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ABSTRACT

ROBUST ENTANGLEMENT IN ATOMIC SYSTEMS

Özgür Çakır

PhD in Physics

Supervisor: Prof. Alexander S. Shumovsky

September, 2005

Various models for generation of robust atomic entangled states and their

implementation with current accessible technologies are proposed and worked out.

Deterministic creation of long living Bell states with respect to metastable states

in three-level Λ type systems is studied. Strong atom-field coupling drives atoms

into a transient entangled state followed by an irreversible evolution towards a

long-living maximally entangled state featuring robustness against dipole-allowed

transitions. First, generation of pairwise atomic entanglement in cavities in ideal

case is discussed, extension to multi-party entangled states is made. Observation

of photons emitted from the system signals the generation of a Bell state.

The interaction of multi-level atoms with body-assisted electro-magnetic field

in the presence of dispersing and absorbing media is studied and these results are

applied to the description of a pair of Λ type atoms passing by a microsphere.

Microspheres give rise to resonances of well defined height and width with easy

access to strong and weak coupling regimes for atom-field interaction, thus en-

abling realization of the proposed scheme of ”robust entanglement of three-level

atoms”. Even in realistic settings it is possible to obtain quite high amount of

entanglement at spatially well separated distances.

Then we focus on steady state entanglement between atomic dipoles. It is

shown that two dipoles in free space driven by a classical driving field become

entangled in the steady state. The crucial point is that, this entanglement is

irrespective of the initial state and may be preserved as long as the engineered

system is kept intact.

Absorption effects in real cavities are studied, and an input-output relation is

formulated in the presence of a source in the cavity. Extraction of non-classical
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photon states from a cavity is investigated.

Keywords: Quantum Optics, Quantum Information Theory, EPR paradox, En-

tanglement, Cavity Quantum Electrodynamics, Quantum Open Systems, Deco-

herence, Quantum Noise .



ÖZET

ATOM SİSTEMLERİNDE KALICI DOLAŞIKLIK

Özgür Çakır

Fizik, Doktora

Tez Yöneticisi: Prof. Alexander S. Shumovsky

Eylül, 2005

Kalıcı atomik dolanık durumları oluşturabilecek bir dizi teorik model ve bu mod-

ellerin bugünkü teknoloji ile gerçekleştirilebilmesi için değişik deneysel yöntemler

önerilmiş ve irdelenmiştir. Üç seviyeli atomlarda en alt enerji seviyesine dipol

geçisi mümkün olmadığı için ömrü uzun olan yarı-kararlı seviyeler kullanılarak,

boş uzayda bile dolanıklığını koruyabilecek Bell durumlarının deterministik bir

şekilde oluşturulabilmesi üzerinde duruldu. İkili atomik dolanık durumların

kovukçuklarda ideal koşullarda oluşturulabilmesi üzerinde durulmuş ve çoklu

dolanık durumlara genellenmiştir. Bu sistemlerin kendiliğinden yayımladıgı fo-

tonlar dolanıklığın oluşumuna işaret eder.

Çok seviyeli atomların saçılım ve emilimin mevcut olduğu bir ortamda bir-

birleriyle ve elektromagnetik(EM) alanla etkileşimleri çalısılmış ve bu sonuçlar

üç seviyeli atomlara uygulanmıştır. Önerilen ”kalıcı dolanık durumların” sis-

temin mikrokürecik çınlaçlar kullanılarak gerçekleştirilebilmesi irdelenmiştir.

Mikrokürecikler EM alanın genliği ve yüksekliği belirli rezonanslar göstermesine

neden olur ve bu sayede etraftaki atom ve EM alan arasında geçiş frekansına bağlı

olarak zayıf veya güçlü etkileşim rejimlerine ulaşılabilir. Gerçekçi durumlarda bile

birbirlerinden yeterince uzak mesafede bulunan atomlar arasında yüksek oranda

dolanıklığın oluşabilmesi mümkündür.

Bir sonraki aşamada atomik dipoller arasında durağan dolanık durumların

oluşumu çalısılmıştır. Klasik bir EM dalga tarafından beslenen iki dipolun boş

uzayda bile dolanık duruma geçebilecekleri ortaya çıkmaktadır. Bu dolanık du-

rumların en çarpıcı özelliklerinden birisi ortaya cıkan durumun baslangıç duru-

mundan bağımsız olması ve kurulan sistem korunduğu sürece dolanık durumun

korunmasıdır.
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Kovukçuklarda emilim etkileri, bu tür gerçekçi kovukçuklardan fotonik ku-

vantum durumların dışarı cıkartılması incelenmiş ve bu sistemler için içeri gelen

ve dısari çıkan durumlar arasında ilişki kurulmuştur.

Anahtar sözcükler : Kuantum Optik, Kuantum Bilgi Kuramı, EPR paradoksu,

Dolanıklık, Oyuk Kuvantum Elektrodinamiği, Açık Kuantum Sistemler, Kuan-

tum Uyumsuzlaşma, Kuantum Gürültü .
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Chapter 1

Introduction

Quantum entanglement is one of the central themes making distinction between

classical and quantum mechanics. On the other hand the interference phenom-

ena or quantum superposition constitutes another distinctive behavior of quan-

tum mechanics and is a well understood phenomena. For a long time, entangle-

ment has been recognized as a curious phenomenon of no practical importance.

However, with the advent of experimental techniques and quantum information

science, entanglement and generation of robust entangled states has become a

subject of intense research regarding its fundamental and technological implica-

tions.

Quantum superposition principle is the most intriguing feature of quantum

mechanics, and rules the microscopic world. A quantum system may be in a

superposition state of the eigenstates of an observable, i.e., it is likely to be found

in different classical realities. Once the measurement is performed, only one of

these possibilities is realized. When the superposition principle is applied to a

composite system then the concept of entanglement arises. If the composite sys-

tem is initially unentangled, it will be in a tensor product state of the eigenstates

of observables corresponding to subsystems. However, once they are allowed to

interact with each other then they may be in a superposition state of differ-

ent tensor product states, namely an entangled state. Entangled states exist for

composite quantum systems that can be decomposed into subsystems, whereas

1



CHAPTER 1. INTRODUCTION 2

for composite classical systems no such analogue exists. The very striking man-

ifestation of quantum entanglement is the impossibility of local description of

subsystems comprising the total entangled system, even in the absence of a phys-

ical interaction between the subsystems. This is in contrast with the principle

of locality which asserts that space-like separated events are independent of each

other. A measurement performed on one of the subsystems leads to an instanta-

neous global state reduction which implies strong non-local correlations between

the measurement results performed on the subsystems even when the parties

are spatially well separated and this serves as a very important test of quantum

mechanics[1, 2]. In a composite system, the observables belonging to different

parties commute (are compatible) and allow for correlation type measurements.

However this type of correlation measurements cannot be realized for a single

component system characterized by an indecomposable Hilbert space, since it is

not possible to find a set of compatible observables. Bell inequalities, contrasting

the presence of high amount of correlations in a non-local theory (Quantum the-

ory), with that of a local theory (classical mechanics) were shown to be violated

for polarization entangled photons, and this was a conclusive test of quantum

mechanics against classical mechanis[2] (See Appendix-A for further details and

references on entanglement).

An entangled state was first exemplified by Einstein, Podolsky, and Rosen[3].

Following the example of Bohm[4], consider an entangled state of two spin-1/2

particles,

|Ψ〉 =
1√
2
(|+〉 ⊗ |−〉 + |−〉 ⊗ |+〉), (1.1)

where |±〉 are the eigenstates of spin along z axis. The salient features of entan-

glement is present in this example (see Appendix-A). Before any measurement,

neither of the particles is in a well defined state. However whenever a measure-

ment is performed on one of the particles, the other spin points in the opposite

direction. These correlations are basis (observable) independent, measurement

results will always be anti-correlated, irrespective of the measurement axis and

spatial separation. Note that quantum interference in a single Hilbert space may

not exist for some observables.
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Entanglement naturally may exist in many-body systems, however entangle-

ment is of practical interest only when the subsystems are spatially well separated

so that the subsystems can individually be addressed. In principle it is possible to

entangle different degrees of freedom of a single particle, for instance the momen-

tum and spin of a single particle are described by distinct Hilbert spaces, thus

it is possible to obtain entanglement in the tensor product of these two Hilbert

spaces. However this type of entangled states are not suitable for testing local-

ity principle, and during the measurement process it might be quite difficult to

address these Hilbert spaces individually. Further it is essential to have distant

parties for quantum information protocols.

Entanglement became an important resource in quantum information science

enabling the realization of some data processing and communication tasks which

would be regarded difficult or even impossible with classical reasoning such as

quantum teleportation[5], cryptography[6], dense coding[7], distributed compu-

tational tasks[8], improvement of performance in some competitive games[9]. On

the other hand entanglement provides an unprecedented increase in precision

of frequency standarts[10, 11], and lithography[12] which would otherwise be

impossible. Further, entanglement is of fundamental importance in quantum

computation[13]. Entanglement should be present at some stage to achieve ex-

ponential speed up compared to classical computers, and information must be

encoded in entangled states for error corrections. On the other hand, algebraic

properties of entangled states are still not very well understood, especially for

higher dimensional systems and it is also of interest regarding its mathematical

structure[14, 15, 16].

Generation of controlled spatially well separated entangled states were first

achieved using polarization entangled photon states, which are produced by

strongly pumping a non-linear crystal[2, 17], and these were used to realize quan-

tum key distribution, and teleportation[17]. Cavity QED techniques were also

widely used in order to produce atom-atom , atom-photon entanglement. Ryd-

berg atoms in high Q superconducting microwave cavities are strongly coupled

to microwave radiation and EPR atom pairs were generated[18, 19, 20]. In cavity

QED setting atoms may also provide a strong non-linearity for photons thus a
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potentiality for photon-photon entanglement [21]. Efforts to realize experimen-

tally the elements of quantum computation using trapped atomic ions have been

stimulated by a proposal by Cirac and Zoller[22]. Ions confined in a linear radio-

frequency(Paul) trap are cooled and form a spatial array. The motional mode can

act as a data bus to transfer information between ions by mapping spin-qubit state

of a particular ion onto the selected motion qubit with a laser beam focused onto

that ion. In this manner universal quantum gates and thus entanglement of ions

can be realized[23, 24, 25, 26, 22]. Direct manipulation and detection of nuclear

spin states using radiofrequency Electro magnetic(EM) waves is a well-developed

field known as nuclear magnetic resonance (NMR). NMR based elementary logic

gates were proposed[27] and realized, even the Shor’s factoring algorithm was im-

plemented to factor the number 15 in a liquid state NMR quantum computer[28]

(for an extensive bibliography see [29]).

Other methods, mostly theoretical at the moment, rely on using quantum

correlated light field interacting with distant atoms, thus transferring entangle-

ment of photons to the atoms[30, 31, 32, 33, 34, 35, 36] and conditional creation

of entanglement realized by appropriate measurements[37, 38, 39, 40, 41, 42, 43,

44, 45, 46, 47] which usually make use of entanglement swapping[48] and the

technique of reservoir engineering in a cascaded cavity QED setting[49].

For the realization of quantum information protocols, entangled states of long

enough lifetime to allow for the necessary operations are needed and subsys-

tems should be spatially well separated so that each subsystem can separately

be addressed. Some quantum information and communication protocols, such

as quantum teleportation and key distribution, could practically be useful only

when the parties could be at any desired distance from each other[50]. The en-

tangled state should be robust against the environmental noise, and in addition

the physical nature of subsystems must still allow local operations, in particular

measurements. If the entangled states are needed as a stationary component of

some hardware then obviously photons are not good candidates since, they im-

mediately leave the system or just disappear under any kind of measurement. As

the components of hardware trapped atoms or solid state devices (see [51] and

references therein) are the possible candidates and in such a system it is desirable
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to have a deterministic scheme for the efficient generation of entanglement, so as

to keep the size of system tractable.

In atomic systems it is possible to make the atoms interact with each other,

thus enabling the qubit operations. This turns out to be a quite difficult task when

it comes to interacting photons since nonlinear effects are very weak in nonlinear

media. Thus photons are good candidates for communication purposes, and as

the hardware components robust entangled states are needed.

Cavity QED is a domain of quantum optics which studies the behavior of

Rydberg atoms confined in a limited region of space confined by metallic bound-

aries (see [52, 53, 54] and references therein). The modification of spectrum of

the electromagnetic vacuum results in the modification of spontaneous emission

rates of atoms which can be either inhibited or enhanced[55, 56]. This enabled the

realization of previously predicted phenomena such as superradiance in atomic

ensembles[57], and exchange of quanta between field and atoms, namely Rabi

oscillations . Cavity QED serves as an entangling machine for atom-atom, atom-

photon systems, and also serves for the generation of non-classical photon states

such as Fock states or Schroedinger cat states. However this type of structures

that modify the electromagnetic vacuum are not limited by metallic cavities.

For instance microspheres, photonic band-gap materials may also give rise to a

strong modification of the vacuum, therefore enable the enhancement or inhibi-

tion of spontaneous decay rates[58, 59, 60]. In particular for microspheres, it is

possible to obtain high-Q resonators (> 109) at the optical frequencies at the ulti-

mate level determined by intrinsic material absorption[61]. The study of various

resonator like structures and the interaction of atoms with EM field in this media

is an important issue.

In cavity QED systems another important issue is obtaining information from

the cavity. The cavity modes should be coupled to the continuum of modes out-

side the cavity so as to gather information about the photonic and atomic states

inside the cavity. Since the photon states extracted from the cavity are highly

non-classical, e.g., Fock states, they are quite vulnerable to decoherence effects

such as unavoidable spontaneous emission to the free modes, and absorption at
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the walls as the photons are extracted out. Engineering these systems in order

to reduce these effects is naturally quite important[18, 62, 63, 64].

Thesis is organized as follows: In chapter-2 creation of robust entangled states,

using atoms and photons as the main physical objects is discussed. The use of

three level atoms provides a deterministic scheme for the generation of spatially

well separated maximally entangled states whose lifetime is determined by the

lifetime of the metastable states of Λ type three level atoms. Conditional cre-

ation of maximally entangled state via the observation of spontaneously emitted

photons is discussed. Finally generation of robust multi-party entangled states is

studied which is a natural extension of the bipartite case. It is shown that maxi-

mally entangled GHZ[65] type states can be obtained if there is an even number

of atoms and W [66] type states can be obtained if there is an odd number of

atoms.

In chapter-3 the interaction of multi-level atoms with quantized EM field in

the presence of dispersing-absorbing dielectric bodies is studied. First, quanti-

zation of EM field in dispersive-absorptive media is discussed then the master

equation governing the atom-field system is obtained. Realization of the robust

bipartite entanglement of three-level atoms in real physical settings is discussed,

in particular for atoms passing by a dielectric microspheres is studied. It is shown

that atoms may become entangled when they are spatially well separated. How-

ever in these real settings atoms will not be in a maximally entangled state, so

the loss of entanglement will be under consideration. Also a proposal is made

for the preparation of the initial state, i.e. the deposition of a single photonic

excitation.

In chapter-4 it is shown that the environment can be engineered in order to

stabilize entanglement. The stabilization of entanglement of two dipoles in free

space with the help of classical driving field is discussed. In free space considerable

amount of entanglement can be realized in Lamb-Dicke limit namely when the

dipoles are close to each other.

In chapter-5 the absorption effects associated with the extraction of nonclas-

sical photon states from a cavity will be studied. An input-output relation will
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be formulated for a one dimensional cavity with absorptive walls. Dynamics of

the intracavity field in the presence of a source and those of the field outside the

cavity will be under consideration.



Chapter 2

Robust Entanglement of

Three-Level Atoms

In this chapter we will discuss the generation of robust entangled states in bi-

partite three level atomic systems and make an extension to multi-partite systems.

Possible models that can be employed to describe these systems will be under

consideration. In the next chapter a physical realization of this robust entangled

state will be presented.

Introduction

During the last decade, the problem of engineered entanglement in atomic systems

has attracted a great deal of interest (see [67, 18, 41, 23] and references therein).

In particular, the atomic entangled states were successfully realized through the

use of cavity QED [18] and the technique of ion traps [23]. At present, one of the

most important problems under consideration is how to make a long-lived and

easy-monitored atomic entangled state with existing experimental technique.

An interesting scheme has been proposed recently [68]. In this scheme, two

8
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identical atoms are placed into a cavity tuned to resonance with one of the dipole-

allowed transitions. Initially both atoms are prepared in the ground state, while

the cavity field consists of a single photon. It is easy to show that the atom-field

interaction leads in this case to a maximum atomic entangled state such that

the single excitation is shared between the two atoms with equal probability. It

was proposed in [68] to consider the absence of photon leakage from a non-ideal

cavity as a signal that the atomic entangled state has been created. The scheme

can also be generalized to the case of any even number of atoms 2n, sharing n

excitations.

In the schemes of Refs. [68] two-level atoms are used for generation of bipartite

entanglement. The lifetime of the entanglement is defined by the specific time

scale of the dipole-allowed radiative processes in atoms, which is usually quite

short. Generally speaking, the lifetime of atomic entanglement is specified by the

interaction of atoms with environment.

The interaction with environment can also be used to create a long-lived

entanglement in atomic systems. For example, the initially non-entangled system

may evolve to an entangled state connected with the atomic states that cannot be

depopulated by radiative decay. In this case, the lifetime of the entangled state is

specified by the considerably long nonradiative processes. Possible realization is

provided by the use of three-level Λ-type process instead of the two-level scheme.

The process is illustrated by Figure-2.1. Here the levels 1 and 3 are connected

by the electric dipole transitions as well as the levels 2 and 3. In turn, the

dipole transition between the levels 2 and 1 is forbidden because of the parity

conservation [69]. The absorption of pumping photon by the transition 1 ↔ 3

with further jump of the electron to the level 2 can be interpreted as a kind of

Raman process in atomic system with emission of Stokes photon (see [70] and

references therein). It is clear that the atom excited to the level 2 can change

the state either by absorption of the Stokes photon resonant with respect to the

transition 3 ↔ 2 or through a nonradiative decay.

We assume now that the two identical Λ-type atoms in their ground state are

placed inside a cavity of high quality with respect to the pumping photons which
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are resonant with respect to the transition 1 ↔ 3 and also that the Stokes photons

created by the transition 3 → 2 either leave the cavity freely or are absorbed by

the cavity walls where initially there exists single pump excitation. Then, the

atom-field interaction may lead to creation of maximum entangled atomic state

1√
2
(|2, 1〉 + |1, 2〉), (2.1)

whose lifetime is determined by the slow processes of nonradiative 2 → 1 decay.

Let us stress that the monitoring of Stokes photons outside the cavity can be

used to detect the atomic entangled state (2.1) in this case.

PSfrag replacements

|1〉

|2〉

|3〉

Figure 2.1: Scheme of the process and configuration of atomic levels and transi-
tions.

The main objective of present chapter is to consider in details the evolution

towards the long-lived atomic entangled state (2.1)[71, 72, 73, 74, 75].

In sections (2.1,2.2,2.3) we discuss the model Hamiltonians that can be used to

describe the process under consideration and generation of robust entanglement

in each model. viz, we discuss the following models,

• single cavity mode strongly coupled with 1 ↔ 3 mode where the Stokes

photons corresponding to 3 ↔ 2 are allowed to escape from the cavity,

• two cavity modes strongly coupled with the two transitions, where Stokes

photons are absorbed by the cavity walls.

• effective model in which the upper level (3rd atomic level) is not populated

and adiabatically eliminated.
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Then, in Sec. 2.1,2.2,2.3 we examine the irreversible dynamics, leading to the

state (2.1) within the three models.

In section 2.4 the prescription for the generation of robust bipartite entangle-

ment is extended to the multi atom case.

2.1 Cavity transparent to Stokes modes

Assume that a system of N identical three-level atoms with Λ-type transitions

shown in Fig. 2.1 interacts with the cavity mode close to resonance with 1 ↔ 3

transition and with the Stokes radiation that can leave the cavity freely. Then,

we can choose the model Hamiltonian in the following form

H = H0 +Hint, (2.2)

H0 = ωPa
+
PaP +

∑

k

ωSka
+
SkaSk +

∑

f

[ω21R22(f) + ω31R33(f)], (2.3)

Hint =
∑

f

λPR31(f)aP +
∑

f,k

λSkR32(f)aSk +H.c. (2.4)

Here aP denotes the photon annihilation operator of the cavity mode with fre-

quency ωP , aSk is the annihilation operator of Stokes photon of the kth mode

with frequency ωSk, and ω31, ω21 are the energies of the corresponding atomic

levels with respect to the ground level 1. The operator

Rij(f) = |if 〉〈jf |

describes the transition from level j to level i and index {f, (f = 1 . . .N)} labels

the atoms. In Eq. 2.4, λP and λSk are the coupling constants, specifying the

dipole transitions 3 ↔ 1 and 3 ↔ 2, respectively. Summation over k in (2.4)

implies that the Stokes photons do not feel the presence of the cavity walls. This

summation involves the modes, corresponding to the natural line breadth near

ωS ≡ ω32 = ω31 − ω21. (2.5)
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Apart from the total electron occupation number, the Hamiltonian (2.2) has the

two integrals of motion

NP = a+
PaP +

∑

f

{R22(f) +R33(f)}

NS =
∑

k

a+
SkaSk +

∑

f

R22(f). (2.6)

2.1.1 Generation of robust bipartite entanglement

Consider the system of only two atoms. Assume that both atoms are prepared

initially in the ground state |1〉, the cavity contains a single photon of frequency

ωP , and Stokes field is in the vacuum state. Then, because of the integrals of

motion (2.6), the evolution of the system occurs in a single-excitation domain of

the Hilbert space spanned by the vectors





|ψ1〉 = |1, 1〉 ⊗ |1P 〉 ⊗ |0S〉
|ψ(±)

2 〉 = 1√
2
(|1, 3〉 ± |3, 1〉) ⊗ |0P 〉 ⊗ |0S〉

|ψ(±)
3k 〉 = 1√

2
(|1, 2〉 ± |2, 1〉) ⊗ |0P 〉 ⊗ |1Sk〉

(2.7)

By construction, the four states (2.7) labelled by the superscripts ± manifest the

maximum entanglement. It is easily seen that the action of operator (2.4) cannot

transform the states

{|ψ1〉, |ψ(+)
2 〉, |ψ(+)

3k 〉} (2.8)

into the states

{|ψ(−)
2 〉, |ψ(−)

3k 〉} (2.9)

and vice versa. Thus, the evolution of the system from the initial nonexcited

state |ψ1〉 takes place in the subspace spanned by only three vectors (2.8). Thus,

the states (2.9) can be discarded.

Under the assumption that there are only two three-level Λ-type atoms in

the cavity and that the system is initially prepared in the state |ψ1〉 in (2.7), in
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view of the results of previous section we should choose the time-dependent wave

function as follows

|Ψ(t)〉 = C1|ψ1〉 + C2|ψ2〉 +
∑

k

C3k|ψ3k〉, (2.10)

C1(0) = 1, C2(0) = 0, ∀k C3k(0) = 0, (2.11)

using the reduced basis (2.8). Here we use the notations |ψ2〉 ≡ |ψ(+)
2 〉 and

|ψ3k〉 ≡ |ψ(+)
3k 〉, for simplicity. The time-dependent Schrödinger equation with the

Hamiltonian (2.3) and (2.4) then leads to the following set of equations for the

coefficients in (2.10)




iĊ1 = ωPC1 + λP

√
2C2

iĊ2 = ω31C2 + λP

√
2C1 +

∑
k λSkC3k

iĊ3k = (ω21 + ωSk)C3k + λSkC2.

(2.12)

To find solutions of (2.12), let us integrate out the last equation in (2.12) in the

form

C3k(t) = −iλSk

∫ t

0

C2(τ)e
i(ω31+ωSk)(τ−t)dτ, (2.13)

then the equation of motion for C2 becomes,

iĊ2(t) = ω31C2(t) +
√

2λPC1(t) − i
∑

k

λ2
Sk

∫ t

0

dτe−i(ω21+ωSk)τC2(t− τ). (2.14)

Assuming exact resonance ωP = ω31, we introduce normal modes, C± = (C1 ±
C2)/

√
2 for the equations of motion for C1 and C2 (2.12),(2.14)

iĊ± = (ω31 ±
√

2λP )C± ∓ i

2

∑

k

λ2
Sk

∫ t

0

dτe−i(ω21+ωSk)τ
(
C+(t− τ) − C−(t− τ)

)
.

Now we can perform Markov approximation, assuming that time rate of

change due to coupling with continuum of modes is slow, C±(t − τ) '
C±(t)ei(ω31±

√
2λP )τ ,

iĊ± = (ωP ±
√

2λP )C±

∓ i

2

∑

k

λ2
Sk

∫ t

0

dτ
(
e−i(ωSk−ω32−

√
2λP )τC+(t) − e−i(ωSk−ω32+

√
2λP )τC−(t)

)
. (2.15)
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Assuming that the coupling constants λSk are slowly varying as a function of

frequency, the resulting frequency integral over ωSk would yield a sharply peaked

function at time t, and its value will be irrespective of the value of time t. So one

can take the limit t→ ∞ with the appropriate convergence factor,

lim
δ→0

lim
t→∞

∫ t

0

dτe−i(ωSk−ω32±
√

2λP−iδ)τ =

− iP 1

ωSk − ω32 ±
√

2λP

+ πδ(ωSk − ω32 ±
√

2λP ), (2.16)

P denoting the Principal part, which results in the equations of motion,

iĊ± = (ωP ±
√

2λP )C± ∓ i

2

(Γ+

2
C+(t) − Γ−

2
C−(t)

)
(2.17)

where we have ignored the level shifts arising from the Principal part in (2.16).

The spontaneous decay rates Γ± are given as follows,

Γ± = 2π
∑

k

λ2
Skδ(ωSk − ω32 ∓

√
2λP ), (2.18)

which can be evaluated by converting the summation into an integral. For

isotropic free space this factor turns out to be Γ± = (ω32 ±
√

2λP )3d2
32/3πε0c

3

where d32 = −e〈3|r|2〉 is the electric dipole moment, and −e is the electron

charge. Here we can assume that Γ = Γ+ ' Γ−, as long as ω32 � λP and the

equations of motion for C1, C2 can be cast into the form

Ċ1 = −iωPC1 − i
√

2λPC2

Ċ2 = −iω31C2 − i
√

2λPC1 −
Γ

2
C2, (2.19)

where Γ is the single atom decay rate, for 3 → 2 transition.

It follows from (2.10) that the probability to have the atomic entangled state

(2.1) has the form

∑

k

|C3k|2 = 1 − |C1(t)|2 − |C2(t)|2. (2.20)

Let us stress that, unlike the conventional Wigner-Weisskopf theory, Eqs.

(2.12) describe a superposition of exponential decay and harmonic oscillations.
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The latter are caused by the interaction between the 1 ↔ 2 transitions and cavity

field.

In the equations of motion 2.19 system features two distinct behavior depend-

ing on the two limiting cases, viz. λP � Γ and Γ � λP .

For Γ � λ, the coefficients C1 and C2 have the form,

C1(t) ≈
[
− 2λ2

(Γ/2 − i∆P )2
e(−Γ/2+i∆P )t + (1 +

2λ2

(Γ/2 − i∆P )2
)e

− 2λ2

Γ/2−i∆P
t

]
e−iωP t

C2(t) ≈ −
√

2λ

iΓ/2 + ∆P

[
e−Γ/2t − e

−( 2λ2

Γ/2−i∆P
+i∆P )t

]
e−iω21t (2.21)

to second order in λ/(Γ − i∆P ). Here

∆P = ωP − ω31

is the detuning factor for the pumping mode.

It is seen that Eq. (2.21) describes the damped oscillations of the coefficient

C1(t) in (2.10). Thus, the probability (2.20) to get the robust entangled state

tends to 1 as t → ∞ (see Fig. 2.2). It is seen from Eq. 2.21, that the time τ

required for persistent entanglement is typically,

τ ∼ Γ2 + ∆2
P

λ2
P Γ

. (2.22)

The increase of detuning leads to a deceleration of evolution towards the persistent

entangled state.

In case λP � Γ, the solution becomes,

C1(t) ' e−i
ωP +ω31

2
t−Γ

4
t
(
cos Ωt− i

∆P

2Ω
sin Ωt

)

C2(t) ' e−i
ωP +ω31

2
t−Γ

4
t
(√2λP

Ω
sin Ωt

)
(2.23)

where Ω =
√

2λ2
P + ∆2

P/4 is the Rabi frequency. The system exhibits damped

Rabi oscillations. The time scale required for entanglement is τ ' 1/Γ.

While the atomic system evolves to the maximum entangled state (2.1), the

Stokes photon leaves the cavity. Thus, the observation of Stokes photon outside

the cavity can be considered as a signal that the robust entangled state has been

prepared.
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Figure 2.2: Time evolution of probability (2.20) to have the robust entanglement
at λP = 0.001Γ for (1)∆P = 0; (2)∆P = Γ(3);∆P = 2Γ;(4)∆P = 4Γ

2.2 Cavity with absorption of Stokes photons

The atomic entangled state (2.1) can also be realized when the Stokes mode is

strongly damped in the cavity. For simplicity, we again assume no damping for

the pumping mode. At the same time, the Stokes photons are supposed to be

absorbed by the cavity walls.

The model Hamiltonian, describing the process under consideration, can be
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chosen as follows

H = H0 +Hint +Hloss,

H0 = ωPa
+
PaP + ωSa

+
S aS +

∑

f

[ω21R22(f) + ω31R33(f)],

Hint =
∑

f

[λPR31(f)aP + λSR32(f)aS] +H.c. (2.24)

Hloss =
∑

q

ηq(b
+
q aS + a+

S bq) +
∑

q

Ωqb
+
q bq. (2.25)

Hint describes the interaction of three level atoms with the two modes of the

cavity which are described by the photon annihilation operator aP for the pump

photons, and aS for the Stokes photons. Hloss describes the cavity damping of

Stokes modes. To take into account the cavity damping of Stokes photons, we

consider an interaction with a ”phonon reservoir” responsible for the absorption

of photons by cavity walls, where bq, b
+
q are the Bose operators of phonons in the

cavity walls[76].

We can now write the Master Equation, eliminating the phonon degrees of

freedom (see Appendix-B,[77]),

ρ̇ = −i[H0 +Hint, ρ] + κ{2aSρa
+
S − a+

S aSρ− ρa+
S aS}, (2.26)

so that the contribution of (2.25) is taken into account effectively through the

Liouville term. Here 1/κ is the lifetime of a Stokes photon in the cavity.

2.2.1 Generation of bipartite robust entanglement

In sec.2.2 we have obtained the Master equation(2.26) describing the situation

when the cavity supports two modes and the Stokes photons are either absorbed

by cavity walls or leak out of the cavity. Let us choose the same initial condition

as in previous section, so that

ρ(0) = |ψ1〉〈ψ1|, (2.27)

subject to irreversible dynamics governed by the Master equation(2.26).
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The Master equation(2.26) can be cast into the following form,

ρ̇ = −i(Heffρ− ρH†
eff) + 2κaSρa

†
S

Heff = H0 +Hint − iκa†SaS, (2.28)

the solution of which can be expressed in the series form,

ρ(t) = eŜ(t−t0)ρ(t0)

+
∞∑

n=1

∫ t

t0

dtn

∫ tn

t0

dtn−1 . . .

∫ t2

t0

dt1e
Ŝ(t−tn)L̂eŜ(tn−tn−1) . . . L̂eŜ(t1−t0)ρ(t0),

(2.29)

where the superoperators Ŝ and L̂ are given as follows,

Ŝ(ρ) = −i(Heffρ− ρHeff )

L̂(ρ) = 2κaSρa
†
S .

Since the initial state (2.27) contains only one excitation, the series (2.29) termi-

nates at the second term,

ρ(t) = eŜ(t−t0)ρ(t0) +

∫ t

t0

dt1e
Ŝ(t−t1)L̂eŜ(t1−t0)ρ(t0). (2.30)

It is seen that the system evolves to the robust atomic entangled state (2.1). The

stairs-like structure is again caused by the competition between the transitions

3 ↔ 1 and 3 ↔ 2. Although such a behavior is an inherent property of the model

under consideration, the stairs become more visible with decrease of κ (see the

”dotted curves” in Fig. 2.3).

2.3 Effective Model

Consider the case when the cavity is a two-mode cavity which has support for

pump and Stokes modes and the two transitions in three-level system are off-

resonant with respect to these modes s.t. the transition 1 ↔ 2 is an energy

conserving process, i.e. ωP = ωS + ω21. This scheme is illustrated in Figure-2.4.
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a) b)

Figure 2.3: Evolution to the persistent entangled state in the dynamics described
by Eq. (2.26)(dotted curve) and in the effective model described by Eq. (2.37)
(solid curve) for a)κ = 0.1λP ,∆P = ∆S = 10λP , λS = λP b)κ = λS = λP ,∆P =
∆S = 10λP

In this situation, the 3rd level, if it is initially unpopulated, will not be populated

and it can be adiabatically eliminated from the equations of motion.

For the moment disregarding the absorption of Stokes photons by cavity walls,

from the Hamiltonian (2.24), H = H0 +Hint, the Heisenberg equations of motion

for the operators involving the 3rd atomic level are as follows,

iṘ31 = −ω31R31 − λSa
†
SR21 + λPa

†
P (R33 −R11)

iṘ32 = −ω32R32 − λPa
†
PR12 + λSa

†
S(R33 −R22)

iṘ33 = λP (R31aP − a†PR13) + λS(R32aS − a†SR23). (2.31)

The equations of motion can be integrated to yield,

R31(t) =R31(0)eiω31t + i

∫ t

0

dt′eiω31(t−t′)
[
λSa

†
S(t′)R21(t

′)

− λPa
†
P (t′)

[
R33(t

′) −R11(t
′)
]]

R32 =R32(0)eiω32t + i

∫ t

0

dt′eiω32(t−t′)
[
λPa

†
P (t′)R12(t

′)

− λSa
†
S(t′)

[
R33(t

′) −R22(t
′))
]]

(2.32)
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Now, when ∆ = ωP − ω31 = ωS − ω32 � λP , λS, we can make the following

substitutions in the equations of motion (2.32),

aS(t′) ' aS(t)eiωS(t−t′)

aP (t′) ' aP (t)eiωP (t−t′),

R33(t
′) ' R33(t), R22(t

′) ' R22(t)R11(t
′) ' R11(t). (2.33)

The Heisenberg equations of motion (2.32) yield,

R31(t) 'R31(0)e−iω31t

− e−i∆t − 1

∆

[
λSa

†
S(t)R21(t) − λPa

†
P (t)

[
R33(t) − R11(t)

]]
(2.34)

R32(t) 'R32(0)eiω32t

− e−i∆t − 1

∆

[
λPa

†
P (t)R12(t) − λSa

†
S(t)

[
R33(t) − R22(t)

]]
. (2.35)

Substituting into (2.35) into (2.24) and discarding the fast oscillating terms we

obtain the effective Hamiltonian in the subspace excluding the 3rd atomic level,

Heff = ω21R22 + ωPa
†
PaP + ωSa

†
SaS + 2λP λS

∆
(a†SaPR21 + H.C.)

+
2λ2

P

∆
a†PaPR11 +

2λ2
S

∆
a†SaSR22. (2.36)

Eq. (2.36) describes an effective two level system with Rabi frequency λPλS/∆,

and the last two terms are Stark shifts, which can be ignored for small field

populations.

In the adiabatic model the population of the 3rd atomic level, pump and the

Stokes photons will remain small if these states are initially unpopulated. Here we

should remark about another strategy of entanglement creation. The transition

from the 1st atomic level to the 2nd atomic level will be a slow process, thus

it might be possible to adjust the interaction time so that once the maximally

entangled state (2.1) is obtained the interaction can be switched off. It is however

also possible to achieve the same result using a single mode cavity if the 1st and

the 3rd states both have the same energy. This single mode can address both

transitions thus Rabi oscillations take place between the 1st and the 3rd atomic

levels.
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Figure 2.4: Effective Model: The 3rd level is adiabatically eliminated

Another possibility is to introduce an irreversible evolution to the 3rd level

by assuming that the cavity is of low quality regarding the Stokes photons. Thus

the system can be described by the following master equation similar to 2.26,

ρ̇ = −i[Heff , ρ] + κ(2aSρa
†
S − a†SaSρ− ρa†SaS). (2.37)

In Fig-2.3 a comparison can be made with the exact(2.26) and effective(2.37)

models. It is seen that adiabatic model is unable to take short time behavior into

account whereas it is more accurate for long time behavior.

2.4 Entanglement in the Multi Three-Level

Atomic System

We are going to consider the case when the Stokes photons are allowed to escape

from the cavity, initially all the atoms are in the ground state, and in the presence

of pump photons which couple the 1st and 3rd levels. If there are N atoms in

the ground state and nP pump photons initially, in the final state nP excitations

in the 2nd state will be created, and these excitations will equally be distributed

symmetrically over the N atoms,

|Ψ(t = 0)〉 =

N⊗

i=1

|1〉i ⊗ |nP 〉P

→ 1√
CnP

(N)

∑

℘

nP⊗

i=1

|2〉℘i

N⊗

i=nP +1

|1〉℘i ⊗ |0〉P ,
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where ℘ denotes all possible permutations over N atoms, and CnP
(N) =

N !/nP !(N − nP )!. In case nP ≥ N , all of the atoms will evolve to the sec-

ond state, thus leading to an unentangled one. The Hamiltonian of the system

in the interaction picture has the form,

H0 = ∆Pa
†
PaP + gP<31aP + g∗Pa

†
P<13

Hint =
∑

k

∆ka
†
kak +

∑

k

gk<32ak + g∗ka
†
k<23 (2.38)

where <ij =
∑N

f=1Rij(f) constitute the collective atomic operators. The Stokes

modes make up the environment, and they lead to a spontaneous decay from

the 2nd level to the 3rd level. Upon the elimination of Stokes modes, the Master

equation for the reduced density matrix of atoms and pump photons, in a thermal

environment is as follows,

ρ̇(t) = −i[H0, ρ(t)] + (n̄+ 1)
Γ

2
(2<23ρ(t)<32 − ρ(t)<32<23 − <32<23ρ(t))

+n̄
Γ

2
(2<32ρ(t)<23 − ρ(t)<23<32 − <23<32ρ(t)), (2.39)

where Γ is the spontaneous decay rate for the 3 → 2 transition, and n̄ is the

average number of Stokes photons at the resonant frequency E32. Consider for

simplicity the case when the temperature is much smaller than the resonant

energy E32, so that the mean number of thermal photons n̄ ∼ 0 and the Master

equation reduces to

ρ̇(t) = −i[H0, ρ(t)] +
Γ

2
(2<23ρ(t)<32 − ρ(t)<32<23 − <32<23ρ(t)). (2.40)

Initially all the atoms are in the ground state |1〉. Then due to coupling between

the 1st and the 2nd levels mediated by the pump photons, an excitation in the

2nd level will appear. Assuming that the spontaneous decay rate Γ for 3 → 2

transition is much larger than the Rabi coupling constant gP for 1 ↔ 3 transition,

the state with one excitation in the 3rd level will immediately decay to the 2nd

state before any further Rabi oscillation 1 ↔ 3 can take place. As a result, the
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evolution will approximately take place in the subspace spanned by the vectors,

|Ψn〉 =
1√

Cn(N)

∑

℘

n⊗

i=1

|2〉℘i

N⊗

i=n+1

|1〉℘i ⊗ |nP − n〉P

|Φn〉 =
1√

C1(N − n)Cn(N)

∑

℘

n⊗

i=1

|2〉℘i

n+1⊗

i=n+1

|3〉℘i

N⊗

i=n+2

|1〉℘i ⊗ |nP − n− 1〉P ,

|Φ′
n〉 =

1√
C2(N − n)Cn(N)

∑

℘

n⊗

i=1

|2〉℘i

n+2⊗

i=n+1

|3〉℘i

N⊗

i=n+3

|1〉℘i ⊗ |nP − n− 2〉P , (2.41)

for n = 0, 1, 2, . . . , nP . First |Ψn〉 → |Φn〉 transition takes place, followed by

|Φn〉 → |Φ′
n〉 and |Φn〉 → |Ψn+1〉 transitions, at a time scale of t ∼ 1/Γ, the

population of |Φ′
n〉 to that of |Ψn+1〉 is of the order g2

P/Γ
2 � 1. So we can confine

ourselves to the subspace spanned by {|Ψn〉, |Φn〉;n = 0, 1, 2, . . . , nP}.

The density matrix can approximately be expressed in the form,

ρ ≈
nP∑

n=0

an|Ψn〉〈Ψn| + bn|Ψn〉〈Φn| + b∗n|Φn〉〈Ψn| + cn|Φn〉〈Φn|, (2.42)

from which the equations of motion for the coefficients, an, bn, b
∗
n, cn are obtained,

upon insertion into Eq.(2.40),

ȧn = i
√

(N − n)(nP − n)(gP bn − g∗P b
∗
n) + 2n

Γ

2
cn−1

ḃn = i
√

(N − n)(nP − n)(g∗Pan − g∗P cn) − i∆bn − (n+ 1)
Γ

2
bn

ḃ∗n = −i
√

(N − n)(nP − n)(gPan − gP c
∗
n) + i∆b∗n − (n+ 1)

Γ

2
b∗n

ċn = −i
√

(N − n)(nP − n)(gP bn − g∗P b
∗
n) − 2(n+ 1)

Γ

2
cn−1, (2.43)

keeping in mind that we are always projecting into the subspace spanned by

|Ψn〉, |Φn〉, n = 0, 1, 2 . . ..

Given the initial condition a0(0) = 1, we are going to assert that ȧn/Γ �
1, ċn/Γ � 1, and accordingly solve the equations of motion(2.43), then the
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assertions can be checked for consistency. bn and b∗n can be eliminated from the

equations of motion,

bn(t) = i
√

(N − n)(nP − n)g∗P

∫ t

0

dτe−[(n+1)Γ/2+i∆]τ (an(t− τ) − cn(t− τ))

' i
√

(N − n)(nP − n) g∗P
1

(n + 1)Γ/2 + i∆
(an(t) − cn(t))

b∗n(t) ' −i
√

(N − n)(nP − n) gP
1

(n+ 1)Γ/2 − i∆
(an(t) − cn(t)) , (2.44)

where it is assumed that ȧn/Γ � 1, ċn/Γ � 1. Then the coupled equations for

an, cn are received,

ȧn = −γn(an − cn) + 2n
Γ

2
cn−1

ċn = γn(an − cn) − 2(n+ 1)
Γ

2
cn,

γn = 2(N − n)(nP − n)(n+ 1)
2λ2Γ

(n+ 1)2Γ2 + 4∆2
, (2.45)

from which an and cn can be obtained in terms of each other,

cn(t) = γn

∫ t

0

dτe−2(n+1)Γτ (an(t− τ) − cn(t− τ))

' γn

(n + 1)Γ
(an(t) − cn(t))

' γn

(n + 1)Γ
an(t), (2.46)

thus obtaining the equations governing an’s,

ȧn = −γnan + γn−1an−1. (2.47)

The initial condition is a0(0) = 1 and all the other terms in the density matrix,

are equal to zero, which lead to the solutions,

a0(t) = e−γ0t

an(t) = γn−1

∫ t

0

dτe−γnτan−1(t− τ), n = 1, 2, 3, . . . (2.48)

In general the solution for an and cn’s will be a linear sum of the terms of

the form, exp(−γit), i ≤ n, which are in line with the assumption that ȧn/Γ �
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1, ċn/Γ � 1. When n = min(nP , N), γn = 0, thus the final value is nf =

min(nP , N) and the system evolves to the state |Ψnf
〉〈Ψnf

|, and remains in this

state. The time dependence of anf
is,

anf
(t) = 1 −

nf−1∑

i=0

e−γit

nf−1∏

j 6=i

γj

γj − γi
. (2.49)

Thus the characteristic time scale needed in order to obtain the final state is

1/γnf−1, since γn is a monotonically decreasing sequence. A case of interest is

the initial state for which, N = 2m,nP = m (m = 1, 2, 3, . . . which can produce

maximally entangled states, |Ψm〉〈Ψm|. For this case the characteristic time scale

for obtaining entangled state is τ−1 = γm−1 = 4m(m + 1)λ2Γ/(m2Γ2 + 4∆2), for

instance for vanishing detuning ∆ = 0, τ−1 = 4(1 + 1/m)λ2/Γ.

2.5 Summary and discussion

In this chapter, we have studied the quantum dynamics of a system of two three-

level atoms in the Λ configuration interacting with two modes of quantized elec-

tromagnetic field in a cavity under the assumption that the Stokes-mode photons

either leave the cavity freely or are damped rapidly. It is shown that in both

cases the system evolves from the state when both atoms are in the ground state

and cavity contains a pumping photon into the robust entangled state (2.1). The

system is also studied within the adiabatic limit when both cavity modes are

off-resonant with the dipole transitions. The lifetime of this final state is defined

completely by the nonradiative processes and is therefore relatively long. The

results that were obtained for a system of two atoms, are generalized to the case

of big atomic clusters. In fact, it is shown that a certain robust entanglement can

be obtained in a system with any even number 2N of three-level Λ-type atoms

initially prepared in the ground state and interacting with N pumping photons.

In the case of a cavity transparent to the Stokes photons, the detection of

Stokes photon signalizes the rise of atomic entanglement. Such a photon can be

monitored outside the cavity.
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Let us stress that the general models with the Hamiltonians (2.2, 2.25) , that

take into account all three atomic levels, admit certain peculiarities in the evolu-

tion towards the robust entangled state caused by the competition of transitions

3 ↔ 1 and 3 ↔ 2. Moreover, the general model admits also a number of interme-

diate maximum entangled states (|ψ2〉 and |ψ3k〉 in Eq. (2.7)) that do not exist in

the effective model. Lifetime of these entangled states are defined by the dipole

radiative processes and are therefore too short.

One of the most important conditions of experimental realization of the robust

entanglement discussed in this chapter is that the transitions 1 ↔ 3 and 3 ↔ 2,

used for absorption of pumping photons and generation of Stokes photons, should

have quite different frequencies. The considerable difference of frequencies ω31

and ω32 makes it possible to design a multi-mode cavity with high quality with

respect to ω31, permitting either leakage or strong absorption of Stokes photons.

An important example is provided by the 3S ↔ 4P and 4P ↔ 4S transitions in

sodium atom and similar transitions in other alkaline atoms (see Ref. [78]). These

atoms are widely used in quantum optics, in particular in investigation of Bose-

Einstein condensation [79]. Λ-type structures, obeying the condition ω31 � ω32

can also be found in other atoms and molecules [78]. In particular, the cavities

with necessary properties may be assembled using distributed Bragg reflectors

(DBR) and double DBR structures to single out two different wavelengths [80].

The initial state of the system can be prepared in the same way as in Ref.

[62]. The atoms can propagate through the cavity, using either the same opening

or two different openings. The velocity of atoms should be chosen in a proper

way so that the time they spend in the cavity τ � (Γ2 + ∆2
P )/λ2

PΓ(2.22) or

τ � 1/Γ(2.23). All measurements aimed at the detection of atomic entanglement

can be performed outside the cavity.



Chapter 3

Generation of Robust

Entanglement in Dielectric

Medium

In this chapter we are going to study the interaction of multi-level atoms with

electromagnetic field in the presence of dispersing-absorbing dielectric bodies and

make a realistic proposal for deterministic entanglement of two three-level atoms

passing by a dispersing-absorbing dielectric microsphere. The preparation of the

initial state and the possible sources of entanglement loss are discussed, and it is

shown that entanglement might still be very close to its maximum value if the

system is properly engineered.

Introduction

Photon exchange between two atoms is one of the simplest processes to entan-

gle two atoms in a common electromagnetic field. The effect, which is very

weak in free space, can be enhanced significantly when the atoms are in a cavity

[18, 19, 20]. Usually attempts are made to minimize the effect of spontaneous

emission. Quite counterintuitively, in certain situations one can take advantage

27
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of the spontaneous emission for entanglement generation [81, 82, 83, 84]. Con-

sider, for example, two two-level atoms located in free space with one of them

being initially excited. This product state is a superposition of a symmetric (su-

perradiant) state and an antisymmetric (subradiant) state. If the two atoms are

separated by distances much smaller than the wavelength, the symmetric state

decays must faster than the antisymmetric one, leaving the system in a mixture

of the ground state and the entangled antisymmetric state.

The scheme also works at distances much larger than the wavelength, if a

resonator-like equipment is used which sufficiently enhances the atom-field cou-

pling, thereby ensuring that a photon emitted in the process of resonant photon

exchange, which is mediated by real photon emission and absorption, is accessible

to the two atoms. This condition can also be satisfied when the atoms pass by

a dielectric microsphere at diametrically opposite positions [81]. If the distance

of the atoms from the surface of the sphere becomes sufficiently small, then the

excitation of surface-guided (SG) and whispering gallery (WG) waves can give

rise to strong collective effects, which are necessarily required to generate sub-

stantial entanglement. Needless to say that nonspherical bodies can also be used

to realize a noticeable mutual coupling of the atoms.

A drawback of the use of two-level-type atoms is that the entanglement is

transient. In particular, when two atoms that have become entangled between

each other near a body such as a microsphere move away from it (and from each

other), then they undergo ordinary spontaneous emission (in free space), which

destroys the quantum coherence. Preservation of the atomic entanglement over

long distances between the atoms is therefore not possible in this way.

The contradicting effects of entanglement creation and destruction typical of

two-level atoms can be combined in a more refined scheme involving two three-

level atoms of Λ type (Fig. 2.1), where the two lower lying states |1〉 and |2〉, such

as the ground state and a metastable state or two metastable states, represent

the qubits that are desired to be entangled with each other [73]. Whereas the

transition |1〉 ↔ |3〉 is strongly coupled to the field, the transition |2〉 ↔ |3〉 is

only weakly coupled to the field. Each atom is initially in the state |1〉, while
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the field is prepared in a single-photon state. Let us assume that due to Rabi

oscillations the state |3〉 of one of the two atoms, we do not know which one,

is populated. Irreversible decay to the state |2〉 is then accompanied with an

entanglement transfer forming a (quasi-)stationary entangled state between the

two atoms with respect to the states |1〉 and |2〉. Its lifetime is limited only by

the lifetime of the metastable states, and the degree of entanglement achievable

can approach 100% in principle. Moreover, the scheme is purely deterministic

and realizable by means of current experimental techniques.

In fact, the model Hamiltonian used in Ref. [73] is based on a Dicke-type

system and does not allow for atoms that are spatially well separated from each

other, with the interatomic distance being much larger than the characteristic

wavelengths. However, for many applications in quantum information processing

or for testing Bell’s inequalities, large interatomic distances and thus the possi-

bility of individual manipulation of the atoms are necessary prerequisites. The

aim of the present work is to close this loophole, by considering two spatially

well separated Λ-type three-level atoms appropriately positioned with respect to

macroscopic bodies, so that the two key ingredients – enhanced atom-field cou-

pling and sharp field resonances can be realized. Note that the second ingredient

is absent in the case of a super-lens geometry [85]. To illustrate the theory, we

apply it to the case of the two atoms being near a realistic dielectric microsphere.

The formalism used is based on the quantization of the macroscopic electromag-

netic field and allows to take into account material dispersion and absorption in

a quantum-mechanically consistent manner.

The chapter is organized as follows. In section-3.1 we outline the quantization

of EM field in dispersing-absorbing medium(see [86]). In Sec. 3.2 the basic equa-

tions for describing the interaction ofN multilevel atoms with the electromagnetic

field in the presence of dispersing and absorbing macroscopic bodies are given. In

Sec. 3.3 the theory is applied to the problem of formation of an entangled state

between two Λ-type three-level atoms. Section 3.4 presents the results obtained

for the case when the two atoms are at diametrically opposite positions outside

a microsphere. Finally, a summary and some concluding remarks are given in

Sec. 3.5[87].
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3.1 Quantization of electromagnetic field in

dispersing-absorbing medium

From Kramers-Kronnig relations it is evident that whenever the dielectric func-

tion, as a function of frequency, deviates from unity, inevitably has an imaginary

part at some frequencies. From Maxwell equations one can easily see that imag-

inary part implies a dissipation of electro-magnetic fields. Whenever one tries to

quantize EM fields in the presence of a material with a complex dielectric function

then the field operators will be damped. The dissipation in quantum mechanics

implies the existence of a noise, so in the Maxwell equations one should introduce

polarization noise operators (noise magnetization as well if the permeability is

a complex quantity) as the source terms (see [88, 89, 90, 91, 92] and [86] for a

review).

In this section a microscopic derivation of Maxwell equations in dispersive-

absorptive medium will be presented within the Drude-Lorentz model, though

the resulting quantization scheme is not limited with the Drude-Lorentz model.

We are going to consider local harmonic oscillators under the action of Marko-

vian Langevin forces[93], for which the Heisenberg equations of motion are as

follows

mq̈ +mγq̇ +mω2
0q = F (t), (3.1)

where a priori we make no assumption about the nature of Langevin forces, or

their algebra. There are two physical constraints on the system: {q(t), p(t)}
should satisfy equal time commution relation, and under thermodynamic equi-

librium the local oscillator should obey Bose statistics, which read as follows,

[q(t), p(t)] = i~,

〈E〉 = (n̄(ω0) + 1/2)~ω0 (3.2)

where 〈E〉 denote the thermal average of the energy of the oscillator, and n̄(ω) =

(exp(β~ω) − 1)−1 denotes the Bose distribution function.
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As time goes to infinity the transient motion will decay away, thus one is left

with the inhomogenous solution of (3.1). The solution of (3.1) in frequency space

yields,

q(ω) =
F (ω)

m(ω2
0 − ω2 + imγω)

p(ω) = −iωq(ω), (3.3)

where the Fourier transform into the frequency space is defined as follows,

q(t) =
1√
2π

∫ ∞

0

dωq(ω)e−iωt, (3.4)

and since q(t) is a Hermitian quantity q(ω) = q†(−ω) , and so forth for the other

observables F (t), p(t).

From the equal time commutation relation (3.2) one can deduce the following

fact,

[q(ω), q†(ω′)] = g(ω)δ(ω − ω′)

[q(ω), q(ω′)] = 0 for ω, ω′ ≥ 0 (3.5)

where g(ω) depends on the system under consideration, but always has to satisfy

the following condition
∫ ∞

0

dω ωg(ω) =
~π

m
. (3.6)

From thermodynamic equilibrium condition (3.2) follows

∫ ∞

0

dω

∫ ∞

0

dω′(ω2
0 + ωω′) < q†(ω)q(ω′) > ei(ω−ω′)t =

n̄(ω0)~ω0

m∫ ∞

0

dω(ω2
0 + ω2)g(ω) =

~ω0

m
. (3.7)

Now we can impose these conditions on the damped harmonic oscillator for the

steady state solution (3.3). The condition (3.2), impose the following constraints

on the dissipation rate γ and the Langevin force ˆF (t),

[F (ω), F †(ω′)] = 2~mωγδ(ω − ω′)

〈F †(ω)F (ω)〉 = 2~mωγn̄(ω)δ(ω − ω′). (3.8)
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with the assumption ω0 � γ.

Now we are going to extend the previous consideration to three dimensions

and consider a medium with randomly distributed damped oscillators of charge e,

each bound to a spatially fixed charge center at q′
µ of charge −e. The oscillator

is described by the phase space coordinates qµ,pµ, and obey the equations of

motion,

mq̈µ = −mω2
0qµ − imγq̇µ + Fµ(t) + eE(q′

µ, t) + eq̇µ × B(q′
µ, t) (3.9)

where E(qµ, t) and B(qµ, t) are the electric and magnetic field vectors re-

spectively. Fµ is the three dimensional Langevin force acting on the µth os-

cillator and the force acting on two distinct oscillators are uncorrelated, i.e.

[Fµi(ω),Fµ′j(ω
′)] = δµµ′δ(ω − ω′)δij. We are going to ignore the magnetic force ,

namely the last term in (3.9) assuming that 1 � q̇µ/c. Then the solution of (3.9)

yields,

qµ(ω) =
Fµ(ω) + eE(q′

µ, ω)

m(ω2
0 − ω2 − iγω)

. (3.10)

Now we can express the polarization of the medium as follows,

P(r, ω) = e
∑

µ

qµδ(r − q′
µ)

= PF (r, ω) + PN(r, ω) (3.11)

where PF (r, ω) is the polarization of the medium, and PN(r, ω) is the noise in-

duced polarization,

PF (r, ω) = ε0ε(r, ω)E(r, ω)

PN(r, ω) = e
∑

µ

Fµ(ω)

m(ω2
0 − ω2 − iωγ)

δ(r − q′
µ). (3.12)

ε(r, ω) is the dielectric function in the Drude Lorentz model,

ε(r, ω) = 1 +
ω2

P

ω2
0 − ω2 + iωγ

. (3.13)

ω2
P = e2n(r)/mε0 is the plasma frequency. From (3.12) the commutation relation

for the noise operators can be obtained as follows,

[PNi(r, ω), P †
Nj(r

′, ω′)] = 2~ε0εI(r, ω)δ(ω − ω′)δ(r − r′)δij for ω, ω′ ≥ 0 (3.14)
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where it is assumed that oscillators are randomly distributed, so that a spatial

averaging is performed. εI(r, ω) = Imε(r, ω) is the imaginary part of the dielectric

function. Then noise polarization can be expressed as follows,

PN(r, ω) = i
√

2~ε0εIf(r, ω), (3.15)

where the bosonic annihilation and creation operators f(r, ω), f †(r′, ω′)are intro-

duced,

[fi(r, ω), f †
j (r

′, ω′)] = δ(ω − ω′)δijδ(r − r′). (3.16)

Noise induced currents, and charge operators can be inroduced,

jN(r, ω) = −iωPN(r, ω)

ρN(r, ω) = −∇ · PN(r, ω). (3.17)

Then the Maxwell equations for the field amplitudes become,

∇.B(r, ω) = 0 (3.18)

∇.ε0ε(r, ω)E(r, ω) = −∇.PN (r, ω) (3.19)

∇ × E(r, ω) = iωB(r, ω) (3.20)

∇ × B(r, ω) + iωµ0ε0ε(r, ω)E(r, ω) = µ0jN (r, ω) (3.21)

where the positive frequency part of the (noise) polarization and current reads,

PN(r, ω) = i
√

2~ε0εi(r, ω)f(r, ω)

jN(r, ω) = −iωPN(r, ω). (3.22)

The electric field can be calculated by the following partial differential equation,

∇ × ∇ × E(r, ω)− ω2

c2
ε(r, ω)E(r, ω) = iωµ0jN(r, ω). (3.23)

3.2 Master equation

Consider N multilevel atoms at given positions rA that interact with the elec-

tromagnetic field in the presence of some macroscopic, linear bodies, which are
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allowed to be both dispersing and absorbing. In electric dipole approximation,

the overall system can be described by the multipolar-coupling Hamiltonian [86],

Ĥ =

∫
d3r

∫ ∞

0

dω ~ω f̂ †(r, ω)f̂(r, ω)

+
∑

A

∑

m

~ωAmR̂Amm−
∑

A

∫ ∞

0

dω
[
d̂AÊ+(rA, ω) + H.c.

]
. (3.24)

Here, the bosonic fields f̂(r, ω) and f̂ †(r, ω),

[
f̂k(r, ω), f̂ †

k′(r
′, ω′)

]
= δkk′δ(ω − ω′)δ(r − r′), (3.25)

are the canonically conjugated variables of the system, which consists of the

electromagnetic field and the bodies (including the dissipative system responsible

for absorption), the R̂Amn are the atomic (flip) operators

R̂Amn = |m〉AA〈n|, (3.26)

with |m〉A being the mth energy eigenstate of the Ath atom (of energy ~ωAm),

and

d̂A =
∑

m,n

dAmnR̂Amn (3.27)

are the electric dipole operators of the atoms (dAmn =A〈m|d̂A|n〉A). Further, the

body-assisted electric field in the ω domain, Ê+(r, ω), expressed in terms of the

fundamental variables f̂(r, ω) reads

Ê+(r, ω) =

∫
d3r′ G̃(r, r′, ω)f̂(r′, ω), (3.28)

where

G̃(r, r′, ω) = i

√
~

πε0

ω2

c2

√
Im ε(r′, ω)G(r, r′, ω) (3.29)

with G(r, r′, ω) being the classical Green tensor which satisfies the equation

∇ × ∇ × G(r, r′, ω) − ω2

c2
ε(r, ω)G(r, r′, ω) = δ(r − r′) (3.30)

together with the boundary conditions at infinity [δ(r) =
�
δ(r− r′),

�
is the the

3× 3 unit matrix]. Throughout the chapter we restrict our attention to dielectric

bodies, which are described by a spatially varying complex permittivity ε(r, ω)=

Re ε(r, ω)+ iIm ε(r, ω).
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Next we assume that the macroscopic bodies, say, microspheres or photonic

crystals, act as resonator-like structures such that the excitation spectrum of the

body-assisted electromagnetic-field shows a resonance structure with the lines be-

ing well separated from each other. With regard to the atom–field coupling, we

assume that a few atomic transitions can be strongly coupled to field resonances

tuned to them, while all other transitions are weakly coupled to the field. Fol-

lowing Ref. [81], we decompose the body-assisted electromagnetic field into the

part (denoted by
∫ ′∞
0

dω . . .) that can be strongly coupled to atomic transitions

and the rest (denoted by
∫ ′′∞
0

dω . . .), which only gives rise to a weak atom–field

coupling. The Heisenberg equation of motion for an arbitrary operator Ô that

belongs to the system consisting of the atoms and the part of the body-assisted

electromagnetic field that strongly interacts with the atoms can then be written

in the form of

˙̂
O = − i

~

[
Ô, Ĥ

]
= − i

~

[
Ô, ĤS

]

+
i

~

∑

A

∫ ′′∞

0

dω
{[
Ô, d̂A

]
Ê+(rA, ω)

+ Ê−(rA, ω)
[
Ô, d̂A

]}
, (3.31)

where

ĤS =

∫
d3r

∫ ′∞

0

dω ~ω f̂ †(r, ω)f̂(r, ω)

+
∑

A

∑

m

~ωAmR̂Amm−
∑

A

∫ ′∞

0

dω
[
d̂AÊ+(rA, ω) + H.c.

]
. (3.32)

To handle the weak atom–field interaction, i.e., the integral
∫ ′′∞
0

dω . . . in

Eq. (3.31), we first formally solve the Heisenberg equation of motion

˙̂
f(r, ω) = − i

~

[
f̂(r, ω), Ĥ

]

= −iωf̂(r, ω) +
i

~

∑

A

d̂AG̃
∗(rA, r, ω), (3.33)

which yields

f̂(r, ω, t) = f̂free(r, ω, t) +
i

~

∑

A

∫ t

0

dt′ d̂A(t′) G̃
∗(rA, r, ω)e−iω(t−t′), (3.34)
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where f̂free(r, ω, t) evolves freely,

f̂free(r, ω, t) = f̂free(r, ω, 0)e−iωt. (3.35)

Inserting Eq. (3.34) into Eq. (3.28), we derive

Ê+(r, ω, t) = Ê+
free(r, ω, t)

+
i

πε0

ω2

c2

∑

A

∫ t

0

dτ e−iωτ Im G(r, rA, ω) d̂A(t− τ), (3.36)

where Ê+
free(r, ω, t) is defined according to Eq. (3.28) with f̂free(r, ω, t) in place of

f̂(r, ω, t).

Introducing slowly varying atomic operators

ˆ̃RAmn(t) = R̂Amn(t)e−iω̃Amnt, (3.37)

we may write the electric dipole operator, Eq. (3.27), as

d̂A(t) =
∑

m,n

dAmn
ˆ̃RAmn(t)eiω̃Amnt. (3.38)

We now insert Eq. (3.36) together with Eq. (3.38) in the integral
∫ ′′∞
0

dω . . .

in Eq. (3.31), apply the Markov approximation to the slowly varying atomic

variables. In the Markov limit, the time integral is performed, with the proper

convergence factor,

lim
δ→0,t→∞

∫ t

0

dτe−i(ω−ωAmn)τ = −iP 1

ω − ωAmn
+ πδ(ω − ωAmn).

Now the positive frequency part of the electric field (3.36) becomes,

Ê+(r, t) =

∫ ∞

0

dωÊ+(r, ω, t) = Ê+
free(r, t)

+
1

πε0

∫ ∞

0

dω
ω2

c2

∑

A

[P 1

ω − ωAmn
+ iπδ(ω − ωAmn)]ImG(r, rA, ω)d∗

AmnR̂Anm.

(3.39)
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We substitute (3.39) into the Heisenberg equations of motion (3.31) and take the

expectation value with respect to the initial state. Assuming that the free field

is initially in the vacuum state except for frequencies resonant with the atomic

transitions, we derive (cf. App. A of Ref. [81])

〈 ˙̂
O
〉

= − i

~

〈[
Ô, ˆ̃HS

]〉

+ i
∑

A6=A′

∑

m,n

(
δmn
AA′

〈[
Ô, R̂Amn

]
R̂A′nm

〉

+ δmn
AA′

∗〈R̂A′nm

[
Ô, R̂Amn

]〉)

− 1

2

∑

A,A′

∑

m,n

′(
Γmn

AA′

〈[
Ô, R̂Amn

]
R̂A′nm

〉

−Γnm
AA′

∗〈R̂A′nm

[
Ô, R̂Amn

]〉)
, (3.40)

where the primed sum
∑′

m,n indicates that transitions that can strongly interact

with the body-assisted electromagnetic field are excluded. In Eq. (3.40), ˆ̃HS is

defined according to Eq. (3.32), with ωAm being replaced by

ω̃Am = ωAm − δm
AA, (3.41)

where

δm
AA =

∑

n

δmn
AA , (3.42)

with δmn
AA being obtained from

δmn
AA′ =

1

~πε0c2
P
∫ ∞

0

dωω2

× dAmn Im G(rA, rA′, ω)d∗
A′mn

ω − ωA′mn
(3.43)

(P, principal part) for A=A′. For A 6=A′, the parameters δmn
AA′ are the dipole–

dipole coupling strengths between different atoms A and A′. Further, the decay

rates Γmn
AA′ are defined according to

Γmn
AA

′ =
2ω̃2

A′mn

~ε0c2
Θ(ωA′mn)

× dAmn Im G(rA, rA′, ωA′mn)d∗
A′mn (3.44)
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[Θ(x), unit step function].

Using the relationship

〈
Ô(t)

〉
= Tr

[
ρ̂(0)Ô(t)

]

= Tr
[
ρ̂(t)Ô(0)

]
= Tr

[
%̂(t)Ô(0)

]
, (3.45)

where ρ̂ is the density operator of the overall system, and %̂ is the (reduced)

density operator of the system under consideration, and making use of the cyclic

properties of the trace, from Eq. (3.39) we derive the following equation of motion

for the system density operator in the Schrödinger picture:

˙̂% = − i

~

[ ˆ̃HS, %̂
]
+

[
i
∑

A,A′

′∑

m,n

δmn
AA′ (R̂AmnR̂A′nm%̂

− R̂A′nm%̂R̂Amn) + H.c.

]

− 1

2

∑

A,A′

∑

m,n

′[
Γmn

AA′ (R̂AmnR̂A′nm%̂

− R̂A′nm%̂R̂Amn) + H.c.
]
. (3.46)

Equation (3.46) is a generalization of the two-level-atom result in Ref. [81] to the

case of multilevel atoms. In particular, if the conditions

δmn
AA′ = δmn

A′A
∗, (3.47)

Γmn
AA

′ = Γmn
A

′
A
∗ (3.48)

are fulfilled, which is the case when ωAmn = ωA′mn, for example this is always the

case in particular for identical atoms, then the master equation (3.46) takes the

somewhat simpler form of

˙̂% = − i

~

[
ˆ̃HS + ĤD, %̂

]

− 1

2

∑

A,A′

∑

m,n

′
Γmn

AA′ (R̂AmnR̂A′nm%̂

− 2R̂A′nm%̂R̂Amn + %̂R̂AmnR̂A′nm), (3.49)
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where

ĤD = −
∑

A,A′

′ ∑

m>n

~∆mn
AA′R̂AmnR̂A′nm (3.50)

describes the dipole-dipole interaction between the atoms, with ∆mn
AA′ being the

dipole-dipole coupling strengths,

∆mn
AA′ = δmn

AA′ + δnm
A′A. (3.51)

which is symmetric with respect to the atoms i.e. ∆mn
AA′ = ∆mn

AA′ , only if the atoms

are equivalently positioned,

dAmn Im G(rA, rA′, ω̃A′mn)d∗
A′mn = dA′mn Im G(r′A, rA, ω̃Amn)d∗

A′mn. (3.52)

According to Eq. (3.49), the (undamped) system is governed by an effective

Hamiltonian equal to ˆ̃HS + ĤD. Note that this is not true in general, but only

under the conditions (3.47) and (3.48).

To construct the (formal) solution to the master equation (3.49), we first

rewrite it in the form of

˙̂% = L̂%̂ + Ŝ%̂, (3.53)

where L̂ and Ŝ are superoperators which act on %̂ according to the rules

L̂%̂ ≡ − i

~
(Ĥ%̂− %̂Ĥ†), (3.54)

Ŝ%̂ ≡
∑

A,A′

∑

m,n

′
Γmn

AA′ R̂A′nm%̂R̂Amn, (3.55)

and the non-Hermitian “Hamiltonian” Ĥ reads

Ĥ = ˆ̃HS + ĤD − i~

2

∑

A,A′

∑

m>n

′
Γmn

AA′ R̂AmnR̂A′nm. (3.56)

From Eqs. (3.53)–(3.55) it then follows that

%̂(t) = eL̂(t−t0)%̂(t0) +

∫ t

t0

dt1e
L̂(t−t1)Ŝ%̂(t1). (3.57)

By iteration, from Eq. (3.57) one readily finds

%̂(t) =

∞∑

n=0

%̂(n)(t), (3.58)
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where

%̂(0)(t) = eL̂(t−t0)%̂(t0), (3.59)

%̂(n)(t) =

∫ t

t0

dtn

∫ tn

t0

dtn−1 . . .

∫ t2

t0

dt1e
L̂(t−tn)

× ŜeL̂(tn−tn−1) . . . ŜeL̂(t1−t0)%̂(t0), n = 1, 2, 3 . . . . (3.60)

Although Eq. (3.58) is not a perturbative expansion, it can be helpful, as we

shall see below, in finding the explicit solutions to the master equation.

3.3 Two three-level atoms of Λ type

3.3.1 Solution to the master equation

Let us specify the atomic system and consider two identical three-level atoms A

and B of Λ type as sketched in Fig. 2.1.

We assume that the dipole-allowed transition |1〉 ↔ |3〉 is tuned to a well

pronounced body-induced electromagnetic field resonance, thereby giving rise to

a strong dipole-allowed atom–field coupling. Further, the dipole-allowed transi-

tion |2〉↔ |3〉 is assumed to be weakly coupled to the body-assisted electromag-

netic field, and the transition between the states |1〉 and |2〉 is dipole-forbidden.

Restricting our attention to two atoms at equivalent positions with respect to

the macroscopic bodies, so that corresponding transition frequencies are equally

shifted and the relations

∆31
AB = ∆31

BA, ∆32
AB = ∆32

BA, (3.61)

Γ32
AA = Γ32

BB , Γ32
AB = Γ32

BA (3.62)

hold [cf. Eqs. (3.47) and (3.48)], we may apply the master equation in the form

of Eq. (3.49) and its solution in the form of Eqs. (3.58)–(3.60), with Eqs. (3.55)

and (3.56) being explicitly given by

Ŝ%̂ ≡
∑

A′,A′′=A,B

Γ32
A′A′′R̂A′′23%̂R̂A′32, (3.63)
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and

Ĥ = ˆ̃HS + ĤD − i~

2

∑

A′,A′′

Γ32
A′A′′R̂A′32R̂A′′23, (3.64)

ˆ̃HS =

∫
d3r

∫ ′∞

0

dω ~ω f̂ †(r, ω)f̂(r, ω)

+
∑

A′=A,B

3∑

m=1

~ω̃A′mR̂A′mm

−
∑

A′=A,B

∫ ′∞

0

dω
[
dA′31R̂A′31Ê(rA′, ω) + H.c.

]
, (3.65)

ĤD = −(~∆31
ABR̂A31R̂B13 + ∆32

ABR̂A32R̂B23) + H.c., (3.66)

the rotating-wave approximation being made in Eq. (3.65).

To specify the initial condition at time t0, let us assume that the two atoms

are initially in the ground state |1, 1〉 (|i, j〉 ≡ |i〉A ⊗ |j〉B, i, j = 1, 2, 3) and the

rest of the system is prepared in a state

|F 〉 =

∫ ′∞

0

dω

∫
d3rC(r, ω, t0)f̂

†(r, ω)|{0}〉, (3.67)

where C(r, ω, t0) as a function of ω is non-zero in a small interval around ω '
ω̃A31 = ω̃B31, and |{0}〉 is vacuum state with respect to this frequency interval.

The initial density operator can then be given in the form of (t0 =0)

%̂(0) = |Ψ(0)〉〈Ψ(0)|, |Ψ(0)〉 = |1, 1〉 ⊗ |F 〉. (3.68)

In order to determine the density operator at time t, we begin by calculating the

first term of the series (3.58), viz.

%̂(0)(t) = eL̂t%̂(0) = |Ψ(t)〉〈Ψ(t)|, (3.69)

where the (damped) state vector

|Ψ(t)〉 = e−iĤt/~|Ψ(0)〉 (3.70)

obviously obeys the equation

i~
d|Ψ(t)〉

dt
= Ĥ|Ψ(t)〉. (3.71)
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Recalling the initial condition (3.68) and the form of Ĥ, Eqs. (3.64)–(3.66), we

may expand |Ψ(t)〉 as

|Ψ(t)〉 = C31(t)e
−i(ω̃A1+ω̃B3)t|3, 1〉 ⊗ |{0}〉

+ C13(t)e
−i(ω̃A3+ω̃B1)t|1, 3〉 ⊗ |{0}〉

+

∫ ′∞

0

dω

∫
d3r e−i(ω̃A1+ω̃B1+ω)t

× C(r, ω, t)f̂ †(r, ω)|{0}〉 ⊗ |1, 1〉. (3.72)

We now substitute Eq. (3.72) into Eq. (3.71) and make use of Eqs. (3.64)–(3.66).

Straightforward calculation yields the following system of differential equations

for the expansion coefficients:

Ċ31 = −1
2
Γ32

AAC31 + i∆31
ABC13 +

i

~

∫ ′∞

0

dω

∫
d3r dA31G̃(rA, r, ω)C(r, ω)e−i(ω−ω̃A31)t,

(3.73)

Ċ13 = −1
2
Γ32

BBC13 + i∆31
ABC31 +

i

~

∫ ′∞

0

dω

∫
d3r dB31G̃(rB, r, ω)C(r, ω)e−i(ω−ω̃B31)t,

(3.74)

Ċ(r, ω) =
i

~
ei(ω−ω̃A31)t[d∗

A31G̃
∗(rA, r, ω)C31 + d∗

B31G̃
∗(rB, r, ω)C13] (3.75)

Recall that ω̃A31 = ω̃B31. Inserting the formal solution to Eq. (3.75) in Eqs. (3.73)

and (3.74), we derive, on making use of the properties of the Green tensor, the

integro-differential equations

Ċ31 = − 1
2
Γ32

AAC31 + i∆31
ABC13

+

∫ t

0

dt′ [KAA(t− t′)C31(t
′)

+KAB(t− t′)C13(t
′)] + F31(t), (3.76)

Ċ13 = − 1
2
Γ32

BBC13 + i∆31
ABC31

+

∫ t

0

dt′ [KBB(t− t′)C13(t
′)

+KBA(t− t′)C31(t
′)] + F13(t), (3.77)
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where the kernel function KA′A′′(t) is defined by

KA′A′′(t) = − 1

~πε0

∫ ′∞

0

dω
ω2

c2
e−i(ω−ω̃A31)t

× dA′31 Im G(rA′ , rA′′, ω)d∗
A′′31 (3.78)

[A′(A′′)=A,B], and the free-field driving terms F31 and F13 read

F31(t) =
i

~

∫ ′∞

0

dω

∫
d3rdA31G̃(rA, r, ω)

× C(r, ω, 0)e−i(ω−ω̃A31)t, (3.79)

F13(t) =
i

~

∫ ′∞

0

dω

∫
d3rdB31G̃(rB, r, ω)

× C(r, ω, 0)e−i(ω−ω̃B31)t. (3.80)

Note that for identical atoms at equivalent positions with respect to the macro-

scopic bodies

KAA(t) = KBB(t), KAB(t) = KBA(t). (3.81)

Instead of considering the probability amplitudes C31 and C13, it is advantageous

to introduce the probability amplitudes

C13
± = 2−

1
2 (C31 ± C13) , (3.82)

which are the expansion coefficients of |Ψ〉 with respect to the atomic basis

|±13〉 = 2−
1

2 (|3, 1〉 ± |1, 3〉) , (3.83)

so that Eq. (3.72) takes the form of

|Ψ(t)〉 = C13
+ (t)e−i(ω̃A1+ω̃B3)t|+13〉 ⊗ |{0}〉

+ C13
− (t)e−i(ω̃A1+ω̃B3)t|−13〉 ⊗ |{0}〉

+

∫ ′∞

0

dω

∫
d3r e−i(ω̃A1+ω̃B1+ω)t

× C(r, ω, t)f̂ †(r, ω)|{0}〉 ⊗ |1, 1〉. (3.84)
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From Eqs. (3.76)–(3.82) it is not difficult to see that the differential equations for

C13
± decouple

Ċ13
± =

(
±i∆31

AB − 1
2
Γ32

AA

)
C13

±

+

∫ t

0

dt′K±(t− t′)C13
± (t′) + F±(t), (3.85)

where

K±(t) = KAA(t) ±KAB(t), (3.86)

F±(t) = 2−1/2[F31(t) ± F13(t)]. (3.87)

The field resonance strongly coupled to the atomic transition |1〉↔ |3〉 can be

typically modeled by a Lorentzian, with ωC≈ ω̃A31 and ∆ωC being the central fre-

quency and the half width at half maximum, respectively. In this case, Eq. (3.78)

can be approximated by

KA′A′′(t) = − Γ31
A′A′′ e−i(ωC−ω̃A31)t

× 1

2π

∫
dω

∆ω2
Ce

−i(ω−ωC)t

(ω − ωC)2 + ∆ω2
C

, (3.88)

where Γ31
A′A′′ is defined according to Eq. (3.44), but with ω̃A31 being replaced by

ωC,

Γ31
A′A′′ =

2ω2
C

~ε0c2
dA′31 Im G(rA′ , rA′′, ωC)d∗

A′′31. (3.89)

From Eq. (3.88) it then follows that (t≥ 0)

KA′A′′(t) = −1
2
Γ31

A′A′′∆ωC e
−i(∆−i∆ωC)t (3.90)

(∆=ωC−ω̃A31). Using Eq. (3.90) and differentiating both sides of Eq. (3.85) with

respect to time, we find that C13
± satisfies the second-order differential equation

C̈13
± + a1±Ċ

13
± + a2±C

13
± = Ḟ±(t) + i(∆ − i∆ωC)F±(t), (3.91)

where

a1± = i(∆ ∓ ∆31
AB) + ∆ωC + 1

2
Γ32

AA, (3.92)

a2± = g2
± + (∆ − i∆ωC)

(
±∆AB + i1

2
Γ32

AA

)
, (3.93)
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with

g2
± = 1

2
Γ31
± ∆ωC, Γ31

± = Γ31
AA ± Γ31

AB. (3.94)

If C13
± (t) are known, then the probability amplitude C(r, ω, t) can be obtained

from Eq. (3.75) together with Eq. (3.82).

To calculate the terms %̂(n)(t) (n > 0), Eq. (3.60), of the series (3.58), we

note that the action of the operator Ŝ, Eq. (3.63), on %̂(0)(t) = |Ψ(t)〉〈Ψ(t)| cor-

responds to atomic transitions |3〉→ |2〉. Thus, only the states |1, 3〉 and |3, 1〉,
or equivalently |±13〉, can contribute to Ŝ[|Ψ(t)〉〈Ψ(t)|]. It is not difficult to see

that

Ŝ(|±13〉〈±13|) =

Γ32
AA|±12〉〈±12| ∓ 1

2
Γ32
− (|+12〉〈+12| − |−12〉〈−12|), (3.95)

Ŝ(|±13〉〈∓13|) =

Γ32
AA|±12〉〈∓12| − 1

2
Γ32
− (|±12〉〈∓12| − |∓12〉〈±12|) (3.96)

[Γ32
± =Γ32

AA±Γ32
AB , |±12〉=2−

1
2 (|2, 1〉± |1, 2〉)]. Combining Eqs. (3.84), (3.95), and

(3.96), we derive

Ŝ%̂(0)(t) = Ŝ[|Ψ(t)〉〈Ψ(t)|]

= |{0}〉〈{0}| ⊗
{(

1
2
Γ32

+ |C13
+ |2

+1
2
Γ32
− |C13

− |2
)
|+12〉〈+12| +

(
1
2
Γ32

+ |C13
− |2

+1
2
Γ32
− |C13

+ |2
)
|−12〉〈−12| +

[(
1
2
Γ32

+C
13
+ C

13∗
−

+1
2
Γ32
−C

13∗
+ C13

−
)
|+12〉〈−12| + H.c.

]}
, (3.97)

ŜŜ(|Ψ(t)〉〈Ψ(t)|) = 0. (3.98)

Recalling that Ĥ, Eqs. (3.64)–(3.66), acts on atomic states in the subspace

spanned by |±13〉, we see that

eL̂(t−t1)Ŝ(|Ψ(t1)〉〈Ψ(t1)|) = Ŝ(|Ψ(t1)〉〈Ψ(t1)|), (3.99)
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leading to

%(1)(t) =

∫ t

0

dt1Ŝ(|Ψ(t1)〉〈Ψ(t1)|) (3.100)

[cf. Eq. (3.60)]. Further, Eqs. (3.98) and (3.99) imply that %̂(n) =0 if n≥2. Thus,

the solution to the master equation reads

%̂(t) = |Ψ(t)〉〈Ψ(t)| +
∫ t

0

dt1Ŝ[|Ψ(t1)〉〈Ψ(t1)|] (3.101)

together with Eqs. (3.84) and (3.97).

3.3.2 Stationary limit

Let us restrict our attention to the stationary limit t→ ∞. Since F31(t) and

F13(t) approach zero as t tends to infinity, Eqs. (3.73) and (3.74) imply that

lim
t→∞

C13
± (t) = 0. (3.102)

Inserting Eq. (3.84) in Eq. (3.101), we derive

%̂(t→ ∞) = %̂at ⊗ |{0}〉〈{0}|, (3.103)

%̂at = α+|+12〉〈+12| + α−|−12〉〈−12|

+ (β|+12〉〈−12| + H.c.) + (1−α+ − α−)|1, 1〉〈1, 1|, (3.104)

where

α± =

∫ ∞

0

dt
(

1
2
Γ32
± |C13

+ |2 + 1
2
Γ32
∓ |C13

− |2
)
, (3.105)

β =

∫ ∞

0

dt
(

1
2
Γ32

+C
13
+ C

13∗
− + 1

2
Γ32
−C

13∗
+ C13

−
)
. (3.106)

To determine the accessible entanglement of the two atoms, it may be instruc-

tive to study the concurrence of the atomic subsystem(See Appendix-B), which

may be regarded as being a measure of entanglement [94]. For this purpose, we

have to calculate the spin-flipped density operator

ˆ̃ρat = (σ̂Ay ⊗ σ̂By) ρ̂
∗
at (σ̂By ⊗ σ̂Ay) , (3.107)
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where

(
σA(B)y

)
mn

=̂

(
0 −i
i 0

)
(3.108)

[m(n) = 1, 2], and to determine the two nonzero eigenvalues λ± of ρ̂at
ˆ̃ρat. A

somewhat lengthy but straightforward calculation yields

λ± = 1
2

{
α2

+ + α2
− − 2

[
(Re β)2 − (Im β)2

]}

± 1
2

√
[(α++α−)2 − 4(Reβ)2] [(α+−α−)2 + 4(Imβ)2] ,

(3.109)

which then determine the concurrence

C =
√
λ+ −

√
λ− , (3.110)

the value of which is in the interval [0, 1]. The nearer to 1 the value of C is, the

higher is the degree of entanglement. Equations (3.109) and (3.110) reveal that

a noticeably entangled state of the two atoms can be generated if

α+(α−) � α−(α+), |β|, (3.111)

thus C → α+(α−). Needless to say that the entanglement condition (3.111) is

already expected from inspection of Eq. (3.104).

3.3.3 Different Coupling Regimes

Let us return to Eq. (3.91) and focus on the case where

Ḟ±(t) ' −i(∆ − i∆ωC)F±(t) (3.112)

is valid, so that the term on the right-hand side in Eq. (3.91) can be omitted.

Obviously, this is the case when initially the (Lorentzian) field resonance of mid-

frequency ωC and width ∆ωC is excited (for details, see Sec. 3.3.4). Under the

initial conditions

C13
± (0) = 0, Ċ13

± (0) = F±(0), (3.113)
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the solution to Eq. (3.91) can then be written in the form of

C13
± (t) =

F±(0)

q±
e−a1±t/2(eq±t/2 − e−q±t/2), (3.114)

where

q± =
√
a2

1± − 4a2± . (3.115)

Restricting again our attention to the stationary limit, we further assume, for

simplicity, both the detuning ∆ and the dipole-dipole coupling strength ∆31
AB

vanish, i.e., ∆=0 and ∆31
AB = 0. Since even under these conditions the explicit

form of the expansion coefficients α±, Eq. (3.105), and β, Eq. (3.106), is rather

involved, we renounce its presentation here but consider instead some instructive

special cases.

From Eqs. (3.92) and (3.114) it is seen that the damping constant of C13
± is

determined by the sum of the half width at half maximum of the field resonance

strongly coupled to the transition |3〉↔ |1〉 and the half width at half maximum

of the transition |3〉→ |2〉, ∆ωC and Γ32
AA/2, respectively. Due to the finite ∆ωC

an atom tends to occupy the state |1〉, while the effect of the finite Γ32
AA is that

the atom prefers to occupy the state |2〉. We may therefore restrict ourselves to

situations in which

Γ32
AA � ∆ωC . (3.116)

To achieve noticeable entanglement, the interatomic coupling should be suffi-

ciently strong, i.e., |Γ31
AB|→Γ31

AA and |Γ32
AB | →Γ32

AA, equivalently,

Γ31
±

Γ31
∓

� 1,
Γ32
±(∓)

Γ32
∓(±)

� 1. (3.117)

Note that the first inequality is equivalent to g± � g∓ [cf. Eq. (3.94)]. We now

distinguish between the following three cases.

(a) g± � Γ32
AA � ∆ωC � g∓

In this case, either the symmetric state |+13〉 or the antisymmetric state |−13〉 is

strongly coupled to the medium-assisted electromagnetic field whereas the other
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is weakly coupled. For the strongly and weakly-coupled states, respectively,

Eq. (3.114) approximates to

C13
± (t) =

F±(0)

g±
e−Γ32

AAt/4 sin(g±t), (3.118)

and

C13
∓ (t) =

2F∓(0)

Γ32
AA

[
e−∆ωCt − e−Γ32

AAt/2
]
. (3.119)

It is seen that C13
± (t) undergoes damped Rabi oscillations of frequency g±, while

C13
∓ (t) undergoes a two-channel exponential decay. The steady-state density op-

erator parameters α±, Eq. (3.105), and β, Eq. (3.106), approximate to

α± = 1
2
Γ32
±(∓)

|F+(−)(0)|2
g2
+(−)Γ

32
AA

+ Γ32
∓(±)

|F−(+)(0)|2
(Γ32

AA)2∆ωC
, (3.120)

β =
[
Γ32

+ F+(0)F ∗
−(0) + Γ32

− F
∗
+(0)F−(0)

] Γ32
AA

2g4
+(−)

(3.121)

for g+(−) � g−(+).

(b) g± � g∓ � Γ32
AA � ∆ωC

When both g± and g∓ dominate the other parameters, then the states |+13〉 and

|−13〉 are both strongly coupled to the medium-assisted electromagnetic field, and

Eq. (3.114) approximates to

C13
± (t) =

F±(0)

g±
e−Γ32

AAt/4 sin(g±t), (3.122)

which is exactly analogous to Eq. (3.118). The steady-state density operator

parameters α± and β take the approximate form of

α± = 1
2
Γ32
±

|F+(0)|2
g2
+Γ32

AA

+ 1
2
Γ32
∓

|F−(0)|2
g2
−Γ32

AA

(3.123)

and, for g+(−) � g−(+),

β =
[
Γ32

+ F+(0)F ∗
−(0) + Γ32

− F
∗
+(0)F−(0)

] Γ32
AA

2g4
+(−)

. (3.124)
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(c) Γ32
AA � g± � g∓, ∆ωC

When the value of Γ32
AA sufficiently exceeds the values of the other parameters,

then from Eq. (3.114) it follows that

C13
± (t) =

2F±(0)

Γ32
AA

[
e−∆ωCt − e−Γ32

AAt/2
]
, (3.125)

i.e., the behavior typical of weakly-coupled states is observed [cf. Eq. (3.119)]. In

this approximation, the steady-state density operator parameters α± and β read

α± = Γ32
±

|F+(0)|2
(Γ32

AA)2(∆ωC + 2g2
+/Γ

32
AA)

+ Γ32
∓

|F−(0)|2
(Γ32

AA)2(∆ωC + 2g2
−/Γ

32
AA)

(3.126)

and, for g+(−) � g−(+),

β =
Γ32

+ F+(0)F ∗
−(0) + Γ32

− F
∗
+(0)F−(0)

(Γ32
AA)2(∆ωC + g2

+(−)/Γ
32
AA)

. (3.127)

3.3.4 Preparation of the initial state

One possible way to initially prepare the medium-assisted electromagnetic field

in the desired quantum state, is to use an additional atom, say atom D, such that

ω̃D31 = ω̃A31 = ω̃B31 =ωC . Let the transition |1〉↔ |3〉 of atom D strongly interact

with the medium-assisted electromagnetic field in the absence of atoms A and

B. This can be achieved, for instance, by using atomic beams and letting atom

D pass the equipment before atoms A and B pass it. When atom D initially

prepared in the excited state |3〉 strongly interacts with the medium-assisted

electromagnetic field initially prepared in the vacuum state, then an interaction

time can be chosen after which the atomic excitation is transferred to the field.

The probability amplitude of finding, after some interaction time ∆t, atom

D (regarded as an effective two-level system) in the ground state and the f̂(r, ω)
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field in a single-quantum state is [81]

C(r, ω, t = 0)

=
i

~

∫ 0

−∆t

dt′ d∗
D31G̃

∗(rD, r, ω)ei(ω−ω̃D31)t
′

CUD
(t′), (3.128)

where

CUD
(t) = e−∆ωC(t+∆t)/2 cos[gD(t+ ∆t)] (3.129)

is the probability amplitude of finding the atom in the upper state. Here,

gD =
√

Γ31
DD∆ωC/2 (3.130)

is the single-atom Rabi frequency, with Γ31
DD being determined according to

Eq. (3.89). Substitution of Eq. (3.128) into Eqs. (3.79) and (3.80) yields

F31(t) =

∫ 0

−∆t

dt′KAD(t− t′)CUD
(t′), (3.131)

F13(t) =

∫ 0

−∆t

dt′KBD(t− t′)CUD
(t′), (3.132)

where KBD(t) is defined according to Eq. (3.78). Note that F±(t), Eq. (3.87), cal-

culated by using F31 and F13 given in Eqs. (3.131) and (3.132) fulfills Eq. (3.112).

To calculate F±(0), we fix the interaction time ∆t such that CUD
(0)=0, thus

∆t =
π

2gD
. (3.133)

Combining Eq. (3.87) with Eqs. (3.129)–(3.133), we derive, on applying the

Lorentz approximation according to Eq. (3.88),

F±(0) = − 1√
2

g2
D±
gD

exp

(
−∆ωC

π

2gD

)
, (3.134)

where

gD± =
√

(Γ31
BD ± Γ31

AD)∆ωC/2 , (3.135)

and Γ31
AD and Γ31

BD are defined according to Eq. (3.89).

In Eq. (3.134), the exponential factor characterizes the photon loss during the

interaction time due to the finite width of the field resonance. Obviously, the

better the strong-coupling condition ∆ωC � gD is fulfilled, the less is the photon
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loss. In particular, when atom A (or B) changes places with atom D and the

orientations of the transition dipole moments of atoms A (or B) and D are the

same, then from Eq. (3.134) it follows that (∆ωC � gD)

F±(0) ' −g±, F∓(0) ' −g2
∓/g±. (3.136)

It is worth noting that, as we will see in Sec. 3.4, the highest degree of entangle-

ment can be achieved in case of equal positions of atoms D and A (or B).

3.4 Atomic entanglement near a dielectric mi-

crosphere

Let us apply the theory to two atoms near a dispersing and absorbing dielectric

microsphere (of radius R) characterized by a Drude-Lorentz type permittivity

ε(ω) = 1 +
ω2

P

ω2
T − ω2 − iωγ

(3.137)

(ωP, coupling constant; ωT, transverse resonance frequency; γ, absorption param-

eter), which features a band gap in the region ωT <ω < ωL =
√
ω2

T + ω2
P, where

Re ε(ω)< 0.

3.4.1 Two-atom coupling

Making use of the Green tensor for a dielectric sphere [95], one can show, on

assuming radial dipole orientations, that Eq. (3.44) leads to

ΓA′A′′ ≡ Γmn
A′A′′ = 3

2
Γ0Re

∞∑

l=1

l(l + 1)(2l + 1)

(kr)2
h

(1)
l (kr)

×
[
jl(kr) +BN

l (ω)h
(1)
l (kr)

]
Pl(cos θ) (3.138)

[ω≡ω̃mn
A′ =ω̃mn

A′′ >0; k=ω/c; r≡rA′ =rA′′ (>R), radial position of the atoms]. Here,

Γ0 is the single-atom decay rate in free space, jl(z) and h
(1)
l (z) are the spherical

Bessel and Hankel functions, respectively, Pl(x) is the Legendre function, θ is the



CHAPTER 3. GENERATION OF ROBUST ENTANGLEMENT . . . 53

angle between the two transition dipole moments (|dA′mn| = |dA′′mn|), and the

scattering coefficients BN
l (ω) read [95]

BN
l (ω) = − ε(ω)jl(z2)[z1jl(z1)]

′ − jl(z1)[z2jl(z2)]
′

ε(ω)jl(z2)[z1h
(1)
l (z1)]′ − h

(1)
l (z1)[z2jl(z2)]′

, (3.139)

where zi = kiR, k1 = k, and k2 =
√
ε(ω)ω/c. Note that radially oriented dipoles

couple only to TM waves, whereas tangentially oriented dipoles couple to both

TM and TE waves (for details, see, e.g., [96]). Needless to say that θ=0 in case

of a single atom (A′ =A′′).

The complex roots of the denominator of the reflection coefficients BN
l (ω)

determine the positions and the widths of the sphere-assisted electromagnetic

field resonances. When ω coincides with a resonance frequency, say ωC , then the

corresponding l term in Eq. (3.138) is the leading one, thus

Γmn
A′A′′ ' 3

2
Γ0Re

{
l(l + 1)(2l + 1)

(kr)2
h

(1)
l (kr)

×
[
jl(kr) +BN

l (ω)h
(1)
l (kr)

]
Pl(cos θ)

}
(3.140)

(ω ' ωC). Equation (3.140) implies that when the two atoms (A′ 6= A′′) are at

diametrically opposite positions with respect to the sphere, i.e., θ=π and hence

Pl(cos θ)=(−1)l, then the interaction of the symmetric (antisymmetric) state with

the sphere-assisted electromagnetic field is enhanced, while the antisymmetric

(symmetric) state almost decouples [cf. Eq. (3.94)].

The dependence on θ of ΓA′A′′ (A′ 6=A′′) as given by Eq. (3.138) is illustrated

in Fig. 3.1, where the atomic transition frequency ω is chosen to be close to

a microsphere resonance frequency. From Figs. 3.2 and 3.3 it is clearly seen

that the value of Γ+ (Γ−) can drastically exceed the value of Γ− (Γ+) when

the two atoms approach the microsphere and the transition frequency equals a

resonance frequency. Recall that Γ+ (Γ−) is a measure of the strength of coupling

of the symmetric (antisymmetric) state to the sphere-assisted field. In particular,

Fig. 3.3 reveals that there is an optimum distance – the distance at which the

solid curve attains the minimum – for which the best contrast between Γ+ and

Γ− can be realized. With increasing distance of the atoms from the sphere, the

values of both Γ+ and Γ− tend to the free-space value Γ0 as they should.
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Figure 3.1: The two-atom collective decay rate Γmn
AA′ [Eq. (3.138), A′ 6=A′′] as a

function of the angle θ between the transition dipole moments for ω=1.0501ωT.
The two atoms are at distances ∆r ≡ r−R = 0.14λT (λT = 2πc/ωT) from the
surface of a dielectric sphere (ωP =0.5ωT, γ=10−6ωT, R=10λT).
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Figure 3.2: The two-atom decay rates Γ+ =ΓA′A′ +ΓA′A′′ (solid curve) and Γ− =
ΓA′A′ −ΓA′A′′ (dotted curve) for the symmetric and antisymmetric states, respec-
tively, as functions of the transition frequency ω, with ΓA′A′′ from Eq. (3.138) for
θ=π. The other parameters are the same as in Fig. 3.1].
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Figure 3.3: The two-atom decay rates Γ+ = ΓA′A′ + ΓA′A′′ (solid curve) and Γ−
= ΓA′A′ − ΓA′A′′ (dotted curve) for the symmetric and antisymmetric states, re-
spectively, as functions of the atom-sphere surface distance ∆r, with ΓA′A′′ from
Eq. (3.138) for θ=π. The other parameters are the same as in Fig. 3.1].
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Figure 3.4: The two-atom decay rates Γ+ =ΓA′A′ +ΓA′A′′ (solid curve) and Γ− =
ΓA′A′ −ΓA′A′′ (dotted curve) for the symmetric and antisymmetric states, respec-
tively, as functions of the transition frequency ω, with ΓA′A′′ from Eq. (3.138) for
θ=π. The other parameters are the same as in Fig. 3.1].

Figures 3.1–3.3 refer to atomic transition frequencies within bandgap. In this

case, the strong two-atom interaction observed when the atoms are at diametri-

cally opposite positions with respect to the sphere is mediated by SG waves. Of

course, the effect of enhanced Γ+ (Γ−) and simultaneously reduced Γ− (Γ+) can

also be observed for transition frequencies below the bandgap. In this case, the

cavity-assisted field resonances correspond to WG waves. An example is shown

in Fig. 3.4. Figures 3.2 and 3.4 also convey a feeling of the sharpness of the field

resonances, which ranges from being very sharp to being less so. The sharpness

can be improved by increasing the microsphere radius or by reducing the material

absorption. Note that WG waves much more suffer from absorption than do SG

waves (see, e.g., Ref. [96]).
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3.4.2 Entanglement of two Λ-type atoms

The results given in Sec. 3.4.1 show that the optimal positions of two Λ-type

atoms A and B, which are desired to entangle with each other near a microsphere,

are diametrically opposite with respect to the sphere. Further, the transition

frequency ω̃A31=ω̃B31 should coincide with the (mid-)frequency ωC of a sufficiently

sharply peaked sphere-assisted field resonance, so that the strong-coupling regime

is realized and the first of the conditions (3.117) is satisfied. Finally, the |3〉 ↔ |2〉
transition frequency ω̃A32 = ω̃B32 should coincide with the (mid-)frequency of

some moderately peaked sphere-assisted field resonance, so that the second of the

conditions (3.117) is also satisfied, but the weak-coupling regime applies, thereby

giving rise to an irreversible decay channel. As a result, the condition (3.116) can

also be expected to be satisfied. By choosing atoms with appropriate transition

dipole matrix elements matching right appropriate cavity-assisted field resonances

(for more detailed estimations, see Ref. [81]), all the conditions including both

the inequalities characterizing the three cases (a)–(c) in Sec. 3.3.3 and the field-

preparation conditions (3.136) can be fulfilled. Let us examine the cases (a)–(c)

in more detail.

(a) g± � Γ32
AA � ∆ωC � g∓

For definiteness, let Γ31
+ �Γ31

− and Γ32
+ �Γ32

− . When atom A (or B) changes places

with atom D, which provides the initial field excitation, and Eq. (3.136) applies,

then Eqs. (3.120) and (3.121) lead to

α+ ' 1, (3.141)

α− ' Γ32
−

2Γ32
AA

+
2g4

−
g2
+Γ32

AA∆ωC
� 1, (3.142)

β '
(

Γ32
AAg−
g2
+

)2

� 1. (3.143)

Hence, an almost perfectly entangled state is produced, %̂at ' |+12〉〈+12| [see

Eq. (3.104)], and, accordingly, C ' 1 is achieved. Clearly, α+ = 1 (C = 1) cannot

be exactly realized, because of the losses unavoidably associated with the always
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finite width of the field resonance. It is worth mentioning that when the positions

of atoms D and A (or B) are different from each other (e.g., when atom D is

equidistant from atoms A and B), then the degree of entanglement that can be

achieved is smaller than that in case of equal positions in general. Note that when

Γ31
− �Γ31

+ and Γ32
− � Γ32

+ , then %̂at ' |+12〉〈+12| is also valid. For Γ31
± �Γ31

∓ and

Γ32
∓ �Γ32

± , however, the roles of α+ and α− are interchanged and %̂at'|−12〉〈−12|.

In the scheme, the two-atom system undergoes, e.g., fast |1, 1〉↔ |+13〉 Rabi

oscillations as long as one of the two atoms jumps to state |2〉, but we do not

know which one. Hence, the result is the entangled state between one atom in

the state |2〉 and the other in the state |1〉. The time after which the stationary

limit is established is determined by the lifetime ∼ (Γ32
AA)−1 of the short-living

state |+13〉, while the long-living state |−13〉 of lifetime ∼ (∆ωC)−1 is practically

unpopulated [cf. Eqs. (3.118) and (3.119)].

(b) g± � g∓ � Γ32
AA � ∆ωC

For definiteness, we again assume that Γ31
+ �Γ31

− and Γ32
+ �Γ32

− . From Eqs. (3.123)

and (3.124) together with Eq. (3.136) we obtain

α+ ' 1, (3.144)

α− ' Γ32
−

2Γ32
AA

+
2g2

−
g2
+

� 1, (3.145)

β '
(

Γ32
AAg−
g2
+

)2

� 1. (3.146)

Thus, this coupling regime leaves the two atoms in an entangled state analogous

to case (a). However, since the second inequality in (b) tends to conflict with the

first, it may be more difficult to realize this regime.

(c) Γ32
AA � g± � g∓,∆ωC

In this case, the irreversible decay from state |3〉 to state |2〉 is so dominant that

Rabi oscillations are fully suppressed in the time evolution of both C13
+ and C13

−
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[see Eq. (3.125)]. From Eq. (3.126) we obtain, on again assuming Γ31
+ �Γ31

− and

Γ32
+ �Γ32

− and making use of Eq. (3.136),

α+ ' 2g2
+/Γ

32
AA

∆ωC + 2g2
+/Γ

32
AA

. (3.147)

To generate the entangled state |+12〉, i.e., α+ ' 1, the additional condition

g+

Γ32
AA

� ∆ωC

g+

(3.148)

must be required to be satisfied, as can be seen from Eq. (3.147). The parameters

α− and β then read

α− ' Γ32
−

2Γ32
AA

+
g2
−
g2
+

� 1, (3.149)

β ' 2g2
−

g2
+

� 1. (3.150)

In a similar fashion, it can be shown that in case of Γ31
± �Γ31

∓ and Γ32
∓ �Γ32

± the

antisymmetric entangled state |−12〉 is generated.

The inequality (3.148) can be understood as follows. For F+(0) ' −g+,

Eq. (3.125) yields

C13
+ (t) ' −(2g+/Γ

32
AA)

[
e−∆ωC t − e−Γ32

AAt/2
]
, (3.151)

i.e, C13
+ (t)∼ g+/Γ

32
AA. Thus, though one can allow for g+/Γ

32
AA � 1, this ratio has

still to satisfy the inequality (3.148) such that there is a nonvanishing probability

that one of the atoms can reach the state |3〉 from the initial state |1〉 to jump to

the state |2〉.

3.5 Summary and discussion

We have developed a formalism describing the interaction of multi-level atoms

interacting with electromagnetic field in the presence of dispersing-absorbing di-

electric bodies and we have proposed a scheme for deterministic preparation of

two spatially well separated identical atoms in long-living highly entangled states.

The scheme uses Λ-type atoms passing a resonator-like equipment of realistic,
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dispersing and absorbing macroscopic bodies which form electromagnetic field

resonances, the heights and widths of which are determined by the radiative and

nonradiative (absorption) losses. The lowest lying atomic state and the lower

lying excited state, which can be the ground state and a metastable state or two

metastable states, play the role of the basis states of an atomic qubit. The atoms

initially prepared in the lowest lying states, are pumped by a single-excitation

“pulse” of the body-assisted electromagnetic field, thereby strongly driving the

dipole-allowed transition between the lowest and highest lying atomic states. In

this way, one of the two atoms – we do not know which one – can absorb the

single-photonic excitation and subsequent irreversible spontaneous decay of the

excited atomic state to the lower lying excited state, the transition of which to

the lowest lying state is dipole-forbidden, deterministically results in a metastable

two-atom entangled state.

To be quite general, we have first developed the theory, without specifying

the atoms and the equipment whose body-assisted electromagnetic field is used

for the the collective atom-field interaction. For the case of two Λ-type atoms, we

have derived the general solution of the coupled field-atom evolution equations

and presented special coupling conditions under which high-degree entanglement

can be achieved. We have then applied the theory to the problem of entanglement

of two Λ-type atoms near a microsphere. In particular, we have shown that the

scheme is capable of realizing strong coupling in one arm and weak coupling in

the other arm of the Λ configuration. In this context, we have also analyzed the

preparation of the initial single-photonic field excitation required for initiating

the process of entanglement.

In contrary to the common sense that the existence of dissipation spoils the

quantum coherence of a system, dissipation is here essential to transfer the entan-

glement from the strongly driven transitions to the dipole-forbidden transitions.

The fact that only ground or metastable states serve as basis states of the qubits

guarantees the long lifetime of the entangled state. It is worth noting that the

scheme renders it possible to test nonlocality for a two-atom system. An atomic

pair passing by a microsphere and being entangled there, can be separated from

each other and one can be sure that in the meantime the entanglement is not
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lost.



Chapter 4

Steady-State Entanglement of

Two Atoms

The stabilization of entanglement caused by action of a classical driving field in

the system of two-level atoms with the dipole interaction accompanied by sponta-

neous emission is discussed. An exact solution shows that the maximum amount

of concurrence that can be achieved in Lamb-Dicke limit is 0.43. Dependence of

entanglement on interatomic distance and classical driving field, beyond Lamb-

Dicke limit, is examined numerically.

Introduction

The practical applications of entanglement require the robust entangled states.

This notion includes long enough lifetime of the states and high amount of en-

tanglement (as close to perfect entanglement as possible). However, in many

cases entanglement of two-level atoms is not stable enough. In the case of atoms

trapped in high-quality cavities, absence of stability is caused mainly by Rabi

oscillations. In free space, entanglement related to excited atomic states decays

because of the spontaneous emission processes.
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To stabilize atomic entanglement, engineered environment can be utilized.

For example, it was shown in Refs. [83, 49, 32] that presence of squeezed vacuum

field can stabilize entanglement of a pair of two-level atoms with dipole-dipole

interaction. The use of bad cavity as a stabilizing environment was considered

in [97]. Stabilization in a bad cavity with optical white noise field was discussed

in [98]. A scheme of stabilization based on the use of three-level Λ-type atoms

in two-mode cavities with leakage and absorption was proposed in [73] and then

discussed in [99].

We show that reasonable amount of steady-state entanglement can be achieved

in a system of two-level atoms in the weak coupling regime (high losses), in

particular for free space, in the presence of a classical driving field. The collective

effects, i.e. dipole-dipole interaction and collective spontaneous emission, are

the mechanisms responsible for generation of entanglement. However, in the

absence of a special environment that compensates the losses of energy caused by

spontaneous emission, the entanglement is a transient one. We show that instead

of more sophisticated squeezed vacuum field the simple classical driving field can

be successfully used for this aim. The classical driving field alone acts only locally

on the atoms, so that it cannot create specific quantum correlations between the

atoms peculiar for entangled state. However, it continuously provides atomic

excitations that are responsible for survival of the collective effects thus enabling

a steady-state entanglement[100, 101].

4.1 Steady state entanglement

The system of two identical two-level atoms in free space is governed by the

master equation

ρ̇ = −i[H, ρ] +
1

2

2∑

i,j=1

Γij(2σ
i
−ρσ

j
+ − σi

+σ
j
−ρ− ρσi

+σ
j
−) (4.1)

H =

2∑

i=1

[ω
2
σi

z + E(σi
+e

i~k·~ri−iωt + σi
−e

−i~k·~ri+iωt)
]

+ Ω(σ1
+σ

2
− + σ2

+σ
1
−), (4.2)
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where the atomic dipoles are alligned in the same direction and driven by a

linearly polarized classical field, with dipole coupling constant E. Here σi
+ =

(σi
−)† = |e〉i〈g|i and σi

z = |e〉i〈e|i − |g〉i〈g|i with |e〉i, |g〉i denoting the excited

and the ground states of the i-th atom, Γii = Γ is the single atom decay rate,

Γ = ω3|~µ|2/3π~ε0c
3, and ~µ is the atomic dipole moment. The collective decay

rates are[102, 103]

Γ12 = Γ21 =
3

2
Γ
{

(1 − |µ̂.r̂|2)sin(kr)

kr
+ (1 − 3|µ̂.r̂|2)

[cos(kr)

(kr)2
− sin(kr)

(kr)3

]}
(4.3)

and the coupling constant for dipole-dipole interaction has the form

Ω =
3

4
Γ
{
−(1 − |µ̂.r̂|2)cos kr

kr
+ (1 − 3|µ̂.r̂|2)

[sin kr
(kr)2

+
cos kr

(kr)3

]}
, (4.4)

where µ̂ is the direction of dipoles, and r̂ is the unit vector lying along the inter-

atomic axis.

In our case, when the dipoles are aligned along the interatomic axis,

eqs.(4.3,4.4) reduce to,

Γ12 = Γ21 = −3Γ

[
cos kr

(kr)2
− sin kr

(kr)3

]
, (4.5)

and the coupling constant for dipole-dipole interaction has the form

Ω = −3

2
Γ

(
sin kr

(kr)2
+

cos kr

(kr)3

)
. (4.6)

We are going to consider the case when the classical field is in phase at the

atomic locations, namely ~k · ~r12 = 0. If the density matrix is initially block

diagonal

ρ =

[
ρT 0

0 ρS

]
→ ρT =




ρ11 ρ12 ρ13

ρ21 ρ22 ρ23

ρ31 ρ32 ρ33


 , ρS = ρ44, (4.7)

in the total angular momentum basis, consisting of the four states {|ee〉, (|eg〉 +

|ge〉)/
√

2,|gg〉, (|eg〉− |ge〉)/
√

2 }, then it will always preserve the block diagonal

form. Here ρT is defined in the triplet part of the Hilbert space spanned by the

symmetric vectors in the above basis, while ρS corresponds to singlet subspace
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with antisymmetric base vector |a〉. This fact directly follows from the equations

of motion for ρT and ρS,

ρ̇T = −i(HTρT − ρTH
†
T ) +

Γ + Γ12

2
J−ρTJ+ + (Γ − Γ12)ρS|gg〉〈gg|

ρ̇S = −(Γ − Γ12)(ρS − 〈ee|ρT |ee〉). (4.8)

J± = � T (σ1
± + σ2

±) � T is the raising(lowering) operator projected onto triplet

space. Here HT denotes the non-Hermitian Hamiltonian, corresponding to the

interaction picture, which can be represented in the triplet part of the basis as

follows

HT =




−iΓ
√

2E 0√
2E Ω − i

2
(Γ + Γ(12))

√
2E

0
√

2E 0


 (4.9)

From (4.8) it is clearly seen that if Γ = Γ12, the population of the antisymmetric

state will remain constant, i.e. equations of motion for ρT and ρS will decouple.

In this case, there are two independent steady-state solutions. Otherwise there

will be only one solution.

It is evident from (4.9) that in the absence of the classical driving field, all

states except |gg〉 are damped, so that the steady-state entanglement at E = 0

is impossible, and the system evolves towards the unentangled ground state |gg〉.

Because we are interested in the robust entanglement, let us consider the

steady-state solutions of the master equation (4.8) for ρT . Consider first the

Lamb-Dicke limit of short interatomic separation. Then, it follows from the

definition of the decay rate (4.5) that

Γ(12) ≈ Γ.

In this case, assuming that the atoms are initially prepared in their ground states,

the steady state density matrix will be determined in the triplet sector as follows

ρT =
1

N




64E4 −16iE3
√

2 8E2(2iΩ − 1)

16iE3
√

2 8E2(1 + 8E2) −2E
√

2(2Ω + i+ 8iE2)

−8E2(2iΩ + 1) −2E
√

2(2Ω − i− 8iE2) 4(Ω2 + 2E2 + 16E4) + 1




(4.10)



CHAPTER 4. STEADY-STATE ENTANGLEMENT OF TWO ATOMS 67

Here N is the normalization factor s.t. TrρT = 1 and Ω and E are replaced by

the dimensionless parameters Ω/Γ and E/Γ, respectively.

To determine the settings, leading to the maximum possible amount of en-

tanglement in the system under consideration, we choose Ω = τE2, where τ is a

dimensionless constant to be determined upon the maximization of concurrence.

This factor in the Lamb-Dicke limit can be represented as follows

τ =
3

4πα
[(kr)3Qn̄V ]−1, (4.11)

where α = 1/137 is the fine structure constant, Q denotes atomic quality factor

(Q = ω0T , and T is the lifetime of the excited atomic state), n̄ is the mean

number of photons per unit volume in classical driving field, and V denotes the

volume of interaction between atom and field, so that n̄V gives the mean number

of photons interacting with atom during the time T .

The concurrence (measure of entanglement in the case of two-qubit system)

is defined as follows ([94], See Appendix-A)

C = max(λ1 − λ2 − λ3 − λ4, 0), (4.12)

where λ denotes the spectrum of matrix R = (
√
ρρ̄

√
ρ)1/2 and ρ̄ denotes the

complex conjugation of (4.10) in the so-called “magic basis” [94]. The maximum

entangled state provides C = 1, while the unentangled states give C = 0.

One can see from Eq. (4.6) that at fixed τ and in the Lamb-Dicke limit

~k0 · ~r � 1, both dimensionless parameters Ω/Γ, E/Γ � 1. In this case, the

density matrix (4.10) takes the form

ρT ≈ 1

τ 2 + 48




16 0 4iτ

0 16 0

−4iτ 0 16 + τ 2


 (4.13)

To our surprise, the concurrence (4.12) in this limit turns out to be rational

function of τ

C(τ) =
8τ − 16

τ 2 + 48
, τ ≥ 2
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extended by zero at τ ≤ 2. Thus, entanglement is impossible if τ ≤ 2. The

maximum value of the concurrence

Cmax =
2√

13 + 1
≈ 0.43

is attained at

τmax = 2 + 2
√

13 ≈ 9.21.

The corresponding amount of entanglement [94] is

Emax = H

(
1 −

√
1 − C2

max

2

)
≈ 0.285 ebit.

Taking into account the form of the dimensionless parameter τ given by Eq.

(4.11), we can examine the dimensionless interatomic distance ~k0·~r, corresponding

to the maximum entanglement provided by τmax = 9.21, as a function of the

number of photons n̄V , which should obey the condition n̄V � 1 in the case

of classical driving field. It is seen that in the case of mean number of photons

n̄V ∼ 10, the interatomic distance should be of the order of 10−2λ (where λ is the

wavelength) to achieve the maximum possible amount of entanglement. Increase

of the mean number of photons in the driving field, considered as a coherent state

|α〉 with |α|2 � 1, decreases the interatomic distance, which is required to have

maximum amount of entanglement.

So far we have discussed the Lamb-Dicke limit. The results of numerical

calculations beyond Lamb-Dicke limit for different values of the classical driving

field are shown in Fig. 4.1. Both cooperations, the dipole coupling and collective

decay are oscillating functions of distance (Eqs. (4.5), (4.6) ), and even when one

of them becomes zero, the other can still give rise to entanglement(See Figure-

4.2). The deviation from Lamb-Dicke limit decreases the cooperation effects, thus

decreases steady state entanglement.

4.2 Summary and discussions

We have examined the system of two identical two-level atoms interacting with

each other by means of vacuum induced dipole forces and collective decay. The
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dissipation of energy in the system is provided by the spontaneous decay of the

excited atomic states. The compensation of losses is provided by a classical

driving field.

It is shown that in the absence of the classical driving field, system evolves

towards an unentangled state (both atomic dipoles are in the ground state). The

presence of the classical driving field stabilizes the entanglement.

In the Lamb-Dicke limit of a point-like system, we obtained an exact solution

for the steady state density matrix, that manifests high amount of entanglement

(the concurrence Cmax = 0.43 and the entanglement Emax = 0.285 ebit). This

amount is much higher than those obtained in a number of recent proposals.

In particular, it is higher than the case when the squeezed vacuum is used for

stabilization of entanglement instead of the classical driving field [83].

Outside Lamb-Dicke limit i.e. when Γ12 < Γ, both the triplet and the singlet

sectors of the density matrix(4.7) are populated, and this leads to a decrease in

the amount of entanglement.

In free space small, interatomic distances are required for strong atomic coop-

eration. However atoms can exhibit collective effects in cavities, or in the vicinity

of dielectric bodies[81] even when they are spatially well separated. The pre-

scribed scheme of steady state entanglement generation can as well be applied to

these cases.

In the above consideration, we always assumed that the atoms are identical. It

seems interesting to extend our consideration to the case of non-identical atoms.

In view of the result of Ref. [83], we can expect that this may lead to a significant

increase of entanglement.

We also restricted our consideration to the case of polarization of the clas-

sical driving field parallel to the interatomic axis. The alternative choice of the

polarization perpendicular to the interatomic axis can lead to a strong change of

picture as well. First of all, the change of polarization changes the form of the

coupling constant (4.6). Then, it causes the consideration of the different values
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of the classical driving field in the atomic locations.

The detailed analysis of the above mentioned two extensions of the model

deserves a special consideration.

0

0.75

1.5
r

0

3

6
E

0.1

0.2
C

0

0.75

1.5
r

0

3

6
E

Figure 4.1: Numerical dependence of concurrence on the interatomic distance
and classical driving field. The dimensionless quantities r/λ and E/Γ are used
here.λ is the wavelength corresponding to atomic transition.
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Figure 4.2: The dipole interaction constant Ω (Eq. (4.6))(dashed curve), and
collective decay rate Γ12 (Eq. (4.5))(solid curve) as a function of interatomic
separation r. Here r is given in terms of wavelength corresponding to atomic
transition.



Chapter 5

Input-Output Relations for a

Cavity with Absorptive Walls

In this chapter we are going to study the modeling of a cavity with absorptive

walls. Input-output relations will be formulated, Langevin equation for the cavity

field will be obtained in the presence of a source in the cavity and extraction of

nonclassical photon states from such cavities will be exemplified.

5.1 Quantization of field in one dimension

In section-3.1 we have discussed the quantization of EM field in dispersing-

absorbing medium. In this chapter we are going to consider a one dimensional

cavity, and accordingly make the quantization in one dimension.

Consider the EM field propagating in ±x̂ direction, with polarization along ŷ

direction, the wave equation for the field (3.23)reduces to the following form,

(∇2 +
n2ω2

c2
)A(x, ω) = µ0j(x, ω) (5.1)

where j = j+ + j− is the noise operator, n =
√
ε(x, ω) = η + iκ is the complex

refractive index of the medium and E(x, t) = −Ȧ(x, t). The noise current is

72
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introduced as follows,

j+(x, ω) =
√

2ε0~εI(x, ω)ω2/Sf(x, ω)

[f(x, ω), f †(x′, ω′)] = δ(x− x′)δ(ω − ω′), (5.2)

with f(x, ω),f †(x, ω) being the annihilation and creation operators for the

medium-field collective system. S being the transverse area of the system.

For the one dimensional case the equal-time commutation relation reduces to

the following form,

[A(x, t),−ε0E(x′, t)] =
i~

S
δ(x− x′), (5.3)

keeping in mind that limω→∞ ε(x, ω) = 1, ε(x, ω) = ε∗(x,−ω), and ε(x, ω) has

no poles on the upper half plane[104]. As usual the field at any point may be

calculated from the Green function of the differential equation (5.1), and for the

bulk case it turns out to be,

G(x, x′, ω) =
c

2inω
ei nω

c
|x−x′|, (5.4)

from which the positive frequency part of the field can be expressed simply as,

A+(x, ω) = µ0

∫ ∞

−∞
dx′G(x, x, ω)j+(x′, ω). (5.5)

In the bulk medium with refractive index n = η + iκ, the field becomes,

Â+(x, t) =

∫ ∞

0

dω

√
η~

4πε0n2ωcS
[aR(x, ω) + aL(x, ω)]e−iωt, (5.6)

where the right and left propagating modes are identified as follows,

aR(x, ω) = i

√
2κω

c

∫ x

−∞
dx′ei nω

c
(x−x′)f(x′, ω)

aL(x, ω) = i

√
2κω

c

∫ ∞

x

dx′e−i nω
c

(x−x′)f(x′, ω). (5.7)

The Langevin equation for the field operators follows,

∂xaR,L = ± inω
c
aR,L ± i

√
2κω

c
f(x, ω), (5.8)
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with the help of which it is possible to relate an operator to its value at some other

position. For a bounded region of space where refractive index is complex, one

can introduce free incoming fields which are devoid of noise, propagate freely until

they arrive at the absorptive region where they pick up noise as they propagate

in the medium,

aR,L(x, ω) = aR,L(x0)e
± inω

c
(x−x0)aR,L(x, ω) ±

√
2κω

c

∫ x

x0

dx′ei±nω
c

(x−x′). (5.9)

The equal time commutation relations for aR, aL read,

[aR(L)(x, ω), a†R(L)(x
′, ω′)] = e±

iηω
c

(x−x′)e−
κω
c
|x−x′|δ(ω − ω′)

[
aR(x, ω), a†L(x′, ω′)

]
=

2κ

η
sin

ηω

c
(x− x′)e−

κω
c

(x−x′)θ(x− x′) (5.10)

where θ(x) is the Heaviside function. Due to noise right and left going modes

become correlated if they had already traversed the same region.

5.1.1 Input-output relations for a dielectric plate

Now we are going to put under scrutiny the quantization of field in the presence

of a dispersive-absorptive slab,

n(x) =





1 x < −d/2
n −d/2 < x < d/2

1 d/2 < x

(5.11)

One may find the field everywhere from the Green function G(x, x′, ω), then

identify incoming and outgoing fields. However one can instead directly write

down the solutions of (5.1) and then impose the continuity, and the continuity

of derivatives at the boundaries. The solution in three regions is as follows(see

Figure-5.1),

Â(x, ω) =





√
~

4πε0ωc
[aR(x, ω) + aL(x, ω)] x < −d/2√

η~

4πε0n2ωc
[cR(x, ω) + cL(x, ω)] −d/2 < x < d/2√

~

4πε0ωc
[bR(x, ω) + bL(x, ω)] d/2 < x

(5.12)
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PSfrag replacements
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aL = tbL + raR + FL bR = taR + rbL + FR

Figure 5.1: Absorbing dielectric slab

With the help of the Langevin equations (5.8) cR,L(x = d/2) may be expressed

in terms of cR,L(x = −d/2) and the noise operators,

cR,L(d/2, ω) = cR,L(−d/2, ω)e±
inω

c
d ± i

√
2κω

c

∫ d/2

−d/2

dx′e±i nω
c

(x−x′)f(x′, ω) (5.13)

Since the field operator satisfies the wave equation, the field operators and their

derivatives should be continuous at the boundaries. The following input-output

relations are obtained,

aL(ω) = tbL(ω) + raR(ω) + FL(ω)

bR(ω) = taR(ω) + rbL(ω) + FR(ω), (5.14)

aR,L(ω) = aR,L(x = −d/2, ω), bR,L(ω) = bR,L(x = d/2, ω), and r, t are respec-

tively the reflection and transmission coefficients for the dielectric plate,

r = − (n2 − 1)(einωd/c − e−inωd/c)

(n− 1)2einωd/c − (n + 1)2e−inωd/c

t = − 4n

(n− 1)2einωd/c − (n + 1)2e−inωd/c
, (5.15)

The noise operators FR, FL are defined as,

FR,L(ω) = − η

2n
t[−(1 + n)e−i nω

c
dfR,L + (1 − n)fL,R]

fR,L(ω) = i

√
2κω

c

∫ d/2

−d/2

dx′ei nω
c

(d/2±x′)f(x′, ω). (5.16)

It is seen that the outgoing modes pick up noise from the plate, and if there is

no absorption in the plate then the noise operators FL,R will vanish.
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Incoming fields aR and bL satisfy the bosonic commutation relations, and they

commute with each other,

[
aR(ω), a†R(ω′)

]
= [bL(ω), b†L(ω′)] = δ(ω − ω′)

[
aR(ω), b†L(ω′)

]
= 0. (5.17)

Outgoing fields aL and bR are connected to the incoming fields by a unitary

transformation thus have the commutators,

[
aL(ω), a†L(ω′)

]
= δ(ω − ω′) =

[
aR(ω), a†R(ω′)

]
[
aL(ω), b†R(ω′)

]
= 0, (5.18)

which impose the following constraints,

[FL,R(ω), F †
L,R(ω′)] = (1 − |r|2 − |t|2)δ(ω − ω′)

[FL(ω), F †
R(ω′)] = −(rt∗ + r∗t)δ(ω − ω′) (5.19)

The dielectric plate might be composed of many layers of different dielectric

constants, namely a Distributed Bragg Reflector(DBR) structure, so as to en-

hance reflection[80] at desired frequencies. The formalism presented here just

requires the knowledge of reflection and transmission coefficients of the plate.

The input-output relations (5.14) can be retained, however the noise operators

FR(L)(5.16) will have a much more sophisticated form. Nevertheless one has com-

plete information about the commutation relations (5.19) once r and t are given.

5.2 One sided cavity with absorptive walls

We are going to consider a one dimensional one sided cavity, which will be con-

structed by introducing a perfect mirror to the left hand side of a dielectric planar

structure at position x = −l(Figure-5.2). Then the cavity modes aR and aL will

be related by a π phase difference at the mirror boundary,

aR(ω)e−i ω
c

l = −aL(ω)ei ω
c

l. (5.20)

Combining the results of the previously discussed dielectric slab (5.14) and (5.20)
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Figure 5.2: One sided cavity

in frequency domain we can express the cavity and outgoing fields as follows,

aL(ω) =
t

1 + re2i ω
c
l
bL(ω) +

FL(ω)

1 + re2i ω
c

l

bR(ω) = rbL(ω) + taR(ω) + FR(ω). (5.21)

So the field everwhere can be described by the three input operators bL, FL, FR.

Here the cavity wall is assumed either thin, so that it has no resonances at all, or

the frequency of interest is assumed to be far from an internal resonance of the

cavity wall. Within these assumptions the reflection coefficient r(ω) is high and

frequency dependence of r(ω), t(ω) is very weak.

The cavity resonances are determined by the poles of aL(ω)(or aR(ω)),

1 + rei 2ω
c

l = 0 → ω = ωn − i
γ

2

ωn =
c

2l
[(2n+ 1)π − φr]

γ =
c

2l
(1 − |r|2) (5.22)

where r = |r|eiφr , t = |t|eiφt, further it is assumed that the cavity wall is highly

reflective and absorption is small i.e. 1 � 1 − |r|2. A photon entering the cavity

leaves it after a time of flight

τfl =
2l

c
, (5.23)
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thus γ = |t|2/τfl is just the probability of a photon to pass out of the cavity or to

be absorbed by the cavity walls per unit time, provided that time scales shorter

than τfl are not resolved.

The cavity mode can be expressed as follows,

an(ω) =

√
2l

c
aL(ω) =

√
γ1e

iφtbL(ω) +
√
γ2F̃L(ω)

−i(ω − ωn + iγ/2)

γ1 =
c

2l
|t|2

γ2 =
c

2l
(1 − |r|2 − |t|2)

γ = γ1 + γ2 (5.24)

where γ = γ1 + γ2 and γ1, γ2 are, respectively, absorptive and radiative loss rates

of a cavity photon, and F̃L(ω) is the annihilation operator for the absorption

channel (5.30).

The field inside the cavity can be expressed as follows,

A+(x, t) = −i
∑

n

∫

[ωn]

dω

√
~

2πε0ωlS
sin
[ω
c
(x+ l)

]
ei ω

c
lan(ω)e−iωt (5.25)

where [ωn] denotes an integration from ωn−∆ω/2 to ωn +∆ω/2, with ∆ω = cπ/l

being the distance between the resonances.

At the time scales t � τfl ∼ 1/∆ω, any interaction that takes place inside

the cavity will distinguish different frequencies ωn’s and will select the resonant

frequency. On the other hand if the time scale of interest is much smaller than

the decay time of the cavity 1 � γt then one can discretize the integral (5.25),

since the frequencies at the interval [ωn − γ/2, ωn + γ/2] will not be resolved.

So at the time scales 1/γ � t� 1/∆ω the cavity field (5.25) can be discretized

as follows,

A+(x, t) =
∑

n

√
~

2ε0ωnS
fn(x)ân(t) (5.26)

where

fn(x) = (−1)n

√
2

l
e−i φr

2 sin
[ωn

c
(x+ l)

]
(5.27)
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are the normalized mode functions and if the system is freely evolving(i.e. if no

source is present),

an(t) =

∫
dω√
2π
an(ω)e−iωt. (5.28)

5.2.1 Langevin Equation for the cavity mode

Let there be a source in the cavity switched on at t = 0. The free field and

interaction Hamiltonians constitute the total Hamiltonian,

H0 =

∫
dω ~ω

[
b†L(ω)bL(ω) + F̃ †

L(ω)F̃L(ω) + F̃ †
R(ω)F̃R(ω)

]

VI =

∫ l

0

dx′ĵS(x′)Â(x′, t = 0)

= ~Ω̂(an + a†n) (5.29)

where an = an(t = 0)(5.28) and Ω =
∫ 0

−l
dx′
√

~/(2ε0ωCS)f(x′)ĵS(x′) is the source

term. ωC is the resonant frequency of the cavity that we are interested in. Here

F̃L(ω),F̃R(ω) are commuting bosonic operators describing the absorption chan-

nels,

F̃L(ω) =
1√

1 − |r|2 − |t|2
FL(ω)

F̃R(ω) = N

[
FR(ω) +

rt∗ + r∗t

1 − |r|2 − |t|2FL(ω)

]
. (5.30)

For the input fields, here follows the Heisenberg equations of motion from the

Hamiltonian (5.29),

iḃL(ω) = ωbL(ω) +

√
γ1e

iφt

i(ω − ωn − iγ
2
)
Ω̂

iḞ1(ω) = ωF̃L(ω) +

√
γ1e

iφt

i(ω − ωn − iγ
2
)
Ω̂

iḞ2(ω) = ωF̃R(ω) (5.31)
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which can be integrated to yield,

bL(ω, t) = bL(ω)e−iωt +

√
γ1e

iφt

i(ω − ωn − iγ
2
)

∫ t

0

e−iωτΩ(t− τ)

F̃L(ω, t) = F̃L(ω)e−iωt +

√
γ2

i(ω − ωn − iγ
2
)

∫ t

0

e−iωτΩ(t− τ)

F̃R(ω, t) = F̃R(ω)e−iωt. (5.32)

The next step is to write the equation of motion for the cavity field. At the

first step the solution (5.32) are substituted into an(t) in (5.26),

an(t) =

∫
dω√
2π

√
γ1e

iφtbL(ω, t) +
√
γ2F̃L(ω, t)

−i(ω − ωn + iγ/2)
(5.33)

then time derivative of an(t) yields the Langevin equation for the cavity field,

ȧ(t) = −i(ωC − iγ/2)a(t) + [a(t), VI(t)] +
√
γ1e

iφtbL,in(t) +
√
γ2Fin(t). (5.34)

Noise operators which account for dissipation in (5.34) are as follows,

bL(t) =

∫
dω√
2π
bL(ω)e−iωt

F1(t) =

∫
dω√
2π
F1(ω)e−iωt, (5.35)

which satisfy the following commutation relations,

[
bL(t), b†L(t′)

]
= δ(t− t′)

[
F1(t), F

†
1 (t′)

]
= δ(t− t′). (5.36)

The solution of the Langevin equation (5.34) is,

a(t) = a(t0)e
−i(ωC−i γ

2
)(t−t0) +

∫ t−t0

0

dτe−i(ωC−i γ
2
)τ Ω̂(t− τ) +

+

∫ t−t0

0

dτe−i(ωC−i γ
2
)τ
[√
γ1e

iφtbL(t− τ) +
√
γ2F1(t− τ)

]
. (5.37)

The causality is guaranteed by the commutation relations,

[
a(t), bL(t′)

]
=
[
a(t), b†L(t′)

]
= 0,

[
a(t), F1(t

′)
]

=
[
a(t), F †

1 (t′)
]

= 0 for t < t′. (5.38)
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5.2.2 Extraction of cavity states

We have studied the dynamics of cavity fields, and now the outgoing fields will

be under consideration. From (5.6,5.21) the incoming and outgoing fields outside

the cavity follows,

A+
in(x, t) =

∫
dω√
2π

√
~

2ε0ωcS
bL(ω)e−i ω

c
(x+ct)

A+
out(x, t) =

∫
dω√
2π

√
~

2ε0ωcS

{
bL(ω)e−i ω

c
(x+ct) +

[
rbL(ω) + FR(ω)

]
e−i ω

c
(−x+ct)

}

+

√
~

2ε0ωncS
e−i(φr−φt)

√
γ1a(t

− − x

c
). (5.39)

Here it is seen that any dynamics that can take place inside the cavity is manifest

only in the cavity field that is extracted out, viz. a(t− − x/c). t− = t− limε→0 ε

takes into account the fact that there is some delay in the cavity field that is

transmitted outside due to passage time through the cavity wall and flight of

photon in the cavity.

When the incoming fields are in their vacuum state or pumped at a very

narrow spectral width [ωc − δω/2, ωc + δω/2] where ∆ω � δω � γ, only in this

interval there will be contribution to the correlation functions of the type (5.41),

thus we can formally retain the whole spectral range. From an operational point

of view one can introduce the outgoing field at operator x = 0 as follows,

b̃R(t) =
1√
∆ω

[
rbL(t) + FR(t)

]
+

t√
2
e−iφra(t−). (5.40)

where bR(t), FR(t), bL(t) are the Fourier transforms of bR(ω), FR(ω), bL(ω) into

the time domain(5.35).

5.2.3 Characterization of the cavity field

For the outgoing fields, the correlation functions of the type,

G(mn)(x1, t1; . . . ; xm+n, tm+n) =
〈
T−

m∏

i=1

E−(xi, ti)T+

n∏

j=1

E+(xj, tj)
〉

(5.41)
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can be calculated in terms of correlation functions of the intra-cavity field and

the incoming field. Here T+(−) stand for (anti)time ordering. Assuming that

the bR(t), FR(t), bL(t)incoming fields are in their vacuum state, the correlation

function can be cast into a correlation function of intracavity field,

G(mn) =
(

~ω0γ1

2ε0ω0cS

)n+m
2
〈
T−

m∏

i=1

a−(ti −
xi

c
)T+

n∏

j=1

a+(tj −
xj

c
)
〉
. (5.42)

A useful tool in characterizing field states, especially their quantum nature is

the quasiprobability distributions[77]. The characteristic function is defined to

be,

χ(ξ) = Tr
(
ρeξc†−ξ∗c

)
(5.43)

whose Fourier transform yields the Wigner function,

W (α) =
1

π2

∫ ∞

−∞
d2ξ χ(ξ)eαξ∗−α∗ξ. (5.44)

Wigner function is a normalized, real valued distribution function analogous to

a classical phase space probability distribution. Here ρ is the density matrix,

and c,c† are the annihilation and creation operators for the single mode field.

Any symmetric ordered moment can be computed by an integral weighted by the

Wigner function,

< S(c†mcn) >=

∫ ∞

−∞
d2α W (α)α∗mαn. (5.45)

It is also possible to evaluate (anti)normal ordered moments, by putting the

characteristic function (5.43) into (anti)normal ordered form.

Assuming that the incoming fields are in their vacuum state, and at some

time t < 0 an interaction is switched on in the cavity such that, at time t = 0 a

cavity state ρcav is prepared and the interaction is switched off. The characteristic

function of the outgoing field at time t > 0 reads,

χ(ξ) = e−|ξ|2/2
〈
0|eξb†R(t)eξbR(t)|0

〉

= e−|ξ|2/2
〈
0|eξa†(t)eξa(t)|0

〉

= e−|ξ|2/2
{
ρcav exp

[ ξT√
2
a†ei(ω−ω0+i γ

2
)t+iφr

]
exp
[
− ξT√

2
ae−i(ω−ω0−i γ

2
)t−iφr

]}
,

(5.46)
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where we have used the symbol T for the transmission coefficient of the cavity

wall.

Example

Assume that the cavity is initially prepared in n-photon Fock state, then the

characteristic function (5.46) reads,

χ(ξ) = exp(−|ξ|2/2)Ln(
|Tξ|2

2
e−γt)

= exp(−|ξ|2/2)
{[

1 − n|T |2e−γt

2

]
L0(|ξ|2) +

n|T |2e−γt

2
L1(|ξ|2)

}
. (5.47)

Lm(x) stands for Laguerre polynomial of mth order[105], where we have used

L0(x) = 1, L1(x) = 1 − x. One can calculate the corresponding Wigner function

for the outgoing fields, for a cavity initially prepared in n-photon Fock state,

W (α) '
[
1 − n|T |2e−γt

2

]
W0(α) +

n|T |2e−γt

2
W1(α). (5.48)

Wn is the Wigner function for the n-photon Fock state,

Wn(α) =
2

π
(−1)ne−2|α|2Ln(4|α|2). (5.49)

For outgoing field, the Wigner function is a mixture of vacuum and single photon

states whereas the density matrix of intra cavity field is a mixture of n, . . . , 1, 0

Fock states if the cavity is initially prepared in n photon Fock state.

5.3 Summary and discussion

We have studied the dynamics of a cavity with absorptive wall and derived an

input-output relation relating the intra-cavity and outgoing fields. In particular

extraction of Fock states is studied. The absorption channel behaves as an auxil-

iary port of the cavity which is not detected, and in this sense is similar to a two

sided cavity[106, 107]. This simplistic cavity model actually might handle cases

of experimental interest. In an actual cavity the sources will make spontaneous
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emission into the free transverse fields. However once the desired field state is

prepared in the cavity, our model might be capable of handling realistic cases.



Chapter 6

Conclusions

We have made a number of proposals for the generation of robust, long-living

atomic entangled states and studied their realization within the contemporary

experimental techniques. A scheme for deterministic preparation of long-living

maximally entangled states of two identical three-level Λ type atoms is proposed

and studied. An irreversible evolution is shown to take place from the initially

unentangled state to the maximally entangled state with respect to the ground

and the metastable states between which electric-dipole transition is not allowed,

resulting in a considerably long lifetime. The atoms prepared in their ground

states are pumped by a single excitation driving one of the atoms to the excited

state -we do not know which one- subsequently followed by an irreversible decay to

the metastable state. The strong collective effects are essential in this scheme, i.e.

”which atom” information should be absent in the atom-field interaction. This

scheme can be realized in free space if the atoms are pumped by a single excitation

pulse, while they are positioned much closer than the wavelength. However in

a resonator the scheme can be realized even when the atoms are spatially well

separated. This scheme is also generalized to multipartite case, when all the

atoms are interacting collectively with the field.

The interaction of multi-level atoms with quantized electro-magnetic field in

the presence of dispersing-absorbing dielectric bodies is studied in the most gen-

eral case. The master equation governing the system is obtained, and collective
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spontaneous decay and environment induced dipole-dipole interactions and level

shifts are identified for weakly coupled atomic transitions. In the case of strong

coupling to the electromagnetic field Jaynes-Cumming type atom-field Hamilto-

nians arise in the Master equation giving rise to damped Rabi oscillations. The

exact coupling constants can be plugged into the equations of motion once the

classical Green function for the electric field in dielectric medium is known, which

depends on the geometry and the material properties of the system. If the system

is properly engineered, then one can obtain either strong or weak coupling for

different atomic transition frequencies as desired. Then this formalism is applied

to generation of robust entanglement in Λ type atoms passing by a dielectric mi-

crosphere. Whispering gallery resonances below a band gap and surface guided

waves inside a bandgap give rise to resonances. At a resonant frequency, when the

atoms are at the opposite ends of a diameter then atoms will cooperate, either of

the symmetric or the antisymmetric state will be in superradiant regime while the

other in irradiant regime. The widths of resonances - determined by the radia-

tive and absorption losses - signify either irreversible spontaneous emission(weak

coupling regime) or damped field-atom Rabi oscillations(strong coupling regime).

Either of these two regimes can be attained by the correct choice of size and ma-

terial properties of the microsphere, thus it is possible to attain strong coupling

in one arm and weak coupling in the other arm of the Λ atomic configuration.

Also in chapter-2 the initial single photonic excitation was tacitly assumed to be

present. In the case a of microsphere, it is shown that initial photonic excitation

can be deposited by a two-level excited atom passing by a microsphere, which

later on, couples collectively with the two Λ type atoms.

In the current technology, usually superconducting cavities are used to obtain

strong atom-field interaction which is essentially the standing modes of light

confined between two mirrors (see [18, 54] and references therein). This kind of

cavities can only support field in the microwave region, and usually experiments

are carried out with Rydberg atoms. Strong coupling in the optical region might

be possible using high Q (> 109) dielectric microspheres.

The environment can be engineered in order to stabilize entanglement. The
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stabilization of entanglement of two dipoles in free space with the help of clas-

sical driving field is discussed. The environment induced collective effects, i.e.

dipole coupling and collective spontaneous decay, which are present even in free

space, give rise to entanglement whereas the classical driving field stabilizes en-

tanglement. In free space considerable amount of entanglement can be realized in

Lamb-Dicke limit namely when the dipoles are close to each other. Spatially well

separated atoms in a single-mode cavity which is driven and heavily damped[108]

is equivalent to the model that we have discussed in chapter-4, and in this case it

is possible to obtain a high amount of steady state entanglement even when the

atoms are spatially well separated.

Absorption effects associated with the extraction of photonic quantum states

from cavities is explored. It is shown that when the incoming fields are in their

vacuum state, absorption effects can be modeled by some simple input-output

relations. In this model the absorptive effects associated with a cavity wall can

be regarded as one of the output channels of the cavity in which no detection is

made. Absorptive effects are exemplified for the extraction of photon Fock states

states.



Appendix A

Entanglement

Entanglement is one of the key notions which distinguish quantum information

from classical information[109, 110]. The idea of entanglement has been proposed

by Einstein, Podolsky and Rosen(hereafter EPR) in which by locality arguments

they were led to the conclusion that ”quantum mechanical description of physi-

cal reality is not complete”[3]. The principle of Einstein locality asserts that the

events occurring in a given space-time region are independent of events occurring

in space-like separated regions. In 1964 J.S. Bell proved that if one adopts Ein-

stein locality then there is an upper limit to the correlation of distant events[1].

For polarization entangled photons these correlations were tested in 1982 by As-

pect et. al.[2], which ruled out hidden variable theories[111] and verified the

predictions of quantum mechanics.

A quantum state in a given Hilbert space H of dimension d may be described

by the d× d density matrix ρ, which can be written as a convex combination of

pure states {ψi ∈ H},

ρ =
∑

i

pi |ψi〉〈ψi| (A.1)

where convexity implies pi > 0 that sum up to unity
∑

i pi = 1. The decompo-

sition given by (A.1) is not unique and all convex decompositions are physically

equivalent. From (A.1) it is evident that the density matrix should be normal-

ized to unity Tr(ρ) = 1, be hermitian ρ = ρ†, and should have a non-negative
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spectrum (positivity) spec(ρ) ≥ 0. A density matrix corresponding to a pure

state may be written in the form ρ = |Ψ〉〈Ψ| which implies that in this case ρ is

a projection operator ρ2 = ρ, otherwise the state is a mixed state. Hereafter the

density matrix ρ will be called the quantum state of the system of interest.

A bipartite system is associated with the Hilbert space H given by the tensor

product H1 ⊗ H2 of predefined Hilbert spaces. Separable states defined in the

direct product Hilbert space H can be written as convex combination of product

states,

ρ =
∑

i

pi ρ
(1)
i ⊗ ρ

(2)
i . (A.2)

Those states which cannot be written in the convex decomposition form (A.2)

are defined to be entangled states.

The definition of entangled states can easily be extended to multipartite sys-

tems the Hilbert space of which consist of more than two subsystems. An N -

partite system is characterized by the Hilbert space H = H1 ⊗ H2 ⊗ . . .HN . A

pure state is separable if it can be written as a direct product of N states each

belonging to a different subsystem. A mixed state of N -partite system is separa-

ble if it can be expressed as a convex sum of product of N states. A mixed state

is called ν-separable if it can expressed in the form

ρ =
∑

i

pi ρ
(1)
i ⊗ . . . ρ

(ν)
i , (A.3)

and if ν = N the state is completely separable thus unentangled.

The simplest example of entanglement is a bipartite system consisting of two

level systems, for instance

|Ψ〉 =
1√
2
(|+〉 ⊗ |−〉 + |−〉 ⊗ |+〉) (A.4)

is the quantum state in a direct product Hilbert space of two-dimensional Hilbert

spaces. In fact this is algebraically equivalent to a two spin-1/2 particle system

for each of which there exists three observables σx, σy, σz in a two dimensional

Hilbert space,

σx =

(
0 1

1 0

)
, σy =

(
0 −i
i 0

)
, σz =

(
1 0

0 −1

)
(A.5)
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in the basis {|+〉, |−〉}. From (A.5) it is seen that if σ
(1)
z is measured to be +1 then

σ
(2)
z measurement will yield −1 and vice versa. Here local observables correspond

to direct tensor products σ
(1)
z = σz⊗

�
, σ

(2)
z =

� ⊗σz. According to Einstein local-

ity principle if the particles are not interacting anymore, no real change can take

place at the 2nd party upon measurement. One may instead choose to measure

σ
(1)
x thus determine the value of σ

(2)
x with certainty and likewise for σz. As a result

all three spin components σ
(2)
x , σ

(2)
y , σ

(2)
z can be measured without ever disturbing

the second system, which is in contradiction with quantum mechanics. According

to quantum mechanics only one spin component can be determined with certainty,

since two different spin components(A.5) are incompatible(noncommuting).

A.0.1 Detection of entanglement

Given a quantum state the very first natural step is detecting entanglement, i.e.

whether the state is separable or not. Any pure bipartite state may be cast into

the Schmidt form([110]),

|Ψ〉 =
d∑

i=1

√
λi|ψi〉1 ⊗ |ψi〉2, (A.6)

where the basis {|ψi〉1 ⊗ |ψi〉2} constitutes an orthonormal basis. Without loss

of generality d = dim(H1) ≤ dim(H2) is assumed. Schmidt coefficients may be

computed from the reduced density matrices ρ1 = Tr2|Ψ〉〈Ψ|, ρ2 = Tr1|Ψ〉〈Ψ|
where trace operation is performed, respectively, in basis of H1 and H∈ . The

nonzero Schmidt coefficients consists of nonzero elements of spectrum of ρ1. A

bipartite state is separable if the Schmidt vector has only one nonzero compo-

nent λ = [1, 0, ..., 0] and for an entangled state Schmidt vector has at least two

nonzero components. The state with Schmidt vector λ = [1/d, ..., 1/d] is said to

be maximally entangled.

The separability of pure states can easily be checked, however this turns out

to be quite difficult for mixed states. For mixed states entanglement may be

detected by entanglement witnesses [109, 112, 113].
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A.0.2 Quantification of entanglement

The basic idea for a quantitative description of entanglement is to classify all kinds

of operations that can only create or increase classical correlations but none of

quantum nature. Naturally this type of operations are local operations and they

are usually called local operations assisted by classical communication(LOCC).

Any scalar quantity assigned to a state which does not increase under such oper-

ations is called an entanglement monotone and can serve for a quantification of

entanglement[114](for a review see [115] and references therein). For two dimen-

sional bipartite systems a widely used entanglement monotone is entanglement

of formation. Given a density matrix ρ for a bipartite system, consider all pos-

sible convex decomposition of the density matrix for all ensembles of ψi with

probabilities pi,

ρ =
∑

pi|ψi〉〈ψi|. (A.7)

For each pure bipartite state ψ the entanglement of formation is given by the

reduced entropy

E(ψ) = −Trρ1 log ρ1 = −Trρ2 log ρ2, (A.8)

which gives the asymptotic conversion rate from ψ to a standart Bell state (A.4)

via LOCC[116]. Then the entanglement of formation for the mixed state ρ is given

as the averaged entanglement over the pure states minimized over all possible

convex decompositions of ρ,

E(ρ) = min
∑

piE(ψi). (A.9)

For a pair of qubits the entanglement of formation(A.9), Wootters[94] has been

able to obtain an analytic expression,

E(ρ) = E(C(ρ)), (A.10)

where C is the concurrence defined as,

C(ρ) = max{0, λ1 − λ2 − λ3 − λ4}. (A.11)
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λi’s are the eigenvalues, in decreasing order, of the Hermitian matrix

√√
ρσy ⊗ σyρ∗σy ⊗ σy

√
ρ (A.12)

and E is given as

E(C) = h

(
1 +

√
1 − C2

2

)

h(x) = −x log x− (1 − x) log(1 − x). (A.13)



Appendix B

Dissipative Processes

The boundary between the classical and quantum behavior has been of great

interest regarding both fundamental and technological issues. Interaction of a

quantum system with the environment is the key issue in dissipation and quan-

tum decoherence. In this section we are going to put some simple models under

scrutiny to study decoherence and dissipation. The interaction of a system com-

prised of discrete states with an external continua of states will be reviewed. A

thorough treatment can be found in Ref. [77].

B.0.3 Master equations

Consider a system characterized by the Hamiltonian H0(ŝ) interacting with an

environment characterized by a continuum of modes. The system is described by

the following Hamiltonian in the rotating wave approximation,

H = ~ω0ŝ
†ŝ+ ~

∫
dω ωb†b + i~

∫
dω W (ω){ŝ†b− b†ŝ}, (B.1)

where ŝ is the system operator and b(ω) are a continuum of bosonic operators,

s.t. [b(ω), b†(ω′)] = δ(ω − ω′). W is the frequency dependent coupling constant.

In the interaction picture,

ĤI(t) = i~
(
ŝ†F (t) − F †(t)ŝ

)
(B.2)

93



APPENDIX B. DISSIPATIVE PROCESSES 94

where

F (t) =

∫
dω W (ω)b exp−i(ω−ω0)t (B.3)

is the Langevin noise operator. The equation of motion for the total density

matrix comprised of the system and the environment is,

ρ̇T (t) = − i

~
[HI(t), ρT (t)], (B.4)

which can be integrated to yield,

ρ̇T (t) = − i

~
[HI(t), ρT (0)] − 1

~2

∫ t

0

dt′[HI(t), [HI(t
′), ρ(t′)]]. (B.5)

At this step the environment and the system are decorrelated following the as-

sumption,

ρT (t) = ρe(0) ⊗ ρ(t) (B.6)

where ρe(0) is the initial density matrix of the environment and ρ(t) is the density

matrix for the system. The assumption (B.6) implies that the environment has a

large number of degrees of freedom and therefore the change in environment can

be ignored at this order. Tracing out the environment one obtains the density

matrix for the system, viz. ρ(t) = TreρT (t),

ρ̇(t) =

∫ t

0

dt′ Tre[ŝ
†F (t) + F †(t)ŝ, [ŝ†F (t′) + F †(t′)ŝ, ρT (t′)]], (B.7)

which can be cast into the form,

ρ̇(t) =

∫
dt′

{[
ŝρŝ† − ŝ†ŝρ

]
〈F (t)F †(t′)〉 +

[
ŝρŝ† − ρŝ†ŝ

]
〈F (t′)F †(t)〉

+
[
ŝ†ρŝ− ŝŝ†ρ

]
〈F †(t)F (t′)〉 +

[
ŝ†ρŝ− ρŝŝ†

]
〈F †(t′)F (t)〉

−
[
ŝ†ρŝ† − ŝ†2ρ

]
〈F (t)F (t′)〉 −

[
ŝ†ρŝ† − ρŝ†2

]
〈F (t′)F (t)〉

−
[
ŝρŝ− ŝ2ρ

]
〈F †(t)F †(t′)〉 −

[
ŝρŝ− ρŝ2

]
〈F †(t′)F †(t)〉

}
. (B.8)

Here the next step is to estimate the expectation values of correlation functions

in (B.8). In most cases the correlation terms involving the pairs F (t), F (t′) or

F †(t), F †(t′) will vanish, in particular for a thermal environment. However in a

rigged (squeezed) reservoir these correlations may survive.
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For a thermal reservoir, for the Bose statistics,

n̄(ω) = 〈b†(ω)b(ω)〉

=
1

exp(~ω/kT ) − 1
, (B.9)

from which the nonzero correlation functions in (B.8)can be computed as follows,

〈F †(t)F (t′)〉 =
∫
dω W 2(ω)n̄(ω)e−i(ω−ω0)(t−t′)

〈F (t)F †(t′)〉 =
∫
dω W 2(ω)(n̄(ω) + 1)e−i(ω−ω0)(t−t′). (B.10)

The next step is to convert the integro-differential equations in (B.8) to a differen-

tial equation by performing the time integrals within the Markov approximation.

If the coupling constant is a slowly varying function of frequency then the fre-

quency integrals in (B.10) will yield a strongly localized function in time at t = t′

approximating a Dirac-delta function. In this case ρ(t′) in (B.8) may be replaced

by ρ(t) and taken outside the integral. In the time integration the contribution

will be prominently at t′ ' t, so the limit of the time integral may be extended to

t → ∞. The Markov approximation and beyond in (B.8) with the substitutions

(B.10), may be illustrated as follows,

∫ ∞

0

dω G(ω)

∫ t

0

dt′ ρ(t′)e−i(ω−ω0)(t−t′)

' ρ(t)

∫ ∞

0

dω G(ω)

∫ t

0

dt′ e−i(ω−ω0)(t−t′)

' ρ(t) lim
δ→0

lim
t→∞

∫ ∞

0

dωG(ω)

∫ t

0

dt′ e−i(ω−ω0−iδ)(t−t′)

= ρ(t)
[
πG(ω0) + P

∫ ∞

0

dω
G(ω)

ω − ω0

]
(B.11)

where P denotes the principal part,

P
∫ ∞

0

dω
G(ω)

ω − ω0

= lim
δ→0

∫ ∞

0

dω
G(ω)(ω − ω0)

(ω − ω0)2 + δ2
. (B.12)

Markov approximation in (B.11) holds if 1 � G′(ω), for ω ∈ [ω0 −G(ω), ω0 +

G(ω)].

Now the differential equation for the master equation can be obtained from
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(B.8),

ρ̇(t) = − iδω[ŝ†ŝ, ρ(t)] − iδωth[[ŝ
†, ŝ], ρ(t)]

+ Γ(n̄(ω0) + 1)(2ŝρŝ† − ŝ†ŝρ− ρŝ†ŝ) + Γn̄(ω0)(2ŝ
†ρŝ− ŝŝ†ρ− ρŝŝ†),

(B.13)

where Γ = πW 2(0), and

δω = −P
∫ ∞

0

dω
W 2(ω)

ω − ω0

δωth = −P
∫ ∞

0

dω
n̄(ω)W 2(ω)

ω − ω0
(B.14)

are the frequency shifts. The first expression in (B.14) is the Lamb shift induced

by vacuum, and the second expression is the thermally induced Lamb shift. Prac-

tically these frequency shifts can be incorporated into the free Hamiltonian, so

that the natural frequency of the system is redefined. For a harmonic oscillator,

[s, s†] = 1, and the frequency shift is −δω i.e. there will be no effect of tempera-

ture on the natural frequency. For a two level system the frequency shift will be

δω + 2δωth.
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