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Abstract

AN INVENTORY MODEL WITH TWO SUPPLIERS UNDER

YIELD UNCERTAINTY

Mustafa C�a�gr� G�urb�uz

M. S. in Industrial Engineering

Supervisors: Assist. Prof. M. Murat Fad�lo�glu,

Assist. Prof. Emre Berk

September 2001

In this study, an inventory model with one retailer and two suppliers is

considered for a single item. Di�erent from most of the models in inventory

literature, we do not make the assumption that we receive all the quantity that we

ordered. It is assumed that a random fraction of the lot size is actually delivered

by the suppliers. Hence, the model is constructed under yield uncertainty for

both binomial yield and stochastically proportional yield model. The demand

rate is constant, and backordering is allowed. The objective is to minimize the

long-run average cost and �nd the near optimal values for the decision variables;

order quantities and reorder point. Furthermore, the regions where diversi�cation

among suppliers is bene�cial are investigated. The results are generalized to \M"

suppliers (M>2) and solution method is proposed. Finally, experimental study

is carried out for the two-suppliers problem.

Keywords: Random yield, two suppliers
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�Ozet

B_IRDEN FAZLA TEDAR_IKC� _IN_IN BULUNDU�GU ORTAMDA

RASSAL VER_IML_I ENVANTER MODEL_I

Mustafa C�a�gr� G�urb�uz

End�ustri M�uhenlisli�gi Y�uksek Lisans

Tez Y�oneticileri: Yar. Do�c. M. Murat Fad�lo�glu,

Yar. Do�c. Emre Berk

Eyl�ul 2001

Bu �cal��smada bir perakendecinin ve iki tedarik�cinin bulundu�gu bir envanter

modeli bir �ce�sit �ur�un i�cin kurulmu�stur. Envanter literat�ur�undeki bir �cok

modelden fark� olarak, sipari�s mikatar�n�n tamam�n�n tedarik�ciler taraf�ndan

teslim edildi�gi varsay�m� yap�lmam��st�r. Verilen sipari�sin tesad�u� bir miktar�n�n

ger�cekte sa�gland��g� varsay�lm��st�r. Bu y�uzden, model binom da�g�l�ml� ve rassal

orant�l� olmak �uzere iki farkl� rassal verimmodeli g�oz�on�une al�narak kurulmu�stur.

Talep h�z� sabittir ve geri �smarlamaya izin verilmi�stir. Ama�c uzun d�onemde

ortalama maliyet fonksiyonunu enazlamak ve karar de�gi�skenlerinin (yeniden

�smarlama noktas� ve sipari�s miktarlar�) de�gerlerini bulmakt�r. Hangi parametre

setlerinde toplam sipari�sin iki tedarik�ci aras�nda payla�st�r�lmas�n�n karl� olaca�g�

incelenmi�stir. Sonu�clar ikiden fazla (\M" say�da)tedarik�ci i�cin genelle�stirilmi�stir

ve �c�oz�um yollar� �onerilmi�stir. Son olarak iki tedarik�cinin bulundu�gu problem i�cin

say�sal analiz yap�lm��st�r.

Anahtar s�ozc�ukler: Rassal verim, iki tedarik�ci
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Chapter 1

Introduction and Literature

Review

1.1 Introduction

Management of the inventories that a �rm keeps is very crucial for the �rm to

operate pro�tably, from both economical and physical perspectives. Inventory

keeping costs constitute a signi�cant portion of the total operating costs for

companies. Keeping excess inventory may result in unnecessary holding costs

including the opportunity costs. On the other side, if there is not enough

inventory on-hand, stockouts occur and the demand occurring at that time period

is either totally lost, or partially lost or fully backordered. But, in all three cases,

the �rm incurs shortage costs. Not satisfying the demand instantaneously results

in loss of goodwill due to customer dissatisfaction. Hence, shortage costs do

not only a�ect the present, they also a�ect the future sales of the company.

Furthermore, one cannot keep as much inventory as he wants due to the capacity

constraints of the warehouses. Therefore, the decision makers are to take into

account the physical limitations of the problem.

Complexity of the inventory management problems depends on the structure

of the problems. Randomness in lead time, demand, procurement/production

make the problems harder to solve. Besides, as the number of products and

1



Chapter 1. Introduction and Literature Review 2

suppliers increase, it becomes much harder to �nd analytical solutions. The

nature of the items also play an important role in the complexity of the problem.

For problems involving continuously deteriorating items, items that have �xed

or random shelf lives, di�erent models need to be constructed. The objective

functions are usually the expected total cost or the expected pro�t.

Costs incurred in inventory problems can be classi�ed into the following

categories: replenishment, inventory carrying, backordering, system control and

inspection costs. Almost all of the previous research in inventory theory assumes

a �xed cost for placing an order, which is independent of the lot size. The

replenishment may be instantaneous or we may face a positive lead time. In

addition to the �xed ordering cost, we incur purchasing/production costs, which

are mostly linear in the number of items purchased/produced. The holding

costs include opportunity costs related with the cost of capital, taxes, warehouse

operation costs, insurance, and �nally deterioration costs. Most of the researchers

assume that holding costs are directly proportional to the average inventory level.

Shortage costs occur due to the unsatis�ed demand when the system is out of

stock. They are in the form of backordering or lost sales costs both of which cause

loss of goodwill and customer dissatisfaction. System control costs may include

the costs of reviewing the inventory level in a continuous or periodic fashion,

acquiring data, computational costs, and inspection costs.

Mostly it is assumed that the suppliers do provide all the amount ordered by

the retailers. Very few papers consider the unreliability of the suppliers. But,

in some cases, the suppliers may provide only a fraction of the quantity ordered.

In this case, the decision makers have to make their ordering decisions under

uncertainty because they do not know the amount they will actually receive.

According to the review by Yano and Lee [23], �ve di�erent ways are proposed

to model yield uncertainty. The �rst one assumes that producing a good unit

is a Bernoulli process, so the number of good units has a binomial distribution.

Second one is the stochastically proportional yield model in which a random

fraction of the order quantity is actually received by the retailer in which the

distribution of the fraction is independent of the batch size. The third is similar
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to the second one except for the fact that the distribution of the fraction changes

with the batch size. In the fourth way, the output quantity turns out to be

minimum of the input quantity and the realized capacity. Finally, the �fth

approach involves specifying for each possible batch size the probability that

each possible output quantity will occur. The second way of modeling yield

uncertainty is the one that has been most extensively used in the literature.

The number of the suppliers is another factor complicating the analysis of

the inventory management problems. Although there is a trend in reducing the

number of suppliers due to the long-term contracts with the retailers, this is not

always the case when we have unreliable suppliers. In order to reduce uncertainty

on the amount that is actually received, retailers tend to order from more than

one supplier. Not only do they reduce uncertainty, but also their purchasing costs

may go down due to the competition between the suppliers to get a large share

in the market. We consider a setting with two suppliers.

1.2 Literature Survey

One of the earliest studies on random yield is done by Wei [20] where a random

fraction \p" of the lot is defective and \p" has a known probability distribution.

He compares the results obtained by the model that ignores random yield with

his model. Both constant demand and random demand (single period) cases

are analyzed. He also discussed the e�ect of inspection policy on the average

inventory level and adopted the assumption of 100 % inspection on receipt of

order.

In the study by Gerchak, Vickson, and Parlar [11] a periodic review

production model with stochastically proportional yield and uncertain demand

has been analyzed assuming full backlogging, no set-up cost, unit production

cost proportional to the realized yield, and a salvage value for each item unsold.

They �rst analyze the single period and prove that the expected pro�t function

is concave in initial stock and lot size. The optimal policy is characterized by a

critical level above which no order will be placed. Furthermore it is observed that
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when an order is given in the case the initial stock is below the critical value, the

expected yield generally does not equal the di�erence between the order point

and available stock. The variable representing the random yield and demand

are assumed to be independent and identically distributed over the periods in

multiple period problem. Then, 2-period problem is formulated and the pro�t

over two periods is also proven to be convex. The critical level for the �rst period

in a 2-period problem turns out to be larger than the one in single period problem

in case an expression of parameters is satis�ed. Finally the 2-period formulation

is generalized to "n" periods using a DP approach, concavity of the pro�t is

shown and a �nite critical value for each period is obtained.The structure of the

optimal policy for �nite horizon problem turns out to be myopic (it is not easy to

tell how much to order at the beginning) which makes the multiple-period case

hard to solve explicitly.

Similar to the previously mentioned model, Henig and Gerchak [14] discussed

a periodic review model assuming general holding/shortage and production costs

in the presence of random yield which is of stochastically proportional yield. It

proves that the expected cost per period is convex given that the production,

holding/shortage costs are convex in initial stock level and the order quantity.

In multiple period problem again the DP formulation is constructed where

unsatis�ed demand is fully backordered. Under the same assumptions about

the cost terms, the objective function is shown to be convex and critical values

for each period above which no order is given are obtained. Additionally, the

in�nite horizon problem is analyzed. The existence of the limit of the expected

cost function solving the in�nite horizon equivalent of multi-period problem when

the number of periods goes to in�nity is proven under some assumptions which

are su�cient to ensure monotonicity and boundedness. Lastly, they explore

some generalizations of production costs depending on the level of inputs (order

quantities) as well as the realized yield in addition to the existence of a set-up

cost.

Ciarallo, Akella, and Morton [7] discuss a periodic review production planning

model with uncertain capacity and uncertain demand. They assume that demand
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and capacity for each period are independent and identically distributed random

variables (hence stationary over the planning horizon), the holding/shortage costs

are linear and stationary also. Actual output in this particular problem amounts

to the minimum of the planned production and the uncertain capacity. This

may be considered as a random yield problem where there is a probability mass

for receiving all of the quantity ordered. Both single period and multiple period

problems are analyzed. For single period case, the objective function is shown to

be nonconvex but unimodular and it is observed that randomized capacity has

no e�ect on the optimal order policy which is identical to the classical newsboy

problem. The cost function is also not convex in multiple period problem but

can be shown to be quasi-convex and to have a unique minimum. Optimal policy

is found to be of order-up-to type for the multiple period and in�nite horizon

problem exhibits the same functional form for the cost with the single period

problem.

In a study by Wang and Gerchak [21], the variable capacity problem above is

extended to a setting with random yield. Again the random capacity, demand,

and yield variables are independent and identically distributed and unsatis�ed

demand is fully backordered. In this case, the actual production is again the

minimum of variable capacity and planned production quantity, but the yield of

any executed quantity is random. Hence, the actual quantity of usable items is a

random fraction of the executed quantity. The random yield is of stochastically

proportional yield type. The productions cost is assumed to be proportional to

the executed production. Stochastic dynamic programming is used to analyze

�nite horizon problem and optimal policy at each period is characterized by a

single critical level where the objective function is shown to be quasi-convex.

In the single period analysis, the reorder point turns out to be una�ected by

the distribution of random capacity but depends on the yield rate.Thus, for the

single period, optimal policy will be exactly the same as when there is no capacity

randomness. They also explore the in�nite horizon problem and show that there

exists a limit for the objective function and that limit is convex. If the cost

function is di�erentiable, then the reorder point and planned production quantity
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converge to their limiting values.

In a recent paper by Gurnani, Akella, and Lehoczky [13], an assembly system

where the �nal product which is assembled using two components faces random

demand in a single period setting. Suppliers provide random fractions of the order

quantities (multiplicative yield) for the two components. An analytically complex

exact cost function which is to be minimized is obtained and a modi�ed cost

function is introduced so as to determine the combined ordering and production

decisions. Conditions under which the di�erence in the costs is bounded are

provided and as a result of the numerical study, it is observed that the percent

di�erence between exact and approximate cost is just 7.7 % in the worst case. It

is assumed that shortages are allowed. The performance of the optimal policy is

compared with two heuristic policies. In heuristic I, target level is determined for

each component type separately without considering the e�ect of randomness

in the supply of the other type, but still ordering and production decisions

are made simultaneously. In the second heuristic, ordering and production

decisions are made separately. Finally, they consider the case where there is

a \joint supplier" from which both components can be ordered in addition to the

individual suppliers and derived the conditions under which diversi�cation pays.

Similar to the above study, Gerchak, Wang, and Yano [12] consider an

assembly system in a single period setting with stochastically proportional type

of yield. Two di�erent models are discussed. The �rst one assumes components

with identical yield distributions and costs, random demand, salvage values, and

imperfect assembly stage (where detection of some components' imperfections is

only possible after they are assembled). That is, di�erent from the assumptions

made by almost all previous researches on assembly systems with random yields,

an \assembly yield" problem exists in the �rst model. Hence, a two stage decision

problem is solved where the decision maker selects the lot size for the components

and given the number of usable components, quantity to assemble. The results

are simpli�ed for a single stage setting where assembly is perfect. In the second

model, a single stage system with non-identical component yield and costs is

explored. The random fractions for components are not necessarily independent
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for this case. Concavity of the pro�t function is proven for the model with zero

salvage values, and for the model with two components with independent yields

and non-zero salvage values.

Basu and Mukerjee [5] discuss a single period model with random demand

and yield, allowing shortages. The random fraction has a known distribution

with mean being equal to the order size. For exponentially distributed yield,

the optimal order quantity maximizing the pro�t comes out to be a function of

demand distribution. They show that an estimator of maximin order quantity

converges in distribution to an appropriate normal law when the sample size

characterizing the demand function increases. A similar model is analyzed

by Ehrhardt and Taube [8] where yield is of stochastically proportional type.

Optimal order quantity minimizing expected cost is a generalization of the

standard newsboy problem for the case with no setup cost. In the case of positive

setup cost, optimal policy is the random yield analogue of optimal (s,S) policies.

It is also found that, simple heuristics that account for the expected value of the

replenishment quantity, but not its variability give good results for both uniformly

and negative binomially distributed demands.

Anupindi and Akella [1] consider single period and multiple period problems

with two suppliers, assuming full backlogging, random and continuous demand.

They discuss three di�erent models and lead time becomes a random variable in

two of these models. In the �rst model for supply process, each supplier supplies

all of the order quantity with zero lead time with a positive probability and

delivers the order quantity next period if there is no delivery in this period. In

model II, a random fraction of the order quantity is supplied and the portion that

is not delivered is cancelled, which is equivalent to a pure random yield problem.

Model III is the same as Model II except that the remaining quantity is to be

delivered in the next period. So, uncertain lead times are observed in models

I and III. The sum of ordering, holding, and penalty costs are minimized and

the optimal policy in a particular period turns out to be characterized by three

regions and two critical numbers. That is, it is optimal to order nothing when

the on-hand inventory level is larger than un (x > un), use only one supplier
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when vn < x < un, and order from both suppliers when x < vn. For models

II and III, they demonstrate that the order quantities for the suppliers with

equal-costs follow a ratio rule (similar to the one obtained by Gerchak and Parlar

(1990))when demand is exponential and the supply process is either normal or

gamma.

In a study by Baker and Ehrhardt [2] a periodic review model involving ran-

dom demand, stochastically proportional yield is constructed where backordering

is allowed. Rather than performing mathematical analysis, they use simulation

to compare the results of the heuristics they propose with the best known (s,S)

policy. The logic of the heuristic is to account for the mean of the amount

of outstanding orders so that the expected value of the order size matches the

deterministic-replenishment order size.

Mazzola, McCoy, and Wagner [16] consider a multi-period lot sizing problem

where the production yield is variable according to a binomial probability

distribution and demand over the planning horizon is deterministic and dynamic.

It is assumed that the lead time is less than one period so that all production in a

particular period can be used to satisfy the demand in that period. A setup cost

is incurred each time an order is placed, �nite production and storage capacities

exist, all defective units are discarded with no salvage value, and all stockouts

are backordered. A dynamic programming formulation solving to optimality

is constructed for the problem and some heuristics are developed. In order to

provide a basis for the heuristics, the continuous time version of the original

problem is considered where demand is constant, lead time is zero and yield

follows a binomial distribution. Using renewal/reward theorem, long-run average

cost function is obtained and the optimal values for the quantity to be ordered

and the reorder point (less than zero) are obtained. To solve the original problem

six heuristics based on the EOQ model solutions are proposed. The �rst two

use (s,S) and (s,Q) decision rules where Q and s are found by using Q� and

i� found previously. The other heuristics are Wagner Whitin and Silver Meal

based solutions of perfect yield version of the original problem multiplied by the

reciprocal of the parameter "p" of the binomial distribution. Modi�ed versions
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of the last two heuristics are also provided and they produce near optimal lot

sizing policies for problems with stationary and time varying demands.

Bitran and Dasu [6] consider a multi-item system where the demand is

deterministic and dynamic, backordering is allowed, lead time and set-up cost are

zero, and higher grade products can be substituted for a lower grade one. The

yield is of multiplicative type where \npi" units of item \i" is actually produced

when \n" units are produced (sum of the pi's is assumed to be less than or

equal to one). Two approximation procedures solving �nite horizon problems

are considered to study the in�nite horizon problem for which determining the

optimal solution is computationally intractable.

Wang and Gerchak [22] consider a batch production system with due

dates allowing backorders. The yield of each batch is random (stochastically

proportional) and the production lead time which is independent of the batch size

is longer than the time interval between starting consecutive batches. The general

model is formulated, but a simpli�ed one which is easier to analyze is constructed

where lead time is equal to one period, costs are linear, and production capacity

is very large. The optimal policy (minimizing the cost) for the simpli�ed model

is characterized by a single critical level (but not order-up-to type) where a new

input batch is started if and only if the size of work-in-process batch is less than

that critical level.

In a paper published by Gerchak, Tripathy, and Wang [10], a production

system with random yields is analyzed in a single period setting where shortages

are allowed and demand is random. Higher and lower grade items are produced

where the demand for lower grade items can be met by higher grade ones. Hence,

the yield is two-fold here: total yield of usable products and the portions of each

grade products are uncertain. The pro�t function is proven to be jointly concave

and optimality conditions are driven in the analysis. Another contribution of this

study is the possibility of using this solution as a basis for a heuristic approach

to the multi-grade problem. Parlar and Perry [17] discuss a (Q; r; T ) inventory

policy for deterministic and random yields when future supply is uncertain. The

lead time is assumed to be zero when the system is ON, that is, the supplier
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is available. When an order placement is necessary, the state of the supplier

can be identi�ed at a �xed cost k0. There are three decision variables to be

optimized which are the reorder point, order quantity, and T , the time to wait

before the next order is placed if the �rst one was made during the OFF state

(when the supplier is unavailable). The supplier's availability process is modeled

as a two state continuous time Markov Chain consisting of ON and OFF periods

for which the durations are assumed to be exponentially distributed. EOQ type

model is constructed, there are no planned shortages since reorder point is larger

than zero. But all demands occurring when when the system is out of stock are

backordered. A �xed cost per unit backordered and a variable cost per unit linear

in the length of time for which backorders continue are used. Also, T is supposed

to be the same regardless of the inventory level. In addition to the deterministic

yield, they also analyze the problem when the amount delivered is random where

the yield is a "general function" of the quantity ordered. Expected cost in a cycle

is found by conditioning on the state of CTMC when inventory level reaches the

reorder point.

Bar-Lev, Parlar, and Perry [3] consider an EOQ model with inventory level-

dependent demand rate and random yield which is of stochastically proportional

type. Replenishment is instantaneous and no backorders are allowed (the reorder

point is taken to be equal to zero). Using level crossing theory, an analysis of the

stationary distribution of the inventory level is provided and the long-run average

cost function is minimized. Three special cases are considered: standard EOQ

model, EOQ model with random yield, and EOQ model modi�ed to incorporate

inventory level dependent demand rate. Explicit formulas for the expected cycle

length, stationary distribution of the inventory level are given for the general case

where the demand rate is a power function of the inventory level (�(x) = axb for

a > 0 and 0 < b < 1) and yield rate is a beta random variable.

In a study by Zhang and Gerchak [24] a model where a random proportion of

units are defective is explored. The environment they use is that of classical EOQ

model with no backlogging. The defective items can be identi�ed through costly

inspections where inspection costs are assumed to be linear. Two di�erent models
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are analyzed. In the �rst one, the only penalty for uninspected defectives is

�nancial in the �rst one; and defective units cannot be used and must be replaced

by non-defective ones. Two levels of uncertainty exist in this particular problem:

the percentage of defectives in a lot and the number of defectives in the inspected

sub-lot. For a given defective percentage for the entire lot, number of defective

items in a sample is a random variable having hypergeometric distribution.

Therefore, both the quantity to be ordered and the fraction to inspect have to be

optimized. Expected cost function per cycle is obtained. Due to the complexity

in the structure of the objective function, the joint determination of f (fraction)

and Q is di�cult. Hence, some approximations are made in order to obtain

explicit expressions. They provide a solution procedure (exhaustive search) to

�nd optimal Q given the optimal value of "f". They also discuss the model with

replacement of defective items for the immediate replacement case. They report

that the optimal inspection fraction is either zero or one in most applications.

Gerchak and Parlar [9] consider an EOQ model with no backordering, zero

lead time, and stochastically proportional yield (non-negative and unbounded

random variable) for one supplier. They analyze a model where the decision

maker has the option to play with the variation in the yield. They discuss two

models where the mean value for the yield variable is �xed but the variance

(�2) can be changed. In the �rst model, the cost associated with decreasing the

standard deviation is incurred at each order regardless of its size, replacing the

commonly �xed setup cost. The variable cost per item which is independent of

variance (�2) is not included in the analysis. The cost rate function is obtained

which is proven to be convex in Q and � separately, and convex at the unique

solution of the necessary conditions for some particular (power) form of cost of

changing �. It is shown that Q is decreasing in � and optimal yield variability

is attained when the relative rate of change in the ordering cost c(�) equals the

relative rate of change in the second moment of YQ=Q. In the second model, the

cost of changing yield variability is per unit ordered and assumed to be convex.

We have K (additional) in this case. They also discuss where diversi�cation

between two suppliers is bene�cial. An ordering cost K is incurred each time
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an order is given and two sources are assumed to charge the same price which

is not a realistic assumption. They obtain explicit expressions for Q�

1; Q
�

2 and

�nd a relation between the optimal values of Q1 and Q2. They also analyze the

conditions for which it is pro�table to order from both suppliers and �nd that

diversi�cation does not pay ifK � K1+K2(Ki is the ordering cost when supplier

i is used only). Lastly, the optimal number of identical sources having identical

yield distributions and pricing policies is found.

Parlar and Wang [18] extended the above model assuming that the suppliers

charge di�erent prices per unit and holding costs incurred for items purchased

from the two suppliers also di�er. The amount paid (purchasing cost) depends on

the amount received, not the amount ordered (pay for output) in their model. In

an EOQ model with no backlogging, the long-run average cost function is shown

to be convex for a wide range of parameter values. They again �nd conditions

where diversi�cation is advantageous. Additionally, a single period problem in

which demand is a random variable is also analyzed. It is assumed that there is

a salvage value for unsold items at the end of period. Concavity of the expected

pro�t function is shown. It is shown that it is impossible to obtain closed form

solutions for the optimal order quantities. By the help of the concavity of the

objective function, an approximate solution requiring the solution of a system of

two linear equations and the performance of the approximation is measured. It

is observed that the model produces reasonably low errors.

An inventory model where raw material supply and demand for �nished goods

are random is considered by Bassok and Akella [4]. There is a limited production

capacity and backordering is allowed in their model. The distribution of the

random fraction depends on the order quantity. That is, if the order quantity is

between bi and bi, then the density distribution of random yield is gi(:), where

arrival process of raw material can be in one of \n" states. The optimal solution is

the one with the minimumcost among \n" di�erent problems. They also consider

multi-item extension of the same model.

To summarize, stochastically proportional yield model is used extensively in

the literature. Both pay-for-input and pay-for-output models are considered.
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Periodic review models are more often used compared to continuous review

models. (s,S) type policies are shown to be optimal for most of these models. A

table (1.1) including the most relevant studies is given at the end of this chapter.

1.3 Motivation

In this thesis, we discuss an inventory problem under continuous review where the

demand rate is assumed to be a constant. The problem is analyzed under an EOQ

setting. The purchasing costs (c1; c2) for the products are di�erent for the two

suppliers For the purchasing cost, we preferred the "pay-for-input" model, where

you pay for the amount that you order, not the amount that is actually received.

The analysis can be simply modi�ed for the pay-for-output type purchasing policy

also, by just adjusting the selling prices for the two suppliers (multiply them by

the expected values of the random fractions). The ordering cost K is same

regardless of which supplier(s) is(are) used and the holding costs per unit per

time are also assumed to be equal for both suppliers (the analysis can be easily

extended for di�erent ordering costs when just one supplier is used).

We incur the same holding cost for both suppliers' products, since if we had

assumed di�erent holding costs per unit per time, the analysis would be much

more di�cult in terms of �nding average inventory level. The average inventory

level would depend on the time when each item is sold. But, model with di�erent

holding costs can be handled by solving two di�erent problems for the suppliers by

assuming a constant demand rate D

2
for each supplier, as in the paper of Parlar

and Wang [18]. Di�erent from the model by Parlar and Wang [18], shortages

are allowed since it is pro�table to take advantage of backordering if there is

not a signi�cant di�erence between backlogging and holding costs. The shortage

and holding costs that we used in numerical study allows us to backorder the

unsatis�ed demand (full backlogging is assumed). Also, the replenishment is

instantaneous (lead time is negligible). The control policy used is as follows:

When the inventory on-hand hits the reorder point, the retailer orders from the

suppliers.
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One needs to decide how much to order from both suppliers and when to order.

As a result, there is an additional decision variable that is not considered mostly in

the literature, the reorder point. Naturally, if the perfect yield case is considered,

the problem turns out to be very simple; just order from the supplier o�ering less

selling price. But, when random yield is present for the suppliers, the decision

is not that simple because you are to make your decisions under uncertainty.

In our model, we consider two models with di�erent types of random yield,

binomial yield and stochastically proportional yield. In the �rst one, each item

produced can be either good or bad with some �xed probability. The probability

of producing a good item is di�erent for the two suppliers. We expect to observe

a higher probability of producing a good unit for the product with higher selling

price. Consequently, the number of good units in a lot is binomially distributed.

This type of modeling is appropriate for the �rms producing goods which have

tight quality constraints, leading to a signi�cant fraction of the lot size to be

considered as defective items. Mazzola, McCoy, and Wagner [16] considers this

type of yield uncertainty assuming continuity throughout their paper. Di�erent

from their model, we obtain the exact cost function taking into account the fact

that there is a positive probability of not increasing inventory level to a positive

value when the orders arrive. Also, two suppliers with di�erent yield levels and

selling prices per unit compete to get the market share in our setting where they

had only one supplier. We obtain a simple analytical formula showing where

diversi�cation is advantageous that provides important managerial implications

especially for the suppliers side in terms of the market share.

In the second yield model, we assume that a random fraction, independent

of the lot size, of the quantity ordered is received. The suppliers are assumed

to have known yield distributions which are independent for each supplier. This

type of yield model is appropriate when the capacity of the supplier is random

due to stoppages, strikes, machine breakdowns, etc. In addition to the variability

in the production capacity, the supplier may face random demand from more

than one retailer. In this case, it has to allocate its random capacity to each

retailer. So, the uncertainty in the yield is two-fold here: variable capacity and
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proportion of the capacity allocated to a particular retailer.

It is observed that the behavior of the inventory level starts repeating itself

at the beginning of each cycle (time interval between the arrival of consecutive

orders). Hence, the exact long-run average cost function is obtained using

renewal/reward theorem. Since, there is a probability of not increasing the

inventory level to a positive value, determination of the optimal values of decision

variables analytically, using �rst order conditions, is very hard. For that reason,

an algorithm to obtain optimal values is proposed. The probability of not

increasing the inventory level to a positive value is positive, is assumed to be equal

to a constant at each iteration. The algorithm proceeds till the convergence in the

optimal values is attained. The convexity of the cost function is proven for some

particular combinations of parameter values and the regions where diversi�cation

among suppliers pays are determined.

The rest of the thesis is organized as follows: In Chapter 2 the assumptions,

parameters, decision variables, and the optimal policy are introduced. Chapters

3 and 4 focus on deriving the optimal values and analytical properties of the

expected total cost rate of the model for binomial yield and stochastically

proportional yield, respectively. In Chapter 5, we present numerical results over

a wide range of parameter settings for the two random yield types separately.

Also, we measure the performance of the algorithm proposed, by comparing the

results that the algorithm provides to the real optimal values. Finally, in Chapter

6, we conclude the study by summarizing our �ndings, and identifying possible

future research venues.
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Chapter 2

The Model

We consider an inventory system where the manager has the option of ordering

from two di�erent suppliers facing random yield. That is, they supply a random

fraction of the quantity ordered. In this work, two types of random yield, binomial

yield and stochastically proportional yield, are considered.At the end of this

chapter, the notation used throughout the analysis is given in Table A.1 in the

Appendix. The following assumptions are made in the model:

� The purchasing prices are di�erent for each supplier,

� A �xed ordering cost K is incurred when an order is placed regardless of which

supplier(s) used (the model can easily be extended to the one where this cost is

di�erentiated between suppliers),

� Backlogging is allowed,
� Replenishment is instantaneous (lead time is zero),

� Same holding cost is incurred for the items,

� Demand rate is constant,

� The yield distributions are independent from each other for the suppliers and

they are stationary, i.e. the parameters of the distributions do not change over

time,

� The good items produced (after taking the yield into consideration) by each

supplier are of the same quality,

� The system is reviewed continuously.

17
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Decisions as to when and how much to order are given at some predetermined

points in time de�ned by the reorder point. After the order arrives the process

starts repeating itself. The cycle is de�ned as the time between these regeneration

points. Therefore it is appropriate to use reward/renewal theorem for this

problem. Using the reward/renewal theorem, the expected cost rate (cost per

unit time), which is the expected total cost divided by the expected cycle time is

found by constructing an EOQ type model.

The decision variables and parameters of the model are the following:

Decision variables:
Q1 : quantity ordered from supplier 1

Q2 : quantity ordered from supplier 2

i : reorder point that triggers the placement of an order (i < 0)
Parameters:
cH : holding cost per unit per time

cS : shortage cost per unit per time

K : ordering cost

c1 : purchasing cost of an item from supplier 1

c2 : purchasing cost of an item from supplier 2

D : constant demand rate

In this chapter, the control policy, expected holding, backordering, procure-

ment cost �gures and cycle time expressions are given. There are three decision

variables in the model. The reorder point, which is the level that triggers the

orders, is the �rst decision variable. Other decision variables, Qj for j = 1; 2 are

the quantities ordered from each supplier.

Cycle: The time between the arrival of the consecutive orders is de�ned as a

cycle as illustrated in Figure 1.

Control Policy: An order is placed for both suppliers (Q1; Q2) when inventory

level hits i (i < 0).
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Cycle

I(t)

t
0

Cycle             Cycle                      Cycle 

i

       x+i

Figure 2.1: Behavior of the inventory level with constant demand rate

2.1 The Objective Function

To �nd out the cost rate, we �rst need to compute the expected ordering and

procurement, holding, backordering costs per cycle. The quantities that are

actually received from the suppliers are de�ned as follows:

X1 : amount actually received from supplier 1

X2 : amount actually received from supplier 2

X : total amount actually received (X1 +X2)

Since the amount actually received is random, it is not certain that the

inventory level increases to a positive value after the arrival of the order.

Therefore, we may face cycles where we incur holding cost and where the holding

cost is zero. That is, the inventory level may be greater than zero (all backorders

cleared) or inventory level may be negative after the shipment is received.

Pi : probability that the amount received is smaller than 00 � i00:

Pi = P (X < �i) = P (X1 +X2 < �i)
Each time an order is placed, there is a Bernoulli trial taking place. The

inventory level either increases to a positive level with probability 1�Pi or stays

negative with probability Pi.



Chapter 2. The Model 20

2.1.1 Computation of Expected Cycle Cost

Each time an order is placed, the procurement cost incurred is as follows:

E[Procurement Cost] = K + c1Q1 + c2Q2 (2.1)

We incur holding costs when the inventory level is above zero. To �nd the

expected holding cost expression, we need to de�ne a new random variable

(conditional on the amount that is actually received). Inventory level becomes

positive only when the amount received from the suppliers is greater than the

magnitude of the reorder level. Hence, we need to consider x as if x is greater than

�i. Also for the backordering cost, a similar reasoning works. Backordering cost

expression incurred during cycles in which inventory level is always negative, we

need to de�ne another random variable (again conditional on the amount that is

actually received), since we assume that the suppliers provide less than we expect

such that the inventory level is not enough to clear all the backorders and to have

excess inventory. Similarly, we need to consider x as if x is less than �i for this
case. Therefore, the conditional random variables and their expectations should

be used in the analysis.

The expected holding cost per cycle can be found by computing the area

(above x-axis) under the inventory level curve in Figure 2.1. Therefore, the

expected holding cost per cycle is found as follows (where HC denotes holding

cost):

If X < �i; then HC = 0

If X > �i; then HC = E[
cH
2D

((XI(X > �i)) + i)2]

=
cH
2D

(E[(XI(X > �i))2jQ1; Q2] + i2

+ 2iE[XI(X > �i)jQ1; Q2])

Then taking expectation over X yields:

E[HC] = 0Pi + (1 � Pi)
cH
2D

(E[(XI(X > �i))2jQ1; Q2]

+ 2iE[XI(X > �i)jQ1; Q2] + i2) (2.2)
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where,

E[XjX > �i] = E[XI(X > �i)]
P (x > �i) =

E[XI(X > �i)]
(1 � Pi)

Note that I is the indicator function, where I(X > �i) = 1 if X > �i and zero

otherwise.

Expected backordering cost is also found with the same method used in

deriving the holding cost expression (BC denotes backordering cost):

If X > �i; then BC =
cSi

2

2D

If X < �i; then BC =
�cS
2D

E[(XI(X < �i))2 + 2iXI(X < �i)]

Then taking expectation over X yields:

E[BC] =
cSi

2

2D
(1 � Pi) + Pi(

�cS
2D

E[(XI(X < �i))2 + 2iXI(X < �i)]) (2.3)

where,

E[XjX < �i] = E[XI(X < �i)]
P (x < �i) =

E[XI(X < �i)]
Pi

Consequently, the expected total cost per cycle will be as follows:

E[TC] = K + c1Q1 + c2Q2 + (
cH + cs
2D

)i2(1� Pi)

+
cH
2D

(E[(XI(X > �i))2] + 2iE[XI(X > �i)])(1� Pi)

� cSPi
2D

(E[(XI(X < �i))2] + 2iE[XI(X < �i)]) (2.4)

Since, E[XI(X > �i)] can be written in terms of E[x] and E[XI(X < �i)], we
can get rid of the term E[XI(X > �i)] in the total cost per cycle expression.

The following identities are used for this purpose:

E[X2jX > �i] = E[X2I(X > �i)]
(1 � Pi)

and

E[X2jX < �i] = E[X2I(X < �i)]
Pi

and

E[X2] = E[X2I(X < �i)] + E[X2I(X > �i)]
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Then the sum of the expected holding and backordering cost is rewritten as

follows:

E[HC] + E[BC] = (
cH + cS
2D

)i2(1 � Pi)

+ (1� Pi)
cH
2D

[
E[X2I(X > �i)]

(1 � Pi)
+ 2i

E[XI(X > �i)]
(1� Pi)

]

� Pi
cS
2D

[
E[X2I(X < �i)]

Pi
� 2i

E[XI(X < �i)]
Pi

]

E[HC] + E[BC] = (
cH + cs
2D

)i2(1� Pi) +
cH
2D

[E[X2] + 2iE[X]]

� cH + cS
2D

[E[X2I(X < �i)] + 2iE[XI(X < �i)]]
As a result, the new form of the expected total cost per cycle (excluding the term

E[XI(X > �i)]) is as follows:
E[TC] = K + c1Q1 + c2Q2 + (

cH + cs
2D

)i2(1 � Pi)

+
cH(E[X2] + 2iE[X])

2D

� (cH + cS)[E[X2I(X < �i)] + 2iE[XI(X < �i)]]
2D

(2.5)

2.1.2 Expected Cycle Time

After �nding the expected total cost per cycle, the expected cycle time must be

also found. The expected cycle time is found by conditioning on the amount that

is actually received (T denotes cycle time):

If X > �i; then T =
E[XI(X > �i)]

D

If X < �i; then T =
E[XI(X < �i)]

D

Taking expectation over X (treating Pi as a constant given i,Q1, and Q2) yields:

E[T ] = Pi(
E[XI(X < �i)]

DPi
) + (1� Pi)

E[XI(X > �i)]
D(1 � Pi)

=
E[XI(X < �i)] + E[XI(X > �i)]

D
=

E[X]

D
(2.6)
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2.1.3 Expected Cost Rate

Cost rate, which is the total cost per cycle divided by the cycle time, is the

function that is to be minimized. Starting at the regeneration points, the process

shows the same behavior. Cycle times and costs per cycles are independent and

identically distributed. Hence, the long-run average cost is just the expected cost

incurred during a cycle divided by the expected cycle length (see Ross [19], page

318). Then,

Cost Rate = CR = lim
t!1

TotalCost

t
=

E[Total Cost Per Cycle]

E[Cycle Length]

CR =
E[TC]

E[T ]
=
K + c1Q1 + c2Q2 + E[HC] + E[BC]

E[X]
D

(2.7)

2.1.4 Approximate Expected Cost Rate

To �nd the minimum cost rate, we need to construct the �rst order conditions.

As it is observed, Pi, E[XI(X < �i)], and E[X2I(X < �i)] are dependent on
the decision variables. The partial derivatives of these expressions with respect

to Q1, Q2, and i are very complex. The structure of the above expressions do not

allow us to �nd expressions involving just one decision variable,i.e. the decision

variables cannot be separated from each other using �rst order conditions. As

a result, it seems impossible to come up with closed form formulas giving the

optimal values for the decision variables. Thus, we de�ne a new cost rate called

approximate expected cost rate. In this new cost rate function, the cycle time is

still the same (since we do not have Pi, E[XI(X < �i)], and E[X2I(X < �i)]
in the cycle time expression), but the total cost is modi�ed. For the approximate

cost rate function, we assume that Pi, E[XI(X < �i)], and E[X2I(X < �i)] do
not depend on the decision variables. So, they are taken to be as constants in

this new cost rate. The following notation is used:

Pi = � (2.8)

E[XI(X < �i)] = m1 (2.9)

E[X2I(X < �i)] = m2 (2.10)
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Let the new expected total cost per cycle be TCa, then:

E[TCa] = K + c1Q1 + c2Q2 + (
cH + cs
2D

)i2(1� �)

+
cH(E[X2] + 2iE[X])

2D

� (cH + cS)(m2 + 2im1)

2D
(2.11)

Then, the approximate expected cost rate is the following:

CRa =
E[TCa]

E[T ]
(2.12)

2.2 An Iterative Solution Procedure

Giving the optimal procurement decision requires the minimization of the

expected cost rate function with respect to three decision variables i;Q1, and

Q2: In the cost rate expression we have the Pi, E[XI(X < �i)], and E[(XI(X <

�i))2] terms, which are also functions of the decision variables above. In

order to �nd the expressions above, we need to use the sum of two di�erent

random variables both of which are independent and identically distributed. So,

Pi, E[XI(X < �i)], and E[(XI(X < �i))2] are found by using conditional

probabilities and expectations. In the following part, we condition on X2

assuming thatX2 (which is the actual amount received from supplier 2) is equal to

a value y where y 2 [0; Q2]. As a result, the following are obtained by conditioning

on X2:

Pi = P (X1 +X2 < �i) = EX2[P (X1 < �i� yjX2 = y)]

E[XI(X < �i)] = EX2[E[XI(X1 < �i� y)]jX2 = y)]

E[X2I(X < �i)] = EX2[E[X2I(X1 < �i� y)]jX2 = y)] (2.13)

An algorithm which uses an iterative solution procedure that will be discussed

in detail below, is proposed (�rst order conditions of approximate expected

cost rate function is used for this algorithm). Throughout the algorithm, it is

assumed that the dependence of Pi, E[XI(X < �i)], and E[(XI(X < �i))2] on
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decision variables is small enough to neglect the partial derivatives with respect

to Q1; Q2; andi. In other words, these expressions are treated as constants in the

algorithmic solution procedure. We expect the algorithm to work properly for the

realizations where the change in these expressions due to changes in the values

of the decision variables are small enough. But, especially for E[XI(X < �i)]
and E[X2I(X < �i)], when they take larger values, our approximation may not

always work well.

The stopping point is the point where the convergence in long-run average

cost is attained (however,it is not guaranteed that we will obtain convergence),

and the following is the algorithm that is used:

2.2.1 Algorithm

1. Find the exact cost rate (CR) assuming � = 0, m1 = 0, and m2 = 0.

2. Setup the �rst order conditions for CRa

2.1 Find the optimal values for i;Q1; Q2 for CRa

2.2 Assign Q0
1 = Q1; Q

0
2 = Q2 and i0 = i

2.3 Using Q0
1; Q

0
2 and i

0 compute Pi, E[XI(X < �i)], and E[(XI(X < �i))2]
via equation 2.13.

2.4 Assign �new = Pi, mnew
1 = E[XI(X < �i)], and mnew

2 = E[(XI(X <

�i))2].
3. Find the new exact cost rate with the new values of �, m1, and m2

3.1 Setup the �rst order conditions for the new approximate cost rate

3.2 Find the new optimal values for i;Q1; Q2 for CRa

3.3 Assign Qnew
1 = Q1; Q

new
2 = Q2 and inew = i

3.4 Compute Pi, E[XI(X < �i)], and E[(XI(X < �i))2] using Qnew
1 =

Q1; Q
new
2 = Q2 and inew = i

3.5 Repeat Step 2.4

4. Compute jCRnew � CRoldj
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4.1 If the value found in step 4 is smaller than a predetermined constant �, go

to the next step

4.1.1 Assign Q�

1 = Qnew
1 ; Q�

2 = Qnew
2 , and i� = inew and stop.

4.2 Else, go to step 3.



Chapter 3

Binomial Yield

For this type of yield model, the following notation is used:

p1 : probability of producing a good unit for supplier 1

p2 : probability of producing a good unit for supplier 2

Therefore, for the case where the random yield is assumed to have binomial

distribution, each unit is supplied instantaneously with a probability of pj by

supplier j (j = 1; 2) and with a probability of 1� pj the unit does not reach the

customers. Therefore the number of units that are supplied have the following

binomial distribution:

P (xj = kjQj) =

0
@ Qj

k

1
A (pj)k(1� pj)Qj�k

Hence, the expected amount actually received from the two suppliers and the

second moment of the same quantity comes out to be the following:

E[x1 + x2jQ1; Q2] = E[xjQ1; Q2] = p1Q1 + p2Q2

E[(x1 + x2)2jQ1; Q2] = E[(x)2jQ1; Q2] = p1(1� p1)Q1 + p2(1� p2)Q2

+ (p1Q1 + p2Q2)
2

Note that the quantities here are discrete but we are making a continuity

assumption throughout the analysis.

27
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The expected total cost per cycle and cycle time become the following for this

particular yield model:

E[TC] = K + c1Q1 + c2Q2 + (
cH + cs
2D

)i2(1 � Pi)

+
cH(p1(1 � p1)Q1 + p2(1 � p2)Q2 + (p1Q1 + p2Q2)2 + 2i(p1Q1 + p2Q2))

2D

� (cH + cS)[E[X2I(X < �i)] + 2iE[XI(X < �i)]]
2D

(3.1)

E[T ] =
E[x]

D
=

p1Q1 + p2Q2

D
(3.2)

At the very beginning of the iterative solution procedure,Pi, E[XI(X < �i)],
and E[X2I(X < �i)] are assigned zero and corresponding optimal values of

decision variables are computed. Then, using Q�

1, Q
�

2, and i� new values of the

expressions above are found as follows for this yield model:

Pi = P (x1 + x2 < �i) = Ex2 [P (x
1 < �i� kjx2 = k)]

=
Q2X
k=0

[
�i�kX
x1=0

0
@ Q1

x1

1
A (p1)

x1(1 � p1)
Q1�x

1

]

0
@ Q2

k

1
A (p2)

k(1� p2)
Q2�k

E [XI(X < �i)] = Ex2[E[XI(x1 < �i� k)]jx2 = k)]

=
Q2X
k=0

[
�i�kX
x1=0

(x1 + x2)

0
@ Q1

x1

1
A (p1)

x1(1 � p1)
Q1�x

1

]

0
@ Q2

k

1
A (p2)

k(1� p2)
Q2�k

E [X2I(X < �i)] = Ex2[E[X
2I(x1 < �i� k)]jx2 = k)]

=
Q2X
k=0

[
�i�kX
x1=0

(x1 + x2)2

0
@ Q1

x1

1
A (p1)

x1(1 � p1)
Q1�x

1

]

0
@ Q2

k

1
A (p2)

k(1� p2)
Q2�k

3.1 Analytical Properties of Approximate

Objective Function

In order to use the �rst order conditions to �nd the optimal values of decision

variables, the long-run average cost function must be convex, since the problem
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is a minimization problem. Firstly, we need show that the objective function is

strictly convex either for the whole space or just for some particular parameter

sets.When the function is convex, the optimal values occur at the points where

the �rst partial derivatives are equal to zero. We are also guaranteed that these

values are global optimums.

In the following part, we are going to analyze the analytical properties of the

cost rate with respect to each decision variable given the values of the other two

decision variables(recall that this analysis is done under the assumption that Pi,

E[XI(X < �i)], and E[(XI(X < �i))2] are constant with respect to the decision
variables). The second order partial derivatives will be found for this purpose.

For the function to be convex, the sign of the second order derivative must be

positive. Firstly, the convexity of the function with respect to the reorder level

for given values of Q1 and Q2 is investigated :

Lemma 3.1: The cost rate function is convex with respect to the reorder point

"i" for given Q1 and Q2.

Proof:

@2CR

@i2
=

(@
2E[TC]
@i2

E[T ]� E[TC]@
2E[T ]
@i2

)E[T ]� (@E[TC]
@i

E[T ]� E[TC]@E[T ]
@i

)2@E[T ]
@i

(E[T ])3

Since the �rst and second order partial derivatives of the expected cycle

time with respect to the reorder point are both equal to zero, the second order

derivative of the expected cost rate reduces to the following:

@2CR

@i2
= ((E[T ])2)

@2E[TC]

@i2
=

cH + cS
D

The expression above is always positive, so Lemma 3.1 is proven. 2

Lemma 3.2: Approximate cost rate (CRa) is convex with respect to Q1 for Q2,

and i, and with respect to Q2 for Q1, and i i� the following inequalities hold,

respectively:

(cH + cS)p1i(
i(1� �)

2
�m1)� (

cH + cS
2

)p1m2

+ Q2[D(c2p1 � c1p2) +
cH
2
p1p2(p1 � p2)] +KDp1 > 0



Chapter 3. Binomial Yield 30

(cH + cS)p2i(
i(1� �)

2
�m1)� (

cH + cS
2

)p2m2

+ Q1[D(c1p2 � c2p1) +
cH
2
p1p2(p2 � p1)] +KDp2 > 0

Proof:

The second order partial derivative with respect to Q1 (similar for Q2) is the

following:

@2CRa

@Q2
1

=
(@

2E[TCa]
@Q2

1
E[T ]� E[TCa]@

2E[T ]
@Q2

1
)E[T ]� (@E[TC

a]
@Q1

E[T ]� E[TCa]@E[T ]
@Q1

)2@E[T ]
@Q1

(E[T ])3

Since the expected cycle time (E[T ]) is always positive, the sign of the second

order derivative depends on the following expression:

(
@2E[TCa]

@Q2
1

E[T ]� E[TCa]
@2E[T ]

@Q2
1

)E[T ]� (
@E[TCa]

@Q1
E[T ]� E[TCa]

@E[T ]

@Q1
)2
@E[T ]

@Q1

We have the same expressions for Q2 except that Q1's are replaced by Q2.

� For Q1:

@E[T ]

@Q1
=

p1
D
; and

@2E[T ]

@Q2
1

= 0

@E[TCa]

@Q1
= c1 +

cH
2D

(p1(1 � p1) + 2p1(p1Q1 + p2Q2) + 2ip1)

) @2E[TCa]

@Q2
1

=
cHp

2
1

D

After some algebraic simpli�cations, the expression indicating the sign of the

second order derivative turns out to be the following one:

(cH + cS)p1i(
i(1� �)

2
�m1)� (

cH + cS
2

)p1m2

+ Q2[D(c2p1 � c1p2) +
cH
2
p1p2(p1 � p2)] +KDp1

� For Q2:

@E[T ]

@Q2
=

p2
D
; and

@2E[T ]

@Q2
2

= 0
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@E[TCa]

@Q2
= c2 +

cH
2D

(p2(1 � p2) + 2p2(p1Q1 + p2Q2) + 2ip2)

) @2E[TCa]

@Q2
2

=
cHp

2
2

D

Again the expression indicating the sign of the second order derivative reduces

to the following one for Q2:

(cH + cS)p2i(
i(1� �)

2
�m1)� (

cH + cS
2

)p2m2

+ Q1[D(c1p2 � c2p1) +
cH
2
p1p2(p2 � p1)] +KDp2

As a result Lemma 3.2 is proven. 2

Proposition 3.1: The condition that Q2[D(c2p1 � c1p2) +
cH
2 p1p2(p1 � p2)] �

( cH+cS
2 )p1m2 � 0, and Q1[D(c1p2� c2p1) +

cH
2 p1p2(p2� p1)]� ( cH+cS

2 )p2m2 � 0 is

a su�cient but not a necessary condition for the approximate cost rate function

(CRa) to be convex with respect to Q1 given the values for i and Q2, and with

respect to Q2 for given values of Q1, i, respectively.

Proof:

The �rst two terms in the expression indicating the sign of the second order

partial derivative are always positive. i( i(1��)
2

�m1) is also positive since i is less

than zero and m1 is always greater than 0. As a result if the last two terms are

positive we are guaranteed that the cost rate function is convex and Proposition

3.1 is proven. 2

3.2 Optimization

For the regions where the approximate expected cost rate (CRa) is convex, the

approximate �rst order partial derivatives are taken to �nd the near optimal

values of decision variables. Then, the �rst order conditions are used to �nd the

relations among i, Q1, and Q2. The �rst order partial derivatives are as follows:
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Approximate F.O.C. for \i":

Since
@E[T ]

@i
= 0)

@CRa

@i�
= 0) E[T ]

@E[TCa]

@i�
= E[TCa]

@E[T ]

@i�
) @E[TCa]

@i�
= 0

) (
cH + cS

D
)i�(1� �) +

cH(p1Q1 + p2Q2)� (cH + cS)m1

D
= 0

) i� =
(cH + cS)m1 � cH(p1Q1 + p2Q2)

(cH + cS)(1� �)

(3.3)

Approximate F.O.C. for \Q1":

@CRa

@Q�

1

= 0) (p1Q
�

1 + p2Q2)[c1 +
cH(p1(1 � p1) + 2(p1Q�

1 + p2Q2)p1 + 2ip1)

2D
]

= E[TCa]p1 )

( p1Q
�

1 + p2Q2)[Dc1 +
cHp1(1� p1)

2
] = p1[D(K + c1Q

�

1 + c2Q2)

+ (
cH + cS

2
)(1� �)i2 +

cH(p1(1� p1)Q�

1 + p2(1� p2)Q2 � (p1Q�

1 + p2Q2)2)

2

� (cH + cS)(m2 + 2im1)

2
]

(3.4)

Approximate F.O.C. for \Q2":

@CRa

@Q�

2

= 0) (p1Q1 + p2Q
�

2)[c2 +
cH(p2(1 � p2) + 2(p1Q1 + p2Q

�

2)p2 + 2ip2)

2D
]

= E[TCa]p2 )

( p1Q1 + p2Q
�

2)[Dc2 +
cHp2(1� p2)

2
] = p2[D(K + c1Q1 + c2Q

�

2)

+ (
cH + cS

2
)(1� �)i2 +

cH(p1(1� p1)Q1 + p2(1� p2)Q�

2 � (p1Q1 + p2Q
�

2)
2)

2

� (cH + cS)(m2 + 2im1)

2
]

(3.5)
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3.2.1 A Marginal Analysis

The relation between i�, Q�

1, and Q
�

2 is found from (3.3) and the relation between

Q�

1, Q
�

2 is obtained by equating (3.4) and (3.5) as follows:

i� =
(cH + cS)m1 � cH(p1Q�

1 + p2Q
�

2)

(cH + cS)(1� �)
(3.6)

Equating (3.4) and (3.5) yields:

p2[Dc1 +
cHp1(1� p1)

2
] = p1[Dc2 +

cHp2(1 � p2)

2
]

) c2p1 � c1p2 +
cH
2D

p1p2(p1 � p2) = 0 (3.7)

It is an interesting result that the equation above involves only parameters.

So, there are two cases to be considered. First case is the one where we have

the optimal solution at a point where the �rst derivative is equal to zero (i.e.

equation (3.7) holds). For the second case (where equation (3.7) does not hold),

the optimal value occurs at the boundaries. Note that, when you divide the

expression above by p1p2, it is observed that the decision as to which supplier

should be used is given by comparing the e�ective unit selling prices and unit

holding cost. This aspect will be discussed in more detail at the end of this

section. Also note that, the selection of the supplier does not depend on the unit

shortage cost per time, since the expected amount to receive is the same leading

to the fact that the reorder point is the same regardless of which supplier you

order from. The analytical reasoning of the above explanation will be given later.

Below, both cases are discussed in detail:

Lemma 3.3: If c2p1 � c1p2 +
cH
2D
p1p2(p1 � p2) = 0 holds, then the optimal values

of Q1 and Q2 for CRa will be any pair (Q1; Q2) satisfying the following equation:

Let Q�

G = p1Q
�

1 + p2Q
�

2 be de�ned as the expected amount of good units

(p1Q
�

1 + p2Q
�

2) = Q�

G =

vuuut(cH + cS)(
(m1)2

1��
+m2)� 2KD

cH(
(cH+cS)��cS
(cH+cS)(1��)

)

(3.8)
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Proof:

Using Equation (3.4) and writing i� in terms of Q�

1 and Q
�

2 yields the following

equation when (3.7) holds:

( cH + cS)
( (m1)2

1�� +m2)

2
�KD

=
cH((cH + cS)�� cS)((p1Q�

1 + p2Q
�

2)
2)

2(cH + cS)(1� �)

It is inferred that, the sum of expected amount to receive from both suppliers

should be equal to a constant value (recall that �, m1, and m2 are considered

as constants in the algorithm). Also it follows that any pair (Q1; Q2) satisfying

equation (3.8) is a solution to the problem for which the proof is discussed below:

Keeping (p1Q�

1 + p2Q
�

2) the same, when we increase Q1 and decrease Q2

accordingly, the expected cycle time will remain the same. Only the approximate

expected total cost (TCa) may be a�ected from this substitution from Q2 to Q1.

So, the change in approximate expected total cost (TCa) will re
ect the change

in the approximate cost rate (CRa). Below, the change in TCa is investigated:

Suppose we increase Q1 by �, that is, Q1 ! Q1 +�,then since p1Q1 + p2Q2

should remain the same,the new value of Q2 becomes, Q2 ! Q2 � p1
p2
�

Let the new approximate expected total cost per cycle be Enew[TCa]. We are

going to look at the di�erence in the approximate expected total cost per cycle,

�E[TCa], which is equal to Enew[TCa]� E[TCa]:

�E[TCa] = c1�� c2
p1
p2
�+�

cH
2D

p1(p2 � p1)

= �[c1p2 � c2p1 +
cH
2D

p1p2(p2 � p1)] = 0

Consequently, for Case 1, increasing the amount of Q1 or Q2 while keeping

p1Q1+p2Q2 constant will not change the approximate expected cost rate (CRa).

Hence, any pair satisfying equation (3.8) will give the solution to our problem.

2.

Lemma 3.4: If c2p1 � c1p2 +
cH
2Dp1p2(p1 � p2) > 0, then use Supplier 1 only,
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otherwise use just Supplier 2.

Proof:

When the equation obtained from the �rst order conditions does not hold, we

have the following situation(obtained from the partial derivatives):

Q�

2p2 = �Q�

1p1, which is not possible for positive values of the order quantities.

Hence,the optimal should occur at the boundaries. So, either Q1 or Q2 is equal

to zero. Two cases need to be considered:

Since the minimumwill occur at the boundaries, we are going to look at the cost

rates when Q1 = 0 and Q2 = 0.

Case 1: When Q2 = 0, we have the following:

E[TCa] = K + c1Q1 + (
cH + cs
2D

)(1 � �)i2

+
cH(p1(1� p1)Q1 + (p1Q1)2 + 2ip1Q1)

2D

� (cH + cS)[m2 + 2im1]

2D

E[T ] =
p1Q1

D

Let the cost rate be CRa
1 in this realization. Now, we need to �nd the optimal

value of Q1 minimizing cost rate 1 (CRa
1):

@CRa
1

@Q�

1

= 0 ) @E[TCa]

@Q�

1

E[T ] = E[TCa]
@E[T ]

@Q�

1

KD � (cH + cS)

2
(
(m1)2

1� �
+m2)

= p21(Q
�

1)
2 cH
2
(
cS � (cH + cS)�

(cH + cS)(1 � �)
))

p1Q
�

1 = Q�

G (3.9)
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Case 2: When Q1 = 0, we have the following:

E[TCa] = K + c2Q2 + (
cH + cs
2D

)(1 � �)i2

+
cH(p2(1� p2)Q2 + (p2Q2)2 + 2ip2Q2)

2D

� (cH + cS)[m2 + 2im1]

2D

E[T ] =
p2Q2

D

Let the cost rate be CRa
2 in this realization. Now, we need to �nd the optimal

value of Q2 minimizing cost rate 2 (CRa
2):

@CRa
2

@Q�

2

= 0 ) @E[TCa]

@Q�

2

E[T ] = E[TCa]
@E[T ]

@Q�

2

KD � (cH + cS)

2
(
(m1)2

1� �
+m2)

= p22(Q
�

2)
2 cH
2
(
cS � (cH + cS)�

(cH + cS)(1 � �)
))

p2Q
�

2 = Q�

G (3.10)

It is observed from equations (3.9) and (3.10) that the values p1Q�

1 and p2Q
�

2

are equal. So, the same rule applies in Case 2 as in Case 1, that is, the amount

that we expect to receive is equal to a constant value. Since we are going to

use only one supplier, we need to look at the di�erence of the cost rates and

choose the one with the minimum cost rate at the optimal values of Q1 and Q2.

Since p1Q�

1 and p2Q
�

2 are equal, it is possible to compare the expected total costs

instead of the cost rates. Following notation is used:

TCa
1=Expected total cost when Q2 = 0

TCa
2=Expected total cost when Q1 = 0
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In the following part the identity Q�

1 =
p2
p1
Q�

2 is used. We need to look at the

di�erence of the expected total costs at Q�

1 and Q�

2 in order to decide whether

supplier 1 or 2 must be used. After some simpli�cations, the di�erence of expected

total costs per cycle turns out to be:

TCa
1 � TCa

2 = c1Q1 � c2Q2 +
cH
2D

p1Q1(p2 � p1))
TCa

1 � TCa
2 = Q2[c1

p2
p1
� c2 +

cH
2D

p2(p2 � p1)])

TCa
1 � TCa

2 =
Q2

p1
[c1p2 � c2p1 +

cH
2D

p1p2(p2 � p1)]

As observed, when c2p1 � c1p2 +
cH
2Dp1p2(p1 � p2) > 0, TCa

1 is less than

TCa
2 . Therefore it would be less costly to use supplier 1. On the other hand, if

c2p1 � c1p2 +
cH
2Dp1p2(p1 � p2) < 0, TCa

2 is less than TCa
1 . Therefore it would be

less costly to use supplier 2.So, Lemma 3.4 is proven. 2

Using the Lemmas proved above, the following theorem is constructed:

Theorem 3.1:

i) If c2p1�c1p2+ cH
2Dp1p2(p1�p2) = 0, any pair (Q�

1; Q
�

2) satisfying the following

equation is an optimal solution for CRa:

(p1Q
�

1 + p2Q
�

2) =

vuuut(cH + cS)(
(m1)2

1�� +m2)� 2KD

cH(
(cH+cS)��cS
(cH+cS)(1��)

)
= Q�

G

and the optimal value of reorder point is given as:

i� =
m1

(1� �)
� cHQ

�

G

(cH + cS)(1 � �)

ii) If c2p1�c1p2+ cH
2D
p1p2(p1�p2) > 0, order from supplier 1 only, and the optimal

values for CRa are as follows:

Q�

2 = 0

Q�

1 =
Q�

G

p1

i� =
m1

(1 � �)
� cHQ

�

G

(cH + cS)(1� �)
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iii) If c2p1 � c1p2 +
cH
2Dp1p2(p1 � p2) < 0, order from supplier 2 only, and the

optimal values for CRa are as follows:

Q�

1 = 0

Q�

2 =
Q�

G

p2

i� =
m1

(1 � �)
� cHQ

�

G

(cH + cS)(1� �)

Proof:

Proofs are given separately in the lemmas above. 2

3.2.2 Initial Solution of the Algorithm

In the analysis done up to this point, we assumed that �, m1, and m2 are

constants. But, we �rst need to assign values to the expressions above. Therefore,

we started with assigning 0 to these values. Plugging 0 in place of these

expressions, into the formulas giving the relation between the optimal decision

variables and the values of i�, Q�

1, and Q�

2 for CR
a yields the following:

i� = (
�cH

cH + cS
)(p1Q

�

1 + p2Q
�

2) (3.11)

The equation of parameters c2p1� c1p2+
cH
2D
p1p2(p1� p2) that is obtained before

is also valid for the case where � = m1 = m2 = 0. As a result, the following is

constructed by just using 0 instead of Pi, E[XI(X < �i)], and E[X2I(X < �i)]:
Corollary 3.1:

i) If c2p1 � c1p2 + cH
2Dp1p2(p1 � p2) = 0, any pair (Q�

1; Q
�

2) satisfying the

following equation is an optimal solution for CRa when Pi = E[XI(X < �i)] =
E[X2I(X < �i)] = 0:

(p1Q
�

1 + p2Q
�

2) =

s
2KD(cS + cH)

cScH

i� = �
s

2KDcH
(cS + cH)cS
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ii) If c2p1 � c1p2 +
cH
2Dp1p2(p1 � p2) > 0, order from supplier 1 only, and the

optimal values for CRa when Pi = E[XI(X < �i)] = E[X2I(X < �i)] = 0 are

as follows:

Q�

2 = 0

Q�

1 =

vuut2KD(cH + cS)

cHcSp21

i� = �
s

2KDcH
(cH + cS)cS

iii) If c2p1 � c1p2 +
cH
2D
p1p2(p1 � p2) < 0, order from supplier 2 only, and the

optimal values for CRa when Pi = E[XI(X < �i)] = E[X2I(X < �i)] = 0 are

as follows:

Q�

1 = 0

Q�

2 =

vuut2KD(cH + cS)

cHcSp22

i� = �
s

2KDcH
(cH + cS)cS

The �rst values of the optimal decision variables for CRa will be the ones just

given above. Using these values Pi, E[XI(X < �i)], and E[X2I(X < �i)] are
computed. Then, Theorem 3.1 is used to �nd the new values of i�, Q�

1, and Q�

2.

This process continues until convergence in total cost is attained. The physical

implication of the theorem is discussed below:

Dividing the expression (involving parameters in Theorem 3.1) by p1p2 yields
c2
p2
� c1

p1
� ch

2D (p2 � p1).The sum of the �rst two items can be regarded as the

additional purchasing cost of moving one item from Q1 to Q2.
ch
2D (p2�p1) can be

thought of as the additional expected holding cost of moving one item from Q1 to

Q2. When the sum of the �rst two items is greater than the last item, intuitively,

it is more pro�table to order from supplier 1 (as Theorem 3.1 suggests) in this

case, because the purchasing cost contributes to the total cost more than the

holding cost in general.
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3.3 Generalization to "M" Suppliers

In this setting, more than two suppliers produce the same item of the same

quality. However, the selling prices and the probability of producing a good

item are di�erent for each supplier. The retailer takes advantage of reducing

uncertainty on the amount actually received by order-splitting among suppliers.

The following is the expected total cost per cycle and expected cycle time for this

particular case:

E[Total Cost] = K + c1Q1 + : : :+ cMQM + (
cH + cs
2D

)i2(1 � Pi)

+
cH(E[X2jQ1; : : : ; QM ] + 2iE[XjQ1; : : : ; QM ])

2D

� (cH + cS)[E[X2I(X < �i)] + 2iE[XI(X < �i)]]
2D

E[T ] =
E[XjQ1; : : : ; QM ]

D

where the expected value and the second moment of the amount actually received

are as follows:

E[x1 + : : :+ xM jQ1; : : : ; QM ] = E[xjQ1; : : : ; QM ] = p1Q1 + p2Q2 + : : :+ pMQM

E[(x)2jQ1; : : : ; QM ] = p1(1� p1)Q1 + p2(1� p2)Q2 + : : :+ pM (1� pM )QM

+ (p1Q1 + p2Q2 + : : :+ pMQM)
2

Again, the long-run average cost will be minimized. Following are the

approximate �rst order conditions for the reorder point and the order quantities:

For i:

@CRa

@i�
= 0) E[T ]

@E[TCa]

@i�
= E[TCa]

@E[T ]

@i�
) @E[TCa]

@i�
= 0

) (
cH + cS

D
)i�(1 � �) +

cH(p1Q1 + : : :+ pMQM )� (cH + cS)m1

D
= 0

) i� =
(cH + cS)m1 � cH(p1Q1 + : : :+ pMQM)

(cH + cS)(1� �)

(3.12)
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For Q1:

( p1Q
�

1 + : : :+ pMQM)(Dc1 +
cH
2
p1(1 � p1)) = p1[KD +Dc1Q

�

1 + : : :+DcMQM

+ (
cH + cS

2
)(1� �)i2 +

cH
2
(p1(1 � p1)Q

�

1 + : : :+ pM (1� pM )QM

� (p1Q
�

1 + : : :+ pMQM)
2)]� (cH + cS)(

m2

2
+ im1)

The �rst order conditions for Q2; : : : ; QM are also taken. Equating the �rst order

conditions, we obtain equations of parameters below, that was also the case for

the setting with two suppliers.

p1(Dc2 +
cH
2
p2(1� p2)) = p2(Dc1 +

cH
2
p1(1� p1))

p1(Dc3 +
cH
2
p3(1� p3)) = p3(Dc1 +

cH
2
p1(1� p1))

: : :

: : :

p1(DcM +
cH
2
pM (1 � pM )) = pM (Dc1 +

cH
2
p1(1� p1))

If \M" equations above hold simultaneously, we obtain the following result

using the �rst order condition for Q1 for CRa:

p1Q
�

1 + : : :+ pMQ
�

M =

vuuut(cH + cS)(
(m1)2

1�� +m2) � 2KD

cH(
(cH+cS)��cS
(cH+cS)(1��)

)

Note that the expression giving the expected amount to receive (p1Q�

1+ : : :+

pMQ
�

M) is the same with the one found for the problem with two suppliers.

Similar to the argument in the 2-suppliers problem, any pair (Q�

1; : : : ; Q
�

M)

satisfying the equation above is a solution when \M" equations of parameters

hold simultaneously. Decision maker will then decide how to split among suppliers

considering the contracts with the suppliers. After �nding the optimal values for

decision variables, the value of Pi is computed accordingly and the algorithm

continues.

When the equations of parameters do not hold, the optimal values occur at

the boundaries. Order splitting is not pro�table in this case, so the decision
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maker needs to decide which supplier to use. For choosing the right supplier,

s/he needs to compare the suppliers employing the following method which was

also used in 2-suppliers case:

Use supplier j if:

cjpk � ckpj +
cH
2D

pkpj(pk � pj) > 0 for 8k 6= j: (3.13)

One has to make M � 1 such comparisons to give the �nal decision, and the

optimal order quantity for CRa will be the following:

Q�

j =

vuuut(cH + cS)(
(m1)2

1�� +m2)� 2KD

cH(
(cH+cS)��cS
(cH+cS)(1��)

)(pj)2

Q�

k = 0 for k 6= j

i� =
m1

(1 � �)
�
vuutcH((cH + cS)(m2 +

(m1)2

(1��))� 2KD)

(cH + cS)(1� �)((cH + cS)�� cS)

We may face a situation in which the equations of parameters hold for a subset

of the M suppliers. Suppose that the subset is denoted by S where cardinality

of S is l where the whole set is denoted by E. If we have:

cjpk � ckpj +
cH
2D

pkpj(pk � pj) = 0 for 8k; j 2 S:

Then the order quantities will be any combination (Q�

S1
; : : : ; Q�

Sl
) satisfying the

following:

(pS1Q
�

S1
+ : : :+ pSlQ

�

Sl
) =

vuuut(cH + cS)(
(m1)2

1�� +m2)� 2KD

cH(
(cH+cS)��cS
(cH+cS)(1��)

)

Q�

j = 0 for 8j 2 E � S

The order quantity given above is splitted among the suppliers in any way

the decision maker chooses.



Chapter 4

Stochastically Proportional

Yield

In the \stochastically proportional to yield" case, a random fraction,which is

between zero and one, of the order quantity is received. The two suppliers have

di�erent distributions for this random fraction and the amounts received from the

two suppliers are independent from each other. In this case in addition to quality

problems, the suppliers may face random demand from their customers and the

capacity of the suppliers are random. The means and the variances are di�erent

from each other for two suppliers. The following are the additional notation that

will be used in this chapter:

u : random fraction for supplier 1 with density function f(u)

�1 : mean of the random variable u

�21 : variance of the random variable u

v : random fraction for supplier 2 with density function f(v)

�2 : mean of the random variable v

�22 : variance of the random variable v

The amount that is actually received is modeled as follows:

x1 = uQ1 and x2 = vQ2

Hence, the expected amount actually received from the two suppliers and the

43
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second moment of the same quantity comes out to be the following:

E[x1 + x2jQ1; Q2] = E[xjQ1; Q2] = �1Q1 + �2Q2

E[(x1 + x2)2jQ1; Q2] = E[(x)2jQ1; Q2] = �21Q
2
1 + �22Q

2
2 + (�1Q1 + �2Q2)

2

The expected total cost per cycle and cycle time become the following for this

particular yield model:

E[Total Cost] = K + c1Q1 + c2Q2 + (
cH + cs
2D

)(1 � Pi)i
2

+
cH(�21Q

2
1 + �22Q

2
2 + (�1Q1 + �2Q2)2 + 2i(�1Q1 + �2Q2))

2D

� (cH + cS)[E[X2I(X < �i)] + 2iE[XI(X < �i)]]
2D

(4.1)

E[T ] =
E[x]

D
=
�1Q1 + �2Q2

D
(4.2)

Using the following formulas new values for Pi, E[XI(X < �i)], and

E[X2I(X < �i)] are computed:

� If �i

Q2
� 1 and �i

Q1
� 1, then

Pi =
Z �i

Q2

v=0

Z �i�vQ2
Q1

u=0
f(u)g(v)dudv

� If �i

Q2
� 1 and �i

Q1
> 1, then

Pi =
Z �i�Q1

Q2

v=0

Z 1

u=0
f(u)g(v)dudv +

Z �i
Q2

v=
�i�Q1
Q2

Z �i�vQ2
Q1

u=0
f(u)g(v)dudv

� If �i

Q2
> 1 and �i

Q1
� 1, then

Pi =
Z 1

v=0

Z �i�vQ2
Q1

u=0
f(u)g(v)dudv

� If �i

Q2
> 1 and �i

Q1
> 1, then

Pi =
Z �i�Q1

Q2

v=0

Z 1

u=0
f(u)g(v)dudv +

Z 1

v=
�i�Q1
Q2

Z �i�vQ2
Q1

u=0
f(u)g(v)dudv

The expected value and the second moment of the random variable X� are

computed by the same method de�ned above. We just replace f(u) by

(uQ1 + vQ2)f(u) to �nd E[XI(X < �i)], and f(u) by (uQ1 + vQ2)
2f(u) to

�nd E[X2I(X < �i)].



Chapter 4. Stochastically Proportional Yield 45

4.1 Analytical Properties of the Approximate

Objective Function

In order to use the �rst order conditions to �nd the optimal values of decision

variables, the long-run average cost function must be convex, since the problem

is a minimization problem. Therefore, �rstly we need to show that the objective

function is strictly convex either for the whole space or just for some particular

parameter sets.

When the function is convex, the optimal values occur at the points where

the �rst partial derivatives are equal to zero. We are also guaranteed that these

values are global optimums.

In the following part, we are going to analyze the analytical properties of the

cost rate with respect to each decision variable given the values for the other two

decision variables(just as in the binomial case, this analysis is done under the

assumption that Pi, E[XI(X < �i)], and E[(XI(X < �i))2] are constant in the

iterative solution procedure). The second order partial derivatives will be found

for this purpose. For the function to be convex, the sign of the second order

derivative must be positive.Firstly, the convexity of the function with respect to

the reorder level for given values of Q1 and Q2 is investigated :

For i:

@2CR

@i2
=

(@
2E[TC]
@i2

E[T ]� E[TC]@
2E[T ]
@i2

)E[T ]� (@E[TC]
@i

E[T ]� E[TC]@E[T ]
@i

)2@E[T ]
@i

(E[T ])3

Lemma 4.1: The cost rate function is convex with respect to the reorder point

"i" given the values of the order quantities.

Proof:

Since the �rst and second order partial derivatives of the expected cycle

time with respect to the reorder point are both equal to zero, the second order

derivative reduces to the following:

@2CR

@i2
= ((E[T ])2)

@2E[TC]

@i2
=

cH + cS
D
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The expression above is always positive, so Lemma 4.1 is proven. 2

Lemma 4.2: Approximate cost rate (CRa) is convex with respect to Q1 given

Q2, and i, and with respect to Q2 given Q1, and i i� the following inequalities

hold, respectively:

2KD(�1)
2 + (cH + cS)(�1)

2i((1� �)i� 2m1) + cHQ
2
2(�

2
1(�2)

2 + �22(�1)
2)

+ 2D�1Q2(c2�1 � c1�2)� (cH + cS)(�1)
2m2 > 0

2KD(�2)
2 + (cH + cS)(�2)

2i((1� �)i� 2m1) + cHQ
2
1(�

2
1(�2)

2 + �22(�1)
2)

+ 2D�2Q1(c1�2 � c2�1)� (cH + cS)(�2)
2m2 > 0

Proof:

The second order partial derivative with respect to Q1 (similar for Q2) is the

following:

@2CRa

@Q2
1

=
(@

2E[TCa]
@Q2

1
E[T ]� E[TCa]@

2E[T ]
@Q2

1
)E[T ]� (@E[TC

a]
@Q1

E[T ]� E[TCa]@E[T ]
@Q1

)2@E[T ]
@Q1

(E[T ])3

Since the expected cycle time (E[T ]) is always positive, the sign of the second

order derivative depends on the following expression:

(
@2E[TCa]

@Q2
1

E[T ]� E[TCa]
@2E[T ]

@Q2
1

)E[T ]� (
@E[TCa]

@Q1
E[T ]� E[TCa]

@E[T ]

@Q1
)2
@E[T ]

@Q1

We have the same expressions for Q2 except that Q1's are replaced by Q2.

� For Q1:

@E[T ]

@Q1
=

�1
D
; and

@2E[T ]

@Q2
1

= 0

@E[TCa]

@Q1
= c1 +

cH
2D

(2�21Q1 + 2�1(�1Q1 + �2Q2) + 2i�1)

) @2E[TCa]

@Q2
1

=
cH(�21 + (�1)2)

D
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After some algebraic simpli�cations, the expression indicating the sign of the

second order derivative turns out to be the following one:

2KD(�1)
2 + (cH + cS)(�1)

2i((1� �)i� 2m1) + cHQ
2
2(�

2
1(�2)

2 + �22(�1)
2)

+ 2D�1Q2(c2�1 � c1�2)� (cH + cS)(�1)
2m2

� For Q2:

@E[T ]

@Q2
=

�2
D
; and

@2E[T ]

@Q2
2

= 0

@E[TCa]

@Q2
= c2 +

cH
2D

(2�22Q2 + 2�2(�1Q1 + �2Q2) + 2i�2)

) @2E[TCa]

@Q2
2

=
cH(�22 + (�2)2)

D

Again the expression indicating the sign of the second order derivative reduces

to the following one for Q2:

2KD(�2)
2 + (cH + cS)(�2)

2i((1� �)i� 2m1) + cHQ
2
1(�

2
1(�2)

2 + �22(�1)
2)

+ 2D�2Q1(c1�2 � c2�1)� (cH + cS)(�2)
2m2

Consequently, Lemma 4.2 is proven. 2.

Proposition 4.1:The condition that 2DQ2(c2�1 � c1�2) � (cH + cS)�1m2 � 0,

and 2DQ1(c2�1 � c1�2) � (cH + cS)�2m2 � 0 is a su�cient but not necessary

condition for the approximate cost rate function (CRa)to be convex with respect

to Q1 given the values for i and Q2, and with respect to Q2 for given values of

Q1, i.

Proof:

The �rst three terms in the expression indicating the sign of the second order

partial derivative are always positive since i is less than 0, and m1 > 0, and

dividing the last two terms by �1 (by �2 for the condition for Q2) gives the

conditions above. As a result Proposition 4.1 is proven. 2
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4.2 Optimization

For the regions in which the approximate cost rate is convex, the �rst partial

derivatives are taken to �nd the optimal values of decision variables. Then, the

�rst order conditions are used to �nd the relations among i, Q1, and Q2. The

partial derivatives are taken below:

Approximate F.O.C. for \i":

Since
@E[T ]

@i
= 0

@CRa

@i�
= 0) E[T ]

@E[TCa]

@i�
= E[TCa]

@E[T ]

@i�
) @E[TCa]

@i�
= 0

) (
cH + cS

D
)(1� �)i� +

cH(�1Q1 + �2Q2)� (cH + cS)m1

D
= 0

) i� =
(cH + cS)m1 � cH(�1Q1 + �2Q2)

(cH + cS)(1� �)

(4.3)

Approximate F.O.C. for \Q1":

@CRa

@Q�

1

= 0 ) (�1Q
�

1 + �2Q2)[c1 +
cH(2�21Q

�

1 + 2(�1Q�

1 + �2Q2)�1 + 2i�1)

2D
]

= E[TCa]�1 )

(�1Q
�

1 + �2Q2)[Dc1 + cH�
2
1Q

�

1] = �1[D(K + c1Q
�

1 + c2Q2) + (
cH + cS

2
)(1 � �)i2

+
cH(�21(Q

�

1)
2 + �22(Q2)2 � (�1Q�

1 + �2Q2)2)

2

� (cH + cS)(m2 + 2im1)

2
]

(4.4)

Approximate F.O.C. for \Q2":

@CRa

@Q�

2

= 0 ) (�1Q1 + �2Q
�

2)[c2 +
cH(2�22Q

�

2 + 2(�1Q1 + �2Q
�

2)�2 + 2i�2)

2D
]
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= E[TCa]�1 )

(�1Q1 + �2Q
�

2)[Dc2 + cH�
2
2Q

�

2] = �2[(K + c1Q1 + c2Q
�

2) + (
cH + cS

2
)(1 � �)i2

+
cH(�21(Q1)2 + �22(Q

�

2)
2 � (�1Q1 + �2Q

�

2)
2)

2

� (cH + cS)(m2 + 2im1)

2
]

(4.5)

Using the �rst order conditions for Q1 and Q2, equations (4.4) and (4.5) we obtain

the following equality:

(c2 +
cH
2D

2�22Q
�

2)�1 = (c1 +
cH
2D

2�21Q
�

1)�2 )

Q�

1 =

(c2�1�c1�2)D
cH

+ �1�
2
2Q

�

2

�2�21
(4.6)

As a result, we are able to �nd a linear relationship between the optimal

values of Q�

1 and Q�

2.

Let A and B be two constants where,

A =
(c2�1 � c1�2)D

cH�2�21

B =
�1�

2
2

�2�21

Then, the relation between Q�

1 and Q�

2 becomes:

Q�

1 = A+BQ�

2 and from equation (4.3) we have

i� =
(cH + cS)m1 � cH(�1A+ (�1B + �2)Q�

2)

(cH + cS)(1� �)

Since all three variables can be represented in terms of Q�

2, we are able to �nd

an equation in only one variable. Using the relations above and equation (4.5),

a quadratic equation (for which a real solution may or may not exist) involving
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only Q�

2,a(Q
�

2)
2 + bQ�

2 + c = 0, is obtained , where;

a =
cH(�1B + �2)

2
[B�21 + �1(�1B + �2)

(cS � (cH + cS)�)

(cH + cS)(1� �)
]

b = cH�1A[B(�
2
1 + (�1)

2) + �1�2 � cH�1(�1B + �2)

(cH + cS)(1� �)
]

c =
cH�1A

2

2
[
(�21)(cS � (cH + cS)�)

(cH + cS)(1 � �)
+ �21] +H where,

H =
(cH + cS)�1

2
[m2 +

(m1)2

(1 � �)
]�K�1D

Solving this quadratic equation will give the optimal value for Q2 (when � >

0). But it is not guaranteed that � > 0. When � < 0, it means that the

quadratic equation has no real solution and the optimal values occur at the

boundaries. Also, for the cases where � > 0 but one of Q1 or Q2 is smaller

than zero (infeasible solution for the problem), the optimal solution is at the

boundaries. Therefore, a similar analysis carried out for the binomial case will

be done for this case also. After some algebraic simpli�cations, the value of �

comes out to be the following:

� = [2H(�1B + �2) +DA(c2�1 � c1�2)�1] �
[ cH�1((

(cH + cS)� � cS
(cH + cS)(1 � �)

)(�1B + �2)� �22
�2
)]

All cases considered, the following theorem is constructed:

Theorem 4.1

i) Optimal values of Q1, Q2, and i for CRa are:

Q�

2 =
�b+p�

2a
Q�

1 = A+BQ�

2

i� =
(cH + cS)m1 � cH(�1A+ (�1B + �2)Q�

2)

(cH + cS)(1� �)

i� the following conditions hold;

� = [2H(�1B + �2) +DA(c2�1 � c1�2)�1] �
[ cH�1((

(cH + cS)� � cS
(cH + cS)(1 � �)

)(�1B + �2)� �22
�2
)] > 0
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and min(Q�

1; Q
�

2) > 0

ii) Else if, � < 0, or min(Q1; Q2) < 0 the optimal value for CRa occurs at the

boundaries and only one of the suppliers is used. Let CRa
1, and CRa

2 be the cost

rates when only supplier 1, 2 is used respectively. Hence,

� If CRa
1jQ�1;Q�2=0 � CRa

2jQ�1=0;Q�2 < 0, optimal values will be:

Q�

1 =

vuuut2KD � (cH + cS)(m2 +
(m1)2

(1��)
)

cH(�21 + (�1)2 � cH(�1)2

(1��)(cH+cs)
)

Q�

2 = 0

i� =
(cH + cS)m1 � cH�1Q

�

1

(cH + cS)(1� �)

� Else if, CRa
1jQ�1;Q�2=0 � CRa

2jQ�1=0;Q�2 > 0, then optimal values will be:

Q�

1 = 0

Q�

2 =

vuuut2KD � (cH + cS)(m2 +
(m1)2

(1��))

cH(�22 + (�2)2 � cH(�2)2

(1��)(cH+cs)
)

i� =
(cH + cS)m1 � cH�2Q

�

2

(cH + cS)(1� �)

Proof:

Case 1: � > 0;and min(Q1; Q2) > 0:

The solution of the quadratic equation a(Q�

2)
2+bQ�

2+c derived from equation

(4.5) gives the optimal value for Q2 for CRa. Then using the linear relation

between Q�

1 and Q�

2 (Q�

1 = A + BQ�

2) optimal value for Q1 is found. Finally,

from equation (4.3), the optimal value for the reorder point is computed using

the optimal values of the order quantities previously found.

Case 2: � < 0 or min(Q1; Q2) < 0:
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In this case the quadratic equation has no solution, that is, there is not a real

value for Q�

2 satisfying this particular equation. From the relation between Q�

1

and Q�

2, no real value of Q�

1 is available. Consequently, the optimal value will

occur at the boundaries. Since the minimumwill occur at the boundaries, we are

going to look at the cost rates when Q1 = 0 and Q2 = 0.

� When Q2 = 0, we have the following:

E[TCa] = K + c1Q1 + (
cH + cs
2D

)(1� �)i2

+
cH(�21Q

2
1 + (�1Q1)2 + 2i�1Q1)

2D

� (cH + cS)[m2 + 2im1]

2D
(4.7)

E[T ] =
E[x]

D
=

�1Q1

D
(4.8)

Let the cost rate be CRa
1 in this realization. Now, we need to �nd the optimal

value of Q1 minimizing cost rate 1 (CRa
1):

@CRa
1

@Q�

1

= 0) @E[TCa]

@Q�

1

E[T ] = E[TCa]
@E[T ]

@Q�

1

)

[
cH�1
2

(�21 + (�1)
2)� (cH)2(�1)3

2(1� �)(cH + cS)
](Q�

1)
2 �KD�1

= �(cH + cS)�1
2

(m2 +
(m1)2

(1 � �)
))

Q�

1 =

vuuut2KD � (cH + cS)(m2 +
(m1)2

(1��)
)

cH(�21 + (�1)2 � cH (�1)2

(1��)(cH+cs)
)

(4.9)

i� is found from equation (4.3).
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� When Q1 = 0, we have the following:

E[TCa] = K + c2Q2 + (
cH + cs
2D

)(1� �)i2

+
cH(�22Q

2
2 + (�2Q2)2 + 2i�2Q2)

2D

� (cH + cS)[m2 + 2im1]

2D
(4.10)

E[T ] =
E[x]

D
=

�2Q2

D
(4.11)

Let the cost rate be CRa
2 in this setting. Now, we need to �nd the optimal value

of Q2 minimizing cost rate 2 (CRa
2):

@CRa
2

@Q�

2

= 0) @E[TCa]

@Q�

2

E[T ] = E[TCa]
@E[T ]

@Q�

2

)

[
cH�2
2

(�22 + (�2)
2)� (cH)2(�2)3

2(1� �)(cH + cS)
](Q�

2)
2 �KD�2

= �(cH + cS)�2
2

(m2 +
(m1)

2

(1 � �)
))

Q�

2 =

vuuut2KD � (cH + cS)(m2 +
(m1)2

(1��)
)

cH(�22 + (�2)2 � cH (�2)2

(1��)(cH+cs)
)

(4.12)

Again i� is found from equation (4.3).

Then, CRa
1�CRa

2 evaluated at the optimal values of Q1, Q2, which is a function

of parameters (recall that �, m1, and m2) is computed. If CRa
1(CR

a
2) is smaller

than CRa
2(CR

a
1) it is less costly to order from supplier 1(2) only. 2.

4.2.1 Initial Solution of the Algorithm

In the analysis done up to this point, we assumed that �, m1, and m2 are assumed

to be constants, so that the �rst order partial derivatives of them with respect to
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Q1; Q2, and i are zero. According to the solution procedure proposed in Chapter

2, we �rst need to assign values to the expressions above. Therefore, we started

with assigning 0 to these values. Substituting 0 in place of these expressions

yields the following:

i� = (
�cH

cH + cS
)(�1Q

�

1 + �2Q
�

2) (4.13)

The relation between optimal order quantities is preserved since it is not

dependent on Pi, or E[XI(X < �i)], or E[X2I(X < �i)]. Thus, we use the

quadratic equation for the �rst step of the algorithm also. Therefore, for the �rst

step of the algorithm the following corollary is constructed:

Corollary 4.1

i) Optimal values of Q1, Q2, and i for CRa when Pi = E[XI(X < �i)] =
E[X2I(X < �i)] = 0 are:

Q�

2 =
�b+p�0

2a
Q�

1 = A+BQ�

2

i� =
�cH(�1A+ (�1B + �2)Q�

2)

(cH + cS)

where,

�0 = [cH�1(
cs

(cH + cS)
+
�22
�2
)][2K�1D(�1B + �2)�DA(c2�1 � c1�2)]

i� the following conditions hold;

2K�1D(�1B + �2)�DA(c2�1 � c1�2) > 0 and min(Q�

1; Q
�

2) > 0

ii) Else if, � < 0, or min(Q1; Q2) < 0 the optimal value for CRa occurs at the

boundaries and only one of the suppliers is used. Let CRa
1, and CRa

2 be the cost

rates when only supplier 1, 2 is used respectively. Hence,

� If CRa
1jQ�1 � CRa

2jQ�2 < 0, optimal values (for Pi = E[XI(X < �i)] =

E[X2I(X < �i)] = 0) will be:

Q�

1 =

vuut 2KD

cH[
cS�

2
1

cH+cS
+ �21]
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Q�

2 = 0

i� =
�cH�1Q�

1

(cH + cS)

� Else if, CRa
1jQ�1�CRa

2jQ�2 > 0, then optimal values for (Pi = E[XI(X < �i)] =
E[X2I(X < �i)] = 0) will be:

Q�

1 = 0

Q�

2 =

vuut 2KD

cH[
cS�

2
2

cH+cS
+ �22]

i� =
�cH�2Q�

2

(cH + cS)

Proof:

The discriminant of the quadratic equation was:

� = [2H(�1B + �2) +DA(c2�1 � c1�2)�1]

[ cH�1((
(cH + cS)Pi � cS
(cH + cS)(1 � Pi)

)(�1B + �2)� �22
�2

)]

When Pi; E[XI(X < �i)]; E[X2I(X < �i)] are all equal to zero, we have:
H = �K�1D

�0 = [cH�1(
cs

(cH + cS)
+
�22
�2
)][2K�1D(�1B + �2)�DA(c2�1 � c1�2)]

�0 being greater than zero (provided that min(Q1; Q2) > 0) proves that

the optimal occurs where �rst order conditions hold. The �rst term in square

brackets in �0 is always positive so that the sign of �0 depends on the sign of

the second term,2K�1D(�1B + �2) � DA(c2�1 � c1�2). If the second term is

greater than zero we are guaranteed that the quadratic equation has real roots.

Otherwise, the optimal occurs at the boundaries and assigning 0 to Pi; E[XI(X <

�i)]; E[X2I(X < �i)] yields:

Q�

1 =

vuut 2KD

cH[
cS�

2
1

cH+cS
+ �21]

when supplier 1 is used only

Q�

2 =

vuut 2KD

cH[
cS�

2
2

cH+cS
+ �22]

when supplier 2 is used only

Corollary 4.1 is proven. 2
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4.3 Generalization to "M" Suppliers:

In this setting, there are \M" suppliers producing the same unit, and the yield

distribution of each supplier is independent from others. The following are the

expected total cost per cycle and expected cycle time for this particular case:

E[Total Cost] = K + c1Q1 + : : :+ cMQM + (
cH + cs
2D

)(1� Pi)i
2

+
cH(E[X2jQ1; : : : ; QM ] + 2iE[XjQ1; : : : ; QM ])

2D

� (cH + cS)[E[X2I(X < �i)] + 2iE[XI(X < �i)]]
2D

E[T ] =
E[XjQ1; : : : ; QM ]

D

where the expected amount to receive and the second moment are as follows:

E[xjQ1; : : : ; QM ] = �1Q1 + : : :+ �MQM

E[x2jQ1; : : : ; QM ] = �21Q
2
1 + : : :+ �2MQ

2
M + (�1Q1 + : : :+ �MQM)

2

The approximate cost rate is to be minimized. Following are the �rst order

conditions for the reorder point and the order quantities:

For i:

@CRa

@i�
= 0) E[T ]

@E[TCa]

@i�
= E[TCa]

@E[T ]

@i�
) @E[TCa]

@i�
= 0

) (
cH + cS

D
)(1 � �)i� +

cH(�1Q1 + : : :+ �MQM)� (cH + cS)m1

D
= 0

) i� =
(cH + cS)m1 � cH(�1Q1 + : : :+ �MQM)

(cH + cS)(1� �)

(4.14)

For Q1:

( �1Q
�

1 + : : :+ �MQM )(Dc1 + cH�
2
1Q1) = �1[KD +Dc1Q

�

1 + : : :+DcMQM

+ (
cH + cS

2
)(1� �)i2 +

cH
2
(�21(Q

�

1)
2 + : : :+ �2M(QM)

2 � (�1Q
�

1 + : : :+ �MQM )2)]

� (cH + cS)(
m2

2
+ im1)
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Taking �rst order partial derivatives for the other decision variables (Q2: : : : ; QM)

and equating them yields:

�1(Dc2 + cH�
2
2Q

�

2) = �2(Dc1 + cF�
2
1Q

�

1)) Q�

1 = A2 +B2Q
�

2

�1(Dc3 + cH�
2
3Q

�

3) = �3(Dc1 + cF�
2
1Q

�

1)) Q�

1 = A3 +B3Q
�

3

: : : : : : : : : : :

: : : : : : : : : : :

�1(DcM + cH�
2
MQ

�

M) = �M (Dc1 + cF�
2
1Q

�

1)) Q�

1 = AM +BMQ
�

M

where,

Aj =
D(cj�1 � c1�j)

cH�j�21

Bj =
�1�

2
j

�j�21

Similar to the 2-supplier case, we are able to express all decision variables

in terms of Q�

1 using �rst order conditions. Therefore, a quadratic equation

involving only Q�

1 can be found. If the discriminant of this quadratic equation is

positive, Q�

1 will be the solution of this equation, and the optimal values of the

order quantities will be computed from the relations given above (given that they

are positive). Otherwise, if the equation has no real (and positive) solution, the

optimal solution is at the boundaries. In this case, some of the order quantities

will be equal to zero. To �nd the optimal value of the cost rate, all subsets of the

set 1,2,: : : ,M need to be considered. The quadratic equation for each possible

subset need to be found, and the subset with the minimum cost rate value should

be chosen. As a result:

Qj = 0 for j 2 S where S is a subset of 1; 2; : : : ;M and Qk > 0 for k 6= j

for which values are found from the quadratic equations. All subsets \S" will be

analyzed in this manner, and the one with the minimum cost will be selected as

the best solution.



Chapter 5

Numerical Analysis

In order to investigate the behavior of the optimal values of decision variables and

the cost rate with respect to the cost parameters and the distribution parameters

a numerical study is carried out in this chapter. This study is done for both

binomial yield and stochastically proportional yield. For each case, we �rst

present the results for di�erent parameter settings and then the results under

di�erent distribution parameter sets. The results are obtained by using the

algorithm de�ned in Chapter 2 using the software package Matlab. Additionally,

the regions showing where diversi�cation among suppliers pays or where using

only one supplier is bene�cial are provided. Finally, the comparison of the results

obtained by the algorithm that we proposed and the optimal values are given in

a table for di�erent cost and yield structures.

Throughout the analysis the demand rate is taken to be equal to one (D=1).

The experimental set-up for both cases, is given in Table 5.1.

K 200, 400, 600
cH 5, 10, 20, 30, 40
cS 50, 60, 80

Table 5.1: Experimental Design # 1

58



Chapter 5. Numerical Analysis 59

5.1 Binomial Yield Case

In Tables 5.3 to 5.6, the e�ect of the change in K; cH ; cS on decision variables and

cost rate is investigated. The following observations are made for the purchasing

costs and distribution parameters given in Table 5.2. We used the values in Table

5.2 in order to see the e�ect of di�erent selling prices and distribution parameters.

Table # c1 c2 p1 p2
Table 5.3 96 120 0.6 0.8
Table 5.4 96 120 0.75 0.9
Table 5.5 80 120 0.6 0.8
table 5.6 108 120 0.75 0.9

Table 5.2: Experimental Design # 2

� As K increases and cH ; cS are held constant, the retailer orders more in

order to place orders less frequently and consequently minimize the procurement

cost in the long-run. The magnitude of the reorder level gets larger in order to

balance increasing inventory holding cost.

� As cH increases only, the quantities ordered decrease to incur less inventory

holding cost. The absolute value of reorder level, jij also increases to take

advantage of backordering which is now relatively inexpensive when cH is

increased. When cS increases (while K; cH do not change), i becomes closer

to zero to allow as little shortages as possible. Also, since one would incur extra

holding cost when the reorder level is closer to zero and the total quantity ordered

is the same, the retailer orders less from the suppliers as the unit shortage cost

per unit time increases.

� The cost rate increases when K; cH, and cS increases as expected. Also, the

values of reorder point are almost the same (at least for two decimal places), since

the expected amount to receive is almost equal when cost parameters cH ; cS are

same (do not change with c1; c2; p1; p2), complying with the theoretical �ndings.

In Tables 5.3 and 5.4, the ratio c1
c2

is unchanged, but the probabilities of
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cS = 50 cS = 60 cS = 80

K cH Q�1 Q�2 i� CR Q�1 Q�2 i� CR Q�1 Q�2 i� CR
5 0.00 11.73 -0.85 193.140 0.00 11.64 -0.72 193.467 0.00 11.52 -0.54 193.886
10 0.00 8.66 -1.15 208.735 0.00 8.54 -0.98 209.554 0.00 8.39 -0.75 210.628

200 20 0.00 6.61 -1.51 227.589 0.00 6.45 -1.29 229.458 0.00 6.25 -1.00 231.999
30 0.00 5.77 -1.73 239.565 0.00 5.59 -1.49 242.420 0.00 5.35 -1.17 246.412
40 0.00 5.30 -1.89 248.216 0.00 5.10 -1.63 251.938 0.00 4.84 -1.29 257.205

5 0.00 16.58 -1.21 210.802 0.00 16.46 -1.01 211.264 0.00 16.30 -0.77 211.857
10 0.00 12.25 -1.63 232.650 0.00 12.08 -1.38 233.808 0.00 11.86 -1.05 235.327

400 20 0.00 9.35 -2.14 258.904 0.00 9.13 -1.83 261.544 0.00 8.84 -1.41 265.137
30 0.00 8.16 -2.45 275.472 0.00 7.91 -2.11 279.487 0.00 7.57 -1.65 285.114
40 0.00 7.50 -2.67 287.311 0.00 7.22 -2.31 292.555 0.00 6.85 -1.83 300.046

5 0.00 20.31 -1.48 224.355 0.00 20.16 -1.24 224.921 0.00 19.96 -0.94 225.647
10 0.00 15.00 -2.00 251.000 0.00 14.79 -1.69 252.419 0.00 14.52 -1.29 254.280

600 20 0.00 11.46 -2.62 282.931 0.00 11.18 -2.24 286.164 0.00 10.83 -1.73 290.564
30 0.00 10.00 -3.00 303.000 0.00 9.68 -2.58 307.918 0.00 9.27 -2.02 314.808
40 0.00 9.19 -3.27 317.295 0.00 8.84 -2.83 323.698 0.00 8.39 -2.24 332.884

Table 5.3: Results with c1 = 96; c2 = 120; p1 = 0:6; p2 = 0:8

cS = 50 cS = 60 cS = 80

K cH Q�1 Q�2 i� CR Q�1 Q�2 i� CR Q�1 Q�2 i� CR
5 12.51 0.00 -0.85 171.265 12.41 0.00 -0.72 171.592 12.29 0.00 -0.54 172.011
10 9.24 0.00 -1.15 186.985 9.11 0.00 -0.98 187.804 8.94 0.00 -0.75 188.878

200 20 7.06 0.00 -1.51 206.090 6.89 0.00 -1.29 207.954 6.67 0.00 -1.00 210.498
30 6.16 0.00 -1.73 218.326 5.96 0.00 -1.49 221.135 5.71 0.00 -1.17 225.147
40 5.66 0.00 -1.89 227.122 5.44 0.00 -1.63 230.876 5.16 0.00 -1.29 236.235

5 17.69 0.00 -1.21 188.927 17.55 0.00 -1.01 189.389 17.38 0.00 -0.77 189.982
10 13.06 0.00 -1.63 210.900 12.88 0.00 -1.38 212.058 12.65 0.00 -1.05 213.577

400 20 9.98 0.00 -2.14 237.404 9.74 0.00 -1.83 240.044 9.43 0.00 -1.41 243.637
30 8.71 0.00 -2.45 254.214 8.43 0.00 -2.11 258.237 8.07 0.00 -1.65 263.864
40 8.00 0.00 -2.67 266.312 7.70 0.00 -2.31 271.533 7.30 0.00 -1.83 279.048

5 21.66 0.00 -1.48 202.480 21.50 0.00 -1.24 203.046 21.29 0.00 -0.94 203.772
10 16.00 0.00 -2.00 229.250 15.78 0.00 -1.69 230.669 15.49 0.00 -1.29 232.530

600 20 12.22 0.00 -2.62 261.431 11.93 0.00 -2.24 264.664 11.55 0.00 -1.73 269.064
30 10.67 0.00 -3.00 281.747 10.33 0.00 -2.58 286.668 9.89 0.00 -2.02 293.557
40 9.80 0.00 -3.27 296.280 9.43 0.00 -2.83 302.697 8.94 0.00 -2.24 311.878

Table 5.4: Results with c1 = 96; c2 = 120; p1 = 0:75; p2 = 0:9
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cS = 50 cS = 60 cS = 80

K cH Q�1 Q�2 i� CR Q�1 Q�2 i� CR Q�1 Q�2 i� CR
5 15.63 0.00 -0.85 176.973 15.52 0.00 -0.72 177.300 15.37 0.00 -0.54 177.719
10 11.55 0.00 -1.15 193.068 11.39 0.00 -0.98 193.887 11.18 0.00 -0.75 194.962

200 20 8.82 0.00 -1.51 212.903 8.61 0.00 -1.29 214.779 8.33 0.00 -1.00 217.327
30 7.70 0.00 -1.73 225.813 7.45 0.00 -1.49 228.698 7.14 0.00 -1.17 232.718
40 7.07 0.00 -1.89 235.409 6.80 0.00 -1.63 238.998 6.45 0.00 -1.29 244.459

5 22.11 0.00 -1.21 194.636 21.94 0.00 -1.01 195.098 21.73 0.00 -0.77 195.691
10 16.33 0.00 -1.63 216.983 16.10 0.00 -1.38 218.141 15.81 0.00 -1.05 219.661

400 20 12.47 0.00 -2.14 244.235 12.17 0.00 -1.83 246.876 11.79 0.00 -1.41 250.469
30 10.89 0.00 -2.45 261.771 10.54 0.00 -2.11 265.806 10.09 0.00 -1.65 271.440
40 10.00 0.00 -2.67 274.593 9.62 0.00 -2.31 279.815 9.13 0.00 -1.83 287.357

5 27.08 0.00 -1.48 208.188 26.87 0.00 -1.24 208.754 26.61 0.00 -0.94 209.480
10 20.00 0.00 -2.00 235.333 19.72 0.00 -1.69 236.752 19.36 0.00 -1.29 238.613

600 20 15.28 0.00 -2.62 268.263 14.91 0.00 -2.24 271.497 14.43 0.00 -1.73 275.897
30 13.33 0.00 -3.00 289.325 12.91 0.00 -2.58 294.243 12.36 0.00 -2.02 301.138
40 12.25 0.00 -3.27 304.592 11.79 0.00 -2.83 310.995 11.18 0.00 -2.24 320.205

Table 5.5: Results with c1 = 80; c2 = 120; p1 = 0:6; p2 = 0:8

cS = 50 cS = 60 cS = 80

K cH Q�1 Q�2 i� CR Q�1 Q�2 i� CR Q�1 Q�2 i� CR
5 0.00 10.42 -0.85 176.223 0.00 10.34 -0.72 176.550 0.00 10.24 -0.54 176.969
10 0.00 7.70 -1.15 191.568 0.00 7.59 -0.98 192.387 0.00 7.45 -0.75 193.462

200 20 0.00 5.88 -1.51 209.925 0.00 5.74 -1.29 211.793 0.00 5.56 -1.00 214.333
30 0.00 5.13 -1.73 221.434 0.00 4.97 -1.49 224.265 0.00 4.76 -1.17 228.250
40 0.00 4.71 -1.89 229.581 0.00 4.54 -1.63 233.292 0.00 4.30 -1.29 238.606

5 0.00 14.74 -1.21 193.886 0.00 14.63 -1.01 194.348 0.00 14.49 -0.77 194.941
10 0.00 10.89 -1.63 215.483 0.00 10.73 -1.38 216.641 0.00 10.54 -1.05 218.161

400 20 0.00 8.31 -2.14 241.238 0.00 8.11 -1.83 243.878 0.00 7.86 -1.41 247.470
30 0.00 7.26 -2.45 257.308 0.00 7.03 -2.11 261.324 0.00 6.73 -1.65 266.949
40 0.00 6.67 -2.67 268.661 0.00 6.42 -2.31 273.896 0.00 6.09 -1.83 281.392

5 0.00 18.05 -1.48 207.438 0.00 17.92 -1.24 208.004 0.00 17.74 -0.94 208.730
10 0.00 13.33 -2.00 233.833 0.00 13.15 -1.69 235.252 0.00 12.91 -1.29 237.113

600 20 0.00 10.18 -2.62 265.264 0.00 9.94 -2.24 268.497 0.00 9.62 -1.73 272.897
30 0.00 8.89 -3.00 284.833 0.00 8.61 -2.58 289.753 0.00 8.24 -2.02 296.641
40 0.00 8.16 -3.27 298.632 0.00 7.86 -2.83 305.038 0.00 7.45 -2.24 314.219

Table 5.6: Results with c1 = 108; c2 = 120; p1 = 0:75; p2 = 0:9
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producing a good item are increased for each supplier. The variance for supplier

1 (�21 = p1(1� p1)) is higher than the one for supplier 2 (�22 = p2(1� p2)) and p1

is smaller than p2 in both tables. That is, the second supplier is more reliable.

However, in Table 5.4, Q1 is always positive whereas Q2 = 0, since c1 is low

enough to force the retailer to order from the �rst supplier. Also, p1
p2

is now

0.83 approximately while it is 0.75 in Table 5.4 (which is higher than c1
c2
= 0:8),

therefore two suppliers are closer to each other in terms of their reliability.

When Tables 5.3 and 5.5 are compared, we see that both suppliers are equal in

terms of reliability. But, in Table 5.5, the item produced by the �rst supplier is

relatively inexpensive as compared to c1 in Table 5.3(i.e.
c1
c2
is lower in Table 5.5).

Hence, the retailer switches to the �rst supplier (again in this case c1
c2
= 0:66 is

less than p1
p2
= 0:75).

For Tables 5.4 and 5.6, we observe that as c1 gets large enough when the other

parameters are unchanged, retailer orders from second supplier only. In Table

5.6, we also observe that c1
c2
= 0:9 is higher than p1

p2
= 0:83.

When we analyze Tables 5.3 to 5.6, we see that, the retailer chooses the supplier

to order from according to the equation of parameters derived in Chapter 3. But,

from the numerical results, for the range of unit holding cost per time from 5

to 40 and for D=1, the selection criterion seems to be simpler. In all tables, it

is observed that, when c1
c2
< p1

p2
�rst supplier is used, and when c1

c2
> p1

p2
second

supplier is used. These ratios can be rewritten as c1
p1
< c2

p2
and c1

p1
> c2

p2
. Since, cj

pj

can be regarded as the e�ective selling price of a good item produced by supplier

\j", it is intuitively reasonable to order from the less expensive one. Consequently,

when the unit holding cost per unit time is not so large, the selection among

suppliers can be done by comparing the e�ective prices for each supplier.

In Table 5.7, as we move downwards, p1 gets larger which results in higher

mean and lower variance for supplier 1. That is, �rst supplier becomes more

reliable and retailer uses supplier 1 more often. As we keep pj the same and

increase pi, it is observed that the amount ordered decreases for the cases where

supplier i is used, since level of uncertainty involved in the amount delivered is

less. Obviously, the amount ordered Qi is independent of pj . As we increase p2
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keeping p1 the same, the retailer switches to the second supplier in some cases

where probabilities are more close to each other. This move from supplier 1 to 2

is again determined by the \approximate selection criterion" (done by comparing

e�ective selling prices) since holding cost is not that high to have a signi�cant

e�ect on the equation of parameters (c2p1� c1p2+
cH
2D
p1p2(p1� p2) = 0). Clearly,

retailer orders more often from supplier 2 when p1 is low enough, since c1
c2
= 0:8

which makes �rst supplier advantageous. Lastly, reorder level is not a�ected

by the change in p1; p2 (since expected amount to receive, p1Q1 + p2Q2 is the

same)and the cost rate is an increasing function of p1 or p2.

In Table 5.8, c1 is increased from 96 to 120, and cH is decreased to 20 from

30. Since c1
c2

= 0:9 now, the retailer orders from supplier 2 in 8 cases whereas

supplier 2 is used 4 times in Table 5.7. Q1; Q2; and i and cost rate show the

same behavior as in Table 5.7. For the cases where supplier 1 is used only, we

observe that the amount ordered (Q1 or Q2) are higher since the holding cost

is lower even though c1 is increased. Again, the approximate selection criteria

works in Table 5.8. Note that, in Tables 5.7-5.9, the value of the reorder point

stays the same, since it depends on the expected amount to receive (pjQj), so on

K;D; cH ; cS.

We choose smaller values for p1 and p2 in Table 5.9 in order to see the e�ect of

the increase in variance when the mean gets higher. In Table 5.9, the probabilities

are increased in such a way that the variance also increases as the mean increases,

using the structure of binomial density function (that is, for p + p
0
< 1 where

p < p
0
, then p(1 � p) < p

0
(1 � p

0
).

So, as we move downwards, the mean is larger but the variance is also larger.

But as the results in Table 5.9 suggest, the amounts ordered are again decreasing

functions of p1 and p2. As a result, we conclude that the e�ect of the increase

in variance has a negligible e�ect in terms of the change in Q1 or Q2 when the

mean is higher. Obviously, the amounts ordered increases signi�cantly when p1

and p2 are taken to be equal to values smaller than 0.5.
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p1 p2 Q�

1 Q�

2 i� CR
0.60 12.172 0.000 -2.739 302.9175
0.70 12.172 0.000 -2.739 302.9175

0.60 0.75 0.000 9.737 -2.739 300.6751
0.80 0.000 9.129 -2.739 289.9294
0.90 0.000 8.114 -2.739 271.7639

0.60 10.433 0.000 -2.739 278.5666
0.70 10.433 0.000 -2.739 278.5666

0.70 0.75 10.433 0.000 -2.739 278.5666
0.80 10.433 0.000 -2.739 278.5666
0.90 0.000 8.114 -2.739 271.7639

0.60 9.737 0.000 -2.739 268.6751
0.70 9.737 0.000 -2.739 268.6751

0.75 0.75 9.737 0.000 -2.739 268.6751
0.80 9.737 0.000 -2.739 268.6751
0.90 9.737 0.000 -2.739 268.6751

0.60 9.129 0.000 -2.739 259.9294
0.70 9.129 0.000 -2.739 259.9294

0.80 0.75 9.129 0.000 -2.739 259.9294
0.80 9.129 0.000 -2.739 259.9294
0.90 9.129 0.000 -2.739 259.9294

0.60 8.114 0.000 -2.739 245.0972
0.70 8.114 0.000 -2.739 245.0972

0.90 0.75 8.114 0.000 -2.739 245.0972
0.80 8.114 0.000 -2.739 245.0972
0.90 8.114 0.000 -2.739 245.0972

Table 5.7: Results with K = 500; c1 = 96; c2 = 120; cH = 30; cS = 50
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p1 p2 Q�

1 Q�

2 i� CR
0.60 13.944 0.000 -2.390 303.5209
0.70 0.000 11.952 -2.390 293.9507

0.60 0.75 0.000 11.155 -2.390 282.0227
0.80 0.000 10.458 -2.390 271.5228
0.90 0.000 9.296 -2.390 253.8562

0.60 11.952 0.000 -2.390 276.8078
0.70 11.952 0.000 -2.390 276.8078

0.70 0.75 11.952 0.000 -2.390 276.8078
0.80 0.000 10.458 -2.390 271.5228
0.90 0.000 9.296 -2.390 253.8562

0.60 11.155 0.000 -2.390 266.0227
0.70 11.155 0.000 -2.390 266.0227

0.75 0.75 11.155 0.000 -2.390 266.0227
0.80 11.155 0.000 -2.390 266.0227
0.90 0.000 9.296 -2.390 253.8562

0.60 10.458 0.000 -2.390 256.5228
0.70 10.458 0.000 -2.390 256.5228

0.80 0.75 10.458 0.000 -2.390 256.5228
0.80 10.458 0.000 -2.390 256.5228
0.90 0.000 9.296 -2.390 253.8562

0.60 9.296 0.000 -2.390 240.5229
0.70 9.296 0.000 -2.390 240.5229

0.90 0.75 9.296 0.000 -2.390 240.5229
0.80 9.296 0.000 -2.390 240.5229
0.90 9.296 0.000 -2.390 240.5229

Table 5.8: Results with K = 500; c1 = 108; c2 = 120; cH = 20; cS = 50
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p1 p2 Q�

1 Q�

2 i� CR
0.25 33.466 0.000 -2.390 559.0115
0.30 0.000 27.889 -2.390 526.5124

0.25 0.35 0.000 23.905 -2.390 468.8715
0.40 0.000 20.917 -2.390 425.5161
0.45 0.000 18.592 -2.390 391.6851

0.25 27.889 0.000 -2.390 486.5124
0.30 27.889 0.000 -2.390 486.5124

0.30 0.35 0.000 23.905 -2.390 468.8715
0.40 0.000 20.917 -2.390 425.5161
0.45 0.000 18.592 -2.390 391.6851

0.25 23.905 0.000 -2.390 434.5858
0.30 23.905 0.000 -2.390 434.5858

0.35 0.35 23.905 0.000 -2.390 434.5858
0.40 0.000 20.917 -2.390 425.5161
0.45 0.000 18.592 -2.390 391.6851

0.25 20.917 0.000 -2.390 395.5161
0.30 20.917 0.000 -2.390 395.5161

0.40 0.35 20.917 0.000 -2.390 395.5161
0.40 20.917 0.000 -2.390 395.5161
0.45 0.000 18.592 -2.390 391.6851

0.25 18.592 0.000 -2.390 365.0184
0.30 18.592 0.000 -2.390 365.0184

0.45 0.35 18.592 0.000 -2.390 365.0184
0.40 18.592 0.000 -2.390 365.0184
0.45 18.592 0.000 -2.390 365.0184

Table 5.9: Results with K = 500; c1 = 108; c2 = 120; cH = 20; cS = 50
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5.1.1 Diversi�cation Among Suppliers

Note that, only one supplier is used in Tables 5.3 to 5.6. This is due to the fact

that diversi�cation among suppliers is bene�cial for very limited number of cases

(for cases where the equation of parameters c2p1 � c1p2 +
cH
2D
p1p2(p1 � p2) = 0

holds). Dividing the equation of parameters by p1p2 and rewriting it yields:
c2
p2
� c1

p1
= cH

2D (p2 � p1) =. If the left hand side (di�erence of e�ective selling

prices) is greater than right hand side (marginal holding cost of moving one item

from supplier 1 to 2), retailer orders from Supplier 1 only. The retailer orders

from both suppliers when the marginal holding cost of moving one item from

supplier 1 to 2 is equal to additional purchasing cost of moving again one item

from supplier 1 to 2, as explained in Chapter 3. Even in this case, the retailer

could order from each supplier in the way s/he desires. That is, s/he can order

from just one supplier despite the equation of parameters mentioned above holds,

since the expected cost rate does not change when Q1, or Q2 changes (as proved

in Chapter 3, we just need to keep p1Q1 + p2Q2 constant and any feasible pair

(Q1; Q2) can be a solution). Moreover, as the numerical results suggest, the

selection among suppliers can be done by the so called \approximate selection

criterion" explained before when cH is not signi�cantly high. In the following

part, the regions showing where ordering from supplier 1 or 2 is less costly are

given for some given values of cH ;D; c1, and c2:
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Figure 5.1: Where to use supplier 1 or 2 for cH = 20;D = 1; c1 = 80; c2 = 100

5.2 Stochastically Proportional Yield Case

For this type of yield model, the random fractions for each is supplier (u; v)

are assumed to have beta distributions for numerical analysis. The parameters

de�ning the distributions are �1; �1 and �2; �2 for suppliers 1 and 2,respectively.

Recall that the mean and the variance of a beta random variable are de�ned as:

�j =
�j

�j + �j

�2j =
�j�j

(�j + �j)2(�j + �j + 1)

In almost all of the parameter sets, we considered the cases where 1 < � < �

where the distribution is said to be negatively skewed (skewed to left) for this

�; � values (i.e. higher probability of receiving a high proportion of the amount

ordered). The shape of the beta distribution is given below: (see Larson [15],

page 207):

In Tables 5.11 to 5.14 the e�ect of the cost parameters on decision variables

and objective function is investigated with di�erent selling prices per item and

distribution parameters for the suppliers, given in Table 5.10 (where the values

used for K; cH , and cS are given in Table 5.1). For Tables 5.11, 5.12, 5.13, 5.14,
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Figure 5.2: Beta density function for di�erent �(a), and �(b) values

the following observations are made:

Table # c1 c2 �1 �2 �1 �2
Table 5.11 120 135 3 4 2 1
Table 5.12 120 135 8 9 2 1
Table 5.13 90 120 3 4 2 1
table 5.14 90 120 8 9 2 1

Table 5.10: Experimental Design # 3

� As the holding cost per unit per time increases, the values of Q�

1, Q
�

2, and

the cost rate go down. The reorder level decreases, that is, the absolute value

of i increases. The results are also intuitive since the retailer tends to order less

not to incur too much holding cost, and wants to take advantage of backordering

which is less expensive as the holding cost increases.

� As the �xed ordering cost increases, Q�

1, Q
�

2, ji�j increase since it is more

pro�table to place orders less frequently. The cost rate again increases as K

increases.
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� The reorder point approaches zero when the cost of shortage per unit

per time goes up as expected (when backordering is more expensive, number

of backorders less is expected to go down). The magnitudes of the ordering

quantities also go down. If the retailer keeps ordering the same amount, s/he

would incur extra holding cost since the reorder level is closer to zero than before

as cH increases. Hence, to decrease the inventory keeping cost, the retailer tends

to order less. The cost rate again increases with the increase in cH .

cS = 50 cS = 60 cS = 80

K cH Q�1 Q�2 i� CR Q�1 Q�2 i� CR Q�1 Q�2 i� CR
5 4.19 8.39 -0.84 193.345 4.16 8.33 -0.70 193.666 4.12 8.25 -0.53 194.079
10 3.09 6.19 -1.13 208.775 3.05 6.10 -0.96 209.580 3.00 6.00 -0.73 210.636

200 20 2.36 4.71 -1.48 227.180 2.30 4.60 -1.27 229.009 2.23 4.46 -0.98 231.501
30 2.05 4.10 -1.69 238.676 1.99 3.98 -1.46 241.453 1.91 3.81 -1.14 245.346
40 1.88 3.76 -1.84 246.814 1.81 3.62 -1.59 250.421 1.72 3.44 -1.26 255.600

5 5.93 11.86 -1.19 211.299 5.89 11.78 -1.00 211.754 5.83 11.67 -0.75 212.337
10 4.37 8.75 -1.60 233.121 4.32 8.63 -1.36 234.259 4.24 8.48 -1.04 235.753

400 20 3.33 6.66 -2.09 259.148 3.25 6.51 -1.79 261.736 3.15 6.31 -1.39 265.260
30 2.90 5.80 -2.39 275.407 2.81 5.62 -2.06 279.333 2.70 5.39 -1.62 284.840
40 2.66 5.31 -2.60 286.915 2.56 5.12 -2.25 292.017 2.43 4.87 -1.79 299.341

5 7.27 14.53 -1.45 225.076 7.21 14.42 -1.22 225.633 7.14 14.29 -0.92 226.347
10 5.36 10.72 -1.96 251.802 5.29 10.57 -1.66 253.196 5.19 10.39 -1.27 255.025

600 20 4.08 8.16 -2.56 283.679 3.99 7.97 -2.19 286.848 3.86 7.73 -1.70 291.164
30 3.55 7.10 -2.93 303.592 3.44 6.89 -2.53 308.400 3.30 6.61 -1.98 315.144
40 3.25 6.51 -3.18 317.686 3.14 6.27 -2.76 323.935 2.98 5.96 -2.19 332.905

Table 5.11: Results with c1 = 90; c2 = 120; �1 = 0:6; �2 = 0:8;
�21
�22

= 1:5

� In Tables 5.11 and 5.14 retailer always uses both suppliers since the

discriminant of the quadratic equation is always positive and positive real root is

available for Q�

2. When we compare Tables 5.11 and 5.14, we see that the relation

between Q�

1 and Q�

2 is pretty much the same since A = 0 and B's(B =
�1�

2
2

�2�
2
1
)

are almost the same. But since the selling prices (c1; c2) are higher, the order

quantities are lower in Table 5.14.

�Comparison of Tables 5.11 & 5.12:

When we analyze Table 5.12, we see that �rst supplier is used all the time. In

Table 5.12, �1 is less than �2, and �21 is higher than �22. Hence, the uncertainty

in the amount that is actually delivered is higher for the �rst supplier. However,
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cS = 50 cS = 60 cS = 80

K cH Q�1 Q�2 i� CR Q�1 Q�2 i� CR Q�1 Q�2 i� CR
5 11.58 0.00 -0.84 155.670 11.50 0.00 -0.71 155.993 11.39 0.00 -0.54 156.407
10 8.54 0.00 -1.14 171.017 8.43 0.00 -0.96 171.825 8.28 0.00 -0.74 172.886

200 20 6.51 0.00 -1.49 189.286 6.36 0.00 -1.27 191.125 6.16 0.00 -0.99 193.628
30 5.67 0.00 -1.70 200.663 5.50 0.00 -1.47 203.454 5.27 0.00 -1.15 207.368
40 5.20 0.00 -1.85 208.689 5.01 0.00 -1.60 212.317 4.76 0.00 -1.27 217.525

5 16.38 0.00 -1.19 173.551 16.26 0.00 -1.00 174.008 16.10 0.00 -0.76 174.594
10 12.08 0.00 -1.61 195.256 11.92 0.00 -1.36 196.399 11.71 0.00 -1.04 197.899

400 20 9.21 0.00 -2.10 221.092 8.99 0.00 -1.80 223.692 8.72 0.00 -1.39 227.233
30 8.02 0.00 -2.41 237.181 7.77 0.00 -2.07 241.129 7.45 0.00 -1.63 246.664
40 7.35 0.00 -2.61 248.531 7.08 0.00 -2.27 253.663 6.73 0.00 -1.80 261.028

5 20.06 0.00 -1.46 187.272 19.91 0.00 -1.23 187.831 19.72 0.00 -0.93 188.549
10 14.80 0.00 -1.97 213.854 14.60 0.00 -1.67 215.254 14.34 0.00 -1.27 217.092

600 20 11.28 0.00 -2.58 245.497 11.01 0.00 -2.20 248.682 10.67 0.00 -1.71 253.019
30 9.82 0.00 -2.95 265.202 9.52 0.00 -2.54 270.038 9.13 0.00 -1.99 276.817
40 9.00 0.00 -3.20 279.104 8.68 0.00 -2.78 285.389 8.25 0.00 -2.20 294.409

Table 5.12: Results with c1 = 90; c2 = 120; �1 = 0:8; �2 = 0:9;
�21
�22

= 1:77

cS = 50 cS = 60 cS = 80

K cH Q�1 Q�2 i� CR Q�1 Q�2 i� CR Q�1 Q�2 i� CR
5 0.00 11.47 -0.83 212.356 0.00 11.38 -0.70 212.676 0.00 11.28 -0.53 213.086
10 0.00 8.45 -1.13 227.911 0.00 8.34 -0.95 228.710 0.00 8.20 -0.73 229.760

200 20 0.00 6.43 -1.47 246.514 0.00 6.28 -1.26 248.331 0.00 6.09 -0.97 250.806
30 0.00 5.59 -1.68 258.179 0.00 5.42 -1.45 260.938 0.00 5.21 -1.14 264.806
40 0.00 5.11 -1.82 266.464 0.00 4.93 -1.58 270.052 0.00 4.70 -1.25 275.200

5 0.00 16.22 -1.18 230.419 0.00 16.10 -0.99 230.871 0.00 15.95 -0.75 231.451
10 0.00 11.95 -1.59 252.416 0.00 11.79 -1.35 253.547 0.00 11.59 -1.03 255.031

400 20 0.00 9.09 -2.08 278.725 0.00 8.89 -1.78 281.294 0.00 8.62 -1.38 284.795
30 0.00 7.91 -2.37 295.222 0.00 7.67 -2.05 299.124 0.00 7.36 -1.61 304.594
40 0.00 7.23 -2.57 306.938 0.00 6.98 -2.23 312.013 0.00 6.64 -1.77 319.293

5 0.00 19.86 -1.44 244.278 0.00 19.72 -1.21 244.832 0.00 19.53 -0.92 245.542
10 0.00 14.64 -1.95 271.219 0.00 14.44 -1.65 272.604 0.00 14.19 -1.26 274.422

600 20 0.00 11.14 -2.55 303.441 0.00 10.88 -2.18 306.588 0.00 10.55 -1.69 310.876
30 0.00 9.68 -2.90 323.646 0.00 9.39 -2.50 328.425 0.00 9.02 -1.97 335.124
40 0.00 8.86 -3.15 337.995 0.00 8.55 -2.74 344.211 0.00 8.13 -2.17 353.126

Table 5.13: Results with c1 = 120; c2 = 135; �1 = 0:6; �2 = 0:8;
�21
�22

= 1:5
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cS = 50 cS = 60 cS = 80

K cH Q�1 Q�2 i� CR Q�1 Q�2 i� CR Q�1 Q�2 i� CR
5 3.59 7.19 -0.85 192.804 3.57 7.13 -0.71 193.129 3.53 7.07 -0.54 193.547
10 2.65 5.31 -1.15 207.977 2.62 5.23 -0.97 208.792 2.57 5.14 -0.74 209.863

200 20 2.03 4.05 -1.50 225.962 1.98 3.95 -1.29 227.820 1.91 3.83 -1.00 230.349
30 1.77 3.53 -1.72 237.086 1.71 3.42 -1.48 239.911 1.64 3.28 -1.16 243.868
40 1.62 3.24 -1.87 244.872 1.56 3.12 -1.62 248.549 1.48 2.96 -1.28 253.820

5 5.08 10.17 -1.20 210.534 5.04 10.09 -1.01 210.994 5.00 9.99 -0.76 211.585
10 3.75 7.51 -1.63 231.992 3.70 7.40 -1.37 233.145 3.63 7.27 -1.05 234.658

400 20 2.86 5.73 -2.13 257.427 2.80 5.59 -1.82 260.054 2.71 5.42 -1.41 263.630
30 2.50 5.00 -2.44 273.158 2.42 4.84 -2.10 277.153 2.32 4.64 -1.64 282.749
40 2.29 4.59 -2.65 284.170 2.21 4.42 -2.30 289.369 2.10 4.19 -1.82 296.823

5 6.23 12.45 -1.47 224.138 6.18 12.36 -1.24 224.702 6.12 12.24 -0.94 225.426
10 4.60 9.19 -1.99 250.419 4.53 9.06 -1.68 251.831 4.45 8.90 -1.29 253.685

600 20 3.51 7.02 -2.61 281.570 3.42 6.85 -2.23 284.788 3.32 6.63 -1.72 289.168
30 3.06 6.12 -2.98 300.837 2.96 5.93 -2.57 305.730 2.84 5.68 -2.01 312.584
40 2.81 5.62 -3.25 314.324 2.70 5.41 -2.81 320.692 2.57 5.13 -2.22 329.821

Table 5.14: Results with c1 = 120; c2 = 135; �1 = 0:8; �2 = 0:9;
�21
�22

= 1:77

numerical results show that retailer orders just from the �rst supplier,since c1 is

low enough with respect to c2 that suppresses the negative e�ect of low level of

reliability.

When Tables 5.11 and 5.12 are compared, it is observed that the retailer

orders more from supplier 1(i.e. Q1(Table 5.12) > Q1(Table 5.11)). Despite the

fact that c1 stays the same, the mean (�1) is higher and the variance (�21) is

lower (i.e. the level of uncertainty for supplier is lower), the retailer orders more

from supplier 1 as compared to the values of Q1 in Table 5.11(where there is a

tendency to order less when the mean is higher and variance is lower, intuitively).

The reason why Q0

1s are higher in Table 5.12 is that the retailer needs to keep

the lot size at a level which is enough to meet the demand in the long-run (i.e.

the quantity ordered from supplier 2 is moved to supplier 1).

�Comparison of Tables 5.11 & 5.13:

In Table 5.13, the retailer orders from supplier 2 only. Both suppliers have

the same distribution parameters as in Table 5.11, but supplier 1 is relatively

expensive in Table 5.13. Even though the unit price c1 is still less than c2, the

e�ect of lower mean and higher variance forces the retailer to order from supplier

2 only. The values of Q2 also increases due to reasons explained above (the desire

to meet the total demand).



Chapter 5. Numerical Analysis 73

�Comparison of Tables 5.13 & 5.14:

It is observed that supplier 1 is also used because the prices are the same for

both tables but the mean is higher and the variance is lower for supplier 1.

After we investigate the e�ect of cost parameters on the values of decision

variables and the cost rate under di�erent yield distribution parameters and

selling price schemes, the e�ect of means and variances of yield distributions

under some particular cost parameters and selling prices is explored. In Tables

5.15, 5.16, and 5.17 the cost structures are the same. In these tables, �2 increases

and �22 decreases as we move rightwards. So, as we improve the process capability

of supplier 2 (move to right in the table), the retailer starts ordering more from

supplier 2 for the cases where both suppliers are used. Obviously, we observe

lower values for Q1. The absolute value of the reorder point gets higher since

uncertainty is lower. Additionally, since the process capability stays the same for

supplier 1 and gets better for supplier 2 as we move rightwards, the total amount

ordered (Q1 + Q2) decreases. In Table 5.15, we observe cases where supplier 1

is used only. For these cases, the quantity ordered (Q1) is independent of the

distribution parameters for supplier 2 (�2; �2) complying with the theoretical

�ndings in Chapter 4. As we move downwards, the e�ect of the change in �1; �1

on the values of decision variables is observed. When the mean gets higher and

variance gets lower (for supplier 1), we see that the retailer starts ordering from

supplier 1 only. In this case, the total amount ordered decreases. But when �1 is

kept constant and �21 is lowered, total amount ordered increases for this particular

parameter set. Therefore, we are not guaranteed to order less when the variance

is lower and the mean is the same contrary to the intuition that you always order

less when the variance decreases.

Within Tables 5.16 and 5.17, we observe similar behavior for the values of the

decision variables. The mean �2 is kept the same but the variance �22 is decreased

further when Tables 5.15,5.16 and Tables 5.16, 5.17 are compared. It is observed

from numerical results that the retailer orders more from supplier 2 and less from

the �rst supplier, since the second supplier became more reliable for the cases

when both suppliers are used.
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�2 = 1
�2 = 3 �2 = 4 �2 = 5

�1 �1 Q�1 Q�2 i� CR Q�1 Q�2 i� CR Q�1 Q�2 i� CR
2 6.26 3.77 -2.62 296.887 2.67 6.68 -2.67 290.310 0.04 8.54 -2.68 284.020

1 3 9.26 0.00 -2.60 277.295 9.26 0.00 -2.60 277.295 7.80 1.44 -2.64 277.097
4 8.84 0.00 -2.65 266.400 8.84 0.00 -2.65 266.400 8.84 0.00 -2.65 266.400

4 8.71 1.63 -2.63 294.117 3.95 5.65 -2.68 289.783 0.06 8.52 -2.68 284.020
2 6 9.46 0.00 -2.66 274.259 9.46 0.00 -2.66 274.259 9.46 0.00 -2.66 274.259

8 8.97 0.00 -2.69 264.398 8.97 0.00 -2.69 264.398 8.97 0.00 -2.69 264.398

6 10.32 0.21 -2.64 292.292 4.89 4.89 -2.69 289.398 0.08 8.51 -2.68 284.020
3 9 9.54 0.00 -2.68 273.044 9.54 0.00 -2.68 273.044 9.54 0.00 -2.68 273.044

12 9.02 0.00 -2.71 263.632 9.02 0.00 -2.71 263.632 9.02 0.00 -2.71 263.632

Table 5.15: Results with K = 500; c1 = 100; c2 = 120; cH = 30; cS = 50

�2 = 2
�2 = 6 �2 = 8 �2 = 10

�1 �1 Q�1 Q�2 i� CR Q�1 Q�2 i� CR Q�1 Q�2 i� CR
2 5.51 4.53 -2.65 296.291 1.66 7.61 -2.70 289.021 0.00 8.66 -2.71 282.606

1 3 9.26 0.00 -2.60 277.295 9.26 0.00 -2.60 277.295 7.54 1.69 -2.65 277.054
4 8.84 0.00 -2.65 266.400 8.84 0.00 -2.65 266.400 8.84 0.00 -2.65 266.400

4 8.22 2.10 -2.65 293.999 2.61 6.83 -2.70 288.806 0.00 8.66 -2.71 282.606
2 6 9.46 0.00 -2.66 274.259 9.46 0.00 -2.66 274.259 9.46 0.00 -2.66 274.259

8 8.97 0.00 -2.69 264.398 8.97 0.00 -2.69 264.398 8.97 0.00 -2.69 264.398

6 10.24 0.29 -2.64 292.290 3.38 6.20 -2.71 288.632 0.00 8.66 -2.71 282.606
3 9 9.54 0.00 -2.68 273.044 9.54 0.00 -2.68 273.044 9.54 0.00 -2.68 273.044

12 9.02 0.00 -2.71 263.632 9.02 0.00 -2.71 263.632 9.02 0.00 -2.71 263.632

Table 5.16: Results with K = 500; c1 = 100; c2 = 120; cH = 30; cS = 50

�2 = 3
�2 = 9 �2 = 12 �2 = 15

�1 �1 Q�1 Q�2 i� CR Q�1 Q�2 i� CR Q�1 Q�2 i� CR
2 5.13 4.91 -2.66 295.990 1.20 8.03 -2.71 288.444 0.00 8.69 -2.72 282.079

1 3 9.26 0.00 -2.60 277.295 9.26 0.00 -2.60 277.295 7.43 1.80 -2.65 277.034
4 8.84 0.00 -2.65 266.400 8.84 0.00 -2.65 266.400 8.84 0.00 -2.65 266.400

4 7.95 2.36 -2.65 293.933 1.95 7.41 -2.71 288.328 0.00 8.69 -2.72 282.079
2 6 9.46 0.00 -2.66 274.259 9.46 0.00 -2.66 274.259 9.46 0.00 -2.66 274.259

8 8.97 0.00 -2.69 264.398 8.97 0.00 -2.69 264.398 8.97 0.00 -2.69 264.398

6 10.19 0.33 -2.64 292.289 2.58 6.89 -2.71 288.229 0.00 8.69 -2.72 282.079
3 9 9.54 0.00 -2.68 273.044 9.54 0.00 -2.68 273.044 9.54 0.00 -2.68 273.044

12 9.02 0.00 -2.71 263.632 9.02 0.00 -2.71 263.632 9.02 0.00 -2.71 263.632

Table 5.17: Results with K = 500; c1 = 100; c2 = 120; cH = 30; cS = 50
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In Tables 5.18, 5.19, and 5.20 a similar analysis is done under a di�erent

cost structure. In this setting, selling prices c1; c2 are more close to each other.

Since, the item provided by supplier 1 is relatively expensive (with respect to the

one in Tables 5.15, 5.16, and 5.17) in this setting, retailer orders more from the

second supplier than before. Similarly, when just supplier 2 is used, value of Q2 is

independent of �1; �1 (which must be the case according to closed form formulas

derived in Chapter 4). Also, the reduction in the variance (in �21) keeping �1 the

same leads to an increase in Q1 (same rule applies for Q2 also).

�2 = 1
�2 = 3 �2 = 4 �2 = 5

�1 �1 Q�1 Q�2 i� CR Q�1 Q�2 i� CR Q�1 Q�2 i� CR
2 2.27 8.78 -2.31 284.442 0.00 10.17 -2.32 272.955 0.00 9.84 -2.34 265.889

1 3 10.67 0.00 -2.29 271.620 6.26 4.38 -2.34 270.055 1.43 8.60 -2.35 265.758
4 10.17 0.00 -2.32 260.455 10.17 0.00 -2.32 260.455 9.92 0.24 -2.33 260.453

4 3.18 8.02 -2.32 284.232 0.00 10.17 -2.32 272.955 0.00 9.84 -2.34 265.889
2 6 10.88 0.00 -2.33 269.249 8.63 2.19 -2.35 268.959 2.08 8.03 -2.36 265.698

8 10.30 0.00 -2.35 258.909 10.30 0.00 -2.35 258.909 10.30 0.00 -2.35 258.909

6 3.78 7.52 -2.33 284.092 0.00 10.17 -2.32 272.955 0.00 9.84 -2.34 265.889
3 9 10.96 0.00 -2.35 268.316 10.10 0.83 -2.35 268.280 2.53 7.64 -2.36 265.657

12 10.35 0.00 -2.36 258.323 10.35 0.00 -2.36 258.323 10.35 0.00 -2.36 258.323

Table 5.18: Results with K = 500; c1 = 110; c2 = 120; cH = 20; cS = 50

�2 = 2
�2 = 6 �2 = 8 �2 = 10

�1 �1 Q�1 Q�2 i� CR Q�1 Q�2 i� CR Q�1 Q�2 i� CR
2 0.49 10.46 -2.33 282.561 0.00 10.30 -2.35 271.409 0.00 9.93 -2.37 264.803

1 3 10.67 0.00 -2.29 271.620 5.28 5.35 -2.36 269.709 0.00 9.93 -2.37 264.803
4 10.17 0.00 -2.32 260.455 10.17 0.00 -2.32 260.455 9.87 0.30 -2.33 260.453

4 0.73 10.26 -2.34 282.551 0.00 10.30 -2.35 271.409 0.00 9.93 -2.37 264.803
2 6 10.88 0.00 -2.33 269.249 7.90 2.90 -2.36 268.866 0.00 9.93 -2.37 264.803

8 10.30 0.00 -2.35 258.909 10.30 0.00 -2.35 258.909 10.30 0.00 -2.35 258.909

6 0.92 10.10 -2.34 282.543 0.00 10.30 -2.35 271.409 0.00 9.93 -2.37 264.803
3 9 10.96 0.00 -2.35 268.316 9.76 1.16 -2.36 268.266 0.00 9.93 -2.37 264.803

12 10.35 0.00 -2.36 258.323 10.35 0.00 -2.36 258.323 10.35 0.00 -2.36 258.323

Table 5.19: Results with K = 500; c1 = 110; c2 = 120; cH = 20; cS = 50
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�2 = 3
�2 = 9 �2 = 12 �2 = 15

�1 �1 Q�1 Q�2 i� CR Q�1 Q�2 i� CR Q�1 Q�2 i� CR
2 0.00 10.96 -2.35 281.649 0.00 10.35 -2.36 270.823 0.00 9.97 -2.37 264.400

1 3 10.67 0.00 -2.29 271.620 4.79 5.84 -2.36 269.537 0.00 9.97 -2.37 264.400
4 10.17 0.00 -2.32 260.455 10.17 0.00 -2.32 260.455 9.84 0.33 -2.33 260.453

4 0.00 10.96 -2.35 281.649 0.00 10.35 -2.36 270.823 0.00 9.97 -2.37 264.400
2 6 10.88 0.00 -2.33 269.249 7.49 3.30 -2.36 268.813 0.00 9.97 -2.37 264.400

8 10.30 0.00 -2.35 258.909 10.30 0.00 -2.35 258.909 10.30 0.00 -2.35 258.909

6 0.00 10.96 -2.35 281.649 0.00 10.35 -2.36 270.823 0.00 9.97 -2.37 264.400
3 9 10.96 0.00 -2.35 268.316 9.55 1.36 -2.36 268.258 0.00 9.97 -2.37 264.400

12 10.35 0.00 -2.36 258.323 10.35 0.00 -2.36 258.323 10.35 0.00 -2.36 258.323

Table 5.20: Results with K = 500; c1 = 110; c2 = 120; cH = 20; cS = 50

5.2.1 Diversi�cation Among Suppliers

In the following part, by changing the unit selling prices (in Figures 5.3 to 5.5)

and then the distribution parameters (in Figures 5.6 and 5.7), we analyzed where

the retailer orders from both suppliers and where he/she orders from one supplier

only. We observe a stepwise behavior for the regions where it is better to use

both suppliers due to numerical search increments of selling prices. A smoother

region would have appeared if we had taken the increments smaller.

� In Figure 5.3, the means �1 and �2 are the same but the variances are

di�erent. The ratio of the variances is
�21
�22

= 11
6
. Hence, level of uncertainty

involved with supplier 2 is lower. As it is observed, both suppliers are used

mostly when the selling prices c1; c2 are close to each other. Out of 961 cases,

supplier 1 is used 378 times (%39), supplier 2 is used 435 times (%45), and both

suppliers are used 148 times (%16). Even the means are the same and �21 is almost

two times �22, numerical results show that the e�ect of variance is not that much

signi�cant since the percentages mentioned above are close to each other. In

Figure 5.4, the ratio of the means and variances are �1
�2

= 1:33 and �21
�22

= 1:22. As

the results suggest, supplier 1 dominates in this case. Out of 961 cases, supplier 1

is used 816 times (%84), supplier 2 is used 45 times (%5), and both suppliers are

used 100 times (%11). Since both �1 and �21 are higher than that of supplier 2, it

can be assumed that they are close in terms of the level of uncertainty. But again,

it is veri�ed from numerical results that the di�erence in the mean suppresses the
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di�erence in the variances. In Figure 5.5, the ratio
�21
�22

= 1:96 which is close to the

ratio of variances in Figure 5.3. But, di�erent from Figure 5.3, the means are not

the same and �1
�2

= 1:07. In this �gure, out of 961 cases, supplier 1 is used 455

times (%47), supplier 2 is used 286 times (%30), and both suppliers are used 220

times (%23). Obviously, these percentage �gures are just for the cases analyzed

in this study. These percentages depend on the zone (interval of the parameters)

investigated. Comparing the results obtained from Figures 5.3 and 5.5, we see

that a small change in the ratio of means keeping the ratio of variances almost

the same results in a signi�cant change in the retailers decisions as to from which

supplier to order. Even though the �rst supplier has a higher variance (almost

twice), retailer orders from supplier 1 approximately in half of the cases due to �1

being slightly greater than �2. Consequently, Figures 5.3 to 5.5 suggest that the

means are more e�ective in shaping the decision of the retailer than the variances.

SUPPLIER 1

BOTH

SUPPLIER 2

c 1

c2

90 92 94 146  148    150

90

92

94

146

148

150

Figure 5.3: Where to use supplier 1 or 2 for K = 500; cH = 30; cS = 50; �1 =
4; �2 = 8; �1 = 1; �2 = 2

� In Figure 5.6, ratio of selling prices is c1
c2

= 0:8, and �1; �2 is increased by

0.05 in intervals [0:65; 0:95] and [0:55; 0:85], respectively (whereas the variances

are decreasing). This �gure is similar to the previous �gures in the sense that the
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SUPPLIER 1

BOTH

SUPPLIER 2

C
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1
90 92 94 146   148   150

90
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94
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150

Figure 5.4: Where to use supplier 1 or 2 for K = 500; cH = 30; cS = 50; �1 =
4; �2 = 6; �1 = 1; �2 = 4
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SUPPLIER 1

                                  102
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Figure 5.5: Where to use supplier 1 or 2 for K = 500; cH = 30; cS = 50; �1 =
6; �2 = 4; �1 = 2; �2 = 1
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regions where retailer orders from only one supplier is separated by the region

where both suppliers are used. In Figure 5.7, the only di�erence from Figure 5.6

is c2 which is increased to 90 from 80.Due to the e�ect of this price change, the

percentage of the times supplier 1 is used increased to %57 from %31, percentage

of the times supplier 2 is used decreased to %39 from %61, and �nally there is a

small change in the percentage of the times both suppliers are used (a decrease

from %4 to %2).

[E[u],Var[u]]

[E[v],Var[v]]

SUPPLIER 2

SUPPLIER 1

 BOTH

 BOTH

 BOTH

 BOTH

[0.65,
0.0108]

[0.70,
0.01]

[0.95,
0.0022]

[0.55,
0.0117]

[0.60,
0.0114]

[0.65,
0.0108]

[0.70,
0.01]

[0.85,
0.006]

Figure 5.6: Where to use supplier 1 or 2 for K = 500; cH = 30; cS = 50; c1 =
100; c2 = 80
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[E[u],Var[u]]

[E[v],Var[v]]
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[0.60,
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[0.65,
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[0.70,
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[0.85,
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 BOTH

 BOTH

Figure 5.7: Where to use supplier 1 or 2 for K = 500; cH = 30; cS = 50; c1 =
100; c2 = 90

5.2.2 Performance of the Algorithm

In Table 5.22, the results obtained from the algorithmic solution procedure

are compared with the optimal ones found by Matlab for the parameter sets

given in Table 5.21. The optimization procedure used by Matlab itself is an

unconstrained one that does not take into account the non negativity of the

order quantities. Therefore, it does not always give the optimal values for all

parameter sets. For the parameter sets given in Table 5.21, optimal solutions

found by Matlab's minimization function are all feasible. Also, the computation

time for the algorithm proposed is signi�cantly less than the computation time

for Matlab's unconstrained optimization function. The probabilities Pi are also

given in the Table. As it is observed, Pi values are very much close to zero in

most of the cases. But, for the cases where holding cost is relatively higher and

the means of the random fractions are lower, Pi values start increasing. From, the

numerical study, we have seen that taking Pi = 0 is a very good approximation,

since the incorporation of Pi into the analysis does not make much di�erence in

terms of the cost rate. But, of course, in order to �nd the exact cost rate, P 0i s

should be computed. Additionally, di�erence between the optimal cost rate and
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the cost rate obtained by algorithmic solution is very low. Thus, this algorithm

is a very practical tool to �nd near optimal solutions in a very short time.

K D cH cS c1 c2
�1
�2

�2
1

�2
2

Experiment #

500 1 20 30 80 120 0.75 1.5 1
500 1 20 40 80 120 0.75 1.5 2
500 1 20 50 80 120 0.75 1.5 3
500 1 10 30 80 110 0.75 1.5 4
500 1 15 20 80 120 0.75 1.5 5
500 1 30 20 80 120 0.75 1.5 6
500 1 50 20 80 120 0.75 1.5 7
500 1 70 20 80 120 0.75 1.5 8
500 1 100 20 80 120 0.75 1.5 9
500 1 30 50 100 120 0.88 1.48 10
500 1 30 50 100 120 0.825 2.08 11
500 1 30 50 100 120 0.88 0.85 12
500 1 30 50 100 120 0.825 2.18 13
500 1 20 50 110 120 0.88 1.48 14
500 1 10 30 100 110 0.94 1.41 15
500 1 20 50 100 120 0.76 0.68 16
500 1 50 30 135 150 0.8 0.48 17

Table 5.21: Experimental Design # 4

Algorithm Optimal

Experiment # Q1 Q2 i Pi CR Q�1 Q�2 i� CR� %� in CR
1 12.95 0.90 -3.39 0.030 252.4375 13.61 0.33 -3.41 252.4155 0.0087
2 12.76 0.52 -2.69 0.019 257.9852 13.18 0.16 -2.70 257.9750 0.0039
3 12.64 0.29 -2.23 0.014 261.7807 12.95 0.02 -2.24 261.070 0.0027
4 9.66 6.82 -2.81 0.000 224.1950 9.66 6.82 -2.81 224.1950 0
5 16.47 0.00 -4.23 0.054 234.3285 16.50 0.00 -4.30 234.3214 0.0031
6 9.93 3.21 -5.11 0.059 255.4081 10.59 2.65 -5.15 255.3709 0.015
7 7.18 4.37 -5.57 0.094 268.4309 7.74 3.93 -5.66 268.3674 0.024
8 5.97 4.80 -5.77 0.134 275.8104 6.54 4.38 -5.92 275.6800 0.047
9 5.03 5.05 -5.88 0.185 282.7369 5.61 4.70 -6.14 282.4248 0.11
10 6.26 3.76 -2.62 0.005 296.8871 6.27 3.76 -2.62 296.8871 0
11 2.67 6.68 -2.67 0.001 290.3097 2.67 6.68 -2.67 290.3097 0
12 8.70 1.62 -2.63 0.004 294.1169 8.72 1.60 -2.63 294.1169 0
13 2.61 6.83 -2.70 0.000 288.8064 2.61 6.83 -2.70 288.8063 0
14 2.27 8.78 -2.31 0.002 284.4417 2.26 8.78 -2.31 284.4417 0
15 10.90 3.85 -2.81 0.000 223.2593 10.91 3.86 -2.82 223.2593 0
16 5.19 16.67 -1.95 0.098 513.1126 4.91 16.87 -2.03 513.0784 0.0066
17 5.45 7.76 -3.79 0.212 475.7064 4.02 8.91 -4.20 474.8081 0.19

Table 5.22: Comparison of the algorithmic results and optimal values
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Conclusion

In this thesis, we discuss an inventory model with two suppliers without making

the general assumption that all ordered units are received. Instead, we consider

a system where the suppliers deliver a random fraction of the quantity ordered.

This type of a system may appear especially in �rms producing electronic

products having very tight quality constraints in real life. We consider real life

examples such that the defective units are detected through inspection performed

by the suppliers, and consider pay-for-input, that is, pay for the amount that you

order not the amount that you receive. Our model could easily be extended to

the one considering pay-for-output (which was the case in the study by Parlar

and Wang [18]), by just adjusting the selling prices of the items. We assume a

constant demand, same holding cost for each supplier's product, a �xed ordering

cost that does not depend on which supplier is used, and allow backordering.

The lead time is assumed to be zero. In order to analyze the e�ect of random

yield on the decision variables and the expected cost rate, we discuss two di�erent

yield models: binomial yield and stochastically proportional yield. It is assumed

that density distributions for each supplier's random fractions are known. These

distributions are independent from each other and stationary. The policy used

is of (Q; r) type. That is, you order the amount Q when the inventory level hits

the reorder point r.

The regions where the expected cost rate function is convex are obtained.
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As the theoretical �ndings suggest, we are able to �nd which supplier to use

by the simple and closed form expressions. The optimal values of the decision

variables and cost rate are also found by simple formulas. It is shown that the

order quantity for supplier \j" is independent of the distribution parameters of

the other supplier, given that supplier \j" is used only. The cost rate function for

the case of \M" suppliers (M > 2) is obtained and solution method is proposed.

A detailed numerical analysis is done in order to observe the e�ect of the cost

�gures and the parameters of the distributions on the order quantities, reorder

level, and expected cost rate. The expected cost rate increases as we increase

K; cH , and cS. Quantity ordered decreases as cH; cS increase and increases as K

increases. The magnitude of the reorder level increases as we increase K; cH and

decreases as we increase cS . All of these �ndings are intuitive. When we analyze

the e�ect of the mean and variances of the random yield distributions, we observe

that as the reliability of supplier j increases (i.e. mean is higher and the variance

is lower), the retailer starts ordering more from supplier j when both suppliers

are used. When the retailer orders from just one supplier, s/he orders less from

that supplier as reliability increases. A lower level of uncertainty also leads to an

increase in the magnitude of the reorder level, since Pi is less when randomness

is reduced. Moreover, the e�ect of a change in � (when �2 is kept constant)

suppresses the e�ect of a change in �2 (when � is kept constant). That is, the

values of decision variables and cost rate are much more sensitive to changes in

mean than variance. Another result obtained from numerical study shows that

the total amount ordered is pretty much the same to meet the total demand in

the long-run regardless of which supplier(s) is used.

For the cases where just one supplier is used, the amount ordered from supplier

j is independent of the distribution parameters of the other supplier, complying

with the theoretical �ndings. An extensive numerical study is done to construct

the regions showing which supplier is used for which parameter set. As a result,

for both yield models, ordering from just one supplier is optimal most of the time

which forces the other supplier to improve its process capability or to o�er less

prices. Especially, for the binomial yield case, the retailer always orders from
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one supplier, since both suppliers are used only when the equation of parameters

(c2p1 � c1p2 +
cH
2D
p1p2(p1 � p2) = 0) is equal to zero. Even when we have the

equality, the retailer can still order from one supplier as it is proved in Chapter 3.

Also, the decision as to which supplier should be used can be made by comparing

the e�ective selling prices ( c1
p1
; c2
p2
) for the binomial case, as the numerical results

suggest. For the stochastically proportional yield case, it is optimal to order from

both suppliers for a limited number of cases, but more than that of binomial

yield case. For this case, the e�ect of the change in variances is not that much

signi�cant in the decision process (to choose the right supplier(s)). But, a small

change in the ratio of means (when �2 is the same), results in a signi�cant change

in the retailer's decision as to from which supplier to order.

The comparison of the results of the algorithm with the optimal ones

(only feasible solutions that are found by Matlab function \fminsearch"

solving unconstrained minimization problems are given) for the stochastically

proportional yield case shows that the algorithm works very well for a wide range

of parameter sets. Furthermore, we also conclude that the results with Pi = 0

are very close to the ones with positive P 0i s. That is, the algorithm converges

very fast.

Consequently, the main contribution of this study is providing simple, and

practical closed form expressions for inventory managers, that would help them

make decisions as to which supplier should be used for a particular parameter

set for the problems involving two suppliers. For the binomial yield case, it

is concluded that using only one supplier is better almost always. Also, the

selection between suppliers could be done by just comparing e�ective selling

prices as the numerical results suggest. For the stochastically proportional yield

case, the selection criterion is slightly harder than that of binomial yield case.

But, we are still able to choose which supplier(s) should be used by looking for

a feasible solution to the quadratic equation obtained. The n-supplier version

is also analyzed except for the numerical part. The exact cost expressions are

obtained considering the e�ect of Pi, that was missing in the literature. Also,

for the stochastically proportional yield case, this is the only model that allows
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backordering with two suppliers. This thesis can be further extended to analyze

models involving positive lead time (�xed or random), random demand. Also, the

e�ect of di�erent inspection policies (the supplier provides all the amount ordered,

but the retailer does the inspection business) on the model. The models allowing

substitution between products of two suppliers can also be analyzed. Lastly,

game theoretical models can be constructed using the results of this study where

the retailer is the \follower" and the suppliers are leader, since the market share

is very sensitive to changes in cost parameters and the process capability of the

suppliers. By modeling this problem, the suppliers could be able to optimize their

pro�ts by improving the quality of their products or employing some discount

policies.
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Appendix

Notation

Q1 Quantity ordered from supplier 1
Q2 Quantity ordered from supplier 2
i Reorder point that triggers the placement of an order (i < 0)
X1 Amount actually received from supplier 1
X2 Amount actually received from supplier 2
X Total amount actually received (X1 +X2)
cH Holding cost per unit per time
cS Shortage cost per unit per time
K Ordering cost
c1 Purchasing cost of an item from supplier 1
c2 Purchasing cost of an item from supplier 2
D Constant demand rate
Pi Probability that the amount received is smaller than 00 � i00

p1 Probability of producing a good unit for supplier 1 (binomial yield)
p2 Probability of producing a good unit for supplier 2 (binomial yield)
u Random fraction for supplier 1 with density function f(u)
�1 Mean of the random variable u
�21 Variance of the random variable u
v Random fraction for supplier 2 with density function f(v)
�2 Mean of the random variable v
�22 Variance of the random variable v

Table A.1: Notation

89


