(n—l) Q("—l)(LO + 22— tv k— j)dFKQo (tvj)dz
k=1 n=1 j=1 2=0 Jt=z o

i =max(so+1,1),...,5
Proof: See Appendiz.

Using Lemma 5.2.4, we can find the steady-state expected on-hand inventory as

E[OHy) =Y id;.

t=max(so+1,1
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Since the inventory position of the warehouse is Sy at each warehouse order,
the ordering instance is a regeneration point of the warehouse and we define
a warehouse cycle as the time between two consecutive warehouse ordering
instances. Next, we will derive FE[Yp], expected warehouse cycle time.

Let n(¢) = min{n : X%, Q; > ¢}. Then, Yy can be written as:

n(So—s0)
Vo= Y Y
=1
Since Y1, Y5, ... are independent and identically distributed random variables with

finite E[Y], and n(So — so) is a stopping time for Y7, Ys, ... such that E[n(S, —
50)] < oo, we can use Wald’s equation [62] to find E[Yp] as follows:

E[Y)] = En(So— so)]EIY] (5.11)

where as proved in the Appendix, F[n(So — so)] is given as:

50—50—1

E[n(So — s0)] = z_j FE(So = s0—1) (5.12)

In each warehouse cycle, the warehouse ordering cost is incurred once. Hence the
ordering cost rate at the warehouse is simply Ko/ FE[Yp].

As we indicated before, we assume that it is the warehouse who owns the
units during their transportation from the outside supplier to the warehouse.
Therefore, every time an order is placed by the warehouse, a unit holding cost
of hg is incurred for (), units during Ly time units where (), is the warehouse
order size. Finally, we derive F[Q,], expected warehouse order size.

Let x(¢) = min{n :n > ¢, 2%, Qi < ¢, X%, Qi = n,k < n}. Then, Q, can
be written as @, = k(So — $0). As we prove in the Appendix, E[Q,] is given by

the following expression:

00 n Sg—sg—1

EQ.) = X X S PEVG)Poy(n—j) (5.13)

n=3S0—s0 k=1 j7=k-1

In a warehouse cycle, the inventory carrying cost of a warehouse order during the

transportation is given by hoE[Q ] Lo.
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5.2.2 Analysis at the Retailers

In the previous section, we have determined the steady-state distribution of the
waiting time of an order of a given size placed at the warehouse. That is the
only information needed at the warehouse level to characterize the operating
characteristics at the retailers. At the lower echelon, we base our analysis on the
calculation of the cost that an order incurs at each retailer.

Suppose that an order of size ¢ is placed at the warehouse and this order
consists of individual retailer order quantities R;(¢) = m;,e =1,2,..., N. Then,
at retailer ¢, the first of the m; units in the order is used to satisfy the (5; —
m; + 1)’th demand following the order since the inventory position of retailer ¢
just before the order is placed at the warehouse is S; — m;. Similarly, the second
of the m; units in the order is tagged to the (5; — m; + 2)’th demand following
the order. In general, the jth of the m; units in that order is used to satisfy the
(S; —my; + 7)’th future demand of retailer :.

In order to calculate the holding cost at the retailers, our approach is based
on computing the age of an order at the retailers. We denote the age of the m;
units allocated to retailer ¢ in an order of size ¢ by AR;(m;,¢) and define it as
the sum of the times that m; units spend at the retailer ¢ until they satisfy a
demand.

If a unit in the order does not spend any time at retailer 7 and is immediately
used to fulfill a demand that has been waiting at retailer ¢, then this means that
it is used to satisfy a backordered demand. Let B;(m;,¢) be the number of items
of m; units which are used to satisfy backordered demands at retailer ¢. B;(m;,q)
is the number of demands which are backordered and eventually satisfied by the
units allocated to retailer ¢z in the order of size q.

From the previous section, we know that the effective lead time of an order of
size g for retailer ¢ is T;(q) = L;+Wy(q). Therefore, the j'th demand following the
order (0 < j < S; —m;) will be satisfied by an item which has spent [X]Z —Ti(q)]*
units of time at retailer 7, where [z]* is max(z,0) and X! denotes the arrival
time of the j’th demand at retailer ¢ after the order of size ¢ has been placed,

which has an Erlang distribution with parameters j and A;. Also, observe that
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if X} < T;(q) then the demand of interest will be backordered . In view of these
observations, regarding the age of an order and the number of units satisfying

the backordered demands, we have the following:

i) Suppose m; = 0. Then retailer ¢ is not included in the order. Hence,

AR;(mi,q) = Bi(m,q) =0

it) m; > 0,m; < 5;. Since the inventory position at the order instance S;—m; > 0
is non-negative, all m; units will be used to satisty future demands at retailer :.

We can write AR;(m;,q) as follows:
ARi(mivq) = 3 [X5o; = T I(X5 oy > Tile)  (5.14)
7=1

Here, the term m; L; represents the total age of m; items when they arrive at
retailer 2. Recall that the retailer possesses the items during their transportation
from the warehouse to the retailer.

Similarly, B;(m;, ¢) is written as:
Bi(mi,q) = m; — k1 ngi_k <T¢(q) <Xé¢—k—|—171 <k<m;—1

iti) m; > 0,m; > S;. Since the inventory position at the order instance S;—m; < 0
is negative, the first (m; — 5;) units in the order will be used to satisfy the
demands which arrive and is backordered before the order of interest is placed
at the warehouse. The first unit in the order will satisfy the first backordered
demand, ie. the demand which arrives when the inventory position of retailer ¢
is 0. The second unit in the order will satisfy the demand which arrives when
the inventory position of retailer ¢ is -1. Similarly, the (m; — S;)’th demand
will satisfy the demand which arrives when the inventory position of retailer ¢ is

S; — m; + 1. Since these (m; — S;) units are used as soon as they arrive at the
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retailer, AR;(m;, q) can be written as follows:

my

= > [XL T I(XE .y, > Ti(g)  (5.15)

J=mi—Si+1

Since (m; — 5;) units will be used to satisfy the backordered demands, we can

write B;(x;,q) as

Bi(mi,q) = (

0 if Tiq) < Xi

mZ—SZ)—I- kooif X2<TZ'()<X;+1,k:1,2,...752'

Si it Xk < Ti(q)

Lemma 5.2.5 Let F(x,k,A) be the c.d.f. of an Erlang random variable with
shape and scale parameters, k and X, respectively. Then, given m; and g,

E[AR;(mi,q)] and E[B;(m,q)] are given by:

E[AR;(m;,q)] =

and

E[Bi(mq, q)] =
(

Proof: See Appendiz.

k[smﬂF(er&—mﬁj+1XﬂﬁmU@ﬁ
f [(Li + w)F(Li 4w, S; — mi + j, \)] dFiyy gy ()
i S;>m; >0

D i s+1fL0 [S mﬂF( i+ w, S —mi 47+ 1, )\)] dFyy, (g)(w)

_Z;n:lm,‘—si-l—l fo [( i w)F(Li +w, S —mi + 5, A )] dFWo( )( )
if m; > 0,5 <m;

if mi:()

Z;n:ll fooo F(LZ + w, SZ —my —|—j, )\Z)dFWO(q)(w) if m; > 0, SZ > my

mi = 50) + Xl s Joo F (L + w0, S = mi 4§, Ai)d g g) ()

if m¢>0,5i<mi
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5.2.3 Optimization Problem

In this section, we construct the cost rate function and define the optimization
problem.

Recall that holding and ordering costs are incurred at the retailers and
backorder costs are handled implicitly by considering retailer fill rates. Let T'C'(q)
denote the expected cost of an order of size ¢ incurred by the retailers. The
common ordering cost of the retailers, K is incurred for each order placed at the
warehouse. Based on the analysis described in the previous section, T'C'(¢) can
be written as:

N g

TC(q) = K4Y_ Y hiE[AR{(mi, q)]Pryq)(mi)

1=1 m;=0
Let C'r denote the expected cost rate of the retailers. Since each ordering
instance is a regenerative point for the retailers, in view of renewal reward theorem
[62], Cg is given by

g=1

Let E[BT;] be the expected number of backorders given by retailer ¢ per time

unit. Using renewal reward theorem [62], we can write F[BT;] as

- gy o

q=1m;=0

Then, modified fill rate of retailer ¢ [78], ;, can be written as :
vi = 1—=FE[BT]/\

At the warehouse level, recall that Ky is incurred only once in a warehouse
cycle. Since the warehouse takes in charge of the holding of the items during the
transportation time from the outside supplier to the warehouse (Lo time units),
the expected cost rate of the warehouse, Cy can be written as:

Ko+ hoE[Qu] Lo
E[Y]

Cw + ho E[O Ho) (5.18)
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Finally, we are ready to formulate the objective function, expected total cost

rate, ACp under policy P.
ACp = Cw+Cpg (519)

Since the system is a no-lost sales system, rewriting the pipeline inventory,

Equation (5.19) can be written as follows:

ACp = R + ho E{OHo) + io: W

N
hoAolL hi N L; (5.20
B[] + noAoLo + Z ( )

q=1 =1

Using a fill rate constraint, the optimization problem can be stated as follows:

min ACp
s.t.

Vi > i:1,2,... N

Y

where 7; is the target fill rate of retailer 2.

Note that the methodology developed herein is solely based on the policy class
P and uses the times between orders, Y and size of corresponding orders, )y and
is not specific to any of the policies defined in Section 5.1. Also, notice that the
policy class P is not restricted to the cited policies and any policy in which the
retailers are regenerative at the order instances can be studied under the policy
class P.

In the next chapter, we will explain the four mentioned policies within the
policy class, P with all the particulars and provide detailed expressions of the

operating characteristics under each of these policies.



Chapter 6

Joint Replenishment Policies

within Class P

In the previous chapter, we have introduced four joint replenishment policies for
a two echelon inventory system. The common feature of these policies allowed
us to present a framework to solve them under a single policy class P. Recall
that the framework did not include any specifics of these policies but rather it
was based on the joint distribution of (Y, Qo) and the convolutions.

Similar to a multi-item, single-location setting, a joint replenishment policy
employed by multiple retailers for a single-item is the generator of the opportunity
arrival process. By choosing a particular policy to employ, we also choose
a particular generation mechanism for the opportunities. The overall costs
incurred by the inventory system depend greatly on how these opportunities
arrive at the system. Similarly, the policies within class P differ in how the
ordering instances or the ordering opportunities are generated. In this chapter,
we will restate the individual policies and explain the opportunity generation
and joint order mechanism for each policy in detail. We will mainly present
expressions for the convolution of (Y,Q)g) if closed forms exist and provide
approximations whenever necessary. We will also provide sample realizations
for the key operating characteristics of these policies, steady-state distribution of

warehouse inventory position and waiting time distributions. In Section 6.1 and

86
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6.2, we provide a detailed analysis of ((),S) and (Q,S,T) policies. Sections 6.3
and 6.4 examine (Q,S|T) and (s,S — 1,S) policies, respectively. We note that
the policy statements were given in Section 5.1 and hence we will not repeat them

in this chapter.

6.1 (Q,S) Policy

As indicated before, the (@), S) policy was originally proposed by Renberg and
Planche [60] and analyzed by Pantumsinchai [58] in a single location, multi-item
inventory system. In a more recent study, the (Q,S) policy was studied in a
single-item, two-echelon inventory system by Cheung and Lee [23]. Assuming a
(@, R) policy at the warehouse, they presented an exact approach for the model
using the results of Chen and Zheng [22].

In this section, we present how we implement the proposed framework for the
(Q.8) policy.

1P(t)

o Li L

Yy Yy time (t)

\ /

Ordering instances (opportunities)

Figure 6.1: Illustration of Ordering Instances for (@), S) Policy

As illustrated in Figure 6.1, the ordering opportunities for the retailers arise
whenever () demands accumulate in the system, ie. the total inventory position
of the retailers, IP(t) = 2N, I P(t) drops to St — Q where St = SN S;. Every

time an opportunity arises in the system, an order is placed and hence the time
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between consecutive orders have Erlangg distribution.

fraov,q) = fly,Q,x) if ¢=Q,y>0 (6.1)

and the marginals have the following distributions:

Poo (@) =1, fr(y)=f(y,Q;h) for y=0 (6.2)

Since the orders always have a size of () and arrive according to an Erlangg

distribution, it is obvious that
1 if n=0,y>0,¢=0
Fy qolysq) = , (6.3)
0 F(y,nQ, ) if n>0,y>04¢g=nQ
Corollary 6.1.1 Under (Q),S) policy, o(t, k) = P(Dy(0,t] = k) is given by:
F(t,Q, \o) if k=0
plt, k) =
F(t ko) — F(t,k4+Q, X ) if E=nQ,n>0
Proof: Using Lemma 5.1.1 and FEquations (6.1) and (6.3) , we can write
F(t,Q, \o) if k=0
F(tv k? )‘0) - f;:o F(t - Y, ka )‘O)f(yv Qv )‘O)dy it k= nQv n>0

The result follows after observing that f;:o F(t—y, ko) f(y,Q, No)dy = F(t, k+
Qv )‘0)

@(tv k) =

Since we do not allow partial shipments, it is obvious that the optimal (sq, So)
values will be integer multiples of (). Therefore, during the remaining part of this
section, we will restrict ourselves to (g, S¢) values which are integer multiples of
Q. Also note that the (@, R) policy of the warehouse in Cheung and Lee [23] and
(80,.50) policy assumed in this study are equivalent with s = R and So = Q + R.

Next, we consider the steady-state distribution of warehouse inventory
position. Cheung and Lee [23] conjectures that [F, is uniformly distributed
over [so+ @, ..., S0 — @, So|. Therefore,

Ao — 1
g(i,z) = QCOA F(z,Q,X) and mza for 1 €[so+@Q,...,5% —Q,5%],z>0
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where (;, = k/Q and Ay = Sy — sg. It can also be easily shown that ¢(¢,z) and
7; given above satisfy Equations (5.2)-(5.4).

Corollary 6.1.2 Under the (Q),S) policy, Fw,g)(w) is given by
(a) For sq >0,

1= T3 F(Lo— 7,50 +iQ Xo) i 7 < Lo

1 if TZLO

Fyyg(t) =

(b) For sy <0,

(s .
%—éziilF(Lo—T,lQ,)\o) T<L0
Fayy(m) = 1= —C}ZO_Q 7= Lo

(osom Cegm
1- CAOQ + ézkzl “F(r— Lo, kQ, Ao) 7> Lo
Proof: See Appendix.

Sample realizations for the waiting time distribution of an order are illustrated

in Figure 6.2.

)\U=20,L0=5,50=100,Q=10

A0=20‘L0=5‘80=100’50=50

.f‘,.

— Q=5

Figure 6.2: Realizations for Fyy, () under (Q),S) Policy
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Figure 6.2(a) depicts waiting time distribution of an order with different
so values. As expected, waiting time of an order with smaller sq values is
stochastically larger than the waiting time of an order with higher sy values.
It s < 0, then the waiting time of an order has a probability mass at w = 0
and w = Lg. On the other hand, if sy > 0, the waiting time of an order has a
probability mass at only w = 0 since the inventory position can not fall below
the order quantity Q).

Under the same (sg, ) values, one intuitively expects that an order with a
larger size will have to wait longer at the warehouse. However, Figure 6.2(b)
illustrates just an opposite case. For instance, for () = 5, the probability that
the order does not wait at the warehouse is 0.1008 whereas the probability of
a zero waiting time of an order of size 10 is 0.1302. The corresponding figures
are 0.2453 and 0.4867 for () = 25 and ) = 50, respectively. Although this is
counterintuitive, we interpret this as a result of the joint distribution of the inter-
order time and order size. Recall that the inter-order time of an order of size )
has an Erlang,, distribution and the inter-order time of an order with a larger size
is stochastically smaller than the inter-order time of an order with a smaller size.
Therefore, on the average, it takes a longer time for a larger order to arrive at
the warehouse. The longer inter-order times allow the warehouse to accumulate
the necessary stock. Although we can not prove in general, we observe that
Wo(5) >s Wo(10) >4 Wo(25) >4 Wo(50) for this specific realization.

Finally, the distribution of the retailer order quantities are given as below

which follows from the Poisson demand arrivals.

Q

my

Ppig)(m;) = ( ) ri(l =) i 0<m <Q

where r; is, as defined before, the probability an arriving demand is for retailer ¢

and given by r; = X\;/Ao.
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6.2 (Q,S,T) Policy

In Chapter 3, we proposed and analyzed the (Q,S,T) policy in a single location,
multi-item setting.

As illustrated in Figure 6.3, the ordering opportunities may arise in two ways
under the (@, S,T') policy. Suppose for example that a total of ) demands have
arrived before T' time units have elapsed since the last ordering opportunity
arrival; then, an order is placed at the instance of the Qth demand arrival.
Suppose alternatively that T' time units have elapsed before a total of () demands
have arrived. At this opportunity arrival, the inventory review may or may not
result in an order placement. If at least one demand has arrived within the
last T" units of time, an order will be placed, otherwise nothing will be ordered.
Therefore, opportunities are used if there is at least one retailer whose inventory

position is below its order-up-to level.

IP(t) IP(t)
SQ SrQ
Ordering opportunities Ordering opportunities
T 2T 3T (M-MT T 2T 3T (M—VMT
Ordering Instance Ordering instance
@ (b)

Figure 6.3: Illustration of Ordering Instances for (@), S,T') Policy

Next, we consider the joint density of the convolutions of ¥ and Qo, fy( Q-
L]

However, fy.g,(y,q) given in Lemma 3.2.1, has a very difficult structure to find
the convolution and does not allow to calculate fy(n)an) directly. The difficulty

encountered while finding fY(n) o from fY( ny will be more clear with the
o

Q4
example illustrated below.
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y=10T=20

|
T
oy Ry T
T=2 T=2
m2T mg T

m,T
1
Q1 2 3

Figure 6.4: Illustration of 3-fold convolution of (Y, Q) - Example

Suppose that () = 3,7 = 2 and we consider fY(3>,Q§)3)(y7q)7 the joint density
of the arrival time of the third order and the total size of three orders where
y = 20, g = 4. Since the size of an order should at least be one unit, none of the
three orders of interest will have a size of () = 3 units and hence all three orders
will be triggered at review intervals. The inter-order time of each of the three
orders will be a multiple of T'. Then, in view of Equation (5.2) and Figure 6.4,

we can write:

3
Fr@ g(20,4) = > I fr.qo(miT + 1.4
g1+a2+493=4,¢>1

For this specific example, the total number of m;’s 327, m; = 7 is 36 whereas
the number of ¢;’s that satisfy >, ¢; = 4 is 3. Although n is taken as 3 and we
have a very special case of the order compositions, ie. the order sizes are all less
than ) units, we have to carry out a summation over 108 terms in order to find
fY(S)Qgg)(ZO,ZL). This number increases extremely for larger values of n because
we face a combinatorial problem in which we try to find all possible values of ¥;’s
and ¢;’s such that >, v, = y,>." ; ¢; = ¢ as given in Equation (5.2). We next
present an easier and a more compact approach in order to find fy(n)7an)().

In order to use in our new approach, we first define a new function, P (¢)

as:

Po(q) if 1<¢<Q

0 0.W.

P (q) = {

We also define an additional random variable, Y; which corresponds to the

time since last decision epoch until an order is given. Recall that a decision epoch
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may correspond to an order placement or only a review instance. In the following
corollary, we present the joint p.d.f. of Y; and (g as well as the conditional
distribution of Yy given () = ¢.
Corollary 6.2.1
a) Let fy,0,(y,q) denote the joint probability density function of Yy and Q.
Then, fv,qo(y,q) is given by

po(g; AT)/(1 = o) ify=T,0<q<@

f(vav)‘O)/(l _¢0) if 0 < y < Tvq: Q
b) The conditional p.d.f. of Yy given Qo = q, fv,0,(ylq) is given by the following

fYCth (yv q) =

ELPTESSION:

1 if y=T,0<q¢<Q
Fraeolyle) =
fTe(vava)‘O) if 0<y<T7q:Q

where fr.(x,T,Q, o) corresponds to p.d.f. of a Truncated Erlangg (at T)

random variable given by

fTe(vava)‘O) = f(vav)‘O)/F(Tva)‘O) it 0<a<T
Proof: See Appendiz.

In view of Corollary 6.2.1, we see that if the order has size (), the time elapsed
since the last decision epoch until this order has a truncated Erlangg distribution.
If the order has a size less than (), the time elapsed since the last decision epoch
until the order is placed is obviously T'.

We next present the p.d.f. of the n'* convolution of (Y, Qo) which is used to
find the p.d.f. of the n'® convolution of (Y, Qo).

Corollary 6.2.2
a) Under (Q,S,T) policy, f, Q(n)(y,q) is given by the following expression:
d %0

(5. T.Q. o) Poy (Q)" it 0<y<nl,q=nQ

Jyrom o (Y5 q) = 1(m n—m
e T O m) P @ P (- QU — 0.0

if 0<y<nl,n<g<n@
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where Pé(:f) is the n'" convolution of Py, -

b) Under (Q,S,T) policy, fy Q(n)(y,q) is given by the following expression:

lv/T]
fy(n),an)(yv Q= Y, Cln+k—1kgl— ¢0)nfycgn>7an>(y — kT, q)
ke=[y/T—n]
if y>0,n<¢g<nQ

where |x] is the largest integer less than or equal to x and [x] is the smallest
integer larger than or equal to x.

Proof: See Appendiz.

Using Corollary 6.2.2, we can immediately write:

lv/T]
Fronom@a) = > Clntk—1LE)GG(L— 60)" Fyom gonly — kT, q) (6.4)
° k=[y/T—n] ¢
it y>0,n<g¢g<nQ
where
F(y,T,Q, M) Poy(Q)" it 0<y<nT q=nQ

n Oy m) Poy(Q) " Pa (g — (n — m)Q) P ™™ (y — mT, T, Q, o)

Foo qm(y,q) =
v oo (Y, 9) if 0<y<nl,n<qg<nQ

d

1 it y>nl.n<q<nQ

The complex structure of Py, (q) and F, (y,q) given in Corollary (3.2.1)

n) o)
and Equation (6.4) illustrates that under (Q?é,T) policy it is not possible to
obtain closed form expressions for 7;’s and ¢(¢, k). Therefore, these quantities
can be calculated only numerically. We next point out some remarks regarding
the numerical computation of fy(n)an)(y, q)

Recall that we defined a function P, (¢) which stands for the probability mass
function of Qo where Qo < Q: P, (q) = po(q, MoT')/(1 — ¢o) for 1 < ¢ < Q. The

truncated structure does not make it possible to obtain a closed form expression
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for ng)(q). Therefore, ng)(q) can be calculated through an iterative procedure.

as follows:
Q-1
PEg) = 3 PR g~ k)Po, (k) for n<q<n(Q—1)
k=1

As seen in Corollary 6.2.2, we need the convolution of truncated Erlang
random variables. Although Erlang distribution is closed under convolution, the
same does not apply for truncated Erlang distribution. Hence, it may become
quite difficult to find the distribution of the convolution of a truncated Erlang
random variable as demonstrated below with the 2 and 3-fold convolutions, the

proof of which can be found in Appendix.

F(,2Q,0)/F(T, Q. \o)? ifo<t<T
F}z)(t7 T, Q7 )\0) — F(; o T7 Qv AO)/F(Tv Qv )‘0) + if ng t<2T (65)
e P = ,Q,20) f (5, Q. o)dy] /F(T,Q, N)
1 if ¢t>27T
and
F(£,3Q, o)/ F(T,Q, Xo)? ifo<t<T
o PR = 5, T,Q, 00) £y, @, Aody)| [F(T,Q, \o)
3 if T'<t<2T
Fj("e)(thva)‘O) = (66)
F(t—2T,Q, )0)/F(T,Q, M) + if 2T <t < 3T
[fyT:t—2T F}z)(t -y, T,Q, %) f(y,Q, )\o)dy] JF(T,Q, o)
1 if ¢t>37T

From Equations (6.5) and (6.6), we see that the convolution of a truncated Erlang
random variable has a piecewise structure and requires an iterative procedure
since it includes the convolution with a smaller degree. These equations indicate
that it may be quite difficult to find the the distribution of the n'* convolution

of a truncated Erlang random variable, even for small values of n especially from
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computational point of view. Therefore, it is necessary to use an approximate
distribution to avoid the computational burden.

One option to approximate the distribution of a convolution is to use Normal
distribution. Therefore, as an alternative for F:(pj)(t, T,Q, ), one can use
¢(t, npr,,not,) where ¢(t, 1, 0%) represents the distribution of a Normal random
variable with mean p and variance 0. Here, 7, and o7, corresponds to the mean
and variance of the truncated Erlang random variable of interest and is given by

the following:
QF(T,Q+1,0) Q@+ VF(T,Q0+20)  QF(1.Q+1\)’

Mo = TNFTLQ ) T T T ORE(T.Q, M) NE(T,Q, Ao)?

In Figure 6.5, we present some examples to illustrate the performance of the
Normal approximation. Figure 6.5(a) presents the exact distribution function and
the normal approximation for a 2-fold convolution of a truncated Erlang random
variable with 7' = 0.3,¢) = 10,)\qg = 20. This corresponds to a case where
the truncation value, T, has a quite important effect in determining Fr,.(), ie.
F(T,Q, X ) = 0.0839. For this specific example, the maximum absolute difference
between the exact distribution function and the normal approximation is 0.0563
with a corresponding percentage difference of 10.59%. As T increases, the
deviation of the approximation from the exact distribution reduces as expected.
For instance, for T' = 0.9, Q) = 10, Ay = 20 where F(T,Q, o) = 0.9846 (illustrated
in Figure 6.5(b), the maximum absolute difference is 0.0199 with a corresponding
percentage difference of 4.44%.

Figures 6.5(c) and 6.5(d) present the exact and approximate F:(pj)(t, T,Q, o)
with T = 0.3, = 10,A = 20 for n = 3 and n = 4, respectively. The
maximum absolute difference for n = 3 is 0.0456 with a percentage difference
of 8.35%. The corresponding figures with n = 4 are 0.0360 and 7.43%. As
n increases the performance of the normal distribution to approximate F:(pj)()
increases as expected. Moreover, the effect of the mentioned differences on the
operating characteristics of the system is quite negligible as will be presented in
the subsequent parts in this chapter and in the next chapter.

In Figure 6.6, we present different realizations for the steady-state distribution
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Figure 6.5: Comparison of a Normal approximation with the convolution

of a
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of [Py under (@,S,T) Policy. These realizations illustrate that the behaviour of
7; depends on () and T values. If QQ/\g value is larger than T', [P, behaves
uniformly in [so+ 1, S — @] and the behavior in [So — @ 4 1, Sp] is more complex
(See T'= 0.4 in Figure 6.6(a)). Keeping @) constant, as T' increases the value of
Py, (Q) increases and therefore generally g, 75,-q, . .. values increase and other
7; values decrease.This is to be expected because as T' — oo, (Q,S,T) policy
reduces to (@), S) policy and the steady-state inventory position of the warehouse
becomes uniformly distributed in [so+ @, ..., So— @, So]. Figure 6.6(b) presents «;
values with respect to different () values keeping T' constant. For larger () values
the distribution of I Py has a more smooth structure over [sg+1, 5042, ..., So—Q].
We also observe that although there is not a general shape and behaviour of the
distribution of /Py, 7;’s tend to behave in a similar manner in clusters of ()
points. In Figure 6.6(b), see the behaviour of I P, for Q) = 4 over [47,50], [43, 46].
Similarly, observe w;’s for T'=1.2 or T'= 0.8 with ) = 8 in Figure 6.6(a).
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Figure 6.6: Realizations for Steady-State Distribution of I P, under (Q,S,T)
Policy

Figure 6.7(a) presents waiting time distribution of an order with different sizes

under the (@), S, T') policy. Unlike the (@, S) policy, the waiting time of an order
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with a larger size is observed to be stochastically larger than the waiting time of

an order with a smaller size. Under the (@), S,T') policy, this is expected, because

given an order of size ¢ < (), the inter-order time has the same distribution

for all ¢ values and a larger order has to wait more for the necessary stock

to accumulate at the warehouse.

An order of size () has an inter-order time

which is stochastically smaller than that of an order with size less than ). The

order of size (), on the average, arrives earlier and waits more for the sufficient

stock to exist on the shelf since it has a larger size. Hence, the order of size

() has a tendency to wait more at the warehouse. In Figure 6.7(b), we present
Fiy (Q)(w) for @ = 10, = 20, Lo = 5,5 = 100,59 = —30 with different T

values. An important observation is that the waiting time with smaller T' values

is stochastically smaller than that of waiting time with larger 7" values. Hence,

introducing an effective time trigger to (@), S) policy reduces the waiting time

distribution of an order at the warehouse and hence it decreases the effective lead

time of an order placed by the retailers.
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Figure 6.7: Realizations for Fyy,(,) under (Q),S,T') Policy

For the calculation of the waiting time distributions depicted in Figure 6.7

we use Normal approximation for the truncated Erlang random variable as
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explained above. In order to examine the effect of the approximation on the
waiting time distribution, we simulated the inventory system under (Q,S,T)
policy to obtain the true waiting time distributions. In our simulations, we used
a run length of 20,000 warehouse ordering instances with a warm-up period of
1,000 order placements, and 10 replications to obtain the corresponding waiting
time distributions. For ¢ = 20, the simulated expected waiting time is found
to be 2.4126 whereas the approximate expected value is calculated as 2.4098
(0.12% percentage deviation from the true value). For ¢ = 15 and ¢ = 10, the
simulated F[Wy(q)] values are 2.1062 and 1.8343, respectively. The corresponding
approximate values are 2.1104 and 1.8311 with 0.19% and 0.17% percentage
deviation, respectively.

We last present the retailer order quantity distribution. The (@, S, T') policy
imposes a limit both on the time between ordering opportunities as T' and the
order quantities as (). Unlike the (@), S) policy, the order quantity for the (Q,S,T')
policy is a random variable and hence the conditional distribution of the retailer

order quantity in an order of size ¢ can be written as:

( E ) P (L — y)emm
m;

Po,(q)

Prig(mi) = it 0<m;<q¢1<q¢<Q

6.3 (Q,S|T) Policy

As indicated in the previous chapter, the minimum quantity periodic review
(@, S|T) policy was originally studied by Cachon [17] in a multi-item and single-
location inventory system within the context of shelfspace and truck capacities.

Unlike the other policies, (@, S|T') policy is a periodic review policy and hence
the ordering opportunities arise at the end of each period, ie. every T time units.
Figure 6.8 illustrates the ordering mechanism under (@), S|7') policy. An ordering
opportunity that arises at the end of each period is used if at least () demands
have accumulated for the retailers since the last ordering instance, ie. the total

inventory position of the retailers, IP(t) is below S — Q with S = SN, S,
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IP(t)

Ordering opportunities Ordering Instances

Figure 6.8: Illustration of Ordering Instances for (@), S|7") Policy

Otherwise, only a review is carried out at an ordering opportunity. Therefore,
the inter-order time and order sizes take values from the sets {7,27,3T,...} and
{Q,Q+1,Q+2,...}, respectively. We next present the probability mass function
of Y and Q).

Lemma 6.3.1 The joint probability mass function of Y and Qg is given by

po(q, AoT') it ¢>2Qy=T
fraoly.q) =

po(q, AomT)B(Q —1.¢,1 = 1/m) if ¢>Q,y=ml,m>1
where B(k,n,p) is the Binomial cumulative distribution function with parameters
n and p.
Proof: See Appendiz.

Using the above lemma, we can find the marginals as given below:
Corollary 6.3.1
(a) The probability mass function Pg,(q) = P(Qo = q) of Qo is given by:

Poo(q) = polg, D)+ > po(q. demT)B(Q —1,¢,1 —1/m) if ¢>Q

m=2
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(b) The p.m.f., fy(y), of Y is given by:

frly) =

The complex structure of fyg,(y,q) as well as Pg,(¢) and fy(y) does not make
it possible to obtain a closed form expression for the convolutions. Therefore,
the convolutions under (Q,S|T') policy can be calculated only numerically.
The discrete structure of both Y and @)y allows us to calculate fy(n)an)(y,q)

iteratively as follows:

fy(n)@é”)(mTv Q) = Z fY(n—1)7an_1) (mlTv QI)fY,Qo (m2T7 q2)
m1+me =m,m; >n—1,mg >1
{ g =qq0>m-1)Q,q0>Q }
for m >mn,q> nQ (6.7)
and
0 it y<nl, qg>nQ
F n ( ) = (6.8)
Y(n)7Qg Ny, 4 T . .
Z]Li/n . fY(n)7an) (]Tv q) if Y > nT7 q > nQ

Corollary 6.3.2 Under (Q,S|T') policy, p(t, k) = P(Do(0,t] = k) is given by:
| i k=014<T

Po(Q — 1, [t/T] AoT) it k=0t>T

SRS fy oo G ) = SES OSSO g oo GT k) fy(mT)
it k>Q,t>T

Proof: See Appendiz.

Similar to the (@, S, T') policy, Pg,(¢) under (Q, S|T) policy does not provide a
closed form expression for 7;’s. Next we present sample realizations for the steady-

state distribution of the warehouse inventory position under (@, S|7T) policy in
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Figure 6.9. We observe that the distribution of the warehouse inventory position
is not very sensitive to the choice of () and T' values. Only when T is small
compared to @)/ Ao or ) is large compared to AT, the behaviour of 7; is somehow
observed to be oscillatory. Noting that we use the same policy parameter values,
(Q,T,s0,5) as in Figure 6.6, we observe that the distribution of I F, has a more
smooth structure when compared with the (@), S, T') policy.
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Figure 6.9: Realizations for Steady-State Distribution of /Fy under (Q,S|T)
Policy

Since (@, S|T') is a periodic review policy, the orders are placed at the end of
the periods, ie. the warehouse faces demands at the end of the periods. Therefore
warehouse orders are also placed at the end of the periods and the warehouse
employs a periodic review (sg, So) policy with review interval 7. Unlike the other
policies, waiting time of an order at the warehouse has always a discrete structure.
Wo(q) takes values from the set {..., Lo+ 2T, Lo+ 1T, Lo, Lo — T, Lo —2T,...,0}.

In Figure 6.10, we present different realizations regarding the distribution of
the waiting time of an order at the warehouse. Figure 6.10(a) illustrates Fyy, 4 (w)
for different values of q. We observe that there is not a particular pattern for

the behaviour of the waiting time distribution with different order sizes. Figure

50
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Figure 6.10: Realizations for Fyy,(, under (Q),S, |T) Policy
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6.10(b) illustrates the waiting time of an order of a fixed size for different values of

T'. We observe that when w < Lg, the waiting time with 7' = 0.2 is stochastically

larger than that of T' = 0.8 whereas we may observe the opposite for w > L.

Hence, when sy < 0, a smaller review time may be beneficial to obtain smaller

effective lead times.

Similar to (Q,S) and (Q,S,T) policies, since the demand is Poisson the

conditional distribution of the retailer order quantity in an order of size ¢ can be

written as:

( I ) PI(1 — py)am
m;

Prig(mi) =

6.4 (s,S—1,S) Policy

The (s,S —1,S) policy is a special case of (s,c,S) can-order policy with ¢

Po,(q)

it 0<m;<gq,q¢20Q

S — 1 which were previously studied by Silver [67] in a 2-item inventory system

with zero lead time and Van Eijs [77] in a general multi-item setting. For the
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two-echelon inventory system, it is formally stated as follows:

(s,S —1,S) Policy: Whenever the inventory position of a retailer ¢ drops to
its reorder level, s;, raise the inventory positions of the retailers up to S =
(51,52, ..., 5N).

In (s,S—1,8) policy, the ordering opportunities for the retailers arise
whenever the inventory position of a retailer drops to its reorder level. Observe
that this is the only policy among the three that bases its ordering decision on the
individual inventory positions of the retailers. Recall that under three policies
explained above, the ordering opportunities arrive either on the basis of the total
demands accumulated in the system and/or the time elapsed. Similar to (@, S)
policy, every ordering opportunity is used and all retailers are replenished to their

order-up-to levels at each ordering opportunity.

1Pt

S

S1

1 1 1 time (t)

IP(t)

1 time (t)

Ordering opportunities (instances)

Figure 6.11: Illustration of Ordering Instances for (s,S — 1, S) Policy

We illustrate a sample realization of the ordering behaviour of the retailers
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under (s,S — 1,S) policy in Figure 6.11. Suppose that there are N = 2 retailers
and the inventory position of each retailer ¢ is at its maximum level, S; at time
t = 0.The inventory position of retailer 1 drops to its reorder level before the
second retailer and hence an ordering opportunity also arises for the retailer 2.
Since the inventory position of retailer 2 is below S5, both retailers are replenished
to S values. Similarly, second ordering opportunity is also triggered by retailer
1. However, since no demands have arrived for retailer 2 since the first order, the
opportunity is not used by retailer 2 and only retailer 1 is replenished. Suppose
that the third order opportunity is triggered by retailer 2, ie. the inventory
position of retailer 2 drops to s, before. Since the inventory position of retailer 1
is below Sy, retailer 1 is also included in the third replenishment.

Now, let A; = 5; — s; be the maximum quantity that retailer ¢ can order.
Then, the minimum size of an order is ¢, = min; A; which corresponds to the
case where only the retailer with the smallest A; value is included in the order,
ie. the inventory positions of the other retailers are at their order-up-to levels at
the opportunity arrival. The maximum size of an order is Qy = >, A; — (N — 1)
which occurs when the inventory position of each retailer z,¢ = 1,2,..., Nis s;+1
and a demand arrives which generates an ordering instance. We next present the

probability mass function of Y and Q).

Lemma 6.4.1 The joint probability density function of Y and Qg is given by

al ri r

Fraoy.a) = f(y,q,%0) Y 3 (¢ —1)l—— [HL
i=1 ¥ (@; —1)!

{ 2]21 Tyj =4, = Ay }

0<w; <Ay for g #1

I(g > Aj)

where 1() is the indicator function of its argument.

Proof: See Appendiz.

The above lemma is used to find the marginals as below:

Corollary 6.4.1
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(a) The probability mass function Pg,(q) = P(Qo = q) of Qo is given by:

Po(a) = 3 5 (- T2 1(g > A
(x; — 1)! i T4

= N
=1 { ZJ:1xJ:q7xi:A,‘ }

0<w; <Ay for j#14
if QOSQSQO

(b) The p.d.f., fy(y), of Y is given by:
Qo
fY(y) = Z f(y7Q7)‘0)PQ0(Q)

9=0Q,

Proof: See Appendiz.

Using (a) of Corollary 6.4.1, we see that fy,(y,¢) can also be written as:

fY7Qo(y7Q) = f(y7Q7 )‘O)PQO(Q) it y> 07Q0 <q¢< @0

This leads to an important result which enables the analysis of this policy in a
more compact way: Given an order of size ¢, the inter-order time has an Erlang,

distribution.
Frigola) = Fly,q0) i y>0,Q, <q<Q (6.9)
Using Equation (6.9), we can write

fyogom:a) = fly.q, M) PG (g) iy > 0.nQ, < ¢ < nQy
and

Fron oo (y:0) = Fly,a. 005 () if 5= 0,0Q, < q < nQy (6.10)
Then, we are ready to give an expression for the distribution of Dy(0,¢].
Corollary 6.4.2 Under (s,S —1,S) policy, o(t, k) = P(Do(0,t] = k) is given
by:

Z?:OQO F(tv q, )\O)PQO (Q) it k=0
t. k) = k/Q, n Q,
SO( ’ ) ZE: Lk/goj PC(QO)(k) F(y7 k? )‘0) - Z?:QO PQO (Q)F(tv k4 q, )‘0)
ik>Q,

Proof: See Appendiz.
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The crucial quantity in the analysis of the (s, S — 1, S) policy is the probability
mass function of (), which has a quite complex structure as given in Corollary

(6.4.1). Only for N = 2, we can provide a closed form expression for Py, (¢).

2

Po,(q) = Z ( Aq,__ll )T?i(l—ri)q_Ai](qZAi) for mmA <q<ZA -1

i=1 i=1
For N > 2, when a retailer is triggered by a retailer ¢, if the order quantities of
the other retailers were unrestricted, the order quantity of retailer j will have a
Binomial distribution with parameters ¢ — A; and A;/(Ao — A;). However, the
order quantities of the retailers are no longer unrestricted and hence we have to
sum over all possible values of these order quantities, which is computationally
very difficult especially for larger values of N. Therefore, an approximation for
N > 2 is necessary to carry out the numerical calculations.
Before we present the proposed approximation for Py, (¢), we introduce some
notation. Let r’; with (2 # j) be the probability that a demand arrives at retailer
J given that it does not arrive at retailer j and is given by A;/(Ao—A;). Let y; ; and

O'Zj with ¢ £ j be the expected value and variance of the order quantity of retailer

2.
]72‘

j in an order triggered by retailer i. Also let p; = >4 ptj5 and 07 = 3.0
and for any quantity X, we let X denote the approximation for X.
Now, we propose the following P;)\(q):

6(q — Ai +0.5,775, 02)

6.11
—¢(Q—Ai—0.5,m,0'2 ( )

Panld cho (27 )= [

where Cg, is the normalizing constant such that Z?:OQ P;)\(q) =1 and f;; and
—0

JE—

0%, are calculated by

o= S X S Bk - A (6.12)

i j#i k=0

. o Ay—1

of = Y oti=0 > Kb(k,q— A i) =Y g (6.13)
i i k=0 I

where b(k,n,p) represents the probability mass function of a Binomial random

variable with parameters n and p.
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The idea behind Equation (6.11) is to approximate the probability that the
sum of the order quantities of the retailers which do not trigger the order is g —A;
if retailer ¢ triggers the order. As explained above, the retailer order quantities
are restricted with A; —1 where j # ¢ and hence, we first find the approximate
mean and variance of the retailer order quantities in Equations (6.12) and (6.13),
respectively. The probability mass function of the sum of the order quantities of
the retailers which do not trigger the order is then approximated by a Normal
distribution with continuity correction. We use the proposed approximate P;)\(q)
throughout our numerical experiments with N > 2 and as explained below the
approximation works quite well even with small values of N.

Similar to (Q,S,T) and (@, S|T') policies, the steady-state distribution of I Py
under (8,8 —1,S) policy can be computed only numerically. In Figure 6.12, we
present different realizations of w;’s. Recall that the policy bases the ordering
decisions on the individual inventory positions rather than the total inventory
position and hence we will investigate the effect of number of retailers, individual
demand rates and the retailer maximum order quantities on the behaviour of 7;’s.

Figure 6.12(a) illustrates the behaviour of 7; for N = 2 and N = 4 keeping
A; fixed. We observe that for smaller values of the inventory position value ¢, m;
is not sensitive to the number of retailers in the system. The behaviour of 7;’s is
also observed to be oscillatory. In Figure 6.12(b), we present «; values for N = 2
and N = 4 keeping the system demand rate, A\g fixed. A similar behaviour as in
Figure 6.12(a) is observed for 7;’s.

For the calculation of #; values for N = 4 given in Figures 6.12(a)-(b), we
use the proposed normal approximation for Py, (¢) given in Equation (6.11).
To illustrate the effect of the approximation on the steady-state inventory
position distribution, we simulated the inventory system under (s,S —1,S)
policy to obtain the true m; values. In our simulations, we used a run length
of 20,000 warehouse ordering instances with a warm-up period of 1,000 order
placements, and 10 replications. The maximum percentage deviation of the
approximate 7; values from the true values is found to be 5.14% with an average

of 1.02% deviation. As will be presented in the next chapter, the effect of the
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Figure 6.12:
(s,S —1,8) Policy

Realizations for Steady-State Distribution of [F, under
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approximation on the operating characteristics and cost rate function is negligible.

Figure 6.12(c)-(d) present realizations for the steady-state Distribution of I Py
with different retailer parameters. Figure 6.12(c) demonstrates the behaviour of
7; for different Ay values keeping Ay and \; fixed. As A, decreases, the system
starts to behave as if there is only retailer 2 in the system and =,;’s have a more
smooth structure, ie. for Ay = 1, the distribution of the inventory position is
quite similar to a uniform distribution. Figure 6.12(d) gives different realizations

of m; for different Ay and A, values while keeping Ay/Ay = Ay/A; fixed. We

observe that there is not a particular pattern for the behaviour of ;.

N=2,A‘=15,)\‘=1O,L0=5,SO=1O,50=0 N=2‘A‘=15,)\1=10‘L0=5‘So=100‘50=0

Figure 6.13: Realizations for Fyy,(,) under (s,S —1,S) Policy

Figure 6.13 presents realizations for the waiting time distribution under
(s,S —1,8) policy. The inter-order time has a similar structure to that of (@, S)
policy, ie. the inter-order time of an order of size ¢ has an Erlang, distribution.
Therefore, we observe that the waiting time distribution under (s, S — 1, S) policy
behaves similar to (€, S). In Figure 6.13(a), we present Fyy,(4)(w) for two different
values of ¢. It is observed that for higher values of ¢, P(Wy(q) = 0) for ¢ = 25 is
higher than that of ¢ = 20, which may be attributed to the stochastically larger

inter-order time as in (@), S) policy. Figure 6.13(b) presents different realizations
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for the waiting time distribution when the demand rates are differentiated. For

a larger demand rate, the waiting time of an order is stochastically larger.

Unlike the previous three policies, there are limitations on the retailer order

quantities for an order of size ¢q. Because, if retailer ¢ triggers the order, then

Ri(q) = A; and R;(q) < A; for j # ¢. Then,
Z{ (g—1)!

N
S o= am = A
0<z; <Ay for j#14

Prig(mi) =

N
Z]:l z; =g, x5 = Ag
zi =m;,0< zj; <Ay for 5 £k,

Dkt Z{

} w1l (A=)l oy!

|

rt iy [ Poy(q)
it m;=A;,m; <gq

(g=1)! r1 my

wll...mi!...xN!rl el T r?fN/PQO (q)

if 0<m; <A;,m; <gq



Chapter 7

Numerical Results for Policies in

Class P

In the previous two chapters, we have studied different joint replenishment
policies in a two-echelon, single item inventory system. In this chapter, our aim
is to discuss the computational results regarding these policies. Although the
policies can be analyzed under a single policy class, they each choose a particular
generation mechanism for the opportunities/orders. Therefore, the overall costs
incurred by the inventory system depend greatly on how these opportunities are
generated and used in the system.

In Section 7.1, we present the search algorithm employed and some
computational remarks for each policy. In Section 7.2 we discuss the advantage
of employing the joint replenishment policies under the policy class P instead of
installation stock policies at the retailers. In Section 7.3 and 7.4, we will present
the performance of the policies for the systems where the warehouse acts as a
cross-dock point and it is allowed to hold stock, respectively. We will also include
a discussion on the allocation of cost between the echelons and the difference of
echelon costs across the policies. Section 7.5 will discuss the benefit of allowing
the warehouse to hold stock instead of employing cross-dock under the joint

replenishment policies of interest.

113
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7.1 Computational Issues

Before we proceed with the performance the policies, we will present the search
algorithm and search space we use in order to find the optimal policy parameters
and some computational remarks for each policy. Even under the simple (@, S)
policy for which closed form expressions of operating characteristics are available,
an analytical investigation for unimodality of ACp provided in Equation (5.20)
is not possible since the Lagrangian of fill rate constraints can not be proved
to be convex in the policy parameters (See also Agrawal and Seshadri [1]).
Therefore, to find the optimal policy parameters we employed either an iterative
search algorithm with randomized initial points or an exhaustive search algorithm
over a large solution space, whichever is convenient for each of the four policies
considered. Notice that the search algorithms provided herein cover the general
case where we allow the warehouse to hold stock, ie. optimization over (sq, So)
is also included. For the problems in which the warehouse employs cross-dock,
the steps for the optimization of (sq, So) values are excluded from the algorithm.

Before going on with the details for each policy, we first introduce some
notation that will be frequently used: p; is the expected number of units
demanded from the warehouse in (0,t], ie. p; = F[Do(0,t]] = 352, keo(t, k).
E[Wy] is the expected waiting time of an order placed at the warehouse and is
calculated by E[W,] = 3202, E[Wo(q)]Po,(q). We let |z], denote the smallest
integer larger than or equal to x which is divisible by k. We also define
Q, = [\/2[()\0/(2?:1 rlhl)-‘ and @, = %/2[&'0)\0//10}. As also explained in

Section 4.1, these values correspond to the optimal order quantities of the retailers

and the warehouse under EOQ model with corresponding ordering, holding costs
and demand rates and provide a basis to determine the search space for the
optimal policy parameters (see Pantumsinchai [58]). We also note that the search
space we consider for each of the algorithm represents a very broad range of the

policy parameters.
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7.1.1 (Q,S) Policy

The (Q,S) policy is the simplest of four policies considered and requires only
N + 3 policy parameters, (Q, S1, 53, ..., 5n, S0, 5) to be optimized. Moreover,
as indicated in Section 6.1 and in Cheung and Lee [23], since the size of the order
placed by the retailers is constant, sg and Sy values should be integer multiples
of ), which narrows down the search space considerably. This restriction makes
the exhaustive search algorithm over a large solution space possible. We also
observe that for a given (@), so, So) triplet, it is easy to see that the optimization
problem to find S* can be decomposed into N independent sub-problems in each
of which we solve for S} separately where S} is the minimum value of \S; that
satisfies the required fill rate constraint as also presented in steps 2.1.2.2.1.2.1
and 2.1.2.2.1.3.1 of the algorithm given below.

The search space consists of Q € [Q™",Q™%], s € [s5", sm¢], 5, €
[Sgrin Sgrae] S, € [Smin, §mer] § = 1,2,..., N with increments of Ag = 1,A,, =
Q,As, = ,As, = 1. The boundaries of () are given by

Q™" = max(1,Q,) Q™" = max(2Q,,Q, + 50)

The limits for (sg,5) will be determined based on the value of the other
parameters in the algorithm. The employed search algorithm is provided as
below:

Search Algorithm for (@), S) Policy:
1.1. Set Q,,, Q"", Q™"
2.1. For each @ € [Q™", Q"] by Ag
2.1.1. Compute s§" = [Qulg =5 1L lg and s§7* = [Qulg + 5 (kLo g-
2.1.2. For each s € [s§"*", s§*"] by Ay,
2.1.2.1. Compute 55" = s5 + @ and SF = [Qulg + 10 [k g-
2.1.2.2 For each S € [S§"*", 55°*] by Ag,.
2.1.2.2.1. For each retailer 7 € {1,2,..., N}
2.1.2.2.1.1. Set S = [Xi(L; + E[Wo])].
9.1.2.2.1.2. If 7; < 77
2.1.2.2.1.2.1. Set 57 = min{S, : §; > 5", v; > 7} .
2.1.2.2.1.2.2. Go to step 2.1.2.2.2.
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2.1.2.2.1.3. I v > 77
2.1.2.2.1.3.1. Set S7 = max{9, : 5; < ™", y; > ¥}
2.1.2.2.1.4.3. Go to step 2.1.2.2.2.
2.1.2.2.2. Compute and store AC(Q,S*, sg, S0)

3.1. Set (Q*, s5,55) = argminAC(Q), S*, s9, 50).

No approximations are used to calculate the cost rate function of (@, S) policy.
Therefore, the best cost rate function AC(Q*,S*, s, 55) found as a result of the
algorithm is exact. We also note that over the 2560 experimental instances where
we allow the warehouse to hold stock and whose details will be given in Section
7.3, the search algorithm presented above did not result in best policy parameters
which are on the boundaries of the provided search space. Similarly, for 1920
experimental instances where the warehouse employs cross-dock (See the details

in Section 7.3), the best Q) values were never obtained as Q™" or Q™.

7.1.2 (Q,S,T) Policy

In an N retailer inventory system where the warehouse is allowed to hold
stock, the dimensionality of (Q,S,T) policy is N + 4 with the parameters
(@, 51,52,...,59n,T, 50, 50) to be optimized. Although (@, S,T') policy requires
only one more parameter than that of (@), S) policy, the optimization is not as easy
since none of the operating characteristics such as the steady-state distribution
of the warehouse inventory position and waiting time distribution have a closed
form expression. They can be calculated only numerically as explained in Section
6.2. From computation time point of view, it becomes almost impossible to use an
exhaustive search algorithm to find the optimal policy parameters. Therefore, we
used an iterative search algorithm starting with random initial points. A total
of 50 initial points Q,T,éo and Sy were selected sequentially over the ranges
given below. These ranges are also used in the optimization steps of the iterative

algorithm. Below, we also give Ag, Ar, A, and Ag, values which represent the

50

increments of each policy parameter within the given ranges.

Q € [Qmmv Qm(w]v T e [Tmmv Tm(w]v S0 € [Sgbmv Sguw]v SO € [Sgnmv ngw]
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Q™" = max(1,Q,), Q™" = max(3Q,,Q, + 100), Ag=1

T™"™ = 0.5Q™" [Ny, 1™ =2Q™ [Ny Ar = (Tmee — Tmm)/SO
Sng =Qu—5 LﬂLoJ ;S0 =Quwtd LﬂLoJ » Ay =1

S =50+ 1,50 = Qo + 10 [ pr, |, As, =1

The iterative algorithm, as will be presented below, starts with a randomly
selected quartet (Q, T, éo,go) and ends either when the same policy parameters
are obtained in two consecutive iterations or the number of iterations reaches
3000. One iteration of our iterative search algorithm consists of five consecutive
optimization problems for one of the policy parameters while keeping the other
four parameters constant. We next give the details of the employed iterative
search algorithm for one initial random point. In the algorithm, n;; corresponds
to the iteration number whereas QP, T, SP, s, SE represent the corresponding
parameter values in the previous iteration.
Search Algorithm for (Q),S,7T) Policy:
1.1. Set n;; = 0.
1.2. Select Q,T, §0,§0.
1.3. 8¢t §=0,8"=1,Q? = Q + 1, TP =T + 1,55 = 5o+ 1,57 = S + 1.
2.1. If (ny < 3000) and (Q # QP or T # TP or S # SP or &y # sh or Sy # 57)
2.1.1. Go to step 2.3.
2.2. Tf (ni; > 3000) or (Q = Q” and T = T” and S = SP and & = s5 and Sp = 5%)
2.2.1. Go to step 10.1
2.3. Set QP = Q,S? =S, TP = T, 50 = 4, 5 = Sp.
3.1. For each retailer i € {1,2,..., N}
3.1.1. Set S = [N;(L; + E[Wo))].
3.1.2. If v, < 77
3.1.2.1. Set 5; = min{S, : §; > 5", v; > 7}
3.1.2.2. Go to step 3.2.
3.1.3. v > 77
3.1.3.1. Set §; = max{S, : S; < S, v; > 7}
3.1.3.2. Go to step 3.2.
3.2. Set S = (51, 5%,...,5n)
4.1. Compute Sy = Argmin (s, c(s,41,570%); >7 2»21727...7N}AC(Q, S, T, %, So)
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5.1. Compute §y = :au’glrnin{s()e[s(,),”'nﬁo_1]:%ZW i:l,?,...,N}AC(Q? S, T, 50, 50).
6.1. Compute T' = argmin peppmin pmas)i,>57 i=1,2,. .N}AC(Q, S, T

7.1. Compute Q = argmin (g e[gmin gmasliy, >77 i=1,2,...N}AC(Q, S, T, %0, S).

8.1. Set nyy = ngy + 1.

9.1. Go to step 2.3.

10.1. Set (Q*,8*, T, 55, 55) = (Q,S,T. 3, So).

Observe that, similar to (Q),S) policy, the problem of finding S for given
Q. T,so and Sy values, is decomposed into N independent problems in each of
which $; is assigned to the minimum value of S; that satisfies the target fill
rate. In each of the optimization problem for finding 5”0, S0, T, Q defined in steps
4.1, 5.1, 6.1. and 7.1., respectively, we check the feasibility of the corresponding

parameters, ie. whether the fill rate constraints are satisfied or not.

300

2501

200

Frequency
=
@
S

100

50F

0
-1 -08 -0.6 -04 -02 0 0.2 04 0.6 [ok:] 1

Percentage Deviation

Figure 7.1: Histogram for the Percentage Deviation of the Approximate
AC(Q*,S*, T, s5,5) from simulated AC(Q*, S*, T, s5,5¢) for (Q,S,T) Policy

We also note that at very step of the algorithm where the convolution of the
truncated Erlang distribution is necessary, we use the normal approximation ex-
plained in Section 6.2. Therefore, the best policy parameters, (Q*, S*, T, s5, 55)
are solved using the corresponding approximate cost functions. In order to obtain

the true AC(Q*,S*, 1™, s5,55) we simulated the inventory system with (Q,S,T)
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policy. In our simulations, we used a run length of 20,000 warehouse ordering
instances with a warm-up period of 1,000 order placements, and 10 replications.
During the remaining part of this chapter, we use the cost figures obtained from
the simulations. As a performance of the normal approximation used, we report
that, over the 2560 experimental instances where we allow the warehouse to hold
stock and whose details will be given in Section 7.4, the average percentage
deviation of the approximate cost figures from the simulated ones is 0.06%
whereas the maximum and minimum absolute values are 0.91% and 0.002%,
respectively. The histogram for the percentage deviations is presented in Figure
7.1. We also note that for the experimental instances where the warehouse acts
as a cross-dock facility, the convolutions of truncated Erlang random variables
are not required and hence the cost rate functions obtained are exact.

The iterative search algorithm presented above converged to the same policy
parameter values for all 50 starting points in 2378 of 2560 experimental instances
before hitting the maximum number of iterations. In the remaining 146 of the
remaining 182 instances, we hit the maximum number of iterations for at least
one initial point. We observed that the solution of the algorithm converged to the
same policy parameter values for the other starting points. In 36 experimental
instances, the algorithm exceeded the maximum iteration number for all initial
points.

In the 1920 experimental instances where the warehouse employs cross-dock,
the above algorithm is used excluding steps 4.1. and 5.1. Incidentally, we never
hit the maximum number of iterations in these instances and the solution of the
algorithm converged to the same policy parameters values for all initial points.
Recall that we had a similar numerical observation for (Q,S,T) policy in the

single-location, multi-item context.

7.1.3 (Q,S|T) Policy

Similar to the (@, S, T') policy, the parameters to be optimized under the (@, S|T')
policy are (@, S1,52,...,5n,T, 0, 5) with a total of N 4+ 4 parameters for an
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N retailer inventory system. Although it is easier to calculate the operating
characteristics of the (Q,S|T) policy than that of the (Q,S,T) policy, an
exhaustive search algorithm is also very difficult to implement from computational
point of view. Therefore, we also used an iterative search algorithm with random
initial points to find the optimal policy parameters for the (@, S|T) policy. A
total of 50 initial points, T, Q, 30 and Sy were selected sequentially over the ranges
given below. The increments of each policy parameter within the given ranges,
Ar,Ag, A

s and Ag, are given as follows:

Te [T, Tm],Q € [QU", Q"] s0 € [sg™", 55T, So € [S57", 55
T = Q[ ho, 1™ =20Q, /Ao Ag = (1™ —T™")/30

Qi = [T Ao| QM = [T™ o], Ag = 1

56" = Qu =5 LnLe) s 8¢ = Qu A5 L], As =1

So =504+ 1,50 = Qu + 10 [pr,] . As, =1

As in the (@,S,T) policy, the iterative algorithm starts with randomly
selected T, Q, 40 and Sy values and ends either when the same policy parameters
are obtained in two consecutive iterations or the number of iterations exceeds
3000. One iteration also consists of five consecutive optimization problems for
one of the policy parameters while keeping the other four constant. What is
different from the (Q,S,T) policy is the boundary of the ranges as given above
and a change in the sequence the optimization problems of a single iteration.
The details of the employed iterative search algorithm for a single initial point
are presented below. Recall that this search algorithm is repeated for 50 different
initial points to obtain the best policy parameters. In the algorithm, n; and
QP, 17, SP, sb, SP represent the iteration number and the corresponding parameter
values in the previous iteration, as before.

Search Algorithm for (@), S|7) Policy:

1.1. Set n;; = 0.

1.2. Select T,@,éo,go.

1.3. 8¢t §=0,8" =1, 7" =T+ 1,Q° =Q + 1,55 = 5o+ 1,57 = 5y + 1.

2.1. If (ny < 3000) and (T # T? or Q # QP or S # SP or &y # sh or So # SP)

2.1.1. Go to step 2.3.
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2.2. Tf (ni; > 3000) or (T =T? and Q = Q7 and S = S and &, = s§ and Sp = 5%)

2.2.1. Go to step 10.1
2.3.Set TP =T,QP = (,SP = S .86 = 80,50 = So.

3.1. For each retailer i € {1,2,..., N}
3.1.1. Set S = [N;(L; + E[Wo))].
3.1.2. If 7 < 77
3.1.2.1. Set 5; = min{S, : §; > 5", v; > 7}
3.1.2.2. Go to step 3.2.
3.1.3. v > 77
3.1.3.1. Set §; = max{S, : S; < S, v; > 7}
3.1.3.2. Go to step 3.2.
3.2. Set S = (51, 5%,...,5n)
4.1. Compute Sy = Argmin (s, c(s,41,570%); >7 2»21727...7N}AC(@ S, T, %, So)
5.1. Compute 5o = argming €l So— 1] 77 i=1,2,.. 7N}AC(Q S, T, s0,59).
6.1. Compute Q = argmin (g e[gmin gmasliy, >77 i=1,2,...N}AC(Q, S, T, %0, 50).
7.1. Compute T' = argminreprmin pmasley >0 i=1,2,.. . N}AC(Q, S, T, 3
8.1. Set nyy = ngy + 1.
9.1. Go to step 2.3.
10.1. Set (Q=,S*, 17, 55, 5%) = (0,8, 30, 50).

For the (Q,S|T) policy, what makes it easier to calculate the operating
characteristics is the discrete structure of both Y and ()y. For fixed values of
() and T', once fy(n)an)(y,q) values are calculated for possible values of n, y
and ¢ in an iterative way given in Equation (6.7), they can be used in steps
3.1,4.1 and 5.1 without being recalculated. On the other hand, the unbounded
structure of both Y and ()g is a source of difficulty from computational point
of view. Since fyg,(y,q) can not be calculated for infinitely many values of
y and ¢, we have to truncate the probability mass function at some point
while computing it numerically. The convolutions and all other operating
characteristics are computed based on the truncated fyg,(y,q). Hence, the
truncation point is important for a correct computation of the cost rate function.
While we compute fyg,(y,q) numerically we stop at the values of yoT and go
values if 200 700 frig, (mT, k) > 0.99999 and fy,q,(yoT, g0 + 1) < 107 and
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Iv.00((yo + 1)T, go) < 107° hold. The same arguments also hold true for Py, (q)
and fy (y).

The best policy parameters under the (Q,S,T) policy are found using the
truncated fy.o,(y,q), Po,(¢) and fy(y) values and hence using the approximate
cost rate function. Therefore, to obtain the true best cost rate function, we
simulated the inventory system under the (@), S,T) policy with the parameters
(Q*,8*,T*, s5,5;) found in the iterative search algorithm. In the remaining parts
of this chapter, we use the simulated cost figures which are computed by 20,000
warehouse ordering instances after a warm-up period of 1,000 order placements,
and 10 replications. Since the truncation issue is also valid for the cases where
the warehouse employs cross-dock, we also use the simulated cost figures for these

cases.
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Figure 7.2: Histogram for the Percentage Deviation of the Approximate
AC(Q*,S*,T*, s35,5) from simulated AC(Q*,S*, T, s5,5g) for (), S|T) Policy

To illustrate the performance of the truncation rule explained above, the
average percentage deviation of the approximate cost figures calculated with
truncated fyo,(y,¢) from the simulated ones over a total of 4480 (2560 for the

instances with the warehouse allowed to hold stock and 1920 cases for cross-dock)
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cases is 0.52% whereas the maximum and minimum values are 1.01% and 0.01%,
respectively. The histogram for the percentage deviations is given in Figure 7.2.

We last present a summary of the performance of the iterative search
algorithm presented above. The employed algorithm converged to the same policy
parameter values for all 50 starting points in 2159 of 2560 experimental instances
where the warehouse is allowed to hold stock. In 297 instances, the algorithm
exceeded the maximum number of iterations for at least one initial point. In
the remaining 104 experimental instances, the algorithm exceeded the maximum
iteration number for all initial points. For the 1920 cross-dock instances in which
we omit steps 4.1. and 5.1, the iterative algorithm resulted in the same policy
parameter values in 1799 instances. In the remaining 121 instances, maximum
number of iterations exceeded for some initial points. However, in these instances,

the algorithm converged to the same parameters for the other initial points.

7.1.4 (s,S—-1,S) Policy

In an N retailer inventory system, the dimensionality of (s,S —1,S) policy is
2N +2 with the parameters (sq, $2,...,8n5, 51,52, ..., 5N, S0, 50) to be optimized.
If N > 2, dimensionality of (s,S — 1,S) becomes larger than the dimensionality
of (Q,S,T) or (Q,S|T) policies. Similarly, if N > 1, the dimensionality of
(s,S —1,8) policy is larger than that of (Q,S) policy.

As explained in Section 6.4, the structure of the (s,S — 1, S) policy is different
from the other three policies, the distribution of order quantity is a function of
the individual demand rates and individual order quantities. Moreover, in the
previous policies, keeping the other parameters fixed, the problem of finding
the best (51,5,...,5xy) can be decomposed into N subproblems. However,
for the (s,S —1,8) policy, this decomposition does not work, since keeping all
other parameters constant, when S; changes for some ¢ € [1,2,..., N], Py,(q)
and hence all the remaining operating characteristics change and need to be
recalculated. This complexity makes an exhaustive search algorithm impossible

to be implemented. For the (s,8 — 1,S) policy , we design a search algorithm
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which is a combination of the iterative and the exhaustive search procedures.
The search space in the designed algorithm consists of sq € [s7", s79%], Sy €
[Sgrin Smav] s, € [smin, smar] S g [Smin, Smer] i = 1,2 ..., N with increments

of Ay, = 1,As, = 1,A;, = 1,Ag, = 1. The boundaries of the search space are

given as follows:

S0 = Qu — 5 [ AoLol L S5 = Qu + 5 | Nolo)
Spm = 5o+ 1,50 = @y + 10 Ao Lo

S;(m'n = {\/QI(TZAZ/hZJ — 5 L)\Z(LO —|— LZ)J ,S;maw = {\/QI(TZAZ/hZJ —|— 5 L)\Z(LO —|— LZ)J
Slmm = S; + 1, S;nax == {\/QI(TZAZ/hZJ + 10 L)\Z(LO + LZ)J

Search Algorithm for (s,S —1,S) Policy:
1.1. Set sipin, gmas Gmin Gmaz
2.1. For each so € [s7", s7%%] by A,,
2.1.1. For each Sy € [S7¥", 55%%] by Asg,
2.1.1.1. Set n; = 0.
2.1.1.2. Select § and S.
2.1.1.3. Set S* =S + 1 and s? =&+ 1
2.1.1.4. Tf (ny < 3000) and (S # S” or § # sP)
2.1.1.4.1. Go to step 2.1.1.6.
2.1.1.5. Tf (ny > 3000) or (S = S” and § = s?)
2.1.1.5.1. Go to step 2.1.1.11.
2.1.1.6. Set SP = §,s? = §
2.1.1.7. For each item 7 € {1,2,..., N}
AC(8,8, %0, 50) : s € [s7", 5 — 1],
v, >7; for j=1,2,...,N }
2.1.1.8. For each item 7 € {1,2,..., N}
AC(8,8, 50, 80) : i € [8 + 1, §1mas],
v, >7; for j=1,2,...,N }

2.1.1.7.1. Set §; = argming,

2.1.1.8.1. Set §; = argming,

2.1.1.9. Set n;; = ny; + 1.
2.1.1.10. Go to step 2.1.1.4.
2.1.1.11. Set S* = S,s* = 8.
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2.1.1.12. Compute and store AC(s*,S*, sg, 50)
3.1. Set (s*,8%,s§,93) = argmin, ¢ AC(s*,S*, s9,50)

In the algorithm presented above, notice that we use an iterative procedure

50,50

to find the best s and S values for fixed (so, So) and use exhaustive search to find
the best (sg, S0) values. We should also mention that, during the iterative part
of the algorithm, in order to find the best §; or 53, we also consider the total
cost rate in the system in addition to fill rates of all the retailers. Therefore, the
computational requirements for (s, S — 1, S) policy are much larger than those of
the other three policies.

At every step of the algorithm where the average cost rate function and fill
rate of the retailers are calculated, if the number of retailers, N, is greater than
2, we use the normal approximation explained in Section 6.4 for the distribution
of the order quantity, o, and the retailer order quantities, R;(¢). Therefore,
in the 1920 cases where we allow the warehouse to hold stock in an N retailer
inventory system with N > 2 and 1440 cases where the warehouse acts as a
cross-docking facility for N > 2, the best policy parameters are computed using
the approximate cost rate function. The corresponding true cost rate functions
which will be used in the subsequent sections are calculated via a simulation
model. The simulation model is run for 20,000 warehouse orders after a warm-up
period of 1,000 order placements, and 10 replications.

The histogram of the percentage deviations of the approximate cost function
from the simulated ones is presented in Figure 7.3. The average percentage
deviation is 0.58 over a total of 3360 instances and the minimum and maximum
absolute values are 0.03 and 1.29, respectively.

Over the 2560 instances where we allow the warehouse to hold stock, the
best so and Sy values were never found to be on the boundary of the ranges
presented above and we never hit the maximum iteration number in the iterative
part of the search algorithm. Similarly, for the cross-dock cases in which the
optimization steps over the (sg,Sg) values are not carried out, the maximum

number of iterations is never exceeded.
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Figure 7.3: Histogram for the Percentage Deviation of the Approximate
AC(s*, 8%, s5,.55) from simulated AC(s*,S*, s, S5) for (s,S —1,8) Policy

7.2 Advantage of Joint Replenishment Policy

in a Two-echelon Inventory System

In this section, we will present some sample results to illustrate the advantage
of using various policies under the policy class P instead of installation stock
policies at the retailers.

We first introduce some notation. We let AC} denote the optimal cost rate of
a policy P within the policy class P. Also, let AC(s,5)* be the optimal cost rate
of the model where the retailers employ independent (s, 5) policies. As a measure
of the performance of the policy P over the installation stock (s,.S) policy, we
define A%Eﬁ’s) as follows:

AC(s,S) — AC:
(s,8) ) P
Afp™ = AC (s, 5)*

x 100

By definition, a positive A%Eﬁ’s) value indicates that the joint replenishment
policy P within the class P performs better than the independent (s, S) policy

of the retailers.



Chapter 7. Numerical Results for Policies in Class P 127

We should also mention that an exact analytical model is not available for the
installation stock policy with fixed ordering costs at the warehouse and fill rate
constraints at the retailers. Therefore, in order to obtain the corresponding best
cost rate function for installation stock policy, we have constructed a simulation
model and simulated the inventory system operating under independent (s,.5)
policies at the retailers over a moderate range of policy parameters. For our
simulations, we used a run length of 10000 warehouse ordering instances after
a warm-up period of 2000 order placements and 10 replications to obtain the
average cost rate function of a selected policy parameter. AC(s,S)* is then
found by selecting the minimum of simulated cost rate functions.

In Figures 7.4(a) and (b), we present A%EDS’S) values with varying number of
retailers for Lo =1 and Ly = 5, respectively, where the other system parameters
are taken as Ko = 0, K = 100,hg = 1,h; = 1.2\, =5, L; = 1,7 = 095,72 =
1,2,..., N. We should mention that in all of the cases presented in Figures 7.4(a)
and (b), the warehouse acts as a cross-dock facility. Therefore, the effective
lead time of an order for retailer ¢ is Lo + L; (See the details of a cross-dock
facility in Section 7.3). The A%gj’s) values presented in Figure 7.4 illustrate
that if the retailers use independent replenishments instead of employing joint
replenishment decisions, the system wide costs may increase quite significantly,
ie. the improvements achieved by the joint replenishment decisions may go
up to 33.01% and 28.19% for Lo = 1 and Loy = 5, respectively. In addition,
we observe an increasing behavior of A%Eﬁ”s) values with increasing N for all
policies within the class P. This is to be expected because as we increase N,
keeping the demand rate of each retailer fixed, the average number of orders
placed per time increase and hence the savings of ordering costs obtained from
the joint replenishment decisions increase. Also notice that the advantage of
using joint replenishment policies decreases as Lg increases. This may possibly
result from a disadvantage of joint replenishment policies in that the retailers
lose their flexibility in ordering decisions due to joint replenishment and hence
the response to an increase in lead time and/or lead time uncertainty is more

effective with independent replenishments. These results are consistent with the
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results presented in Atkins and Iyogun [4] and Viswanathan [79] for the joint

replenishment problem in a single-location, multi-item setting.

L,=1,K =0,K=100,h =1,n=1.2 A =5 =1,0.=0.95 L =5,K =0,K=100,n =1,h=1.2,A =5, =1,0.=0.95
0 0 0 i i i i 0 0 0 i i i i
34 T T 30

2%

N N
(a) (b)

Figure 7.4: Comparison of joint replenishment policies with installation stock
policies - Ko =0

Figures 7.5(a) and (b) illustrate the advantage of using a policy from class P
for the cases 7, = 0.95 and 7, = 0.99, respectively. The other parameters in the
system are taken as Lo = 1, Ky = 200, K = 100,k = 1,h; = 1.2, )\, =5, L; =
L,i=1,2,...,N. The cases of Ky =200 and Ky = 0 presented in Figures 7.5(a)
and 7.4(a), respectively indicate that the advantage of using joint replenishment
generally increases by including an ordering cost at the warehouse. This may be
due to the fact that the ordering cost pushes stock and a batch ordering policy
at the warehouse. The stock at the warehouse decreases the effective lead time of
an order (in case so > 0) and hence the advantage of using joint replenishments
at the retailers increase due to the explanation given above. As we increase the
required fill rate of the retailers, 7,, we observe that A%Eﬁ’s) values decrease. This
may also be explained by the reduced flexibility of the retailers that employ joint
replenishment. On the other hand, the decrease in A%Eﬁ’s) values is smaller for

(@,S,T) and (s,S —1,8) policies. (Q,S,T) policy is a proactive policy which
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is demonstrated to perform better for larger target fill rates in Table 4.10 in a
single-location and multi-item setting. The (s,S — 1,S) policy bases the ordering
decisions on the individual inventory positions and hence it can attain the higher

fill rate values easier than (Q,S) and (@, S|T') policies.

L,=5,K =200,K=100,h =1,h=1.2,\=5,L=1,0.=0.95 L =1, =200,K=100,h =1,h=1.2,\=5,L.=1,0.=0.99
1 0 0 i i i i 0 0 0 i i i i

26

24r
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=+ Q.8
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18
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— (5,519

14 L L 125 L L
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Figure 7.5: Comparison of joint replenishment policies with installation stock
policies - Ky = 200

Although joint replenishment policies provide significant cost savings over
independent replenishments, Figures 7.4-7.5 illustrate that there is not a single
policy within the class P that dominates the other policies for all system and
cost parameters. The performance of a policy P differs depending on the system
and cost parameters. In the next two sections, we investigate the performance of
policies with respect to each other in detail. In particular, we attempt to identify
the operational environments in which it is beneficial to implement a specific

policy within the class P.
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7.3 Comparison of Policies within Class P

with Warehouse Employing Cross-Dock

In this section, we examine the performance of the policies within the class P
for the special case where the warehouse acts as a cross-dock point. In cross-
docking systems, the warehouse functions as a transit point which is in charge of
ordering, receiving, unloading, allocating and dispatching shipments. Inventory
spends very little time at the warehouse so we assume that the items are shipped
to the retailers as soon as they arrive at the warehouse with no reallocation, i.e.
the warehouse does not hold any inventory and inventory is only held at the
retailers.

In the multi-location, single-item model constructed in Chapter 5, if the
warehouse employs cross-dock, it operates with (sg,So) = (—1,0) and the
warehouse places an order at the outside supplier for every retailer order and
hence the effective lead time of an order for retailer ¢ is given by Lo+ L;. In other
words, as also conjectured in Chapter 5, the single-item, two-echelon inventory
system where the warehouse acts as a cross-dock point with no reallocation can
be represented by the single-location, multi-item model (See also Figure 7.6) in
which the lead time for retailer ¢ is given by Lo + L; and the fixed ordering cost
in the system is Ky + K. The numerical comparison provided in this section is
similar to the one presented in Chapter 4 except that the average cost rates of the
policies are minimized subject to modified fill rate constraints instead of explicit
backorder costs.

For policy comparisons, we let AC'H denote the optimal cost rate of a policy
P within class P. As a measure of the performance of the policy P, we use the

percentage deviation Ap% defined as follows:

ACy — AC™
Ap% = PAT x 100 (7.1)
where AC™ is the cost rate of the best policy within the policy class P, ie. AC* =
minpep ACH. A zero entry for Ap%, by definition, means that the policy P gives

the minimum cost rate among the four policies considered. Similarly, a positive,
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LotLy

LO+L1

LotLy Lot L.

Warehouse (cross-dock)

g ENE)
Retailers V
1 2 N-1 N

Single-item, two echelon inventory system Single location, multi-item inventory system
with warehouse employing cross-dock
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Figure 7.6: [lllustration of the analogy of the single-location, multi-item
inventory system and the single-item, two-echelon inventory system with cross-

dock

lower value of Ap% indicates that the policy P achieves a lower cost difference
from the best policy within the class P.

Before we proceed with individual comparisons, we first present a summary of
our findings over all 1920 experiment instances in which the warehouse is assumed
to employ cross-dock. We observed that the (@, S,T) policy is the best policy of
four in 1178 out of 1920 instances with an average and maximum improvement of
0.45% and 1.97% over the next best policy in these instances. In the remaining
742 cases, (Q,S|T) policy is the best policy in 586 and (s,S — 1,S) policy is
the best in 156 instances. Obviously, (@), S) policy is never the best one. In
the 586 cases where (Q,S|T) policy is the best, the average deviation of the
next best policy from (Q,S|T) is 0.34% with a maximum deviation of 1.53%.
The corresponding figures for (s,S — 1,S) policy are 0.23% and 1.21% over the
156 instances where (s,S —1,S) is the best. We also report the average Ap%
values over 1920 experimental instances as 0.23%, 0.98 %, 2.01% and 3.48% for
(@Q,S,T),(Q,S|T), (Q,S) and (s,S — 1,S) policies, respectively.

Next, we discuss our findings in detail. The test bed we are considering
consists of N € {2,4,8,16} identical retailers with identical cost and system
parameters. We let K € {25,50,100,250}, Ko € {0, K,2K, 4K}, Lo € {1,5},
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Li=L=1,7,=7¢€1{0.950.99}, \;, = X € {0.1,1,5,10,20}, h; = h € {1,1.2}.
The system and cost parameters presented here provide a total of 2560 instances.
Notice that these experimental points represent a wide range of parameters from
very low ordering and holding costs as well as demand rates to very high values.

Recall that the two-echelon inventory system with the warehouse employing
cross-dock acts like a single-location, multi-item inventory system with fixed
ordering cost Ky + K. With Ky values assumed above, we have Ky + K €
{K,2K,3K,5K}. 1If the same Koy + K value is generated more than once by
different K values, we consider it as one instance and that’s why we have a total
of 1920 experimental instances for cross-dock case.

In Tables 7.1-7.2, we tabulate a total of 64 instances from the 1920 instances
which are representative to illustrate the general behavior of the policies with
varying cost and demand parameters where we let Ly = 5, Ko = K. The (Q,S,T)
policy performs better than the other three policies in 50 out of 64 instances. For
the remaining 14 experiment instances, it is dominated in 8 cases by (@, S|T),
and 6 times by (s,S —1,8) policy. Over the 50 instances where (Q),S,T) is
the best policy among four, the average improvement that it attains over the
next best policy is 0.61% with a maximum improvement of 1.13%. Over the 8
instances where (@), S|T') is the best policy, the average improvement over the next
best policy is 0.16% with a maximum improvement of 0.24%. The corresponding
average and maximum improvements for (s, S — 1, S) policy are 0.12% and 0.19%,
respectively.

The figures presented in Tables 7.1-7.2 and other untabulated results illustrate
that time-based policies, namely the (@), S,T) and the (Q,S|T") perform better
with smaller demand rates when compared with the quantity based (Q,S) and
(s,S —1,8) policies. Due to the integer values of the parameters with quantity
based policies, the optimal parameters of ((),S) and (s,S — 1,S) may be quite
insensitive to the system parameters. Since the lead time demand is low, a unit
change in (s,.5) and/or () values may result in significant cost changes. On the
other hand, the continuous time dimension of (Q,S,T) and (@, S|T) policies

usually captures the cost/system parameters and this increases the performance
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Problem Parameters Ap%
A K h| N AC* (@,5,T) (Q,S|T) (Q,S) (s,8S—-1,8)
1 50 1 2 27.19 0.00 0.72 2.55 2.76
4 49.23 0.00 0.63 2.02 2.14
8 95.01 0.00 0.38 1.75 1.58
16 187.87 0.14 0.00 1.23 1.45
1 50 1.2 2 33.14 0.00 0.99 2.81 2.88
4 60.68 0.00 0.81 2.23 2.29
8 126.61 0.00 0.55 1.82 1.76
16 225.01 0.07 0.00 1.43 1.65
1 100 1 2 45.38 0.00 0.54 2.21 2.12
4 88.76 0.00 0.38 1.82 1.75
8 172.34 0.00 0.21 1.56 1.23
16 334.21 0.22 0.00 1.02 0.93
1 100 1.2 2 59.19 0.00 0.68 2.43 2.21
4 115.81 0.00 0.59 2.01 1.84
8 245.93 0.00 0.52 1.75 1.45
16 454.19 0.13 0.00 1.22 1.14
10 50 1 2 247.43 0.00 0.68 1.85 2.52
4 457.84 0.00 0.57 1.47 1.95
8 845.59 0.00 0.32 1.31 1.47
16 1702.10 0.18 0.00 0.92 1.05
10 50 1.2 2 300.91 0.00 0.91 2.01 2.68
4 552.79 0.00 0.72 1.64 2.09
8 1140.76 0.00 0.48 1.28 1.59
16 2013.84 0.12 0.00 0.99 1.48
10 100 1 2 399.80 0.00 0.51 1.52 1.93
4 780.20 0.00 0.35 1.29 1.61
8 1521.76 0.00 0.19 1.03 1.09
16 2927.68 0.24 0.00 0.71 0.85
10 100 1.2 2 524.42 0.00 0.62 1.72 2.02
4 1008.71 0.00 0.54 1.43 1.63
8 2208.45 0.00 0.37 1.31 1.29
16 4019.58 0.17 0.00 0.85 0.98

Table 7.1: Comparison of policies with the warehouse employing cross-dock -

7 =0.95

of these policies with respect to the others for low demand rates.

The (@,S,T) policy best performs with low ordering cost, lower demand
rates and higher holding costs. The proactive behaviour of the (Q,S,T') policy
increases its performance for higher fill rate constraints. These observations for
the (), S, T') policy are consistent with those presented in Chapter 4, as expected.
The performance of the (Q,S|T') policy is generally better with higher ordering
cost and larger values of N. In other words, A(Q,S|T)% values decreases with
increasing K and/or N. The periodic structure increases the performance of the
(@Q,S|T) policy for lower target fill rates. We also observe that the instances

where (s,S — 1,S) policy dominates the other policies usually correspond to the
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Problem Parameters Ap%
A K h| N AC* (@,5,T) (Q,S|T) (Q,S) (s,8S—-1,8)
1 50 1 2 34.80 0.00 0.98 2.73 1.48
4 64.49 0.00 0.76 2.19 1.04
8 125.41 0.00 0.45 1.88 0.67
16 251.75 0.09 0.11 1.46 0.00
1 50 1.2 2 40.76 0.00 1.13 2.89 1.56
4 79.49 0.00 0.92 2.43 1.24
8 158.26 0.00 0.65 2.04 1.03
16 274.51 0.00 0.08 1.55 0.45
1 100 1 2 58.09 0.00 0.71 2.35 1.19
4 118.05 0.00 0.58 1.98 0.97
8 225.77 0.00 0.35 1.77 0.54
16 451.18 0.14 0.19 1.32 0.00
1 100 1.2 2 7517 0.00 0.83 2.54 1.27
4 152.87 0.00 0.70 2.19 1.11
8 334.46 0.00 0.59 1.87 0.77
16 631.32 0.00 0.37 1.65 0.33
10 50 1 2 304.34 0.00 0.86 2.07 1.32
4 572.30 0.00 0.67 1.67 0.99
8 1082.35 0.00 0.40 1.49 0.63
16 2246.77 0.17 0.10 1.09 0.00
10 50 1.2 2 382.16 0.00 0.99 2.19 1.41
4 729.69 0.00 0.81 1.72 1.14
8 1551.43 0.00 0.57 1.38 0.95
16 2799.24 0.12 0.42 1.11 0.00
10 100 1 2 507.74 0.00 0.62 1.72 1.09
4 1029.86 0.00 0.51 1.45 0.89
8 2069.60 0.00 0.31 1.19 0.49
16 4069.47 0.24 0.07 0.83 0.00
10 100 1.2 2 666.02 0.00 0.73 1.91 1.19
4 1331.49 0.00 0.62 1.55 1.03
8 2716.40 0.00 0.52 1.43 0.75
16 5145.06 0.16 0.03 0.92 0.00

Table 7.2: Comparison of policies with the warehouse employing cross-dock -

7 =0.99

cases with larger NV, higher fill rate constraints and higher ordering cost. The
individual reorder levels for the retailers under (s, S — 1, S) policy enable to cope
with the higher fill rates better especially for larger demand rates, ie. the integer
values of the policy parameters do not eliminate the advantage of reorder levels.

Also notice that the performance of the policies become alike as the number
of retailers, IV increases. We have a similar observation with increasing demand
rates, e.g. Ap% values decrease with increasing N and .

In order to give a broader view of the performance of the policies, we next
present two tables illustrating the summary for the comparison of the policies.

In Table 7.3, we provide a pairwise comparison across the instances where one
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policy dominates the other.

Policy | Dimensionality | (Q,S,T) (@, 8]T) (@,8) (s, S)
@.S,1) N+2 152 (1246) 2.88 (1920) 3. 27 (1481)
(Q,S|T) N+2 0.61 (674) - 1.85(1920)  2.01 (1075)

(@,8S) N+1 (0) (0) - 1.19 (1415)

(s,S—1,5) 2N 0.96 (439)  1.25 (845)  1.03 (505) :

Table 7.3: The summary comparison of policies across pairwise dominated
instances - cross-dock case

FEach element (the entry corresponding to the ith row and jth column) of
the table reports two entities: the average improvement in the expected cost
rate achieved by policy P; over policy P; in the experimental instances where
P; dominates P;; and, the number of such instances in parentheses. The first
row of the table gives the performance of the proposed policy in comparison with
the other policies. For example, we see that (Q),S,T) dominates (@, S|T") policy
in 1246 out of 1920 considered instances; and, the average improvement in such
instances achieved over (Q,S|T') policy is 1.52%. Similarly, (¢, S,T') policy is
better than (s,S —1,S) policy with an average improvement of 3.27% in 1481
out of 1920 considered instances.

In Table 7.4, we provide an overall comparison of the average performance
of the policies. In the same format as in Table 7.3, we present the average
percentage change in the expected total cost rate under policy P; versus P; as
the entry corresponding to ¢th row jth column of the table. Differently from Table
7.3, we consider all of the 1920 experiment instances, where P, may or may not
dominate P;. A positive entry indicates that policy P; provides that much average
percentage improvement in the cost rate over P;. A negative entry indicates that
the performance of P, is worse by that much, on average, in comparison with the
performance of policy P;.

What is significant about the performance of the policies is that (Q,S,T)
policy is the only one providing cost improvements over the other policies over
a very wide range of parameter set. (@), S|T') policy is the second if we rank the
policies with respect to the average performance presented in Table 7.4. On the

average, (@, S|T') policy dominates (@), S) and (s, S — 1, S) policies and is inferior
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Policy | Dimensionality | (@,S,7) (@,S|T) (@,S) (s,S—1,8)
@,S,1) N+2 - 138 2.88 311
(Q,S|T) N+2 1.7 ~ 185 1.79

(Q,S) N+1 954 157 ] 1.03

(s,S—1,5) 9N 9269 155  -0.92 ]

Table 7.4: The overall average performance of policies across all 1920 instances
- cross-dock case

only when compared with (@,S,T') policy. Although there are instances where
(s,S —1,S) dominates the other policies, ie. when the ordering cost and/or
demand rate and/or target fill rates are high as presented in Table 7.2, the average
performance is the worst among the considered policies.

In this study, we assume that the system is centralized and hence our objective
is to minimize the total cost rate in the system, rather than dealing with the
individual cost of the warehouse and retailers, separately. Tables 7.3 and 7.4
indicate that the performance of (Q),S,T') policy is better than the other policies
when the objective is to minimize the total cost rate in the system. On the
other hand, if we considered a decentralized system, the allocation of the costs
among the echelons and the difference of echelon costs would be two main issues
to be addressed. Moreover, it is important to distinguish the savings/losses of
the echelons when the retailers change the policy that they use. In order to gain
insight on these issues, we next give summaries of the allocation of the costs
among the echelons.

Recall that when the warehouse employs cross-dock, the cost components at
the warehouse are the ordering cost incurred for every warehouse order (or for
every retailer order) and the holding cost of the items during their transportation
from the outside supplier to the warehouse. Therefore, the cost of the warehouse,
Cw is given by (Ko + hoE[Qo|Lo)/E[Y] = Ko/E[Y] 4+ horoLo. Over all 1920
instances where the warehouse employs cross-dock, the average of the proportion
of the cost incurred by the warehouse, Cy;, /JAC% is the smallest for (s,S —1,8)
policy with 30% and the highest for (@, S, T') policy with 39%. The corresponding
average values are 33% and 36% for (@), S) and (@, S|T') policies, respectively.

Since the warehouse incurs the maximum proportion of costs under (@), S, T')
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policy, it seems that when the warehouse acts as a cross-dock point, (Q,S,T)
is a policy which is designed for the benefit of the retailers as well as the
inventory system itself. Similarly, it is the warehouse which benefits most from
implementing (s,S —1,S) policy under cross-dock. Recall that (s,S —1,8)

performs, on the average, the worst when compared with the other policies.

Policy (@,8,7) (@, 8|T) (@,8) (s,8-1,8)
@.S.7) 072 (492) 101 (197)  -1.58 (239)
(Q,S|T) | 0.83 (1428) © 049 (724)  -0.12 (819)

(@,8) | 1.13 (1723) 0.53 (1196) - -0.09 (902)

(5,S—1,) | 1.64 (1681) 0.16 (1101) 0.11 (1018) -

Table 7.5: The overall average performance of the warehouse - cross-dock case

Policy | (Q,8,7)  (Q,S[T) (QS) (s,8-158)
(@S, T) — 319 (1793) 5.26 (1920)  5.81 (1764)
(Q,S|T) | -3.08 (127) - 3.62 (1578) -2.44 (1232)

(Q,S) | -5.17(0) -3.49 (342) - 1.68 (1053)

(s,S—1,8) | -5.60 (156)  2.61 (688) -1.55 (867) -

Table 7.6: The overall average performance of the retailer - cross-dock case

Table 7.5 (7.6) presents the comparison of the warehouse (retailer) costs across
the policies over all 1920 experimental instances. The entries in the ¢th row and
jth column of the table present the average percentage change in the expected
warehouse (retailer) costs under policy P; versus P; and the number of instances
in which policy P; dominates policy P; in terms of warehouse (retailer) costs.
Although the average proportion of costs incurred by the warehouse is achieved
by (s,8 — 1,S) policy, the average performance of the warehouse is quite close
to each other for (@, S|T) and (s,S — 1, S) policies.

We should mention that the performance of the policies is more distinguishable
in terms of the retailer costs. When we include the warehouse costs, the
percentage deviation of the cost rates of the policies decreases significantly and
hence the performance of the policies becomes alike. When the warehouse
employs cross-dock, the ((),S) and (s,S —1,S) are two policies in which the
warehouse benefits much, ie. the entries corresponding to these two policies are

in favor of them.
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In the next section, we will investigate the performance of the policies for the
cases where the warehouse is allowed to hold stock and the differentiation of the

echelon costs will become more clear.

7.4 Comparison of Policies within Class P

with Warehouse Allowed to Hold Stock

In the previous section, we examine the performance of the joint replenishment
policies studied within the policy class P for the special case of cross-dock. In this
section, we extend the numerical study to the general case where the warehouse is
allowed to hold stock. Unlike the special case of cross-dock, the optimization over
(80,.50) values is carried out and the optimal policy parameters for each of the four
policies within the class P are computed via the search algorithms presented in
Section 7.1. As in the case of cross-dock, we use Ap% as a performance measure
of the policy P, which is given in Equation (7.1).

In this part of the numerical study, our test bed is mainly composed
of the experimental instances with N € {2,4,8 16} retailers with identical
cost, demand and lead time parameters. In our experimental set, we vary
K € {25,50,100,250}, K, € {0,K,2K,4K}, Lo € {1,5}, L, = L = 1,
¥, =7 € {095,099}, \; = X € {0.1,1,5,10,20}, h; = h € {1,1.2} and
consider a total of 2560 experimental instances. Notice that the experimental
points represent a wide range of retailer /warehouse cost and demand parameters.

Recall that, among the considered policies, (@), S) policy in Cheung and Lee
[23] is the only one which has been previously studied in a two-echelon inventory
system. We should also mention that the numerical study provided there is quite
restrictive, e.g. the size of the orders are assumed to be fixed and hence the
ordering cost of the retailers is not considered explicitly in their model and only
very low demand rates are considered. Therefore, the numerical study provided
herein also presents a detailed performance analysis of the (@), S) policy over a

wide range of parameter set for the first time in the literature.
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Before we go on with the details of our numerical study, we first give a
summary of our numerical findings over all 2560 experimental instances in which
the warehouse is allowed to hold stock. We observe that the (Q,S,T) policy
is the best policy among four in 1928 out of 2560 instances. Over these 1928
instances, the average improvement of (Q,S,T') policy over the next best policy
is 0.51%. The maximum and minimum improvements over the next best policy
in these instances is 1.74% and 0.003%, respectively.

(Q,S|T) policy is the best one in all of the remaining 632 experimental
instances where ((Q),S,T') is not the best. The average improvement of (@), S|7')
over the next best policy is 0.18% with maximum and minimum values of 1.32%
and 0.001%, respectively over these 636 instances. Incidentally, among the
considered instances (s,S — 1,S) policy is never the best one.

The average Ap % values over 2560 experimental instances are found as 0.11%,
0.35%, 1.29% and 1.59% for (Q),S,T), (Q,S|T), (Q,S) and (s,S — 1,S) policies,
respectively. The corresponding maximum Ap% values are found as 0.28%,
1.88%, 2.17% and 2.92%. The summary of our findings indicates that the Ap%
values for the case where the warehouse is allowed to hold stock are generally
much smaller than the corresponding Ap% values for the cross-dock cases.

This observation is also illustrated in Tables 7.7- 7.8 in which we present
the results of a subset of 64 representative instances. In order to compare the
performance of the joint replenishment policies where the warehouse is allowed
to hold stock with that of cross-dock case, in Tables 7.7- 7.8, we use the same
cost and system parameters as in Tables 7.1 - 7.2, respectively.

In Tables 7.7-7.8, we present the results of 64 representative instances with 7 =
0.95 and 0.99, respectively, for the cases with A € {1,10}, N € {2,4,8,16},h €
{1,1.2}, K € {50,100}, Ko = K, Lo = 5. The (Q,S,T) policy is the best among
four in 54 of these instances with an average and maximum improvement of 0.48%
and 0.94% over the next best policy. (@, S|T') policy is the best in the remaining
10 instances. Observe that these 10 instances all correspond to a target fill rate
of ¥ = 0.95. Over these instances, the average and maximum improvement over

the next best policy is 0.14% and 0.22%, respectively.
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Problem Parameters Ap%
A K| AN AC* (@,5,T) (Q,S|T) (Q,S) (s,8S—-1,8)
1 50 1 2 26.43 0.00 0.60 1.73 2.37
4 47.41 0.00 0.52 1.37 1.84
8 90.46 0.00 0.32 1.19 1.36
16 176.32 0.12 0.00 0.83 1.24
1 50 1.2 2 32.08 0.00 0.82 1.91 2.48
4 58.19 0.00 0.67 1.52 1.97
8 120.06 0.00 0.46 1.23 1.50
16 209.69 0.07 0.00 0.97 1.42
1 100 1 2 44.55 0.00 0.45 1.50 1.82
4 88.04 0.00 0.32 1.24 1.51
8 169.08 0.00 0.18 1.05 1.06
16 323.73 0.18 0.00 0.68 0.81
1 100 1.2 2 58.13 0.00 0.56 1.65 1.90
4 112.69 0.00 0.49 1.37 1.58
8 236.59 0.00 0.43 1.19 1.25
16 431.53 0.12 0.00 0.83 0.98
10 50 1 2 237.86 0.00 0.56 1.26 217
4 436.05 0.00 0.47 1.00 1.68
8 796.29 0.00 0.26 0.88 1.26
16 1582.75 0.18 0.00 0.62 0.90
10 50 1.2 2 288.08 0.00 0.76 1.37 2.30
4 524.30 0.00 0.60 1.12 1.80
8 1070.33 0.00 0.40 0.87 1.37
16 1856.05 0.11 0.00 0.67 1.27
10 100 1 2 395.86 0.00 0.42 1.03 1.66
4 765.36 0.00 0.29 0.88 1.38
8 1475.92 0.18 0.00 0.70 0.94
16 2804.29 0.22 0.00 0.48 0.73
10 100 1.2 2 510.86 0.00 0.51 117 1.74
4 973.51 0.00 0.28 0.97 1.40
8 2108.80 0.10 0.00 0.89 1.11
16 3785.91 0.17 0.00 0.59 0.86

Table 7.7: Comparison of policies with the warehouse allowed to hold stock -
Ko=K,7=10.95

The figures presented in Tables 7.7-7.8 also indicate that the (Q,S,T') policy
generally performs better for higher target fill rates of the retailers when the
number of retailers and/or the ordering cost of the retailers are smaller. As
we can also observe from the untabulated results, the experimental instances at
which the (@), S,T') policy is not the best policy usually correspond to the cases
where N is large. In these instances, A s 1) values are usually smaller when K
and h values are smaller.

As also tabulated in Tables 7.7-7.8 and expressed above, the performance of
the (@, S|T') policy is better for lower target fill rates, which is also valid in the
untabulated results. Over the 1280 instances of ¥ = 0.99, the (Q,S|T") policy
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Problem Parameters Ap%
A K| AN AC* (@,5,T) (Q,S|T) (Q,S) (s,8S—-1,8)
1 50 1 2 33.19 0.00 0.87 1.99 1.27
4 60.93 0.00 0.68 1.60 0.89
8 117.14 0.00 0.40 1.38 0.58
16 232.22 0.00 0.10 1.08 0.29
1 50 1.2 2 38.71 0.00 0.94 2.11 1.34
4 74.78 0.00 0.82 1.77 1.07
8 147.29 0.00 0.58 1.49 0.89
16 250.96 0.00 0.43 1.13 0.39
1 100 1 2 55.94 0.00 0.63 1.72 1.02
4 114.87 0.00 0.52 1.45 0.83
8 217.19 0.00 0.31 1.29 0.46
16 428.67 0.00 0.17 0.96 0.35
1 100 1.2 2 72.43 0.00 0.74 1.85 1.09
4 145.92 0.00 0.62 1.60 0.95
8 315.65 0.00 0.53 1.37 0.66
16 588.43 0.00 0.33 1.20 0.28
10 50 1 2 287.00 0.00 0.77 1.51 1.13
4 534.71 0.00 0.60 1.22 0.85
8 999.81 0.00 0.35 1.09 0.54
16 2049.70 0.00 0.09 0.80 0.41
10 50 1.2 2 358.91 0.00 0.89 1.60 1.21
4 678.92 0.00 0.72 1.26 0.98
8 1427.99 0.00 0.51 1.01 0.82
16 2530.90 0.00 0.38 0.81 0.73
10 100 1 2 493.19 0.00 0.56 1.26 0.94
4 991.08 0.00 0.45 1.06 0.77
8 1969.11 0.00 0.27 0.87 0.42
16 3823.91 0.00 0.17 0.61 0.19
10 100 1.2 2 636.46 0.00 0.65 1.39 1.02
4 1260.62 0.00 0.55 1.13 0.89
8 2542.70 0.00 0.46 1.04 0.65
16 4756.38 0.00 0.03 0.67 0.45

Table 7.8: Comparison of policies with the warehouse allowed to hold stock -
Ko=K,7=10.99

is never the best and the average A si1)% values over these 1280 instances is
0.74 %. We also observe that A s 1) values are generally decreasing in N and A
whereas they are generally increasing in K and h. We observe a similar behaviour
for A(s,S-l,S)% values, except that they are decreasing in 7.

In order to illustrate the behaviour of the policies with respect to larger values
of Ky, we also present 32 illustrative intances in Table 7.9 where Ky = 2K and
7 =0.95 (Q,S,T) policy performs the best in 24 of 32 instances with an average
improvement of 0.50% over the next best policy. Over the remaining 8 instances,
the improvement that (@), S|T') policy attains over the second best policy is 0.12
%. Therefore, the performance of (Q,S|T") policy decreases whereas A s 1)%
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values usually decrease with increasing K.

Problem Parameters Ap%
A K| B[N AC* (@,8,T) (Q,S|T) (Q,S) (s,8S—1,8)
1 50 1 2 31.19 0.00 0.68 1.55 2.53
4 55.94 0.00 0.59 1.22 1.94
8 106.74 0.00 0.36 1.09 1.44
16 208.45 0.11 0.00 0.74 1.35
1 50 1.2 2 37.85 0.00 0.93 1.72 2.61
4 68.67 0.00 0.76 1.31 2.08
8 141.74 0.00 0.52 1.09 1.59
16 247.43 0.04 0.00 0.86 1.48
1 100 1 2 52.57 0.00 0.51 1.36 1.90
4 103.89 0.00 0.36 1.12 1.58
8 199.43 0.00 0.20 0.96 1.11
16 381.95 0.16 0.00 0.61 0.84
1 100 1.2 2 68.60 0.00 0.64 1.49 1.97
4 132.97 0.00 0.55 1.22 1.64
8 279.18 0.00 0.49 1.07 1.28
16 509.20 0.11 0.00 0.73 1.02
10 50 1 2 280.67 0.00 0.64 1.12 2.28
4 514.54 0.00 0.53 0.90 1.77
8 939.55 0.00 0.30 0.80 1.33
16 1867.80 0.14 0.00 0.55 0.95
10 50 1.2 2 339.93 0.00 0.85 1.21 2.42
4 618.67 0.00 0.68 0.99 1.90
8 1262.99 0.00 0.45 0.77 1.42
16 2190.14 0.09 0.00 0.59 1.31
10 100 1 2 467.11 0.00 0.48 0.92 1.68
4 903.13 0.00 0.33 0.78 1.43
8 1741.59 0.00 0.17 0.62 0.97
16 3309.07 0.20 0.00 0.43 0.74
10 100 1.2 2 602.81 0.00 0.58 1.05 1.82
4 1148.74 0.00 0.32 0.87 1.43
8 2486.58 0.00 0.19 0.80 117
16 4469.71 0.13 0.00 0.52 0.87

Table 7.9: Comparison of policies with the warehouse allowed to hold stock -
Koy =2K,7=10.95

An important observation is that the decrease in A s)% values are more
significant than the decrease in Ag s % values and hence (Q,S,7') and (Q,S)
policies become alike when Ky increases. The decreasing behaviour of A g%
values is also valid when the warehouse is allowed to hold stock instead of
employing cross-dock.

When we compare the Ap% values presented in Tables 7.7- 7.8 with those in
Tables 7.1-7.2 and other unreported results, we observe that the general behaviour
of the policies in the instances where the warehouse is allowed to hold stock are

quite similar to those for the cross-dock case. On the other hand, as indicated
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above Ap% values are usually much smaller than the corresponding figures of

cross-dock case as the summary performance of the policies presented in Tables

7.10-7.11.

Policy | (@8, T)  (Q S|T) (@.8) (s, S)
(@,S,T) 051 (1928) 1.24 (2560) 154 (2451)
(Q,S|T) | 0.12 (632) - 1.02(2560)  1.27 (1974)

(@.8) (0) (0) - 0.75 (1693)

(s,S—1,8) | 0.06 (109) 0.22 (586)  0.52 (867) -

Table 7.10: The summary comparison of policies across pairwise dominated
instances - warehouse allowed to hold stock

Policy | (@,8,7) (@,8]T) (@,8) (s,S—1,8)
@.S.7) - 035  1.24 1.46
(Q,S|T) 0.27 C102 0.97

( S) -1.17 -0.95 - 0.36

(5,5-1,5) 131 081 -0.31 ]

Table 7.11: The overall average performance of policies across all 2560 instances
- warehouse allowed to hold stock

The summary figures presented in Tables 7.10-7.11 illustrate that it becomes
very difficult to differentiate the policies with the objective of minimizing the
total cost rate function although the ranking of the policies is the same with that
of the case where the warehouse employs cross-dock. In order to distinguish the
policies, we next present a summary of the allocation of the costs among the
echelons, which is more distinctive to compare the policies.

Over the 2560 instances where the warehouse is allowed to hold stock, the
average proportion of the warehouse cost expressed by Cj,/AC% is given by
45%, 48%, 51% and 53% for (@), S), (@Q,S,T), (s,S —1,S) and (Q, S|T') policies,
respectively. Observe that, when the warehouse is allowed to hold stock, the
proportion of the costs that the warehouse incurs is larger than that of the cross-
dock case for each of the four policies considered. Although this is an expected
behaviour, the order of the policies in terms of the proportion of warehouse costs
changes completely, which may be explained by the different behaviour of yur,

and ¢, which correspond to the expected value and the coefficient of variation



Chapter 7. Numerical Results for Policies in Class P 144

of warehouse lead time demand, respectively. Both of these quantities can be
considered as a measure of the safety stock of the warehouse.

Figure 7.7 illustrates pr, vs ¢, values for the particular instance with Loy =
I,A =5 K = 50,Ky = K,h = 1.2. We should mention that this instance
represents the general behaviour of ur, and ¢r, across the policies. Although
(@, S) policy imposes a constant reorder size, it is interesting to see that (Q,S,T)
policy has the smallest ¢z, value which is followed by ¢z, value of (Q,S) policy.
This advantage of (Q,S,T') policy possibly results from the bounded structure
of both ¥ and Q)y. When we compare py, values across the policies, we see that
the (@, S) policy usually attains the smallest value which is followed by (Q,S,T')
policy. Since the smallest values of both g, and ¢z, values are achieved by (@, S)
and (@, S, T) policies, the warehouse level incurs the least proportion of the total
costs by these policies.

On the other hand, the highest ¢z, and p, values are accomplished with either
(@Q,S,T) or (s,S —1,8) policies. The warehouse, on the average, incurs more
cost with these policies since more safety stock must exist at the warehouse. On
the other hand, the proportion of the warehouse costs at each of the experimental
instance obviously depends on the trade-off between the on-hand inventory and
the ordering frequency at the warehouse.

We next present the summary of the comparison of echelon costs across the
policies in Tables 7.12-7.13. When the warehouse is allowed to hold stock, the
warehouse costs under (@, S) policy are smaller than those of the other three
policies. In terms of the retailer costs, the (@), S|7T) policy is the one which
benefits much by allowing the warehouse to hold stock.

Policy (@,8,7) (@, 8]T) (@,8) (s,8-1,85)
(@,8,7) - 1.03 (1871) -0.95 (438)  0.42 (2560)
(Q, S|T) -0.94 (689) - -0.33 (111) -0.05 (1819)

( S) | 102 (2122) 1.73 (2449) - 1.31(2560)

(s, ,S) -0.39 (0)  0.06 (741) -1.25 (0) -

Table 7.12: The overall average performance of the warehouse - warehouse
allowed to hold stock
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Figure 7.7: llustration of uy, vs ¢z, across policies

Policy | (Q,S,T) (@, 8|T) (@,8) (s,8S-1,5)
@.S.7) " T15 (1625) 3.03 (2560) 212 (2125)
(Q,8|7) | 1.18 (935) ~ 197 (2560)  1.84 (2411)

( S) | -3.02(0) -1.89 (0) - -0.75 (1076)

(,S—1,S) | -2.04(435)  -1.79 (149) 0.81 (1484) -

Table 7.13: The overall average performance of the retailers - warehouse allowed
to hold stock

7.5 Advantage of Allowing the Warehouse to
Hold Stock

Although implementing cross-dock mainly aims to reduce the average inventory
level in a supply chain but it can result in more inventory required to achieve
the same fill rates at the retailers and the costs in the system may increase
significantly. On the other hand, cross-dock systems are often implemented due
to the ease of optimization and implementation. In this part of the numerical
study, we aim to quantify the adavantage of allowing the warehouse to hold stock.

As a measure of the advantage of allowing the warehouse to hold stock, we
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define AT/V/C% as follows:

y ACr — ACT
L To
Here, AC? and ACY correspond to the best cost rate under the policy class P

where the warehouse employs cross-dock and is allowed to hold stock, respectively.

Obviously, ACT > ACT.

Problem Parameters A{/DV/C %
A | K | h | N ?/V/C% (@,8,T) (@,S|T) (Q,S) (s,8-1,8)
1 50 1 2 2.88 2.88 3.01 3.71 3.27
4 3.84 3.84 3.95 4.50 4.15
8 5.03 5.03 5.10 5.61 5.26
16 6.35 6.36 6.35 6.76 6.56
1 50 1.2 2 3.31 3.31 3.48 4.22 3.71
4 4.28 4.28 4.42 5.01 4.60
8 5.41 5.41 5.51 6.01 5.66
16 7.31 7.31 7.31 7.79 7.55
1 100 1 2 1.86 1.86 1.96 2.57 2.16
4 0.82 0.82 0.88 1.40 1.06
8 1.97 1.97 2.01 2.48 2.15
16 3.25 3.29 3.25 3.59 3.38
1 100 1.2 2 1.82 1.82 1.94 2.60 2.13
4 2.77 2.77 2.87 3.42 3.03
8 3.95 3.95 4.04 4.52 4.16
16 5.25 5.26 5.25 5.66 5.42
10 50 1 2 4.02 4.02 4.14 4.63 4.38
4 5.00 5.00 5.10 5.49 5.28
8 6.20 6.20 6.26 6.64 6.42
16 7.53 7.55 7.53 7.85 7.69
10 50 1.2 2 4.45 4.45 4.62 5.12 4.84
4 5.44 5.44 5.56 5.98 5.74
8 6.58 6.58 6.67 7.01 6.81
16 8.50 8.51 8.50 8.84 8.72
10 100 1 2 1.00 1.00 1.08 1.48 1.26
4 1.94 1.94 2.00 2.36 2.17
8 3.11 2.92 3.30 3.44 3.26
16 4.40 4.42 4.40 4.64 4.52
10 100 1.2 2 2.66 2.66 2.76 3.21 2.94
4 3.62 3.62 3.88 4.08 3.85
8 4.80 4.71 5.31 5.24 4.99
16 6.12 6.13 6.12 6.40 6.26

Table 7.14: Advantage of Allowing the Warehouse to Hold Stock - Ky = K,7 =
0.95

Similarly, we define A{/DV/C% as a measure of the performance of allowing the
warehouse to hold stock at the warehouse under policy P within the class P.

ACP — ACP

P
Awye ACP



Chapter 7. Numerical Results for Policies in Class P 147

where ACY and ACY correspond to the optimal cost rate of the policy P for
the cases where the warehouse employs cross-dock and is allowed to hold stock,
respectively.

We present 64 representative results to illustrate the general behaviour of
AT/V/C% and A{/DV/C% in Tables 7.14 and 7.15 where we compare the values
presented in Tables 7.1-7.7 and 7.2-7.8, respectively.

Problem Parameters A%/DV/C%
A | K | h | N ?/V/C% (@,8,T) (@,S|T) (Q,S) (s,8S-1,8)
1 50 1 2 4.87 4.87 4.99 5.63 5.09
4 5.85 5.85 5.94 6.47 6.01
8 7.07 7.07 7.12 7.60 717
16 8.42 8.52 8.43 8.82 8.10
1 50 1.2 2 5.31 5.31 5.44 6.11 5.53
4 6.29 6.29 6.40 6.98 6.48
8 7.46 7.46 7.53 8.03 7.60
16 9.39 9.39 9.44 9.84 9.45
1 100 1 2 3.83 3.83 3.92 4.48 4.01
4 2.77 2.77 2.84 3.31 2.91
8 3.95 3.95 3.99 4.44 4.03
16 5.25 5.40 5.27 5.62 4.88
1 100 1.2 2 3.79 3.79 3.88 4.49 3.97
4 4.76 4.76 4.84 5.37 4.92
8 5.96 5.96 6.03 6.49 6.07
16 7.29 7.29 7.33 7.76 7.34
10 50 1 2 6.04 6.04 6.14 6.62 6.23
4 7.03 7.03 7.11 7.51 7.18
8 8.26 8.26 8.30 8.69 8.35
16 9.61 9.80 9.63 9.93 9.17
10 50 1.2 2 6.48 6.48 6.59 7.10 6.69
4 7.48 7.48 7.57 7.97 7.65
8 8.64 8.64 8.71 9.04 8.79
16 10.60 10.74 10.65 10.93 9.80
10 100 1 2 2.95 2.95 3.02 3.42 3.11
4 3.91 3.91 3.97 4.32 4.04
8 5.10 5.10 5.14 5.44 5.17
16 6.42 6.68 6.44 6.66 6.22
10 100 1.2 2 4.64 4.64 4.73 5.18 4.82
4 5.62 5.62 5.69 6.06 5.77
8 6.83 6.83 6.89 7.24 6.94
16 8.17 8.34 8.18 8.44 7.69

Table 7.15: Advantage of allowing the warehouse to hold stock - Ky = K,7 =
0.99

As presented in Tables 7.14-7.15, we observe that AT/V/C% values increase with
increasing K, N, h and X values. Increasing K decreases the ordering frequency
of the retailers and the warehouse tries to hold stock in order to decreaese the

waiting time of an infrequent order. When & changes from 1 to 1.2, inventory is
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pushed to the warehouse level to cope with the increase in the unit holding cost
of the retailers. Increasing A and N increases the ordering rate of the retailers
and holding stock at the warehouse decreases the ordering rate of the warehouse
which will be more frequent with cross-dock case. Similarly, when 7 increases,
the advantage of holding stock at the warehouse also increases due to the reduced
waiting time of an order at the warehouse. Similar observations are also valid
for A{/DV/C% values and the maximum A{/DV/C% is generally obtained with (@, S)
policy. The minimum A{/DV/C% values are usually achieved by (Q,S,T) policy
when N is smaller or (@), S|7T') policy when N is large. We should also mention
that there are some instances where the cases of warehouse acting as cross-dock
and allowed to hold stock result in different best policies. These instances usually
correspond to higher number of retailers (N =8 or 16) in which the best policy
switches from (Q, S|T') to (@, S, T) policy and higher fill rate constraints in which
the best policy switches from (s,S —1,8S) to (Q,S,T) policy. For these cases,
AT/V/C% values are different from A{/DV/C% values. Otherwise, AT/V/C% values are
equal to A{/DV/C% value of the best policy for both cases.

We should also mention that, among the considered instances, only for Ky = 0,
the optimal policy parameters indicate that the warehouse should act as a cross-
docking point. In all 640 experiments with Ko = 0, the (s,S — 1,S) and (@, S)
policies employ cross-docking at the optimal parameters. The number of such
instances is 526 and 562 for (Q),S,T) and (Q,S|T) policies, respectively. In
the remaining 1920 instances, the optimal policy parameters indicate that the
warehouse should hold stock. We also observe that as the ratio Ko/K increases,
AT/V/C% and A{/DV/C% values increase significantly, as expected. Over all the 2560
instances, the average of AT/V/C% values is found to be 5.12 % which means that
employing cross-dock at the warehouse may lead to significantly higher cost values

especially if the warehouse ordering cost is high.



Chapter 8
Conclusion

In this study, we consider the stochastic joint replenishment problem in a
single-location/multi-item and single-item /multi-location inventory settings. The
stochastic joint replenishment problem is originally defined in a multi-item
inventory setting and it aims to determine the optimal replenishment and stocking
decisions to minimize the expected total ordering, holding and backorder costs in
the system in the presence of random demands and joint ordering cost structure.
Because of the applicability to multi-location inventory systems, stochastic joint
replenishment problem is a challenging research area. This study is among the
recent few studies considering the stochastic joint replenishment problem in two-
echelon supply chain.

In this chapter, the contributions of this study will be explained and some

future research directions will be provided.

8.1 Contributions

The problem of replenishment coordination strategies has been one of the most
important issues faced especially by practitioners for years. This issue has
become even more critical in recent years with the recent advances in information
technology as information sharing between the parties involved in the supply

chain. Therefore, the stochastic joint replenishment problem is a a real problem

149
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faced by retailers and is an integral part of supply chain management in general.
Despite its practical importance, solution of the stochastic joint replenishment
problem is extremely difficult. The existing policies in the literature do not
dominate each other uniformly over the entire parameter space.

In the first part of the study, we have proposed a new parsimonious ordering
policy for stochastic joint replenishment problem in a single location, N-item
setting. The replenishment decisions are based on both group reorder point-
group order quantity and the time since the last decision epoch. We derive the
expressions for the key operating characteristics of the inventory system for both
unit and compound Poisson demands and constructed the expected cost rate
function explicitly.

An extensive numerical study has been conducted to study the sensitivity
of the policy to various system parameters and to assess the performance of
the proposed policy over the existing policies in the literature. The numerical
experiments indicate that there is no clear demarcation of operating environments
for the dominance of proposed policies in the literature and that the dominance of
the proposed policy is not monotone over the experiments. However, similarity of
items in their cost structure appears to be most critical factor in the dominance
of the proposed policy. The diversity of the individual demand rates is also an
important factor. We have found that the proposed policy provides significant
savings over the existing policies for items similar in their cost structures and
individual demand rates. This finding may have important implications for
supply chain design.

The proposed policy attains such performance levels with parsimony. This
parsimony reduces the computational effort in optimization enormously and eases
implementation in practice greatly. Viewing the comparison in this broader
perspective, we believe that the proposed policy and the model developed herein
provide significant improvements over the existing models in terms of cost savings,
optimization effort and ease of implementation. Although we motivate our model
in a single-location, multi-item setting, it can also be used in a two-echelon, single-

item, multi-retailer setting with cross docking at the upper echelon.
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In the second part of the study, we extend our model to incorporate a two-
echelon inventory system where the upper echelon also holds inventory. We
studied a policy class under the joint replenishment problem in a two-echelon
divergent inventory system. The policy class bases the ordering decisions on the
ordering opportunities that arrive according to some prespecified rule. At each
ordering opportunity, the retailers are all replenished to their maximum inventory
positions to take full advantage of savings of the ordering cost. In order to analyze
the two-echelon inventory system under a policy class, we have developed a new
generic framework which is only based on the ordering process of the retailers.
The proposed methodology is not specific to a particular policy but is applicable
to any policy that satisfies the characteristics of the considered class.

Our modeling methodology provides us an analytical tool to investigate
various joint replenishment policies under the considered policy class. We have
provided the expressions and approximations for the operating characteristics of
four different policies and provided insights for the behaviour of these policies.
Among these policies, only (@), S) policy was previously studied in a two-echelon
inventory system [23].

An extensive numerical study was conducted to investigate the performance
of these policies. The numerical experiments indicate that the policy, which has
been proposed proposed for the multi-item/single-location model, also provides
cost savings over the other policies within the considered policy class especially
when the number of retailers in the system is small. When the warehouse is
allowed to hold stock, the cost savings achieved by a policy over another are not
as significant as in the case of cross-dock (or single-location/multi-item) case.
However, the allocation of the costs among the echelons and the comparison of
these costs across the policies provide better distinction between these policies.
We also note that the holding cost associated with the pipeline inventory, which
is the same for all policies, is omitted the magnitude of the percentage deviations
across the policies would increase.

Moreover, the methodology proposed for the warehouse deals with one

of the research questions provided in Hill [44], ie. modeling the lead time
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with an additional delay in case the partial shipments are not allowed. The
distributions presented for different policies in Chapter 6 also provide insights
for the relationship between the order size, inter-order time and waiting time
and implications for the inventory model. The analysis at the warehouse
is also applicable to a single-item/single-location model facing renewal batch
demands where the inter-order time and the inter-order quantity have a bivariate
distribution.

Finally, we believe that this part of the study serves as a starting point for the
analysis of more complex joint replenishment policies in multi-echelon inventory

systems.

8.2 Future Research Directions

The basic objective of this study was to present the joint replenishment concept
in a 2-echelon inventory system and to develop a basic analytical model for a
class of joint replenishment policies. In this section, we provide possible research
extensions.

A common practice in typical retail supply chains is to employ cross-dock at
the warehouse although it may lead to significant cost rate increases as presented
in Section 7.5. On the other hand, if cross-docks have real time information
about the inventory status of the retailers and are also in charge of the allocation
of goods to the retailers, it is possible to reallocate the units in an order before
they are shipped to the retailers according to a prespecified allocation rule. This
effectively reduces the lead time variability of the retailers since the number of
units to be shipped to each of the retailer is decided according to the inventory
status Lo time units after the order is given. A quite preliminary study conducted
indicated that, for each of the joint replenishment policies within policy class
P, it is possible to reduce the costs in the system even by using an allocation
rule which ensures equal stock-out probabilities for the retailers. The numerical
study demonstrated that when an allocation is performed for (@), S) policy, it may
outperform the (@), S,T') policy without an allocation especially if the demand
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diversity among the items is significant. The allocation problem in a cross-dock
setting is an important issue that should be studied in detail.

Recall that if the warehouse holds stock the dispatching policy does not allow
a partial shipment and is based on a first-come-first-serve rule. Within the joint
replenishment context, this assumption may be a fair and adequate one since we
are basically trying to reduce the ordering costs in the system. However, it is
quite restrictive and may lead to higher average cost rates since an order has
to wait until sufficient inventory accumulates at the warehouse, which increases
the effective lead time of an order. An alternative way to relax this assumption
may be to allow partial shipments, which may lead to more complex problems
e.g. how to allocate the existing stock to the retailers. There is an additional
option of subcontracting for immediate additional shipments from the outside
supplier and ship the whole order immediately to the retailers. In case the stock
at the warehouse is not enough to satisfy an order of the retailers, the unsatisfied
part will be shipped to the warehouse from the outside supplier immediately at
an additional cost so that the order will be dispatched without waiting at the
warehouse. In that case, the effective lead time of an order will always be Lg time
units. However, there will be two different supply modes for the warehouse, which
may also increase the average inventory level. A more intelligent subcontracting
option may consider the number of unsatisfied units and /or the time that remains
until all units in the order are satisfied. This option will obviously capture the
trade off between the increased stock at the warehouse and better service levels
at the retailers.

In this study, we basically considered the joint replenishment problem under
single-location/multi-item and single-item/two-echelon settings. An obvious
extension is to make a complete analysis of the multi-item/two-echelon inventory
system which is extremely difficult. Therefore, a 2-echelon serial system with a
single warehouse and a single retailer may be a good starting point to analyze
multi-item and multi-location inventory systems. In addition, this setting is
important since it represents a typical supermarket chain where the warehouse

represents the central distribution center and the retailer is the market itself. In
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order to dispatch a joint order without a partial shipment, there must be enough
units from each item in the order at the warehouse and hence the order will wait
at the warehouse until sufficient units from each item exist. Then, the waiting
time of an order at the warehouse will be the maximum time that elapses until
sufficient inventory of the items in the order accumulates at the warehouse.On
the other hand, once analytical model for this setting can be developed, it will
be easy to extend it to a more general multi-location, multi-item setting.

In this study, we considered inventory systems in which the items or the
retailers are jointly ordered according to a prespecified joint replenishment rule,
ie. all items/retailers use the same joint replenishment policy. However, as
demonstrated in Section 4.3.2, the dominance of each policy is strongly dependent
on how the individual demand rates are distributed among the items/retailers.
This finding has important implications for supply chain design and management.
In a multi-item setting, the problem of clustering the items and determining
a joint replenishment policy for each cluster is important to eliminate the
disadvantage of reduced flexibility in joint replenishment policies. It would also
be interesting to investigate the joint location-allocation-replenishment problem
in a supply chain. The extension of correlated demands across the items/retailers

would also be an interesting issue to focus on.
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Notation Table

An,y,q) Set of Yi’s and @;’s such that >-" Vi =y and 7, Qi =¢

ACS Optimal cost rate under policy P

AC? Optimal cost rate with warehouse employing cross-dock

ACY Optimal cost rate with warehouse allowed to hold stock

ACr Optimal cost rate with warehouse employing cross-dock
under policy P

ACP Optimal cost rate with warehouse allowed to hold stock

AC(p1,p2,.-pn)

under policy P

Expected cost rate function of a policy with parameter py, p,...

AR;(my, q) Age of m; units allocated to retailer ¢ in an order of size ¢
e Average number of units demanded per time
Bi(m, q) Number of items from m; units in an order of size ¢
which are used to satisfy backordered demands at retailer 2
BO(t) Backorder level of the warehouse at time ¢
BO,(t) Backorder level of item ¢ at time ¢
BO; Steady-state backorder level of item :
c (c1,¢2,...,¢N)
Co Normalizing constant for g(-,-,-) under unit Poisson demand
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Ch : Normalizing constant for g(-,-,-) under compound

Poisson demand

G :  Can-order level of retailer ¢
Cy : Normalizing constant for ¢(¢,-)
Cr : Cost rate of the retailers
Cw : Cost rate of the warehouse
Cy : Optimal cost rate of the retailers
W : Optimal cost rate of the warehouse
c.d.f : Cumulative distribution function
L, : Coeflicient of variation of warehouse lead time demand
Do(t1,t2] : Number of units demanded from the warehouse in (0, ]
Do[t1,t2) : Number of units demanded from the warehouse in [0, 1)
Do(t1,t2) : Number of units demanded from the warehouse in (0,1)
D;(t1,t2] : Number of demands arriving for item ¢ during (1, %3]
Ag : Sp— sg
A; DS —s;
Ar . Increments for T' in the search space
Ag . Increments for () in the search space
Ag, Increments for 5; in the search space
As, Increments for sg in the search space
Ag, Increments for Sy in the search space
Ar% : Percentage improvement of (Q),S,T') policy over policy P
in the multi-item model or percentage deviation of policy P
from the best one in the two-echelon model
A%%‘”S) : Percentage improvement of a policy P over (s, 5) policy
AT/V/C% : Percentage improvement achieved by holding stock
over cross-dock
A{/DV/C% : Percentage improvement achieved by holding stock
over cross-dock under policy P
E[BTj)) . Expected number of backorders given by retailer z per time
() : Pdi of YV
fz(+) : Steady-state p.d.f. of Z(t)

fro(,:) + Joint p.df. of Y and Qo
froo(,-) + Joint p.d.f. of Y and Qo
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fye g (5)
Sy oo ()
fTe(xv l,q, )‘)

fla kb, A)

Fz, k)
FQO(')
Fre(ax,t,q,A)

E (2t q, )

Fawo()(*)

Fy (+)

F
Fymy g (+57)
chgn)an)(-,-)

F
o
$(t, u,0?)
g(t, e )

g(.7.7.)
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Joint density of Y and Qén)

Joint density of Yd(n) and Qén)

P.d.f. of a Truncated Erlang random variable with
parameters ¢ and A at ¢

P.d.f. of Erlang random variable with parameters k£ and A
C.df. of Erlang random variable with parameters k£ and A
C.d.f. of Qg

C.d 1. of a Truncated Erlang random variable with
parameters ¢ and A at ¢

C.d.f. of n'* convolution of a Truncated Erlang random variable
with parameters ¢ and A at ¢

Steady-state c.d.f. of Wy(q)

C.df. of Y

1 — F for any distribution function F

Sub-distribution function of Y and Qén)

Sub-distribution function of Yd(n) and Qén)

1 — F for any distribution function F
po(0, AoT'), probability that no demands arrive in (0,7

C.d.f. of a Normal random variable with mean p and variance o2

P.d.f. of &(1)

Steady-state p.d.f. of & (1)

Steady-state p.d.f. of £(¢)

Modified fill rate for retailer ¢

Target modified fill rate for retailer 2

Unit inventory holding cost per time at the warehouse
Unit inventory holding cost per time of item ¢ or retailer ¢
Probability that an order is given by time trigger

in (Q,S,T) policy

Minimum number of retailer orders for which the order size
exceeds ¢ units

Indicator function of its argument
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ILo(t) : Inventory level of the warehouse at time ¢

I1P(t) . N IPi(1), total inventory position of the system at time ¢

TPy(t) . Inventory position of the warehouse at time ¢

I1P(t) . Inventory position of item ¢ or retailer ¢z at time ¢

K : Common ordering costs of items or retailers

Ko : Warehouse fixed ordering cost

k; : Item ¢ or retailer ¢ specific ordering cost

k(q) : Minimum total order size such that it exceeds ¢ units

Ao . SN\, total demand rate of items or retailers

A : Demand rate for item ¢ or retailer

Ao © Yieo Ai, demand rate for the items in set ©

Lo :  Lead time of the warehouse

L; :  Lead time of either item 7 or retailer 2

o EDy0.1]

UTe :  Mean of a truncated Erlang random variable

i :  Mean of the order quantity of retailer 7 in an order triggered by
retailer ¢

N Number of items or retailers

N : Set of all the items in the inventory system

Tt :  Iteration number

No,i(t) :  Number of demands that have arrived for items other than

item ¢ since last decision epoch
Ni(t) : Number of demands that have arrived for item 7 since

last decision epoch

N(t) : Counting process of system demands in (0, 7]
item ¢ since last decision epoch

NI;(t) : Net inventory level of item ¢ at time ¢

OHy(t) : On-hand inventory of the warehouse at time ¢

OHy(t) : Steady-state on-hand inventory of the warehouse

OH;(t) : On-hand inventory of item ¢ at time ¢

OH; . Steady-state on-hand inventory of item ¢

po(x,A) : P.m.f. of a Poisson random variable with rate A

Po(x,A) : C.dA. of a Poisson random variable with rate A
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ﬁO(Q7 )‘G)Zv 6)

Pa,(*)
PG()
Ph, ()
Ph, ()
Pri)(*)
p.d.f.
p.m.f.
0;

C)

Q

Qo

0

<
Qo
Qi
Qr
Qu
Qmm
Qe
0"

Ri(q)

an
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Probability that a total of ¢ units are demanded for items
in set © in z time units

P.m.f. of Qg

P.m.f. of n** convolution of Qg

Function corresponding to p.m.f. of Qg for Qp < @

nt" convolution of Péo(-)

P.m.f. of R;(q)

Probability density function

Probability mass function

Unit shortage cost of item ¢

Probability that item ¢ is included in the order

A subset of A/

Quantity trigger under (@, S), (Q,S,T), (Q,S|T) policies
Order quantity

Minimum order quantity under (s,S — 1,S) policy
Maxium order quantity under (s,S — 1,S) policy

2’th replicant of Qg

A temporary variable to construct the search region for @)
Warehouse order size

Minimum value of the search range of ()

Maximum value of the search range of ()

Optimal value of @)

Solution for ) at an iteration of an iterative search procedure
Ai/ Ao, probability that a demand arrives at item ¢ or retailer ¢
Order quantity of retailer ¢ in an order of size ¢

Aif (Ao = A;) for j #

Time weighted shortage cost of item ¢

Reorder level of the warehouse

Minimum value of the search range of sg

Maximum value of the search range of sg

Optimal value of sq

Solution for sg at an iteration of an iterative search procedure
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So

max
56

]

Tmin

Order-up-to level of the warehouse

Minimum value of the search range of Sy

Maximum value of the search range of Sy

Optimal value of Sy

Solution for Sy at an iteration of an iterative search procedure
Reorder level of item 2 or retailer 2

(S1,82,...,8N)

Minimum value of the search range of s;

Maximum value of the search range of s;

Solution for s at an iteration of an iterative search procedure
Optimal value of s

Solution for s; at an iteration of an iterative search procedure
Order-up-to level of item ¢ or retailer :

(51, 52,...,5N)

oM Si, maximum inventory position of the retailer or the items
Minimum value of the search range of 5;

Maximum value of the search range of \5;

Solution for S at an iteration of an iterative search procedure
Optimal value of S

Variance of a truncated Erlang random variable

Variance of the order quantity of retailer j in an order triggered by
retailer ¢

Time trigger under (Q,S,T), (Q,S|T) policies

Minimum value of the search range of T

Maximum value of the search range of T

Optimal value of T

Solution for T" at an iteration of an iterative search procedure
Effective lead time of an order of size ¢ for retailer 2

P.m.f. of demand size for item :

C.d.f. of demand size for item 2

P.m.f. of k" convolution of demand size for item s
Steady-state p.m.f. of 1F;(t)

P.m.f. of Dy(0,1]
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; : Steady-state p.m.f. of OHy(t)
we(q, k) : Probability that & customers demand a total of ¢ units
for the items in the set O

Wy . Steady-state waiting time of an order

Wo(t,q) : Waiting time of an order of size ¢ arriving at time ¢

Wo(q) . Steady-state waiting time of an order of size ¢

X : Approximation for quantity X

X? : Value of a policy parameter X in the previous iteration

X; : Arrival time of 7’th demand a retailer ¢ after an order

X, . Arrival time of n’th system demand after the last decision epoch
X : n’th convolution of a random variable X

¢(t) 2 U R(), Z(1))
&i(t) 2 AN, Nos(t), Z(1)}

Y :  Inter-order time

Yo :  Time between consecutive warehouse orders

Yy : Time since last decision epoch until an order is given

Y; . 2'th replicant of Y

W, . Steady-state no-stockout probability of item 2

b, . Target no-stockout probability of item ¢

Z(1) : Time elapsed since last decision epoch for the item or last
order arrival at the warehouse

Cq t /o

[x]* : max(x,0)

[2] Smallest integer larger than or equal to x

|z ] :  Largest integer smaller than or equal to x

lz], : Smallest integer larger than or equal to # which is divisible by k
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Proof of Lemma 3.2.1:
Let N(t) be the counting process of system demands in (0, ] where t = 0 is taken
as the beginning of a replenishment cycle.

First, suppose y = mT for m > 1 and let 0 < ¢ < (). This case corresponds
to a replenishment cycle depicted in Figure 3.1(a).

PY =mT Qo= q)=PN((m - 1)T) =0, N(mT) = N((m = 1)T') = q)
= P(N(T)=0)"""P(N(y — (m — 1)T)) = ¢) = é5 "' polg, Aoy — (m — 1)T))
m>1,0<q¢<@Q

Now, suppose (m — 1)T <y < mT for m > 1 and ¢ = Q. This case corresponds
to a replenishment cycle depicted in Figure 3.1(b). An order of size Qg = @Q is

triggered in time interval (y,y + 6y] if the following events occur: N((m —1)T") =
0,N(y) = Ny—(m—-1)T)=0Q —1, and N(y 4+ éy) — N(y) = 1. Then, we have

P(YE (y7y+5y]7Q0:Q):
= P(N((m = 1)T) =0, N(y) = N((m —1)T)=Q — 1, N(y + éy) — N(y) = 1)
= 95 po(Q — 1, Aoy — (m — 1)T)) Xo[8y + o(8y)]

Result follows by dividing both sides by ¢y and taking the limit as 6y — 0.

Proof of Corollary 3.2.1:
a) First, let Qo =¢ € [1,2,...,Q — 1]. Then,

PQo Z 45 po Q7)‘0 ) = po(%)\oT)/(l - </50)
Now, let Qg = ). Then, we have
Pa(@) = X 6 = DT.Q

= 3 [ F0.Qu 0y = FT.Q /(1 = 60
= PO(Q—L)\O )/(1_450)
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b) For y = mT,m > 1, we can write:

fr(y) = 245 'po(q, XoT) = ¢4 ™" [Po(@ — 1, AT') — Po(0, AT')]
= o5 Po(Q — 1, MT) — ¢o]

Now, let y € ((m — 1)T,mT') for m > 1. It is obvious that

rly) = Froy,Q)

Proof of Proposition 3.2.1:
The proof is based on the development of the partial differential equations
describing the dynamics of the stochastic process, &(f) via supplementary
variables. We refer the reader to Cox [27] and Schmidt and Nahmias [64] for
further details of the technique.

Let ¢;(t,n;,n0,z) denote the probability density function of £;(¢) being in
state {n;,ng, z} at time ¢t. We first derive the partial differential equations that
gi(t,n;,ng, z) satisfies and use them to obtain the partial differential equations
for the steady-state distribution, g;(n;,no,z). We derive the equations for four
different cases and then we verify that the proposed solution (3.1) satisfies these
equations.

Case 1: ng=0,n;, =0,0< 2 <T.
gi(t+6:,0,0,z+6t) = ¢:(£,0,0,2)(1 — Xodt) + o(61)

where o(6t)/6t — 0 as 6t — 0. This follows because the state of item ¢ will be
(0,0,z + 6t) at time ¢ 4 6t if it is in state (0,0,z) at time ¢ and no demands
arrive for any of the items during the interval (¢,¢ + 6¢] which has probability
1 — Aot + o(6t). For sufficiently small ét, z + 6t < T should also hold so that a
review is not carried out.

Subtracting the term ¢;(¢,0,0, z 4+ 6t) from both sides and dividing both sides
by 6t and letting 6t — 0 gives

0¢i(t,0,0,z2) 0¢i(t,0,0,z2)
—— 0 = =7 4 At
ol 0z + Og( 707072)



Chapter 9. Appendix 164

Taking the limit as ¢ — oo results in

8g¢(0, 0, Z)

= —X09:(0,0,2) 0<z<T (9.1)
0z

agi(ov 07 Z)

= —Co)\oe_AOZ = —)\092(0,072)
0z

Case 2: g =0,0<n; <Qand 0 <2< T
gi(t+6:,m:,0, 24+ 6t) = gi(t,n;,0,2)(1 — Aodt) 4+ ¢:(,n; — 1,0, 2) X6t + 0(61)

The state of item ¢ will be (n;,0,z + 6t) at time ¢ + 6t if at time ¢ the state
is (n;,0,z) and no demands have arrived in [t, + 61); or the state at time ¢ is
(n; — 1,0,z) and a demand has arrived for item ¢ during the interval [t,? + 6t)
with probability A\;6t + o(6t). Subtracting the term g;(¢,n;,0,z + 6t) from both
sides and dividing both sides by é6f and letting 6f — 0 results in

i tv 1y Yy itv 15 Yy
ag( ek Z) = _ag( ek Z) _)‘O.gi(tvnivovz)—I_)‘igi(tvni_lvovz)
ot 0z

Then, letting t — oo,

78’%(7;7072) = —)\ogi(ni,(),z) + )\Zgz(nz — 1,0,2) 0<n; < Q,Z <T (92)
z
Aoz
gi(ni,O,Z) — Coe—/\oz( Z’)
;.
: i )‘2 n; )\2 n;—1
ag (n 7072) — _)\OCOG—AOZ( Z) T Coe_/\oz)‘i( Z)

0z n;! (n; — 1)!
= —Xogi(ni,0,2) + Nigi(ni — 1,0, 2)

Case 3: 0<no<@,n;=0and 0 <2< T

gi(t+6:,0,n0, 2+ 6t) = ¢:(t,0,n0,2)(1 — Xdt) + ¢i(t,0,n9 — 1, 2)(Ag — X))ot + 0(61)
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This case is very similar to Case 2 and no further details will be given except

the following partial differential equation for the steady-state probability density

function:
0¢:(0, ng,
% —X09i(0,10,2) + (Ao — A)gi(0,ng — 1,2) 0<ng<@,z<T
(9.3)
Case 3: 0 <ng<Q,n;=0,0<2<T
Ao — A )z)mo
3:(0,n0,2) = Coe—kon
Nno.
i Ao — Aj)z)™ Ao — A;)z)ro-1
ag (0,710,2) _ —)\0006_/\02(( 0 )Z) _I_Coe—/\oz()\o . )\2)(( 0 )Z)
0z no! (ng —1)!

= —)\092(0771072)4'(Ao—)\z)gz(oano—172)

Case 4: 0 <np < Q,0<n; <Q,0<n;+ng<Qand 0<z<T

gi(t + 6s,niyno, 2+ 6t) = gi(t,ng,no, 2)(1 — Xodt) + ¢i(t,n; — 1, ng, 2) A6t
+ gi(t,n; — 1,ng, 2) (Ao — A;)0t + o(6t)

This follows because the state at time ¢t 4 6¢ will be (n;, ng, z 4 6t) only if one of
the following three events occur: the state at time ¢ is (n;, no, z) and no demands
have arrived at the system in [t,1 + 61); the state at time ¢ is (n; — 1, ng, 2) and
a demand has arrived for item ¢ in [t,¢ + 0t); the state is (n;,ng — 1,2) at time ¢
and a demand has arrived for an item other than ¢ in [t,? + 61).

Subtracting the term ¢;(¢, n;, ng, z+6t) from both sides, dividing by 6t and letting

6t — 0 results in

Dg:(t. n; dg;(t,n;
g( 1 7n072) = — g( 1t 7n072) - )\O,gi(t7ni7n072)
ot 0z

+ )‘igi(tvni - 17”072) + ()‘0 - )\i)gi(t,ni,no - 172)

Finally, letting ¢t — oo, we have

agi(ni,no,z)

5 = —Xogi(ni, no, 2) + Aigi(ni — 1,00, 2) + (Ao — Ai)gi(ni, no — 1, 2)

0<n; <Q,0<ng<Q,0<n;+ne<Q,0<z<T (94)
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ot D) (O = A2
n;! no!
dgi(ni, no, 2) _ Gy (ANiz)™ (Ao — Aj)z)™
0z n;! ne!

Cags (Ai2)m T s (Ao = Ag)z)ret
+ ACoe (= 1! + (Ao — A;)Coe (o — 1)!

= —Xogi(ni, no, 2) + Aigi(ni — 1,00, 2) + (Ao — Ai)gi(ni, no — 1, 2)

gi(ni,no,Z) =

Boundary Condition: The state of the system at time ¢ + 6¢ will be (0,0,0) if
one of the following two events occur: the state at time ¢ is (n;,Q — 1 —n;, z) and
a demand has arrived at the system in [¢t,1 + 6¢) which means that ) demands
accumulate at the system triggering an order; and the state at time ¢ is (n;, no, T'—
6t) and no demands have arrived at the system in [t,1 + 6t) which indicates an

order is placed by the time trigger. Then, we can write:

Q-1 .1

g(t+6t,0,0,0) = > Aogi(t,ni, Q@ — 1 —ny, z)dz
n; =0 z=0
Q-1 Q—1-n,

+ 3 Y giltnine, T — 8t)(1— Xobt)

n; =0 mnpg=0

Let t — 0 and 6t — 0. Then, the boundary condition to the system of partial

differential equations described above is as follows:

Q-1Q-1-n,
:(0,0,0) Z )\OgZ n,Q—1—ng,z)dz+ > > gini,no,T)
n;=0"*= n;=0 ng=0

(9.5)

We now verify that the proposed solution (3.1) satisfies the boundary condition
given in Equation (9.5).

Q-1 .1 e—/\iz()\.z)ni e—(Ao—Ai)z(()\O . )\,)Z)Q—l—ni
:(0,0,0) = CoA - ‘ d
9( ) nzZ::o o 00 il (Q—l—ni)! z
Q-1Q—-1—n;

+ >33 Copolni, NT)polno, (Ao — X)T)

n; =0 mnpg=0

T @Dt AT (o= AT T e (0g2)@n
N Coan::oni!( Q—1—mn)! ()\0) ( Ao ) /2:0)\0 (Q—1)!

1

dz
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Q-1
+ Co 3 po(ni, NT)Po(Q — 1 — ny, (Ao — A)T)

n; =0

n; =0 n;

Q-1 -1
= CO Z ( Q ) T?l(l - Ti)Q_l_niF(T, Q, )\0) —|— CO hrr% Po(Q - 1, )\02)
= CoF(T,Q, ) + CoPo(Q — 1,0T) = Cy

Thus, the steady-state probability density function has the structure given in
Equation in (3.1). Moreover, for g;(n;, no, z) to be a probability density function,

T Q-1 Q—1-n,
/ Z Z gi(ni,ng,z) | dz =1
z=0 n;=0 ng=0
Therefore,
Q-1

T T
/ [Z Copol(ni iz) Po(Q — 1 — ng, (Mo — )\i)z)] dz = /_0 CoPo(Q — 1, Mo2)dz = 1

n;=0

Co = [/f Po(Q — 1,)\oz)dz]_

Derivation of Equation 3.2:

Using Corollary 3.2.1 we can write:

Z mTog" ™ [Po(Q — 1, AoT') — ¢o]

. i 8 b = = DT.Q. )y
- T[PO(Q(J _1’423? #3e [ = D0 0.Q A
_ T[R(Q = LAT) — 6] B

T
(1= ¢o)? * L —¢o /t:o tf(t,Q, Xo)dt

+ Z — D)o ' TF(T,Q, \o)

B TPO(Q — 1, AT) — T N Q
B (1 — ¢o)? Ao(1 = ¢o

[ S0 1
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+ ) meég T TE(T,Q, Xo) — Z_: ¢ TH(T,Q, )

m=1

_ TR{Q = LAT) = Tén )

a (1 — ¢o)? Ao(1 — ¢o)
T

mF(Tva)‘O) —1 %F(TaQa)\o)

T TP(Q—1,T) Q

1o 1 — ¢o Ao(1 = ¢o)

_ TR(Q—1,XT) | QPo(Q, \oT)
N 1= a0 Ao(1 = do)

F(TvQ—I' 17)‘0)

_|_

FO(Q? )‘OT)

Proof of Lemma 3.4.1:

Recall that N(t) is the counting process of system demands in (0,¢]. Then, we
have, P(N(T) = 0) = po(0, AgT) as in unit Poisson demands and P(N(t) = k) =
polk, Az, N) for k > 1.

Case 1: y=mT form>1and 0 < ¢ < Q.

P(Y =mT,Qo=q) = P(N((m =1)T) = 0, N(mT) = N((m - 1)T') = q)
= P(N(T) = 0)" "' P(N(T) = q) = ¢g ' polg, WT,N) m=1,0<¢<Q

Case 2: y € (m—1)T,mT) for m > 1 and ¢ > Q.

P(Y €ly,y+6y), Qo= q)

Q-1
= ZP(N((m—l)T) =0,N(y) = N((m—1)T) = j,N(y + éy) — N(y) = ¢ — j)

N
= ¢p Z Po(d, AT, N) | D A8y + o(6y)vilg —j)]
7=0 =1
Q-1 g N
5 S bl (= 1)) [ Aoy + oo )
=0 k=0 =1
Z)—l J N
=00 DD Aapolks Aoy — (m — 1)T))wpr(j, k l ri(6y + o(6y))vilq —])]
=0 k=0 1=
Z)—l Q-1 N
_IZZf(y—(m—l)T)k—l—l)\o war(g, k Zn oy + o(dy) )vz(q—j)]
=1

k=0 5=k
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Result follows by dividing both sides by ¢y and taking the limit as 6y — 0.

Proof of Lemma 3.4.1:
Similar to unit Poisson demands, we will prove that the proposed solution satisfies

the differential equations for the steady-state distribution, g;(n;, no, z).

Since the derivations of these differential equations are quite similar to those
in unit Poisson demand, we just present the differential equations for g;(n;, no, z)
without giving the derivations. Then, for each case we show that the proposed
solution satisfies the differential equations.

Case 1: ng=0,n;, =0,0< 2 <T.

9:(0,0,
% = _)\Ogi(ov 07 Z) (96)
gi(07 07 Z) = C1p0(0, )\Z'Z)po(o, ()‘0 - )‘Z)Z) = Cle—/\oz (97)
8g2»(0,0,2)

0z = —XoCie™™" = —20gi(0,0, 2)

Case 2: g =0,0<n; <Qand 0 <2< T

a 7 2'707 e
% = —Xogi(ni,0,2) + X Y gi(ni — k,0, 2)vi(k)
< k=1

0<n <Q,z<T (9.8)

9i(n:,0,2) = Cypo(ni, Arivz, Ay )po(0, (Ao — Ag)2)

=C ipo(k, )\iZ)UZ(k)(ni)po(Oa ()\0 - )\2)2) =C4 Z Tvi (m) (9'9)

6g¢(m,0,z) i 6_/\02()\2'2)]“ (*) ng )\ie_/\oz()\iZ)k_l )
" = = - " 0, () (.
= R )+ G St
n;—1 )\Z —Xoz )\Z k
= —XCigi(ni,0,2) +C1 > ek—!(z)vfkﬂ)(ni)

k=0
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Next, we should show that

n; n;—1 )\ie_/\oz()\iZ)k L

)\i Z gi(ni - k, 0, Z)vz(k) = Z va +1)(ni) (910)
k=1 k=0 :

Using the proposed solution given in Equations (9.7) and (9.9), we can rewrite

the right hand side of Equation (9.10) as follows:

)\i Z gi(ni - k, 0, Z)vz(k)
k=1

n;—1 n;— k)\ e—/\oz()\ Z) )

= X0y Z Z —vZ (n; — k)v;(k) + X\;Cre” Aoz vi(n;)
k=1 j=1
ni—1n;—J )\ Aoz )\ )

N0 Y Y e—Z)vf])(ni — Eyoi(k) + M Cre v ()
7=1 k=1

VRS > o9 (m; — kyo(k)

'
7=0 J- k=1

ni—1 )\ie_/\oz()\iz)j [ni—j

n;—1 )\i —Xoz )\i i
= \Ch Y jl( )+
J=0 ’

Case 3: 0<no<@,n;=0and 0 <2< T
9g:(0,ng, z)

k=1 i#i
0<no<@z<T  (9.11)

9:(0,n0,2) = Cipo(0, Aiz)po(no, Aty 2 AN {2} })

no —/\Oz Ao — s k
= Y °C ( Z, i)) wan i (10, k) (9.12)
k=1 )
0¢;(0,ng, z "0 e (Ao — Ai)z
k=1 )
70 e—/\oz A _)\i z k—1
+ Qo — X)) Z (((ko_ 1),) ) wN\{i}(”O? k)
k=1 .
= —)\ogi((),no, )

b e e

k=0

wan i} (no, k + 1)
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The next step will be to prove that

ZgZOno [Z)\v] ]:

JF
no—1 e—/\oz(()\o o )\Z')Z)k_l

(o= A)C1 2, (k—1)!

k=0

wa(iy(no, k +1)
(9.13)

The proposed solutions in Equations (9.7) and (9.12) give

g):gi((), no — k, z) [Z )\jvj(k)]

J#
ng—1 ng—~k —Aoz(()\o _ )\z)Z)m

=0 >

k=1 m=1

+Cyem07 [Z Aﬂj(”O)]
i
kzm (o = A)2)”

=1

wan (i3 (no — k,m [Z)\ v;( ]

|
. JF

no—1
:CIZ

!
me1 m.

wan (it (no — k,m) [Z)\ v;( ]

I

+Che " [Z Aﬂj(”O)]

I

= noz:l —/\oZ(()\o -\ )Z)m {noz:m w/\/\{} ng — k, m I:Z)\ v] ] } 9. 14)

!
m=0 m: k=1 e

Multiply and divide the right hand side of Equation (9.14) by (Ao —A;)/Ae. Then,

g):gi((), no —k, z) [Z )\jvj(k)]

it

no—1 _—XAgz Y _)\z m A 7o —M
— ()\0_)\2)01 Z (& (( 0 )Z) {)\0_0)\ Z wN\{} O_k m l:zr]v] ]}

!
m=0 m: tok=1 e

= -y 3 e A

m=0

w/\/\{i}(no,m—l— 1) (915)

m!

Case 4: 0 <np < Q,0<n; <Q,0<n;+ng<Qand0<z<T

agi(ni,no,z)

0z )‘092 ng;,No, 2 ‘I’ Zgz n; k,no,Z))\ﬂ)Z’(k)
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+ igi(nu% — k. 2) [Z Aﬂ)j(k)]

k=1 G
0<n; <Q,0<ng<Q,0<n;+ny<Q,0<z<T (9.16)

gi(ni,ng, z) = [Zpo 7, izl n] lzpo (Ao — Ai)z )wN\{z'}(nmk)]
7=1

9gi(ni,no, 2) _ —A\Ce 7 [n ()\i,%)jvfj)(m)] l% Mwm{i}(no,k)]

Iz = ! k=1 k!
= Cihie ™" [; ((jiyl_)v ”z(j)(”i)] Lg; - _k!Ai)Z) “W\{z'}(no,k)]
+C1 (Ao — N) ~oz é()\;—f)]vf])(nz)] [i (()\0(;_)‘21);) _ wan i3 (no, k)]

I )\ZZ = 0 Ao — )\Z z k
= —Xogi(ni,no, z) + C1Aie™0 [ ( ; : ;vz(])(”i)] [Z %I‘W\{i}(noa@]

+C1 (Ao — emh0*

wan (i3 (no, k)]

%
\_/
| I
| e
i\g
S
3
N

Observe that Equation (9.16) can be rewritten as:
agl(nzv no, Z)

0z
+A ];: gi(ni — k,0,2)v,(k) lf: Wt@/\{i}(no, m)]

m=1

— _)\O.Qi(niv no, Z)

S o (Ai2) ()
+ 3 9i(0,m0 — k,2) [ D Ni(k) ] [D2 — v (n;)
k=1 j =1 J*

0<n; <Q,0<ny<Q,0<n;+ne<Q,0<z<T

Equations (9.10)-(9.13) provide the result.
Thus, the steady-state probability density function of ¢;(¢) has the structure

given in Equation 3.15. Moreover, for ¢;(n;, no,z) to represent a probability
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density function, we should have:

Q-1 Q-1-ng

/Ziolz Z gi(ni,ng,z) | dz =1

no=0 n;=0

Therefore,

T Q-1 Q-1-no T
01/220{2 2 /Z:oﬁo(””{f}zv{i})ﬁo(”OvA{N\{i}}Za{N\{i}})dz =1

no=0 n;=0

should hold.
Proof of Lemma 5.2.1: We first derive the partial differential equations that
g(t,1, z) satisfies and use them to obtain the partial differential equations for the
steady-state distribution, g(z, z).

Observe that £(t + 6t) is in state (¢,z + 6t) if and only if £(¢) is in state
(¢,z) and no order is placed at the warehouse during [¢,t + 6t) (or in [z, z + 61)).

Therefore, we can write:

glt+ét,i,z+6t) = PUP(t)=1¢,7(t)=2z2Y > z+ 6t)
= PUP(t)=42()=2)P(Y >z4+ 6t |IP(t)=14,72(t) = z)
= g(t,0,2)P(Y > z46t|Y > z) (9.17)
where Equation (9.17) follows the independence of the inventory position of the
warehouse and the interarrival time of the orders placed at the warehouse. Hence

Fy(z + 5t>

t+ot,i,z40t) = g(t,1,z)—=
o ) = el D

(9.18)
and
Fy(z2)g(t +8t,i,z+6t) = g(t,4,2) = g(t,4,2)Fy (= + 6t)

Rearrangement of the terms after adding Fy(2)g(t,7, 2) and —Fy(2)g(t,1, 2 + 6t)
to both sides gives:
Fy (2)[g(t + 8t,d, 2+ 6t) — g(t,i,2 + 6t)] =
_FY(Z)[g(tv iv Z+ 5t> - g(tv iv Z)] - g(tv iv Z)[FY(Z + 5t> - FY(Z)]
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Dividing both sides by 6t and letting 6t — 0, we have

ag(t ) - ag(t,i,z)
Finally, taking the limit as ¢ — oo results in
M = —g(z,z)M for (i,2) € [so+ 1,80+ 2,...,50] x [0,59.19)
0z Fy(z)

The boundary conditions to the system of partial differential equations described
above are given in the following two cases:
9(50,0) : An order that has just been placed at the warehouse triggers a
warehouse order itself.
9(S0,0) = Z Z / L) Fraoz.4) . (9.20)
j=sod1 g=j—s0 Y F= Y(Z)
g(2,0) for ¢ € [so+ 1,80+ 2,...,50 — 1] : An order that has just been placed
at the warehouse does not trigger a warehouse order itself.
g(i,0) = /Oo (7, ) Mdz (9.21)
j=i+17% Fy(z)

We now verify that the proposed solution satisfies Equation (9.19).
gli,z) = CiF'y(z)

— _C(e) = —glis o) )

Fy(2)
The boundary conditions given in (9.20) and (9.21) results in

9(50,0) = Z Z/ Ty () 1022 1)y,

j=so+1g=j—s0 " 77 FY(Z)

—CZF)/(Z)—

0z

= Z Z/ Cifvgo(z,q)d Z ZCPQO)

j=so+1q=j—s0 " °= J=s0+1g=j5—50

and for ¢ € [sg+ 1,80+ 2,...,50 — 1], we have

S
. S Jro(z:0 — 1)
i0) = (= O Fy ()0 7V
g( ) ]‘—Zi;_l =0 J Y() Fy(Z)
) o So

= 2 | _ Cilvauzj —i)de= 3 CiPo(j —1)
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For ¢(i,z) to represent a probability density function,

So ~
> g(t,z)dz=1
i250+1 #=0

should hold. Therefore,

So o . So
i250+1 z=0 i250+1
Hence,
So
S Ci=1/E[Y)
i250+1

The steady-state probability mass function of [F, is obtained by integrating

g(t,z) over z.

T = /Oo g(t,z)dz = - CiFy(z)dz = C;E[Y] for i€ [so+ 1,50 +2,...,50]
z=0 z=0
The steady-state p.d.f. of Z is obtained by summing ¢(¢,z) over all possible
values of 1.
SO SO _
fz(z) = > gliz)= Y Cily()
i250+1 i250+1

The result follows from Equation (5.4).

Proof of Lemma 5.2.2:
To prove the independence of I FPy(t) and Dy(t,t + 7], we should prove that

tlim P(IP(t) =14, Do(t,t+7]=k)=m tlim P(Do(t,t+ 7] =k)
Vi€ [so+1,504+2,...,5)],ke0,1,2,...)

¢
tlim P(IP(t) =1, Do(t,t+7]=k) = hm P(IP(t)=1,7Z(t) =z, Do(t,t + 7] = k)d=
— 00 2= 0

¢

= lim P(Do(t,t+ 7] = k|IP(t) =1, Z(t) = z)g(t,i,2)dz

t—00 J,—0
:/ lim P (Do(t,t+ 7] = 01 Po(t) = i, Z(1) = 2) g(i. 2)d=
2=0

B DOOZ—I—T]—k)
e 5

CFy(2)dz = C, / T oz 7, k)dz (9.22)
2=0
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Equation (9.22) follows since, given that the last order is placed at time ¢t — z ie.
Z(t)=z, the distribution of Dy(t,t + 7] is the same as Dy(0, z + 7].
The next step is to find limy—.o P(Do(t,t + 7] = k).
t
hm P(Do(t,t+7]=k)= thm P(Do(t,t + 1) =k|Z(t) = 2) f200)(2)d=
—00 Jz=0
k) Iy (2)

o B

= [0l PDoft,t+7) = KZ(0) = 2) o) = [ “”“

Zo—>OO

1

= W/Z: oz +7,k)dz

Then,

o0

7 lim P(Do(t,t+7] = k) = CiE[Y]ﬁ/

2=0

oz + 1, k)dz = C; /Oo oz +7,k)dz
z=0
tlim P(IP(t) =1, Do(t,t+ 7] = k)

Proof of Lemma 5.2.3:
a) so >0

e 7 < Lo. Using Equation (5.5), we can write

P(Wo(t,Q) ST) :P(]Po(t+T—L0)—Do[t+T—L0,t) ZQ)
So
= Z P(]Po(t+T—L0):Z,Do[t+T—L0,t)ZZ—Q)

t=max(so+1,9)

Due to Lemma 5.2.2, we can write

Fyyp(7) = lim P(Wo(t,q) < 1)

t—0o0
So

t=max(so+1,9)
Note that since ¢ is an order point, looking backward from ¢, D[t +7— Lo, t)

has the same distribution as Dg(0, Lo — 7]. Then, it follows that
So
Fay)(7) = Y. PUR=)P(Do(0,Lo—7]<i—q)
t=max(so+1,9)
So

= Z § mip(Lo — 7, k)

t=max(so+1,q9) k=0
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where @(Lo — 7,k) and #; are given in Lemmas (5.1.1) and (5.2.1),

respectively.

e 7 > [ Since we know that Wy(¢,¢) < Lo for sp > 0, we have

tlim PWo(t,q) <7) = Fwyq(r)=1 for 72> Ly

b) Ssg < 0
o 7 < Lo. Fyy,y(7) for this case is quite similar to so > 0. So, we omit here.

® T:Lo.

Fyw,(q)(Lo) = lim Fy,q)(7) + P(Wolq) = Lo)

T—Lg

Using Equation (5.8), we have

lim P(Wo(t,q) = Lo) = P(Wo(q) = Lo)

so+q so+q
= lim Z P(IP(t7) =1) Z 7
oo 1=s0+1 1=s0+1
and
So i—q
lim FWO(q)(T) = lim Z Zﬂwp(Lo—T,k)

T—Lg =Ly t=max(so+1,q9) k=0

= ZZthmcptk ZTQ

i=q k=0

since lim;_ o+ ¢(%, k) takes the value of 1 if £ = 0 and 0 otherwise. Therefore,

s0+¢ g—1
Firago zrw > m=l- ¥ m
1=s50+1 1=s50+q+1

e 7 > [o. Using Equation (5.9), we have

P(Lo < Wolt,q) < 7) = P(IPs(t™) — Do[t,t + 7 — Lo] < s0)
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Here, we can write Do[t,t + 7 — Lo] = ¢ + Do(t,t + 7 — Lo|. Therefore,

P(Lo < Wo(t,Q) S T) == P(]Po(t_) —Do(t,t+T —Lo] S So —|—q>
g—1
= Z P(IP(t7) =4, Do(t,t+7—Lo] > i —q— s0)
1=s0+q+1

Since t is a demand point, Do(t,t + 7 — Lo] and Do(0,7 — Lg] has the
same distribution. Due to Lemma 5.2.2, [ Py(t) and Dqo(t,t + 7 — Lo| are

independent as { — oo. Therefore,

tlim P(Lo < Wy(t,q) < 1)

q—1

=lim >, PP(t7)=i)P(Do(t,t +7— Lo) >i—q— s0)
T imsota 41
g—1
P(Lo <Wy(q) < 1) = Z T P(Do(0,7 — Lo] > ¢ — q — s0)
1=s50+q+1
g—1
= Y 7wl =P(Do(0,7— Lo <i—q—s0—1))
1=s50+q+1
g—1 — i—g—s0—1
S S DD SRS
1=s0+q+1 1=so+g+1 k=0

Then, for 7 > Ly,

Fywyo)(T) = Fwy)(Lo) + P(Lo < Wo(q) < 7)

q—1 q—1 - 1—g—s50—1
= 1- > m+ > ®m- Z > mie(r — Lo, k)
1= 50+q+1 1=s0+g+1 it=sg+g+1 k=0
— i—q—s0—1

= 1- Z Z mip(T — Lo, k)

1=s0+q+1 k=0

Proof of Lemma 5.2.4:
Referring to 5.10, we can write P(OHy(t+ Lo) = t) conditioning on (I Py(t), Z(t))

as follows:

P(OHy(t+ Lo) =1) =
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o So—i

= [T X POH(t + Lo) = i|IPo(t) = i + k. Z(1) = 2)g(t,i + k, 2)d=
z2=0 k=0

- / P(OHy(t + Lo) = i|IPy(t) = i, Z(t) = 2)g(t.4,2)d=
t SO —1

[0 POH(t 4 Lo) =il TRs(t) = i+ b Z(t) = 2)g(L,i + . 2)dz
=Y k=1

Let t — oo. Then, we can write:

Ui = lim P(OHo(t + Lo) = i) = P(OHy = i)

= [P(Y1 > Lo+ z2Yy > 2)+ P(Yy < Lo+ 2,Q1 > 1Yy > 2)]CiFy(2)dz
z2=0
So—1 oo n n+1
+ZZ/ PV < Lot 23 Qi= kS Qi > k4 ilVi > 2)Cipi Ty (2)d=
k=1 n= =1 =1 =1
—/ Fy(Lo+2) + Z [Fy.go(Lo+ 2,7) — Fyg,(2,7)]| dz
7=1+1
So—1 oo n n+1
+ZZ/ Coor PO Y L0—|—zZQ_kZQ > ki, Ys > 2)dz
k=1 n=1 i=1
—/ Fy(Lo+2)+ Y [Fyo(Lo+ 2,7) = Fygo(2,7)]| dz
7=1+1
Sp—1 oo Lo+z n n . . .
—I'ZZZCZ-I-k/ / (ZKSLO—I—Z—thQi:k_%Qn-H>Z)dFY7Q0(t7])dZ
k=1 n=1 j5=1 1=2 =2
ZCi/ Fy(Lo+2) + Z [Fy.go(Lo +2,7) — FY,QO(ZJ)]] dz
z=0 7=1+1
So—1 o0 Lo-l—Z
1P, (1) S ZZOM/ / Fytosy g (Lo + 2 = 1k — [)dFrqy (1, j)d>
k=1 n=1 j3=1

Proof of Equation 5.12:

So—50

En(So—s0)] = Y nP(n(So—s0) =n)

n=1
Using the definition of n(So — s¢) = min{n : 370, Q; > So — so}, we can write:

So—50

El(So—so)l = X nP(X Qi < So— 50,3 @ = 50— s0)

n=1
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= Y on| Y POoQi=kQu= S —s0—k)
n=1 k=0 =1

50—50 _50—50—1 n—1 ]

50—50 _50—50—1

N2 P<@é”‘”=k>[1—FQO<So—SO—k—1>1]

L k=0
50—50 1
= Z n[ng_ )(SO—SO—1)—F6(27;)(SO—80—1)]
n=1
50—50—1
== Z FQ(QZ)(SO_SO_l)
n=0

Proof of Equation 5.13:

o0

ElQ.] = Z nP(k(Sy — sg) =n)

n:So —50

= f: nZH:P(kZ:lQ <SO—SO—IZQ—n]

n=Sp—s0 Lk=1 =1
oo n Sg—so—1 k—1
= > |y > P(ZQiZJ'an:n—j)]
n=3S0—s0 Lk=1 j=k
= 2 n|Xx

n=50 —s0 Lk=1 j=k-1

Proof of Lemma 5.2.5:
First, let m; < 5;. Using 5.14, E[AR;(m;, ¢)] can be written as:

EIAR(mi,q)] = i BIXS, s = T (XG> Tg))
—ZE S — ] (st it > Li‘|’WO(Q))]
- Z E(Li + Wo( ))](Xgi—mi+j > L+ Wolq))]

= Z /wzo[/t:bw EF(£, S — mi + J, A)dt]d Fywy (g) (w)

—Z/ P(X5 vy > Lo+ w)d o) (w)
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where f(x,k,\) be the p.d.f. of an Erlang random variable with shape and scale
parameters, k and A, respectively. Substituting Erlang probabilities for Xf%—miﬂ'?

we have
oo o] e_/\it()\'t)si_mi+j_l
AR (ms, 9) Z l =1, -I-w L(S; —m; + ) o ()
_Z/_ F( Z'—|-w,Sz’_mi‘|‘j7)‘i)dFW0(q)(w)

71=1

—m; +j/ e‘“()\it)s mi+j
i - dt| dF;
Z/ [ Li+w F(SZ —m; ++ 1) WO(q)(w)

35

-3 / (L ) (L w0, 5; = mi + 4, M) d i ) (0)

1 w

ER

/ [#/ F,Si—mitj+1, Mdt] dFivy (q)(w)
0 A Litw

j=17"7
— O(LZ + w)F(LZ + w, Sz —m; + jv )‘Z)dFWO(q)(w)
j=1""=
o [ [Si—mit ] ~
_ 0 [fF(Li‘l'w,Si_mi‘F] +1,Az’)] d Fypy (g (w0)
]:1 w= K3
— O(LZ + w)F(LZ + w, Sz —m; + jv )‘Z)dFWO(q)(w)
j=17"7

Similarly, E[B;(mi,q)] will be written as

ElBimig)] = 3 (mi— MP(X, 4 < Tilq) < Xi_pr) + miP(X, < T(q))

k=1
After standard algebraic operations, we get:

i=1

— Z/ 0F(L¢+w,5¢—mi‘|‘ja Ai)d Fy, () (w)
j=1717

Now, let m; > 5;. Using (5.15), we can write E[AR;(m;, q)] as

J=mi—Si+1



Chapter 9. Appendix 182

my

- > E[Li+ WO(Q)](Xgi—mi-H‘ > L+ Wolq))]

J=mi—Si+1

Using the same steps as in case of S; > m;, we obtain

m; Lo SZ —my; + y .
B[AR(miq) = ) / . [#F(Li +w,Si—mi+ ]+ 1W)] Ay () ()

j=mi=Si+1 7T i

i Lo _
_ Z / [(LZ + w)F(LZ + w, SZ —m; + j, )\2)] dFWO(q)(w)
j=m;—S;4+17w=0
E[Bi(mj, q)] can be calculated as
E[Bi(mi,q)] = (mi—8i)+ Y kP(X; <Tilq) < Xjpy) + SiP(X§, < Tilq))
k=1

Using the same approach, we write:

E[Bi(mi,q)) = (mi—S)+ > P(X§_4; <Tiq))
J=mi—Si+1
= (mi—=S)+ Y P(X§_p4; < Li+ Wolq))
J=m;—S;+1
— Z /_0 F(LZ + w, SZ —m; + j, )\i)dFWO(q)(w)

J=m;—S;+1

Proof of Corollary 6.1.2:
First suppose so > 0. Due to restrictions on (sg, So) values and using Lemma

5.2.3, we can write for 7 < Lg:

Fywy(7) = Z Z

i€{s0+Q,50+2Q,....5 } k€{0,Q,....i-Q} (A

1
— Z [1— F(Lo—7,7,A0)]
i€{s0+Q,50+2Q,....S0 } Cag

N
o 1 .
= 1_ZC F(LO—T,SO—|—ZQ,)\0)
Ap

=1

1

S‘Q(LO - T, k)
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Now, suppose so < 0 and let 7 < Lg. Then,

Fuyg(m) = Z Z

c 14
i€{Q,2Q,..,50} KE{0,Q,..,i—Q} P20

1
— S [1 = F(Lo— 7.4, Ao)]
i€{Q,2Q,...50} Ca
1 1
= & — Z F(LO_T7Z.7)\O)
Q CAO 1€{Q,2Q,...,5} CAO

CSO 1 CSO .
= - ZF(LO_Tlev)‘O)

Cro Cao 55

(Lo —1,k)

Now, let 7 = Lg. Then,

1 —S8p — Q 1 C—s -0
FWo(q)(T) = 1- Z c :1_TC -1 — Co
i€{504+2Q,50+3Q,....0} >0 Ag Ao

For 7 > Lo, we have:

Fwy(r) = 1= Z Z

i€{s0+2Q,50+3Q,...,0} k€{0,Q,....i—s0—2Q} Cao

1 )
= 1= Z [1_F(T—L07@—50—Q7)\0)]
i€{504+2Q,50+3Q,....0} (ag
C—SO—Q 1 (—s0-@

FT—Lo,k 7)\0
Cao +CA0 ;; ( Q> o)

1

S‘Q(T - L07 k)

=1

Proof of Corollary 6.2.1:
Observe that Y; =Y — MT where M > 0 corresponds to the number of review
instances which do not trigger an order between two ordering instances.

Now, suppose that 0 < ¢ < @) and y = T'. Then, we have

Fraaolind) = X Fraullm+ DT.0) = 3 6 mo(a MoT)

= po(q, A1) /(1 = o)

Po(q, AoT)/(1 — o)

polg AT (1 —b9)

de|Qo(T|Q) = deQo(Tv Q)/PQO(Q) =
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Similarly, for ¢ = () and 0 < y < T, we have

o0

de7Q0(y7 Q) = ij: fY7Q0 (y + mT7 Q) = Z_: (bgbf(y, Qv )‘0)
= Sy, @A)/ (1 = ¢o)

Then, we have

QMb)@
de|Q0(y|Q) = FO(Q — 1,)\0T)/(1 — ¢0) = F(T,Q,)\o) = fTe(vaan)‘O)

Proof of Corollary 6.2.2:

a) Using conditional distribution, Yén)an)(y, q) can be written as:

Py g (9:0) = fyiogeo(yla) Py () (9.23)

First, suppose that ¢ = n(). It is obvious that all n orders are triggered by the
the accumulation of () demands in the system. In view of Corollary 6.2.2, Y, has

a truncated Frlang distribution given an order of size (). Therefore,

fYé"),QE")(y’ nQ) = fl("z)(yv T7 Qv )‘O)PC(QZ)(Q) = fl("z)(yv T7 Qv )‘O)PQO (Q)n

Now, suppose that n < g < n@) and let m > 1 be the number of orders with size
less than ) units. Then, these m orders will demand a total of ¢ — (n — m)Q

units since the remaining (n — m) orders will have a size of @) units. Then,

Pya) = if(mm)%ﬁ‘m)«n—m)@)Pé;?)(q—<n—m>@>

Pg;n)(q) is the probability that a total of ¢ units are demanded in m orders each

of which have a size less than ). Using Equation (9.23), we can write:

fYén>7an>(?Ja q) =

S C(nym)PS (0 — m)Q) P (q — (n — m)Q)

(9.24)
2t | Sy e (y = m T (n = m)Q) fyom oo (mT']g — (n = m)@Q)
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Equation (9.24) follows because, for ¢ < @, fv,j0,(y|g) has a probability mass of
one if y = 1T'. Then, we have:

Fyim gy, 4) =
= 3 Clnam)Pay((n = m)Q)" ™" Fgi(a = (n = m)Q) 5" (y = mT.7,Q, Xo)

b) We first point out the following observation:
Yo =y 4 KT

where K is a random variable corresponding to the number of review instances
which do not result in an order trigger.

Suppose that there are K = k review instances in (0,y] and therefore, we
have a total of & + n decision epochs at which either an order is placed or only
a review is carried out. The probability that & + n’th decision epoch is an order

instance is given by C(n +k — 1, k)¢f(1 — ¢o)".
Fym o, a) = 2200 +k =1 k)1 = 60)" fym oo (y = kT'q)
2

The limits on & is determined using 0 <y — kT < nT.
Proof of Equation (6.5):
First, suppose that ¢t < T'.

T T
Fi(“z)(thva)‘O) =1 _/ / . fTe(vavQv)‘O)fTe(vava)‘O)dydx
Y r=t—y

[F(Tv Qv )‘0) - F(t e Qv )‘0)] dy

. T Y, &, 0) T f(vav)‘O)F(t - vav)‘O)

=1 /y:t_T PG 0™ +/ o F(T,0, %) dy
_PU-T,Q, ) fly, Q. 20) F'(t =y, Q, Ao)

B (T7 Qv )‘0) + ‘/Z/Zt—T ( 5 Qv )‘0) dy
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Proof of Equation (6.6):
First, take t < T

f*uTQ%—A;xothQAwM%TQmw@

to E 7Q7 00))F1("z( _vava)‘O)dy

_/f Fly, @ 2) F(t —y,2Q, ) F(T,3Q, \o)
 Jy=o F(T,Q, ) Y= R, 0,00

Now, let T' <t < 2T.

>,>/

FOWT,Q, ) = FET, T,Q,Ao> + / io / :f’_y 11 (2, T.Q, M) fr.(y. T, Q. Ao)dedy

Finally, suppose that 27T <t < 3T
2t
aTwad—/tﬂ/t (2, T, Q. Ao f1.(y. T, Q, Ao)dedy
w=i-y
b 7)\
M [F}J(QT, T7 Qv )‘0) - Fj("z)(t - Y, T7 Qv )‘0)] dy

7
:1_/
y=t—2T F
_ T Sy, @, M) T f(y,Q, \o)
o /y:t—?T mdy +/ t—2T mFT& (t =y, T,Q; do)dy
LT 0.0.0)

LA 0] p2 oy T Q. Ao)d
e or F(T Q )\0) Te ( Y, 7@7 0) Y

Proof of Lemma 6.3.1: Observe that the inter order time Y = T and the
order quantity is ()9 = g > () if ¢ units have been demanded during the last T'

time units. Therefore,

fY7Q0(T7Q) = pO(Q7 )‘OT) if q > Q
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Similarly, the inter order time is Y = mT,m > 1 and the order quantity is
Qo=¢>Qif k <@ — 1 demands have arrived during (m — 1)7T" time units and
g — k units have been demanded during the last period of T time units. Then,

we can write:

fv.g,(m Z po(k, Ao(m — 1)T)po(q — Kk, AoT) (9.25)

_ i BT g < 1) T

e T (B O
q! = k(g — k) m

Proof of Corollary 6.3.1:
a) Pg,(q) is obtained by summing fyg,(y,q) over all possible values of y and

does not have a further closed expression.

b) First let y = T". Then,
> polg, AoT) = Po(Q — 1, A7)

Now, let y = mT,m > 1. To find fy(mT), instead of using the final expression of

frigo(mT, q), we will use an intermediate expression provided in Equation (9.25).

o Q-1
fr(mT) = 3% polk, do(m — 1)T)po(q — k, AoT)

9=0Q k=0

Q-1
= 3 otk Ao(m = 1T) [1 = Fof@ — k= 1, AT
= Pk, o(m Z Po(Q — & — 1, Mo(m — D) T)po(k, \oT)
= Py(Q — 1, Mo(m — )T)—PO(Q—l,)\OmT)

The result follows from the fact that Poisson distribution is closed under

convolution.
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Proof of Corollary 6.3.2: If t < T, Dy(0,t] = 0 should hold. Therefore,
©(t,0) =1 for t < T. Since the orders arrive in batches of a minimum size of @,
for t > T, Dy(0,t] has a positive mass if k =0 or k > Q.

Using Lemma 5.1.1 and Corollary 6.3.1, we can write:

/7]
g@(t,O) FY —1—ny mT

[t/T]
L= Po(Q ~ L AT) + Y. (Po(@ = 1L do(m — 1)T) = Pof@ — 1, domT))

= Po(Q — 1, [t/T] AoT)

—1—

For t > T and k > 0, Lemma 5.1.1 gives

lk/Q] [(¢=nT)/T]
n=1 m=1

Using Equation (6.8) for F, (t,k) and I, Q(n)( — mT, k) provides the

(m) gl
result.

Proof of Lemma 6.4.1: Let N;(¢) be the counting process of retailer ¢ demands
in (0,¢] where t = 0 is taken as the time of the last order where the inventory
positions of all retailers are at their maximum levels.

Observe that the inter-order time is Y € (y,y + dy] and the order size is ¢
if (¢ — 1) demands that do not trigger an order arrive in (0, y], the ¢’th demand
that arrives in (y,y + oy] triggers the order. The order of size ¢ is triggered by
retailer ¢ in [y,y + 6y) if ¢ > Ay, Ni(y) = A, — 1, Ni(y + 6y) = x; = A, and for
J # 1 Nij(y) = x; < A so that Zé\f:l zj; = ¢. Due to Poisson demands, we can

write

PY €ly,y+6y).Qo=1q) =
N

= > po(Ai =1, Aiy) [Hpo 5 ]y] [Xidy + o(éy)] 1(g > A)
=1 { Zjv=19”J:q79”i:Ai } i

0<zj <Ay for j#14

(9.26)
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Expand Poisson probabilities and multiply and divide the right hand side of

Equation (9.26) by (¢ — 1)!/A3. Then, we have

PY €ly,y+6y).Qo=1q) =

N e~ Moy Ao(Moy)a~! (q _ 1)! AifAg)RiT?
SIS iy = e
[Hj;éi %] [rioy + o(6,)]

0<zj <Ay for j#14

= N

N (A;-1)

= f(y.q: %) > > (g — Wﬁ [H %] [rioy + o(6y)]

= N 3 j'
=t { Z]:lszqvl’i:Ai } i

0<w; <Ay for j#14

Dividing by ¢, and letting 6, — 0 gives the result.
Proof of Corollary 6.4.1:
a) Pg,(q) is obtained by integrating fy.g,(y,q) over y.

N e r

PQO(Q) = Z Z (q_l)’m Hﬁ ](qZAl)/:O
=t Zjvzl Ty :q773i:Ai ¢ _];ﬁz J ] Yy
{ 0<wj <Aj for j#1 }
N T B x]_
r; r.
- (q_l)’li _J_ ](QZAZ)
Z Z (x; — 1)! _jl_[;éi xj!_

= N
% 1{ Z]:lxﬂ:%xi:Ai }

0<zj <Ay for j#14

b) Using part (a), one immediately sees that fyg,(y,¢q) can be written as:
Fraoly.a) = fy.q,20) P, (q)

fv(y) follows from summing fy,g,(y,q) over all possible values of .

Proof of Corollary 6.4.2:
Using Lemma 5.1.1 and Corollary 6.4.1(b), we can write:

F(y,q, M) Po,(q)

0

Lp(t,()) =

My

~

=

I
1l O
RNE
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Now, suppose that £ > 0. A total of k£ units can be demanded with a minimum

of Vﬁ/@oJ and maximum of {k/QOJ demand arrivals. Using Lemma 5.1.1 and
Equation (6.10), we have

[+/,]
et k) = 3 Frau(y.k do) Py (k)
n:Lk/@OJ
3
N Z /_ F(t_y’k’)\O)PC(?Z)(]C)PQO(Q)JC(?J7Q7)‘O)dy
g=Q V="

0

The result follows after observing that F'(y, k+¢, Ao) = f;:o F(t—y, k, Xo)f(y,q, Ao)dy.
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