
DISCRETE LOCATION MODELS FOR
CONTENT DISTRIBUTION

a dissertation submitted to

the department of industrial engineering

and the institute of engineering and science

of bilkent university

in partial fulfillment of the requirements

for the degree of

doctor of philosophy

By

Tolga Bektaş

September, 2005

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Bilkent University Institutional Repository

https://core.ac.uk/display/52940076?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

I certify that I have read this thesis and that in my opinion it is fully adequate,

in scope and in quality, as a dissertation for the degree of doctor of philosophy.

Assoc. Prof. Dr. Osman Oğuz (Supervisor)

I certify that I have read this thesis and that in my opinion it is fully adequate,

in scope and in quality, as a dissertation for the degree of doctor of philosophy.

Prof. Dr. İmdat Kara

I certify that I have read this thesis and that in my opinion it is fully adequate,

in scope and in quality, as a dissertation for the degree of doctor of philosophy.

Prof. Dr. Erhan Erkut

ii

I certify that I have read this thesis and that in my opinion it is fully adequate,

in scope and in quality, as a dissertation for the degree of doctor of philosophy.

Assoc. Prof. Dr. Oya Ekin Karaşan

I certify that I have read this thesis and that in my opinion it is fully adequate,

in scope and in quality, as a dissertation for the degree of doctor of philosophy.

Asst. Prof. Dr. Osman Alp

Approved for the Institute of Engineering and Science:

Prof. Dr. Mehmet B. Baray
Director of the Institute

iii

ABSTRACT

DISCRETE LOCATION MODELS FOR CONTENT
DISTRIBUTION

Tolga Bektaş

Ph.D. in Industrial Engineering

Supervisor: Assoc. Prof. Dr. Osman Oğuz

September, 2005

The advances in information and computer technology has tremendously eased

the way to reach electronic information. This, however, also brought forth many

problems regarding the distribution of electronic content. This is especially true

in the Internet, where there is a phenomenal growth of demand for any kind of

electronic information, placing a high burden on the underlying infrastructure. In

this dissertation, we study problems arising in distribution of electronic content.

The first problem studied here is related to Content Distribution Networks

(CDNs), which have emerged as a new technology to overcome the problems

arising on the Internet due to the fast growth of the web-related traffic, such as

slow response times and heavy server loads. They aim at increasing the effective-

ness of the network by locating identical or partial copies of the origin server(s)

throughout the network, which are referred to as proxy servers. In order for such

structures to run efficiently, the CDN must be designed such that system resource

are properly managed. To this purpose, we develop integer programming models

for the problem of designing CDNs and investigate exact and heuristic algorithms

for their solution.

The second problem considered in this dissertation is Video Placement and

Routing, which is related to the so-called Video-on-Demand (VoD) services. Such

services are used to deliver programs to the users on request and find many appli-

cations in education, entertainment and business. Although bearing similarities

with the CDN phenomena, VoD services have special characteristics with respect

to the structure of the network and the type of content distributed. We study

the problem of Video Placement and Routing for such networks and offer an

optimization based solution algorithm for the associated integer programming

model.

iv

v

The third problem studied here is the problem of allocating databases in

distributed computing systems. In this context, we specifically focus on the

well-known multidimensional Knapsack Problem (mKP). The mKP arises as a

subproblem in solving the database location problem. We concentrate on the well

known cover inequalities that are known to be important for the solution of the

mKP. We then propose a novel separation procedure to identify violated cover

inequalities and utilize this procedure in a branch-and-cut framework devised for

the solution of the mKP.

Keywords: Content Distribution Networks, Video on Demand, Multidimensional

Knapsack Problem, Integer Programming, Optimization.

ÖZET

İÇERİK DAĞITIMI İÇİN AYRIK YERSEÇİMİ

MODELLERİ

Tolga Bektaş

Endüstri Mühendisliği, Doktora

Tez Yöneticisi: Doç. Dr. Osman Oğuz

Eylül, 2005

Bilgi ve bilgisayar teknolojisindeki ilerlemeler, elektronik bilgiye erişimi oldukça

kolaylaştırmıştır. Ancak bu gelişmeler, elektronik bilginin dağıtımı ile ilgili bir

çok problemi de beraberinde getirmiştir. Bu durum, özellikle her türlü elektronik

bilgiye karşı olağanüstü artan bir talebin bulunduğu İnternet ortamı için geçerli

olup, mevcut altyapı üzerine oldukça ağır bir yük getirmektedir. Bu tezde, elek-

tronik içerik dağıtımında ortaya çıkan problemler incelenmiştir.

Dikkate alınan ilk problem, ağ baglantılı trafiğin hızlı bir şekilde artması sonu-

cunda İnternet’te ortaya çıkan uzun yanıt süreleri ve sunucular üzerindeki ağır

yükler gibi problemlerin üstesinden gelebilmek için geliştirilen yeni bir teknoloji

olan İçerik Dağıtım Ağları (İDA)’nın tasarlanması ile ilişkilidir. Bu ağlar, proxy

sunucuları olarak adlandırılan ve ana sunucuların tam ya da kısmi kopyaları

olan ek sunucuları ağ üzerine yerleştirerek, ağın etkinliğini artırmayı hedefle-

mektedirler. Bu tür yapıların etkin bir şekilde çalısması için, İDA’nin mevcut

sistem kaynaklarını doğru kullanacak şekilde tasarlanması gerekmektedir. Bu

amaçla, çalışmada İDA tasarımı problemine yönelik tamsayılı programlama mod-

elleri geliştirilmiş ve problemin çözümü için kesin ve yaklaşık çözüm yöntemleri

geliştirilmiştir.

Tezde incelenen ikinci problem, İsteğe Bağlı Video (İBV) servislerinde or-

taya çıkan Video Yerleştirme ve Yönlendirme Problemi (VYYP)’dir. İBV servisi,

kullanıcılarının istekleri doğrultusunda onlara istenilen programları ulaştırma

amacıyla geliştirilen ve eğitim ve iş dünyasında bir çok uygulamaya sahip olan

bir uygulamadır. İDA ile benzer yönleri olmasına rağmen, İBV servisleri, üzerine

kurulduklari ağ ve dağıtılan içerik açısından farklılık göstermektedirler. Bu

çalışmada VYYP incelenerek, probleme ilişkin bir tamsayılı doğrusal karar mod-

elinin çözümü için eniyilemeye dayalı bir yöntem önerilmiştir.

vi

vii

İncelenen üçüncü problem ise bilgisayar ağlarında veri tabanlarinin

yerleştirilmesi problemidir. Bu kapsamda, sözkönusu problemin çözümünde

bir altproblem olarak ortaya çıkan Çok Boyutlu Sırtçantası Problemi (cSP)

üzerinde durulmuştur. Çalışmada, cSP’nin çözümünde önemli bir yeri olan örtü

eşitsizlikleri incelenerek, ihlal edilen örtü eşitsizliklerinin bulunması için yeni bir

yöntem önerilmiş, sözkonusu yöntem cSP’nin çözümü için geliştirilen bir dal ve

kes algoritması çatısı altında kullanılmıştır.

Anahtar sözcükler : İçerik Dağıtım Ağları, İsteğe Bağlı Video, Çok Boyutlu

Sırtçantası Problemi, Tamsayılı Programlama, Eniyileme.

Acknowledgement

I would like to express my sincere gratitude to a number of people, for which

this doctoral dissertation would not have been possible without their support and

encouragement.

This dissertation was supervised by Dr. Osman Oğuz. I would like to sin-

cerely thank him for his unrestricted support and for allowing me the appropriate

amount of freedom in following my own research ideas during my PhD studies.

I am also profoundly grateful to him for generously sharing his experience and

own research ideas with me, from which both myself and this dissertation indeed

profitted a lot.

My sincere thanks also goes to Dr. İmdat Kara of Başkent University, who

has been constantly supporting and guiding me since my MSc studies. I greatly

appreciate his advices on professional issues during the time I’ve been at Başkent

University. I would also like to thank him for accepting to be a member of the

doctoral committee.

Parts of this work owe much to Dr. Iradj Ouveysi of University of Melbourne.

I would like to thank him for graciously suggesting the two topics that are con-

sidered in this dissertation. Despite the very long distance, his support and

encouragement, as well as our useful discussions on the technical issues, helped

greatly in completing the dissertation.

I am deeply indebted to Dr. Erhan Erkut of Bilkent University for devot-

ing his time to read an early draft of this dissertation and offering his valuable

comments and suggestions. I would also like to thank him for accepting to be a

member of the doctoral committee. I am grateful to Kürşad Asdemir of Univer-

sity of Alberta, and Paul Boustead of University of Wollongong, for their detailed

constructive feedbacks on a part of this dissertation that has led to many improve-

ments.

Further, I wish to thank Dr. Oya Karaşan and Dr. Osman Alp, both of

viii

ix

Bilkent University, for accepting to be a member of the doctoral committee and

also providing constructive comments.

I would like to take this opportunity to express my gratitude to Dr. Berna

Dengiz of Başkent University, for her encouragement and support in starting my

academic career. She has helped me in taking the first footsteps.

My colleagues at Başkent University deserve many thanks. In specific, I would

like to thank Dr. Ergün Eraslan for being such a nice officemate and understand-

ing, M. Oya Çınar for her constant support and encouragement, Onur Özkök for

his effort in answering all my endless questions, which in fact resulted in very

useful discussions, and F. Buğra Çamlıca for his support in difficult times. I am

also grateful to Halit Ergezer, Hasan Oğul and Güven Köse, for kindly providing

support in many computer programming issues. Additional thanks are due to

folks at Bilkent University, and in specific to Banu Yüksel, Aysegül Altın, Sibel

Alumur.

I would like to express my sincere gratitude to my mother, my father and my

brother, Burçin. I would not have been where I am now if it were not for their

endless support, great care and everlasting love.

This Dissertation is Dedicated To

My Family

and

to the Memory of N.D., for She Will Always Be My Guarding

Angel...

x

Contents

1 Introduction to Content Distribution 1

1.1 The Internet Infrastructure . 3

1.1.1 Caching Strategies . 4

1.2 Content Distribution Networks 6

1.2.1 Caching in CDNs . 8

1.2.2 Application Contexts . 9

1.2.3 Problems in Content Distribution Networks 10

1.3 Video-on-Demand Services . 11

1.3.1 System Architecture and Components 12

1.3.2 Problems in Video-on-Demand Services 14

1.4 Research Objectives . 15

1.5 Outline of the Dissertation . 16

2 Literature Review 18

2.1 Content Distribution Networks 19

xi

CONTENTS xii

2.1.1 Proxy Server Placement 19

2.1.2 Object Replication . 27

2.1.3 Request Routing . 31

2.1.4 Pricing . 32

2.1.5 Joint Considerations . 32

2.1.6 Commercial CDNs: Some Insight 37

2.1.7 Discussion . 38

2.2 Video on Demand . 39

2.2.1 Discussion . 41

3 Content Distribution Network Design 42

3.1 Location Models for Content Distribution 43

3.1.1 CDN with a Single Server 43

3.1.2 CDN with Multiple Servers 50

3.2 Exact and Heuristic Solutions for SCDNP 53

3.2.1 Model Linearization . 53

3.2.2 A Preliminary Analysis of the SCDNP Model 54

3.2.3 An Exact Solution Algorithm: Benders’ Decomposition . . 57

3.2.4 A Heuristic Algorithm . 63

3.2.5 Computational Results . 65

3.3 Justification of the Combined Approach 70

CONTENTS xiii

3.3.1 A Two-Stage Approach . 70

3.3.2 A Combined Approach . 71

3.3.3 Computational Results . 71

3.3.4 Discussion . 72

3.4 Conclusions and Further Issues 74

4 Video on Demand 76

4.1 Problem Definition And Formulation 76

4.2 A Lagrangean Relaxation and Decomposition Algorithm 80

4.2.1 Obtaining Feasible Solutions 83

4.3 Computational Results . 86

4.3.1 A Modified Algorithm . 89

4.4 Concluding Remarks . 94

5 Database Allocation 95

5.1 Introduction . 95

5.2 The Multidimensional Knapsack Problem 98

5.2.1 Cover Inequalities . 99

5.2.2 The Separation Problem 101

5.2.3 Lifting . 102

5.3 An Exact Separation Procedure for mKP 103

5.3.1 Computational Results . 105

CONTENTS xiv

5.4 A Branch-and-Cut Framework for the mKP 108

5.5 Conclusions . 110

6 Conclusions 115

6.1 Summary of Research Contributions 115

6.1.1 Content Distribution Networks 115

6.1.2 Video on Demand Services 116

6.1.3 Multidimensional Knapsack Problem 117

6.2 Further Research Issues . 118

6.2.1 Content Distribution Networks 118

6.2.2 Video on Demand Services 119

6.2.3 Multidimensional Knapsack Problems 120

A Linearization of the MCDNP model 132

List of Figures

1.1 A typical CDN architecture . 7

1.2 A typical VoD architecture . 13

3.1 A typical single server CDN architecture with 3 proxy servers and

9 clients . 46

3.2 A typical multiple server CDN architecture with 3 origin servers,

3 proxy servers and 9 clients . 51

4.1 A fully meshed VoD architecture with 5 servers 78

xv

List of Tables

3.1 Summary of Notation used for the CDN Model 45

3.2 Computational analysis of M(SCDNP) 56

3.3 Comparison results of MB1, CPLEX and GH 66

3.4 Comparison results of MB1, CPLEX and GH 67

3.5 Comparison results of MB1, CPLEX and GH 68

3.6 Comparison of TWOSTAGE and COMBINED approaches 73

4.1 Computational results for the Lagrangean relaxation and decom-

position algorithm . 88

4.2 Comparison of the original and modified algorithm in terms of

computation time . 90

4.3 Comparison of the original and modified algorithm in terms of the

gap . 92

4.4 Computational results for the modified Lagrangean relaxation and

decomposition algorithm . 93

5.1 Statistics for a sample of 50 randomly generated instances 107

xvi

LIST OF TABLES xvii

5.2 Statistics for the OR-Library instances 108

5.3 Statistics for the Branch-and-Cut implementation - ORLibrary In-

stances 1 . 111

5.4 Statistics for the Branch-and-Cut implementation - ORLibrary In-

stances 2 . 112

5.5 Statistics for the Branch-and-Cut implementation - Random In-

stances . 113

Chapter 1

Introduction to Content

Distribution

Efficient storage and distribution of any type of goods nowadays is of critical

importance to both organizations and consumers, mainly due to a highly com-

petitive market environment and ever-increasing number and variety of products.

Moreover, it is not only the cost of the storage and distribution that matters, but

distributing goods so as to ensure a predefined service quality level is also of

crucial importance. Logistics, having a broad scope and composed of many such

interrelated activities, has therefore become a very complex issue to deal with for

many companies.

The concept of distribution is usually related with the transportation of phys-

ical goods from the production plant to several physical demand points. Conse-

quently, a vast amount of research is devoted to what is called the Supply Chain

Management and Logistics Planning, which deal with all activities that the goods

are subjected to, ranging from the initial production to the consumer delivery.

However, there is one other major field in which distribution is very important

and deserves at least the same attention: computer communication networks.

The main characteristic of the information age we live in today is the need

for the availability of any kind of information, anywhere and anytime. This is

1

CHAPTER 1. INTRODUCTION TO CONTENT DISTRIBUTION 2

primarily the case when we are talking about electronic information (or content)

that is distributed via communication networks and computers. Parallel to the

problems arising in the domain of logistics, companies are already facing difficul-

ties in storing and distributing electronic information so as to make it available

to the consumers of electronic content. This is especially true for the World

Wide Web, which has experienced an explosive growth in the past decade. An

obvious consequence of this high rate of usage is the enormous share of Internet

traffic, which gives rise to problems such as web access delay, increasing loads

on the server(s) and network congestion. Similar problems also arise in smaller

networks, such as corporate intranets or Video-on-Demand systems. It is often

the case that in such electronic distribution systems the delays experienced in the

delivery time grow with the increasing amount of traffic in the network.

As the size of the content delivered via Internet and the number of users have

increased tremendously in recent years, the clients have started to experience

unacceptable response times, changing the Internet from the “World Wide Web”

to a “World Wide Wait” [31]. In fact, as Saroiu et al. [90] demonstrate in a recent

study, the average size of the delivered content has changed from about 2KB to

4MB, which is an increase in the magnitude of thousands. Consequently, the

huge amount of traffic generated by the distribution of the content has made the

Internet unable to efficiently support this growth, giving rise to increased response

times. The delays experienced by the end users have consequences, particularly

economic, from the perspective of content providers. As Zona Research reports

[7], “the amount of time taken for Web pages to load is one of the most critical

factors in determining the success of a site and the satisfaction of its users”. A

widely appreciated standard is that a typical client will abandon a Web site which

fails to download in less than eight seconds. According to Zona Research, about

$4.35 billion may have been lost in online sales in 1999 due to unacceptably slow

response times. Moreover, the potential losses in 2001 were estimated to be over

$25 billion [8]. Hence, distributing electronic content effectively has become a

major problem of today.

Motivated by the discussion presented above, the objective of this dissertation

is to investigate problems arising in distribution of content. The overall focus

CHAPTER 1. INTRODUCTION TO CONTENT DISTRIBUTION 3

will be on electronic content distribution, but we will nevertheless provide an

extension of the interesting ideas that are to be discussed in this context to

similar problems arising in logistics planning.

The aim of this chapter is to provide an overview of the research objectives

of this dissertation and to provide a general outline. Before doing this, we will

first give some insight on Internet and its infrastructure, as the main problems

considered in this dissertation are based on these fundamental concepts.

1.1 The Internet Infrastructure

Internet is basically a network of computer networks, providing content to the

users. The term content, with respect to Internet, refers to any kind of information

that is available on the World Wide Web to public such as Web pages, multimedia

files and text documents. We will also use the term object to refer to a specific

item of the content. The term content provider refers to a unit, which holds the

content for the access of others on its origin server(s). We will denote by the term

client or user, the individuals (either a person or a company) who issue requests

for electronic content.

Internet has a hierarchial structure. Briefly put forward, clients are connected

to local Internet Service Providers (ISPs) which provide retail-level Internet ac-

cess. These local ISPs are connected to National Backbone Providers (NBPs)

via regional ISPs. NBPs are long-haul data networks (such as AT&T in USA)

providing wholesale-level Internet access to regional ISPs. Finally, the NBPs are

interconnected via either Network Access Points (NAPs) or peering points, form-

ing the Internet backbone. For more details on the Internet infrastructure, the

reader is referred to Datta et al. [32].

In a typical network application, the client issues a request and sends it to

a site, after which the site responds to the client. The request for a content

is made by using the Universal Resource Locator located in the browser. The

browser then issues a query to a Domain Name System (DNS) to obtain the

CHAPTER 1. INTRODUCTION TO CONTENT DISTRIBUTION 4

Internet Protocol address of the server holding the requested content (named

as DNS lookup). Based on this IP address, a connection is set up between the

client and the corresponding server. The client then issues a Hyper Text Transport

Protocol (HTTP) request, to which the server responds and the requested content

is delivered to the client. For details, see Datta et al. [32], [31].

A typical metric used to measure the performance of a network is the user

response time (or latency), which can be defined as the amount of time elapsed

between the time of the request issued by the client and the time when the

response is received. The best-case of an application is obtained when there is no

other traffic in the network, which is also a lower bound on the latency experienced

by the client. Hence, the primary goal of managing performance on the network

is to design the network such that the client latency is within acceptable limits,

which is directly related with the amount of traffic flowing over the World Wide

Web.

Unless additional technological schemes are employed, these problems will

continue to negatively affect the success of Web sites and their potential sales.

One immediate solution seems to be adding new infrastructure, although Datta et

al. [31] argue that new infrastructure is expensive and this alternative only shifts

bottlenecks to other part of the network rather than eliminating them. Thus,

the approach should concentrate on efficient usage of the existing infrastructure.

This gives way to a widely used technique, known as caching.

1.1.1 Caching Strategies

A widely adopted technique to overcome the high rate of latency due to the

intense Internet-based traffic is caching, which is aimed at improving the response

time of web servers. Caching can be described as keeping an accessed content

in storage centers called caches, to where future accesses to this specific content

are made. As Hosanagar et al. [46] point out, “Caches are storage centers -

the digital equivalent of warehouses. In this context, the Internet infrastructure

makes up the digital supply chain for information goods”. Hence, caching is a

CHAPTER 1. INTRODUCTION TO CONTENT DISTRIBUTION 5

viable strategy for such networking applications to alleviate the Internet traffic.

In general, there are three kinds of caching: Client-Based Caching, Server-

Based Caching and Proxy-Based Caching. The first type implements caching

at the client side (either in the browser located on the client’s computer or at

a gateway) and serves only the requests made from this specific location. Since

these caches are usually of limited sizes, only a restricted amount of content can be

stored. Thus, when a new content needs to be stored, it must replace an existing

object in the proxy. This brings the need for a replacement policy to determine

which objects should be replaced by the new ones. Client-Based Caching is an

approach of limited use, since it can only serve a relatively small population of

clients. But the real problem with such an approach is that the content provider

has limited control over the content once it has been downloaded from the origin

server and placed into caches [54].

The second approach, Server-Based Caching, is performed by installing ad-

ditional caches at various places within the server location. Although this type

of caching helps to share the load on the server by distributing it to these side

caches, it has a small effect on reducing the incoming traffic to this server.

The third type is usually performed using a web proxy located somewhere

between the client site (such as a company or a university proxy) and the origin

server. When the client issues a request, the proxy will intercept the request and

serve the client if the requested content is located in the cache. Otherwise, the

request will be further sent to the server and the content will be accessed from

here. In the latter case, since this will be the first time the specific content will be

accessed, a copy will be stored at the proxy to be used to serve further requests.

These proxies are located at different points on the network, so they can serve

a large number of clients and are very effective in reducing the network traffic.

Content Distribution Networks, a new Internet technology, are based upon this

approach and explained further in the next section.

CHAPTER 1. INTRODUCTION TO CONTENT DISTRIBUTION 6

1.2 Content Distribution Networks

The main idea of the new emerging technology referred to as Content Distribution

(or Delivery) Networks (CDNs) is to replicate the content from the origin server(s)

to geographically distributed surrogate sites, from which the client receives the

requested content. The aim is to speed up the delivery of Internet content, reduce

the load on the original servers, and improve service quality. The place where

the replicated content is held is referred to as the proxy server (also named as

surrogate server or replica). If the proxy is an exact copy of the origin server,

then it is called a mirror.

A CDN can significantly improve the performance of a network, since the

clients no longer have to be served by the origin server but instead they receive

the content from a proxy server located nearby. Another important contribution

of the CDN technology is an improvement in application reliability, i.e. the ability

of the network to serve a client even when the origin server is down. The basic

idea behind the operation of a CDN is depicted in Figure 1.1. As the figure

demonstrates, a client retrieves the requested content from one of the proxies

that are deployed at the edges of the network, as opposed to retrieving it from

the origin server, without the interference of the heavy Internet traffic.

To this date, a number of companies have started to offer commercial hosting

services for content distribution such as Akamai [1], Digital Island [2], Mirror

Image [4] and Speedera [6]. As Vakali and Pallis [93] report, about 2500 companies

are reported to be using CDNs as of December 2003. According to the same study,

Akamai [1], for instance, has over 12,000 servers in 62 countries and hosts popular

customers such as Apple, CNN, MSNBC, Reuters and Yahoo. Another large scale

CDN, Digital Island [2], has about 2,500 surrogate servers spanning 35 countries

and hosts popular pages such as AOL, Microsoft and Hewlett Packard. Medium

sized CDNs, on the other hand, have smaller number of surrogate servers. Mirror

Image [4], for instance, is a CDN with about 22 surrogate servers spanning North

America, Europe and Asia. Being another commercial CDN, Inktomi [3] has 10

surrogate servers deployed throughout China.

CHAPTER 1. INTRODUCTION TO CONTENT DISTRIBUTION 7

Figure 1.1: A typical CDN architecture

CHAPTER 1. INTRODUCTION TO CONTENT DISTRIBUTION 8

A CDN is composed of the following main components:

1. Multiple Surrogate Sites (where each may consist of single or multiple ma-

chines)

2. Client Routing Scheme (used to route the client to one of the surrogate

sites instead of the origin site) and the Routing Table (which indicates the

assignment of clients to surrogate servers)

3. Cache Management (to distribute the content to the surrogate servers, and

to manage cache coherency and consistency among all the sites)

4. Networking Infrastructure (between the surrogate server sites and the origin

servers)

For technical details on these components, the reader is referred to the book

by Verma [95].

1.2.1 Caching in CDNs

CDNs mainly aim at reducing the load on the origin server and the backbone

traffic by deploying a number of surrogate servers across the network, which

serve on the origin server’s behalf. This is possible through the replication of

the content on the surrogate servers. Two types of replications are possible for

content distribution. The first type, full replication, can be employed when the

storage space of storage servers is sufficiently large and the whole content consists

of small-sized objects (e.g. web pages, text files). The surrogate servers are then

said to serve as mirrors of the origin server(s). However, a major problem in such

an approach is that a large amount of storage space may be wasted by a fraction

of the replicated content for which the requests are very small. This approach

may also generate much more traffic on the Internet than it ought to be.

A second type of replication is where only a very selective set of content, based

on the request rates, are replicated in the proxies. This situation generally occurs

CHAPTER 1. INTRODUCTION TO CONTENT DISTRIBUTION 9

when the size of the content is large (such as multimedia audio or video files) and

the proxy has a limited storage space. Although this approach helps to balance

the traffic on the network and improve the storage utilization, it brings up an

additional decision problem regarding the objects to be replicated in each proxy.

The effectiveness of a CDN depends heavily on the probability that the proxy

server is able to satisfy the client’s request. This probability is usually referred

to as the hit ratio. A high hit ratio results in a higher performance in a network

whereas a low hit ratio indicates that a CDN is not likely to be of use [95]. If

the proxy server does not have the requested object, then the request is further

forwarded to the origin server with the expense of additional latency perceived by

the customer. In some cases, this additional latency is much more than the case

when the client has requested the object directly from the origin server. Hence,

the assignment of each client to a suitable proxy server and the set of objects

that are to be held in each proxy are issues that should be properly decided on.

1.2.2 Application Contexts

There are some applications where a CDN approach may be readily applied and

the network is expected to gain a high improvement in performance. One ap-

plication is where the network has a large amount of static data, i.e. kind of

data which remains the same over a long period of time. These may consist of

images, static HTML files or large multimedia files (such as music or video files).

Also, traditional applications such as file transfer (FTP) servers or mail servers

are suitable for a CDN application.

On the other hand, some applications may be highly unsuitable for a CDN

application. These include applications that require frequent updates to data

(i.e. dynamic content), simultaneous access from multiple locations or strong

security needs (such as credit card/banking applications). Dynamic data may

not always be suitable for a CDN application, since in this case frequent updates

would be needed and it may become harder to manage the network. However,

some dynamic data may be handled by a CDN using special approaches.

CHAPTER 1. INTRODUCTION TO CONTENT DISTRIBUTION 10

There are also several drawbacks of a CDN application. Since a CDN con-

sists of many geographically dispersed servers, it becomes crucial to effectively

manage the overall network. This is referred to as manageability of the CDN.

Another drawback is that some existing applications may need to be rewritten to

be suitable for the CDN approach. This is called redesigning of applications. For

more detail on these issues, the reader is referred to Verma [95].

We would like to note that The World Wide Web is not the only applica-

tion domain of CDNs. They can also be implemented for corporate intranets

or extranets, which are obviously much more smaller networks than the Internet

itself.

1.2.3 Problems in Content Distribution Networks

The objective in a content distribution problem may vary depending on the view-

point of the decision maker, that is, the CDN operator. The CDN operator, pro-

viding service, charges some amount to their customers. However, the CDN also

pays to the backbone network on which it operates to disseminate the content

over this network to its clients and the amount of payment is a function of the

traffic flowing on the network. Thus, it is important for a CDN to have as low

traffic as possible in order to reduce its expenses. Besides, the more the traffic

is reduced, the less the CDN charges to its customers and the less the delay the

clients experience as a result of using the CDN. Hence, such an aim from the

perspective of the CDN helps to improve the Quality of Service (QoS) offered to

its customers and to better compete with other commercial CDNs. If this is the

case, then the CDN is likely to have an objective function of a minimization type,

where the function to be minimized is the total cost of the network (proportional

to the total traffic flowing on the network). Another scenario may be of concern

when the CDN wants to maximize its total revenue. In this case, the CDN needs

to determine the optimal pricing policy, i.e. finding the price to charge to clients

for serving an object. An objective function for this situation is given by Datta

et al. [31], which is based on the (known) demand for each object.

CHAPTER 1. INTRODUCTION TO CONTENT DISTRIBUTION 11

Operating a CDN in an efficient manner requires a proper management of

system resources. This issue, in general, excludes considerations such as instal-

lation of new links and allocation of additional link capacities, since a network

is already in place and it is not in general feasible to expand the existing infras-

tructure of the Internet. Thus, efforts should concentrate on the efficient usage

of the existing configuration rather than expanding it.

In operating a CDN, a service provider is usually faced with three important

problems in resource managment. The first of these problems is concerned with

the optimal placement of proxies and called the replica server or proxy server

placement problem (also referred to as the mirror placement or cache location

problem). More specifically, given an existing infrastructure, this problem con-

sists of optimally placing a given number of proxy servers to a given number of

potential sites, such that a cost function (overall flow of traffic, average delay the

clients experience, total delivery cost, etc.) is minimized. The second problem is

related to the placement of objects in proxy servers and called the object replica-

tion or data/replica placement problem. In other words, given the whole content

to be distributed, the service provider must decide on the specific items of the

content to be held in each proxy server. Finally, the third problem, referred to as

the request routing problem, consists of guiding the clients’ requests for a specific

item of the content to suitable proxies that are able to address the corresponding

requests so as the minimize the cost of serving.

1.3 Video-on-Demand Services

The advances in high-speed networking and multimedia technologies have made

it possible to develop many applications, including the popular Video-on-Demand

(VoD) service. A VoD service is a special type of electronic content distribution

service in that it deals specifically with distribution of videos (e.g. movies) to a

number of geographically distributed users. In other words, a VoD service can be

described as a virtual video rental store in which a user has the option to choose

CHAPTER 1. INTRODUCTION TO CONTENT DISTRIBUTION 12

and watch any program on request, at the convenience of their time. Interac-

tive VoD services offer the user a fine-grained control, enabling them to pause,

resume, fast rewind and fast-forward the video. Applications of such services are

not limited to home entertainment and can be extended to banking applications,

education and home shopping. Quoting from Ghose and Kim [42], “the combina-

tion of Internet and VoD may very well be the basis for entertainment, business,

and education of the future.” An in-depth treatment of the subject is given by

Little and Venkatesh [70].

A VoD can be regarded as a special CDN where significantly large amounts

of data (multimedia files) are to be distributed and hence bandwidth and server

capacities pose tight constraints. However, the characteristics of the Internet

are not appropriate for these services. These services require special networks

that are capable of supporting such high-bandwidth applications (such as cable

networks).

1.3.1 System Architecture and Components

A complete VoD system consists of three fundamental components which may be

stated as the storage servers, network on which the system is built and the user

interface. The network architecture in general has a hierarchical structure (see

e.g. [80], [19]). An example VoD architecture is depicted in Figure 1.2.

In such a network, there exists a central server, which can be considered as the

main storage unit holding all programs. Connected to the central server, there

are groups consisting of local video servers. Each group is a fully meshed network,

i.e., units in the group are all connected to each other. Each user is connected to

a local server, although users can watch programs transparently from other local

servers in the group. However, this incurs an additional cost.

In a VoD system, users typically interact with the system using an interface,

such as a remote control or a keyboard. The requests made by the user through

the interface is forwarded to the network. Once the user request for a program is

CHAPTER 1. INTRODUCTION TO CONTENT DISTRIBUTION 13

Figure 1.2: A typical VoD architecture

CHAPTER 1. INTRODUCTION TO CONTENT DISTRIBUTION 14

fetched from an available resource, it is served to the user.

A VoD provider may either choose to offer its services as data-centered or user-

centered [42]. The former is in general called broadcasting, where the provider

broadcasts the programs through a single channel in specific time periods and the

user has to tune into the channel to receive the program. In this case, the user is

a passive participant to the system and has no control over the program. In con-

trast, the user-centered approach specifically dedicates a channel and bandwidth

to the user through which the program is immediately transmitted on request.

Moreover, the user has complete control over the session. While the former ap-

proach requires less system resources and is less expensive, the latter has a higher

quality. There are also hybrid approaches, such as batching, where the provider

collects similar user requests in specific time intervals, which are then served using

a single video stream. In this case, the user has to wait after issuing the request

and does not have a control over the program. For more details on this topic, we

refer the reader to the survey by Ghose and Kim [42].

1.3.2 Problems in Video-on-Demand Services

Movies in a VoD system are held in a repositories of huge sizes, called video

servers, which are located throughout the network. A VoD system will typically

be transmitting an enormous amount of data through its network every day.

This would have significant consequences to the service provider in terms of the

total cost. This is especially true for the groups of local servers, since most of

the transmissions are expected to take place within these groups. Therefore,

similar to the CDN case, it is very important for the service provider that the

system resources are properly managed in order to minimize the total cost of

providing the service and maintain an efficient distribution structure. According

to Little and Venkatesh [70], this issue is directly related to what they refer to

as load balancing. Proper load balancing in such a system can be performed

through effectively allocating programs to the available servers and establishing

the suitable connections between each potential user and program.

CHAPTER 1. INTRODUCTION TO CONTENT DISTRIBUTION 15

1.4 Research Objectives

As also mentioned in the beginning of this chapter, the main objective of this

dissertation is to investigate problems arising in electronic content distribution.

In particular, we focus on defining problems and proposing solution approaches in

Content Distribution Networks and Video on Demand Systems. We state below

the research objectives:

• To identify and investigate problems in electronic content distri-

bution: Content distribution in telecommunications networks, being very

complex structures as they are, pose many optimization problems to be

solved in order to operate efficiently. These problems are generally inter-

dependent, i.e., they are in general required to be solved simultaneously.

In this dissertation, we attempt on identifying and defining problems in

this avenue of research, with an emphasis on treating several subproblems

jointly. This deviates from existing research, where it is generally the case

that each study tends to consider one problem at a time, assuming that the

others are already solved. In specific, we focus on the CDN environment

and define a problem which we will hereafter refer to as the Content Distri-

bution Network Design Problem. We then turn to investigate a special case

of content distribution, namely the Video Placement and Routing Problem

and investigate load balancing issues. Finally, we look into the problem of

Allocating Databases Distributed Computing Systems.

• To develop novel algorithmic approaches for the solution of prob-

lems in electronic content distribution: As already indicated above,

there exist many optimization problems in electronic content distribution,

where their solution requires a number of subproblems to be solved simul-

taneously. This, in turn, renders such problems complex and hard to solve.

It is generally the case that such problems are tackled using heuristic so-

lution approaches in the literature. In this dissertation, in contrast to the

existing literature, we focus on developing exact solution techniques utiliz-

ing combinatorial optimization and mathematical programming methods.

CHAPTER 1. INTRODUCTION TO CONTENT DISTRIBUTION 16

The benefits of such techniques are twofold. The first is that they will be

useful in their own right, i.e., solving to optimality problems of electronic

distribution. The second benefit lies in the use of these procedures to assist

in evaluating the solution quality of many heuristic approaches proposed in

the literature.

1.5 Outline of the Dissertation

The outline of this dissertation is provided below. We would like to state that the

main contributions of this research are reported in Chapters 3, 4, and 5. Chapter

6 is composed of main results and conclusions.

• Chapter 2 attempts to provide a literature review on the problems related

to those studied in this dissertation. The main body is subdivided into two

sections, consisting of a review on CDNs and VoD systems, respectively.

Several formulations are provided where necessary. This chapter also in-

cludes a section where we attempt to provide the reader some insight on

how the commercial CDNs operate.

• In Chapter 3, we formally define the problem of designing a CDN. Our

design proposal consists of jointly deciding on (i) the number and placement

of proxy servers on a given set of potential nodes, (ii) replicating content on

the proxy servers, and (iii) routing the requests for the content to a suitable

proxy server such that the total cost of distribution is minimized. We first

provide two nonlinear integer programming formulations for the problem,

for single and multiple server situations, respectively. We then offer a lin-

earization for the first model. Based on the linearization, we develop an

exact solution procedure based on Benders’ decomposition and also utilize

a variant of this procedure to accelerate the algorithm. In addition, we pro-

vide a fast and efficient heuristic that can be used to obtain near-optimal

solutions to the problem. The chapter concludes with computational results

CHAPTER 1. INTRODUCTION TO CONTENT DISTRIBUTION 17

showing the performance of the decomposition procedure and the heuris-

tic algorithm on randomly generated Internet topologies. In this chapter,

to investigate whether the approach proposed here is beneficial or not, we

compare the proposed joint approach for a CDN design to a two-stage ap-

proach that is inspired from practice. Through computational experiments,

we investigate the potential benefits of using a joint approach.

• Chapter 4 is related to the problem of video placement and routing in

VoD systems. More specifically, we look into the problem of load balancing,

which can be achieved through proper resource allocation and connection

establishment. Although many heuristics are available for similar problems,

not many exact solution procedures exist, mainly due to the complexity of

the problem. In addition, such heuristics are incapable of indicating the

quality of the solutions found. We devise a solution algorithm that is based

on Lagrangean relaxation and decomposition algorithm for the problem

of load balancing. Since a VoD system is partly dynamic in nature, it

may call for a repeated solving of the problem in periodic and short time

units. Taking such a situation into account, we propose a variant of the

algorithm that is capable of producing good quality solutions in relatively

short solution times. The chapter concludes with computational results

demonstrating the efficiency of the proposed algorithm.

• Chapter 5 deals with the problem of allocating databases in distributed

computing systems. In this context, we specifically focus on the well-known

multidimensional Knapsack Problem (mKP), which arises as a subproblem

in the solution process of the former problem. We investigate a class of

valid inequalities, namely cover inequalities, that are known to be very

popular and important in the exactly solving the mKP. We propose a new

separation procedure for these inequalities and implement the procedure

in both a cutting plane and a branch-and-cut framework to demonstrate

its efficiency. Computational results on both randomly generated and well-

known literature problems are reported in the chapter.

• Summary of research findings, main results and issues for further research

are stated in Chapter 6.

Chapter 2

Literature Review

Although being a relatively new topic for research, there is already a significant

amount of research on CDNs. VoD services, on the other hand, is a topic that

has been studied for more than 10 years. Therefore, there is a vast amount of

literature on electronic content distribution. However, research on these topics

are generally by the computer science community. The OR/MS community has

only recently started expressing interest in this fruitful area of research.

This chapter, which aims at providing a review of the existing literature on

the topic, will focus only on research relevant to the OR community. In specific,

we will include in this review a subset of the existing research that utilize OR/MS

approaches in solving the problems. As will shortly be shown, these approaches

range from integer programming to nonlinear programming and from game theory

to queuing models.

This chapter is composed of two main sections. The first section provides a

review of the previous literature on Content Distribution Networks with respect to

varying problems, and also includes an additional subsection that provides some

insight on how the commercial CDNs operate. The second section is a literature

review on the research relating to VoD Services. We also provide discussions on

the existing research on these problems.

18

CHAPTER 2. LITERATURE REVIEW 19

2.1 Content Distribution Networks

This section provides a literature review on the existing research for CDNs. As

previously mentioned, three main issues that should be dealt with in a CDN

design are the optimal placement of proxies (referred to as the replica server or

proxy server placement problem, mirror placement or cache location problem),

the placement of objects in proxy servers (referred to as the object replication or

data/replica placement problem) and routing the requests of clients to a proxy (re-

quest routing problem). Additional issues such as pricing in CDNs also exist. The

existing literature, in general, tends to investigate these problems independently

and these are described in the relevant subsections. There also exist a number of

publications that consider some of these problems jointly. The following review

will be subdivided accordingly.

2.1.1 Proxy Server Placement

Given an existing infrastructure, the proxy server placement problem consists of

optimally placing a given number of proxies to a given number of sites, such that

a cost function (overall flow of traffic, average delay the clients experience, total

delivery cost, etc.) is minimized.

The first study that we are aware of on the placement problem of proxy

servers is due to Li et al. [68], who propose a dynamic programming approach

to solve the problem with an assumption that the underlying network is a tree.

However, as noted in recent studies (see for example [87]), the Internet topology

is rarely a tree. In addition, the high computational complexity of the algorithm

(O(n3m2) for choosing m proxy servers among n potential nodes) makes the

approach highly inefficient since practical Internet topologies that have nodes in

order of thousands.

Later, Woeginger [97] suggested an algorithm to optimally place m web proxies

on a linear network topology with n nodes. By observing that the underlying

cost function of such a problem has a Monge structure, his algorithm runs faster

CHAPTER 2. LITERATURE REVIEW 20

than that proposed by Li et al. [68], with a reduced complexity of O(nm). A

matrix C = (cij) is said to have a Monge structure if cij + crs ≤ cis + crj for all

1 ≤ i < r ≤ m and 1 ≤ j < s ≤ n.

Qiu et al. [87] investigated the proxy server placement problem with a single

origin server, with an objective to minimize the total traffic load generated by the

clients (i.e. bandwidth consumption) and the clients are directed to only a single

replica. Their study seems to be the first to formally relate two mathematical

models to the problem, which are the well known uncapacitated p-median and

facility location problems (will henceforth be denoted by UPMP and UFLP, re-

spectively). We will briefly review these two problems and the associated models

below.

The UPMP is one of the first problems studied in location analysis. The

reader is referred to Mirchandani [72] for an introduction to the problem and its

generalizations. Among the vast amount of existing research on the UPMP, we

also refer the reader the one by Beasley [17] and a recent work by Senne [91].

This problem consists of optimally locating at most (or exactly) p centers to a

number of predefined sites and to assign each non-center site to a center so as to

minimize the total assignment cost. In the CDN vocabulary, centers correspond

to proxy servers and non-center sites correspond to clients.

The following decision variables are used to model the problem:

yj =

{
1, if node j ∈ J is selected as a proxy server

0, otherwise

xij =

{
1, if client i ∈ I is assigned to proxy server j ∈ J

0, otherwise

CHAPTER 2. LITERATURE REVIEW 21

Although this is a well-studied problem, we provide the following p-median

model for the sake of completeness:

minimize
∑

i∈I

∑

j∈J

dicijxij (2.1)

s.t.

∑

j∈J

xij = 1, ∀i ∈ I (2.2)

xij ≤ yj, ∀i ∈ I, j ∈ J (2.3)
∑

j∈J

yj ≤ p (2.4)

yj ∈ {0, 1}, ∀j ∈ J (2.5)

xij ∈ {0, 1}, ∀i ∈ I, j ∈ J (2.6)

In this formulation, the objective (2.1) is to minimize the total cost of serving

each client. Constraints (2.2) ensure that each client is assigned to a single proxy

whereas constraints (2.3) ensure that a proxy must be installed at point j in

order to be able to serve a client. Constraint (2.4) is only an upper bound on the

number of proxies that can be opened. Note here that this formulation assumes

the number of proxies that are to be installed is fixed a priori. If this is not the

case and the number of installed proxies are to be minimized as well, then the

objective function may be augmented by the expression
∑

j∈J fjyj, where fj is

the installation cost of a proxy at point j. This case is exactly the uncapacitated

facility location problem (UFLP) (see [28]).

The UFLP consists of choosing a subset of facilities in a given network among

a potential set, such as plants or warehouses, to minimize the total cost of sat-

isfying all the demands of the customers for a specific commodity. Based on

the previously given definitions in the previous section, we provide the integer

programming formulation of UFLP as follows:

CHAPTER 2. LITERATURE REVIEW 22

minimize
∑

j∈J

fjyj +
∑

i∈I

∑

j∈J

dicijxij (2.7)

s.t.

∑

j∈J

xij = 1, ∀i ∈ I (2.8)

xij ≤ yj, ∀i ∈ I, j ∈ J (2.9)

yj ∈ {0, 1}, ∀j ∈ J (2.10)

xij ∈ {0, 1}, ∀i ∈ I, j ∈ J (2.11)

The constraints of this formulation are similar to that of UPMP presented

previously. The primary difference between the UPMP and the UFLP is that

the latter has a fixed cost associated with opening a facility, whereas the former

only imposes an upper bound on the number of facilities opened. Similar the

the UPMP, the UFLP is an extensively studied problem in the context of loca-

tional analysis. For an excellent introduction and review, the reader is referred

to Cornuejols et al. [28].

Qiu et al. [87] consider the p-median to model the proxy server placement

problem. It should be noted that both the p-median and the facility location

models assume that the entire content is stored in each installed proxy and thus

only take into account the traffic flowing between the server and the clients.

The authors propose several approaches for the solution, consisting of a tree-

based algorithm, greedy algorithm, random algorithm, hot spot algorithm and

an exact algorithm. The first four algorithms are heuristics, whereas the last

algorithm is based on relaxing constraints (2.2) in a Lagrangean fashion and

solve the resulting model using subgradient optimization. The basic idea behind

the greedy algorithm is very simple, it evaluates a single potential location at

every iteration and the location that yields the lowest cost in conjunction with

the proxies already installed in previous iterations is selected as a proxy. The

cost calculation is based under the assumption that each client receives content

from the closest proxy. The algorithm stops when p proxies are chosen. Based on

CHAPTER 2. LITERATURE REVIEW 23

randomly generated and real Internet topologies, the authors’ results show that

the greedy algorithm’s performance is better than that of the others.

Jamin et al. [50] investigated the problem of web proxy placement where the

goal is to minimize the maximum distance between any client and a proxy. This is

similar to the well-known p-center problem. They make use of algorithms devised

for the k-hierarchically well-separated trees (k-HST) and p-center problems to

determine the number and the placement of network instrumentation. Later on,

Cronin et al. [29] investigated specifically the mirror placement on the Internet

with a small number of mirrors, where the placement is restricted to a given

number of potential locations. They show that increasing the number of mirrors

only for a small range of values is effective in reducing client latency and server

load, regardless of the placement algorithm used.

Radoslavov et al. [88] consider the problem of placing a given number of

proxy servers on a given network topology so as to minimize the average client

latency and the overall network overhead. They argue that the greedy algorithm

described above requires one to have a detailed knowledge of the network, in-

cluding the client locations and all pairwise inter-node distances, which may not

always be possible. In constrast, they investigate several heuristics for the prob-

lem which do not assume that a detailed network information is at hand, and

are only based on node degrees. They assume that each client is assigned to the

closest proxy.

The proxy server placement problem, which takes into account a hierarchial

structure of the Internet as well as the routing policy constraints was considered

by Bassali et al. [16]. The authors assume that all proxies to be replaced are

identical and have an infinite amount of storage space. Several heuristic proce-

dures are proposed along with their evaluation with simulations over real Internet

topologies.

Yang and Fei [102] consider the problem of proxy server placement in mul-

timedia applications and argue that the simplifying assumptions (such as the

infinite storage space) made in previous studies may not always be valid in the

case of multimedia objects (such as video, audio files). They stress on the fact

CHAPTER 2. LITERATURE REVIEW 24

that the storage capacity of each proxy server is limited. More importantly, the

distribution of objects from the origin server(s) to the proxy servers are as im-

portant as the distribution of objects from the proxy servers to the clients and

should not be ignored. The problem is solved via a modification of previously

proposed heuristics, namely the greedy [87], hot spot [87] and max fanout [88]

heuristics.

The problem of cache placement on transparent caches was studied by Krish-

nan et al. [63]. The objective function considered in this study is interesting in

that it considers the case where the requested content is not found in a specific

proxy. Thus, the cost of serving client i from a server s is given by the following:

cost(i, s) = fis(hisdij + (1− his)(dij + djs)) (2.12)

where fis is the flow from server s to client i, and dij (resp. djs) is the unit

cost of sending traffic from node i to node j (resp. from node j to the server

node). Then, the optimization problem is of the form
∑

i,s minj∈J∪Scost(i, s),

i.e., choosing the minimum number of locations to install proxies such that the

total cost function is minimized. The authors provide optimal algorithms for line

and ring networks and a dynamic programming algorithm for the single server

case.

A recent study by Jia et al. [51] investigates the placement of transparent

en-route proxies and also considers read and update operations of the data on

the web server. The cost function they consider is similar to (2.12). The authors

consider two cases of the problem, where the first consists of optimally placing

a given number of proxies and the second involves finding the optimal number

and placement of an unconstrained number of proxies. The problems are solved

through dynamic programming and optimal solutions are obtained for randomly

generated Internet topologies in polynomial time (in O(n3k2) time for the former

and O(n3) time for the latter).

CHAPTER 2. LITERATURE REVIEW 25

Choi and Shavitt [24] propose a well-known model for optimally locating trans-

parent servers, namely the set cover problem. The aim is to determine the min-

imum number of servers such that at least one server should be located along

each router from clients to servers, i.e. all the demand requests should be covered

by the set of chosen servers. They propose four heuristics for the problem and

investigate the performance of each through simulation.

2.1.1.1 Discussion

Most of the previously published studies on the placement of proxy servers or

web proxies in the context of CDNs utilize some well-known discrete location

problems. However, these approaches usually make use of some underlying as-

sumptions which may not be valid for all kinds of content distributed on the

Internet. For instance, the UPMP model is used for the replica placement prob-

lem in some studies, where centers correspond to proxy servers and demand points

correspond to clients (see, for example, [87]). However, this formulation may not

always be adequate to correctly model the problem. The main assumption in

UPMP is that each center has enough capacity to serve all the demand points,

whereas in CDNs, the proxy servers may have restricted capacities. This situa-

tion may arise in the case of multimedia content, which indeed are huge in size

and require a fair amount of space. In addition, this formulation assumes that

the client is served from the proxy server only and does not take into account the

cost of distributing objects from the origin server(s) to the proxy servers. This

may especially be important when there are multiple origin servers and the cost

of distributing content from origin servers to the proxies is significant. Another

limitation is that the formulation does not yield the optimum number of centers,

instead, only imposes an upper bound. However, one can not in general know

a priori the number of proxies that will lead to the optimal performance, hence

the optimal number of proxies should be determined as well. Another drawback

is that this formulation does not decide on which objects should be placed in a

proxy server.

CHAPTER 2. LITERATURE REVIEW 26

The UFLP/CFLP model can also be used for the proxy server location prob-

lem, as mentioned by some studies (see [87] and [102]). This formulation is

capable of determining the optimal number of proxy servers. Still, this model

ignores some important decision problems, such as deciding on the distribution

of objects from origin server(s) to the proxy servers and the type of objects that

should be located in each proxy server.

In short, the proxy server location problem arising in CDNs is similar to well-

known discrete facility location problems such as the UPMP and CFLP. However,

the corresponding models should be extended so as to be able to adequately

incorporate all the issues that should be addressed for a CDN design. These

extensions may be stated as follows:

1. The typical cost in classical facility location problems is a fixed parameter

defined for each node pair in the network. For a CDN, this cost is typically

a function of the size and the request rate of data transferred between two

nodes.

2. A typical CDN includes many objects to be distributed throughout the

network. Consequently, the problems arising here are multi-commodity ex-

tensions of the classical facility location problems, which typically consider

a single commodity.

3. In classical facility location models, the amount of commodity stored at

each facility is important in that there should be enough supply to serve

the requested demand. However, in the case of web objects, it is enough to

locate only one unit of the object in the proxy server so as to satisfy any

demand for this object required from this server. The amount of demand

of the client only effects the cost incurred for transferring the data. This

special feature is due to the characteristics of the Internet environment,

which is clearly not the case in the facility location problem.

CHAPTER 2. LITERATURE REVIEW 27

2.1.2 Object Replication

Previously mentioned studies assume that all the content held in the origin server

has been replicated to the proxy servers, i.e. the proxy servers hold the entire

content of the origin server. This may not always be the case where the objects are

significantly large (for example in the case of multimedia files) and only a partial

replication can be performed, since the proxy servers have finite capacity. In this

case, any proxy server can only hold a subset of the content and these should

be properly identified. This problem is referred to as the Object Replication or

Data/Replica placement problem.

The object replication problem is in some ways similar to the File Allocation

Problem (FAP) arising in distributed computer systems. More specifically, given

a network with a number of computers installed at known locations and a number

of files to be distributed over the network, the FAP is concerned with determining

the number of files to be distributed and the specific location of each file copy.

The problem also involves deciding on the allocation of each user to a specific

computer from which the user’s request is served.

One of the first studies dealing with the FAP is perhaps due to Chu [26].

Another study is due to Fisher and Hochbaum [35]. The problem considered

in this study is to place additional copies of a database throughout a computer

network with regards to the trade-off between the cost of accessing the various

copies of the database in the network and the cost of storing and updating the

additional copies. The authors refer to the problem as the database location

problem and present an associated mixed-integer model. Pirkul [85] considers the

specific problem of database allocation in a distributed computer system, where

the database is to be partitioned without duplication. This kind of a problem

generally arises in systems such as banking applications. Thus, this problem only

involves deciding on the assignment of a number of users to computers subject to

capacity constraints. The author proposes a Lagrangian based algorithm along

with a heuristic procedure for the solution of the problem. Two other studies that

are somewhat more recent are due to Ghosh et al. [43] and Murthy and Ghosh

[73], which consider an extension of the problem considered by Pirkul [85] in that

CHAPTER 2. LITERATURE REVIEW 28

duplication of the files is allowed. The aim is to find an allocation plan such that

the total cost of storage and communication (involving query and update costs) is

minimized subject to link capacity, storage capacity and delay constraints. Both

studies offer a Lagrangean based branch-and-bound algorithm along with some

primal and dual heuristics.

Karlsson et al. [57] propose a framework for replica placement algorithms

in CDNs, which includes in detail the possible cost parameters and constraints

that may arise in such problems. More specifically, the cost function of a replica

placement algorithm may include parameters such as read and writes of data,

distance, storage, object size, access time and hit ratio. On the other hand,

the problem may have additional constraints associated with the storage, load

and bandwidth capacity of each node, as well as link capacities, an upper bound

on the number of replicas and the response time for requests and availability of

objects in the system. The paper also includes a characterization of heuristics

that may be used for the solution of the problem. In a similar paper, Karlsson

and Mahalingam [58] compare simple caching schemes with replica placement

algorithms in CDNs and conclude with the result that the former outperforms

the latter if no hard performance guarantees are required.

Cidon et al. [27] offer a distributed algorithm to allocate electronic content

over a network with a tree structure so as to minimize the total storage and

communication costs. Contrast to the previous work, they allow the servers to

be placed at different levels of the tree and consider a generalized cost structure

in that the costs of storing an object at two different servers may be different.

The algorithm is based on dynamic programming. The proposed algorithm is also

shown to solve the joint problem of content and server allocation, where the latter

corresponds to the problem of finding the number and the locations of servers in

the distribution network, given the unit server cost. A related study by Tamir

[92] proposes an algorithm to place a given number of servers on an undirected

tree to minimize the overall distance where each client is connected to the closest

server.

Optimally locating objects in CDNs with storage constraints on general graphs

CHAPTER 2. LITERATURE REVIEW 29

has been studied by Kangasharju et al. [55]. The authors consider a network

model where there are already a number of proxies deployed throughout the

network, each having a limited capacity. The aim is to decide on the set of

objects that should be stored at each proxy server. The problem is formulated

as an integer program so as to minimize the average travel time of the objects.

The following decision variable is used in the model:

zjk =

{
1, if proxy server j ∈ J holds object k ∈ K

0, otherwise

The integer model is given as follows:

minimize
1∑
j λj

∑

j∈J

∑

k∈K

λjpkcjk(x) (2.13)

s.t.

∑

k∈K

bkzjk ≤ sj, ∀j ∈ J (2.14)

zjk ∈ {0, 1}, ∀j ∈ J, k ∈ K (2.15)

The objective function is the average number of hops that a request should

traverse, where pk is the probability that a client will request object k, and λj is

the aggregate request rate of the clients assigned to proxy j. Given a placement

x, cjk(x) is the shortest distance from proxy j to the copy of object k. Note that

the objective function is dependent on a given placement x. The only constraint

(2.14) imposes capacity restrictions on each proxy server. This is a multiple-

knapsack type constraint. The authors prove that this problem is NP-Hard and

propose the following four heuristic procedures: random, popularity, greedy-single

and greedy-global heuristics. These are described briefly below:

1. Random Heuristic. The idea of this very simple heuristic is to assign ob-

jects to the proxies based on a uniform probability, without exceeding the

capacity constraint.

CHAPTER 2. LITERATURE REVIEW 30

2. Popularity Heuristic. This heuristic is based on the popularity of each

object, determined according to their request probabilities. Each node then

stores the most popular objects among its clients subject to its capacity

constraint.

3. Greedy-Single Heuristic. This heuristic is based on the contribution of an

object k to a proxy server j, calculated as Cjk = pkcjk(X), where (X) de-

notes the placement of objects at the origin servers. The placement is then

performed, for each proxy j, according to a decreasing order of Cjk without

exceeding the capacity constraint.

4. Greedy-Global Heuristic. For this heuristic, the contributions need to be

calculated for each proxy and object pair (Cjk = λjpkcjk(X)). The proxy-

object pair with the largest Cjk is chosen and this object is placed to this

specific proxy. The contributions are then re-calculated and the procedure

repeats itself until all capacity restrictions are violated.

The authors find that Greedy-Global heuristic performs the best among all

the four heuristics.

Li and Liu [69] studied the growth of the gain in performance of a CDN

with the increase of server replicas, where the performance of the CDN can be

measured by client request latency, total network bandwidth consumption or an

overall cost function. These authors also investigated the effects of client’s content

demand and distribution patterns on the growth of performance gain in CDNs.

The authors model the problem using the p-median formulation and solve it using

a heuristic method. It is shown that carefully choosing candidate sites yields the

same performance of the network as that of replica placement on all candidate

sites. Another result is that there is a decreasing performance gain when the

number of replicas replaced exceeds a certain threshold value.

Cahill and Sreenan [22] investigate the design of a Video Content Distribu-

tion Network and identify the differences with the classical CDNs. The authors

describe the architecture details and present an associated cost function that can

CHAPTER 2. LITERATURE REVIEW 31

be used to locate proxies that will yield the minimum cost of serving the cus-

tomers. However, the approach proposed in the paper consists of only a single

media object.

The replica placement problem with a dynamic structure is studied by Bar-

tolini et al. [15], who formulate the problem as a Semi-Markov Decision Process

by assuming that the requests follow a Markovian structure. As a result, they

were able to identify an optimal policy for dynamic replica placement. A heuristic

was also offered for the problem, the performance of which was shown to be very

close to the optimal placement.

2.1.3 Request Routing

The main goal of routing in a computer network is to send data from one or more

sources to one or more destinations so as to minimize the total traffic flowing

on the network. For a detailed review on the problem as well as a survey of

combinatorial optimization applications, we refer to the recent survey by Oliveira

and Pardalos [79]. Request routing, on the other hand, is basically the process

of guiding the clients’ requests to specific proxies that are able to serve the cor-

responding requests. The goal is to select the best server for a client request in

terms of response time. As classified by Peng [84], there are five main techniques

used for request routing: Client multiplexing, HTTP redirection, DNS indirec-

tion, Anycasting and Peer-to-Peer routing. Currently, CDNs such as Akamai use

DNS indirection, which selects the best server for a request based on the current

situation of the network. Technical details for each technique can be found in

Peng [84].

Datta et al. [31] formally define the problem as follows: Given a request for an

object, the request routing problem consists of selecting a server for the request

such that a cost function to respond to the request is minimized. The authors

indicate that the problem is closely related to the problem of distributed load

balancing.

CHAPTER 2. LITERATURE REVIEW 32

2.1.4 Pricing

A commercial CDN, providing service to its customers, usually charges some

amount based on the quantity of content delivered. In this case, the CDN would

like to maximize its total revenue, which gives way to the problem of determining

how much to charge for serving each object. More specifically, if pk denotes the

optimal price charged by the CDN to serve an object k ∈ K and rjk represents

the demand for object k at proxy j, the revenue function proposed by Datta et

al. [31] for this problem is given as follows:

∑

j∈J

∑

k∈K

rjkzjkpj (2.16)

where zjk is as defined previously. As indicated by the authors, this formula-

tion is very simplistic and needs to be extended to capture the situation when an

object is not found in the proxy server and needs to be retrieved from the origin

server. In addition, the costs here are assumed to be linear, which is usually not

the case.

We are aware of one more study that deals with the optimal pricing problem in

CDNs, due to Hosanagar et al. [47], in which the authors develop an analytical

model to determine optimal pricing policies for CDN operators. The model is

based on the known distribution of requests to a CDN and uses queuing theory

to mimic the characteristics of a web server. The authors find as a result that

CDN providers should provide volume discounts to providers. In addition, they

indicate that customers with high volume of traffic and low security requirements

are likely to subscribe to CDNs.

2.1.5 Joint Considerations

In this section, we provide an overview of the literature on CDNs in which several

problems presented above are jointly considered.

CHAPTER 2. LITERATURE REVIEW 33

In an arbitrary network of nodes with limited capacities and given a demand

function of each node for each object, the problem of placing objects so as to

minimize the average access cost is investigated by Baev and Rajaraman [13].

The authors refer to this problem as the static data placement problem. In such

a network, there is no set of origin servers, but rather each node acts as a server

in cooperation with other nodes. In other words, the nodes cooperate to serve

a given request and in making storage decisions. This is known as cooperative

caching, which has applications in networks where the nodes trust each other

(web hosting service, corporate internet, etc.). The request at a node is assumed

to be satisfied by the nearest copy of the requested object. The authors model the

problem as a binary program, which is a three-index extension to the p-median

model, including capacity restrictions. In addition to the zjk variable defined

earlier, the authors also have the following three-index variable, used to indicate

the routing decision.

xijk ={
1, if client i ∈ I is assigned to node j ∈ J holding the requested object k ∈ K

0, otherwise

Then, their formulation is as follows:

minimize
∑

i∈I

∑

j∈J

∑

k∈K

bkdikcijxijk (2.17)

s.t.

∑

j∈J

xijk = 1, ∀i ∈ I, k ∈ K (2.18)

xijk ≤ zjk, ∀i ∈ I, j ∈ J, k ∈ K (2.19)
∑

k∈K

bkzjk ≤ sj, ∀i ∈ I (2.20)

zjk ∈ {0, 1}, ∀j ∈ J, k ∈ K (2.21)

xijk ∈ {0, 1}, ∀i ∈ I, j ∈ J, k ∈ K (2.22)

CHAPTER 2. LITERATURE REVIEW 34

In this formulation, the objective function (2.17) expresses the average cost

of an access request, taken over all nodes and objects. Note here that J = I,

i.e. each node acts both as a client and a potential proxy. The first constraint

(2.18) expresses that each node should be assigned to a single other node for a

specific object request. The second constraint (2.19) indicates that an assignment

to a node can only be made if that specific node is holding the requested object.

Finally, constraint (2.20) denotes the capacity restriction for each node. The

authors prove that the problem with uniform-length objects is NP-Hard and

propose an approximation algorithm with a factor of 20.5. They also indicate

that this result is asymptotically the best possible. This formulation can also be

extended to include additional costs, such as the cost of placing an object at a

node.

Ryoo and Panwar [89] consider the problem of distributing multimedia files in

networks in designing a network which involves determining the communication

link capacities, sizing the multimedia servers and distributing different types of

content to each server. They assume a tree topology and the file placement is done

according the their popularity. Due to the nature of the content they consider,

i.e. continuous stream of data such as video-on-demand, multiple copies of a file

needs to be placed in a server for multiple accesses. This, in turn, limits the

independent number of accesses to this file to the number of copies located. The

client assignment is predetermined.

Xu et al. [99] study the problem of, given a maximum number of potential

proxies, determining the optimal number and location of proxies along with place-

ment of objects on the installed proxies. However, the topology they consider is

restricted to a tree topology with the origin server being located at the root.

They also restrict the problem to a single object. The problem is formulated as

an optimization problem and a dynamic programming algorithm is offered for its

solution.

Another work by Xuanping et al. [100] discusses the problem of jointly re-

placing the proxies in a CDN along with the decision of optimally replicating

objects. They consider a cost of storage usage for replicating objects at each

CHAPTER 2. LITERATURE REVIEW 35

proxy and a total available budget constraining the amount of replication that

can be performed. The overall aim is to minimize the total access cost. The

authors propose two heuristics and evaluate their performance using simulation.

However, the client assignment is done by assigning a client to its closest proxy,

which may not always be the best assignment.

A recent study by Avella et al. [11] considers web cache location and design

issues in Virtual Private Networks (VPNs). VPNs are private networks which

are implemented over an existing public network infrastructure. The authors

investigate a combined cache location and network design problem on VPNs,

where network design refers to dimensioning of the links. Two models and a two

stage solution approach are proposed for the problem and the approach is tested

on a small VPN (with 8 sites and 3 servers).

Erçetin and Tassiulas [33] consider the content delivery problem in the Inter-

net as a non-cooperative game, where each agent (either the CDN or the content

provider) behaves selfishly so as to maximize its net benefit. The authors sub-

divide the content delivery problem into two, namely content distribution and

request routing. The former seeks for the best strategy to place the objects into

proxy servers, where the latter searches for the best strategy to route the user

requests. Although these two problems are mentioned to be interrelated, the

authors develop, for practical purposes, an iterative algorithm where each prob-

lem is solved repeatedly, and the routing strategy is determined only after the

distribution strategy has been decided on.

Deciding on the placement of the objects together with the capacities of the

nodes have been investigated in a recent work by Laoutaris et al. [65]. The dis-

cussed problem in this study is named as the capacity allocation problem, and a

two step algorithm, requiring the resolution of a p-median problem and a packing

problem, is proposed for its solution. The algorithm is capable of optimally solv-

ing the problem for tree graphs and yields an approximate solution for general

graphs. Another study by the same authors presents optimal and heuristic ap-

proaches to solve the storage capacity allocation problem for content distribution

CHAPTER 2. LITERATURE REVIEW 36

networks, which takes into account decisions regarding the location of the prox-

ies to be installed, the capacity that should be allocated to each proxy and the

objects that should be placed in each proxy [66]. Still, the assignment of clients

is not considered as a decision problem, in that they assume a given hierarchial

topology where the assignment of clients is pre-determined. The authors provide

an integer linear programming model for the problem, prove that the problem is

NP-Hard, and develop greedy type heuristics to obtain approximate solutions.

Nguyen et al. [77] consider the problem of provisioning CDNs on shared

infrastructures. The authors argue that it would be too demanding for a new CDN

to deploy a network due to financial, technical and administrative restrictions.

They assert that the future of CDNs will either lie in the cooperation of regional

CDNs to form a large, Internet-wide CDN or in the CDN hiring resources from an

existing infrastructure. The second alternative would be less demanding in terms

of investment and resource allocation. Based on such a paradigm, the authors

propose a joint provisioning and object replication model so as to minimize the

total cost of storage, request serving and startup. The problem is subject to

the following constraints: capacities must be respected, all requests must be

served, average-customer distance for each object should be less than a predefined

threshold, a server should be installed for the objects to be replicated on the

server and a server can only serve a request for an object if the object is available

there. The authors prove that the problem is NP-Hard and propose a solution

procedure for the model based on Lagrangean Relaxation, decomposition and

subgradient optimization. They report computational results on problems with

up to 36 customers and 100 objects.

Recently, Almedia et al. [10] considered the problem of optimally solving the

proxy placement and request routing problems jointly, for which they provided a

flow-based optimization model.

CHAPTER 2. LITERATURE REVIEW 37

2.1.6 Commercial CDNs: Some Insight

In this section, we will try to give some insight on how the commercial CDNs

handle the problems presented above. We note that our aim here is not to give

an explicit description of how each system works in detail, but rather, to give

an insight of in what ways the content distribution is performed. We specifi-

cally investigate three commercial CDNs, namely Akamai, Speedera and Nortel

Networks. These are presented below.

2.1.6.1 Akamai

Being one of the first commercial CDNs, Akamai [1] is now running a very large

network of more than 14000 servers in about 65 countries. Although the way

Akamai works is not known in detail, the basic operations as indicated in [1] can

be described as follows. Akamai’s servers are located at the same site or a very

close site to the local ISP of the end user, geographically. A client, requesting

information from a web site, only contacts the Akamai server located near by. It

is the Akamai’s web server that retrieves the required content from the origin web

site. This way, the client does not have to contact the origin web site, thereby

experiencing a reduced response time. Such an approach also results in a secure

application, since all the transactions are done locally, between the Akamai web

server and the client. On technical details on how Akamai works, the reader is

referred to Peng [84] and Pan et al. [83].

2.1.6.2 Speedera

Speedera, another commercial CDN, works in a similar way as Akamai. It has

a network of already deployed caching servers at the Points of Presence in the

Americas, Europe and the Asia-Pacific region [6]. When the content provider

publishes content to Speedera, this content is replicated on the caching servers

using a classic 80/20 scenario that is assumed to be typical for the clients, stating

that 20% of the whole content generates 80% of the actual network traffic. Thus,

CHAPTER 2. LITERATURE REVIEW 38

only the top 20% of the content (the popular content) is placed on the installed

servers while the remaining content is placed on or close to the origin server.

When a client issues a request, Speedera’s traffic management system finds the

best caching server based on multiple criteria, such as the location of the client,

latency, the availability and the load of the servers and the ability of the server to

deliver valid content. If the requested content is found in the caching server, then

it is server to the customer from here. Otherwise, the caching server retrieves the

content from the origin server.

2.1.6.3 Nortel Networks

Another commercial CDN provider, Nortel Networks uses a content manager

and a content director to automatically and intelligently distribute content to a

number of proxies and to dynamically direct the client requests to the best proxy

server holding the requested content, respectively [75]. Note, however, that the

content director works on top of the content manager, i.e. the request direction

is performed after the content has been distributed to the available proxy servers.

2.1.7 Discussion

As the overview also indicates, there is an active and a growing literature on

CDNs. However, the existing literature generally tends to focus on a single prob-

lem while assuming the remaining problems are decided on a priori. For instance,

studies on proxy server placement assume that a client’s request routing is done

according to the geographically closest available proxy, which may not always be

the best assignment. Similarly, object replication studies are usually based on

the assumption that there is already a set of proxies installed at given locations,

which might not be the best installation configuration. The main argument here

is that all these problems are interdependent as the decision for the one effects

the other, and thus should be considered simultaneously.

Another important aspect of the existing literature is that the Internet is

CHAPTER 2. LITERATURE REVIEW 39

usually modelled as a tree-network, while it rarely has such a structure. Fur-

thermore, studies considering the object replication problem usually assume that

there is a single object to be distributed, while it is generally the case that there

are multiple objects to be distributed.

The current implementations in practice have several common aspects. First

of all, it is clear that these commercial CDNs have already deployed a network

with a known number of proxy servers. The content is replicated on the proxy

servers based on the popularity of the content. The important aspect is that

the request routing is generally handled dynamically, i.e. the request is directed

to the best available proxy server available at the time of the request. Such an

implementation suggests a two-stage approach for content distribution where the

first stage consists of determining the best proxy locations, whereas the second

stage includes the object replication and request routing issues. We will elaborate

more on this in Chapter 3. This approach seems appropriate from the manage-

ment point of view. More specifically, the proxy server location problem can be

regarded as a long-term decision at the strategic level, while the others are either

at the tactical or operational levels. However, it should be noted that this ap-

proach may result in a suboptimal solution in some situations since these three

problems are interdependent and the decision of one depends on the decisions of

the others. In fact, Johnson et al. [53], as a result of an investigation of two

major commercial CDN providers, state that neither of these “can consistently

pick the best server of those available”.

2.2 Video on Demand

We provide in this section a review of the literature on VoD, especially related

with design and distribution issues.

A very good introduction to the topic, considering all possible aspects of a

VoD system, such as system components, technologies, communication services,

resource management, load balancing is provided by Little and Venkatesh [70].

CHAPTER 2. LITERATURE REVIEW 40

More recently, Ghose and Kim [42] surveyed the scheduling issues VoD systems,

providing a comprehensive overview of the major policies used to schedule the

video streams. They conclude that batching, in which a user placing a request

for specific a program has to wait until the system collects a batch of requests for

the same program, is a viable alternative in improving the performance of a VoD

system. In addition, the authors mention the necessity to consider a distributed

server architecture for such systems, due to the huge capacity requirements for

storing the programs.

Bisdikian and Patel [19] consider designing multimedia distribution systems

from a cost perspective and present two networking architectures, where each

user is allocated to a specific server but can watch any program transparently

from any other server. The authors discuss the trade-offs between traffic flow,

link utilization, number of copies of programs and the storage and transmission

costs in such systems. A relevant study to the issue of network architectures to

VoD systems is due to Barnett and Anido [14], who compared distributed and

centralized approaches in terms of costs incurred. These costs include cabling

costs, network bandwidth costs, user set-up costs and video server costs. The au-

thors show that a distributed approach, having no greater cost than a centralized

approach, has also significant benefits in terms of reducing network bandwidth

requirements, improving response time and reliability.

Kim et al. [60] consider designing a VoD system on a network with storage ca-

pacity constraints on each node and no capacity limitations on links between each

pair of nodes, so as to decide on where to place the video servers and the amount

of programs transmitted via each link. They offer an integer linear programming

formulation of the problem along with an efficient tabu search algorithm for its

solution. The authors present computational results for networks with up to 40

nodes and 200 programs.

Wang et al. [96] study the optimal video distribution problem in VoD systems

with multiple multicast sessions. Multicasting is performed when a set of clients

require the same program at approximately the same time. In this case, clients

are grouped as a multicast tree and the server sends the program through this

CHAPTER 2. LITERATURE REVIEW 41

tree. The authors present a branch and bound algorithm to find an optimal solu-

tion when the network is a directed acyclic graph and propose an approximation

algorithm for general graphs.

Hwang and Chi [49] consider the problem of placing a number of programs on

a number of servers such that the total installation cost that is composed of the

network transmission cost and the video storage cost. The authors provide fast

heuristic algorithms for optimal program placement with and without storage

capacity constraints on video servers.

Leung and Wong [67] address a somewhat different aspect of the problem

as what kind of a charging scheme should a service provider adopt in order to

maximize the mean revenue.

Ouveysi et al. [80] proposed an integer programming formulation to determine

the location of the video programs so as to minimize the total cost of storage and

transmission, subject to storage and transmission capacity constraints. They refer

to this problem as the Video Placement and Routing Problem, for the solution

of which the authors propose heuristic approaches. Finally Huang and Fang

[48] propose a dynamic load balancing among the servers in a multi-server VoD

system. Through simulations, the authors demonstrate that their algorithms

perform well on an example network.

2.2.1 Discussion

VoD systems, unlike CDNs, are being studied for more than 10 years. Although

there is a considerable amount of research on these systems, they are mainly

focused on building different network structures. As for the problems arising in

such systems, they are usually tackled by heuristic approaches, approximation

algorithms and simulations, where exact algorithms are limited. We believe that

VoD providers may benefit from exact solution algorithms, especially for problems

involving load balancing.

Chapter 3

Content Distribution Network

Design

According to the type of the content to be distributed, the structure of the dis-

tribution network, and the objective of the design problem, various formulations

can be developed to model the distribution of electronic content. It is observed

that the formulations proposed in the literature are mainly based on and are ex-

tensions of some well-known facility location models. In this chapter, we study

the problem of the content distribution network design.

This chapter is organized as follows: In Section 3.1, we formally define the

general problem setting and develop two novel formulations based on location

models. We then propose exact and heuristic solution procedures to solve one of

the proposed formulations, and present the associated computational results in

Section 3.2. In Section 3.3, we investigate the potential savings of the proposed

approach through computational experiments. Conclusions are stated in Section

3.4.

42

CHAPTER 3. CONTENT DISTRIBUTION NETWORK DESIGN 43

3.1 Location Models for Content Distribution

The two models presented in this section differ with respect to the number of

origin servers in the network. In specific, we consider single and multiple server

architectures and present the associated models in the subsections that follow:

3.1.1 CDN with a Single Server

The problem we consider here is formally defined as follows. We consider a

complete network G = (V,E), where V is the set of nodes and E = ({i, j} : i, j ∈

V) is the set of logical links. The node set V is further partitioned into three

nonempty, mutually exclusive and exhaustive subsets as V = I ∪ J ∪ S, where I

is the set of clients, J is the set of potential nodes on which proxy servers can be

installed and S is the set of origin servers. We may either have single or multiple

origin servers. We limit our study here to a single origin server (i.e. |S| = 1) but

the model can easily be extended to the multiple server case (|S| > 1). Further

we assume without loss of generality that no client can directly access the origin

server (e.g. for security reasons).

In practice, we generally have a network that is not necessarily complete (the

physical layer). However we assume that there are logical direct links (one-hop

paths) that connect every pair of nodes in the link layer. A logical link may pass

through one or more physical links. The correspondence between the logical and

physical links on the network can easily be established via an indicator function

defined below:

δl
ij =

{
1, if the logical link {i, j} ∈ E uses link l in the physical network

0, otherwise

Having defined such a correspondence, we can concentrate to work with the

logical links. These links constitute the backbone of the network and are used

for the distribution of the contents.

CHAPTER 3. CONTENT DISTRIBUTION NETWORK DESIGN 44

In designing such a network, there are two important cost components that

should be considered. The first is related to with the cost of placing a server at

node j and this is denoted by fj. In specific, fj is equal to the capital recovery

cost of server plus the annual running cost of it (hosting center, power supply,

air condition, maintenance and etc.). The fixed cost depends on the type of

the server and its backbone capacity. Normally in practice there are clusters of

servers with a load balancing switching devices to divert the incoming request to

particular servers. For instance, an amount of $100,000 does not provide a very

big server and it might be assumed as a minimum requirement.

The second cost component is related with transferring the traffic. The cost

of per unit traffic that is transferred over the link {i, j} ∈ E is denoted by cij

(similarly cjS denotes the unit cost from proxy j to the origin server). This cost

may represent unit bandwidth cost in terms of latency, number of hops, etc.

and is usually a linear-traffic dependent function [40]. In reality the bandwidth

would be purchased in incremental amounts. Therefore, it could be approxi-

mated as a linear relationship as being adapted in this chapter. There may be

pricing mechanisms where a larger bandwidth-link is priced as the same as a small

bandwidth-link which leads to a nonlinear pricing exercise. Transmission costs

can be determined on an annual basis, taking into account the expected traffic.

It is assumed that the link capacities are sufficiently large to allow the trans-

fer of the available content. This assumption is valid when we are talking about

nation-wide networks or networks of small size such as intranets (Similar assump-

tions have also been made in several previous studies, e.g. see [27] and [12]).

We assume here that a suitable routing protocol is used to ensure a guaran-

teed end-to-end bandwidth reservation to achieve some Quality of Service (QoS)

capability in the network. The QoS functionalities can then be implemented in

the physical layer of the backbone network parallel to the optimization task of

content distribution that is performed in the link layer. However, QoS related

concepts are out of the scope of this study and we focus only on the content

distribution optimization task here.

CHAPTER 3. CONTENT DISTRIBUTION NETWORK DESIGN 45

Table 3.1: Summary of Notation used for the CDN Model
Notation Indication

fj instantiation cost of proxy server on node j ∈ V
sj capacity of the potential proxy server on node j ∈ V
bk size of object k ∈ K
dik probability of requesting object k ∈ K by client i ∈ I
cij unit cost of transferring an object over link {i, j} ∈ E
cjS unit cost of transferring an object from the origin server

to proxy server j ∈ J

Each client is assumed to be served by exactly (or at least) one proxy server.

In any case, we assume that the client retrieves the requested object from only

a single server. This consideration is based on a well-stated result given by

Kangasharju et al. [56], who demonstrated through simulation that retrieving an

object as a whole from a single proxy results in a better performance compared to

the situation where the client receives different parts of the object from different

proxies. If a content requested by a client is not found in the assigned proxy

server, then the client is able to access it from the origin server via the path

from the corresponding proxy server to the origin server, but at the expense of

an additional transfer cost.

We assume that the capacity of the potential server at site j is sj. We define

K as the set of objects located in the origin server and assume that the size of

each object k ∈ K is bk. Also we consider that the probability of client i ∈ I

requesting object k ∈ K is denoted by dik.

The cost components and the demands should be determined based on a pre-

specified time frame (e.g. on an annual basis). In this case, the client demands

should be calculated as an annual estimate of previous demand patterns. Once

this is done, the unit cost of transmission should also be determined accordingly.

We emphasize that we consider an existing network in our study and that we

ignore the option of network expansion here. The notation used here is summa-

rized in Table 3.1.

CHAPTER 3. CONTENT DISTRIBUTION NETWORK DESIGN 46

Figure 3.1: A typical single server CDN architecture with 3 proxy servers and 9
clients

The CDN architecture just described is depicted in Figure 3.1, with the origin

server (in the box), 3 proxy servers and 9 clients, where each client is connected

to a single proxy server.

The problem then consists of simultaneously deciding on the following issues:

• the assignment of each client to a single (or multiple) proxy servers

• the number and the location of the proxy servers to be used in the CDN

among a given set of potential sites

• the objects to be located in each proxy server

The objective is to design a CDN such that the total cost is minimized. We

refer to this problem as the Single Server Content Distribution Network Problem

and denote it by SCDNP. It is important to note here that we consider this

CHAPTER 3. CONTENT DISTRIBUTION NETWORK DESIGN 47

problem from the perspective of the CDN provider, who would like to reduce

its expenses by minimizing the total cost. There may be several other schemes

that can be employed in a CDN, such as dynamically selecting the best proxy

for a client that is offering the lowest response time. We ignore such a scheme as

we do not consider real-time decisions and our design consists of making all the

decisions a priori. Although this may seem like a very static approach for such

an application, replication for content distribution based on steady state demand

rates are shown to have significant benefits in [94].

We define the following binary decision variables:

yj =

{
1, if node j ∈ J is selected as a proxy server

0, otherwise

xij =

{
1, if client i ∈ I is assigned to proxy server j ∈ J

0, otherwise

zjk =

{
1, if proxy server j ∈ J holds object k ∈ K

0, otherwise

We now present a novel integer programming formulation for the SCDNP

problem below. The novelty of the proposed formulation lies in simultaneously

addressing the three interdependent problems mentioned above as well as ex-

plicitly representing the distribution structure of a CDN through the objective

function.

CHAPTER 3. CONTENT DISTRIBUTION NETWORK DESIGN 48

minimize
∑

j∈J

fjyj +
∑

i∈I

∑

j∈J

∑

k∈K

(bkdikcijzjkxij + bkdik(1− zjk)(cjS + cij)xij) (3.1)

s.t.

∑

j∈J

xij = 1, ∀i ∈ I (3.2)

xij ≤ yj, ∀i ∈ I, j ∈ J (3.3)
∑

k∈K

bkzjk ≤ sjyj, ∀j ∈ J (3.4)

yj ∈ {0, 1}, ∀j ∈ J (3.5)

xij ∈ {0, 1}, ∀i ∈ I, j ∈ J (3.6)

zjk ∈ {0, 1}, ∀j ∈ J, k ∈ K (3.7)

In the objective function (3.1), the first summation represents the total cost

of installing proxy servers. The second summation denotes the total cost of trans-

ferring the content. The first part of this summation is for the case when client

i receives content k that is located in proxy j (reflected by the cost bkdikcijzjkxij

summed over all the proxies, clients and objects). In the case when the requested

object is not located in a proxy server, an additional cost is incurred to further

request the object from the origin server. This is reflected in the second part of

the summation by (bkdik(1− zjk)(cjS + cij)xij)), over all proxies, clients and ob-

jects. The objective function (3.1) is nonlinear, which makes the problem harder

to solve. Similar cost functions have also been suggested in [63], [102], and [31].

Constraint (3.2) is the assignment constraint indicating that each client must

be assigned to exactly one proxy server. Note that the case where each client can

receive objects from different proxies may easily be accommodated by using the

following constraint instead of (3.2):

∑

j∈J

xij ≥ 1,∀i ∈ I (3.8)

CHAPTER 3. CONTENT DISTRIBUTION NETWORK DESIGN 49

Constraint (3.3) implies that a client can be assigned to a node only if a proxy

server is installed on that node. Constraint (3.4) implies that the total size of

objects held in each proxy server is constrained by the available capacity. Finally,

constraints (3.5) - (3.7) denote the integrality of the decision variables.

The model just presented for the SCDNP has |J | + |I||J | + |J ||K| binary

variables and |I|+ |I||J |+ |J | constraints. Next, we show the complexity status

of the problem.

Proposition 1 The SCDNP is NP-Hard.

Proof We prove the proposition by restriction (see [39]). Let us consider the

following instance of the SCDNP: K = {1} (i.e. there is only a single object),

b1 = b, di1 = di and sj ≥ b, ∀j (i.e. all the proxies have a sufficiently large

capacity). Since there are no capacity constraints in this case, (3.4) becomes

redundant and zj1 = 1, ∀j. In this case, the problem becomes the Uncapacitated

Facility Location Problem (FLP), which is known to be NP-Hard (see e.g. [28]).

2

In the following, we give some observations regarding the connections of

SCDNP with other well-known problems:

1. If each proxy server has an infinite capacity, i.e. sj >> M,∀j ∈ J then

the capacity restriction on the storage amount becomes redundant. In this

case, since the whole content is replicated in each proxy server, the clients

receive all their demands from the proxy servers. This problem is the Mul-

ticommodity Uncapacitated FLP (see [38], [61]). When there is only a single

object, the SCDNP becomes the well-known Uncapacitated FLP.

2. If there is no fixed cost of installing a proxy server and each proxy has

an infinite storage capacity, then the problem becomes the well-known p-

Median problem.

CHAPTER 3. CONTENT DISTRIBUTION NETWORK DESIGN 50

Unlike the work of Nguyen et al. [76], we do not assume that the total capacity

of established proxies is greater than the total demand. In fact our model is a

better representation of a real life operation in a CDN, where a requested object

not available in the proxy server is cached from the origin server. This is exactly

the reason for the nonlinearity of the objective function in the SCDNP model. In

addition, Nguyen et al. [76] allow the client request to be fractionally served by

proxies holding the requested content, where, we do not allow for such a situation

(as explained previously).

We will provide exact and heuristic approaches to solve SCDNP in Section

3.2. Before doing that, we extend the SCDNP model to the case of multiple origin

servers in the following subsection.

3.1.2 CDN with Multiple Servers

In this section, we consider the situation where there are multiple origin servers

(denoted by the set S) in the CDN. The problem in this case, in addition to

the requirements of SCDNP, is to decide on which proxy should be assigned to

each origin server. We refer to this problem as the Multiple Server CDN problem

(MCDNP). A feasible sample configuration for a MCDNP is given in Figure 3.2

with 3 origin servers, 3 proxy servers and 9 clients. In addition to the assumptions

and definitions provided in the previous section, we further define the following

decision variable, which is used to decide which specific proxy server will be

connected to a specific origin server:

tjs =

{
1, if proxy server j ∈ J is assigned to the origin server s ∈ S

0, otherwise

In MCDNP, we assume that each client is served by a single proxy server,

which, in turn is connected to only one origin server. The integer formulation is

given below:

CHAPTER 3. CONTENT DISTRIBUTION NETWORK DESIGN 51

Figure 3.2: A typical multiple server CDN architecture with 3 origin servers, 3
proxy servers and 9 clients

CHAPTER 3. CONTENT DISTRIBUTION NETWORK DESIGN 52

minimize
∑

j∈J

fjyj +
∑

i∈I

∑

j∈J

∑

s∈S

∑

k∈K

(bkdikcijzjkxij + bkdik(1− zjk)(cij + cjstjs)xij)

(3.9)

s.t.

∑

j∈J

xij = 1, ∀i ∈ I (3.10)

xij ≤ yj, ∀i ∈ I, j ∈ J (3.11)
∑

k∈K

bkzjk ≤ sjyj, ∀j ∈ J (3.12)

∑

s∈S

tjs = 1, ∀j ∈ J (3.13)

yj ∈ {0, 1}, ∀j ∈ J (3.14)

xij ∈ {0, 1}, ∀i ∈ I, j ∈ J (3.15)

zjk ∈ {0, 1}, ∀j ∈ J, k ∈ K (3.16)

tjs ∈ {0, 1}, ∀j ∈ J, s ∈ S (3.17)

In this formulation, constraints (3.10)-(3.12) are the same as that of SCDNP

model. The only different constraint, given in (3.13), ensures that each proxy

server is connected to a single origin server. We would like to note that this

formulation is again quadratic in the objective function given in (3.9). A lin-

earization of the MCDNP model is provided in Appendix B.

It is straightforward to show that when there is only a single origin server,

i.e. |S| = 1, constraints (3.13) become redundant and the formulation reduces to

that of SCDNP. Therefore, this problem is also NP-Hard.

CHAPTER 3. CONTENT DISTRIBUTION NETWORK DESIGN 53

3.2 Exact and Heuristic Solutions for SCDNP

There are several ways to solve the nonlinear integer programming model pre-

sented for the SCDNP. One strategy would be to use techniques specifically de-

vised for quadratic optimization problems. In this study, we consider a solution

approach based on a special linearization of the model. Heuristic solution proce-

dures are also developed. These are presented in the following.

3.2.1 Model Linearization

It is clearly seen that the objective function (3.1) contains a quadratic term due

to the multiplication of the xij and zjk variables. One way for linearization is

to introduce a new binary variable into the formulation along with three sets of

constraints (as shown in [82] and [86]). We hereby propose a more efficient lin-

earization, using a continuous variable and only two sets of constraints. Although

there are other linearization techniques available for such quadratic functions, as

we will show later in this section, our linearization brings forth a special structure

that will enable us to use the exact solution approach to our model. The following

is the basis of our linearization.

Proposition 2 The following constraints are sufficient to linearize the objective

function (3.1) of the SCDNP model,

ϕijk ≤ xij, ∀i ∈ I, j ∈ J, k ∈ K (3.18)

ϕijk ≤ zjk, ∀i ∈ I, j ∈ J, k ∈ K (3.19)

where ϕijk = zjkxij and is a continuous variable in [0, 1].

Proof By simplifying the objective function as
∑

i∈I

∑
j∈J

∑
k∈K(bkdik(cij +

cjS)xij − bkdikcjSϕijk), where ϕijk = zjkxij, the proof relies on the observation

CHAPTER 3. CONTENT DISTRIBUTION NETWORK DESIGN 54

that the coefficient of ϕijk in the objective function is −bkdikcjS, which is always

negative. By definition, ϕijk should be 1 if and only if zjk = 1 and xij = 1, and

0 for all other cases. Now, assume that zjk = 1 and xij = 1 for a specific (i, j, k)

triplet. Then, according to constraints (3.18) and (3.19), ϕijk is only constrained

by the upper bound 1 and the minimizing objective function implies ϕijk = 1. In

all other cases (i.e. xij = 1, zjk = 0; or xij = 0, zjk = 1; or xij = 0, zjk = 0)

constraints (3.18) and (3.19) together imply ϕijk = 0. 2

Note that the linearizing variable ϕijk is actually an indicator of whether client

i is connected to the proxy server j and the proxy server holds the requested object

k or not. Under the proposed linearization, the objective function (3.1) reduces

to the following:

∑

j∈J

fjyj +
∑

i∈I

∑

j∈J

∑

k∈K

(bkdik(cijxij + cjS(xij − ϕijk))) (3.20)

We can now construct the integer linear programming formulation of the

SCDNP, denoted by M(SCDNP), as Minimize (3.20): s.t. (3.2)-(3.4), (3.18),

(3.19), (3.5)-(3.7), ϕijk ∈ [0, 1].

3.2.2 A Preliminary Analysis of the SCDNP Model

In order to assess the computational performance of the proposed model

for the SCDNP, we have performed some preliminary computational experi-

ments. These experiments are based on randomly generated Internet topolo-

gies, using an Internet topology generator, available at the web address

http://topology.eecs.umich.edu/inet/, which mimics the characteristics of the

real Internet topology. The instances used for comparison purposes have dif-

ferent number of potential proxy locations, clients and objects (denoted by |J |,

|I|, and |K| respectively). Based on the generated topology, we have created a

hierarchical network as follows: The topology was modified such that the average

CHAPTER 3. CONTENT DISTRIBUTION NETWORK DESIGN 55

cost between the origin server and the clients is doubled with respect to the aver-

age cost between the origin server and the potential proxy locations, i.e., it is two

times more expensive to send content to a client than sending content to a proxy

server. The server is selected to be the first node of the generated network. The

unit transfer cost on a link is generated in accordance with the hierarchical net-

work. The size of each object is chosen from a uniform random variable between

0 and 1. The fixed cost of installing a proxy server is also a uniform random

variable between 200 and 1000. The capacity of each proxy server is calculated

as a random number between 1 and the 50% of the total size of all objects. The

demand distribution for the objects have been modelled using a Zipf-like distri-

bution. This distribution is known to obey the characteristics of web requests

(see [21]). The Zipf-like distribution assumes that, the probability of a request

for an object is inversely proportional to its popularity. More specifically, let a

number of objects be ranked in order of their popularity where object i in this

order is the ith most popular object. Then, given an arrival for a request, the

conditional probability that the request is for object i is given by the following:

PK(i) =
Ω

iα

where

Ω = (
K∑

i=1

1

iα
)−1

is a normalization constant and α is an exponent. When α = 1, we have the true

Zipf-distribution. In [21], it is shown that α varies from 0 to 1 for different access

patterns and is usually between 0.64 and 0.83 for web objects. This value was

recorded to be α = 0.733 for multimedia files in [102]. We have used this specific

value in our implementation.

The metric used to assess each solution is a normalized cost metric, as used

in other studies (e.g. [99]), which is defined as follows:

CHAPTER 3. CONTENT DISTRIBUTION NETWORK DESIGN 56

Table 3.2: Computational analysis of M(SCDNP)

|J |1 |I|2 |K|3 vIP
4 Time (sec)5 vLP

6 Gap (%)7

2 5 10 0.196743 0.00 0.176784 10.15
2 5 20 0.220278 2.20 0.160009 26.79
2 5 30 0.243757 3.40 0.203921 22.16
2 5 40 0.203196 14.40 0.164390 23.61
2 5 50 0.159261 120.20 0.117373 27.75
2 10 10 0.259229 1.20 0.175000 34.56
2 10 20 0.232459 33.00 0.173245 28.54
2 10 30 0.195147 83.20 0.143140 26.21
2 10 40 0.185774 562.60 0.129690 34.28
2 10 50 0.153416 3266.40 0.103495 32.28
3 5 10 0.118412 2.20 0.053974 59.11
3 5 20 0.106240 13.60 0.050549 52.48
3 5 30 0.087297 18.20 0.027413 72.85
3 5 40 0.079468 29.80 0.018525 77.12
3 5 50 0.097295 27.80 0.052646 49.92
3 10 10 0.136549 3.00 0.059750 56.60
3 10 20 0.109765 578.20 0.032691 72.67
3 10 30 0.114386 1007.44 0.042822 63.59
3 10 40 0.129712 1265.60 0.057250 59.16
3 10 50 0.081450 3668.60 0.026444 67.54

1 number of potential proxy servers,
2 number of clients, 3 number of objects,
4 Optimal solution value of the integer program,
5 Solution time of the integer program (in seconds),
6 Optimal solution value of the integer programming relaxation,
7 Percentage gap between vIP and vLP

normalized cost =
cost of the network output by the procedure

cost of the network without any replicated proxies

Here, the cost of the network without any replicated proxies is the scheme

where all the clients are assumed to retrieve the requested content from the origin

server. Note that the smaller the normalized cost, the better the solution found

by the procedure is.

Table 3.2 presents, the computational efficiency of the proposed model on

randomly generated instances with varying configurations as shown in the first

CHAPTER 3. CONTENT DISTRIBUTION NETWORK DESIGN 57

three columns of the table. The values presented in each line are the averages of

5 randomly generated instances with the same configuration. Columns vIP , Time

and vLP respectively present the optimal solution value of the instance found

by CPLEX 9.0, the required solution time and the optimal LP relaxation value

obtained by using the model. Finally, the last column presents the gap between

the LP-bound and the integer optimal solution and calculated by vIP−vLP

vIP
∗ 100.

As the table indicates, it becomes harder to solve the instances to optimality

as the size of the instance increases. Furthermore, as also shown in the last

column of the table, the gaps can be quite high. This is due to the type of

linearization used in the previous section that forces us not to use any approach

based on the LP-relaxations (such as a cutting plane algorithm). Although there

are alternative tighter linearizations (e.g. see Adams and Sherali [9]), we will

continue to use the proposed linearization in the rest of the chapter, since it

brings forth a special structure of the model that enables us to develop an exact

solution algorithm based on decomposition. This is explained further in the next

section.

3.2.3 An Exact Solution Algorithm: Benders’ Decompo-

sition

To solve M(SCDNP), we use the decomposition approach of Benders [18]. We

additionally note that the solution approach presented here is a demonstration of

an exact solution procedure for similar integer models with a quadratic objective

function. The approach is simply based on fixing some of the variables to some

predetermined values, yielding a subproblem (henceforth denoted by SP), from

which a master problem (henceforth denoted by MP) is derived and the approach

iterates back and forth between two problems. Consider, now, fixing variables

zjk and yj to either 0 or 1 (while maintaining feasibility) and denote these fixed

values with zjk and yj, respectively. Consequently, we can omit the capacity

constraint (3.4) and the integrality constraints (3.5) and (3.7). The resulting SP

is as follows:

CHAPTER 3. CONTENT DISTRIBUTION NETWORK DESIGN 58

(SP) minimize
∑

j∈J

fjyj +
∑

i∈I

∑

j∈J

∑

k∈K

(bkdik(cijxij + cjS(xij − ϕijk)))

s.t.

∑

j∈J

xij = 1, ∀i ∈ I (3.21)

−xij ≥ −yj, ∀i ∈ I, j ∈ J (3.22)

−ϕijk + xij ≥ 0, ∀i ∈ I, j ∈ J, k ∈ K (3.23)

−ϕijk ≥ −zjk, ∀i ∈ I, j ∈ J, k ∈ K (3.24)

xij ∈ {0, 1}, ∀i ∈ I, j ∈ J (3.25)

ϕijk ∈ [0, 1], ∀i ∈ I, j ∈ J, k ∈ K (3.26)

It is obvious that SP still includes |I||J | binary variables. In what follows, we

show that we can relax the binary variables in the interval [0, 1] and still obtain

an integral solution. But before doing that, we present a definition and some

results from Wolsey [98]:

Definition 1 ([98], p.38) A matrix A is Totally Unimodular (TU) if every

square submatrix of A has determinant +1, −1 or 0.

Proposition 3 ([98], p.39) A matrix A is TU if and only if the matrix (A,I)

is TU.

Proposition 4 ([98], p.39) (Sufficient Condition) A matrix A is TU if

1. Each entry of A is either +1, −1 or 0.

2. Each column contains at most two nonzero coefficients.

3. There exists a partition (M1,M2) of the set M of rows such that each column

j containing two nonzero coefficients satisfies
∑

i∈M1
aij −

∑
i∈M2

aij = 0.

CHAPTER 3. CONTENT DISTRIBUTION NETWORK DESIGN 59

Proposition 5 ([98], p.40) The linear program max{cx: Ax ≤ b, x ∈ <n
+} has

an integral optimal solution for all integer vectors b for which it has a finite

optimal value if and only if A is totally unimodular.

Proposition 6 The constraint matrix A of SP with the constraints (3.21)-(3.24)

is Totally Unimodular.

Proof Rearranging the constraints of SP , we first observe that the constraint

matrix is of the form (A, I), where I corresponds to the constraints (3.22) and

(3.24), and A corresponds to the remaining constraints. Therefore, it suffices to

show that A is TU by Proposition 5. It is easy to see that each entry of A is

either +1, −1 or 0 and each column contains at most two nonzero coefficients.

Now, consider a partition M1 = M and M2 = ∅ of the set M of rows. In this

partition, each column j containing two nonzero coefficients satisfies
∑

i∈M1
aij −∑

i∈M2
aij = 0. Thus, A is TU and by Proposition 5 the LP relaxation of SP

provides an integral solution. 2

Based on the result of the preceding proposition, we relax constraints (3.25)

such that 0 ≤ xij ≤ 1. We can then omit constraints (3.25) and (3.26), since

these are already implied by the remaining constraints.

We can now proceed with the dual of SP (denoted by SPD), as shown below:

CHAPTER 3. CONTENT DISTRIBUTION NETWORK DESIGN 60

(SPD) maximize
∑

j∈J

fjyj +
∑

i∈I

ui −
∑

i∈I

∑

j∈J

yjwij −
∑

i∈I

∑

j∈J

∑

k∈K

zjknijk

s.t.

ui − wij +
∑

k∈K

mijk ≤
∑

k∈K

bkdik(cij + cjS), ∀i ∈ I, j ∈ J

−mijk − nijk ≤ −bkdikcjS, ∀i ∈ I, j ∈ J, k ∈ K

ui : free, ∀i ∈ I

wij,mijk, nijk ≥ 0, ∀i ∈ I, j ∈ J, k ∈ K

where ui, wij, mijk and nijk are dual variables associated with constraints (3.21),

(3.22), (3.23) and (3.24), respectively. In the objective function,
∑

j fjyj is a

constant since the yj’s are fixed. We show in the following that the SPD is

bounded and has a feasible solution.

Proposition 7 SPD is always bounded and feasible for a given set of feasible yj

and zjk variables.

Proof Since SPD is generated from SP , it suffices to show that the latter is

always bounded and feasible. Notice that the set of zjk and yj’s are always

chosen to be feasible (satisfying constraints (3.4), (3.5) and (3.7)) to construct

SP . Thus, it is always possible to find a feasible set of xij’s (e.g. assigning each

client to the closest proxy server). Since each of the variables can take values in

the interval [0,1], SP and SPD are bounded and feasible. 2

The objective function of SPD provides a cut for MP , which is shown in the

following:

CHAPTER 3. CONTENT DISTRIBUTION NETWORK DESIGN 61

(MP) minimize z0

s.t.

z0 ≥
∑

i∈I

u∗
i −

∑

i∈I

∑

j∈J

w∗
ijyj −

∑

i∈I

∑

j∈J

∑

k∈K

n∗
ijkzjk +

∑

j∈J

fjyj (3.27)

∑

k∈K

bkzjk ≤ sjyj, ∀j ∈ J

z0 ≥ 0

yj ∈ {0, 1}, ∀j ∈ J

zjk ∈ {0, 1}, ∀j ∈ J, k ∈ K

In the MP , constraint (3.27) is the Benders’ cut and u∗
i , w∗

ij, m∗
ijk and n∗

ijk

are the optimal values of the respective variables in SPD. The MP , in general,

includes an exponential number of Benders’ cuts (3.27), and thus is not compu-

tationally tractable. However, this problem may be overcome by relaxing these

cuts and dynamically generating only a subset of them at each iteration. This

is accomplished by using the values of the dual variables to compute an extreme

point and generate the corresponding optimality cut. We provide below a formal

definition of the algorithm:

Benders’ Decomposition Algorithm:

1. Let LB=−∞, UB=+∞. Fix zjk and yj, ∀j ∈ J, k ∈ K to some feasible

configuration.

2. Repeat the following until (UB-LB)/UB ≤ ε, where ε is a convergence

parameter indicating the maximum allowable gap between the upper and

lower bounds.

(a) Solve SP and set UB=min{z∗,UB}, where z∗ is the optimal solution

value of SP .

(b) Add the corresponding Benders’ cut to MP . Let the optimal solution

value of MP be z∗
0 . Set LB=z∗

0 , update zjk, yj.

CHAPTER 3. CONTENT DISTRIBUTION NETWORK DESIGN 62

3. Stop and conclude with the optimal solution.

In any iteration of the Benders’ algorithm, the optimal solution value of MP

provides a lower bound on the optimal solution value of the main problem, which

monotonically increases at every iteration. The solution value of each SP , on

the other hand, is an upper bound, not necessarily decreasing at each iteration.

This is why the upper bound is chosen as UB=min{z∗,UB} in Step (2a) of the

algorithm, where z∗ is as defined therein.

Note that MP is a mixed integer linear program with |J | + |J ||K| binary

variables and a single continuous variable. Although MP has a number of binary

variables much smaller than the original problem, our preliminary computational

experiments show that it is still difficult to solve directly. Since a MP needs

to be solved at each iteration of the algorithm, this may turn out to be quite

costly. To overcome this drawback, we make use of a modification that will help

to accelerate the procedure.

3.2.3.1 Modified Algorithm

The modification, as proposed in [71], partitions the procedure into two stages.

In the first stage, only the LP-relaxations of the MP s are solved, where the

relaxations are obtained by substituting the integrality conditions on yj and zjk

by 0 ≤ yj ≤ 1 and 0 ≤ zjk ≤ 1, respectively. This procedure is continued (a) until

no further iterations are possible (which indicates that we have found the optimal

solution value of the LP-relaxation of the original problem), (b) for a prespecified

number of iterations, or (c) when the gap between the upper and lower bounds

is less than a prespecified amount. One can then switch to the second stage, in

which the mixed-integer MP is solved. Note that this modification results in

the optimal solution of the model provided that the “integer” MP is used in the

algorithm or otherwise, the modified Benders’ algorithm only ends up with the

optimal LP-relaxation value of the original model. We refer to this modification

as algorithm MB1. It should also be noted that the complexity of algorithm MB1

is proportional to the complexity of the mixed integer MP (i.e. number of integer

CHAPTER 3. CONTENT DISTRIBUTION NETWORK DESIGN 63

variables) that is solved in each iteration of the second stage.

3.2.4 A Heuristic Algorithm

Considering the size of the instances that may arise in designing a CDN, we also

present a fast and simple heuristic algorithm for the solution of the SCDNP. Given

any ordering {1, 2, . . . , |J |} of the set of potential proxy locations, the heuristic

begins with opening the first proxy in the first iteration and continues on opening

the ith proxy of the ordering in the ith iteration, until all the potential proxies

are opened. The ordering chosen here can be such that the proxies are sorted

in the nondecreasing order of fj’s or the nonincreasing order of sj’s. At every

iteration, the request routing and object replication problems are solved. The

former is done through assigning each client to the proxy with minimum total

cost. The latter is based on what we refer to here as the saving of an object

k ∈ K, calculated as follows:

πjk = bkcjS

∑

N(j)

dik (3.28)

where N(j) denotes the set of clients connected to proxy j. A similar measure

has also been used by Xuanping et al. [100]. Verbally, the saving of an object is

the amount of cost reduced by placing object k on a proxy j. Then, the objects

are sorted in the non-increasing order of their savings. Let {Oj1, Oj2, . . .} denote

this order. The objects are placed in the available proxy server(s) using this order

without violating the capacity constraints. We also use b(L) to denote
∑

k∈L bk.

The outline of the procedure is given in the following:

CHAPTER 3. CONTENT DISTRIBUTION NETWORK DESIGN 64

procedure GH

Let the best solution be c = +∞ and l = 1.

Repeat the following while l ≤ |J |.

Select the first l sites to be opened, denoted by J ⊇ J = {1, . . . , l}.

for each client i ∈ I

let xij∗ := 1 such that
∑

k∈K bkdikcij∗ = minj∈J(
∑

k∈K bkdikcij)

for each server j ∈ J

Sort the objects and let the ordering be {Oj1, Oj2, . . . , Oj|K|}.

L := ∅.

t := 1

while b(L) ≤ sj

begin

k := Ojt

if b(L ∪ {k}) ≤ sj

zjk := 1

L := L ∪ {k}

t← t + 1

end

Calculate the cost of the current solution cl.

If cl < c, set c = cl.

l←− l + 1.

Here, set L given in the algorithm is used to record the set of objects located

on a proxy, for each j ∈ J . We name this procedure as the greedy heuristic and

denote it by GH.

CHAPTER 3. CONTENT DISTRIBUTION NETWORK DESIGN 65

3.2.5 Computational Results

In this section, we report our computational experience with the decomposition

algorithm and the heuristic procedure presented in the previous sections. All the

algorithms were implemented in C on a Sun UltraSPARC 12x400 MHz with 3

GB RAM. State-of-the-art optimization software CPLEX 9.0 was used to solve

the linear and integer programs at each step of MB1. For this algorithm, we have

set the convergence parameter to ε = 0.01% (i.e. the algorithm stops as soon as

the gap between the upper and lower bounds is less than 0.01%). The algorithm

was specified to switch from the first stage to the second stage (i.e. start to solve

the MP as a mixed-integer problem) when the gap between the upper and lower

bounds falls under 5%. We have also imposed an upper limit on the number of

integer MP s that can be solved in MB1, which is 200.

One alternative way to solve the proposed model is to use a commercial soft-

ware. We have chosen to use the state-of-the-art optimization software CPLEX

9.0 as a benchmark to assess the performance of MB1. For comparison purposes,

a time limit of 10800 seconds (3 hours) was imposed on CPLEX.

The performance of the algorithm was tested on random instances, which are

generated using the parameters explained in Section 3.2.2. For the experiments,

a batch of sixty problems were generated with the following specifications: The

number of potential proxy locations (|J |) range between 2 and 3. That of clients

(|I|) range between 50 and 200 and that of objects (|K|) range between 10 and

20. There are 12 different combinations of these dimension parameters as may

be seen in the first three columns of Table 3.5. The numerical values in each row

are calculated over 5 problems for each configuration.

The average final gap, the average number of iterations, the average number

of integer MPs solved and the average time required by algorithm MB1 to solve

the instances are given under the columns Gap, Iter, Int, and tMB1 respectively.

The next column, tC , corresponds to the average time required for CPLEX 9.0

to solve the instances. In the case that either algorithm MB1 or CPLEX exceed

the predefined limit, we consider the value of the best feasible solution obtained

C
H

A
P

T
E

R
3
.

C
O

N
T

E
N

T
D

IS
T

R
IB

U
T

IO
N

N
E

T
W

O
R

K
D

E
S
IG

N
66

Table 3.3: Comparison results of MB1, CPLEX and GH

|J |1 |I|2 |K|3 Gap4 Iter5 Int6 tMB1
7 tC

8 dC/MB1
9 dC/GH

10 dMB1/GH
11

2 50 10 0.0000 88 60 31 80 0.00 0.55 0.55
2 50 10 0.0046 18 17 2 8 0.00 0.00 0.00
2 50 10 0.0000 86 58 21 161 0.00 2.50 2.50
2 50 10 0.0000 30 2 4 7 0.00 2.62 2.62
2 50 10 0.0000 32 31 5 10 0.00 0.23 0.23
Average 0.0009 50.8 33.6 12.6 53.20 0.00 1.18 1.18

2 100 10 0.0000 115 82 66 729 0.00 7.85 7.85
2 100 10 0.0000 23 6 6 15 0.00 3.19 3.19
2 100 10 0.0000 170 127 160 10802* 0.36 2.99 3.36
2 100 10 0.0000 42 41 13 64 0.00 2.95 2.95
2 100 10 0.0000 37 14 12 62 0.00 0.83 0.83
Average 0.0000 77.4 54 51.4 2334.40 0.07 3.56 3.63

2 150 10 0.0002 17 16 7 25 0.00 1.87 1.87
2 150 10 0.0003 10 8 3 2 0.00 0.32 0.32
2 150 10 0.0000 14 2 4 6 0.00 0.31 0.31
2 150 10 0.0000 49 48 19 296 0.00 0.41 0.41
2 150 10 0.0000 141 121 85 10813* 0.00 3.23 3.23
Average 0.0001 46.2 39 23.6 2228.40 0.00 1.23 1.23

2 200 10 0.0009 33 8 19 173 0.00 0.77 0.77
2 200 10 0.0000 32 2 19 73 0.00 3.62 3.62
2 200 10 0.3509 201 200 237 1556 0.00 3.86 3.86
2 200 10 6.4124 248 200 503 3996 0.14 4.61 4.46
2 200 10 5.9014 201 200 287 8925 0.00 4.69 4.69
Average 2.5331 143 122 213 2944.60 0.03 3.51 3.48

1 number of potential proxy servers, 2 number of clients, 3 number of objects, 4 final optimality
gap between upper and lower bounds, 5 number of total iterations, 6 number of integer master
problems solved, 7 total computation time spent by MB1, 8 total computation time spent by
CPLEX 9.0, 9 percentage deviation of the final solutions found by MB1 and CPLEX,
10 percentage deviation of the final solutions found by GH and CPLEX, 11 percentage deviation of
the final solutions found by MB1 and GH, * Indicates that the solution time of CPLEX for the
corresponding problem exceeded 3 hours (10800 seconds) without reaching the optimal solution

C
H

A
P

T
E

R
3
.

C
O

N
T

E
N

T
D

IS
T

R
IB

U
T

IO
N

N
E

T
W

O
R

K
D

E
S
IG

N
67

Table 3.4: Comparison results of MB1, CPLEX and GH
|J | |I| |K| Gap Iter Int tMB1 tC dC/MB1 dC/GH dMB1/GH

2 50 20 0.0096 121 74 158 98 0.00 0.31 0.31
2 50 20 16.3910 201 200 894 5940 0.14 1.63 1.48
2 50 20 27.1888 256 200 2976 10804∗ 0.72 8.46 7.67
2 50 20 12.2098 201 200 447 2331 0.00 8.06 8.05
2 50 20 23.0422 307 200 9401 9861 0.29 5.46 5.16
Average 15.7683 217.2 174.8 2775.2 5806.80 0.23 4.78 4.53

2 100 20 0.0012 51 30 29 39 0.00 1.51 1.51
2 100 20 5.1648 204 200 312 864 0.00 0.00 0.00
2 100 20 0.0016 67 66 53 61 0.00 1.70 1.70
2 100 20 20.8517 249 200 5320 10805∗ 0.44 0.59 1.03
2 100 20 3.1150 259 200 693 3078 0.00 3.28 3.28
Average 5.8269 166 139.2 1281.4 2969.40 0.09 1.42 1.50

2 150 20 14.1654 201 200 722 10802∗ 0.00 1.31 1.31
2 150 20 27.2585 288 200 7328 10802∗ 1.29 0.42 1.71
2 150 20 34.5923 201 200 4098 10803∗ 0.38 5.44 5.84
2 150 20 3.2074 215 200 688 10806∗ 0.00 4.26 4.26
2 150 20 5.8157 211 200 418 10802∗ 0.05 0.15 0.20
Average 17.0078 223.2 200 2650.8 10803.00 0.34 2.32 2.66

2 200 20 15.1687 221 200 1667 10801∗ 0.10 1.77 1.87
2 200 20 8.2099 222 200 699 10801∗ 0.01 0.95 0.95
2 200 20 0.0001 17 16 13 62 0.00 0.22 0.22
2 200 20 0.0009 22 21 16 55 0.00 0.21 0.21
2 200 20 17.1616 151 100 1930 10802∗ 0.13 1.62 1.75
Average 8.1083 126.6 107.4 865 6504.20 0.05 0.95 1.00

*: Indicates that the solution time of CPLEX for the corresponding problem exceeded 3 hours (10800 seconds) without
reaching the optimal solution

C
H

A
P

T
E

R
3
.

C
O

N
T

E
N

T
D

IS
T

R
IB

U
T

IO
N

N
E

T
W

O
R

K
D

E
S
IG

N
68

Table 3.5: Comparison results of MB1, CPLEX and GH
|J | |I| |K| Gap Iter Int tMB1 tC dC/MB1 dC/GH dMB1/GH

3 50 10 23.5536 275 200 850 573 0.00 3.30 3.29
3 50 10 2.3218 245 200 270 926 0.00 5.28 5.28
3 50 10 23.2103 628 200 3489 171 0.01 5.49 5.48
3 50 10 0.0044 119 66 68 19 0.00 1.60 1.60
3 50 10 0.4282 254 200 187 78 0.00 3.21 3.21
Average 9.9037 304.2 173.2 972.8 353.40 0.00 3.77 3.77

3 100 10 18.0875 202 200 279 359 0.00 0.00 0.00
3 100 10 6.0378 292 200 763 1361 0.00 1.24 1.24
3 100 10 11.7135 272 200 801 5102 0.00 5.87 5.86
3 100 10 21.3673 215 200 373 3623 0.00 0.66 0.66
3 100 10 11.9358 246 200 482 275 0.00 0.11 0.11
Average 13.8284 245.4 200 539.6 2144.00 0.00 1.58 1.57

3 150 10 0.0023 253 175 398 400 0.00 2.60 2.60
3 150 10 12.0348 204 200 271 235 0.00 3.20 3.20
3 150 10 0.0012 69 15 47 202 0.00 1.89 1.89
3 150 10 0.0022 113 38 166 748 0.00 1.13 1.13
3 150 10 20.8257 266 200 681 10145 0.33 1.04 0.71
Average 6.5732 181 125.6 312.6 2346.00 0.07 1.97 1.90

3 200 10 0.0039 146 82 180 691 0.00 0.02 0.02
3 200 10 0.0006 71 70 63 18 0.00 0.75 0.75
3 200 10 35.4799 293 200 2140 10807∗ 1.43 0.08 1.34
3 200 10 26.0671 269 200 1362 10800∗ 0.10 1.45 1.35
3 200 10 1.135656 276 200 2475 4076 0.86 0.86 0.00
Average 12.5374 211 150.4 1244 5278.40 0.33 0.88 0.55

*: Indicates that the solution time of CPLEX for the corresponding problem exceeded 3 hours (10800 seconds) without
reaching the optimal solution

CHAPTER 3. CONTENT DISTRIBUTION NETWORK DESIGN 69

so far as the output of the algorithm.

As far as the results given in Table 3.5 are concerned, we see that algorithm

MB1 is able to solve to optimality problems with |I| = 2, |K| = 10 and |J | ≤ 150

considerably faster than CPLEX. We observe that as the instances increase in

size, the final gap of algorithm MB1 increases as well. For this purpose, we

additionally provide column dC/MB1, which shows the percent difference between

the final solutions found by MB1 and CPLEX for each instance. This value is

calculated by vC−vMB1

vMB1

∗ 100, where vC and vMB1 are the values of the solutions

found by CPLEX and MB1, respectively. The differences presented in this column

indicate that the solutions found by both algorithms do not significantly differ.

However, algorithm MB1 is able to obtain such solutions in substantially shorter

computation times as compared to those of CPLEX. The reason for the increasing

gap is due to the linearization used here, which is shown to output very large

integer gaps, as previously presented.

Table 3.5 also includes the results obtained by the GH, given in the last

two columns. The columns dC/GH and dC/MB1 respectively present the percent

deviations of the GH from that of CPLEX and MB1. These are calculated

by vGH−vC

vC
· 100 and vGH−vMB1

vMB1

· 100, respectively, where vGH is the value of the

solutions found by GH. As indicated in these two columns, the heuristic is able

to find solutions that are within at most 5% of the solutions found by the exact

solution algorithms. Since this heuristic runs very fast (within a few seconds for

all the instances given in the table), we have not recorded the solution times.

We have also tried to solve instances with |J | ≥ 4 using the proposed al-

gorithms. However, for such instances, computational results showed that MB1

was not able to produce satisfactory solutions, which is mainly due to high gaps

output by the algorithm.

CHAPTER 3. CONTENT DISTRIBUTION NETWORK DESIGN 70

3.3 Justification of the Combined Approach

We have mentioned in Chapter 3 that designing CDNs essentially involves solv-

ing three main problems, which are proxy location, object replication and client

assignment. In practice, the replication of objects is done according to the pop-

ularity of each object. The clients’ content requests, on the other hand, are

directed in real-time to the best proxy that is the fastest to respond to the re-

quest. Details for commercial CDNs were supplied in Chapter 2. The current

implementations in practice suggest a simple two step approach where the prox-

ies are installed according to some optimization criteria in the first stage and the

content is replicated according to the locations of the proxies and the 80/20 rule

afterwards.

Contradicting the existing studies, we believe the three important decision

problems in a CDN should be considered simultaneously. These three problems

are inter-related in that the object replication and the client assignment is done

according to the installed proxies and the placement of the proxies is affected by

the replicated objects on the proxy as well as the clients assigned. However, the

efficiency of such a combined approach over the two-stage approach, taking into

consideration all the decision problems simultaneously, should be investigated.

In what follows, we will examine this specific argument by comparing the

approach used in practice with the proposed (combined) approach. The combined

approach was presented and modelled in the Chapter 3 for single and multi-origin

server networks. In this chapter, we only consider networks with a single origin

server, i.e. the problem SCDNP.

3.3.1 A Two-Stage Approach

Based on the approach used by commercial CDN providers in practice, we propose

a two-stage approach formally stated below. The definitions and notations follow

that of the preceding chapter.

CHAPTER 3. CONTENT DISTRIBUTION NETWORK DESIGN 71

Procedure TWOSTAGE:

1. Stage 1: Solve an Uncapacitated Facility Location Problem (UFLP) on

the network. The solution to this problem will output the locations of the

proxies to be installed with minimum total cost, as well as the assignment

of clients to each installed proxy.

2. Stage 2: Calculate the popularity of each object k ∈ K as pop(k) =
∑

i∈I dik. Locate only top 20% of the objects to each of the installed proxies

with respect to their popularity, without violating the capacities.

Simply put forward, the procedure TWOSTAGE involves solving an integer linear

model of the UFLP for the proxy location and client assignment decisions. Then,

object replication is performed in the second stage, based on the output of the

first stage and the 80/20 scenario.

3.3.2 A Combined Approach

The combined approach is actually the solution of the SCDNP presented in Chap-

ter 3. Note that we may use the proposed model to solve the problem. However,

for comparison purposes, we use the greedy algorithm.

3.3.3 Computational Results

In this section, we computationally compare both approaches explained above on

randomly generated instances. The computational setting and all the details are

as explained in Chapter 3. The problems have varying parameters, as shown in

the first three columns of Table 3.3.3. Columns v(TWOSTAGE) and v(COMBINED)

present the normalized costs obtained by using the respective procedures. For

each problem configuration, five instances have been generated and each row

presents the values averaged over these five instances. The last column name imp

CHAPTER 3. CONTENT DISTRIBUTION NETWORK DESIGN 72

presents the improvement achieved by using COMBINED over the solution found by

TWOSTAGE and calculated as:

imp =
v(TWOSTAGE)− v(COMBINED)

v(TWOSTAGE)
∗ 100

In this table, we do not report the computational solution times required by

each approach, since neither requires a significant amount of solution time for all

of the instances considered.

As the results given in Table 5.1 indicate, the suggested COMBINED approach is

highly superior to TWOSTAGE approach, especially for larger instances with |J | =

20, 50 and |I| ≥ 100. Noting that the COMBINED approach is heuristic in nature

and only results in an upper bound for the problem, we conclude that the savings

could be even higher once the optimal solution of the problem is calculated (if

possible). For some of the smaller instances, i.e. with n = 5 and m = 50, the

TWOSTAGE approach results in a better solutions as compared to that obtained

by the COMBINED approach. This, however, is an expected situation since in this

case the number of potential proxies is very small and no significant savings by

the heuristic can be obtained by deploying additional proxies in the network.

3.3.4 Discussion

In this subsection, we have tried to justify the approach of considering all three

important decisions in a CDN design simultaneously. We have demonstrated

through computational experiments that the combined approach can result in

substantially better solutions than a straightforward two-stage approach. The

two-stage approach, as inspired from practice, is clearly bound to result in a sub-

optimal solution, since the decision problems are solved in a subsequent fashion,

making the solution of the second stage dependent on that of the first one. As a

result of the experiments, we can conclude that, for a network with a large number

of potential proxy sites and objects, the combined approach is worthwhile in terms

of the total network cost.

CHAPTER 3. CONTENT DISTRIBUTION NETWORK DESIGN 73

Table 3.6: Comparison of TWOSTAGE and COMBINED ap-
proaches

|J |1 |I|2 |K|3 v(TWOSTAGE)4 v(COMBINED)5 imp6

2 10 50 0.307036 0.253901 17.31
2 10 60 0.298925 0.238017 20.38
2 10 70 0.276902 0.260607 5.88
2 10 80 0.238348 0.227061 4.74
2 10 90 0.301522 0.253954 15.78
2 10 100 0.302111 0.242322 19.79
5 50 50 0.080986 0.078015 3.67
5 50 60 0.078979 0.101588 -28.63
5 50 70 0.081200 0.086612 -6.66
5 50 80 0.081916 0.080837 1.32
5 50 90 0.111066 0.108187 2.59
5 50 100 0.091940 0.113033 -22.94
20 100 500 0.031825 0.023669 25.63
20 100 600 0.034662 0.021637 37.58
20 100 700 0.037372 0.020593 44.90
20 100 800 0.036329 0.022581 37.84
20 100 900 0.034300 0.020798 39.36
20 100 1000 0.030742 0.018878 38.59
50 500 500 0.015379 0.009962 35.23
50 500 600 0.015970 0.009941 37.75
50 500 700 0.016094 0.010996 31.68
50 500 800 0.015397 0.008003 48.02
50 500 900 0.015509 0.009297 40.06
50 500 1000 0.015506 0.008827 43.07
1 number of potential proxy servers, 2 number of clients,
3 number of objects, 4 solution value found by the TWOSTAGE

approach, 5 solution value found by the COMBINED approach,
6 percentage improvement of the COMBINED approach over the
TWOSTAGE approach

CHAPTER 3. CONTENT DISTRIBUTION NETWORK DESIGN 74

3.4 Conclusions and Further Issues

Content Distribution Network is a new technology aimed at increasing the effec-

tiveness of the distributing content. In this chapter, we have developed integer

programming models to optimally locate proxy servers, allocate each object to a

proxy server and assign clients to the proxies so as to minimize the total transfer

cost of the content. Our approach differs from the related studies considering

a similar problem with respect to the objective function, which allows one to

consider the case when the requested object is not found in any proxy server.

The potential savings of such a joint approach is also investigated in this

chapter. Computational results suggest that the approach presented herein is

superior to a two-stage approach that seems to be used in practice.

We have devised exact and heuristic solution approaches for the single server

CDN design problem. Since the proposed model includes a quadratic objective

function, we have made use of a linearization in devising a decomposition-based

exact algorithm, along with a variant to accelerate it. Computational experiments

based on randomly generated Internet topologies suggest that the proposed al-

gorithm is superior to CPLEX and is very efficient especially when the number

of clients is huge and the number of objects is comparably small (as generally is

the case in multimedia environments). The algorithm is also a demonstration of

an exact solution technique for similar integer models with quadratic objective

functions.

For larger networks, we have also proposed a greedy algorithm that runs very

fast. Comparison results with the exact algorithm suggests that the heuristic

algorithm is able to output near-optimal solutions to the problem. The greedy

algorithm proposed here is simple and is based on the concept of savings. How-

ever, one may go further in this direction to investigate the potentials of other

heuristic procedures for this problem. In specific, metaheuristics such as tabu

search or genetic algorithms may prove to be useful in obtaining better solutions

in considerably small running times.

CHAPTER 3. CONTENT DISTRIBUTION NETWORK DESIGN 75

It is clear that the problems considered here are of dynamic nature. In specific,

the level and the distribution of traffic tend to vary in a telecommunications

network, which is partly due to the stochastic nature of customer demand and

partly due to the variability in usage pattern over the course of a day. The aim

of a CDN provider is to configure the system efficiently given the demand of each

client node. Therefore, the system should be reconfigured periodically, and this

reconfiguration is especially needed when the request rates of the clients for the

objects change significantly. The time intervals for reconfiguration of the system

is also dependent on the nature of the content that is being distributed. There

would be some applications that are very time sensitive where we may also have

applications (like online newspapers, etc.) that are not very time sensitive.

To accomplish this task, the algorithm presented in this chapter needs to run

as frequently as possible to achieve the highest availability and performance. This

should be in the order of minutes and further optimization to minimize this time

is desirable. This may be achieved by parallel running of the algorithm or further

enhancing of the methodologies suggested in this work.

Chapter 4

Video on Demand

In this chapter, we develop a solution algorithm for the Video Placement and

Routing Problem that arises in local groups of VoD systems. Our algorithm is

based on Lagrangean relaxation and decomposition, coupled with some integer

programming techniques to convert infeasible solutions to feasible solutions. This

approach is in contrast to similar algorithms in the literature, where heuristics

are used to obtain feasible solutions.

The outline of this chapter is as follows. In the next section, we define the

problem and present an integer linear programming formulation. Section 4.2 pro-

vides the full details of the Lagrangean relaxation and decomposition algorithm,

with the implementation results on randomly generated instances given in Section

4.3. Conclusions and further remarks are given in Section 4.4.

4.1 Problem Definition And Formulation

In defining the problem, we adhere to the notation of Ouveysi et al [80], given as

follows. There exists a fully meshed network modelled by an undirected graph

G = (V,A) corresponding to a cluster of local servers in a VoD network. Here,

V = {1, 2, ..., n} is the set of nodes and A is the set of edges including the

76

CHAPTER 4. VIDEO ON DEMAND 77

n(n − 1)/2 links of the network. The set of programs (videos) to be placed and

routed is denoted by P = {1, 2, ...,m}, where each program k ∈ P has a capacity

requirement denoted by mk and a bandwidth requirement for transmission de-

noted by µk. Each node j ∈ V corresponds to a potential location for storing the

programs with capacity denoted by Cs(j). In addition, each node has a demand

for each program. The cost of storing a program k ∈ P at node j ∈ V is shown by

sk(j) and the transmission cost of the program on the link {i, j} ∈ A is shown by

tk(i, j). Finally, each link {i, j} ∈ A has a transmission capacity that is denoted

by Ct(i, j). A fully meshed group of a VoD architecture with 5 local servers is

given in Figure 4.1.

Given the demand forecast of the programs, the Video Placement and Routing

Problem (VRPR) is to find a placement scheme for the programs such that the

total cost of storage and transmission of the programs in the network is minimized

and the demand of each node for each program is satisfied.

Ouveysi et al. [80] provide an integer linear programming formulation for this

problem, using the following binary decision variables:

xk
ij =

{
1, if program k ∈ P is transmitted to node j ∈ V from node i ∈ V

0, otherwise

yk
j =

{
1, if program k ∈ P is stored at node j ∈ V

0, otherwise

CHAPTER 4. VIDEO ON DEMAND 78

Figure 4.1: A fully meshed VoD architecture with 5 servers

CHAPTER 4. VIDEO ON DEMAND 79

The formulation is then given as follows (denoted by F):

(F) minimize
∑

k∈P

∑

j∈V

sk(j)y
k
j +

∑

k∈P

∑

j∈V

∑

i∈V,i6=j

tk(i, j)x
k
ij (4.1)

s.t.
∑

k∈P

mky
k
j ≤ Cs(j), ∀j ∈ V (4.2)

∑

k∈P

µkx
k
ij ≤ Ct(i, j), ∀i 6= j ∈ V (4.3)

∑

i∈V,i6=j

xk
ij + yk

j = 1, ∀j ∈ V, k ∈ P (4.4)

xk
ij ≤ yk

i , ∀i 6= j ∈ V, k ∈ P (4.5)

xk
ij, y

k
j ∈ {0, 1}, ∀i 6= j ∈ V, k ∈ P (4.6)

In this model, constraints (4.2) and (4.3) correspond to the capacity con-

straints related with storage nodes and transmission links, respectively. Con-

straints (4.4) state that each node either stores a program or receives it from

another node that stores it. Finally, constraints (4.5) imply that a program can

be transmitted from a node only if the program is stored at that node. It is

clear that this formulation only allows one-hop paths in transmitting a program.

The reader is referred to Ouveysi et al. [81] for the generalization of this prob-

lem to two-hop paths. Constraints (4.6) impose integrality restrictions on the

decision variables. Problem F has in general (n2m + nm)/2 binary variables and

(n2m + n2 + n)/2 constraints.

We now study the complexity of the VPRP. Ouveysi et al. [80] mention the

possibility that the VPRP may be NP-Hard. In the proposition stated below,

we prove that it indeed is:

Proposition 8 The video placement and routing problem (VPRP) is NP-Hard.

Proof The proof is based on the following restriction. Consider a single program

(i.e., P = {1}) and let µ1 ≤ min{i,j}∈ACt(i, j) and m1 ≤ mini∈V Cs(i). Since

CHAPTER 4. VIDEO ON DEMAND 80

there is a single program, we can drop the index k in the formulation. In this

case, constraints (4.2) and (4.3), pertaining to node and link capacities, become

redundant. Now, partition the node set such that V = I
⋃

J where yj ≤ 0 for all

j ∈ J . Then, constraints (4.4) and (4.5) can be written as
∑

i∈I xij = 1,∀j ∈ J

and xij ≤ yi,∀i ∈ I, j ∈ J . But then F reduces to the well-known uncapacitated

facility location problem (see [28]) with I as the set of potential facility locations

and J as the set of customers. Since this problem is known to be NP-Hard, the

VPRP is also NP-Hard. 2

The complexity of the VPRP implies that the solution of F using standard

off-the-shelf software will not be practical, especially with the increasing size of

the problem. Ouveysi et al. [80] have proposed a heuristic to solve problem F. We

propose a solution algorithm for problem F based on Lagrangean relaxation and

decomposition. The details of the algorithm are presented in the next section.

4.2 A Lagrangean Relaxation and Decomposi-

tion Algorithm

Our algorithm is based on relaxing the capacity constraints (4.2) and (4.3) in

a Lagrangean fashion, by respectively associating the Lagrange multipliers βj

and αij to each constraint. As a result, we obtain the following relaxed problem

(denoted by F (β, α)):

(F (β, α)) minimize
∑

k∈P

∑

j∈V

Ak
j y

k
j +

∑

k∈P

∑

j∈V

∑

i∈V,i6=j

Bk
ijx

k
ij − C0

s.t.

(4.4), (4.5), (4.6)

CHAPTER 4. VIDEO ON DEMAND 81

where

Ak
j = sk(j) + βjmk,

Bk
ij = tk(i, j) + αijµk, and

C0 =
∑

j∈V

βjCs(j) +
∑

i∈V

∑

j∈V

αijCt(i, j).

Next, we observe that F (β, α) decomposes into |P | subproblems, one for each

program k ∈ P , each denoted by Fk(β, α) and shown as follows for a single k∗:

(Fk∗(β, α)) minimize
∑

j∈V

Ak∗

j yk∗

j +
∑

j∈V

∑

i∈V,i6=j

Bk∗

ij xk∗

ij

s.t.
∑

i∈V,i6=j

xk∗

ij + yk∗

j = 1, ∀j ∈ V

xk∗

ij ≤ yk∗

i , ∀i 6= j ∈ V

xk∗

ij , yk∗

j ∈ {0, 1}, ∀i 6= j ∈ V

Each subproblem has (n2 + n)/2 binary variables and (n2 + n)/2 constraints.

Let v(F) denote the optimal objective function value of problem F. Preliminary

computational experimentation shows that the subproblems do not have any in-

tegrality properties, i.e., the solution to the LP-relaxation of the subproblems

may output fractional solutions.

As a result of the decomposition procedure, the optimal objective function of

F (β, α) can be calculated as v(F (β, α)) =
∑

k∈P v(Fk(β, α)) − C0. We are now

ready to provide a general outline of the algorithm for the solution to problem F.

The Algorithm:

• Start with an initial vector of multipliers β1, α1. Let the incumbent lower

CHAPTER 4. VIDEO ON DEMAND 82

bound be lb = −∞, incumbent upper bound be ub =∞ and t = 1.

• Perform the following until gap = ub−lb
ub

< 0.01 or the maximum amount of

iterations have been reached.

– Solve F (βt, αt). Set lb = v(F (βt, αt)) if v(F (βt, αt)) > lb.

– Modify the solution of F (βt, αt) into a feasible solution F̂ (βt, αt)

using the two-stage procedure that will be explained later on. If

v(F̂ (βt, αt)) < ub, set ub = v(F̂ (βt, αt)).

– Update the multipliers as follows:

βt+1 = max{0, βt + st
1 · g

t
1}

αt+1 = max{0, αt + st
2 · g

t
2}

Here, gt
1 and gt

2 are the subgradient vectors. The jth component of gt
1

is defined as:

(gt
1)j =

∑

k∈P

mky
k
j − Cs(j)

Similarly, the (i, j)th component of gt
2 is defined as:

(gt
2)ij =

∑

k∈P

µkx
k
ij − Ct(i, j)

In updating the multipliers, the step sizes st
1 and st

2 are calculated as

follows:

st
i = λ

1.05 · ub− v(V (βt, αt))

‖gt
i‖

2
, i = 1, 2 (4.7)

– Increment t as t + 1.

• Output ub as the best feasible solution.

In calculating the steplengths, equation (4.7) is used where λ is a convergence

parameter. This equation is the classical formula given in Held et al. [45]. In this

CHAPTER 4. VIDEO ON DEMAND 83

equation, the coefficient of the incumbent upper bound (ub) is chosen as 1.05,

although it is generally considered 1 in the literature. The purpose for choosing

such a coefficient is to increase the value of the step sizes at every iteration, with

an expectation of obtaining a better solution at the next iteration. The value

of this coefficient has been optimized by performing additional computational

testing for values 1.05, 1.1, 1.15 and 1.2 as the coefficient and choosing the best

one in terms of the solutions produced.

The gap calculated at each iteration of the algorithm shows how far the current

feasible solution is from the optimal solution. Therefore, in the case that the

algorithm is unable to find the optimal solution, it is capable of indicating the

quality of the final solution.

At any step of the algorithm, the solution of F (β t, αt) provides an integral

solution that is feasible with respect to constraints (4.4) and (4.5), but do not

necessarily satisfy the capacity constraints (4.2) and (4.3). This (infeasible) solu-

tion needs to be converted into a feasible solution with respect to Problem F in

order to be able to provide an upper bound. In general, in such circumstances,

some fast heuristics are used to convert the infeasible relaxed solution to a feasible

solution, at the expense of a possibly bad feasible solution. However, we consider

a reverse approach and utilize integer programs (IPs) to obtain feasible solutions.

Our motivation is to make use of the information provided by the current relaxed

solution as much as possible. Such an approach, although at the expense of a

higher computational effort, will be proven to be effective in providing feasible

solutions of good quality. The details of our procedure is as follows:

4.2.1 Obtaining Feasible Solutions

Let ŷk
j and x̂k

ij be the optimal solution to the F (β, α). Using this solution, we

attempt to achieve a feasible solution to F using a two stage procedure (named

as 2SP). In brief terms, the first stage of the 2SP attempts to obtain a feasible

configuration of y variables using an IP named FeasY. Using the result of the first

stage, we construct another IP named FeasX in the second stage, whose solution

CHAPTER 4. VIDEO ON DEMAND 84

provides a feasible configuration of x variables. Details are provided below:

4.2.1.1 Stage 1

The first stage of the 2SP consists of converting the ŷk
j ’s so as to satisfy con-

straint (4.2) with a minimal amount of modification. The modification is done

for each node j ∈ V , through repositioning any program that violates the capac-

ity constraint. To achieve this, we define the set O(j, k) = {j ∈ V, k ∈ P |ŷk
j = 1}.

Then, the feasibility is accomplished through the use of the following feasibility

IP model (henceforth denoted by FeasY):

(FeasY) minimize
∑

k∈P

∑

j∈V

sk(j)y
k
j +

∑

k∈P

∑

j∈V

Rmk
j (4.8)

s.t.
∑

k∈P

mky
k
j ≤ Cs(j), ∀j ∈ V

yk
j ≥ 1−mk

j , ∀j, k ∈ O(j, k) (4.9)
∑

j∈V

yk
j ≥ 1, ∀k ∈ P (4.10)

yk
j ∈ {0, 1}, ∀j ∈ V, k ∈ P

mk
j ∈ {0, 1}, ∀j, k ∈ O(j, k) (4.11)

In FeasY, the additional binary variable mk
j is equal to one if program k

on node j is repositioned to another node, with, however, a penalty for each

repositioning. This is reflected in the second summation of the objective function

of FeasY with a penalty coefficient R and ensures that the modification performed

to the solution is minimal. The motivation for such an approach is to benefit

as much as possible from the information provided by the relaxed Lagrangean

solution. Constraints (4.9) stipulate that if a program k already located at node

j is repositioned to another node, then yk
j = 0. Constraints (4.10) are used to

ensure that after the modification, each program is located on at least one node.

CHAPTER 4. VIDEO ON DEMAND 85

In short, the solution to FeasY yields a placement scheme for the programs such

that no node constraint is violated. Our computational experience shows that

FeasY is easily solved to optimality with standard optimization software.

We also note that in FeasY, it is possible to relax the binary variables mk
j in

the interval [0, 1], since it is easy to see that in any optimal solution to FeasY, no

mk
j will attain a fractional value.

4.2.1.2 Stage 2

In the second stage of the 2SP , we attempt to find a feasible configuration of

xk
ij variables, based on the optimal values of the variables yk

j of FeasY. In other

words, we would like to obtain a vector of x variables satisfying the following IP

model (henceforth referred to as FeasX):

(FeasX) minimize
∑

k∈P

∑

j∈V

∑

i∈V,i6=j

tk(i, j)x
k
ij (4.12)

s.t.
∑

k∈P

mkx
k
ij ≤ Ct(i, j), ∀i 6= j ∈ V : yk

i = 1, yk
j = 0

∑

i∈V,i6=j,yk
i =1

xk
ij = 1, ∀j ∈ V, k ∈ P : yk

j = 0 (4.13)

xk
ij ∈ {0, 1}, ∀i 6= j ∈ V : yk

i = 1, yk
j = 0, k ∈ P (4.14)

Note that in model FeasX, the binary variables xk
ij are only defined if yk

i = 1

and yk
j = 0. Therefore, the size of the model is greatly reduced as compared to

problem F. The optimal solution to the FeasX yields a feasible configuration of

xk
ij variables.

As a result of stages 1 and 2, we obtain the optimal objective values for

the formulations FeasY and FeasX. The objective value of the corresponding

(feasible) solution for problem F is then found through v(FeasY) + v(FeasX)−

CHAPTER 4. VIDEO ON DEMAND 86

∑
k∈P

∑
j∈V Rmk

j .

4.3 Computational Results

In this section, we describe our computational results with the proposed algo-

rithm on randomly generated test problems. The Lagrangean relaxation and

decomposition algorithm proposed for the solution of F has been implemented in

C and all the tests are performed on a Sun UltraSPARC 12x400 MHz with 3 GB

RAM, using CPLEX 9.0 as the optimization package to solve the IPs.

For the computational experiments, a batch of sixteen random problems

have been generated with the number of nodes (n) ranging from 50 to 80, and

the number of programs (m) ranging from 20 to 50. As for the parameters,

µk, tk(i, j), sk(j) are randomly generated from a uniform distribution between 1

and 100. mk is modelled as mk = µkTk, where Tk is the total transmission

time for program k. In the experiments, Tk = 10 min. for all k. Ct(i, j) val-

ues have been chosen from the uniform distribution between maxi,j{tk(i, j)} and
∑

i,j{tk(i, j)}). The capacity of each node (Cs(j)) is set to be 40% of the total size

of all the programs and the penalty parameter R is set to 10maxk∈P,j∈V {sk(j)}.

Prior to solving the randomly generated problems, the algorithm’s parameters

have been fine-tuned and selected as follows: The convergence parameter λ is

initially set to 2.00 and multiplied by 0.87 if there is not any improvement in the

best known upper bound for 5 consecutive iterations. The algorithm is stopped

if either gap < 0.01, t > 100, there is no improvement in the best known upper

bound for 9 successive iterations, or a pre-specified time limit has been reached.

All the subproblems are solved to optimality using CPLEX 9.0.

We present the computational results in Table 4.1. Each row of the table

contains the average values of five randomly generated problems. The columns

of the table are explained below:

• n: number of nodes

CHAPTER 4. VIDEO ON DEMAND 87

• m: number of programs

• nL: number of iterations required by the algorithm

• tsub: average time required to solve all the subproblems to optimality

• tFeasY : average time required to solve FeasY to optimality

• tFeasX : average time required to solve FeasX to optimality

• igap: initial gap obtained at the beginning of the algorithm

• gap: final gap obtained at the end of the algorithm

• d: comparison of the algorithm with CPLEX (more on this below)

It is previously stated that the algorithm proposed here is a solution procedure

that is able to provide both upper and lower bounds at every iteration. This, in

turn, outputs an integrality gap that is an indicator of the quality of the solution

found. Therefore, we do not compare our algorithm with the heuristic procedure

proposed by Ouveysi et al. [80]. However, we do compare it with CPLEX, a

powerful commerical optimization package. To be fair in comparisons, we impose

a common time limit of 300 seconds on both algorithms, considering the dynamic

nature of the problem requiring repeated resolving to adopt to the changes in the

demand pattern and available programs. The last column of Table 4.1, column

d, shows the average percent difference between the best solution found by the

proposed algorithm (denoted by vopt) and that of CPLEX (denoted by vC) within

the given time limit, and calculated as vopt−vC

vopt
· 100.

The results presented in Table 4.1 indicate that the algorithm presented here

is able to produce good quality solutions, even in the first iteration, for most

of the problems (typically around 2% of the optimal). In addition, the proposed

algorithm is observed to be capable of providing better solutions than those found

by CPLEX in the same amount of time, especially as the instances grow in size. As

also indicated in Table 4.1, the time required to obtain feasible solution at every

step of the algorithm is quite short. However, one drawback of the algorithm

lies in obtaining lower bounds. The lower bound computation time, as shown

CHAPTER 4. VIDEO ON DEMAND 88

Table 4.1: Computational results for the Lagrangean relax-
ation and decomposition algorithm

n1 m2 nL
3 tsub

4 tFeasY
5 tFeasX

6 igap7 gap8 d9

50 20 13.2 13.78 0.12 0.53 3.23 2.03 0.82
60 20 12.4 23.91 0.15 0.78 4.04 2.20 0.91
70 20 7 36.45 0.17 1.08 3.37 1.82 0.12
80 20 6.4 58.20 0.20 1.39 2.92 2.45 -0.30
50 30 16.4 15.93 0.18 0.97 4.01 2.70 0.98
60 30 10 30.02 0.23 1.37 3.01 2.27 0.72
70 30 6.4 52.20 0.25 2.02 2.95 2.58 -2.74
80 30 4 76.55 0.31 2.47 2.65 1.99 -5.08
50 40 10.6 26.72 0.24 1.49 4.43 2.81 0.53
60 40 7.6 40.64 0.27 2.02 2.95 2.38 -0.56
70 40 5.4 61.94 0.34 2.77 2.56 2.26 -3.63
80 40 3.4 98.26 0.41 3.43 2.15 1.72 -4.80
50 50 9.4 33.75 0.30 2.01 3.28 2.67 -0.10
60 50 5.6 58.94 0.35 2.93 3.38 2.60 -2.61
70 50 4 90.00 0.40 3.83 2.92 2.56 -3.89
80 50 3 139.18 0.47 4.89 2.24 2.02 -4.07
1 number of nodes,
2 number of programs,
3 number of iterations,
4 average computation time (in seconds) to solve a subproblem to op-
timality,
5 average computation time (in seconds) to solve FeasY to optimality,
6 average computation time (in seconds) to solve FeasX to optimality,
7 initial gap,
8 final gap,
9 percent difference between best solution found by the algorithm and
that of CPLEX

CHAPTER 4. VIDEO ON DEMAND 89

under column tsub, increases heavily with the number of nodes. This is due to the

fact that, at every iteration, the algorithm needs to solve m integer subproblems

to optimality. This, in turn, makes the algorithm computationally inefficient for

larger sized instances, as the size and the number of subproblems will increase

as well. To overcome this drawback, we propose a simple modification to the

algorithm that appears to be quite efficient, as described in detail below.

4.3.1 A Modified Algorithm

Since solving m integer subproblems at every iteration of the algorithm is costly,

we propose to solve the LP-relaxation of each integer subproblem. The lower

bound obtained in this case will surely be below the lower bound obtained by

solving integer subproblems, but will help in speeding up the algorithm. The

only complication with this modification is that the solutions of the subproblems

will in general be fractional, if not always. However, the fractional solutions

can easily be converted to integer solutions that will be used to obtain feasible

solutions to the original problem. This is done through rounding up (to 1) every

fractional variable with value greater or equal to 0.50, and rounding down the rest.

Using this solution, a feasible solution can easily be computed using formulations

FeasY and FeasX, as discussed previously.

Our computational experience with this version of the algorithm shows that

such a modification greatly helps in reducing the solution time of calculation of the

lower bound at each iteration of the algorithm. To see this, we present Table 4.2,

where we compare the original and the modified algorithm on some test problems.

The first five columns are self explanatory. In the next three columns, we report

the average computation time required to find lower bounds (denoted by t̂sub), to

solve problem FeasY (denoted by t̂FeasY) and to solve FeasX (denoted by t̂FeasX),

respectively. Finally , the last column denoted by imp, shows the improvement

in the solution time in finding lower bounds (calculated as tsub−t̂sub

tsub
∗ 100.)

One may expect that the performance of the modified algorithm in terms of

the final gaps will deteriorate since one is solving linear programming problems

CHAPTER 4. VIDEO ON DEMAND 90

Table 4.2: Comparison of the original and modified algorithm in
terms of computation time

Original Algorithm Modified Algorithm

n1 m2 tsub
3 tFeasY

4 tFeasX
5 t̂sub

6 t̂FeasY
7 t̂FeasX

8 imp9

50 10 9.07 0.06 0.25 2.24 0.06 0.25 75.33
60 10 15.84 0.07 0.34 3.18 0.07 0.35 79.90
70 10 21.44 0.09 0.50 4.50 0.09 0.57 79.01
80 10 25.65 0.10 0.62 5.88 0.09 0.63 77.08
90 10 30.91 0.11 0.79 7.79 0.10 0.79 74.81
100 10 131.87 0.12 0.88 11.08 0.12 0.94 91.60
50 20 14.15 0.11 0.58 4.62 0.12 0.58 67.36
60 20 23.31 0.13 0.84 6.17 0.13 0.82 73.53
70 20 24.68 0.16 1.20 9.02 0.17 1.38 63.46
80 20 35.27 0.18 1.32 11.51 0.18 1.43 67.37
90 20 69.01 0.23 1.93 16.03 0.19 1.84 76.77
100 20 80.55 0.23 2.14 20.43 0.24 2.13 74.63
50 30 12.54 0.18 1.03 6.72 0.18 1.18 46.46
60 30 46.24 0.25 1.35 10.07 0.22 1.52 78.21
70 30 26.37 0.23 2.08 12.72 0.23 2.08 51.75
80 30 94.47 0.33 2.11 17.79 0.28 2.15 81.17
90 30 188.64 0.32 2.97 25.84 0.35 3.23 86.30
100 30 168.30 0.33 3.51 31.01 0.33 3.67 81.57
50 40 23.62 0.23 1.64 8.79 0.26 1.66 62.79
60 40 49.34 0.30 2.62 13.49 0.31 2.50 72.67
70 40 58.85 0.42 2.70 17.83 0.31 2.74 69.70
80 40 120.21 0.38 4.17 25.90 0.38 4.16 78.45
90 40 218.63 0.34 4.97 34.54 0.43 4.86 84.20
100 40 211.71 0.37 4.88 40.45 0.36 4.84 80.90
1 number of nodes, 2 number of programs,
3 average computation time (in seconds) to solve a subproblem to optimality
by the original algorithm,
5 average computation time (in seconds) to solve FeasY to optimality by the
original algorithm,
6 average computation time (in seconds) to solve FeasX to optimality by the
original algorithm,
7 average computation time (in seconds) to solve a subproblem to optimality
by the modified algorithm,
8 average computation time (in seconds) to solve FeasY to optimality by the
modified algorithm,
9 average computation time (in seconds) to solve FeasX to optimality by the
modified algorithm

CHAPTER 4. VIDEO ON DEMAND 91

instead of integer programs. To see how much is lost in terms of the gaps produced

by the modified algorithm with respect to the original algorithm, we provide

additional results given in Table 4.3. In the table, the first two columns are self

explanatory. Columns igap and gap refer to the initial and final gaps found by

the original algorithm, respectively. Similarly, the last two columns îgap and ĝap

refer to the initial and final gaps found by the modified algorithm, respectively.

The numerical values given in Table 4.2 show that our modification proposal

does not have any effect on reducing the computation times to obtain feasible

solutions. However, it does have a tremendous effect in reducing the necessary

computation times to find lower bounds. As indicated under column imp, these

improvements can be up to 90%. Furthermore, results given in table Table 4.3

indicate that not much is lost with respect to the final gaps output by the algo-

rithm. Based on these results, we proceed with solving larger instances using this

modification and the corresponding results are presented in Table 4.4, where the

number of nodes range from 50 to 100, and that of programs range from 50 to 90.

In solving these instances, we keep all the algorithm parameters as explained pre-

viously. This time 30 problems have been generated, where 4 random instances

for each configuration were solved. Each row of Table 4.4 contains the average

values calculated over 4 random instances. The format of Table 4.4 is similar to

that of Table 4.1, with respect to the modified algorithm. The only additional

column is ns, which denotes the number of instances out of 4 for which CPLEX

was able to find an integer feasible solution.

Looking at the results in 4.1 we see that the modified algorithm provides good

quality solutions (typically with a gap below 5%) in a reasonable amount of time.

CPLEX, on the other hand, fails to find an integer feasible solution within the

given time limit, as problems grow larger in size.

CHAPTER 4. VIDEO ON DEMAND 92

Table 4.3: Comparison of the original and modified
algorithm in terms of the gap

Original Algorithm Modified Algorithm

n1 m2 igap3 gap4 îgap5 ĝap6

50 10 13.51 7.78 13.71 8.63
60 10 7.91 6.91 8.59 6.42
70 10 7.73 4.76 8.16 5.37
80 10 5.47 3.70 6.69 6.10
90 10 3.63 2.44 4.69 2.24
100 10 3.82 3.64 7.00 6.38
50 20 5.01 2.31 8.27 3.89
60 20 3.19 3.10 4.75 3.71
70 20 3.46 2.36 6.26 5.04
80 20 1.30 1.12 4.01 3.47
90 20 2.32 1.91 3.40 3.34
100 20 2.66 2.12 4.09 3.78
50 30 3.89 3.26 6.22 4.94
60 30 3.80 2.49 5.25 4.95
70 30 2.42 2.41 3.56 2.59
80 30 2.49 1.95 4.29 3.29
90 30 2.87 2.29 6.37 5.21
100 30 2.15 2.11 4.62 4.16
50 40 3.45 2.27 5.72 3.77
60 40 3.78 2.45 6.47 5.28
70 40 2.64 2.62 4.49 4.05
80 40 2.31 2.04 4.67 4.09
90 40 2.61 2.07 5.82 5.07
100 40 1.05 1.05 3.24 3.24
1 number of nodes, 2 number of programs,
3 initial gap found by the original algorithm,
4 final gap found by the original algorithm,
5 initial gap found by the modified algorithm,
6 final gap found by the modified algorithm

CHAPTER 4. VIDEO ON DEMAND 93

Table 4.4: Computational results for the modified Lagrangean relax-
ation and decomposition algorithm

n1 m2 nL
3 t̂sub

4 t̂FeasY
5 t̂FeasX

6 îgap7 ĝap8 d9 ns
10

50 50 20.25 10.94 0.32 4.36 6.25 5.41 2.55 4/4
60 50 15.75 16.02 0.41 3.47 5.84 5.35 -0.35 4/4
70 50 11 23.04 0.45 6.68 5.36 5.12 -2.34 4/4
80 50 9 31.09 0.44 4.96 4.33 4.29 -2.19 4/4
90 50 6.25 40.46 0.65 6.78 3.93 3.82 -2.52 1/4
100 50 5.25 51.72 0.72 7.96 4.07 3.82 – 0/4
50 60 17.5 13.27 0.47 3.70 6.86 6.22 0.23 4/4
60 60 12.5 19.66 0.47 4.62 5.33 5.01 -1.99 4/4
70 60 9.25 27.51 0.54 5.85 5.35 4.85 -1.47 4/4
80 60 7 36.86 0.67 7.16 3.98 3.92 -2.14 3/4
90 60 5.75 48.60 0.68 9.40 4.65 4.56 – 0/4
100 60 4.5 62.12 0.69 17.33 3.71 3.63 – 0/4
50 70 15.25 15.81 0.53 3.90 6.70 5.90 -0.40 4/4
60 70 10.5 23.40 0.52 6.59 4.82 4.72 -0.64 4/4
70 70 7.25 31.86 0.61 11.80 5.43 5.27 -1.44 4/4
80 70 6 43.86 0.83 11.75 4.90 4.81 – 0/4
90 70 4.75 56.46 0.75 14.68 4.39 4.31 – 0/4
100 70 4 72.83 0.88 19.48 4.82 4.70 – 0/4
50 80 12 17.93 0.61 7.86 5.57 5.03 -0.59 4/4
60 80 8.75 25.84 1.05 10.23 5.48 4.96 -1.62 4/4
70 80 7 36.42 0.77 8.48 5.11 4.89 – 0/4
80 80 5 49.00 0.79 24.38 4.43 4.43 – 0/4
90 80 4 66.66 0.97 18.51 4.40 4.30 – 0/4
100 80 3 82.40 0.88 21.07 4.07 4.07 – 0/4
50 90 9.75 20.78 0.67 27.61 6.46 5.72 -0.99 4/4
60 90 6.5 29.05 0.75 26.30 5.10 5.06 -1.06 4/4
70 90 4.25 40.61 0.94 42.21 5.38 5.28 – 0/4
80 90 3.5 56.13 1.10 81.74 5.27 4.95 – 0/4
90 90 4 73.68 1.02 18.23 4.28 4.25 – 0/4
100 90 3 95.17 1.21 22.85 4.40 4.35 – 0/4
1 number of nodes, 2 number of programs, 3 number of iterations,
4 average computation time (in seconds) to solve a subproblem to optimality,
5 average computation time (in seconds) to solve FeasY to optimality,
6 average computation time (in seconds) to solve FeasX to optimality,
7 initial gap, 8 final gap, 9 percent difference between best solution found
by the algorithm and that of CPLEX, 10 number of instances (out of 4) for
which CPLEX was able to find an integer feasible solution within 300 seconds

CHAPTER 4. VIDEO ON DEMAND 94

4.4 Concluding Remarks

In this chapter, we have presented an hybrid Lagrangean relaxation-

decomposition algorithm for the resolution of the Video Placement and Routing

Problem. The significance of the proposed algorithm lies in its capability to pro-

vide a benchmark to measure the quality of the output results. The algorithm

proposed in this chapter is different from similar existing algorithms because we

achieve the feasible solutions through the use of integer programming techniques

and this is the reason that our solution methodology would result in good quality

solutions even at the earlier iterations of the algorithm. However, obtaining a

lower bound at each step of the algorithm seems to be the main bottleneck as one

has to solve a number of integer programs at each step. For this reason, we have

also proposed a modification to our algorithm that considerably accelerates its

running time. Computational results demonstrate that the algorithm is indeed

capable of producing good quality solutions in considerably short running times.

It is clear that obtaining the optimal solution of the model considered here will

get harder as the problem sizes increase. In such cases, fast heuristic algorithms

or metaheuristics such as tabu search can be of use. However, one must be aware

that such approaches are incapable of indicating the quality of the solution found

unless additional lower bounding techniques are employed.

Chapter 5

Database Allocation

In this chapter, we deal with the problem of allocating databases in a distributed

computing system. The chapter begins by a formal definition of the problem and

presents an associated integer programming formulation in Section 5.1. Then,

illustrating that a relaxation of this problem is the well-known multidimensional

Knapsack Problem(mKP), we focus on the exact solution of the mKP . In spe-

cific, we investigate an important class of valid inequalities for the mKP and

study the separation problem in Section 5.2. In Section 5.3, we propose a new

scheme for cover inequality separation for the problem and present computational

results. The proposed scheme in a branch-and-cut framework along with addi-

tional computational results are presented in Section 5.4. Conclusions are stated

in Section 5.5.

5.1 Introduction

A distributed computer system is composed of a collection of independent com-

puters that share data, programs, and other resources. Distributed systems, as

quoted from Gavish and Pirkul [41], “are well suited to environments where large

portions of the data are either used by the location which generates the data or

95

CHAPTER 5. DATABASE ALLOCATION 96

by locations which are geographically close to the generating locations”. Medi-

cal, banking, insurance and rental services are examples to such services. These

services typically have large databases storing customer data and most of the

database operations take place near the physical location of the customer. There-

fore, partitioning of the database and allocating the partitions to the computers

is a viable beneficial strategy for such services. Consequently, all the transactions

related to a customer will be carried out by a local database, which will result

in “eliminating the costs and delays which might be introduced by a centralized

computer system” [41].

Formally put forward, the problem of allocating databases in a distributed

computing system mentioned here consists of allocating customers and databases

associated to these customers among computers to minimize telecommunication

costs subject to capacity constraints on the computers. The assignment of cus-

tomers and the assignment of databases can be treated jointly, since it is desirable

to assign customers to the nearest processors [85].

Gavish and Pirkul [41] and Pirkul [85] have presented integer programming

formulations for variations of this problem. The primary difference between the

two studies is that the latter assumes that there is a fixed number of computers

already installed in the network whereas the former includes decisions pertaining

to locating computers on a given set of potential locations. We consider here the

problem studied by Pirkul [85] and present the related formulation. However, the

same discussion holds for the problem studied by Gavish and Pirkul [41]. Let I

be the index set of customer locations and J be the index set of computer loca-

tions. Associated with each computer at site j ∈ J , let Pj, Vj and Tj denote the

maximum processing capacity, storage capacity and telecommunication capacity,

respectively. For each customer i ∈ I, let pi denote his/her processing require-

ment, vi denote the storage requirement for his/her database and ti denote the

communication load per transaction for this customer. Let cij denote the cost of

transaction between sites i and j. For the specific components of this cost struc-

ture, the reader is referred to Pirkul [85]. The assignment decisions are made by

defining a binary decision variable xij, which takes the value 1 if customer i is

assigned to computer j, and 0 otherwise.

CHAPTER 5. DATABASE ALLOCATION 97

The integer programming formulation of the problem (henceforth denoted by

DB) can then be presented as follows:

minimize
∑

i∈I

∑

i∈J

cijxij (5.1)

s.t.

∑

j∈J

xij = 1, ∀i ∈ I (5.2)

∑

i∈I

pixij ≤ Pj, ∀j ∈ J (5.3)

∑

i∈I

vixij ≤ Vj, ∀j ∈ J (5.4)

∑

i∈I

tixij ≤ Tj, ∀j ∈ J (5.5)

xij ∈ {0, 1}, ∀i ∈ I, j ∈ J (5.6)

In DB, constraint (5.2) states that every customer with a corresponding

database should be assigned to a single computer. Constraints (5.3), (5.4) and

(5.5) are associated with processing, storage and telecommunication capacities

for every computer.

Pirkul [85] proves that this problem isNP-Hard and describes a solution algo-

rithm for this problem based on Lagrangean relaxation and subgradient optimiza-

tion. In specific, if the assignment constraints (5.2) are relaxed in a Lagrangean

fashion using a multiplier vector λ = {λ1, λ2, . . .}, then the resulting problem de-

composes over all the computers, giving way in the following subproblem written

for each j ∈ J (henceforth denoted by DBj):

minimize
∑

i∈I

(cij + λi)xij

CHAPTER 5. DATABASE ALLOCATION 98

s.t.

∑

i∈I

pixij ≤ Pj,

∑

i∈I

vixij ≤ Vj,

∑

i∈I

tixij ≤ Tj,

xij ∈ {0, 1}, ∀i ∈ I

Each DBj is the well-known multidimensional Knapsack Problem (mKP).

Therefore, efficient solution of the mKP will result in better solution algorithms

for the solution of the database allocation problem described above. Based on

this motivation, we concentrate on the mKP in the remaining of this chapter.

5.2 The Multidimensional Knapsack Problem

In the remainder of this chapter, we investigate the well-known multidimensional

knapsack problem:

max
∑

i∈N

cixi (5.7)

s.t.
∑

i∈N

aijxi ≤ bj, j ∈M (5.8)

xi ∈ {0, 1}, i ∈ N, (5.9)

where aij, bi and ci are nonnegative integers. Aside from being utilized in solv-

ing database allocation problems, this problem also finds applications in many

problems, including cutting stock, loading, delivery in vehicles with multiple com-

partments, approval voting and management of a remote sensing satellite. The

CHAPTER 5. DATABASE ALLOCATION 99

reader is referred to Chapter 9 of Kellerer et al. [59] and Fréville [36] for a recent

survey on the problem.

Exact and heuristic solution approaches are available in the literature for the

solution of this problem. For the former, a highly important and widely used

class of valid inequalities is the class of cover inequalities, explained further in

the following.

5.2.1 Cover Inequalities

We will begin this section with an example. Consider the following example of a

multidimensional knapsack polyhedron taken from Nemhauser and Wolsey [74],

p. 528.

K = {x ∈ B6 : 12x1 + 2x2 + 3x3 + 2x4 + 4x5 + 3x6 ≤ 20,

3x1 + 8x2 + 12x3 + 13x4 + 20x5 + 14x6 ≤ 36}

Then, the following system of inequalities give a complete description and are

also the facets of the polyhedron K:

CHAPTER 5. DATABASE ALLOCATION 100

(1) −x1 ≤ 0

(2) −x2 ≤ 0

(3) −x3 ≤ 0

(4) −x4 ≤ 0

(5) −x5 ≤ 0

(6) −x6 ≤ 0

(7) +x6 ≤ 1

(8) +x5 ≤ 1

(9) +x4 ≤ 1

(10) +x3 ≤ 1

(11) +x2 ≤ 1

(12) +x1 ≤ 1

(13) +x2 + x5 + x6 ≤ 2

(14) +x2 + x4 + x5 ≤ 2

(15) +x2 + x3 + x5 ≤ 2

(16) +x1 + x5 + x6 ≤ 2

(17) +x3 + x4 + x5 + x6 ≤ 2

(18) +x2 + x3 + x4 + 2x5 + x6 ≤ 3

(19) +x1 + x2 + x4 + x5 + x6 ≤ 3

(20) +x1 + x2 + x3 + x5 + x6 ≤ 3

(21) +x1 + x2 + x3 + x4 + 2x5 + 2x6 ≤ 4

This description has been obtained using PORTA [25]. Among the 21 facets

discovered, inequalities numbered (1)-(6) and (7)-(12) are the trivial inequalities,

xi ≥ 0 and xi ≤ 1, respectively. Inequalities (13)-(16) are examples to so-called

cover inequalities. Among the remaining inequalities, (17)-(20) are the liftings of

cover inequalities. As the above example implies, these inequalities may some-

times play an important role in describing the associated polyhedra. We will now

provide a formal description of cover inequalities.

Consider the polyhedron K = {x ∈ B|N | :
∑

i∈N aixi ≤ b} associated with the

unidimensional knapsack problem. The index set C ⊆ N of variables for which
∑

i∈C ai > b holds is called a cover. A cover that loses this property when any one

CHAPTER 5. DATABASE ALLOCATION 101

of the indices in it is excluded is called a minimal cover. A minimal cover induces

a so called cover inequality that is valid for the polyhedron K and is given as

follows:

∑

i∈C

xi ≤ |C| − 1 (5.10)

Cover inequalities are one of the most important components of the branch-

and-cut algorithms designed to solve 0-1 integer programming problems. Re-

cent studies by Gu et al. [44] and [52] provide extensive discussions of available

strategic choices for using cover inequalities in the branch-and-cut process for 0-1

programming. These inequalities and extensions have recently been utilized in

solving hub location problems ([101], [20]), median cycle location problems ([64]),

gas-lift optimization ([23]), and network optimization of a radio mobile telephone

system ([34]).

One important question to be answered is, during the solution of a mKP,

how does one identify cover inequalities, especially those that are violated by a

given fractional solution to the problem. This is known as the separation problem.

Before stepping into this issue for the mKP, we will provide below a brief review

of the separation problem for the unidimensional knapsack problem.

5.2.2 The Separation Problem

The separation problem for cover inequalities in the context of 0-1 integer pro-

gramming was introduced by Crowder et al. [30]. Let X∗ = {x∗
1, x

∗
2, . . .} ∈ [0, 1]n

be an arbitrary feasible solution to
∑

i∈N aixi ≤ b, where ai’s are nonnegative

integers. Deciding whether X∗ satisfies all of the possible cover inequalities of K

is known as the cover separation problem (CSP). The CSP can be formulated as

the following 0-1 integer linear program:

CHAPTER 5. DATABASE ALLOCATION 102

z = min
∑

i∈N

(1− x∗
i)zi (5.11)

s.t.
∑

i∈N

aizi ≥ b + 1 (5.12)

zi ∈ {0, 1}, i ∈ N (5.13)

If z < 1, then the set C = {i : zi = 1} induces a cover inequality of the form

(5.10), where zi is an optimal solution to the CSP . Otherwise, X∗ satisfies all

the possible cover inequalities.

Most studies on this subject indicate that the exact solution of the separation

problem is costly in practice and usually resort to a greedy type algorithm to

obtain approximate solutions. For more details, the reader may refer to Wolsey

[98] and Nemhauser and Wolsey [74]. Recently, Kellerer et al. [59] presented

computational results on solving the separation problem.

5.2.3 Lifting

Although cover inequalities are a well-known class of valid inequalities for the

mKP, they in general are not tight and have to be strengthened. This can be

accomplished through a process called lifting. Given an ordering of variables

{x1, x2, . . . , xk, . . .} to be lifted with k ∈ N \ C, the inequality

∑

i∈C

xi +
∑

k∈N\C

αkxk ≤ |C| − 1 (5.14)

is called a lifted cover inequality, where αk are the corresponding lifting coeffi-

cients. For each variable to be lifted, the maximum value of the lifting coefficient

is calculated as αk = |C|− 1− zk, with zk being the optimal solution value to the

following knapsack problem:

CHAPTER 5. DATABASE ALLOCATION 103

zk = max
∑

i∈C

xi +
k−1∑

k=1

xk (5.15)

s.t.
∑

i∈N

aixi +
k−1∑

k=1

akxk ≤ b− ak (5.16)

xi ∈ {0, 1}, ∀i (5.17)

It is clear that the values of the lifting coefficients depend on the order of the

variables to be lifted. Hence, different lifting sequences result in different lifted

cover inequalities.

5.3 An Exact Separation Procedure for mKP

We now extend the previously discussed separation procedure given for the uni-

dimensional knapsack problem to the mKP. In this case, each constraint j ∈ M

of the mKP is associated a set of cover inequalities denoted by Cj. Given a

fractional solution X∗ = {x∗
1, x

∗
2, . . .} to the mKP (usually the solution to the

corresponding LP-relaxation), we refer to the problem of identifying whether X ∗

violates a cover inequality in ∪j∈MCj or concluding that it satisfies all the possi-

ble ones as the generalized cover separation problem (GCSP). We formulate the

GCSP by the following 0-1 integer linear programming formulation:

CHAPTER 5. DATABASE ALLOCATION 104

z = min
∑

i∈Nf

(1− x∗
i)zi (5.18)

s.t.
∑

i∈Nf

aijzi ≥ b′j + 1−R(1− yj), j ∈M (5.19)

∑

j∈M

yj ≥ 1 (5.20)

zi ∈ {0, 1}, i ∈ N f (5.21)

yj ∈ {0, 1}, j ∈M (5.22)

where b′j = bj −
∑

i∈N1 aij with N 1 = {i : x∗
i = 1} and N f = {i : 0 < x∗

i < 1}.

The parameter R used in constraint (5.19) is a sufficiently large constant (which

may be chosen as R = maxj∈Mbj + 1). In this formulation, the additional binary

variable yj is used to check the violation of cover inequalities in the set Cj.

Given an optimal solution Z = {z1, z2, . . .} to the integer linear programming

formulation with value z < 1, the set C = N 1 ∪ {i : zi = 1} induces a cover

inequality given by (5.10). Note that we only include in the formulation variables

i ∈ N f , since one can easily fix zi = 1 for i ∈ N 1 and zi = 0 for i ∈ N \{N 1∪N f}.

This also reduces the size of the binary variables in the formulation, thereby

facilitating its solvability.

The separation procedure consists of identifying the cover inequality via the

GCSP that is violated by the fractional solution X∗ and appending it to the

formulation. The augmented formulation is resolved and cuts are appended in

a similar and an iterative manner until no violated cover inequalities are found.

We refer to this procedure as generalized cover separation (GCS).

As it has been already pointed out, the 0-1 programming model above is very

straightforward, and it is a simple exercise to extend the unidimensional knapsack

version to this generalized case. However, the computational experimentation

results presented in the next section clearly demonstrate that, with currently

available mathematical programming software, there are benefits to reap in using

CHAPTER 5. DATABASE ALLOCATION 105

it for solving the separation problem.

5.3.1 Computational Results

In this section, we describe our computational experience with the proposed pro-

cedure on test problems. The generalized cover separation procedure proposed

for the mKP has been implemented in C and all the tests are performed on a Sun

UltraSPARC 12x400 MHz with 3 GB RAM, using CPLEX 9.0 as the optimization

package.

We compare the proposed method with a simple and a straightforward sepa-

ration procedure in which violated covers are identified using a greedy algorithm

(henceforth denoted by GR). To the best of our knowledge, there are no other

heuristic procedures previously proposed to separate cover inequalities for the

mKP. At every iteration of the algorithm, we try to identify a violated cover in-

equality for each constraint j ∈M . More specifically, for each constraint j ∈M ,

the variables of the mKP are put in increasing order of the ratios (1 − x∗
i)/aij

and the variable with the smallest ratio is set equal to 1 while keeping the rest

at zero. Then, constraint j is checked as to whether this solution causes a viola-

tion. If there is a violation, then a cover inequality for this constraint is identified

consisting of this single variable. Otherwise, the variable with the second lowest

ratio is raised to 1, and the process is repeated until a violating solution is found

for constraint j. Among all the cover inequalities identified as a result of scan-

ning all |M | constraints, the one with the maximum violation is appended to the

LP-relaxation of the problem and the resulting problem is solved to optimality.

This concludes a single iteration. The procedure continues in an iterative man-

ner until no violated cover inequalities are found. For each constraint, the GR

has a time complexity of O(|N |log|N |) to sort the variables and O(log|N |) for

the binary search. Therefore, as a result of scanning all the constraints, the GR

has an overall time complexity of O(|M ||N |log|N |) +O(|M |log|N |) to identify a

single violated cover inequality at each iteration.

The performance of the algorithm was tested on both randomly generated

CHAPTER 5. DATABASE ALLOCATION 106

instances and instances taken from the literature. For the former group, a

batch of fifty multidimensional 0-1 integer programming problems were gener-

ated pseudo-randomly with the following specifications: The number of con-

straints (m) range between 5 and 1000. That of variables (n) range between

20 and 2000. There are 10 different combinations of these dimension parameters

as may be seen in the first column of Table 5.1. For each combination, linear

relaxations of five pseudo-randomly generated problems are solved. All objective

function coefficients and constraint coefficients have values uniformly distributed

between 0 and 100. The right hand side constants are computed using the formula

bi = 10np1 + 0.5p2

∑n
j=1 aij, ∀i = 1, . . . ,m. Here, p1 and p2 are pseudo-random

variates uniformly distributed between 0 and 1. This formula was chosen to pro-

vide variability in tightness among constraints, and avoid the possibility of having

a constraint with right hand side equal to zero.

It may seem counter-intuitive to solve a rather complex integer programming

formulation to separate valid inequalities for a seemingly simpler formulation of

the mKP. Therefore, in order to investigate whether the separation problem is

easier to solve than the original multidimensional knapsack problem, we have

used state-of-the-art optimization software CPLEX 9.0 to solve the instances

considered here using the formulation defined by (5.7)-(5.9). A time limit of 3

hours (10800 seconds) is imposed on CPLEX.

The results of the computational experiments on random instances are pre-

sented in Table 5.1. In this table, the two columns under the heading Avg. cover

present the average number of cover inequalities found by GR and GCS, respec-

tively. Each entry in these columns is calculated over five instances. The next

two columns present the maximum number of cover inequalities found by the

two procedures. The two columns under the heading Tavg indicate the unit time

required by the corresponding algorithm (in seconds) to identify a violated cover

inequality per cover and to solve the LP-relaxation, which is calculated by di-

viding the total solution time to the total number of cover inequalities found.

The last two columns, TC and nC , show the average time required to solve the

instances and the number of problems that could be solved to optimality out of

the total number of problems within the 3 hour time limit, respectively.

CHAPTER 5. DATABASE ALLOCATION 107

Table 5.1: Statistics for a sample of 50 randomly generated instances

Avg. cover Max. cover Tavg CPLEX
m x n1 GR2 GCS 3 GR4 GCS 5 GR6 GCS 7 TC

8 nC
9

5x20 2.20 7.20 5 13 0.02 0.03 0.01 5/5
10x20 1.20 9.60 2 22 0.04 0.03 0.01 5/5

25x100 2.80 5.60 5 8 0.10 0.10 0.28 5/5
50x100 1.40 6.20 4 12 0.21 0.14 0.89 5/5

125x500 1.80 9.20 4 26 2.61 1.44 93.67 5/5
250x500 1.80 2.80 3 5 5.16 3.23 505.24 5/5

250x1000 2.00 4.20 4 8 11.75 6.64 3353.80 5/5
500x1000 2.00 4.00 4 6 23.58 13.09 3326.60 4/5
500x2000 1.20 4.80 5 8 82.26 28.17 8512.40 2/5

1000x2000 1.60 7.20 4 15 145.01 57.88 6785.40 2/5
1 size of the problem,
2 average number of cover inequalities produced by the greedy algorithm,
3 average number of cover inequalities produced by the proposed procedure,
4 maximum number of cover inequalities produced by the greedy algorithm,
5 maximum number of cover inequalities produced by the proposed procedure,
6 average computation time required by the greedy algorithm,
7 average computation time required by the proposed procedure,
8 average computation time required by CPLEX, 9 number of instances (out of
5) for which CPLEX was able to find the optimal solution in 3 hours

As Table 5.1 shows, the number of cover inequalities identified by GCS is

clearly superior to that of GR. We additionally note that the GCS identified a

total of 304 violated cover inequalities over all instances whereas GR produced

90 of these. That is, GR missed about 70% of the violated cover inequalities

produced by GCS. In addition, the unit time required by the GCS becomes

superior to that of GR as the instances grow bigger in size. Thus, we can conclude

that the GCS is quite efficient considering the size of the problems handled and

the gain acquired in terms of the number of cover inequalities produced. The

last two columns indicate that the time spent for cover generation is only a

small fraction of the time required by CPLEX. This implies that the GCS is not

computationally expensive as compared to CPLEX.

The performance of both algorithms on instances taken from the OR-Library

[5] are given in Table 5.2. The first column of the table presents the name of

the group of instances, where each group contains 30 problems. The average

number of covers and the reported solution times are calculated as the average

CHAPTER 5. DATABASE ALLOCATION 108

Table 5.2: Statistics for the OR-Library instances

Avg. cover Max. cover Tavg CPLEX
Instance1 m x n2 GR3 GCS 4 GR5 GCS 6 GR7 GCS 8 TC

9 nC
10

mknapcb1 5x100 2.20 5.77 5 14 0.05 0.06 20.58 30/30
mknapcb2 5x250 2.33 4.33 6 8 0.11 0.10 532.69 30/30
mknapcb3 5x500 2.30 5.10 6 12 0.22 0.17 6702.10 17/30
mknapcb4 10x100 0.40 1.70 2 7 0.20 0.13 164.47 30/30
mknapcb5 10x250 0.57 1.13 2 3 0.34 0.23 10506.07 2/30
mknapcb6 10x500 0.33 1.20 1 3 1.10 0.36 10848.13 0/30
1 name of the problem set, 2 size of the problem,
3 average number of cover inequalities produced by the greedy algorithm,
4 average number of cover inequalities produced by the proposed procedure,
5 maximum number of cover inequalities produced by the greedy algorithm,
6 maximum number of cover inequalities produced by the proposed procedure,
7 average computation time required by the greedy algorithm, 8 average computation time
required by the proposed procedure, 9 average computation time required by CPLEX,
10 number of instances (out of 5) for which CPLEX was able to find the optimal solution in 3
hours

of 30 problems for each instance group. The remaining columns of this table are

same as those of Table 5.1.

For the problems presented in Table 5.2, we also note that GCS identified a

total of 577 violated cover inequalities over all instances whereas GR produced 244

of these, indicating that GR missed about 58% of the violated cover inequalities

produced by GCS. Similar to the previous result, the last two columns of Table

5.2 indicate that the separation problem is indeed much more easier to solve than

the mKP. In fact, as instances grow larger in size, the results demonstrate that

CPLEX was not able to find the integer optimal solution for most of the problems.

5.4 A Branch-and-Cut Framework for the mKP

Cover inequalities, along with other types of valid inequalities such as Gomory

cuts, flow cover inequalities, etc. are generally implemented in many commer-

cial software, including CPLEX. It is not, however, clear as to how, for in-

stance, CPLEX generates such cuts nor how CPLEX manages the generated

cuts throughout the branch-and-cut tree. Nevertheless, CPLEX provides the

CHAPTER 5. DATABASE ALLOCATION 109

user with the option of specifying the frequency of cover inequality generation in

the branch-and-bound (B&B) tree. These are automatic generation, moderate

generation and aggressive generation.

In this section, we report our results in embedding the proposed procedure to

separate cover inequalities in a branch-and-cut framework. To this purpose, we

use CPLEX’s framework, which allows one to use any custom separation routine

to be implemented through callback functions. The aim of the computational

analysis of this section is to see whether the proposed procedure results in any

improvements compared to CPLEX’s own cover inequality generation procedure.

We emphasize that our focus is not to devise a branch-and-cut algorithm to solve

multidimensional knapsack problems, but rather to see the effect of the most

violated cover inequality generation in the process of solving the mKP.

We perform the experiments on small and medium sized instances taken from

the OR-Library [5], as well as randomly generated problems. We report the re-

sults in Tables 5.3, 5.4 and 5.5. Using the proposed procedure, several rounds of

violated cover inequality generation is performed at each node of the branch-and-

cut tree. The results pertaining to this procedure is indicated under the column

E in the tables. We also employ lifting to each of the generated inequalities,

which is indicated under the column E(L) in the tables. The computation of the

lifting coefficients are computed in an exact manner. Different lifting sequences

have been considered in the experiments, such as nonincreasing and/or nonde-

creasing order of variables in terms of their fractional solution values and reduced

costs. It turned out that a lifting sequence in the nonincreasing order of the

variables yielded the least number of B&B nodes required to optimally solve a

number of test problems. Therefore, the same sequence has been utilized in the

computational experiments reported below.

Since we are comparing an “external” procedure (i.e., the proposed proce-

dure) with an “internal” separation procedure (i.e. CPLEX’s native separation

procedure), we can not consider the solution time as a basis for comparisons. We

do, however, consider the number of nodes in the branch and bound tree required

to solve the instances to optimality as an indicator of the performance of both

CHAPTER 5. DATABASE ALLOCATION 110

procedures.

Tables 5.3 and 5.4 are related to the results obtained using the problems

from the OR-Library [5] in the file mknap2.txt. In each table, we report the

number of B&B nodes required to solve each problem to optimality (Nd) and the

number of cover inequalities identified (C), for each procedure. In performing the

comparisons, we use CPLEX’s cover generation using automatic and aggressive

generation options, which are denoted by CPLEX(AU) and CPLEX(AG) in

the tables, respectively. We have also switched of all other cuts that CPLEX

generates, such as flow covers or Gomory cuts, in order to see the effect of cover

inequality generation alone.

Table 5.5 is related to the results of randomly generated problems, with the

number of constraints ranging from 25 to 50 and that of variables ranging from

100 to 200. For each configuration, 5 instances have been generated randomly as

explained in Section 5.3.1. We additionally provide the average values for each

problem configuration in the table.

Looking at the results given in Tables 5.3, 5.4 and 5.5, we see that a branch-

and-cut algorithm with the proposed procedure is in general capable of solving

problems to optimality, using less number of B&B nodes than that of CPLEX.

In some cases, CPLEX is dominant. However, one must be aware that these

comparisons are not performed on a completely fair setting since CPLEX also

has an internal cut manager that decides on which node to generate any type

of cuts, whereas our procedure generates a cover inequality at every node (if

violated). Therefore, we conjecture that, once implemented in CPLEX as a native

cut generator in cooperation with its own cut manager, the proposed procedure

will be very effective in solving such problems.

5.5 Conclusions

In this chapter, we have proposed an exact separation procedure to separate vio-

lated cover inequalities for the multidimensional knapsack problem that is based

C
H

A
P

T
E

R
5
.

D
A
T
A

B
A

S
E

A
L
L
O

C
A
T

IO
N

111
Table 5.3: Statistics for the Branch-and-Cut implementation - ORLibrary Instances 1

E E(L) CPLEX(AU) CPLEX(AG)
problem1 m2 n3 Nd4 C5 Nd6 C7 Nd8 C9 Nd10 C11

flei.dat 10 20 529 511 384 372 708 0 801 30
hp1.dat 4 28 31 285 30 259 12 12 12 12
hp2.dat 4 35 45 395 23 153 15 4 15 4
pb1.dat 4 27 22 192 22 192 12 12 12 12
pb2.dat 4 34 57 283 72 425 22 12 22 12
pb4.dat 2 29 17 143 5 64 4 6 4 6
pb5.dat 10 20 377 403 293 288 789 0 733 30
pb6.dat 30 40 75 230 60 187 166 0 169 78
pb7.dat 30 37 432 1407 322 1030 650 90 650 90
pet2.dat 10 10 0 10 0∗ 10 7 3 7 3
pet3.dat 10 15 5 21 5 21 8 15 8 15
pet4.dat 10 20 4 19 4 19 7 6 7 6
pet5.dat 10 28 1 16 1 16 9 4 9 4
pet7.dat 5 50 58 518 58 518 35 15 35 15

sent01.dat 30 60 61 210 55 158 90 0 93 17
sent02.dat 30 60 363 1389 254 957 696 90 696 90
weing1.dat 2 28 2 21 2 19 2 6 2 6
weing2.dat 2 28 0 13 0 13 0 4 0 4
weing3.dat 2 28 6 19 0 8 9 6 9 6
weing4.dat 2 28 2 100 2 125 0 5 0 5
weing5.dat 2 28 0 23 0 23 0 6 0 6
weing6.dat 2 28 4 16 4 16 0 3 0 3
weing7.dat 2 105 5 24 5 24 4 5 4 5
weing8.dat 2 105 8 117 4 122 21 6 21 6

Average 87.67 265.21 66.88 209.13 136.08 12.92 137.88 19.38
1 problem name, 2 number of constraints, 3 number of variables,
4 number of B&B nodes required to solve the problem to optimality using the proposed procedure,
5 number of cover inequalities produced by the proposed procedure,
6 number of B&B nodes required to solve the problem to optimality using the proposed procedure with lifting,
7 number of cover inequalities produced by the proposed procedure with lifting, 8 number of B&B nodes
required to solve the problem to optimality using CPLEX with automatic cover generation,
9 number of cover inequalities produced by CPLEX with automatic cover generation, 10 number of B&B
nodes required to solve the problem to optimality using CPLEX with aggressive cover generation,
11 number of cover inequalities produced by CPLEX with aggressive cover generation

C
H

A
P

T
E

R
5
.

D
A
T
A

B
A

S
E

A
L
L
O

C
A
T

IO
N

112

Table 5.4: Statistics for the Branch-and-Cut implementation - ORLibrary Instances
2

E E(L) CPLEX(AU) CPLEX(AG)

problem m n Nd C Nd C Nd C Nd C

weish01.dat 5 30 3 15 4 14 15 5 15 5
weish02.dat 5 30 5 30 5 29 5 6 5 6
weish03.dat 5 30 0 10 0 8 0 4 0 4
weish04.dat 5 40 0 4 0 3 0 3 0 3
weish05.dat 5 30 0 2 0 2 0 2 0 2
weish06.dat 5 40 8 41 8 31 5 8 5 8
weish07.dat 5 40 6 18 4 20 7 8 7 8
weish08.dat 5 40 5 26 3 18 9 5 9 5
weish09.dat 5 40 0 3 0 3 0 0 0 0
weish10.dat 5 50 19 145 26 99 24 15 24 15
weish11.dat 5 50 2 49 2 37 7 15 7 15
weish12.dat 5 50 2 39 1 32 1 3 1 3
weish13.dat 5 50 3 37 0 50 6 9 6 9
weish14.dat 5 60 0 35 0 48 3 11 3 11
weish15.dat 5 60 2 12 2 11 5 5 5 5
weish16.dat 5 60 6 11 6 11 5 8 5 8
weish17.dat 5 60 2 25 2 25 4 4 4 4
weish18.dat 5 70 1 45 1 39 9 8 9 8
weish19.dat 5 70 7 37 7 37 16 12 16 12
weish20.dat 5 70 3 19 4 24 1 5 1 5
weish21.dat 5 70 10 29 10 29 0 8 0 8
weish22.dat 5 80 5 34 5 34 11 5 11 5
weish23.dat 5 80 7 55 9 41 13 8 13 8
weish24.dat 5 80 2 10 2 10 4 5 4 5
weish25.dat 5 80 11 19 4 13 10 13 10 13
weish26.dat 5 90 12 91 12 28 14 10 14 10
weish27.dat 5 90 0 3 0 3 0 3 0 3
weish28.dat 5 90 0 17 0 13 4 1 4 1
weish29.dat 5 90 3 8 3 8 0 3 0 3
weish30.dat 5 90 0 1 0 1 0 1 0 1

Average 4.13 29.00 4.00 24.03 5.93 6.43 5.93 6.43

C
H

A
P

T
E

R
5
.

D
A
T
A

B
A

S
E

A
L
L
O

C
A
T

IO
N

113

Table 5.5: Statistics for the Branch-and-Cut implementation - Random Instances

E E(L) CPLEX(AU) CPLE(AG)
m x n No. Nd C Nd C Nd C Nd C

25x100 1 229 283 163 251 166 75 166 75
25x100 2 81 117 52 82 69 55 69 55
25x100 3 41 76 23 43 55 62 55 62
25x100 4 39 43 27 45 30 21 30 21
25x100 5 232 410 507 619 429 75 429 75
Average 124.40 185.80 154.40 208.00 149.80 57.60 149.80 57.60

50x100 1 11 28 3 9 5 7 5 7
50x100 2 559 609 319 376 606 150 606 150
50x100 3 804 1175 609 696 913 150 913 150
50x100 4 0 2 0 2 0 1 0 1
50x100 5 29 34 3 9 13 9 13 9
Average 280.60 369.60 186.80 218.40 307.40 63.40 307.40 63.40

25x200 1 210 450 79 129 157 67 157 67
25x200 2 31 37 48 50 27 35 27 35
25x200 3 38 51 36 52 25 18 25 18
25x200 4 2905 5761 997 1211 2106 75 2106 75
25x200 5 230 273 163 159 269 75 269 75
Average 682.80 1314.40 264.60 320.20 516.80 54.00 516.80 54.00

50x200 1 548 811 54 82 235 69 235 69
50x200 2 12232 16379 10973 12452 11825 150 11825 150
50x200 3 1076 1524 1277 1350 1383 150 1383 150
50x200 4 794 1224 961 1234 623 150 623 150
50x200 5 22 50 16 34 50 20 50 20
Average 2934.40 3997.60 2656.20 3030.40 2823.20 107.80 2823.20 107.80

CHAPTER 5. DATABASE ALLOCATION 114

on solving a single 0-1 integer programming formulation at each iteration. The

procedure proves to be simple and quite efficient whilst the implementation can

be done quite easily, requiring no specialized algorithm. We then implemented

the proposed procedure in a branch-and-cut framework. Comparing with a state-

of-the-art exact solver, the results demonstrate that the proposed procedure is

able to solve instances requiring less computational effort. We therefore conclude

that the proposed algorithm may be a viable alternative in separating cover in-

equalities for the multidimensional knapsack problem.

Chapter 6

Conclusions

In this dissertation, we have investigated several problems arising in electronic

content distribution and proposed models and exact solution algorithms for their

solution. The first section of this chapter reports main research findings and

contributions of this research. We then point out several research avenues that

may be considered in future research.

6.1 Summary of Research Contributions

We further subdivide this section according to the different types of problems

studied in this dissertation.

6.1.1 Content Distribution Networks

Content Distribution Network (CDN) is a new technology aimed at increasing

the effectiveness of the Internet by improving the response time and reducing

the loads of the servers. In this dissertation, we have identified a new problem in

such networks to which we refer as Content Distribution Network Design Problem

(CDNDP). The main contributions of this dissertation in the context of CDNs

115

CHAPTER 6. CONCLUSIONS 116

can be summarized as follows:

• Two new problems in designing CDNs are described, respectively for net-

works with single and multiple servers. The complexity of the problems are

investigated.

• Integer programming models are proposed for the two problems identified

which can be used to optimally locate proxy servers, decide on which objects

should be stored in each server and assign of clients to suitable proxies

simultaneously. Furthermore, the objective functions of the models are

suitable representations of the way CDNs operate. Our approach seems

to be one of the first to consider all three decision problems jointly and

utilizing such an objective function.

• For the single server CDN design problem, exact and heuristic solution

algorithms are offered. The former is based on a linearization and Ben-

ders’ decomposition. The latter is a greedy-like procedure. Computational

results are provided so as to demonstrate the efficiency of these algorithms.

Based on the computational results we conclude that the exact solution algo-

rithm proposed for the single server CDN design problem seems computationally

effective for reasonable sized networks (such as Virtual Private Networks or Mul-

timedia Networks). For very huge networks such as the Internet itself, however,

the greedy algorithm appears to be capable of providing near-optimal solutions

in fairly short computing times.

6.1.2 Video on Demand Services

In a part of this dissertation, we studied the problem of Video Placement and

Routing (VPRP) that in the context of Video-on-Demand systems. Video on

Demand (VoD) is a service that provides tens to hundreds of videos (programs)

to hundreds to thousands of clients through a network. The VPRP arises as a

problem in the local groups of VoD systems to properly balance the load on the

network. Research contributions on this problem can be summarized as follows:

CHAPTER 6. CONCLUSIONS 117

• Although previous studies commented on the complexity of the VPRP, it

was never investigated. We have proved here that this problem isNP-Hard.

• A solution algorithm for the problem is devised based on Lagrangean relax-

ation, decomposition and subgradient optimization. Computational results

demonstrate that the algorithm outperforms a commercial software in ob-

taining solutions within given time limits. The main motivation for devel-

oping such a solution procedure is due to the fact that such algorithms are

rare in the literature, especially for general graphs. In contrast, heuristic

solution procedures are offered for the solution of similar problems. How-

ever, such procedures are typically incapable of indicating the quality of

the solution produced. The algorithm devised in this study differs with

respect to most of the existing algorithms in that whenever the algorithm

is stopped without reaching the optimal solution, it is able to indicate the

the quality of the best solution obtained.

• In contrast to its counterparts in the literature, the algorithm proposed

here brings novelty in obtaining feasible solutions at each iteration. Usually,

heuristics are used for this purpose in similar algorithms, to obtain fairly

good solutions at every iteration in short computing times. Here, we take

a reverse approach and show that good quality feasible solutions can be

obtained even in the very early iterations of such algorithms by the use of

integer programming formulations.

6.1.3 Multidimensional Knapsack Problem

Finding applications in database allocations in distributed computer networks, we

studied in this dissertation the well-known multidimensional Knapsack Problem

(mKP). Focusing on the exact solution of this problem, we have investigated the

effect of the widely-used and well-known cover inequalities in the solution process.

Research contributions to this problem may be stated as follows:

• A novel exact separation procedure was proposed that is able to find the

CHAPTER 6. CONCLUSIONS 118

most violated cover inequality with respect to a given fractional solution.

The separation procedure lies in solving a binary program at each iteration.

• The separation procedure was implemented in a cutting plane and a branch-

and-cut framework. Computational results regarding the the former imple-

mentation demonstrates that the algorithm is superior to a heuristic sep-

aration procedure that is offered in the literature for this problem. On

the other hand, the latter implementation suggests that generation of vi-

olated cover inequalities coupled with applications of intelligent lifting in

branch-and-cut algorithms can significantly reduce the computational effort

in solving mKPs to optimality.

6.2 Further Research Issues

Similar to the previous section, we also subdivide this section where we provide

prospects for further research.

6.2.1 Content Distribution Networks

Problems arising in content distribution networks are usually of a very-large scale

nature. Therefore, solution algorithms that will be developed for such problems

need to be scalable, i.e. they need to be capable of accommodating very large scale

data. In addition, such problems typically need to be solved in short computing

times. Solution algorithms based on heuristic procedures for such problems seem

to be a promising research issue, as they run very fast and able to handle problems

of huge sizes. Therefore, we propose as a further research issue, the investigation

of metaheuristic techniques (such as tabu search) for the resolution of the prob-

lems described in Chapter 3. Although the greedy heuristic offered in this chapter

seems to produce near-optimal solutions, one may benefit from expectedly better

solutions offered through more intelligent metaheuristic techniques.

There are also many open optimization problems for content delivery and

CHAPTER 6. CONCLUSIONS 119

caching that needs further investigation. Some of these in the context of OR/MS

are pointed out by Datta et al. [31]. Within the scope of this study, several exten-

sions may consist of issues such as proxy-sizing (the problem of determining the

optimal capacities of the proxies) and pricing (the problem of finding the price

for the CDN to charge to its customers). In defining the CDNDP in Chapter

3, we have not taken into account any bandwidth limitations as we assumed to

be working on networks with such a characteristic (such as national networks or

intranets). However, large networks spanning multiple countries usually have a

limited bandwidth capacity. Introducing a bandwidth constraint into the pro-

posed model for SCDNP would surely make the solution much more difficult.

Furthermore, as it would modify the current structure of the model, it would

require a new solution algorithm. This is offered as a further research avenue.

In addition, the CDNDP may very well be extended to take into account a type

of constraint aimed at achieving an acceptable performance from the CDN cus-

tomers perspective (such as a Quality of Service constraint). This, again, would

alter the special structure of the SCDNP model and would require investigation

different solution strategies.

A very interesting issue in content distribution is Peer-to-Peer (P2P) networks.

These networks have a decentralized structure in that all the individual users are

inter-connected and serve both as a proxy and a client. The basic idea in P2P

networks is that each user pair may exchange content without the need for a

centralized structure as in CDNs. They are very suitable for sharing files of

large sizes (such as music or videos) and are an alternative way to distribute

content. These networks bear very interesting problems of their own and may be

investigated in future research. For now, we refer the reader to Koo et al. [62]

for an introduction to problems in P2P networks and research directions.

6.2.2 Video on Demand Services

Although being a well-studied problem for over 10 years, VoD services still pose

challenging and interesing optimization problems now that new networking tech-

nologies are being developed. In this research, we assumed the VoD service to

CHAPTER 6. CONCLUSIONS 120

be implemented on a conventional cable network. However, VoD services may

benefit from new technologies such as Multi Protocol Label Switching (MPLS)

and Passive Optical Networks (PONs). It would be interesting to consider VoD

implementations in combination with such novel network technologies.

Another issue that may be considered in VoD systems is providing multiple

services on the same network (such as both audio and video). In this case, the

provider would have to store different kinds of media at each server and therefore

would need to consider various charging schemes as different services would have

differing costs. Such an extension would be an interesting generalization of the

problem considered in this study.

6.2.3 Multidimensional Knapsack Problems

The mKP is one of the well-known specially structured integer programming

problems. The contributions made in this dissertation in the context of an exact

solution algorithm suggest further topics for research. In specific, investigation

of new classes of valid inequalities for the mKP and implementation of these in

a branch-and-cut algorithm may be useful in solving the problem. Surely, the

new classes of valid inequalities would also require separation routines. A recent

study by Gabrel and Minoux [37] is an important attempt in this direction of

research, who investigated so-called extended cover inequalities for the mKP.

One other topic of research that may be considered is to develop an efficient

and a faster way of identifying violated cover inequalities and their extensions

in solving the mKP. Oğuz and Bektaş [78] demonstrated that it is possible to

separate violated cover inequalities in polynomial time through dynamic pro-

gramming. Similar improvements can be made for the inequalities investigated

by Gabrel and Minoux [37].

Bibliography

[1] Akamai. http://www.akamai.com.

[2] Digital island. http://www.sandpiper.net.

[3] Inktomi. http://www.inktomi.com.

[4] Mirror image. http://www.mirror-image.com.

[5] OR-Library. Available at http://people.brunel.ac.uk/∼mastjjb/jeb/orlib/

mknapinfo.html.

[6] Speedera. http://www.speedera.com.

[7] The economic impacts of unacceptable web-site download speeds. Tech-

nical report, Zona Research, April 1999. Available at http://also.co.uk/e-

hosting.html (Accessed 24.06.2004).

[8] The Need for Speed II. Zona market bulletin, Zona Research, April

2001. Available at http://www.websiteoptimization.com/speed/1/ (Ac-

cessed 24.06.2004).

[9] W.P. Adams and H.D. Sherali. A tight linearization and an algorithm

for zero-one quadratic programming problems. Management Science,

32(10):1274–1290, 1986.

[10] J.M. Almeida, D.L. Eager, M.K. Vernon, and S.J. Wright. Minimizing de-

livery cost in scalable streaming content distribution systems. IEEE Trans-

actions on Multimedia, 6(2):356–365, April 2004.

121

BIBLIOGRAPHY 122

[11] P. Avella, M. Boccia, R. Canonico, D. Emma, A. Sforza, and G. Ventre.

Web cache location and network design in VPNs. In Proceedings of INOC

(International Network Optimization Conference), Evry/Paris, France, Oc-

tober 27-29 2003.

[12] P. Backx, T. Lambrecht, B. Dhoedt, F. DeTurck, and P. Demeester. Op-

timizing content distribution through adaptive distributed caching. Com-

puter Communications, 28(6):640–653, 2005.

[13] I.D. Baev and R. Rajaraman. Approximation algorithms for data place-

ment in arbitrary networks. In Proceedings of the 12th Annual ACM-SIAM

Symposium on Discrete Algorithms, pages 661–670, January 2001.

[14] S.A. Barnett and G.J. Anido. A cost comparison of distributed and cen-

tralized approaches to video-on-demand. IEEE Journal on Selected Areas

in Communications, 14(6):1173–1183, 1996.

[15] N. Bartolini, F. Lo Presti, and C. Petrioli. Optimal dynamic replica place-

ment in content delivery networks. In Proceedings of the 11th IEEE Inter-

national Conference on Networks (ICON2003), pages 125–130, 2003.

[16] H.S. Bassali, K.M. Kamath, R.B. Hosamani, and L. Gao. Hierarchy-aware

algorithms for CDN proxy placement in the Internet. Computer Commu-

nications, 26:251–263, 2003.

[17] J.E. Beasley. Lagrangean heuristics for location problems. European Jour-

nal of Operational Research, 65:383–399, 1993.

[18] J.F. Benders. Partitioning procedures for solving mixed-variables program-

ming problems. Numerische Mathematik, 4:238–252, 1962.

[19] C.C. Bisdikian and B.V. Patel. Cost-based program allocation for dis-

tributed multimedia-on-demand systems. IEEE Multimedia, pages 62–72,

Fall 1996.

[20] N. Boland, M. Krishnamoorthy, A.T. Ernst, and J. Ebery. Preprocessing

and cutting for multiple allocation hub location problems. European Journal

of Operational Research, 155:638–653, 2004.

BIBLIOGRAPHY 123

[21] L. Breslau, P. Cao, L. Fan, G. Phillips, and S. Shenker. Web caching and

Zipf-like distributions: evidence and implications. In Proceedings of IEEE

INFOCOM’99, volume 1, pages 126–134, New York, March 1999.

[22] A.J. Cahill and C.J. Sreenan. VCDN: A content distribution network for

high quality video distribution. In Proceedings of Information Technology

& Telecommunications Conference (IT&T), October 2003.

[23] E. Camponogara and P.H.R. Nakashima. Solving a gas-lift optimization

problem by dynamic programming. European Journal of Operational Re-

search, 2005. Forthcoming.

[24] S. Choi and Y. Shavitt. Proxy location problems and their generalizations.

In Proceedings of the 23rd International Conference on Distributed Com-

puting Systems Workshops (ICDCSW’03), 2003.

[25] T. Christof and A. Löbel. PORTA: POlyhedron Repre-

sentation Transformation Algorithm. Available online at

http://www.zib.de/Optimization/Software/Porta/, 2004.

[26] W.W. Chu. Optimal file allocation in a multiple computer system. IEEE

Transactions on Computers, 18(10):865–889, 1969.

[27] I. Cidon, S. Kutten, and R. Soffer. Optimal allocation of electronic content.

Computer Networks, 40(2):205–218, 2002.

[28] G. Cornuejols, G.L. Nemhauser, and L.A. Wolsey. The uncapacitated fa-

cility location problem. In P.B. Mirchandani and R.L. Francis, editors,

Discrete Location Theory, chapter 3, pages 119–171. John Wiley & Sons,

1990.

[29] E. Cronin, S. Jamin, C. Jin, A.R. Kurc, D. Raz, and Y. Shavitt. Con-

strained mirror placement on the Internet. IEEE Journal on Selected Areas

in Communications, 20(7):1369–1382, 2002.

[30] H. Crowder, E.L. Johnson, and M.W. Padberg. Solving large scale zero-one

linear programming problems. Operations Research, 31:803–834, 1983.

BIBLIOGRAPHY 124

[31] A. Datta, K. Dutta, H. Thomas, and D. VanderMeer. World Wide Wait:

a study of Internet scalability and cache-based approaches to alleviate it.

Management Science, 49(10):1425–1444, October 2003.

[32] A. Datta, K. Dutta, H. Thomas, and D. VanderMeer. World Wide Wait: a

study of Internet scalability and cache-based approaches to alleviate it.

Management Science Electronic Companion Pages, 2003. (Available at

http://mansci.pubs.informs.org/).

[33] Ö. Erçetin and L. Tassiulas. Market-based resource allocation for content

delivery in the Internet. IEEE Transactions on Computers, 52(12):1573–

1585, December 2003.

[34] M. Fischetti, G.R. Jacur, and J.J.S. González. Optimisation of the inter-

connecting network of a UMTS radio mobile telephone system. European

Journal of Operational Research, 144(56-67), 2003.

[35] M.L. Fisher and D.S. Hochbaum. Database location in computer networks.

Journal of the Association for Computing Machinery, 27(4):718–735, 1980.

[36] A. Fréville. The multidimensional 0-1 knapsack problem: An overview.

European Journal of Operational Research, 155:1–21, 2004.

[37] V. Gabrel and M. Minoux. A scheme for exact separation of extended

cover inequalities and application to multidimensional knapsack problems.

Operations Research Letters, 30:252264, 2002.

[38] L.-L. Gao and E.P. Robinson Jr. A dual-based optimization procedure for

the two-echelon uncapacitated facility location problem. Naval Research

Logistics, 39:191–212, 1992.

[39] M.R. Garey and D.S. Johnson. Computers and Intractability: A Guide

to the Theory of NP-Completeness. W. H. Freeman and Company, San

Franciso, California, 1979.

[40] B. Gavish. Topological design of computer communication networks - The

overall design problem. European Journal of Operational Research, 58:149–

172, 1992.

BIBLIOGRAPHY 125

[41] B. Gavish and H. Pirkul. Management of Distributed Data Processing,

chapter Allocation of data bases in distributed computing systems, pages

215–231. North-Holland, 1982.

[42] D. Ghose and H.J. Kim. Scheduling video streams in video-on-demand

systems: A survey. Multimedia Tools and Applications, 11:167–195, 2000.

[43] D. Ghosh, I. Murthy, and A. Moffett. File allocation problem: comparison

of models with worst case and average communication delays. Operations

Research, 40(6):1074–1085, November-December 1992.

[44] Z. Gu, G.L. Nemhauser, and M.W.P. Savelsbergh. Lifted cover inequalities

for 0-1 integer programs: computation. INFORMS Journal on Computing,

10(4):427–437, 2000.

[45] M. Held, P. Wolfe, and H.P. Crowder. Validation of subgradient optimiza-

tion. Mathematical Programming, 6:62–88, 1974.

[46] K. Hosanagar, R. Krishnan, J. Chuang, and V. Choudhary.

Pricing and resource allocation in caching services with mul-

tiple levels of QoS. In Proceedings of International Confer-

ence on Information Systems (ICIS 2002), 2002. Available at

http://opim.wharton.upenn.edu/workpapers/storage/05-02-01.pdf (ac-

cessed 15.08.2005).

[47] K. Hosanagar, R. Krishnan, M. Smith, and J. Chuang. Optimal pricing

of content delivery network (CDN) services. In Proceedings of the 37th

Annual Hawaii International Conference on System Sciences, pages 205–

214, January 2004.

[48] Y.-F. Huang and C.-C. Fang. Load balancing for clusters of VOD servers.

Information Sciences, 164:113–138, 2004.

[49] R.-H. Hwang and P.-H. Chi. Fast optimal video placement algorithms for

hierarchical video-on-demand systems. IEEE Transactions on Broadcasting,

47(4):357–366, December 2001.

BIBLIOGRAPHY 126

[50] S. Jamin, C. Jin, Y. Jin, D. Raz, Y. Shavitt, and L. Zhang. On the place-

ment of Internet instrumentation. In Proceedings of IEEE INFOCOM’00,

pages 295–304, March 2000.

[51] X. Jia, D. Li, X. Hu, W. Wu, and D. Du. Placement of web-server proxies

with consideration of read and update operations on the Internet. The

Computer Journal, 46(4):378–390, 2003.

[52] E.L. Johnson, G.L. Nemhauser, and M.W.P. Savelsbergh. Progress in linear

programming-based algorithms for integer programming: an exposition.

INFORMS Journal on Computing, 12(1):2–23, 2000.

[53] K.L. Johnson, M.S. Carr, J.F.and Day, and M.F. Kaashoek. The measured

performance of content distribution networks. Computer Communications,

(24):202–206, 2001.

[54] J. Kangasharju. Internet Content Distribution. PhD Thesis, L’Universite

de Nice - Sophia Antipolis, April 2002.

[55] J. Kangasharju, J. Roberts, and K.W. Ross. Object replication strategies in

content distribution networks. Computer Communications, 25(4):376–383,

2002.

[56] J. Kangasharju, K.W. Ross, and J. Roberts. Performance evaluation of

redirection schemes in content distribution networks. Computer Communi-

cations, 24(2):207–214, 2001.

[57] M. Karlsson, C. Karamanolis, and M. Mahalingam. A framework for evalu-

ating replica placement algorithms. Technical Report HPL-2002, HP Labo-

ratories, Available at http://www.hpl.hp.com/personal/Magnus Karlsson,

July 2002.

[58] M. Karlsson and M. Mahalingam. Do we need replica placement algorithms

in content delivery networks? In Proceedings of the International Workshop

on Web Content Caching & Distribution (WCW), pages 117–128, August

2002.

BIBLIOGRAPHY 127

[59] H. Kellerer, U. Pferschy, and D. Pisinger. Knapsack Problems. Springer,

2004.

[60] Y.K. Kim, J.Y. Kim, and S.S. Kang. A tabu search approach for designing

a non-hierarchical video-on-demand network architecture. Computers and

Industrial Engineering, 33(3-4):837–840, 1997.

[61] J.G. Klincewicz and H. Luss. A dual-based algorithm for multiproduct

uncapacitated facility location. Transportation Science, 21:198–206, 1987.

[62] S.G.M Koo, C.S.G. Lee, and K. Kannan. Using P2P to Distribute

Large-volume Contents Research Problems, Solutions and Future Direc-

tions. In Proceedings of the 9th World Multiconference on Systemics,

Cybernetics and Informatics (SCI 2005), July 2005. Available online

at http://min.ecn.purdue.edu/ koo/publications/problems.pdf (Accessed

15.08.2005).

[63] P. Krishnan, D. Raz, and Y. Shavitt. The cache location problem.

IEEE/ACM Transactions on Networking, 8(5):568–582, 2000.

[64] M. Labbé, G. Laporte, I.R. Mart́ın, and J.J.S. González. Locating median

cycles in networks. European Journal of Operational Research, 160:457–470,

2005.

[65] N. Laoutaris, V. Zissimopoulos, and I. Stavrakakis. Joint object place-

ment and node dimensioning for Internet content distribution. Information

Processing Letters, 89(6):273–279, 2004.

[66] N. Laoutaris, V. Zissimopoulos, and I. Stavrakakis. On the optimization of

storage capacity allocation for content distribution. Computer Networks,

47(3):409–428, 2005.

[67] Y.-W. Leung and E.W.M. Wong. An incentive charging scheme for video-

on-demand. Journal of the Operational Research Society, 52:55–63, 2001.

[68] B. Li, M.J. Golin, G.F. Italiano, X. Deng, and K. Sohraby. On the op-

timal placement of web proxies in the Internet. In Proceedings of IEEE

INFOCOM’99, volume 3, pages 1282–1290, New York, March 1999.

BIBLIOGRAPHY 128

[69] Y. Li and M.T. Liu. Optimization of performance gain in content distribu-

tion networks with server replicas. In Proceedings of the 2003 Symposium

on Applications and the Internet (SAINT’03), 2003.

[70] T.D.C. Little and D. Venkatesh. Prospects for interactive video-on-demand.

IEEE Multimedia, 1(3):14–24, Autumn/Fall 1994.

[71] D. McDaniel and M. Devine. A modified Benders’ partitioning algorithm

for mixed integer programming. Management Science, 24(3):312–319, 1977.

[72] P.B. Mirchandani. The p-median problem and generalizations. In P.B.

Mirchandani and R.L. Francis, editors, Discrete Location Theory, chapter 2,

pages 55–117. John Wiley & Sons, 1990.

[73] I. Murthy and D. Ghosh. File allocation involving worst case response

times and link capacities: model and solution procedure. European Journal

of Operational Research, 67:418–427, 1993.

[74] G.L. Nemhauser and L.A. Wolsey. Integer and Combinatorial Optimization.

Wiley, New York, 1999.

[75] Nortel Networks. Content delivery network solutions. White Paper. Avail-

able at http://www.nortelnetworks.com (retrieved May 2004).

[76] T. Nguyen, C.T. Chou, and P. Boustead. Resource optimiza-

tion for content distribution networks in shared infrastructure envi-

ronment. In Proceedings of the Australian Telecommunications Net-

works Applications Conference (ATNAC 2003), 2003. Available at

http://atnac2003.atcrc.com/ORALS/NGUYEN-resource.pdf.

[77] T.V. Nguyen, C.T. Chou, and P. Boustead. Provisioning content distribu-

tion networks over shared infrastructure. In Proceedings of the 11th IEEE

International Conference on Networks (ICON2003), pages 119–124, 2003.

[78] O. Oğuz and T. Bektaş. A fast algorithm for cover inequality separation.

Technical report, Bilkent University, 2005. (Under revision for Operations

Research Letters).

BIBLIOGRAPHY 129

[79] C.A.S. Oliveira and P.M. Pardalos. A survey of combinatorial optimization

problems in multicast routing. Computers and Operations Research, 2004.

In press.

[80] I. Ouveysi, L. Sesana, and A. Wirth. Operations Research / Management

Science at Work: Applying Theory in the Asia Pacific Region, volume 43

of International Series in Operations Research and Management Science,

chapter The video placement and routing problem, pages 53–71. Kluwer

Academic Publishers, 2002.

[81] I. Ouveysi, K.-C. Wong, S. Chan, and K.T. Ko. Video placement and

dynamic routing algorithms for video-on-demand networks. In Proceeding

of the IEEE Globecom’98 Conference, volume 2, pages 658–663, 1998.

[82] M. Padberg. The Boolean quadric polytope: some characteristics, facets

and relatives. Mathematical Programming, 45(1):139–172, 1989.

[83] J. Pan, Y.T. Hou, and B. Li. An overview of DNS-based server selections

in content distribution networks. Computer Networks, 43:695–711, 2003.

[84] G. Peng. CDN: Content Distribution Network. January 2003. Available at

http://citeseer.ist.psu.edu/peng03cdn.html.

[85] H. Pirkul. An integer programming model for the allocation of databases in

a distributed computer system. European Journal of Operational Research,

26:401–411, 1986.

[86] F. Plastria. Formulating logical implications in combinatorial optimisation.

European Journal of Operational Research, 140(2):338–353, 2002.

[87] L. Qiu, V.N. Padmanabhan, and G.M. Voelker. On the placement of web

server replicas. In Proceedings of IEEE INFOCOM’01, volume 3, pages

1587–1596, Anchorage, AK, USA, April 2001.

[88] P. Radoslavov, R. Govindan, and D. Estrin. Topology informed Internet

replica placement. Computer Communications, 25:384–392, 2002.

[89] J. Ryoo and S.S. Panwar. File distribution in networks with multimedia

storage servers. Networks, 38(3):140–149, 2001.

BIBLIOGRAPHY 130

[90] S. Saroiu, K.P. Gummadi, R.J. Dunn, S.D. Gribble, and H.M. Levy. An

analysis of Internet content delivery systems. In Proceedings of 5th Sym-

posium on Operating Systems Design and Implementation (OSDI), Boston,

MA, December 2002.

[91] E.L.F. Senne, L.A.N. Lorena, and M.A. Pereira. A branch-and-price ap-

proach to p-median location problems. Computers and Operations Research,

2004. In press.

[92] A. Tamir. An O(PN 2) algorithm for the p-median and related problems

on tree graphs. Operations Research Letters, 19:59–64, 1996.

[93] A. Vakali and G. Pallis. Content delivery networks: status and trends.

IEEE Internet Computing, 7(6):68–74, November-December 2003.

[94] A. Venkataramani, P. Yalagandula, R. Kokku, S. Sharif, and M. Dahlin.

The potential costs and benefits of long-term prefetching for content distri-

bution. Computer Communications, 25(4):367–375, 2002.

[95] D.C. Verma. Content Distribution Networks: An Engineering Approach.

John Wiley & Sons, 1st edition, 2001.

[96] C.-F. Wang, B.-R. Lai, and R.-H. Jan. Optimum multicast of multimedia

streams. Computers and Operations Research, 26:461–480, 1999.

[97] G.J. Woeginger. Monge strikes again: optimal placement of web proxies in

the internet. Operations Research Letters, 27(3):93–96, 2000.

[98] L.A. Wolsey. Integer Programming. John Wiley & Sons, 1998.

[99] J. Xu, B. Li, and D.L. Lee. Placement problems for transparent data repli-

cation proxy services. IEEE Journal on Selected Areas in Communications,

20(7):1383–1398, 2002.

[100] Z. Xuanping, W. Weidong, T. Xiaopeng, and Z. Yonghu. Data Replication

at Web Proxies in Content Distribution Network, volume 2642 of Lecture

Notes in Computer Science, pages 560–569. Springer-Verlag, 2003.

BIBLIOGRAPHY 131

[101] H. Yaman and G. Carello. Solving the hub location problem with modular

link capacities. Computers and Operations Research, 32:3227–3245, 2005.

[102] M. Yang and Z. Fei. A model for replica placement in content distribution

networks for multimedia applications. In Proceedings of IEEE International

Conference on Communications (ICC ’03), volume 1, pages 557 –561, 2003.

Appendix A

Linearization of the MCDNP

model

The integer programming formulation proposed for the MCDNP in Chapter 3 is

cubic due to the objective function. In what follows, we provide a linearization

that will allow the resulting formulation to be solved using any mixed integer

programming software.

The linearization of the formulation of MCDNP can be done as follows. Af-

ter simple substitutions, the objective function given in (3.9) is reduced to the

following:

minimize
∑

j∈J

fjyj +
∑

i∈I

∑

j∈J

∑

s∈S

∑

k∈K

(bkdik(cijxij + cjs(xijtjs − xijtjszjk))) (A.1)

We define the binary variable δijs = xijtjs, which indicates whether client i

is connected to proxy server j, which is connected to the origin server s or not.

We further define another binary variable βijks as βijks = xijtjszjk. This variable

takes the value 1 when client i is connected to proxy server j holding the object

k, which in turn is connected to the origin server s. The linearization is given by

132

APPENDIX A. LINEARIZATION OF THE MCDNP MODEL 133

the following proposition.

Proposition 9 The simplified objective function given in (A.1) can be linearized

using the following constraints:

δijs ≥ xij + tjs − 1, ∀i ∈ I, j ∈ J, s ∈ S (A.2)

xij + tjs + zjk ≥ 3βijks, ∀i ∈ I, j ∈ J, s ∈ S, k ∈ K (A.3)

where δijs = xijtjs and βijks = xijtjszjk.

Proof We provide a proof for constraint (A.2). The proof for constraint (A.3)

is similar. In (A.2), δijs is a binary variable since δijs = xijtjs. Consider the case

where xij = tjs = 1. Then, δijs = 1. The remaining cases are xij = 1, tjs = 0

or xij = 0, tjs = 1 or xij = 0, tjs = 0. For each of these cases, δijs = 0, since

the objective is to minimize and the coefficient of δijs in the objective function is

positive. 2

We can now construct the integer linear programming formulation of

the MCDNP as {Minimize
∑

j∈J fjyj +
∑

i∈I

∑
j∈J

∑
s∈S

∑
k∈K(bkdik(cijxij +

cjs(δijs − βijks))) : s.t.(3.10)− (3.17), (A.3), (A.2)}.

