
A COMPARATIVE STUDY OF FIVE
ALGORITHMS FOR PROCESSING

ULTRASONIC ARC MAPS

a thesis

submitted to the department of electrical and

electronics engineering

and the institute of engineering and science

of bilkent university

in partial fulfillment of the requirements

for the degree of

master of science

By

Arda Kurt

August 2005

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Bilkent University Institutional Repository

https://core.ac.uk/display/52940075?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

I certify that I have read this thesis and that in my opinion it is fully adequate,

in scope and in quality, as a thesis for the degree of Master of Science.

Prof. Dr. Billur Barshan(Supervisor)

I certify that I have read this thesis and that in my opinion it is fully adequate,

in scope and in quality, as a thesis for the degree of Master of Science.

Assoc. Prof. Dr. Orhan Arıkan

I certify that I have read this thesis and that in my opinion it is fully adequate,

in scope and in quality, as a thesis for the degree of Master of Science.

Asst. Prof. Dr. H. Murat Karamüftüoğlu

Approved for the Institute of Engineering and Science:

Prof. Dr. Mehmet Baray
Director of the Institute Engineering and Science

ii

ABSTRACT

A COMPARATIVE STUDY OF FIVE ALGORITHMS
FOR PROCESSING ULTRASONIC ARC MAPS

Arda Kurt

M.S. in Electrical and Electronics Engineering

Supervisor: Prof. Dr. Billur Barshan

August 2005

In this work, one newly proposed and four existing algorithms for processing ul-

trasonic arc maps are compared for map-building purposes. These algorithms are

the directional maximum, Bayesian update, morphological processing, voting and

thresholding, and arc-transversal median algorithm. The newly proposed method

(directional maximum) has a basic consideration of the general direction of the

mapped surface. Through the processing of arc maps, each method aims at over-

coming the intrinsic angular uncertainty of ultrasonic sensors in map building, as

well as eliminating noise and cross-talk related misreadings. The algorithms are im-

plemented in computer simulations with two distinct motion-planning schemes for

ground coverage, wall following and Voronoi diagram tracing. As success criteria of

the methods, mean absolute difference with the actual map/profile, fill ratio, and

computational cost in terms of CPU time are utilized. The directional maximum

method performed superior to the existing algorithms in mean absolute error, was

satisfactory in fill ratio and performed second best in processing times. The results

indicate various trade-offs in the choice of algorithms for arc-map processing.

Keywords: Ultrasonic sensors, map building, arc maps, Bayesian update scheme,

morphological processing, voting and thresholding, arc-transversal median algo-

rithm, wall following, Voronoi diagram, motion planning, mobile robots.

iii

ÖZET

ULTRASONİK ARK HARİTASI İŞLEMEYE DAYALI BEŞ

YÖNTEMİN KARŞILAŞTIRMALI İNCELEMESİ

Arda Kurt

Elektrik Elektronik Mühendisliği, Yüksek Lisans

Tez Yöneticisi: Prof. Dr. Billur Barshan

Ağustos 2005

Bu çalışmada, biri yeni geliştirilmiş, dördü ise önceden varolan, ultrasonik ark

haritası işleyerek harita çıkarımına yönelik beş yöntem karşılaştırılmıştır. Bu

yöntemler sırasıyla yönlü maksimum, Bayesian güncelleme, morfolojik işleme, oy-

lama ve eşikleme, ve ark-doğrultusal medyan yöntemleridir. Yeni geliştirilen yöntem

(yönlü maksimum), haritalanan yüzeyin genel doğrultusuna dair temel bir bilgiyi

işleme dahil etmektedir. Tüm yöntemler ark haritaları işleme yoluyla ultrasonik

algılayıcılara özgü açısal belirsizliğin, sinyal gürültüsünün ve çapraz-konuşmanın

haritalamaya olumsuz etkilerini ortadan kaldırmayı hedeflemektedir. Karşılaştırma

amaçlı bilgisayar benzetimlerinde alan kapsamaya yönelik olarak duvar takibi ve

Voronoi grafiği çizimi taramaya dayalı iki değişik hareket-planlama yöntemi kul-

lanılmıştır. Başarım ölçütü olarak çıkarılan haritanın gerçek profil ile arasındaki or-

talama mutlak fark, gerçek haritanın ne oranda çıkarılabildiğine dair doluluk oranı ve

işlemin bilgisayar ortamında aldığı süre kullanılmıştır. Yeni öne sürülen yöntem olan

yönlü maksimum ortalama mutlak hata alanında diğer yöntemlerden daha yüksek

bir başarı sergilemiş, doluluk oranında başarılı olmuş, hesaplama süresinde de ikinci

en iyi dereceyi elde etmiştir. Yöntem seçiminde her yöntemin kendine özgü avantaj

ve dezavantajları göz önünde bulundurulmalıdır.

Anahtar sözcükler : Ultrasonik algılayıcılar, haritalama, ark haritaları, Bayesian

güncelleme, morfolojik işleme, oylama ve eşikleme, ark-doğrultusal medyan yöntemi,

duvar takibi, Voronoi grafiği çizimi, hareket planlama, gezer robotlar.

iv

Contents

1 Introduction 1

2 Basics of Ultrasonic Sensing 4

2.1 Ultrasonic Transducers . 4

2.2 Ultrasonic Time-of-Flight Measurement 6

2.3 Representing Angular Uncertainty by Arc Maps 9

3 Algorithm Descriptions 11

3.1 Bayesian Update (BU) . 11

3.2 Morphological Processing (MP) . 17

3.3 Voting and Thresholding (VT) . 19

3.4 Arc-Transversal Median (ATM) . 20

3.5 Directional Maximum (DM) . 21

3.6 Results of Simulation Examples . 23

4 Indoor Mapping Simulations 25

v

CONTENTS vi

4.1 Wall Following (WF) . 25

4.2 Voronoi Diagram (VD) Tracing . 35

4.3 Results of Indoor Mapping Simulations 44

5 Conclusions 48

A Ultrasonic Signal Models 50

B Wall-following (WF) Algorithm 52

C MATLAB Simulation Codes 55

List of Figures

2.1 Typical received echo with additive noise and the threshold level. . . 7

2.2 (a) Single transducer configuration resulting in a circular arc, (b) dual

transceiver configuration resulting in an elliptical arc. 8

3.1 (a) Range dependency, (b) x and y dependency, and (c) θ dependency

of pO and pE. 13

3.2 Simulation example 1 – actual surface profile and the transducer po-

sitions. 14

3.3 Simulation example 2 – actual object and the transducer positions. . 14

3.4 Arc maps of the two simulation examples. 16

3.5 Example 1 – BU result for occupancy probabilities. 17

3.6 Example 1 – MP results (opening applied). 18

3.7 Example 2 – VT with a threshold of 5. 19

3.8 Example 2 – ATM. 20

3.9 DM results on the two examples. 22

4.1 The three rooms used in this study. 26

vii

LIST OF FIGURES viii

4.2 WF step and measurement positions. 27

4.3 The arc maps obtained by WF in the three rooms. 28

4.4 BU occupancy probability grids obtained by WF in the three rooms. 29

4.5 The result of applying MP to the arc maps obtained by WF in the

three rooms. 30

4.6 The result of applying VT to the arc maps obtained by WF in the

three rooms. 31

4.7 The result of applying the ATM algorithm to the arc maps obtained

by WF in the three rooms. 32

4.8 The result of applying DM to the arc maps obtained by WF in the

three rooms. 34

4.9 VDs of the three rooms. 36

4.10 Sampled versions of the VDs indicating the points where measure-

ments are taken. 37

4.11 The arc maps obtained by VD tracing in the three rooms. 38

4.12 BU occupancy probability grids obtained by VD tracing in the three

rooms. 39

4.13 The result of applying MP to the arc maps obtained by VD tracing

in the three rooms. 40

4.14 The result of applying VT to the arc maps obtained by VD tracing

in the three rooms. 41

4.15 The result of applying the ATM algorithm to the arc maps obtained

by VD tracing in the three rooms. 42

LIST OF FIGURES ix

4.16 The result of applying DM to the arc maps obtained by VD tracing

in the three rooms. 43

A.1 Geometry of the problem with the given sensor pair when the target

is a plane (adopted from [1]). 50

B.1 WF algorithm flowchart. 54

List of Tables

3.1 Error criteria for the two simulation examples. 23

4.1 Mean absolute error – indoor simulations with WF. 44

4.2 Fill ratio – indoor simulations with WF. 45

4.3 CPU time – indoor simulations with WF. 45

4.4 Mean absolute error – indoor simulations with VD tracing. 45

4.5 Fill ratio – indoor simulations with VD tracing. 46

4.6 CPU time – indoor simulations with VD tracing. 46

x

Chapter 1

Introduction

The basic awareness of the surrounding environment is a notable feature of intelligent

mobile robots. This awareness can be accomplished by means of simple sensor

utilization and processing of obtained sensory data according to the perceptive needs

of the robot such as navigation, tracking and/or avoidance of targets, path-planning

and localization. In static but unknown environments, where an a priori map of the

working area is not available, or in dynamically changing environments, the robot

is supposed to build an accurate map of its surroundings by using the sensory data

it gathers for autonomous operation. Therefore, the selection of an appropriate

map-building scheme is an important issue.

Ultrasonic sensors have been widely utilized in robotic applications due to their

accurate range measurements and low cost. The frequency range at which air-borne

ultrasonic transducers operate is associated with a large beamwidth that results in

angular uncertainty of the echo-producing target. Thus having an intrinsic uncer-

tainty of the actual angular direction of the range measurement and being prone to

various phenomena such as multiple and higher-order reflections and cross-talk be-

tween transducers, a considerable amount of modeling, processing and interpretation

of the sensory data is necessary.

Being a low-cost solution to the sensory perception problem with robust charac-

teristics, ultrasonic sensors have been widely used in map-building applications [2,3].

1

CHAPTER 1. INTRODUCTION 2

Grid-based and feature-based approaches have been in use to represent the environ-

ment since the early days of map building. The occupancy grids were introduced

in [4] and a Bayesian update scheme for cell occupancy probabilities was suggested.

In [5], a dynamic map-building method via correlating fixed beacons was developed

and map building in dynamic environments has been investigated in a number of

studies [6, 7].

As an alternative to grid-based approaches to map building and world represen-

tation for mobile robots, feature-based approaches have also been popular [5,6,8,9].

In this school of map representation, the world model is described in terms of natural

features of the environment (e.g., planes, corners, edges and cylinders) the orienta-

tion and position of which are known [10, 11]. The echo patterns of planes, corners

and edges were first modeled in [10] and they have been used as natural beacons for

map building in [6]. Planes and corners were differentiated by using the amplitude

and time-of-flight characteristics of the ultrasonic data [11]. In [12] and [13], the

complete waveform of the received echo is processed using matched filters in order

to achieve higher accuracy. In [14], maximum likelihood estimation is employed in

a 3-D setting. Evidential reasoning was utilized in [1] in a multi-sensor fusion appli-

cation. In addition to map-building applications of ultrasonic target differentiation,

it was reported in [15] that an ultrasonic sensor mounted at the tip of a robot arm

could be used to differentiate coins and O-rings.

Map-building applications can also be classified according to the coverage scheme

employed. The systematic way the unknown environment to be mapped is covered,

or motion planning, may be roughly divided into three approaches. One method

of ground coverage scheme involves pseudo-random steps with collision avoidance

[16–18]. The more systematic wall following type coverage can further be divided

into two general cases: simple rule-based wall following [19] and potential field-based

wall following [20]. In the second case, each obstacle/wall creates a potential field

and the mobile platform aims at staying on constant potential lines. There also

exist different approaches to the wall-following problem that cannot be included

under the above two categories [21, 22], for example, those which employ fuzzy-

logic based control methods [23]. The third and most sophisticated coverage scheme

involved in map building is based on Voronoi diagrams that can be constructed

CHAPTER 1. INTRODUCTION 3

iteratively [24–26].

The main contribution of this thesis is that it provides a valuable comparison

between the performances of one newly proposed and four existing algorithms for

processing ultrasonic arc maps for map-building purposes. The comparison is based

on three different error criteria. Each method is found to have certain advantages

and disadvantages which make them suitable for map building under different con-

straints and requirements. The newly proposed method is promising as it intro-

duces a sense of direction in the data acquisition and processing. This is found to

be beneficial and the determination of such directional awareness is proved to be

cost-effective since most motion-planning approaches already involve a similar sense

of direction. The newly proposed method also results in the minimum mean abso-

lute error between the true map and constructed map. Another contribution of this

thesis is the comparison it provides between two different motion-planning schemes

which are wall following and Voronoi diagram tracing for map-building applications.

Even though the simulation results demonstrated in this thesis are solely based on

ultrasonic data and map-building applications, the same approach can conveniently

be extended to other sensing modalities such as radar and infrared, as well as other

mobile robot applications.

This thesis is organized as follows: In Chapter 2, the basics of ultrasonic sensing

are reviewed. Descriptions and a basic comparison of five different map-building

techniques are given in Chapter 3, through two simulation examples. Chapter 4

expands the comparison to indoor map-building scenarios. The results are presented

and discussed at the end of each chapter with numerical success measures, while final

notes, conclusions, and future work form Chapter 5.

Chapter 2

Basics of Ultrasonic Sensing

This chapter reviews the basics of ultrasonic sensing, in particular, time-of-flight

(TOF) measurement using ultrasonic sensors. Operating principles, governing equa-

tions and uncertainties related to ultrasonic sensors are summarized.

2.1 Ultrasonic Transducers

Ultrasonic sensors operate at frequencies between 20–300 kHz. They perform trans-

duction by converting electrical signals to acoustical waves and converting the re-

ceived reflection of the transmitted waves back into electrical signals. Acoustical

waves transmitted by the transducer exhibit different characteristics in the near

field, where Fresnel diffraction is dominant, and the far field, where Fraunhofer

diffraction is dominant. According to the harmonically vibrating circular piston

model of the transducer in the near field [27], the beam is confined to a cylinder

with radius a, which is the radius of the transducer aperture. The length of this field

is rmin = (4a2
−λ2)

4λ
∼= a2

λ
from the face of the transducer where λ is the wavelength

of the acoustic transmission. On the other hand, the beam is confined to a cone

with angle 2θ0 in the far field. We are mainly interested in the far field since the

range measurements of interest correspond to this region and the complexity of the

acoustical interference is high in the near field [27].

4

CHAPTER 2. BASICS OF ULTRASONIC SENSING 5

The far-field pressure amplitude of an ultrasonic pulse transmitted at a single

frequency is given by the following formula [28]:

A(r, θ) = A0
rmin

r

J1(ka sin θ)

ka sin θ
for r ≥ rmin (2.1)

where r stands for the radial distance from the transducer, θ for the angular deviation

from the line-of-sight (LOS), k for the wavenumber (k = 2π/λ), A0 for the pressure

amplitude at the near-field/far-field interface on the LOS and the function J1 for

the first-order Bessel function of the first kind.

At constant range r, the pressure amplitude of the acoustical waves given in

Equation (2.1) becomes only a function of θ. This θ dependency is dominated

by the Bessel function divided by ka sin θ, and the zeroes of the Bessel function

determines the zeroes of the pressure amplitude at constant r, creating the lobes

of the beam pattern, within which the acoustical energy is confined. First of these

zeroes is located at ka sin θ0 = 1.22π, which corresponds to:

θ0 = sin−1

(

1.22π

ka

)

= sin−1

(

0.61λ

a

)

(2.2)

where θ0 is called the half-beamwidth angle that marks the ends of the main lobe,

which in turn represents the approximate beamwidth of the device. The secondary

or side lobes are neglected, since a considerable portion of the acoustical energy is

confined within the main lobe.

The pressure amplitude pattern of the transducer in the far field is composed of a

range of frequencies centered around the resonance frequency f0, and can be modeled

as a Gaussian resulting from the superposition of multiple Bessel functions [28]:

A(r, θ) = A0
rmin

r
exp

(

−
θ2

2σ2
T

)

for r ≥ rmin (2.3)

where the standard deviation of the Gaussian is related to the sensor beamwidth by

σT = θ0/2 [1]. The echo of the transmitted beam pattern from a planar reflector

when the transmitter and receiver are separate devices, is given as follows:

CHAPTER 2. BASICS OF ULTRASONIC SENSING 6

A(r1, r2, θ1, θ2) = Amax

2rmin

r1 + r2

exp

[

−(θ2
1 + θ2

2)

2σ2
T

]

for r1, r2 ≥ rmin (2.4)

where θ1 and θ2 are the angles, and r1 and r2 are the distances of the surface to the

transmitter and the receiver respectively. Please refer to Figure A.1 in Appendix A

for an illustration of the geometry. Amax is the maximum amplitude obtained when

the transmitter and receiver are coincident and θ1 = θ2 = 0◦ and r1 = r2 = rmin [28].

2.2 Ultrasonic Time-of-Flight Measurement

In this thesis, we employ time-of-flight (TOF) based ultrasonic range measurement.

The TOF is defined as the round-trip travel time of the ultrasonic pulse from the time

it is transmitted from the transducer to the time its reflection echo from a surface

is received. If the same transducer functions as both transmitter and receiver, the

device operates in the monostatic mode [29]. On the other hand, if the transmitter

and receiver are different devices, the operation mode is bistatic.

In earlier work, it has been shown that the reflected signals are well approximated

by a sinusoid with a Gaussian envelope [10]:

A(r, θ, t) = Amax

rmin

r
exp

(

−θ2

2σ2
T

)

exp

[

−(t − t0 − td)
2

2σ2

]

sin[2πf0(t − t0)] (2.5)

where f0 is the resonance frequency, t0 is the TOF, td is the time shift between the

beginning and the peak of the Gaussian envelope and σ is the standard deviation of

the Gaussian signal envelope.

The received signal model is illustrated in Figure 2.1. The echo is usually contam-

inated by noise and the time at which the reflection is received can be determined by

means of simple thresholding, using a constant threshold level. The true value of the

TOF corresponds to the starting point of the echo. Simple thresholding results in a

biased TOF estimate, since the threshold is usually exceeded a little bit later than

the starting point so that the estimated TOF is slightly larger than the actual. If

CHAPTER 2. BASICS OF ULTRASONIC SENSING 7

the threshold is set too low, there will be many false echo detections due to the noise

on the signal. On the other hand, if it is set too high, the bias in the TOF estimates

increases and it is possible to miss some of the weaker echoes with low amplitude.

Hence, there is a trade-off between the false detection rate and missed detection

rate of echoes. Assuming a zero-mean Gaussian additive noise model, the threshold

level is usually set to 4–5 standard deviations of the noise, since Gaussian noise will

remain within ±3 standard deviations of the mean 99.73% of the time [30]. In the

given example in Figure 2.1, σ = 0.001 sec, td = 3
f0

, θ = 0◦ and the additive noise

is zero-mean Gaussian with a standard deviation of 0.005. The threshold level was

set equal to five standard deviations of the noise which is 0.025, resulting in some

bias on the measurements but reducing the rate of false echo detections. The true

TOF value was 11.66 ms, and the TOF estimate was 11.68 ms. In order to reduce

or eliminate the bias, alternatives to simple thresholding such as adaptive, variable

or double thresholding [31] and curve-fitting [32] techniques have been proposed.

0.0115 0.0116 0.0117 0.0118 0.0119 0.012
−1

−0.5

0

0.5

1

time

am
pl

itu
de

signal
threshold

true
TOF

estimated
TOF

Figure 2.1: Typical received echo with additive noise and the threshold level.

Once the TOF value is estimated, the range can be easily calculated from

r =
c t0
2

, (2.6)

where t0 represents the TOF and c, the speed of sound is given by

CHAPTER 2. BASICS OF ULTRASONIC SENSING 8

����������������
����������������
����������������
����������������
����������������
����������������
����������������

����������������
����������������
����������������
����������������
����������������
����������������
����������������

T/R

line−of−sight

surface

r

sensitivity
region

circular arc

r_min

ultrasonic transducer

(a) monostatic mode

����������������
����������������
����������������
����������������
����������������
����������������
����������������

����������������
����������������
����������������
����������������
����������������
����������������
����������������

sensitivity
region

surface

joint

T R
ultrasonic transducer pair

elliptical arc

(b) bistatic mode

Figure 2.2: (a) Single transducer configuration resulting in a circular arc, (b) dual
transceiver configuration resulting in an elliptical arc.

c = 331.4
√

T/273 m/s = 343.3 m/s at room temperature (T = 293 K).

Since most air-borne ultrasonic sensing systems operate below a resonance fre-

quency of 200 kHz, frequencies involved correspond to wavelengths well above several

millimeters, and the reflection from the measured surface is specular, not diffused.

Due to this mirror-like reflection, when the transducer is operated in the monostatic

mode (Figure 2.2(a)), an echo can be detected only if the incoming ray is perpendic-

ular to the surface at some point. In the bistatic mode (Figure 2.2(b)), there should

be a path between the transmitter and receiver such that at the point of reflection,

the angle of incidence and the angle of reflection made with the surface normal are

equal.

CHAPTER 2. BASICS OF ULTRASONIC SENSING 9

2.3 Representing Angular Uncertainty by Arc

Maps

In this study, simple ultrasonic range sensors are modeled that measure the TOF and

provide a range measurement according to Equation (2.6). Although such devices

return accurate range data, typically they cannot provide direct information on the

angular position of the point on the surface from which the reflection was obtained.

Most commonly, the large beamwidth of the transducer is accepted as a device limi-

tation that determines the angular resolving power of the system, and the reflection

point is assumed to be along the LOS. According to this naive approach, a simple

mark is placed along the LOS of the transducer at the measured range, resulting in

inaccurate maps with large angular errors. Alternatively, the angular uncertainty in

the range measurements has been represented by regions of constant depth [33] and

ultrasonic arc maps [34,35] that represent the angular uncertainty while preserving

more information. This is done by drawing arcs spanning the beamwidth of the

sensor at the measured range, representing the angular uncertainty of the object

location and indicating that the echo-producing object can lie anywhere on the arc.

Thus, when the same transducer transmits and receives, all that is known is that the

reflection point lies on a circular arc of radius r, as illustrated in Figure 2.2(a). More

generally, when one transducer transmits and another receives, it is known that the

reflection point lies on the arc of an ellipse whose focal points are the transmitting

and receiving elements (Figure 2.2(b)). The arcs are tangent to the reflecting surface

at the actual point(s) of reflection. Arc segments near the actual reflection points

tend to reinforce each other. Arc segments not actually corresponding to any re-

flections and simply representing the angular uncertainty of the transducers remain

more sparse and isolated. Similarly, those arcs caused by higher-order reflections,

crosstalk, and noise also remain sparse and lack reinforcement. By combining the

information inherent in a large number of such arcs, angular resolution far exceeding

the beamwidth is obtained.

Apart from the wide beamwidth, another commonly noted disadvantage of ultra-

sonic range sensors is the difficulty associated with interpreting spurious readings,

crosstalk, higher-order, and multiple reflections. The proposed method is capable of

CHAPTER 2. BASICS OF ULTRASONIC SENSING 10

effectively suppressing the first three of these, and, although not implemented here,

it would have the intrinsic ability to process echoes returning from surface features

further away than the nearest (i.e., multiple reflections) informatively.

The device that is modeled and used in this study is the Polaroid 6500 series

transducer [36] operating at a resonance frequency of f0 = 49.4 kHz, corresponding

to a wavelength of λ = c/f0 = 6.9 mm. The half beamwidth of the transducer is θ0 =

±12.5◦, the transducer aperture radius is a = 2 cm and rmin = 5.7 cm. We use a pair

of these transducers, with a center-to-center separation of 9 cm. Each transducer

is fired in sequence and both transducers detect the resulting echoes. After a pulse

is transmitted, if echoes are detected at both transducers, this corresponds to one

circular and one elliptical arc. Hence, with two transducers each firing in its own

turn, at most four arcs are obtained at each position of the transducer pair. The

signal models of these echoes are provided in Appendix A.

In the following chapters, we introduce a new method to process these arc maps

and compare it with the existing methods.

Chapter 3

Algorithm Descriptions

In this work, we implemented and compared the following algorithms for processing

arc maps, the last of which is developed in this thesis:

• Bayesian update scheme [3],

• morphological processing of arc maps [34,35],

• voting and thresholding of arc maps [37,38],

• arc-transversal median algorithm [39],

• and directional maximum algorithm.

Different arc maps, each corresponding to a certain set of TOF measurements is

processed by each method and the results are compared.

3.1 Bayesian Update (BU)

Occupancy grids representing the probability of occupancy are introduced primar-

ily by Elfes and Moravec [3, 4]. A Bayesian update scheme for these occupancy

11

CHAPTER 3. ALGORITHM DESCRIPTIONS 12

grids by using ultrasonic sensor data was suggested in [3] and is included in this

thesis as an earlier example of related work. Starting with a blank or completely

uncertain occupancy grid, each range measurement updates the grid formation in a

Bayesian manner. For a certain measurement, the following sensor characteristics

and obtained data are listed for each pixel P (x, y) of the map to be updated:

• r range measurement returned by the ultrasonic sensor

• rmin lower range threshold (near-field limit)

• rǫ maximum ultrasonic range measurement error

• θ0 sensor half-beamwidth angle

• 2θ0 beamwidth angle subtending the main lobe of the sensitivity region

• S = (xs, ys) position of the ultrasonic sensor

• σ distance from P (x, y) to S = (xs, ys)

Occupancy probability of the scanned pixels are defined over two distinct prob-

ability measures: (pE, probability of emptiness and pO, probability of occupancy).

These probability density functions are defined as follows:

pE(x, y) = p[point (x, y) is empty]

= Er(σ) · Ea(θ)

where Er(σ) and Ea(θ) are respectively the range and angle dependency of the

probability density function for emptiness, given by:

Er(σ) =

{

1 − [(σ − rmin)/(r − rǫ − rmin)]2 for σ ∈ [rmin, r − rǫ],

0 otherwise,

and

Ea(θ) = 1 − (θ/θ0)
2, for θ ∈ [−θ0, θ0].

CHAPTER 3. ALGORITHM DESCRIPTIONS 13

Likewise, pO is defined as:

pO(x, y) = p[position (x, y) is occupied]

= Or(σ) · Oa(θ)

where Or(σ) and Oa(θ) are respectively the range and angle dependency of the

probability density function for occupancy, and defined as:

Or(σ) =

{

1 − [(σ − r)/rǫ]
2, for σ ∈ [r − rǫ, r + rǫ]

0 otherwise,

and

Oa(θ) = 1 − (θ/θ0)
2, for θ ∈ [−θ0, θ0].

The pE and pO described above are illustrated in Figure 3.1.

r
min

r

E
p
O
(range)

range

1

r x
10

()
E

p
probability

(range)

ε εr−r r+r

y

range

()
O
pp and

(a)

(b) (c)

Figure 3.1: (a) Range dependency, (b) x and y dependency, and (c) θ dependency
of pO and pE.

The algorithm starts with an initially uncertain map where all the pixel values

are set to zero which corresponds to the mid-point of the interval [−1, 1] for pixel

CHAPTER 3. ALGORITHM DESCRIPTIONS 14

values. For each range measurement, pE and pO values are calculated for the cells

inside the field of view of the transducer by using the above formulas. The following

Bayesian update rules are used to update the existing values in the cell array:

pE(cell) := pE(cell) + pE(reading) − pE(cell) × pE(reading)

pO(cell) := pO(cell) + pO(reading) − pO(cell) × pO(reading)

The map of the environment is built by iteratively updating the contents of each cell

via a number of range measurements. In the end, pE and pO arrays form modified

probability distribution functions that vary between –1 and 1.

pixels

pi
xe

ls

200 400 600 800

0

100

200

300

400

500

600

Figure 3.2: Simulation example 1 – actual surface profile and the transducer posi-
tions.

pixels

pi
xe

ls

200 400 600 800

0

100

200

300

400

500

600

Figure 3.3: Simulation example 2 – actual object and the transducer positions.

CHAPTER 3. ALGORITHM DESCRIPTIONS 15

The algorithm is implemented and demonstrated by two different simulation

examples first. In the first case, a piece-wise linear surface profile is simulated

(Figure 3.2). In the second case, an angular scanner is simulated, in which an

object shown in Figure 3.3 is scanned. In the first case, or example 1, the transducer

pairs with a center-to-center separation of 9 cm are regularly located in three rows,

uniformly distributed in each row, 50 cm between the first two rows and 1 m between

the second and the third rows, the third row being the closest one to the surface.

The transducer pairs in the first row have a regular LOS sweep along the line starting

from 330◦ and ending on the rightmost end at 210◦, the second row has a sweep from

300◦ to 240◦ and the third row has a sweep of 290◦ to 250◦, all angles being measured

from the +x axis. For the angular scanner setting, or example 2, transducer pairs

are regularly distributed on a circle, at a constant distance of 250 cm from the

object to be scanned. The transducers are radially oriented and looking inward. A

total of 120 transducer positions are used in each case, corresponding to 60 different

positions of the transducer pair and at most 240 arcs in the arc map. The resulting

arc maps for each simulation example can be seen in Figure 3.4.

The rays within the beamwidth of the transducer are modeled from −12.5◦ to

+12.5◦ at 0.5◦ intervals. Assuming specular reflections, perpendicular incidence

of each ray with the predefined world array is checked. If such an incidence is

found, than the round trip distance is calculated and actual thresholding delay of the

ultrasonic circuitry is accounted for by thresholding a shifted Gaussian-modulated

sinusoid.

For the case where there are multiple reflections from the field of view of a

transducer after a single transmission, the very first echo is registered, as the first

echo to trigger the transducer is assumed to be from the obstacle with the minimum

distance to the transducer.

The world model in each example consists of a 2-D array of 800× 600 elements.

Each element (further referred as a “pixel”) contains a double value with which

we can represent either occupancy or a weight/probability of occupancy. Similar

occupancy grid applications are first suggested by Elfes and Moravec and have been

widely popular [40,41].

CHAPTER 3. ALGORITHM DESCRIPTIONS 16

In computer simulations, MATLAB is chosen as the coding platform, mainly due

to the ease of mathematical description, visual representation efficiency and relative

familiarity. Faster programming platforms, such as Visual C++ can be deployed, if

and when the computational complexity of the algorithms become demanding. The

.m files of the MATLAB code can be found in Appendix C.

pixels

pi
xe

ls

0 100 200 300 400 500 600 700 800

0

100

200

300

400

500

600

(a) example 1 arc map

pixels

pi
xe

ls

300 350 400 450 500

200

250

300

350

400

(b) example 2 arc map

Figure 3.4: Arc maps of the two simulation examples.

The surface profile in Figure 3.5 is obtained by using the algorithm described

above on the example given in Figure 3.2. The only modification done to the orig-

inal algorithm given in [3] is that besides the circular arcs, the elliptical crosstalk

arcs described in Chapter 2 are also included for a fair comparison with the other

algorithms, by including (at most) four probability density updates for each position

CHAPTER 3. ALGORITHM DESCRIPTIONS 17

of the transducer pair, corresponding to four arcs drawn in the arc map. As seen

in Figure 3.5, the resultant map contains a considerable amount of artifacts and

further cleaning is required in order to obtain a useful representation of the actual

profile.

pixels

pi
xe

ls

0 100 200 300 400 500 600 700 800

0

100

200

300

400

500

600

Figure 3.5: Example 1 – BU result for occupancy probabilities.

3.2 Morphological Processing (MP)

Morphological processing techniques have been used in pattern recognition appli-

cations since they were first introduced [42]. Erosion, dilation, opening, closing,

thinning and pruning are the fundamental binary morphological operations, and

the use of these techniques was extended even to gray-scale images [43]. Being easy-

to-use yet powerful tools in image processing, morphological operators have widely

been employed in a number of areas including biomedical engineering, machine vi-

sion and remote sensing. In addition to conventional images, range data have also

been processed by morphological operators [44] and the processing of ultrasound

data from medical applications was explored in [45].

CHAPTER 3. ALGORITHM DESCRIPTIONS 18

The processing of ultrasonic arc maps using morphological processing techniques

was first proposed by Başkent and Barshan [34]. Morphological processing of arc

maps defines an easy to implement, yet effective solution to ultrasonic map build-

ing. The arc map usually has artifacts that can be due to higher-order reflections,

erroneous readings or noise. Luckily, these are not enhanced as much as the arcs re-

sulting from the actual surface profile. By applying binary morphological processing

operations, one can eliminate the artifacts of the arc map and extract the surface

profile. In the study reported in [34], a large number of transducers was used, con-

figured linearly, circularly or randomly. The best results were obtained with the

randomly distributed configuration. The main problem with this technique was

that the method did not perform so well where the curvature of the surface changes

sharply, such as at corners and edges. In our case, opening operation (erosion fol-

lowed by dilation) is applied to the arc map at hand for the two simulation examples.

The details of the simulations are as described in Section 3.1. The morphologically

processed result for the first simulation setting (example 1) described there can be

seen in Figure 3.6.

pixels

pi
xe

ls

0 100 200 300 400 500 600 700 800

0

100

200

300

400

500

600

Figure 3.6: Example 1 – MP results (opening applied).

The artifacts of the raw arc map of Figure 3.4(a) are considerably cleared in

CHAPTER 3. ALGORITHM DESCRIPTIONS 19

Figure 3.6. However, the corners are still distorted while edges have major discon-

tinuities.

3.3 Voting and Thresholding (VT)

An alternative to morphological processing techniques for arc maps is a voting

scheme where each pixel holds the number of arcs crossing that pixel, hence having

an occupancy weight array of pixels [37,38]. By simply thresholding this array, i.e.,

zeroing the pixels that have a value lower than a suitable threshold value, artifacts

of the arcs can be eliminated and the profile is extracted. A comparison of this

approach with morphological processing is provided in [37]. The result of applying

this approach to the angular scanner example of Figure 3.3 with a threshold value

of five is given in Figure 3.7.

pixels

pi
xe

ls

300 350 400 450 500

200

250

300

350

400

Figure 3.7: Example 2 – VT with a threshold of 5.

While the profile obtained by using VT has some minor point artifacts that

cannot be removed without a higher threshold that in turn would cause gaps in

the necessary parts of the profile, the overall performance observed in Figure 3.7 is

acceptable and the slight inaccuracy at the edges and corners is due to the inherently

low angular resolution of the ultrasonic transducer.

CHAPTER 3. ALGORITHM DESCRIPTIONS 20

3.4 Arc-Transversal Median (ATM)

The Arc-Transversal Median Algorithm is a multi-stage approach that requires both

extensive bookkeeping and considerable processing [39]. The algorithm can be sum-

marized as follows. For each arc in the arc map, the intersection(s) with other arcs,

if they exist, are recorded. For the arcs with intersection(s), the median of the in-

tersection points with other arcs is selected as the actual point of reflection. For

the arcs without any intersections, the center-of-line approach is utilized, i.e., the

mid-point of the arc is chosen as the actual point of reflection. Hence, this is an

algorithm that defines a single point in the map for each ultrasonic echo. It can be

considered as a much improved version of the naive approach where a single mark is

placed along the LOS at the measured range, which was mentioned in Section 2.3.

The angular scanner simulation of example 2 resulted in the profile in Figure 3.8

when the ATM algorithm is applied.

pixels

pi
xe

ls

300 350 400 450 500

200

250

300

350

400

Figure 3.8: Example 2 – ATM.

ATM result represented in Figure 3.8 is too sparsely populated and cannot give

a useful description of the object. This method also seems to round off edges and

results in gaps at the corners.

CHAPTER 3. ALGORITHM DESCRIPTIONS 21

3.5 Directional Maximum (DM)

In this method, we assume that we have a designated direction-of-interest (DOI)

in any map-building scenario. This direction may be based on prior knowledge,

or it can be predetermined by the map-building procedure as demonstrated in the

indoor map-building examples in the following chapter. For instance, in our profile

determination scenario (example 1), the vertical direction is the DOI, while in the

angular scanner case the DOI is the radial direction, which changes as the angular

position of the scanner head changes. If DOI is not known, it can be found from the

distribution of the data and is chosen perpendicular to the direction along which

the spread of the collected data is maximum.

Once the DOI is given or determined, the arc map that contains the artifacts is

scanned along this DOI; column-wise for the indoor profile case and radial direction-

wise for the angular scanner case. Each column/directional array is processed as to

leave only the directional maximum value and blank-out the rest of the pixels. If

there exist more than one pixel with the maximum value in the array, the algorithm

selects the one encountered first in the DOI. This step constitutes the actual artifact

removal step of the algorithm. As a final step, morphological processing is applied to

the arc maps of these two examples, consisting of applying the bridging and dilation

operations twice.

As seen in Figure 3.9, directional maximum gives cleaner results for both ex-

amples, yet the corners of both cases are not fully represented and the edges seem

to be slightly discontinuous. The highly populated arc map of example 2 seen in

Figure 3.4(b) is successfully cleaned to give a considerably accurate object profile,

and the discontinuities of example 1 result are minimal with respect to the other

methods. Note that the possible problem of the existence of multiple maxima in a

directional array does not does not occur in these examples.

CHAPTER 3. ALGORITHM DESCRIPTIONS 22

pixels

pi
xe

ls

0 100 200 300 400 500 600 700 800

0

100

200

300

400

500

600

(a) example 1 result

pixels

pi
xe

ls

300 350 400 450 500

200

250

300

350

400

(b) example 2 result

Figure 3.9: DM results on the two examples.

CHAPTER 3. ALGORITHM DESCRIPTIONS 23

3.6 Results of Simulation Examples

We have defined three distinct error criteria to evaluate and compare the algorithms

described above. The first and maybe the more important one is the mean abso-

lute error between the determined and true features. The second error criterion

involves the percentile amount of the profile built. The final criterion stands for the

computational cost of the algorithms in terms of CPU time. The evaluation of the

two simulation examples of this chapter according to these three criteria is given

in Table 3.1. These error criteria, one standing for quality, the second for quantity

and the last for implementability only make sense when considered together, since

putting single perfectly placed pixel on the map is clearly not what we need.

mean absolute error fill ratio CPU time
(pixels) (percent) (sec)

method example 1 example 2 example 1 example 2 example 1 example 2
BU 19.7 25.3 86.4 100 30.9 32.0
MP 26.4 41.2 72.7 100 0.67 1.35
VT 21.4 22.4 77.3 99.8 0.17 0.20

ATM 6.9 14.0 13.2 45.3 300.3 320.4
DM 20.7 8.4 94.0 100 2.1 7.12

Table 3.1: Error criteria for the two simulation examples.

As can be seen from Table 3.1, ATM, DM and VT each have certain advantages

associated. In example 1, ATM produced the least mean absolute error but the

processing time associated is much larger than feasible. Processing time of VT

is far smaller than the other methods followed by MP and DM. The largest fill

ratio is obtained by DM in both examples. DM also has the least mean absolute

error in example 2. From the CPU time columns of Table 3.1, DM seems to take

longer to compute in the angular scanner scenario (example 2), and this is caused

by conversion to polar coordinates before thresholding in order to process along the

DOI which is the radial direction in this example and back to Cartesian coordinates

afterward. The other algorithms do not need this transformation since they can all

operate in Cartesian coordinates.

In this chapter, we have introduced the different techniques compared in this

thesis through two simulation examples and defined three error criteria for their

CHAPTER 3. ALGORITHM DESCRIPTIONS 24

comparison. In the following chapter, the same techniques will be compared in

indoor environments using two different approaches for motion planning.

Chapter 4

Indoor Mapping Simulations

The algorithms briefly described and demonstrated in the previous chapter are ex-

tended into complete indoor mapping simulations in this chapter. Three different

environments are modeled whose boundaries are shown in Figure 4.1. Motion plan-

ning for ground coverage and map building in unknown environments is implemented

in two different ways: wall following and Voronoi diagram tracing.

4.1 Wall Following (WF)

The wall-following (WF) scheme utilizes a simple rule-based algorithm, which can

be found in Appendix B, to follow the walls at a relatively constant distance. This

way, the majority of the total surface profile of the indoor environment is covered.

The positions of the “steps” taken by the mobile platform while utilizing the WF

algorithm are illustrated using circles in Figure 4.2. While the WF procedure gen-

erates these sparsely distributed steps, the actual measurement positions for map

building are obtained by interpolating the steps by a factor of ten, taking measure-

ments on nine uniformly distributed points in-between the step positions in addition

to the actual step positions. These intermediate points are represented with solid

dots in Figure 4.2 for the three rooms. Each of these solid dots corresponds to one

of the positions of the transducer pair where TOF measurements are collected.

25

CHAPTER 4. INDOOR MAPPING SIMULATIONS 26

pixels

pi
xe

ls

50 100 150 200 250 300 350

0

50

100

150

200

(a) room 1

pixels

pi
xe

ls

50 100 150 200 250 300 350

0

50

100

150

200

(b) room 2

pixels

pi
xe

ls

50 100 150 200 250 300 350

0

50

100

150

200

(c) room 3

Figure 4.1: The three rooms used in this study.

CHAPTER 4. INDOOR MAPPING SIMULATIONS 27

pixels

pi
xe

ls

50 100 150 200 250 300 350

0

50

100

150

200

(a) room 1

pixels

pi
xe

ls

50 100 150 200 250 300 350

0

50

100

150

200

(b) room 2

pixels

pi
xe

ls

50 100 150 200 250 300 350

0

50

100

150

200

(c) room 3

Figure 4.2: WF step and measurement positions.

CHAPTER 4. INDOOR MAPPING SIMULATIONS 28

In all of the following, transducers placed as a pair in the marked positions fire

in sequence, and the resulting echoes are recorded as described in Section 2.3. By

using the measurement data taken from the step positions and from the intermediate

points in between the actual steps, each of the aforementioned algorithms is exe-

cuted. The arc maps and the processed maps for each method are given in Figures

4.3–4.6.

pixels

pi
xe

ls

0 100 200 300 400 500 600 700 800

100

200

300

400

500

600

700

(a) room 1

pixels

pi
xe

ls

0 100 200 300 400 500 600 700 800

100

200

300

400

500

600

700

(b) room 2

pixels

pi
xe

ls

0 100 200 300 400 500 600 700 800

100

200

300

400

500

600

700

(c) room 3

Figure 4.3: The arc maps obtained by WF in the three rooms.

Since WF is a structured method of motion planning, the artifacts of the raw

arc maps in Figure 4.3 are minimal, yet there is the need for cleaning the erroneous

extensions of planar surfaces, as it is clearly visible in Figure 4.3(b).

CHAPTER 4. INDOOR MAPPING SIMULATIONS 29

Bayesian Update - WF

The results in Figure 4.4 are obtained by using the WF measurement locations

in Figure 4.2 and the Bayesian update scheme.

pixels

pi
xe

ls

0 100 200 300 400 500 600 700 800

100

200

300

400

500

600

700

(a) room 1

pixels

pi
xe

ls

0 100 200 300 400 500 600 700 800

100

200

300

400

500

600

700

(b) room 2

pixels

pi
xe

ls

0 100 200 300 400 500 600 700 800

100

200

300

400

500

600

700

(c) room 3

Figure 4.4: BU occupancy probability grids obtained by WF in the three rooms.

Bayesian update, as observed in Figure 4.4, gives a cleaner map for each room,

yet the angular uncertainty artifacts and erroneous reading results are still visible,

especially for room 2 in Figure 4.4(b).

CHAPTER 4. INDOOR MAPPING SIMULATIONS 30

Morphological Processing - WF

By applying the thinning operation four times to the arc maps in Figure 4.3, the

morphologically processed arc maps in Figure 4.5 are obtained.

pixels

pi
xe

ls

0 100 200 300 400 500 600 700 800

100

200

300

400

500

600

700

(a) room 1

pixels

pi
xe

ls

0 100 200 300 400 500 600 700 800

100

200

300

400

500

600

700

(b) room 2

pixels

pi
xe

ls

0 100 200 300 400 500 600 700 800

100

200

300

400

500

600

700

(c) room 3

Figure 4.5: The result of applying MP to the arc maps obtained by WF in the three
rooms.

Note that a large amount of artifacts has been removed and planar surfaces are

satisfactorily represented. However, a substantial amount of branches that clutter

the actual map remain and applying further thinning operations not only removes

these unwanted branches but also damages the integrity of the map, creating more

gaps.

CHAPTER 4. INDOOR MAPPING SIMULATIONS 31

Voting and Thresholding - WF

By thresholding the arc maps in Figure 4.3 with a threshold value of four, the

processed arc maps of Figure 4.6 are obtained.

pixels

pi
xe

ls

0 100 200 300 400 500 600 700 800

100

200

300

400

500

600

700

(a) room 1

pixels

pi
xe

ls

0 100 200 300 400 500 600 700 800

100

200

300

400

500

600

700

(b) room 2

pixels

pi
xe

ls

0 100 200 300 400 500 600 700 800

100

200

300

400

500

600

700

(c) room 3

Figure 4.6: The result of applying VT to the arc maps obtained by WF in the three
rooms.

This technique still leaves some range uncertainty indicated by thick solid fea-

tures at planar surfaces, while corners are slightly too much eroded. Less threshold-

ing is found to be prone to a large amount of artifacts while larger thresholds reduce

the fill ratios to too low values.

CHAPTER 4. INDOOR MAPPING SIMULATIONS 32

Arc-Transversal Median - WF

Applying the ATM algorithm to the arc maps in Figure 4.3 produces the results

in Figure 4.7.

pixels

pi
xe

ls

0 100 200 300 400 500 600 700 800

100

200

300

400

500

600

700

(a) room 1

pixels

pi
xe

ls

0 100 200 300 400 500 600 700 800

100

200

300

400

500

600

700

(b) room 2

pixels

pi
xe

ls

0 100 200 300 400 500 600 700 800

100

200

300

400

500

600

700

(c) room 3

Figure 4.7: The result of applying the ATM algorithm to the arc maps obtained by
WF in the three rooms.

As seen from the ATM results, this algorithm creates sparsely filled, yet accurate

maps. Since the number of measurements for each implementation is kept constant,

ATM is found to be requiring a higher number of measurements in order to have a

more complete map. In all three of the rooms in Figure 4.7, there are many gaps in

the surface profiles that ATM failed to fill. Corners are under-represented while the

accuracy of the completed portion is satisfactory.

CHAPTER 4. INDOOR MAPPING SIMULATIONS 33

Directional Maximum - WF

For a complete map-building application involving a motion-planning scheme

such as wall following, the direction of the currently followed wall is the DOI. In

other words, the DOI corresponds to the surface normal. In order to directionally

process the maps in Figure 4.3, segmentation of the arc map into principal directional

sub-maps is proposed. The segmentation is chosen to be in four principal directions

in the Cartesian coordinate system. On the unit circle, the measurement directions

are segmented into four groups according to their proximities to +x̂, +ŷ,−x̂ and

−ŷ axes, each measurement being assigned to the principal direction to which its

transducer LOS is closest to. The arcs resulting from these grouped measurements

form the sub-map segmentation of the complete arc map.

When the maps in Figure 4.3 are segmented into four principal directional sub-

maps and directionally processed, the results shown in Figure 4.8 are obtained. No

subsequent morphological processing is involved in this case. The resultant maps

in Figure 4.8 are more populated than the previous ones, yet some of the artifacts

were not cleaned properly.

In this section, we compared the five algorithms based on the maps constructed

by the WF approach. The best results were obtained by BU and DM algorithms. In

general, the arcs generated by reflections from corners seem to be generating a fair

amount of the discontinuity observed in the arc maps, yet the processing methods

seem to counter these effects considerably.

In the next section, we will make a comparison based on processed arc maps

obtained when Voronoi diagram tracing is applied to the same three environments.

CHAPTER 4. INDOOR MAPPING SIMULATIONS 34

pixels

pi
xe

ls

0 100 200 300 400 500 600 700 800

100

200

300

400

500

600

700

(a) room 1

pixels

pi
xe

ls

0 100 200 300 400 500 600 700 800

100

200

300

400

500

600

700

(b) room 2

pixels

pi
xe

ls

0 100 200 300 400 500 600 700 800

100

200

300

400

500

600

700

(c) room 3

Figure 4.8: The result of applying DM to the arc maps obtained by WF in the three
rooms.

CHAPTER 4. INDOOR MAPPING SIMULATIONS 35

4.2 Voronoi Diagram (VD) Tracing

On a 2-D map containing objects or obstacles, Voronoi diagram (VD) is a tool that

can be used to obtain proximity information. When each point on the 2-D plane

is assigned to the nearest obstacle/object, a number of points are bound to be left

unassigned since they are equidistant to more than one point. These points, which

are on equidistant lines to obstacles/objects form the VD. By constructing the VD

of the unknown environment iteratively as described in [25, 26], and tracing the

respective VD, structured motion planning can be achieved.

Although there exists iterative methods of VD construction for mobile robots

that utilize the gradient-ascent operation to the minimum distance of a point to the

set of all obstacles in the environment [25, 26], we employed a simpler approach for

simulation purposes. The VDs utilized in our simulations are calculated with the

knowledge of the room map in question. This way, the resultant VDs are ideal while

iterative methodology requires high-level control rules to keep the robot close to the

actual VD edges. One can employ the iterative approach in the real-life scenario,

but the ideal VD is far better suited to our needs since the main scope of this thesis

is not the motion-planning part of the application.

The VDs shown in Figure 4.9 are obtained from our room models given in Fig-

ure 4.1.

CHAPTER 4. INDOOR MAPPING SIMULATIONS 36

0 50 100 150 200 250 300 350

0

50

100

150

200

pixels

pi
xe

ls

(a) room 1

0 50 100 150 200 250 300 350

0

50

100

150

200

pixels

pi
xe

ls

(b) room 2

0 50 100 150 200 250 300 350

0

50

100

150

200

pixels

pi
xe

ls

(c) room 3

Figure 4.9: VDs of the three rooms.

CHAPTER 4. INDOOR MAPPING SIMULATIONS 37

When these VDs are sampled, i.e., a set of points along Voronoi edges are fetched,

these points can be used as measurement points for map building. Downsampling

these measurement points to a number comparable to that used in WF results at

the decimated set of locations given in Figure 4.10. This is mainly done in order to

make a fair comparison between WF and VD tracing cases and be able to operate

in real-time. Hence, the resultant number of measurements is around 400 for each

case.

pixels

pi
xe

ls

50 100 150 200 250 300 350

0

50

100

150

200

(a) room 1

pixels

pi
xe

ls

50 100 150 200 250 300 350

0

50

100

150

200

(b) room 2

pixels

pi
xe

ls

50 100 150 200 250 300 350

0

50

100

150

200

(c) room 3

Figure 4.10: Sampled versions of the VDs indicating the points where measurements
are taken.

CHAPTER 4. INDOOR MAPPING SIMULATIONS 38

Note that the VD samples that are too close to the corners (closer than 30 cm)

have been removed since in real-life applications the mobile platform in use may not

be able to get so close to corners due to its dimensions. As a result of collecting

TOF data at the indicated positions and in multiple directions corresponding to the

directions of the closest obstacles, arc maps in Figure 4.11 are obtained. These arc

maps are processed with the same algorithms as before and the results are presented

on the following pages.

pixels

pi
xe

ls

0 100 200 300 400 500 600 700 800

100

200

300

400

500

600

700

(a) room 1

pixels

pi
xe

ls

0 100 200 300 400 500 600 700 800

100

200

300

400

500

600

700

(b) room 2

pixels

pi
xe

ls

0 100 200 300 400 500 600 700 800

100

200

300

400

500

600

700

(c) room 3

Figure 4.11: The arc maps obtained by VD tracing in the three rooms.

Bayesian Update - VD Tracing

The results in Figure 4.12 are obtained by using the VD tracing measurement

locations and the BU scheme. With VD tracing, BU gives fairly successful results

CHAPTER 4. INDOOR MAPPING SIMULATIONS 39

with minor gaps and some range uncertainty. Accurate planar profiles are obtained.

Some corners are still incomplete due to the large ultrasonic beamwidth, yet most

edges are well-defined.

pixels

pi
xe

ls

0 100 200 300 400 500 600 700 800

100

200

300

400

500

600

700

(a) room 1

pixels

pi
xe

ls

0 100 200 300 400 500 600 700 800

100

200

300

400

500

600

700

(b) room 2

pixels

pi
xe

ls

0 100 200 300 400 500 600 700 800

100

200

300

400

500

600

700

(c) room 3

Figure 4.12: BU occupancy probability grids obtained by VD tracing in the three
rooms.

Morphological Processing - VD Tracing

After the arc maps in Figure 4.11 are processed using the thinning operation

four times, the resultant maps in Figure 4.13 are obtained. As it was the case in

WF, applying four repetitive thinning operations removes most of the artifacts but

still leaves some defects on planar surfaces. This might be due to the large number

of arcs that occupy the same area on the planar parts, but neither further nor less

CHAPTER 4. INDOOR MAPPING SIMULATIONS 40

thinning seems to be producing better results. Other morphological processes such

as skeleton or erosion have also been tried but resulted in maps of lower quality.

pixels

pi
xe

ls

0 100 200 300 400 500 600 700 800

100

200

300

400

500

600

700

(a) room 1

pixels
pi

xe
ls

0 100 200 300 400 500 600 700 800

100

200

300

400

500

600

700

(b) room 2

pixels

pi
xe

ls

0 100 200 300 400 500 600 700 800

100

200

300

400

500

600

700

(c) room 3

Figure 4.13: The result of applying MP to the arc maps obtained by VD tracing in
the three rooms.

Voting and Thresholding - VD Tracing

Voting and thresholding of the arc maps in Figure 4.11 with a threshold value of

four resulted in the maps in Figure 4.14. Since planar parts have a higher density

of intersecting arcs, cleaning those parts requires a threshold value larger than four,

but higher thresholds clean the necessary features of the map such as corners and

edges. Therefore, four is found to be the optimal threshold level for indoor simulation

scenarios.

CHAPTER 4. INDOOR MAPPING SIMULATIONS 41

pixels

pi
xe

ls

0 100 200 300 400 500 600 700 800

100

200

300

400

500

600

700

(a) room 1

pixels

pi
xe

ls

0 100 200 300 400 500 600 700 800

100

200

300

400

500

600

700

(b) room 2

pixels

pi
xe

ls

0 100 200 300 400 500 600 700 800

100

200

300

400

500

600

700

(c) room 3

Figure 4.14: The result of applying VT to the arc maps obtained by VD tracing in
the three rooms.

CHAPTER 4. INDOOR MAPPING SIMULATIONS 42

Arc-Transversal Median - VD Tracing

Range measurements taken from VD tracing samples given in Figure 4.10 and

applying the ATM algorithm produces the results in Figure 4.15.

pixels

pi
xe

ls

0 100 200 300 400 500 600 700 800

100

200

300

400

500

600

700

(a) room 1

pixels

pi
xe

ls

0 100 200 300 400 500 600 700 800

100

200

300

400

500

600

700

(b) room 2

pixels

pi
xe

ls

0 100 200 300 400 500 600 700 800

100

200

300

400

500

600

700

(c) room 3

Figure 4.15: The result of applying the ATM algorithm to the arc maps obtained
by VD tracing in the three rooms.

As in the WF scenario, the accuracy of the ATM algorithm is satisfactory while

the resultant map is again more sparsely populated than the previous ones. The

minor gaps in the planar surfaces and the missing corner and edge points indicates

the necessity of a larger number of measurements to obtain a fully populated map

with the ATM algorithm.

CHAPTER 4. INDOOR MAPPING SIMULATIONS 43

Directional Maximum - VD Tracing

In this method, the arc maps in Figure 4.11 are segmented and directionally

processed, to obtain the results in Figure 4.16. In VD tracing approach to motion

planning, the DOI is the direction of the closest obstacle, similar to that being the

direction of the followed wall in WF.

pixels

pi
xe

ls

0 100 200 300 400 500 600 700 800

100

200

300

400

500

600

700

(a) room 1

pixels

pi
xe

ls

0 100 200 300 400 500 600 700 800

100

200

300

400

500

600

700

(b) room 2

pixels

pi
xe

ls

0 100 200 300 400 500 600 700 800

100

200

300

400

500

600

700

(c) room 3

Figure 4.16: The result of applying DM to the arc maps obtained by VD tracing in
the three rooms.

Some corner distortion is observable in the maps of each room in Figure 4.16.

In all three maps, the upper righthand corner contains some uncleaned artifacts

but the overall performance of DM in terms of artifact removal is satisfactory. The

planar surfaces are observed to be represented with less range uncertainty than the

other algorithms, which points to a higher accuracy.

CHAPTER 4. INDOOR MAPPING SIMULATIONS 44

4.3 Results of Indoor Mapping Simulations

For the indoor mapping scenarios, each simulation consists of approximately 400

TOF measurements comprising an arc map. The number of WF steps and the

total number of points do change for each room type. Similarly, VD samples are

bound to be in different numbers for each case. In indoor mapping scenarios, the

algorithms compare as follows according to the error criteria described in Section

3.6. In Table 4.1, the mean absolute error for each of the three environments is

given when motion planning is done by WF. Table 4.2 contains the fill ratios and

Table 4.3 contains the processing times of the algorithms1 for each room under the

WF scheme. The best result of each column in the table is marked with bold faced

fonts. When the two best results are comparable, both values are highlighted in the

same way.

In terms of mean absolute error (Table 4.1), DM is superior to all algorithms.

MP yields the best fill ratio (Table 4.2), however the results obtained by DM are

comparable to those of MP. In terms of CPU time (Table 4.3) VT is the best,

followed by DM and MP. ATM seems to require the largest CPU time and the

lowest fill ratio for the given number of measurements.

mean absolute error (pixels)
method room 1 room 2 room 3

BU 5.2 4.8 5.9
MP 7.8 9.1 7.0
VT 6.2 7.6 7.1

ATM 11.4 11.4 12.0
DM 3.2 4.0 3.5

Table 4.1: Mean absolute error – indoor simulations with WF.

1Internal MATLAB commands are used for time keeping, on a P4 3.06 MHz PC.

CHAPTER 4. INDOOR MAPPING SIMULATIONS 45

fill ratio (percent)
method room 1 room 2 room 3

BU 89.8 91.8 83.0
MP 96.7 96.1 90.5
VT 85.7 88.5 80.9

ATM 63.7 63.6 57.2
DM 92.7 94.4 88.5

Table 4.2: Fill ratio – indoor simulations with WF.

CPU time (sec)
method room 1 room 2 room 3

BU 6.2 9.0 5.6
MP 2.7 2.1 2.4
VT 0.1 0.1 0.1

ATM 941.2 3850.8 661.3
DM 1.7 1.8 1.9

Table 4.3: CPU time – indoor simulations with WF.

Tables 4.4–4.6 contain the error criteria for each room when motion planning is

done by VD tracing.

mean absolute error (pixels)
method room 1 room 2 room 3

BU 4.7 4.8 4.4
MP 6.1 7.2 6.8
VT 7.4 8.4 7.6

ATM 6.4 8.5 7.1
DM 4.5 4.7 5.3

Table 4.4: Mean absolute error – indoor simulations with VD tracing.

Referring to Table 4.4, DM is superior to the other algorithms in terms of mean

absolute error but BU performs comparably according to this criteria. For fill ratios

given in Table 4.5, MP and DM are the two best algorithms, closely followed by BU,

but the overall performance of all algorithms with respect to fill ratio are comparable

except that of ATM algorithm. In terms of CPU time tabulated in Table 4.6, VT

is again superior, followed by DM and MP. The simplicity of the method results in

far smaller computation times, while ATM, for instance, gives considerably larger

processing costs due to the need to compute the intersection of arcs and the median

of the intersections. ATM is also the algorithm resulting in the lowest fill ratios and

CHAPTER 4. INDOOR MAPPING SIMULATIONS 46

fill ratio (percent)
method room 1 room 2 room 3

BU 93.0 94.6 94.0
MP 93.2 97.1 95.0
VT 91.4 90.7 89.8

ATM 74.2 71.5 72.7
DM 93.4 96.7 93.7

Table 4.5: Fill ratio – indoor simulations with VD tracing.

CPU time (sec)
method room 1 room 2 room 3

BU 7.9 4.6 5.3
MP 2.2 2.6 2.7
VT 0.1 0.1 0.1

ATM 1206.7 898.3 597.0
DM 1.7 1.6 2.1

Table 4.6: CPU time – indoor simulations with VD tracing.

the largest CPU time. These results are quite consistent with those obtained from

WF and the two simulation examples.

When Tables 4.1–4.6 are examined, the bold faced values that stand for the best

values indicate that DM’s performance is satisfactory. Among the five approaches

considered, it is the best algorithm in terms of mean absolute error and fill ratio,

and second best to VT in processing cost. Its performance according to the fill

ratio criterion is satisfactory, where it ranks between the best and the third best in

different examples.

For a comparison between the motion-planning approaches (WF and VD trac-

ing), VD tracing results in higher success measures. Generalized VD generation may

be considered advantageous for map-building applications since it has a stronger

promise of ground coverage and each 2-D environment is uniquely defined by its

VD, however one has to consider the computational cost of VD tracing. Iterative

building methods for the VD may be demanding for the mobile platform in use,

hence the necessity to employ simpler and more cost-effective approaches such as

WF.

CHAPTER 4. INDOOR MAPPING SIMULATIONS 47

In this chapter, we compared the algorithms for map-building in indoor environ-

ments using two ways of motion planning. In the final chapter we discuss the main

conclusions and future extensions of the work reported here.

Chapter 5

Conclusions

The main contribution of this thesis has been providing a comparison between dif-

ferent algorithms for processing ultrasonic arc maps for map-building purposes. The

results indicate that the newly proposed DM algorithm has some advantages over

the existing algorithms, while among the existing four algorithms each has stronger

or weaker characteristics that might be suitable for certain situations or conditions.

Having the minimum mean absolute error, DM should be considered a good choice

in most cases, while strict requirements on computational cost might lead to the use

of VT algorithm since it requires far smaller CPU time to operate. In addition, MP

might be considered when a rough yet full view of the environment is required as the

computational cost of MP is still achievable in real-time even though the associated

mean absolute errors are not as good as those of DM.

DM in itself has added an important aspect to the map-building algorithms

which is the direction of interest. The sense of direction readily available in most

motion-planning schemes is shown to be an effective addition when incorporated

into the map-building algorithm. The directional awareness of the mobile platform

for the sake of surface or profile extraction was proved to deliver satisfactory maps.

In addition, the compared motion-planning approaches showed that VD tracing

is more successful in ground coverage since it includes a more systematic and com-

plete approach to the entire environment. WF also has its merits as the iterative

48

CHAPTER 5. CONCLUSIONS 49

methods to generate a WF motion-plan is far simpler than that of VD tracing and

in most artificial environments simple rule-based algorithms perform well for WF.

VD tracing seems to be the better choice if the computational cost is of secondary

importance as it might be computationally demanding for complex environments.

As for future extensions, multiple reflections might be included in the simulated

signal model. Iterative methods for VD generation would also be a good capability

for the mobile platform since a priori knowledge of the VD might not be readily

available. A more complex WF algorithm can be included in order to map arbitrarily

curved surfaces that can be encountered in natural environments. For DM, a self-

centered polar processing scheme can be developed where several separate locations

of the mobile platform in the environment might be chosen and used as central

points from which the arc map can be radially processed and then fused. Multiple

maxima along directional array can be handled according to the general curvature

of the arcs intersecting at each pixel. Applying active contour models used in image

processing and known as “snakes” to the resultant maps might improve the fill ratios.

The results might be verified experimentally and the approaches can be extended

to other sensing modalities.

Appendix A

Ultrasonic Signal Models

Figure A.1: Geometry of the problem with the given sensor pair when the target is
a plane (adopted from [1]).

The echo models used in this thesis and presented in Chapter 2 are based on [1].

For a planar target and separate transducers working as transmitter and receiver

(transducer a and b), the geometry of reflection is illustrated in Figure A.1. Since

each transducer can be employed both as a transmitter and receiver, a set of four

TOF measurements are obtained when the transducers are fired in sequence. From

the geometry, the TOF measurements for each transmitter and receiver pair are

found as

50

APPENDIX A. ULTRASONIC SIGNAL MODELS 51

taa =
2ra

c
,

tab = tba =
r1 + r2

c
,

tbb =
2rb

c
,

where tab denotes TOF extracted from Aab(r, θ, d, t) which is the echo signal trans-

mitted by a and received by b at time t. The detected signals by each transmitter

and receiver can be modeled as:

Aaa(r, θ, d, t) = Amax

rmin

ra

e
−

θ
2

2σ2
T e−

(t−taa−td)2

2σ2 sin[2πf0(t − taa)]

Aab(r, θ, d, t) = Amax

2rmin

r1 + r2

e
−

θ
2
1+θ

2
2

2σ2
T e−

(t−tab−td)2

2σ2 sin[2πf0(t − tab)]

Aba(r, θ, d, t) = Amax

2rmin

r1 + r2

e
−

θ
2
1+θ

2
2

2σ2
T e−

(t−tba−td)2

2σ2 sin[2πf0(t − tba)]

Abb(r, θ, d, t) = Amax

rmin

rb

e
−

θ
2

2σ2
T e−

(t−tbb−td)2

2σ2 sin[2πf0(t − tbb)]

In all of the signal models, σT = θ0

2
, td = 3

f0
, σ = 0.001 sec, f0 = 49.4 kHz, and

rmin = 5.7 cm. The form of the range attenuation term r1 + r2 in Aab(r, θ, d, t) and

Aba(r, θ, d, t) is due to specular reflection of the beam.

Appendix B

Wall-following (WF) Algorithm

The WF algorithm employed in our simulations is a relatively simple and rule-based

approach similar to that described in [46]. If the bearing of the mobile robot is

taken as the reference frame on the 2-D plane, the general intention of the robot is

to keep the wall to be followed on +ŷ direction at all times. This is done as follows:

1. Initialization step: The robot is at an unknown, arbitrary location. Sixteen

range measurements in sixteen directions from the initial point, uniformly dis-

tributed on the unit circle with 22.5◦ intervals are obtained. The minimum

value among these range measurements, which corresponds to the closest ob-

stacle, is taken as the direction of the surface/wall to be followed.

2. First step: The robot approaches to or goes away from the closest surface until

the distance to the surface is 60 cm. Then the robot performs a −90◦ rotation

in order to align the wall to +ŷ direction of its internal frame of reference.

3. Step number 2 to N : Until the robot is in proximity of the initial point (at

20 cm distance to the starting location) or the predetermined number of steps

(an upper limit of 100 steps are chosen) are complete, the robot repeats this

procedure:

Take two range measurements. r1 being the range measured directly ahead or

in +x̂ direction in robot’s reference frame and r2 being the range measured in

52

APPENDIX B. WALL-FOLLOWING (WF) ALGORITHM 53

+ŷ direction in robot’s reference frame, check for the following:

(a) if r2 > 80 cm, then the followed wall is lost. Perform a +90◦ turn and

move 60 cm in three separate steps of 20 cm each.

(b) if r2 ≤ 80 cm and r1 > 60 cm, then take a step ahead. Move 15 cm ahead

and make any additional course correction necessary to keep the distance

to the wall (r2) at 60 cm.

(c) if both r2 ≤ 80 cm and r1 ≤ 60 cm, then perform a −90◦ turn. This

corresponds to the presence of a left-hand corner, so the new wall is

followed after this step.

The above described procedure is found to be simple enough yet effective in most

indoor environments that have artificial surfaces and obstacles, interfacing at right

angles. A flow chart of the algorithm can be found in Figure B.1. The threshold

values for r1 and r2 are set after a number of trials. The result of this algorithm

when applied to the room examples of Figure 4.1 in Chapter 4 are presented in

Figure 4.2.

For more complex environments and/or cases where computational cost of the

algorithm is not an issue, potential-based WF algorithms can also be employed [19–

21].

APPENDIX B. WALL-FOLLOWING (WF) ALGORITHM 54

GET RANGE
MEASUREMENTS
IN 16 DIRECTIONS

SELECT THE
CLOSEST
OBSTACLE

GET INTO 60 cm
OF THE WALL

AND TURN +90 deg

GET r1 & r2

IS r2 > 80 cm ?

NO

YES

IS r1 > 60 cm ?
YES

NO

MOVE
15 cm FORWARD

TURN −90 deg

TURN +90 deg
MOVE

60 cm FORWARD

FINISHED?
STEPS CLOSE

FIRST STEP?
TO

RETURN

YESYES

NO NO

Figure B.1: WF algorithm flowchart.

Appendix C

MATLAB Simulation Codes

The MATLAB code used in the simulations can be found on the following pages.

55

C:\MATLAB7\work\appendix.m Page 1

function wall_foll_map(type)

% WALL FOLLOWING TYPE MOTION-PLANNING BASED
% MAP BUILDING SCRIPT, UTILIZING MP, VT, ATM & DM
% GETS THE PARAMETER type TO INDICATE ROOM TYPE

disp('==')
disp(['Wall Following, Room Type ' int2str(type)])
disp('==')

room=draw_room4(type);
print('-deps',strcat('room_def_type_',int2str(type)))
[Y,X]=size(room);
% DEFINE THE ROOM, EXPORT EPS FIGURE OF THE ROOM AND GET SIZE

load(strcat('wall_foll_type_',int2str(type)));
% LOAD WALL FOLLOWING STEP LOCATIONS

%=========================
% MORPHOLOGICAL PROCESSING
%=========================
x_array1=wf(1,:);
y_array1=wf(2,:);
b_array1=wf(3,:)+90;
% EXTRACT LOCATIONS AND BEARINGS

x_array=interp(x_array1,10);
y_array=interp(y_array1,10);
b_array=interp(b_array1,10);
% INTERPOLATE STEP POSITIONS TO GET MEASUREMENT LOCATIONS

x_array=fix(x_array);
y_array=fix(y_array);
b_array=fix(b_array);
totalsonarno=length(x_array)
% FIX THE PIXELS TO SMALLEST INTEGER AND DISPLAY TOTAL MEASUREMENT POINT #

base_dm=zeros(Y+500,X+500);
% ALLOCATE EMPTY ARC-MAP ARRAY FOR BOOK KEEPING

for son=1:length(x_array)
 base_dm=sonarPut5(x_array(son),y_array(son),b_array(son),room,base_dm);
end
% PLACE THE SONARS

base=base_dm;
% COPY THE ARC MAP TO BE PROCESSED

tic
% START KEEPING THE TIME

base2=logical(sign(base));

C:\MATLAB7\work\appendix.m Page 2

% CONVERT ARC MAP TO LOGICAL

base3=bwmorph(base2,'thin',4);
% APPLY MORPHOLOGICAL PROCESSING

time_morph=toc
% GET THE COMPUTATION TIME

figure
colormap(gray(2))
image(2-2*base2)
grid on
xlabel('pixels','FontSize',14)
ylabel('pixels','FontSize',14)
axis equal
print('-deps',strcat('mp1_wf_type_',int2str(type)))
% DISPLAY AND EXPORT BINARY ARC MAP

figure
colormap(gray(2))
image(2-2*base3)
grid on
xlabel('pixels','FontSize',14)
ylabel('pixels','FontSize',14)
axis equal
print('-deps',strcat('mp2_wf_type_',int2str(type)))
% DISPLAY AND EXPORT MP ARCS

%========================
% VOTING AND THRESHOLDING
%========================
tic
% START KEEPING THE TIME

thres=4;
% SET THE THRESHOLD

base4=sign(floor(base/thres));
% APPLY THE THRESHOLD

time_vote=toc
% GET THE COMPUTATION TIME

figure
colormap(gray(255))
scale=255/max(max(base));
image(255-scale*base)
axis equal
grid on
xlabel('pixels','FontSize',14)
ylabel('pixels','FontSize',14)
print('-deps',strcat('vt1_wf_type_',int2str(type)))

C:\MATLAB7\work\appendix.m Page 3

% DISPLAY AND EXPORT INTEGER ARC MAP

figure
colormap(gray(255))
image(255-255*base4)
grid on
xlabel('pixels','FontSize',14)
ylabel('pixels','FontSize',14)
axis equal
print('-deps',strcat('vt2_wf_type_',int2str(type)))
% DISPLAY AND EXPORT VT ARC MAP

%======
% ATM
%======
arcs=0;
% ALLOCATE EMPTY ARRAY FOR ARC PIXEL LOCATIONS

tim_atm=0;
% RESET TIME KEEPING VARIABLE

for son=1:length(x_array)
 arcs=sonarATM2(x_array(son),y_array(son),b_array(son),room,arcs,son,tim_atm);
end
% GET THE ARC PIXEL LOCATIONS

tic
% START KEEPING THE TIME

[arcNo,abc,acb]=size(arcs);
arcLength=length(arcs(1,:,:));
% GET ALL SIZES OF THE ARC PIXEL LOCATION ARRAY

for arc=1:arcNo
 i1=1;

if (arcs(arc,1,1)~=0)||(arcs(arc,1,2)~=0)

for pix=1:arcLength
if (arcs(arc,pix,1)~=0)||(arcs(arc,pix,2)~=0)

 xx=arcs(arc,pix,1);
 yy=arcs(arc,pix,2);

for sc1=1:arcNo
for sc2=1:arcLength

if (arcs(sc1,sc2,1)==xx)&&(arcs(sc1,sc2,2)==yy)
if (sc1~=arc)||(sc2~=pix)

 arcs2(arc,i1,1)=xx;
 arcs2(arc,i1,2)=yy;
 i1=i1+1;

end
end

end
end

C:\MATLAB7\work\appendix.m Page 4

end
end

end
end
% COMPUTE THE INTERSECTIONS OF THE ARCS

base_atm=zeros(Y+500,X+500);
% ALLOCATE ATM BASE FOR WORLD MODEL

[mini,i]=min(arcs2(:,:,1),[],2);
for arc=1:arcNo

if i(arc)~=1
 x_cor(arc)=fix(median(arcs2(arc,1:(i(arc)-1),1)));
 y_cor(arc)=fix(median(arcs2(arc,1:(i(arc)-1),2)));

end
end
% COMPUTE THE MEDIAN OF INTERSECTIONS

for pix=1:length(x_cor)
if x_cor(pix)~=0

 base_atm(y_cor(pix),x_cor(pix))=1;
end

end
% PLACE THE INTERSECTIONS ON THE BASE

time_atm=toc
% GET THE COMPUTATION TIME

base_atm=double(bwmorph(base_atm,'dilate'));
% DILATE THE ATM MAP FOR BETTER DISPLAY

figure
colormap(gray(255))
image(255-255*sign(base_atm))
axis equal
grid on
xlabel('pixels','FontSize',14)
ylabel('pixels','FontSize',14)
print('-deps',strcat('atm_wf_type_',int2str(type)))
% DISPLAY AND EXPORT THE ATM MAP

%====================
% DIRECTIONAL MAXIMUM
%====================
figure
colormap(gray(255))
image(255-255*sign(base_dm))
axis equal
grid on
xlabel('pixels','FontSize',14)
ylabel('pixels','FontSize',14)

C:\MATLAB7\work\appendix.m Page 5

print('-deps',strcat('dm1_wf_type_',int2str(type)))
% DISPLAY AND EXPORT INTEGER ARC MAP

b1i=1;
b2i=1;
b3i=1;
b4i=1;
% SET THE COUNTERS

for son=1:length(x_array)
switch floor(mod((b_array(son)+45),360)/90)

case 0
 x_array_1(b1i)=x_array(son);
 y_array_1(b1i)=y_array(son);
 b_array_1(b1i)=b_array(son);
 b1i=b1i+1;

case 1
 x_array_2(b2i)=x_array(son);
 y_array_2(b2i)=y_array(son);
 b_array_2(b2i)=b_array(son);
 b2i=b2i+1;

case 2
 x_array_3(b3i)=x_array(son);
 y_array_3(b3i)=y_array(son);
 b_array_3(b3i)=b_array(son);
 b3i=b3i+1;

case 3
 x_array_4(b4i)=x_array(son);
 y_array_4(b4i)=y_array(son);
 b_array_4(b4i)=b_array(son);
 b4i=b4i+1;

case 4
 x_array_4(b4i)=x_array(son);
 y_array_4(b4i)=y_array(son);
 b_array_4(b4i)=b_array(son);
 b4i=b4i+1;

end
end
% SEGMENT THE MEASUREMENTS ACCORDING TO THEIR DIRECTIONS

base_dm1=zeros(Y+500,X+500);
base_dm2=zeros(Y+500,X+500);
base_dm3=zeros(Y+500,X+500);
base_dm4=zeros(Y+500,X+500);
% FORM FIVE SEPARATE ARC MAP BASIS

for son=1:length(x_array_1)
 base_dm1=sonarPut5(x_array_1(son),y_array_1(son),b_array_1(son),room,base_dm1);

C:\MATLAB7\work\appendix.m Page 6

end

for son=1:length(x_array_2)
 base_dm2=sonarPut5(x_array_2(son),y_array_2(son),b_array_2(son),room,base_dm2);
end

for son=1:length(x_array_3)
 base_dm3=sonarPut5(x_array_3(son),y_array_3(son),b_array_3(son),room,base_dm3);
end

for son=1:length(x_array_4)
 base_dm4=sonarPut5(x_array_4(son),y_array_4(son),b_array_4(son),room,base_dm4);
end
% PLACE THE SONAR MEASUREMENTS

tic
% START KEEPING THE TIME
base_dm1a=maxdisp_dir(base_dm1,0);
base_dm2a=maxdisp_dir(base_dm2,90);
base_dm3a=maxdisp_dir(base_dm3,0);
base_dm4a=maxdisp_dir(base_dm4,90);
% DM PROCESS THE SEGMENTED MAPS

base_dm_f=base_dm1a+base_dm2a+base_dm3a+base_dm4a;
% SUPERPOSE THE SEGMENTS

tim_dm=toc
% GET THE COMPUTATION TIME

figure
colormap(gray(255))
image(255-255*sign(base_dm_f))
axis equal
grid on
xlabel('pixels','FontSize',14)
ylabel('pixels','FontSize',14)
print('-deps',strcat('dm4_wf_type_',int2str(type)))
% DISPLAY AND EXPORT DM ARC MAP

room=draw_room3(type);
% CREATE TRUE ROOM FOR BENCHMARKING

[s1,s2]=room_suc(type,room,base3,base4,base_atm,base_dm_f);
% GET THE SUCCESS MEASURES

%==
%==

function wall_foll_b_map(type)

% WALL FOLLOWING TYPE MOTION-PLANNING BASED

C:\MATLAB7\work\appendix.m Page 7

% MAP BUILDING SCRIPT, UTILIZING BU
% GETS THE PARAMETER type TO INDICATE ROOM TYPE

disp('==')
disp(['Wall Following, Room Type ' int2str(type)])
disp('==')

room=draw_room4(type);
[Y,X]=size(room);
% DEFINE THE ROOM AND GET SIZE

base=zeros(Y+500,X+500);
% ALLOCATE EMPTY ARC-MAP ARRAY FOR BOOK KEEPING

load(strcat('wall_foll_type_',int2str(type)));
% LOAD WALL FOLLOWING STEP POSITIONS

x_array1=wf(1,:);
y_array1=wf(2,:);
b_array1=wf(3,:)+90;
% EXTRACT THE POSITIONS

x_array=interp(x_array1,10);
y_array=interp(y_array1,10);
b_array=interp(b_array1,10);
% INTERPOLATE TO MEASUREMENT POSITIONS

x_array=fix(x_array);
y_array=fix(y_array);
b_array=mod(fix(b_array),360);
% FIX THE POSITIONS TO SMALLEST INTEGER
totalsonarno=length(x_array)
% DISPLAY TOTAL MEASUREMENT POINT #

for son=1:length(x_array)
 [x_list,y_list,b_list,d_list]=sonarPut5_d(x_array(son),y_array(son),b_array(son),room,
base);
 x_array1(son*4-3:son*4)=x_list;
 y_array1(son*4-3:son*4)=y_list;
 b_array1(son*4-3:son*4)=b_list;
 d_array1(son*4-3:son*4)=d_list;
end
% GET THE MEASUREMENTS

x_array=x_array1;
y_array=y_array1;
b_array=b_array1;
d_array=d_array1*100;
% COPY THE MEASUREMENTS TO BE PROCESSED

epsi=2;
R_min=5.7;

C:\MATLAB7\work\appendix.m Page 8

omega=25;
empty_array=zeros(Y+500,X+500);
occupied_array=zeros(Y+500,X+500);
% SET PARAMETERS AND ALLOCATE PROBABILITY DENSITY ARRAYS

tic
% START KEEPING THE TIME

for son=1:length(x_array)
 R=d_array(son);

if R~=0;
 xs=x_array(son);
 ys=y_array(son);
 bs=b_array(son);

 x_lim1=fix(min([(x_array(son)+d_array(son)*cosd(b_array(son)+omega/2)),x_array
(son),(x_array(son)+d_array(son)*cosd(b_array(son)-omega/2)),(x_array(son)+(d_array(son)
+2*epsi)*cosd(b_array(son)))]));
 x_lim2=fix(max([(x_array(son)+d_array(son)*cosd(b_array(son)+omega/2)),x_array
(son),(x_array(son)+d_array(son)*cosd(b_array(son)-omega/2)),(x_array(son)+(d_array(son)
+2*epsi)*cosd(b_array(son)))]));
 y_lim1=fix(min([(y_array(son)-d_array(son)*sind(b_array(son)+omega/2)),y_array
(son),(y_array(son)-d_array(son)*sind(b_array(son)-omega/2)),(y_array(son)-(d_array(son)
+2*epsi)*sind(b_array(son)))]));
 y_lim2=fix(max([(y_array(son)-d_array(son)*sind(b_array(son)+omega/2)),y_array
(son),(y_array(son)-d_array(son)*sind(b_array(son)-omega/2)),(y_array(son)-(d_array(son)
+2*epsi)*sind(b_array(son)))]));

for x=x_lim1:x_lim2
for y=y_lim1:y_lim2

 sig=sqrt((x-xs)^2+(y-ys)^2);
 thet=atan2((y-ys),(xs-x));
 thet=((180*((thet+pi)/pi)-bs));

if abs(thet)<=omega/2
 E_a=1-(2*thet/omega)^2;

else
 E_a=0;

end

if sig <= (R-epsi)
 E_r=1-((sig)/(R-epsi))^2;

else
 E_r=0;

end

if abs(R-sig)<=epsi
 O_r=1-((sig-R)/epsi)^2;

else
 O_r=0;

C:\MATLAB7\work\appendix.m Page 9

end

 p_E=E_r*E_a;
 p_O=O_r*E_a;

 empty_array(y+250,x+250)=empty_array(y+250,x+250)+p_E-empty_array(y+250,
x+250)*p_E;
 occupied_array(y+250,x+250)=occupied_array(y+250,x+250)+p_O-occupied_array
(y+250,x+250)*p_O;

end
end

end
end
% UPDATE THE PROBABILITY DENSITY ARRAYS FOR EACH MEASUREMENT

time_bayes=toc
% GET THE COMPUTATION TIME

figure
colormap(gray(255))
image(255-255*empty_array)
axis equal
grid on
xlabel('pixels','FontSize',14)
ylabel('pixels','FontSize',14)
print('-deps',strcat('bayes_e_wf_type_',int2str(type)))
% DISPLAY AND EXPORT EMTPTINESS PROBABILITIES

figure
colormap(gray(255))
image(255-255*occupied_array)
axis equal
grid on
xlabel('pixels','FontSize',14)
ylabel('pixels','FontSize',14)
print('-deps',strcat('bayes_wf_type_',int2str(type)))
% DISPLAY AND EXPORT OCCUPANCY PROBABILITIES

by_rm=occupied_array(251:460,251:610);
tip=type;
rm=room;
switch tip

case {1}
 alt_rm=rm(151:210,3:357);
 alt_by=by_rm(151:210,3:357);

 ust_rm=rm(1:60,3:357);
 ust_by=by_rm(1:60,3:357);

 sol_rm=rm(3:207,1:60);
 sol_by=by_rm(3:207,1:60);

C:\MATLAB7\work\appendix.m Page 10

 sag_rm=rm(33:207,301:360);
 sag_by=by_rm(33:207,301:360);

case {2}
 alt_rm=rm(151:210,3:357);
 alt_by=by_rm(151:210,3:357);

 ust_rm=rm(1:60,3:357);
 ust_by=by_rm(1:60,3:357);

 sol_rm=rm(3:207,1:60);
 sol_by=by_rm(3:207,1:60);

 sag_rm=rm(33:207,301:360);
 sag_by=by_rm(33:207,301:360);

case {3}
 alt_rm=rm(151:210,3:357);
 alt_by=by_rm(151:210,3:357);

 ust_rm=rm(1:60,3:357);
 ust_by=by_rm(1:60,3:357);

 sol_rm=rm(3:157,1:60);
 sol_by=by_rm(3:157,1:60);

 sag_rm=rm(53:207,301:360);
 sag_by=by_rm(53:207,301:360);

end

rm1=[sag_rm' sol_rm' ust_rm alt_rm];
by1=[sag_by' sol_by' ust_by alt_by];
% EXPORT AND SHAPE THE ARC MAP FOR SUCCESS MEASURE COMPUTATION

[Y,max_rm]=max(rm1);
[Y,max_by]=max(by1);

disp(['Mean Absolute Errors, Room type ' int2str(tip)])
s1_by=sum(abs(max_rm-max_by))/length(max_rm)

disp(['Fill Percent, Room type ' int2str(tip)])
s2_by=length(find(max_by>1))/length(max_rm)*100
% DISPLAY THE SUCCESS MEASURES

%==
%==

C:\MATLAB7\work\appendix.m Page 11

function voron_map(type)
% VORONOI DIAGRAM TRACING TYPE MOTION-PLANNING BASED
% MAP BUILDING SCRIPT, UTILIZING MP, VT, ATM & DM
% GETS THE PARAMETER type TO INDICATE ROOM TYPE
% ALMOST SAME AS wall_foll_map.m, HENCE NOT FULLY COMMENTED

disp('==')
disp(['Voronoi Tracing, Room Type ' int2str(type)])
disp('==')

room=draw_room4(type);
[Y,X]=size(room);
print('-deps',strcat('room_def_type_',int2str(type)))

load(strcat('voron_type_',int2str(type)));

% MORPHOLOGICAL PROCESSING
x_array1=vr(1,:);
y_array1=vr(2,:);
b_array1=vr(3,:);

x_array=fix(x_array1);
y_array=fix(y_array1);
b_array=fix(b_array1);
totalsonarno=length(x_array)
base_dm=zeros(Y+500,X+500);
for son=1:length(x_array)
 base_dm=sonarPut5(x_array(son),y_array(son),b_array(son),room,base_dm);
end
base=base_dm;
tic
base2=logical(sign(base));
base3=bwmorph(base2,'thin',4);

time_morph=toc

figure
colormap(gray(2))
image(2-2*base2)
grid on
xlabel('pixels','FontSize',14)
ylabel('pixels','FontSize',14)
axis equal
print('-deps',strcat('mp1_vor_type_',int2str(type)))

figure
colormap(gray(2))
image(2-2*base3)
grid on
xlabel('pixels','FontSize',14)
ylabel('pixels','FontSize',14)
axis equal

C:\MATLAB7\work\appendix.m Page 12

print('-deps',strcat('mp2_vor_type_',int2str(type)))

% VOTING AND THRESHOLDING
tic

thres=4;
base4=sign(floor(base/thres));
time_vote=toc

figure
colormap(gray(255))
scale=255/max(max(base));
image(255-scale*base)
axis equal
grid on
xlabel('pixels','FontSize',14)
ylabel('pixels','FontSize',14)
print('-deps',strcat('vt1_vor_type_',int2str(type)))

figure
colormap(gray(255))
image(255-255*base4)
grid on
xlabel('pixels','FontSize',14)
ylabel('pixels','FontSize',14)
axis equal
print('-deps',strcat('vt2_vor_type_',int2str(type)))

% ATM
arcs=0;
tim_atm=0;
for son=1:length(x_array)
 arcs=sonarATM2(x_array(son),y_array(son),b_array(son),room,arcs,son,tim_atm);
end

tic

[arcNo,abc,acb]=size(arcs);
arcLength=length(arcs(1,:,:));

for arc=1:arcNo
 i1=1;

if (arcs(arc,1,1)~=0)||(arcs(arc,1,2)~=0)

for pix=1:arcLength
if (arcs(arc,pix,1)~=0)||(arcs(arc,pix,2)~=0)

 xx=arcs(arc,pix,1);
 yy=arcs(arc,pix,2);

for sc1=1:arcNo
for sc2=1:arcLength

if (arcs(sc1,sc2,1)==xx)&&(arcs(sc1,sc2,2)==yy)

C:\MATLAB7\work\appendix.m Page 13

if (sc1~=arc)||(sc2~=pix)
 arcs2(arc,i1,1)=xx;
 arcs2(arc,i1,2)=yy;
 i1=i1+1;

end
end

end
end

end
end

end
end

base_atm=zeros(Y+500,X+500);
[mini,i]=min(arcs2(:,:,1),[],2);

for arc=1:arcNo
if i(arc)~=1

 x_cor(arc)=fix(median(arcs2(arc,1:(i(arc)-1),1)));
 y_cor(arc)=fix(median(arcs2(arc,1:(i(arc)-1),2)));

end
end

for pix=1:length(x_cor)
if x_cor(pix)~=0

 base_atm(y_cor(pix),x_cor(pix))=1;
end

end
time_atm=toc

base_atm=double(bwmorph(base_atm,'dilate'));

figure
colormap(gray(255))
image(255-255*sign(base_atm))
axis equal
grid on
xlabel('pixels','FontSize',14)
ylabel('pixels','FontSize',14)
print('-deps',strcat('atm_vor_type_',int2str(type)))

% DIRECTIONAL MAXIMUM
figure
colormap(gray(255))
image(255-255*sign(base_dm))
axis equal
grid on
xlabel('pixels','FontSize',14)
ylabel('pixels','FontSize',14)
print('-deps',strcat('dm1_vor_type_',int2str(type)))
b1i=1;

C:\MATLAB7\work\appendix.m Page 14

b2i=1;
b3i=1;
b4i=1;

for son=1:length(x_array)
switch floor(mod((b_array(son)+45),360)/90)

case 0
 x_array_1(b1i)=x_array(son);
 y_array_1(b1i)=y_array(son);
 b_array_1(b1i)=b_array(son);
 b1i=b1i+1;

case 1
 x_array_2(b2i)=x_array(son);
 y_array_2(b2i)=y_array(son);
 b_array_2(b2i)=b_array(son);
 b2i=b2i+1;

case 2
 x_array_3(b3i)=x_array(son);
 y_array_3(b3i)=y_array(son);
 b_array_3(b3i)=b_array(son);
 b3i=b3i+1;

case 3
 x_array_4(b4i)=x_array(son);
 y_array_4(b4i)=y_array(son);
 b_array_4(b4i)=b_array(son);
 b4i=b4i+1;

case 4
 x_array_4(b4i)=x_array(son);
 y_array_4(b4i)=y_array(son);
 b_array_4(b4i)=b_array(son);
 b4i=b4i+1;

end
end

base_dm1=zeros(Y+500,X+500);
base_dm2=zeros(Y+500,X+500);
base_dm3=zeros(Y+500,X+500);
base_dm4=zeros(Y+500,X+500);

for son=1:length(x_array_1)
 base_dm1=sonarPut5(x_array_1(son),y_array_1(son),b_array_1(son),room,base_dm1);
end

for son=1:length(x_array_2)
 base_dm2=sonarPut5(x_array_2(son),y_array_2(son),b_array_2(son),room,base_dm2);
end

for son=1:length(x_array_3)

C:\MATLAB7\work\appendix.m Page 15

 base_dm3=sonarPut5(x_array_3(son),y_array_3(son),b_array_3(son),room,base_dm3);
end

for son=1:length(x_array_4)
 base_dm4=sonarPut5(x_array_4(son),y_array_4(son),b_array_4(son),room,base_dm4);
end

tic
base_dm1a=maxdisp_dir(base_dm1,0);
base_dm2a=maxdisp_dir(base_dm2,90);
base_dm3a=maxdisp_dir(base_dm3,0);
base_dm4a=maxdisp_dir(base_dm4,90);
base_dm_f=base_dm1a+base_dm2a+base_dm3a+base_dm4a;
tim_dm=toc

figure
colormap(gray(255))
image(255-255*sign(base_dm_f))
axis equal
grid on
xlabel('pixels','FontSize',14)
ylabel('pixels','FontSize',14)
print('-deps',strcat('dm4_vor_type_',int2str(type)))

room=draw_room3(type);
[s1,s2]=room_suc(type,room,base3,base4,base_atm,base_dm_f);

%==
%==

function voron_b_map(type)
% VORONOI DIAGRAM TRACING TYPE MOTION-PLANNING BASED
% MAP BUILDING SCRIPT, UTILIZING BU
% GETS THE PARAMETER type TO INDICATE ROOM TYPE
% ALMOST SAME AS wall_foll_b_map.m, HENCE NOT FULLY COMMENTED

disp('==')
disp(['Voronoi Tracing, Room Type ' int2str(type)])
disp('==')

room=draw_room4(type);
[Y,X]=size(room);
print('-deps',strcat('room_def_type_',int2str(type)))
base=zeros(Y+500,X+500);

load(strcat('voron_type_',int2str(type)));

x_array1=vr(1,:);
y_array1=vr(2,:);
b_array1=vr(3,:);

x_array=fix(x_array1);

C:\MATLAB7\work\appendix.m Page 16

y_array=fix(y_array1);
b_array=mod(fix(b_array1),360);
totalsonarno=length(x_array)

for son=1:length(x_array)
 [x_list,y_list,b_list,d_list]=sonarPut5_d(x_array(son),y_array(son),b_array(son),room,
base);
 x_array1(son*4-3:son*4)=x_list;
 y_array1(son*4-3:son*4)=y_list;
 b_array1(son*4-3:son*4)=b_list;
 d_array1(son*4-3:son*4)=d_list;
end
x_array=x_array1;
y_array=y_array1;
b_array=b_array1;
d_array=d_array1*100;

epsi=2;
R_min=0;
omega=25;
empty_array=zeros(Y+500,X+500);
occupied_array=zeros(Y+500,X+500);

tic
for son=1:length(x_array)
 R=d_array(son);

if R~=0;
 xs=x_array(son);
 ys=y_array(son);
 bs=b_array(son);

 x_lim1=fix(min([(x_array(son)+d_array(son)*cosd(b_array(son)+omega/2)),x_array
(son),(x_array(son)+d_array(son)*cosd(b_array(son)-omega/2)),(x_array(son)+(d_array(son)
+2*epsi)*cosd(b_array(son)))]));
 x_lim2=fix(max([(x_array(son)+d_array(son)*cosd(b_array(son)+omega/2)),x_array
(son),(x_array(son)+d_array(son)*cosd(b_array(son)-omega/2)),(x_array(son)+(d_array(son)
+2*epsi)*cosd(b_array(son)))]));
 y_lim1=fix(min([(y_array(son)-d_array(son)*sind(b_array(son)+omega/2)),y_array
(son),(y_array(son)-d_array(son)*sind(b_array(son)-omega/2)),(y_array(son)-(d_array(son)
+2*epsi)*sind(b_array(son)))]));
 y_lim2=fix(max([(y_array(son)-d_array(son)*sind(b_array(son)+omega/2)),y_array
(son),(y_array(son)-d_array(son)*sind(b_array(son)-omega/2)),(y_array(son)-(d_array(son)
+2*epsi)*sind(b_array(son)))]));

for x=x_lim1:x_lim2
for y=y_lim1:y_lim2

 sig=sqrt((x-xs)^2+(y-ys)^2);
 thet=atan2((y-ys),(xs-x));
 thet=((180*((thet+pi)/pi)-bs));

C:\MATLAB7\work\appendix.m Page 17

if abs(thet)<=omega/2
 E_a=1-(2*thet/omega)^2;

else
 E_a=0;

end

if sig <= (R-epsi)
 E_r=1-((sig)/(R-epsi))^2;

else
 E_r=0;

end

if abs(R-sig)<=epsi
 O_r=1-((sig-R)/epsi)^2;

else
 O_r=0;

end

 p_E=E_r*E_a;
 p_O=O_r*E_a;

 empty_array(y+250,x+250)=empty_array(y+250,x+250)+p_E-empty_array(y+250,
x+250)*p_E;
 occupied_array(y+250,x+250)=occupied_array(y+250,x+250)+p_O-occupied_array
(y+250,x+250)*p_O;

end
end

end
end
time_bayes=toc

figure
colormap(gray(255))
image(255-255*empty_array)
axis equal
grid on
xlabel('pixels','FontSize',14)
ylabel('pixels','FontSize',14)
print('-deps',strcat('bayes_e_vor_type_',int2str(type)))

figure
colormap(gray(255))
image(255-255*occupied_array)
axis equal
grid on
xlabel('pixels','FontSize',14)
ylabel('pixels','FontSize',14)
print('-deps',strcat('bayes_vor_type_',int2str(type)))

by_rm=occupied_array(251:460,251:610);
tip=type;

C:\MATLAB7\work\appendix.m Page 18

rm=room;
switch tip

case {1}
 alt_rm=rm(151:210,3:357);
 alt_by=by_rm(151:210,3:357);

 ust_rm=rm(1:60,3:357);
 ust_by=by_rm(1:60,3:357);

 sol_rm=rm(3:207,1:60);
 sol_by=by_rm(3:207,1:60);

 sag_rm=rm(33:207,301:360);
 sag_by=by_rm(33:207,301:360);

case {2}
 alt_rm=rm(151:210,3:357);
 alt_by=by_rm(151:210,3:357);

 ust_rm=rm(1:60,3:357);
 ust_by=by_rm(1:60,3:357);

 sol_rm=rm(3:207,1:60);
 sol_by=by_rm(3:207,1:60);

 sag_rm=rm(33:207,301:360);
 sag_by=by_rm(33:207,301:360);

case {3}
 alt_rm=rm(151:210,3:357);
 alt_by=by_rm(151:210,3:357);

 ust_rm=rm(1:60,3:357);
 ust_by=by_rm(1:60,3:357);

 sol_rm=rm(3:157,1:60);
 sol_by=by_rm(3:157,1:60);

 sag_rm=rm(53:207,301:360);
 sag_by=by_rm(53:207,301:360);

end

rm1=[sag_rm' sol_rm' ust_rm alt_rm];
by1=[sag_by' sol_by' ust_by alt_by];

[Y,max_rm]=max(rm1);
[Y,max_by]=max(by1);

C:\MATLAB7\work\appendix.m Page 19

disp(['Mean Absolute Errors, Room type ' int2str(tip)])
s1_by=sum(abs(max_rm-max_by))/length(max_rm)

disp(['Fill Percent, Room type ' int2str(tip)])
s2_by=length(find(max_by>1))/length(max_rm)*100

%==
%==

function base=sonarPut5(x_son,y_son,b_son,room,base)

% PLACES A TRANSDUCER PAIR AT COORDINATES (x_son,y_son) BEARING b_son INTO
% A TRUE ROOM room AND DRAWS ARCS TO THE ARRAY base
% CALLED FROM MP, VT, ATM and DM IMPLEMENTATIONS

base2=zeros(size(base));
% ALLOCATE EMPTY ARC MAP FOR PROCESSING

[Y,X]=size(room);
theta0=12.5;
the0=theta0*pi/180;
be_son=b_son*pi/180;
% GET THE SIZE OF THE ROOM, DEFINE HALF-BEAMWIDTH ANGLE AND CONVERT RADIAN
% ANGLES TO DEGREES

pa_dist=9;
% DEFINE CENTER-TO-CENTER SEPARATION OF PAIR

ang0=be_son-the0;
ang1=be_son+the0;
% GET BEAMWIDTH BOUNDARIES

x_son1=x_son-fix(pa_dist/2*sin(be_son));
x_son2=x_son+fix(pa_dist/2*sin(be_son));
y_son1=y_son-fix(pa_dist/2*cos(be_son));
y_son2=y_son+fix(pa_dist/2*cos(be_son));
% CALCULATE TRANSDUCER POSITIONS

rDist=0;
mDist=0;
k=1;
s1_ind=1;
scan_deg=0.01/pi*180;
for scan=ang0:scan_deg:ang1
 [xs,ys]=p_line2(room,x_son1,y_son1,scan,[.99,.99,.99]);
 son1scan(s1_ind,1)=xs;
 son1scan(s1_ind,2)=ys;
 s1_ind=s1_ind+1;

if isPerp2(room,xs,ys,scan)==1

 rDist(k,1)=sqrt((xs-x_son1)^2+(ys-y_son1)^2)*1e-2;
 rDist(k,2:3)=[xs,ys];

C:\MATLAB7\work\appendix.m Page 20

 rDist(k,4)=scan;

 mDist(k)=pulser(rDist(k,1),0);
 k=k+1;

end
end
dist=min(mDist);
% GET r_aa

if dist~=0;
 x_a=0;
 y_a=0;

for scan2=ang0:1e-3:ang1
 xdraw=median([X+250, fix(250+x_son1+(dist*100*cos(-scan2))), 1]);
 ydraw=median([Y+250, fix(250+y_son1+(dist*100*sin(-scan2))), 1]);

if (xdraw~=x_a)||(ydraw~=y_a)
 base2(ydraw,xdraw)=base2(ydraw,xdraw)+1;
 x_a=xdraw;
 y_a=ydraw;

end
end

end
% IF r_aa IS NOT ZERO, DRAW THE ARC

rDist=0;
mDist=0;
k=1;
for son2scan=1:length(son1scan)
 x_scan1=son1scan(son2scan,1);
 y_scan1=son1scan(son2scan,2);

if doesSee(x_scan1,y_scan1,x_son1,y_son1,x_son2,y_son2,room)==1;
 rDist(k,1)=(sqrt((x_scan1-x_son1)^2+(y_scan1-y_son1)^2)+sqrt((x_scan1-x_son2)
^2+(y_scan1-y_son2)^2))*1e-2;
 mDist(k)=pulser(rDist(k,1),0);
 k=k+1;

end
end
dist=min(mDist);
% GET r_ab

if dist>0.09;
 b=sqrt((dist/2)^2-(pa_dist/2*1e-2)^2);
 a=dist/2;
 x_a=0;
 y_a=0;

for scan2=be_son-pi/9:1e-3:be_son+pi/9
 xdraw=median([X+250, fix(250+(x_son1+x_son2)/2+(a*100*cos(-scan2))), 1]);
 ydraw=median([Y+250, fix(250+(y_son1+y_son2)/2+(b*100*sin(-scan2))), 1]);

if (xdraw~=x_a)||(ydraw~=y_a)
 base2(ydraw,xdraw)=base2(ydraw,xdraw)+1;

C:\MATLAB7\work\appendix.m Page 21

 x_a=xdraw;
 y_a=ydraw;

end
end

 scan2=be_son-pi/9:1e-3:be_son+pi/9;
 x_sc=(x_son1+x_son2)/2+fix(a*100*cos(-scan2));
 y_sc=(y_son1+y_son2)/2+fix(b*100*sin(-scan2));
end
% IF r_ab IS LARGER THAN 9 cm (CENTER-TO-CENTER SEPARATION), DRAW THE ARC

son2scan=0;
rDist=0;
mDist=0;
k=1;
s2_ind=1;
for scan=ang0:scan_deg:ang1
 [xs,ys]=p_line2(room,x_son2,y_son2,scan,[.99,.99,.99]);
 son2scan(s2_ind,1)=xs;
 son2scan(s2_ind,2)=ys;
 s2_ind=s2_ind+1;

if isPerp2(room,xs,ys,scan)==1
 rDist(k,1)=sqrt((xs-x_son1)^2+(ys-y_son1)^2)*1e-2;
 rDist(k,2:3)=[xs,ys];
 rDist(k,4)=scan;
 mDist(k)=pulser(rDist(k,1),0);
 k=k+1;

end
end
dist=min(mDist);
% GET r_bb

if dist~=0;
 x_a=0;
 y_a=0;

for scan2=ang0:1e-3:ang1
 xdraw=median([X+250, fix(250+x_son2+(dist*100*cos(-scan2))), 1]);
 ydraw=median([Y+250, fix(250+y_son2+(dist*100*sin(-scan2))), 1]);

if (xdraw~=x_a)||(ydraw~=y_a)
 base2(ydraw,xdraw)=base2(ydraw,xdraw)+1;
 x_a=xdraw;
 y_a=ydraw;

end
end

end
% IF r_bb IS NOT ZERO, DRAW THE ARC

rDist=0;
mDist=0;
k=1;
for son1scan=1:length(son2scan)

C:\MATLAB7\work\appendix.m Page 22

 x_scan2=son2scan(son1scan,1);
 y_scan2=son2scan(son1scan,2);

if doesSee(x_scan2,y_scan2,x_son2,y_son2,x_son1,y_son1,room)==1;
% draw oval

 rDist(k,1)=(sqrt((x_scan2-x_son2)^2+(y_scan2-y_son2)^2)+sqrt((x_scan2-x_son1)
^2+(y_scan2-y_son1)^2))*1e-2;
 mDist(k)=pulser(rDist(k,1),0);
 k=k+1;

end
end
dist=min(mDist);
% GET r_ba

if dist>0.09;
 b=sqrt((dist/2)^2-(pa_dist/2*1e-2)^2);
 a=dist/2;

 x_a=0;
 y_a=0;

for scan2=be_son-pi/9:1e-3:be_son+pi/9
 xdraw=median([X+250, fix(250+(x_son1+x_son2)/2+(a*100*cos(-scan2))), 1]);
 ydraw=median([Y+250, fix(250+(y_son1+y_son2)/2+(b*100*sin(-scan2))), 1]);

if (xdraw~=x_a)||(ydraw~=y_a)
 base2(ydraw,xdraw)=base2(ydraw,xdraw)+1;
 x_a=xdraw;
 y_a=ydraw;

end
end

 scan2=be_son-pi/9:1e-3:be_son+pi/9;
 x_sc=(x_son1+x_son2)/2+fix(a*100*cos(-scan2));
 y_sc=(y_son1+y_son2)/2+fix(b*100*sin(-scan2));
end
% IF r_ba IS LARGER THAN 9 cm (CENTER-TO-CENTER SEPARATION), DRAW THE ARC

base=base+base2;
% ADD THESE ARCS TO THE GIVEN ARC MAP

%==
%==

function [x_points,y_points,b_list,d_list]=sonarPut5_d(x_son,y_son,b_son,room,base)
% PLACES A TRANSDUCER PAIR AT COORDINATES (x_son,y_son) BEARING b_son INTO
% A TRUE ROOM room AND RETURNS COORDINATES AND BEARINGS OF INDIVIDUAL
% TRANSDUCERS AS WELL AS FOUR TOF MEASUREMENTS r_aa, r_ab, r_bb, r_ba
% CALLED FROM BAYESIAN UPDATE IMPLEMENATIONS

base2=zeros(size(base));
% ALLOCATE EMPTY ARC MAP FOR PROCESSING

[Y,X]=size(room);
theta0=12.5;

C:\MATLAB7\work\appendix.m Page 23

the0=theta0*pi/180;
be_son=b_son*pi/180;
% GET THE SIZE OF THE ROOM, DEFINE HALF-BEAMWIDTH ANGLE AND CONVERT RADIAN
% ANGLES TO DEGREES

pa_dist=9;
% DEFINE CENTER-TO-CENTER SEPARATION OF PAIR

ang0=be_son-the0;
ang1=be_son+the0;
% GET BEAMWIDTH BOUNDARIES

x_son1=x_son-fix(pa_dist/2*sin(be_son));
x_son2=x_son+fix(pa_dist/2*sin(be_son));
y_son1=y_son-fix(pa_dist/2*cos(be_son));
y_son2=y_son+fix(pa_dist/2*cos(be_son));
% CALCULATE TRANSDUCER POSITIONS

rDist=0;
mDist=0;
k=1;
s1_ind=1;
scan_deg=0.01/pi*180;
for scan=ang0:scan_deg:ang1
 [xs,ys]=p_line2(room,x_son1,y_son1,scan,[.99,.99,.99]);
 son1scan(s1_ind,1)=xs;
 son1scan(s1_ind,2)=ys;
 s1_ind=s1_ind+1;

if isPerp2(room,xs,ys,scan)==1
 rDist(k,1)=sqrt((xs-x_son1)^2+(ys-y_son1)^2)*1e-2;
 rDist(k,2:3)=[xs,ys];
 rDist(k,4)=scan;
 mDist(k)=pulser(rDist(k,1),0);
 k=k+1;

end
end

d11=min(mDist);
% CALCULATE r_aa FOR RETURN

rDist=0;
mDist=0;
k=1;
for son2scan=1:length(son1scan)
 x_scan1=son1scan(son2scan,1);
 y_scan1=son1scan(son2scan,2);

if doesSee(x_scan1,y_scan1,x_son1,y_son1,x_son2,y_son2,room)==1;
 rDist(k,1)=(sqrt((x_scan1-x_son1)^2+(y_scan1-y_son1)^2)+sqrt((x_scan1-x_son2)
^2+(y_scan1-y_son2)^2))*1e-2;
 mDist(k)=pulser(rDist(k,1),0);
 k=k+1;

end

C:\MATLAB7\work\appendix.m Page 24

end

dist=min(mDist);
if dist>0.09
 d22=sqrt((dist/2)^2-(pa_dist/2*1e-2)^2);
else
 d22=0;
end
% CALCULATE r_ab FOR RETURN

son2scan=0;
rDist=0;
mDist=0;
k=1;
s2_ind=1;
for scan=ang0:scan_deg:ang1
 [xs,ys]=p_line2(room,x_son2,y_son2,scan,[.99,.99,.99]);
 son2scan(s2_ind,1)=xs;
 son2scan(s2_ind,2)=ys;
 s2_ind=s2_ind+1;

if isPerp2(room,xs,ys,scan)==1

 rDist(k,1)=sqrt((xs-x_son1)^2+(ys-y_son1)^2)*1e-2;
 rDist(k,2:3)=[xs,ys];
 rDist(k,4)=scan;

 mDist(k)=pulser(rDist(k,1),0);
 k=k+1;

end
end
d33=min(mDist);
% CALCULATE r_bb FOR RETURN

rDist=0;
mDist=0;
k=1;
for son1scan=1:length(son2scan)
 x_scan2=son2scan(son1scan,1);
 y_scan2=son2scan(son1scan,2);

if doesSee(x_scan2,y_scan2,x_son2,y_son2,x_son1,y_son1,room)==1;
 rDist(k,1)=(sqrt((x_scan2-x_son2)^2+(y_scan2-y_son2)^2)+sqrt((x_scan2-x_son1)
^2+(y_scan2-y_son1)^2))*1e-2;
 mDist(k)=pulser(rDist(k,1),0);
 k=k+1;

end
end

dist=min(mDist);
if dist>0.09
 d44=sqrt((dist/2)^2-(pa_dist/2*1e-2)^2);
else

C:\MATLAB7\work\appendix.m Page 25

 d44=0;
end
% CALCULATE r_ba FOR RETURN

x_points=[x_son1,x_son,x_son2,x_son];
y_points=[y_son1,y_son,y_son2,y_son];
b_list=[b_son,b_son,b_son,b_son];
d_list=[d11,d22,d33,d44];
% COMBINE LOACTIONS, BEARINGS AND MEASUREMENTS

%==
%==

function measured=pulser(dist,drawWave)
% USING THE SIGNAL MODEL, SIMUALTES THE ECHO AND PERFORMS SIMPLE
% THRESHOLDING. RETURNS THE RANGE FOR THE ESTIMATED TOF FOR GIVEN DISTANCE dist
% CALLED FROM sonar_Put5.m AND sonar_Put5_d.m

f0=49.4e3;
tao=2e-9;
c=343.3;
t_trip=2*dist/c;
t_d=1.1e-4;
thresh=2.75*1e-2;
r_min=0.057;
K=35;
% DEFINE THE PARAMETERS

for k=1:2.2e2;
 t(k)=k*1e-6;
 pulse(k)=K*(r_min/dist)*sin(2*pi*f0*(t(k)-t_d))*exp(-(t(k)-t_d)^2/tao);
end
% FORM THE GAUSSIAN MODULATED SINUSOID

p1=zeros(1,4.7e4);
offset_trip=fix(t_trip/1e-6);
p1(offset_trip+1:offset_trip+length(pulse))=pulse;
% SHIFT THE SINUSOID TO ACTUAL TOF

p1=p1+5e-3*randn(1,length(p1));
% APPLY THE ZERO MEAN GAUSSIAN NOISE

tim=linspace(0,4.7e4*1e-6,length(p1));
if drawWave==1
 figure
 plot(tim,p1)
 hold on
 plot(tim,thresh*ones(1,length(p1)),'r')
 xlabel('time')
 ylabel('amplitude')
 legend('signal','threshold')
 grid on

C:\MATLAB7\work\appendix.m Page 26

end
% DISPLAY THE SIGNAL

measured=0;
found=0;
for k=1:length(p1)

if p1(k)>thresh
if found==0;

 measured=k;
 found=1;

end
end

end
% CALCULATE THE TOF

measured=measured*1e-6/2*343.3;
% RETURN THE RANGE

%==
%==

function perp=isPerp2(room,x_son,y_son,ang1)
% CHECKS IF THE RAY FROM POSITION x_son, y_son BEARING b_son HAS
% PERPENDICULAR INCIDENCE ON ANY SURFACE IN ENVIRONMENT room
% CALLED FROM TRANSDUCER PLACEMENT FUNCTIONS

[Y,X]=size(room);
perp=0;
tol=10;
ang2=-ang1+pi/2;
x_c1=median([1,x_son+fix(tol*cos(ang2)),X]);
x_c2=median([1,x_son-fix(tol*cos(ang2)),X]);
y_c1=median([1,y_son+fix(tol*sin(ang2)),Y]);
y_c2=median([1,y_son-fix(tol*sin(ang2)),Y]);

if room(y_c1,x_c1)~=0
if room(y_c2,x_c2)~=0

 perp=1;
end

end

%==
%==

function sees=doesSee(xs,ys,x1,y1,x2,y2,rm)

% CHECKS OF THE RAY FROM TRANSDUCER A AT (x1,y1) REFLECTS FROM POINT (xs,ys) IN rm TO
% TRANSDUCER B AT (x2,y2)

[Y,X]=size(rm);

son1ang=atan2(y1-ys,xs-x1);

C:\MATLAB7\work\appendix.m Page 27

son2ang=atan2(y2-ys,xs-x2);

normAng=(son2ang+son1ang)/2;

sees=0;
tol=7;
ang2=normAng+pi/2;
x_c1=median([1,xs+fix(tol*cos(ang2)),X]);
x_c2=median([1,xs-fix(tol*cos(ang2)),X]);
y_c1=median([1,ys+fix(tol*-sin(ang2)),Y]);
y_c2=median([1,ys-fix(tol*-sin(ang2)),Y]);

if rm(y_c1,x_c1)~=0
if rm(y_c2,x_c2)~=0

 sees=1;
end

end

%==
%==

function room=draw_room4(type)
% DRAWS AND RETURN THE ROOM TYPE type

X=360;
Y=210;
room=zeros(Y,X);
room(1:3,1:180)=ones(3,180);
room(28:30,181:360)=ones(3,180);
room(1:30,178:180)=ones(30,3);
room(1:210,1:3)=ones(210,3);
room(30:210,358:360)=ones(181,3);
room(208:210,1:360)=ones(3,360);

switch type
case {1}

case {2}
 room(208:210,110:250)=zeros(3,141);
 room(158:160,108:250)=ones(3,143);
 room(160:210,108:110)=ones(51,3);
 room(160:210,248:250)=ones(51,3);

case {3}
 room(28:30,181:360)=zeros(3,180);
 room(48:50,171:360)=ones(3,190);
 room(1:30,178:180)=zeros(30,3);
 room(1:50,168:170)=ones(50,3);
 room(1:3,171:180)=zeros(3,10);
 room(208:210,1:180)=zeros(3,180);
 room(158:160,1:180)=ones(3,180);
 room(160:210,178:180)=ones(51,3);
 room(161:210,1:3)=zeros(50,3);

C:\MATLAB7\work\appendix.m Page 28

 room(1:48,358:360)=zeros(48,3);

end

figure
colormap(gray(255))
image(255-255*(room))
axis equal
grid on;
xlabel('pixels','FontSize',14)
ylabel('pixels','FontSize',14)
% DISPLAY THE ROOM

%==
%==

function wall_foll2(type)
% CREATES WALL FOLLOWING STEPS IN ROOM TYPE type

clc
tic
room=draw_room4(type);
% DRAW THE ROOM
[Y,X]=size(room);
% GET THE SIZE
base=zeros(Y+500,X+500);
% ALLOCATE THE EMPTY ARRAY FOR MEASUREMENTS
sai=0;
initialX=60;
initialY=100;
initialB=0;
% SET THE INITIAL POSITIONS

text(initialX,initialY,'R')

directionN=16;
b_array=linspace(0,360-360/directionN,directionN)+initialB*ones(1,directionN);
x_array=initialX*ones(1,directionN);
y_array=initialY*ones(1,directionN);
% GET THE FIRST LOOK DIRECTIONS

for son=1:directionN
 d_array(son)=sonarPut_d(x_array(son),y_array(son),b_array(son),room,base);
end
% FIRST LOOK IN 16 DIRECTIONS

[md,ind]=min(d_array);
kk=1;
while md==0
 d_array(ind)=1000+kk;
 kk=kk+1;
 [md,ind]=min(d_array);

C:\MATLAB7\work\appendix.m Page 29

end
wall_dir=mod(b_array(ind),360)
% DECIDE ON CLOSEST WALL DIRECTION

md=md*100

x_fs=initialX+fix((md-60)*cosd(wall_dir));
y_fs=initialY-fix((md-60)*sind(wall_dir));
b_fs=wall_dir-90;
step_no=1;
text(x_fs,y_fs,'1')
x_loc(step_no)=x_fs;
y_loc(step_no)=y_fs;
b_loc(step_no)=b_fs;
step_no=step_no+1;
% FIRST STEP

while step_no<100
 step_no
 [d1,d2]=look1(x_fs,y_fs,b_fs,room,base)

if d2>80
 b_fs=b_fs+90;
 x_fs=x_fs+fix(20*cosd(b_fs));
 y_fs=y_fs-fix(20*sind(b_fs));

 text(x_fs,y_fs,int2str(step_no))
 x_loc(step_no)=x_fs;
 y_loc(step_no)=y_fs;
 b_loc(step_no)=b_fs;
 step_no=step_no+1;

 x_fs=x_fs+fix(20*cosd(b_fs));
 y_fs=y_fs-fix(20*sind(b_fs));

 text(x_fs,y_fs,int2str(step_no))
 x_loc(step_no)=x_fs;
 y_loc(step_no)=y_fs;
 b_loc(step_no)=b_fs;
 step_no=step_no+1;

 x_fs=x_fs+fix(24*cosd(b_fs));
 y_fs=y_fs-fix(24*sind(b_fs));

 text(x_fs,y_fs,int2str(step_no))
 x_loc(step_no)=x_fs;
 y_loc(step_no)=y_fs;
 b_loc(step_no)=b_fs;
 step_no=step_no+1;

else
if d1>60

C:\MATLAB7\work\appendix.m Page 30

 x_fs=x_fs+fix(14*cosd(b_fs));
 y_fs=y_fs-fix(14*sind(b_fs));

 x_fs=x_fs+fix((d2-60)*cosd(b_fs+90));
 y_fs=y_fs-fix((d2-60)*sind(b_fs+90));

 text(x_fs,y_fs,int2str(step_no))
 x_loc(step_no)=x_fs;
 y_loc(step_no)=y_fs;
 b_loc(step_no)=b_fs;
 step_no=step_no+1;

else
 b_fs=b_fs-90;

end
end
if (abs(x_fs-initialX)<20)&&(abs(y_fs-initialY)<20)&&(step_no>10)

break
end

end
% TILL THE END OF STEPS, ACCORDING TO THE DECISION RULES

wf=[x_loc; y_loc; b_loc];
save(strcat('wall_foll_type_',int2str(type)),'wf')
print('-deps',strcat('wf_steps_type_',int2str(type)))
% SAVE AND DISPLAY THE STEP POSITIONS

%==
%==

function voron2(type)
% CREATES VORONOI DIAGRAM OF THE ROOM type AND SAMPLE POINTS

room=draw_room3(type);
% DEFINE THE ROOM

[Y,X]=size(room);
ind=1;
for x=1:X

for y=1:Y
if room(y,x)==1;

 y_array(ind)=y;
 x_array(ind)=x;
 ind=ind+1;

end
end

end
% GET THE FULL PIXEL LOCATIONS

[vx,vy]=voronoi(x_array,y_array);
vv=[vx' vy'];
% CREATE THE VORONOI DIAGRAM

C:\MATLAB7\work\appendix.m Page 31

switch type
case {1}

for scan=1:length(vv)
if (((vv(scan,1)>180)||(vv(scan,2)>180))&&((vv(scan,3)<30)||(vv(scan,4)<30)))

 vv(scan,:)=zeros(1,4);
end

end
case {2}

for scan=1:length(vv)
if (((vv(scan,1)>180)||(vv(scan,2)>180))&&((vv(scan,3)<30)||(vv(scan,4)<30)))

||(((vv(scan,1)<250)||(vv(scan,2)<250))&&((vv(scan,1)>110)||(vv(scan,2)>110))&&((vv(scan,
3)>160)||(vv(scan,4)>160)))
 vv(scan,:)=zeros(1,4);

end
end

case {3}
for scan=1:length(vv)

if (((vv(scan,1)>170)||(vv(scan,2)>170))&&((vv(scan,3)<50)||(vv(scan,4)<50)))
||(((vv(scan,1)<180)||(vv(scan,2)<180))&&((vv(scan,3)>160)||(vv(scan,4)>160)))
 vv(scan,:)=zeros(1,4);

end
end

end
% ELIMINATE THE EDGES PARTIALLY OUTSIDE THE ROOM

vv=vv';
vx(1,:)=vv(1,:);
vx(2,:)=vv(2,:);
vy(1,:)=vv(3,:);
vy(2,:)=vv(4,:);

figure
plot(x_array,y_array,'r.',vx,vy,'b');
axis equal
grid on
xlabel('pixels','FontSize',14)
ylabel('pixels','FontSize',14)
print('-deps',strcat('voron_diagram_type_',int2str(type)))
z(1,:)=vv(1,:);
z(2,:)=vv(3,:);
z2(1,:)=vv(2,:);
z2(2,:)=vv(4,:);
z3=[z z2];
z4=unique(z3','rows');
% DISPLAY AND EXPORT THE FULL VORONOI DIAGRAM WITH THE ROOM

figure
plot(z4(:,1),z4(:,2),'.')
grid on
xlabel('pixels','FontSize',14)
ylabel('pixels','FontSize',14)
print('-deps',strcat('voron_diagram_allpoints_type_',int2str(type)))

C:\MATLAB7\work\appendix.m Page 32

% DISPLAY AND EXPORT VORONOI DIAGRAM ALL POINTS WITHOUT THE ROOM

rr=3;
for samp=1:floor(length(z4)/rr)
 z42(samp,:)=z4(samp*rr,:);
end;
zscan2=1;
for zscan=1:length(z42)
 xx=z42(zscan,1);
 yy=z42(zscan,2);

switch type
case {1}

if ((xx<20)&&(yy<20 || yy>190)) || ((xx<180)&&(xx>160)&&(yy<20)) || ((xx>340)
&&((yy<50)||(yy>190)))
 z42(zscan,:)=zeros(1,2);

end
case {2}

if ((xx<20)&&(yy<20 || yy>190)) || ((xx<180)&&(xx>150)&&(yy<20)) || ((xx>340)
&&((yy<50)||(yy>190))) || ((xx<110)&&(xx>90)&&(yy>190)) || ((xx>250)&&(xx<270)&&(yy>190))
 z42(zscan,:)=zeros(1,2);

end
case {3}

if ((xx<20)&&(yy<20 || yy>140)) || ((xx<180)&&(xx>150)&&(yy<20)) || ((xx>340)
&&((yy<70)||(yy>190))) || ((xx<200)&&(xx>170)&&(yy>190))
 z42(zscan,:)=zeros(1,2);

end

end
if z42(zscan,1)~=0

 z43(zscan2,:)=z42(zscan,:);
 zscan2=zscan2+1;

end

end
% SAMPLE THE VORONOI DIAGRAM POINTS AND ELIMINATE THE ONES TOO CLOSE TO
% CORNERS

z42=z43;
room=draw_room4(type);
hold on
plot(z42(:,1),z42(:,2),'.')
grid on
xlabel('pixels','FontSize',14)
ylabel('pixels','FontSize',14)
print('-deps',strcat('voron_diagram_samples_type_',int2str(type)))
clear x_array y_array
z42=fix(z42);
% z42=fix(z4);
base=0;
direc=[0,90,180,270];
% DISPLAY AND EXPORT THE VORONOI DIAGRAM SAMPLES

C:\MATLAB7\work\appendix.m Page 33

array_in=1;
for tara=1:length(z42)

for yon=1:4
 direc_d(yon)=sonarPut_d(z42(tara,1),z42(tara,2),direc(yon),room,base);

end
 d1=min(direc_d);
 dirs=find(abs(direc_d-d1)<0.1);

for ek=1:length(dirs)
 x_array(array_in)=z42(tara,1);
 y_array(array_in)=z42(tara,2);
 b_array(array_in)=direc(dirs(ek));
 array_in=array_in+1;

end
end
% CALCULATE THE MEASUREMENT DIRECTIONS FROM SAMPLE POINTS

vr=[x_array; y_array; b_array];
save(strcat('voron_type_',int2str(type)),'vr')
% SAVE THE VORONOI DIAGRAM TRACING MEASUREMENT POSITIONS AND BEARINGS

%==
%==

function [mean_err,fill_per]=room_suc(tip,rm,mp_room,vt_room,atm_room,dm_room)
% CALCULATES AND DISPLAY SUCCESS MEASURES MEAN ABSOLUTE ERROR AND FILL
% PERCENT FOR MP, VT, ATM AND DM

mp_rm=mp_room(251:460,251:610);
vt_rm=vt_room(251:460,251:610);
atm_rm=atm_room(251:460,251:610);
dm_rm=dm_room(251:460,251:610);
mean_err=0;
fill_per=0;

switch tip
case {1}

 alt_rm=rm(151:210,3:357);
 alt_mp=mp_rm(151:210,3:357);
 alt_vt=vt_rm(151:210,3:357);
 alt_atm=atm_rm(151:210,3:357);
 alt_dm=dm_rm(151:210,3:357);

 ust_rm=rm(1:60,3:357);
 ust_mp=mp_rm(1:60,3:357);
 ust_vt=vt_rm(1:60,3:357);
 ust_atm=atm_rm(1:60,3:357);
 ust_dm=dm_rm(1:60,3:357);

 sol_rm=rm(3:207,1:60);
 sol_mp=mp_rm(3:207,1:60);
 sol_vt=vt_rm(3:207,1:60);
 sol_atm=atm_rm(3:207,1:60);

C:\MATLAB7\work\appendix.m Page 34

 sol_dm=dm_rm(3:207,1:60);

 sag_rm=rm(33:207,301:360);
 sag_mp=mp_rm(33:207,301:360);
 sag_vt=vt_rm(33:207,301:360);
 sag_atm=atm_rm(33:207,301:360);
 sag_dm=dm_rm(33:207,301:360);

case {2}
 alt_rm=rm(151:210,3:357);
 alt_mp=mp_rm(151:210,3:357);
 alt_vt=vt_rm(151:210,3:357);
 alt_atm=atm_rm(151:210,3:357);
 alt_dm=dm_rm(151:210,3:357);

 ust_rm=rm(1:60,3:357);
 ust_mp=mp_rm(1:60,3:357);
 ust_vt=vt_rm(1:60,3:357);
 ust_atm=atm_rm(1:60,3:357);
 ust_dm=dm_rm(1:60,3:357);

 sol_rm=rm(3:207,1:60);
 sol_mp=mp_rm(3:207,1:60);
 sol_vt=vt_rm(3:207,1:60);
 sol_atm=atm_rm(3:207,1:60);
 sol_dm=dm_rm(3:207,1:60);

 sag_rm=rm(33:207,301:360);
 sag_mp=mp_rm(33:207,301:360);
 sag_vt=vt_rm(33:207,301:360);
 sag_atm=atm_rm(33:207,301:360);
 sag_dm=dm_rm(33:207,301:360);

case {3}
 alt_rm=rm(151:210,3:357);
 alt_mp=mp_rm(151:210,3:357);
 alt_vt=vt_rm(151:210,3:357);
 alt_atm=atm_rm(151:210,3:357);
 alt_dm=dm_rm(151:210,3:357);

 ust_rm=rm(1:60,3:357);
 ust_mp=mp_rm(1:60,3:357);
 ust_vt=vt_rm(1:60,3:357);
 ust_atm=atm_rm(1:60,3:357);
 ust_dm=dm_rm(1:60,3:357);

 sol_rm=rm(3:157,1:60);
 sol_mp=mp_rm(3:157,1:60);
 sol_vt=vt_rm(3:157,1:60);
 sol_atm=atm_rm(3:157,1:60);
 sol_dm=dm_rm(3:157,1:60);

 sag_rm=rm(53:207,301:360);
 sag_mp=mp_rm(53:207,301:360);

C:\MATLAB7\work\appendix.m Page 35

 sag_vt=vt_rm(53:207,301:360);
 sag_atm=atm_rm(53:207,301:360);
 sag_dm=dm_rm(53:207,301:360);
end

rm1=[sag_rm' sol_rm' ust_rm alt_rm];
mp1=[sag_mp' sol_mp' ust_mp alt_mp];
vt1=[sag_vt' sol_vt' ust_vt alt_vt];
atm1=[sag_atm' sol_atm' ust_atm alt_atm];
dm1=[sag_dm' sol_dm' ust_dm alt_dm];
% RESHAPE THE GIVEN ARC MAP AND TRUE ROOM FOR COMPARISON

[Y,max_rm]=max(rm1);
[Y,max_mp]=max(mp1);
[Y,max_vt]=max(vt1);
[Y,max_atm]=max(atm1);
[Y,max_dm]=max(dm1);

disp(['Mean Absolute Errors, Room type ' int2str(tip)])
s1_mp=sum(abs(max_rm-max_mp))/length(max_rm)
s1_vt=sum(abs(max_rm-max_vt))/length(max_rm)
s1_atm=sum(abs(max_rm-max_atm))/length(max_rm)
s1_dm=sum(abs(max_rm-max_dm))/length(max_rm)

disp(['Fill Percent, Room type ' int2str(tip)])
s2_mp=length(find(max_mp>1))/length(max_rm)*100
s2_vt=length(find(max_vt>1))/length(max_rm)*100
s2_atm=length(find(max_atm>1))/length(max_rm)*100
s2_dm=length(find(max_dm>1))/length(max_rm)*100

mean_err=[s1_mp s1_vt s1_atm s1_dm];
fill_per=[s2_mp s2_vt s2_atm s2_dm];
% CALCULATE AND RETURN THE SUCCESS MEASURES

Bibliography

[1] B. Ayrulu and B. Barshan. Identification of target primitives with multiple

decision-making sonars using evidential reasoning. International Journal of

Robotics Research, 17(6):598–623, June 1998.

[2] J. L. Crowley. Navigation for an intelligent mobile robot. IEEE Transactions

on Robotics and Automation, RA-1(1):31–41, March 1985.

[3] A. Elfes. Sonar based real-world mapping and navigation. IEEE Transactions

on Robotics and Automation, RA-3(3):249–265, June 1987.

[4] A. Elfes. Using occupancy grids for mobile robot perception and navigation.

IEEE Computer, 22(6):46–57, 1989.

[5] H. F. Durrant-Whyte and I. J. Cox. Dynamic map building for an autonomous

mobile robot. In Proceedings IEEE/RSJ International Workshop on Intelligent

Robots and Systems, pages 89–96, Tsuchiura, Ibaraki, Japan, 3–6 July 1990.

[6] D. Maksarov and H. F. Durrant-Whyte. Mobile vehicle navigation in unknown

environments—a multiple hypothesis approach. IEE Proceedings—Control The-

ory and Applications, 142(4):385–400, July 1995.

[7] A. Kurz. Constructing maps for mobile robot navigation based on ultrasonic

range data. IEEE Transactions on Systems, Man, and Cybernetics—Part B:

Cybernetics, 26(2):233–242, April 1996.

[8] M. Kulich, P. Stepan, and L. Preucil. Feature detection and map building

using ranging sensors. In Proceedings of the IEEE International Conference on

65

BIBLIOGRAPHY 66

Intelligent Transportation, volume 1, pages 201–206, Tokyo, Japan, October

1999.

[9] T. Bailey, E. M. Nebot, J. K. Rosenblatt, and H. F. Durrant-Whyte. Data asso-

ciation for mobile robot navigation: a graph theoretic approach. In Proceedings

of IEEE International Conference on Robotics and Automation, volume 3, pages

2512–2517, San Francisco, CA, U.S.A., 24–27 April 2000.

[10] R. Kuc and M. W. Siegel. Physically-based simulation model for acoustic sen-

sor robot navigation. IEEE Transactions on Pattern Analysis and Machine

Intelligence, PAMI-9(6):766–778, November 1987.

[11] B. Barshan and R. Kuc. Differentiating sonar reflections from corners and

planes by employing an intelligent sensor. IEEE Transactions on Pattern Anal-

ysis and Machine Intelligence, 12(6):560–569, June 1990.

[12] H. Peremans, K. Audenaert, and J. M. Van Campenhout. A high-resolution

sensor based on tri-aural perception. IEEE Transactions on Robotics and Au-

tomation, 9(1):36–48, February 1993.

[13] L. Kleeman and R. Kuc. Mobile robot sonar for target localization and clas-

sification. International Journal of Robotics Research, 14(4):295–318, August

1995.

[14] M. L. Hong and L. Kleeman. Ultrasonic classification and location of 3-D room

features using maximum likelihood estimation I. Robotica, 15(Part 5):483–491,

September/October 1997.

[15] R. Kuc. Biomimetic sonar recognizes objects using binaural information. The

Journal of the Acoustical Society of America, 102(2):689–696, August 1997.

[16] J. Bruce and M. Veloso. Real-time randomized path planning for robot naviga-

tion. In Proceedings of the IEEE/RSJ International Conference on Intelligent

Robots and Systems, volume 3, pages 2383–2388, Lausanne, Switzerland, 30

September–5 October 2002.

[17] D. Fox, W. Burgard, and S. Thrun. The dynamic window approach to collision

avoidance. IEEE Robotics and Automation Magazine, 4(1):23–33, March 1997.

BIBLIOGRAPHY 67

[18] D. Hsu, R. Kindel, C. Latombe, and S. Rock. Randomized kinodynamic motion

planning with moving obstacles. International Journal of Robotics Research,

21(3):233–255, 2002.

[19] T. Yata, L. Kleeman, and S. Yuta. Wall following using angle information

measured by a single ultrasonic transucer. In Proceedings of IEEE International

Conference on Robotics and Automation, volume 5, pages 1590–1596, Leuven,

Belgium, 16–21 May 1998.

[20] X. Yun and K.-C. Tan. A wall-following method for escaping local minima in

potential field based motion planning. In Proceedings of the IEEE International

Conference on Advanced Robotics, pages 421–426, Monterey, CA, U.S.A., 7–9

July 1997.

[21] A. Bemporad, M. Di Marco, and A. Tesi. Wall-following controllers for sonar-

based mobile robots. In Proceedings of the IEEE International Conference on

Decision and Control, volume 8, pages 3063–3068, San Diego, CA, U.S.A.,

December 1997.

[22] D. Lee and M. Recce. Quantitative evaluation of the exploration strategies of an

intelligent vehicle. International Journal of Robotics Research, 16(4):413–447,

August 1994.

[23] E. Tunstel and M. Jamshidi. Embedded fuzzy logic-based wall-following be-

havior for mobile robot navigation. In Proceedings of 1st International Joint

Conference of NAFIPS/IFIS/NASA, pages 329–330, San Antonio, TX, U.S.A.,

18–21 December 1994.

[24] H. Choset, I. Konukseven, and J. Burdick. Mobile robot navigation: issues

in implementating the generalized Voronoi graph in the plane. In Proceedings

IEEE/SICE/RSJ International Conference on Multisensor Fusion and Inte-

gration for Intelligent Systems, pages 241–248, Washington D.C., U.S.A, 8–11

December 1996.

[25] H. Choset and J. Burdick. Sensor-based exploration: The hierarchical general-

ized Voronoi graph. International Journal of Robotics Research, 19(2):96–125,

February 2000.

BIBLIOGRAPHY 68

[26] H. Choset, S. Walker, K. Eiamsa-Ard, et al. Sensor-based exploration: Incre-

mental construction of the hierarchical generalized Voronoi graph. International

Journal of Robotics Research, 19(2):126–148, February 2000.

[27] J. Zemanek. Beam behavior within the nearfield of a vibrating piston. The

Journal of the Acoustical Society of America, 49(1 (Part 2)):181–191, January

1971.

[28] B. Barshan. A Sonar-Based Mobile Robot for Bat-Like Prey Capture. PhD

thesis, Yale University, Department of Electrical Engineering, New Haven, CT,

U.S.A., December 1991.

[29] H. R. Everett. Sensors for Mobile Robots, Theory and Application. A K Peters,

Ltd., 289 Linden St, Wellesley, MA, 1995.

[30] A. Papoulis. Probability, Random Variables and Stochastic Processes. McGraw-

Hill, New York, NY, 3rd edition, 1991.

[31] W. G. McMullan, B. A. Delanghe, and J. S. Bird. A simple rising-edge detec-

tor for time-of-arrival estimation. IEEE Transactions on Instrumentation and

Measurement, 45(4):823–827, August 1996.

[32] B. Barshan and R. Kuc. A bat-like sonar system for obstacle localization. IEEE

Transactions on Systems Man and Cybernetics, 22(4):636–646, July/August

1992.

[33] J. J. Leonard and H. F. Durrant-Whyte. Directed Sonar Navigation. Kluwer

Academic Press, London, U.K., 1992.

[34] D. Başkent and B. Barshan. Surface profile determination from multiple sonar

data using morphological processing. International Journal of Robotics Re-

search, 18(8):788–808, August 1999.

[35] B. Barshan and D. Başkent. Morphological surface profile extraction with mul-

tiple range sensors. Pattern Recognition, 34(7):1459–1467, July 2001.

[36] Polaroid Corporation, Ultrasonic Components Group, 119 Windsor St., Cam-

bridge, MA. Polaroid Manual, 1997.

BIBLIOGRAPHY 69

[37] B. Barshan and D. Başkent. Comparison of two methods of surface profile

extraction from multiple ultrasonic range measurements. Measurement Science

and Technology, 11(6):833–844, June 2000.

[38] B. Barshan. Ultrasonic surface profile determination by spatial voting. Elec-

tronics Letters, 35(25):2232–2234, 9 December 1999.

[39] H. Choset, K. Nagatani, and N. Lazar. The arc-transversal median algorithm:

a geometric approach to increasing ultrasonic sensor azimuth accuracy. IEEE

Transactions on Robotics and Automation, 19(3):513–522, June 2003.

[40] H. P. Moravec and A. Elfes. High resolution maps from wide angle sonar. In

Proceedings of IEEE International Conference on Robotics and Automation,

pages 116–121, San Francisco, CA, U.S.A., 7–10 April 1986.

[41] H. Moravec. Sensor fusion in certainty grids for mobile robots. AI Magazine,

Summer:61–74, 1988.

[42] J. Serra. Image Analysis and Mathematical Morphology. Academic Press, New

York, NY, 1982.

[43] Y. D. Chen and E. R. Dougherty. Gray-scale morphological granulometric

texture classification. Optical Engineering, 33(8):2713–2722, August 1994.

[44] J. G. Verly and R. L. Delanoy. Some principles and applications of adaptive

mathematical morphology for range imagery. Optical Engineering, 32(12):3295–

3306, December 1993.

[45] A. Mojsilovic, M. Popovic, N. Amodaj, R. Babic, and M. Ostojic. Automatic

segmentation of intravascular ultrasound images: A texture-based approach.

Annals of Biomedical Engineering, 25(6):1059–1071, November/December

1997.

[46] M. B. Holder, M. M. Trivedi, and S. B. Marapane. Mobile robot navigation by

wall following using a rotating ultrasonic scanner. In Proceedings of the 13th

International Conference on Pattern Recognition, volume 3, pages 298–302, 25–

29 August 1996.

