

INQUIRING the MAIN ASSUMPTION of the ASSEMBLY LINE

BALANCING PROBLEM: SOLUTION PROCEDURES USING

AND/OR GRAPH

A THESIS

SUBMITTED TO THE DEPARTMENT OF INDUSTRIAL ENGINEERING

AND THE INSTITUTE OF ENGINEERING AND SCIENCE

OF BILKENT UNIVERSITY

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS

FOR THE DEGREE OF

MASTER OF SCIENCE

By

Ali Koç

July 2005

 ii

I certify that I have read this thesis and that in my opinion it is fully adequate, in

scope and in quality, as a thesis for the degree of Master of Science.

 Prof. İhsan Sabuncuoğlu (Principal Advisor)

I certify that I have read this thesis and that in my opinion it is fully adequate, in

scope and in quality, as a thesis for the degree of Master of Science.

 Prof. Erdal Erel

I certify that I have read this thesis and that in my opinion it is fully adequate, in

scope and in quality, as a thesis for the degree of Master of Science.

 Assoc. Prof. Selim Aktürk

Approved for the Institute of Engineering and Science:

 Prof. Mehmet Baray

 Director of Institute of Engineering and Science

 iii

ABSTRACT

Inquiring The Main Assumption Of The Assembly Line Balancing

Problem: Solution Procedures Using And/Or Graph

Koç, Ali

M.S. in Industrial Engineering

Supervisor: Prof. İhsan Sabuncuoğlu

July 2005

In this thesis, we consider the assembly/disassembly line balancing (ADLB) problem. The

studies in the literature consider assembly and disassembly problems separately and use task

precedence diagram (TPD) and AND/OR Graph (AOG) in assembly and disassembly line

balancing problems, respectively. In contrast to these studies, we use AOG for both assembly

and disassembly line balancing problems, considering these two problems as complementary

of each other. Hence, we call the complementary problem as ADLB-AOG. We show

theoretically that AOG is a more general version of the TPD. We also develop integer

programming (IP) and dynamic programming (DP) formulations to solve the ADLB-AOG

problem. Our analysis indicates that the DP formulation performs much better than the IP

formulation in terms of the problem sizes that can be optimally solved. We also develop a

DP-based heuristic to solve large-size instances of the ADLB-AOG problem. An

experimentation of the procedures on some sample problems and the implementation of the

heuristic on a sample problem are also given.

Keywords: Assembly, Disassembly, Line Balancing, AND/OR Graph, Task

Precedence Diagram, Integer Programming, Dynamic Programming, Heuristic.

 iv

ÖZET

Montaj Hattı Dengeleme Problemlerının Temel Varsayımını Sorgulama: And/Or

Grafiği Kullanılarak Geliştirilen Çözüm Prosedürleri

Ali Koç

Endüstri Mühendisliği Yüksek Lisans

Tez Yöneticisi: Prof. İhsan Sabuncuoğlu

Temmuz 2005

Bu tezde, montaj/demontaj hattı dengeleme problemini incelemekteyiz. Literatürdeki

çalışmalar, montaj ve demontaj problemlerini ayrı ayrı olarak ele alıp montaj hattı dengeleme

problemi için iş önceliği diyagramını, demontaj hattı dengeleme problemi için ise AND/OR

grafiğini kullanmaktadırlar. Biz ise her iki problemi birbirinin tersi olarak ele aldığımız için,

her ikisinde de AND/OR grafiğini kullandık. Binaen aleyh, problemi montaj/ demontaj hattı

dengeleme problemi olarak isimlendirdik. Ayrıca, teorik olarak ta gösterdik ki AND/OR

grafiği, iş önceliği diyagramından daha genel olduğundan bu grafik kullanılarak çözülen

problem diğerinden daha iyi, en azından aynı, neticeler vermektedir. Öne sürülen bu problemi

hem tamsayı programlama hem de dinamik programlama yöntemleri ile çözdük. Bu iki

yöntemle bazı örnek problemleri çözdüğümüzde, dinamik programlama yöntemi inkar

edilemez bir farkla tamsayı programlama yöntemini geride bıraktı. Daha büyük problemlerin

çözebilmesi için daha hızlı çalışan bir sezgisel yöntem de geliştirdik. Tüm problem verileri,

örnek çözümler ve uygulamaları, gerek metnin içinde gerek ilave bölümlerde verilmiştir.

Anahtar Kelimeler: Montaj, Demontaj, Hat Dengeleme, AND/OR Grafiği, İş Önceliği

Diyagramı, Tamsayı Programlama, Dinamik Programlama, Sezgisel Yöntem.

 v

TABLE OF CONTENTS

CHAPTERS

INTRODUCTION... 1

1.1 MOTIVATION ... 1

1.2 STATEMENT OF THE PROBLEM AND RELATED CONTRIBUTION .. 3

LITERATURE SURVEY ... 6

2.1 BACKGROUND ... 6

2.2 LITERATURE SURVEY .. 13

PROPOSED THEORY: QUESTIONING THE FUNDAMENTAL ASSUMPTIONS AND

SOLVING THE ACTUAL PROBLEM .. 16

3.1 AND/OR GRAPH AND ASSEMBLY/DISASSEMBLY TREE .. 17

3.1.1 AND/OR Graph (AOG)... 17

3.1.2 Assembly/Disassembly Tree (AT/DT) ... 19

3.2 THEOREM OF SUB-OPTIMALITY ... 24

3.3 THE DERIVATION OF A TPD FROM THE AOG... 29

3.4 AN EXAMPLE TO COMPARE TPD AND AOG. ... 36

THE SOLUTON TO THE ADLB-AOG PROBLEM .. 40

4.1 THE PROPOSED DYNAMIC PROGRAMMING (DP) FORMULATION ... 42

4.1.1 Definitions and Terminology .. 42

4.1.1.1 Partial AOG’s..42

4.1.1.2 Assembly task sequences ..43

4.1.1.3 Relation between partial AOG’s and assembly task sequences...45

4.1.2 The Proposed DP Approach ... 45

4.1.3 Example .. 47

4.2 THE PROPOSED INTEGER PROGRAMMING FORMULATION.. 53

 vi

4.2.1 The Formulation ... 53

4.2.2 Example .. 56

4.3 SOLVABLE SIZES OF ADLB-AOG PROBLEM BY DP AND IP METHODS....................................... 57

4.3.1 The DP formulation .. 61

4.3.2 The IP Formulation .. 70

4.4 A DP BASED HEURISTIC ... 73

CONCLUSIONS AND FUTURE RESEARCH DIRECTIONS ... 78

REFERENCES.. 81

AND/OR GRAPH AND RELATED CONCEPTS IN ASSEMBLY / DISASSEMBLY

PROCESS PLANNING .. 90

A1.1 ASSEMBLY.. 90

A1.2 ASSEMBLY TASK .. 92

A1.3 ASSEMBLY SEQUENCE .. 96

A1.4 DISCUSSION ON AOG ... 97

FIGURES OF THE EXAMPLE 2 IN SECTION 3.3 ... 106

FIGURES OF THE EXAMPLE 3 IN SECTION 3.3 ... 122

STORING AOG IN A MATRIX.. 136

SOME EXAMPLES TO PARTIAL AOG (AOG(S))... 138

JAVA CODE FOR THE DP METHOD TO THE ADLB-AOG PROBLEM............................ 142

JAVA CODE FOR THE FORMULATION OF ADLB-AOG PROBLEM AS PURE 0-1 IP

PROGRAMMING .. 154

JAVA CODE TO GENERATE AOG.. 158

JAVA CODE FOR THE HEURISTIC.. 165

 vii

LİST OF FİGURES

Figure 1 Interaction between government, users, producers and distributors as the driving force of the

environmental management (taken from Gungor and Gupta 1999)... 8

Figure 2 Environmental management practices and their environmental contributions....................... 9

Figure 3 Different post-life options for the relinquished products ... 11

Figure 4 Remanufacturing and demanufacturing as the means of reverse manufacturing 12

Figure 5 A sample product (de Mello and Sanderson (1990)).. 17

Figure 6 AND/OR Graph of the Product in Figure 5 ... 18

Figure 7 All of the 8 DT’s obtained from the AOG in Figure 2 ... 22

Figure 8 Eight transformed disassembly trees (TDT) associated with the eight DT’s in Figure 4..... 24

Figure 9 Theorem of sub-optimality... 28

Figure 10 The subassemblies of AOG in Figure 6, their GOC and corresponding tasks 32
Figure 11 The mAT

S obtained from SAT in Figure 8 .. 33

Figure 12 STPD obtained by combining equitask ATm’s in Figure 11 ... 34

Figure 13 Transformed AND/OR Graph of the AOG in Figure A.14 of Appendix 3 41

Figure 15 The partial AOG’s obtained while solving the example problem 51

Figure 16 Dynamic programming solution to the ADLB-AOG problem for the AOG in Figure 14 . 52

Figure 17 Sample AOG’s to illustrate the experimentation.. 59

Figure 18 Solvable problem sizes when the number of tasks for each artificial node is 1 64

Figure 19 Solvable problem size when the number of tasks for each artificial node is 2................... 64

Figure 20 Solvable problem size when the number of tasks for each artificial node is 3................... 65

Figure 21 Solvable problem size when the number of tasks for each artificial node is 5................... 65

Figure 23 The solution duration vs. difficulty of the problem.. 71

Figure 24 Solution of a sample problem by the DP method... 73

Figure 25 Heuristic solutions for the example problem in Figure 24 ... 75

 viii

Figure A.1 Graph of connections (GOC) for the product in Figure 5 of Chapter 2............................ 91

Figure A.2 A feasible assembly sequence (τ1, τ2, τ3) ... 94

Figure A.3 An infeasible assembly sequence (τ1, τ4, τ5) .. 95

Figure A.4 A loosely connected product, its graph of connections and AOG.................................. 101

Figure A.5 A strongly-connected product, its graph of connections and AOG................................ 102

Figure A.6 Proposed AND/OR graph... 105

Figure A.7 An example product and its GOC (Lambert 1999) .. 106

Figure A.8 AOG of the product in Figure A.7 ... 107

Figure A.9 SAT established from the AOG in Figure A.8 ... 112

Figure A.10 The subassemblies of AOG in Figure A.8, their GOC and corresponding tasks.......... 115
Figure A.11 The mAT

S obtained from SAT in Figure A.9.. 120

Figure A.12 STPD obtained by combining equitask ATm’s in Figure A.11 121

Figure A.13 An example product and its GOC (Lambert 1999) .. 122

Figure A.14 AOG of the product in Figure A.13.. 123

Figure A.15 SAT established from the AOG in Figure A.14 ... 127

Figure A.16 The subassemblies of AOG in Figure A.14, their GOC and corresponding tasks........ 130
Figure A.17 The mAT

S obtained from SAT in Figure A.15.. 134

Figure A.18 STPD obtained by combining equitask ATm’s in Figure A.17 135

Figure A.19 AOG ({A13}) .. 138

Figure A.20 AOG ({A6}) ... 139

Figure A.21 AOG ({A7}) ... 139

Figure A.22 AOG ({A8}) ... 140

Figure A.23 AOG ({A8, A13}) .. 140

Figure A.24 AOG ({A8, A13, A9}) = AOG ({A8, A9}) ... 141

 ix

LIST OF TABLES

Table 1 Durations of the SD and SI tasks in the example... 37

Table 2 The solutions to the three example problems .. 38

Table 3 Solvable size of the AOG’s without parallelism by the DP approach. 62

Table 4 The difficulties of 124 sample problem and solution durations... 69

Table 5 The results of the heuristic solution to the ADLB-AOG problem compared with the exact

results of both ADLB-TPD and ADLB-AOG problem. .. 76

1

Chap t e r 1

INTRODUCTION

1.1 Motivation

Due to the threatening environmental issues, in recent years,

demanufacturing and remanufacturing of products gained an increasing attention

from both practitioners and researchers (Grenchus et al. 1997, Spicer and Johnson

2004, Thierry et al. 1995, Ayres et al. 1997, Bras and McIntosh 1999, Guide Jr

VDR. 2000, Parkinson and Thompson 2003). Both practices rest mostly on the

disassembly of the products. Consequently, disassembly process, ranging from

factory level, through work system level, to the operation level, gained a

considerable attention from the researchers (Brennan et al. 1994, Kochan 1995,

Zussman 1995, Wiendahl et al. 1999, Gungor and Gupta 1999, Tang et al. 2000,

Lee et al. 2001, Lambert 2003).

Almost all of the researchers sought ways of handling the disassembly

issue independent of the assembly process. Even though disassembly and

assembly differ to a great extent due to the differences in production planning and

inventory control issues, there is not so much difference as far as the shop floor

activities are concerned: In the disassembly process, we take apart what are put

together while assembling the product. Hence, some of the researchers view the

disassembly process as the reverse of the assembly (Homem de Mello and

 2

Sanderson 1990, 1991a and 1991b). The authors define all possible

assembly/disassembly tasks for a product and establish the precedence relations

among the tasks. Each possible task definition and corresponding precedence

relation is represented by an assembly/disassembly tree (AT/DT). They develop a

graph called AND/OR Graph (AOG) that includes all AT/DT’s of a product.

Inspired from the AOG, in this study, we handled the assembly and

disassembly processes as complementary of each other. As a result of this, we

pinpoint some of the facts that escape from the eyes of many, in assembly studies.

For many years, researchers have sought the ways to solve the assembly line

balancing problem (ALB). But they did not question the main input to the

problem, the task precedence diagram. Task precedence diagram (TPD) shows the

precedence relations between the assembly tasks. They consider only one the

many feasible definitions of the assembly tasks. Two differently defined sets of

tasks for the same assembly/disassembly process yield two different TPD’s.

Consequently, the number of stations in the line to assemble/disassemble the same

product for different set of tasks may change. Based on this, when balancing the

assembly/disassembly line optimally, we use AOG instead of the TPD to consider

all possible task definitions. The objective is to minimize the cycle time while

keeping the number of stations constant. We showed that using AOG is better than

using TPD.

 3

1.2 Statement of the Problem and Related Contribution

Disassembly activities take place in both remanufacturing and

demanufacturing practices. Disassembly is a systematic method for separating a

product into its constituent parts, components, subassemblies or other groupings

(Gupta and Taleb 1994). Assembly may be defined just as the reverse of the

disassembly. Even though due to some characteristics of disassembly process,

assembly and disassembly should be treated independently, we suggest that, at

least for the operational purposes, they should be considered as the complementary

of each other. Hence, all the inferences, discussions and results obtained in this

study will apply to both assembly and disassembly.

Assembly/disassembly line is made up of an ordered sequence of stations

connected by a material handling system. The line may be paced or unpaced. In

paced assembly lines, the cycle time for all stations is common, whereas in

unpaced lines all stations are allowed to operate at their own phase. In assembly

line, parts of the product enter the line and move to the downstream stations until

(some of) the parts are assembled. Whereas in disassembly line, the whole product

enters the line and moves to the downstream stations until the parts of concern are

obtained. Both assembly and disassembly may be partial or complete. In partial

assembly, parts are assembled not until obtaining the whole product but until some

subassemblies are formed. Similarly, in partial disassembly a product is

disassembled to obtain subassemblies of interest. Partial assembly/disassembly is

motivated by the profit maximization objective including the time and cost

components of the tasks and profit component of the subassemblies, while

 4

complete assembly/disassembly is driven by only the time components of the tasks

in the process.

Performing assembly and disassembly require certain apparatus and certain

operators. Technological and physical conditions define the precedence relations

among the tasks. In this study, we will use AND/OR Graphs (AOG) developed by

de Mello and Sanderson (1990) instead of the classical task precedence diagrams

(Prenting and Battaglin 1964) used in assembly line balancing (ALB) problems.

We also show the superiority of AOG over the classical task precedence diagrams

(TPD) in line balancing problems.

The problem in this study may be posed as follows: Assign the

assembly/disassembly tasks of a product obtained from the AOG to an ordered

sequence of stations in order to completely assemble/disassemble the product,

such that the precedence relations in AOG are satisfied and number of stations is

minimized for a cycle time common to all stations. We call the problem as

assembly/disassembly line balancing problem for AOG (ADLB-AOG). The scarce

literature related to the problem is given in chapter two.

One of the major contributions of this study is to show that the common

practice over fifty years of finding an optimum solution for the ALB problem

using a TPD constitutes an upper bound on the actual problem that should be

defined on AOG. In the third chapter, we prove that an assembly/disassembly line

balancing problem for the classical task precedence diagram yields an inferior

solution to the assembly/disassembly line balancing problem for the AOG. By an

example we show the superiority of the AOG over the TPD. We also show how to

obtain the TPD from the AOG by three examples in the same chapter. Another

 5

contribution is the development of dynamic programming (DP) and integer

programming (IP) approach to the proposed problem. In the fourth chapter we

develop these two methods. The IP formulation of the problem was previously

given by Altekin (2005). But, the IP formulation proposed there considers not only

the AOG but also other precedence diagrams (such as part precedence diagrams)

and aims partial disassembly. In contrast, the IP formulation proposed here is more

effective in the sense that it is tailored to the specific problem that considers only

the complete assembly case and uses only AOG as the precedence relations.

Hence, for this problem type, development of suitable IP formulation is another

contribution. In the same chapter, we compare the IP and DP formulations in terms

of the size of the problem they can handle by generating sample AOG’s defined by

three parameters. We also develop a DP based heuristic in this chapter. Finally,

we discuss the conclusions and inferences in chapter five.

 6

Chap t e r 2

LITERATURE SURVEY

Before the literature review, we will give some background information on

why the disassembly process is a vital element of the so-called ‘environmentally

conscious’ industry. Even though this section can be omitted without loosing the

integrity of the study, we recommended reading in order to see how the

disassembly studies including the disassembly line balancing are developed. Then,

we present the scarce literature of disassembly line balancing problem and refer

the interested reader to the milestones of the huge world of assembly line

balancing problem.

2.1 Background

By the advent of developments in science and technology, the Earth

became an industrial world with all of its resources, both energy and minerals. A

plethora of desirable products in the market place, may be more than the demand,

and heedless consumption have decreased the natural resources, including air

quality, water, mines, diversity of flora and fauna, and most importantly the

landscape. Furthermore a series of industrial accidents in 1970s and 1980s, such as

the accident at Bhopal in India, the Exon Valdez oil spill, etc., have increased the

environmental awareness.

 7

People, oblivious to environmental degradation of industrialization before,

began to realize the adversarial effects of the industrial world on the environment.

Therefore, there appeared the buzzword green consumerism, which shows

people’s reaction as supporting and encouraging the green products and boycotting

the others. Government also passed some legislation against the mass production,

heedless consumption, indiscriminate disposal habits and polluting hazardous

products (Bodily and Gabel, 1982; Bonifant et al. 1995; Klassen and Angell,

1998). What remains to corporations is to obey and comply with the rulings by

changing the infrastructural and structural components so that the impacts of the

production, usage and disposal of the products on the ecology are appeased

(Bodily and Gabel, 1982; Barney, 1991; Corbett and Wassenhove, 1993;

Elkington, 1994; Gupta M.C., 1994; Epstein, 1996; Florida, 1996; Azzone et al.

1997; Maxwell et al. 1997; Hart, 1997; Zhang et al. 1997; Hartman and Stafford,

1998; Inmann, 2002).

The endeavor of citizens, government and corporations to alleviate the

environmental degradation is called environmental management (EM) (Figure 1).

It is defined as the total of the efforts lessening and alleviating the adverse

environmental affects of industrialization. Industrialization includes the production

and service facilities. The term describing management of both of these practices

is called production and operations management (POM) (Gupta MC 1994).

Hence, to attain the goal of environmental management, also dubbed as

‘sustainable development’, one should either lessen the hazardous effects of POM

activities or decrease the activities itself. To decrease the harmful effects of POM

activities is the business of pollution prevention efforts, while to decrease the

 8

POM activities, i.e., to increase the production efficiency by serving the same

demand with less production, is the focus of closed loop manufacturing (CLM)

(Brown and Karagozoglu 1998) (Figure 2). Pollution prevention rescues

renewable resources of the nature such as air and water quality, and landscape by

abating the hazardous waste releases. Closed loop manufacturing (CLM) includes

product design and process design. Product design is the process of designing for

environment (DFE), while process design is to establish and coordinate reverse

manufacturing (RM) and reverse logistics (RL) activities to take back the post-use

products (cores) and reemploy them either by remanufacturing or

demanufacturing.

Figure 1 Interaction between government, users, producers and distributors as the

driving force of the environmental management (taken from Gungor and Gupta

1999)

 9

Figure 2 Environmental management practices and their environmental contributions

Reverse manufacturing (RM) closes the loop in production processes by

reemploying and reutilizing the products, parts and materials that were processed

in the past, so that, in the extreme, once spent, natural resources and energy are

used forever. Reverse manufacturing is an essential element of closed-loop

manufacturing system. It is estimated to be 73,000 firms are engaged in

remanufacturing in US, employing 350,000 people (Lund, 1998).

Remanufacturing activities amounts to total revenue of $14 billion per year (US

Environmental Protection Agency, EPA 2001). As a point of reference, consider

the US steel industry has annual sales of $56 billion employing 241,000 people

(Lund, 1998).

The automotive industry leads the practice of the reverse manufacturing

activities. One example is the Mercedes Benz that decided to implement a

recycling program including two elements: design and recycling. What is more,

Mercedes Benz started to take back the used cars in 1991 and has been recycling

Pollution Prevention

Core Recovery
(Closed Loop Mfg.)

Liquid and gaseous waste reduction
to rescue

Decrease in Resource Usage
(Energy and Minerals)

Post-use
phase

Environmental Contributions New trends in the industry
(magical concepts)

Solid waste reduction

Production and
usage phases

 10

the material content since then (Gungor and Gupta, 1999). Another example is

BMW. That gives credit to the customers for turning the used car back. Also,

BMW uses color codes for different plastic materials in order to simplify the

recycling, and claims producing 90% recyclable cars. Some other firms making

similar efforts are General Motors, Volkswagen, Nissan Motor Company and

Volvo Car Corporation (Gungor and Gupta, 1999). Deere and Company entered in

to an agreement with Springfield Remanufacturing Company that they will

recondition diesel engines and components for Deere and Company. Sales of

reconditioned engines in 1996 exceeded $2.5 billion dollars (Guide et al. 2000).

Computer and peripheral makers, such as IBM, Hewlett Packard, and Xerox, are

applying disassembly. Xerox applies remanufacturing for its photocopiers and

toner cartridges in US and abroad and estimates a cost saving of $20 million per

year (Guide et al. 2000). In 1998, out of 33 power-tool manufacturers 13 of them

agreed to take back their products from the customers in Germany (Klausner and

Hendrickson, 2000).

The dichotomy that classifies the reverse manufacturing practices into two

parts, demanufacturing and remanufacturing, is mainly decided by the different

types of treatments to the cores, which we call end-of-life (EOL) options. In the

early times before the environmentalism occurred, people were used to get rid of

the products without any treatment. Today’s attitude is to reemploy the product as

much as possible in order to both reduce municipal solid wastes (MSW) and to

lessen the usage of energy and resource. But, still, some relinquished products are

disposed. Consequently, when a product completes its lifetime and is relinquished

by the consumers, there are mainly two types of treatments: disposal and recovery

 11

(Figure 3). Disposal option is to get rid of the product without any further

treatment, which is done mainly in the form of landfilling. Recovery options, on

the other hand, reclaim some benefit from the used product. Although the aim in

recovery processes is to claim a win-win situation that serves both to the

environment and to the budget, some of the recovery options, such as composting,

incineration, etc, do not aim environmental friendliness.

Figure 3 Different post-life options for the relinquished products

Since some of the recovery options require no or little treatments, there are

two of them, among all, requiring detailed study and research: remanufacturing

and demanufacturing. Remanufacturing is renovating / rebuilding all the

Revalorization / recovery

Retain the geometric
form of the product

Primary use Secondary use
(The use of tires as
mooring cushions)

- Reuse as is
- Resell

Rebuilding / Renovation:
Remanufacture / refurbish

Destroy the geometric
form of the product
(Demanufacturing)

Recycling,
cannibalization, etc

- Composting
- Incineration
- Others

- Landfilling
- Illegally tipping storing

Relinquished product / asset (core)

 12

components of the product, while demanufacturing is decomposing the product

into components so that most profitable end-of-life (EOL) options for each

component can be chosen. Remanufacturing focuses on product recovery, whereas

demanufacturing, in the form of recycling and cannibalization, focuses on part and

material recovery. Hence, remanufacturing closes both material and energy use

cycle, while demanufacturing closes only material use cycle (Figure 4). The

following quotation from White et al. (2003) makes the distinction between

demanufacturing and remanufacturing clear in the computer industry. “The

distinction between demanufacturing and remanufacturing, which has not been

emphasized in the literature, is a subtle one. As opposed to remanufacturing’s

focus on rebuilding products and reclaiming assets in support of forward

remanufacturing, demanufacturing operates mostly to divert wastes from disposal

and reuse assets wherever practicable.

Figure 4 Remanufacturing and demanufacturing as the means of reverse manufacturing

 13

It is seen that there are two main elements of reverse manufacturing;

remanufacturing and demanufacturing. Both of the practices are as important as the

manufacturing in the in the environmentally conscious world. Since they both rest

heavily on the disassembly, disassembly should be as important as the assembly.

2.2 Literature Survey

Assembly line balancing (ALB) problem attracted a great deal of interest

for fifty years (Flood, 1956; Talbot et al. 1986; Scholl and Klein, 1999).

Researchers considered the problem of assigning a set of tasks to an ordered set of

stations such that the precedence relations between the tasks are maintained and

the number of stations is minimized. The main inputs to the assembly line

balancing (ALB) studies are the task precedence diagram (TPD) and the durations

of the tasks (Salveson, 1955; Held et al. 1962). Both of the inputs depend on how

the definitions of the tasks are set. Hence, we believe that the questions of “are

there other ways of defining the tasks?” and “how does the duration and

precedence of the tasks differ with respect to definitions?” should be of interest.

Although there are so many efforts on how to solve the ALB problem, there is

little attention on how to define the tasks of the assembly process. The derivation

of TPD is typically left to the ‘engineering judgment’ (Chow 1990). In a study by

Prenting and Battaglin (1964), authors consider how to define the tasks and how to

form the precedence diagram. They list some of the guidelines in ‘element listing’

and ‘diagramming’. But they do not point out the scenario where the solution to

 14

ALB problem changes with respect to the different TPD’s formed by listing the

elements in a different way.

As the research in ALB literature goes on, there appeared the new concept

of disassembly as a result of the environmental concerns (Brennan et al. 1994;

Zhang et al. 1997; Wiendahl et al. 1999; Gungor and Gupta, 1999; Lee et al.2001;

Lambert, 2003). Firms, under the pressure of both governments and the NGO’s,

began to consider remanufacturing and demanufacturing as the means of

profitability. Remanufacturing aims to recover the after-use products, while

demanufacturing reemploys the post-use products by means of cannibalization and

recycling. Both of them require disassembly process. When the disassembly

studies occurred, researchers realized that there is not only a single way of

defining tasks, as it was case in ALB studies. Consequently, De Mello and

Sanderson (1990, 1991a and 1991b) established a graph that includes all possible

assembly/disassembly task sequences of a product, called AND/OR Graph (AOG).

Researchers used AOG in disassembly studies instead of TPD (Lambert, 1997,

1999, 2002; Penev and de Ron, 1996; Pnueli and Zussman, 1997; Rai et al. 2002;

Johnson and Wang, 1995, 1998).

Disassembly line balancing (DLB) literature is a scarce one. DLB problem

is first defined in the study by Gungor and Gupta (2001b and 2002). However,

they use neither the TPD nor the AOG in their studies. They use a part precedence

diagram (PPD), which was developed in one of their early studies (Gungor and

Gupta, 2001a). PPD involves the parts of the product, rather than the tasks. Since

most of the researchers devote the TPD to assembly studies, there is no study that

uses the TPD in DLB problems. As it will be clear later, there is no reason to not

 15

using the TPD in DLB studies. The only study in this area that uses AOG is by

Altekin (2005). The author considers not only the task durations but also task costs

and subassembly profits. Hence, it is a profit oriented disassembly line balancing

problem, involving costs revenues and planning horizon. The inputs are task

durations and costs, subassembly demands and profits and station opening and

operating costs. As a result of the solution, it may turn out that the product is fully

or completely disassembled. Also, the decision of disassembly leveling may differ

from one period to another. The gigantic model developed cannot be solved to

optimality. The author develops some heuristic techniques to solve the integer

programming formulation of the problem.

 16

Chap t e r 3

PROPOSED THEORY: Questioning
the Fundamental Assumptions and

Solving the Actual Problem

After the disassembly studies began to draw considerable attention,

researchers sought ways to compare and contrast assembly and disassembly. As

mentioned in the literature, they usually state that disassembly problem is a more

general form of the assembly since they used the AOG in disassembly, whereas

only the TPD has been used in assembly studies. We discuss in this chapter that

disassembly line balancing (DLB) problem is the reverse of the ALB problem.

Furthermore, we prove that AOG is a more general version of TPD and should be

used for both of the assembly and disassembly studies, as opposed to many that

allocate the former to the disassembly and the latter to the assembly. As a result,

both assembly and disassembly line balancing problems for AOG constitutes a

lower bound on the same problem for TPD.

In the first section we introduce the concepts of AOG and AT/DT. We then

consider the assembly/disassembly line balancing problem (ADLB) for an AOG,

denoted ADLB-AOG, and compare it with the ADLB for a TPD, denoted ADLB-

TPD. We prove that the solution to the ADLB-TPD is always an upper bound on

the ADLB-AOG problem. Furthermore, in the third section, we show that any

 17

TPD of a product can be obtained from the AOG of the same product. We give

two examples on how to obtain a TPD from the AOG. Finally, in the last section,

we give an example to illustrate the proposed theory in this chapter.

3.1 AND/OR Graph and Assembly/Disassembly Tree

3.1.1 AND/OR Graph (AOG)

In AOG, each disassembly task is assumed to take apart the product or

subassembly into exactly two new subassemblies. Two connected arcs that link the

resulting two subassemblies of the disassembly task with the input node is called a

hyper-arc (There are fifteen of them in Figure 6). There are nodes and hyper-arcs

corresponding to the subassemblies and the disassembly tasks, respectively

(Figure 6 is the AOG of the product in Figure 5). To see more about the concepts

used here, you may refer to de Mello and Sanderson (1990, 1991 a, 1991b) or the

Appendix 1 of this study.

Figure 5 A sample product (de Mello and Sanderson (1990))

cap stick receptacle handle

b) assembly in the disassembled form a) an assembly in a compact form

 18

Figure 6 AND/OR Graph of the Product in Figure 5

To make a formal definition, let K be a set of elements and Π (K) be the set

of all subsets of K. Consider a product A with parts PA = {p1, p2, …, pN}. There is

a unique AND/OR graph (AOG) of assembly/disassembly sequences for A defined

as <SA, DA> such that;

SA = {θ∈Π (PA) sa (θ) = “T” ∧ st (θ) = “T”} [1]

S

H

C S R H

C

C

C

S S

S

S

R R

R

R

R

R

H

H

H

C

S

1 2 3
4

5

6

7 8

11 12

13

14

10
9

15

 19

is the set of nodes (subassemblies) in AOG and

DA = {(θk, {θi, θj}) [θk, θi, θj ∈ SA]∧[τ(θi, θj) = θk]∧gf (τ)=“T”∧mf (τ) =“T”} [2]

is the set of hyper-arcs, where ∧ is the and operator. τ is the assembly task, sa and

st are subassembly and stability predicates, gf and mf are geometrical and

mechanical feasibility predicates (Appendix 1). We discuss some properties of

AOG’s in Section A1.4 of Appendix 1.

3.1.2 Assembly/Disassembly Tree (AT/DT)

We only need a subset of the tasks in AOG to completely

assemble/disassemble the product. The question is how to select these tasks so

that, when applied one after another, they achieve this goal. In fact, due to the

nature of AOG, the set of these tasks constitutes a tree.

In AOG, an hyper-arc is said to be adjacent from a node, if the

subassembly associated with the node is the input subassembly of the disassembly

task corresponding to the hyper-arc. Similarly, an hyper-arc is said to be adjacent

to a node, if the subassembly associated with the node is the output subassembly

of the disassembly task corresponding to the hyper-arc. Correspondingly, the node

to which the hyper-arc is adjacent is called the output node, and the node from

which the hyper-arc is adjacent is called the input node. Each hyper-arc is adjacent

from one input node and adjacent to two output nodes. The node to which none of

the hyper-arcs are adjacent is called the initial node, and the nodes from which

none of the hyper-arcs are adjacent are called the terminal nodes.

 20

We define an AND/OR path in the graph as a set of hyper-arcs with k (>0)

elements and their corresponding input and output nodes such that there are no two

hyper-arcs that are adjacent from the same node, and there is only one initial node

in the path. An AND/OR path that has k = N-1 elements is called

assembly/disassembly tree (AT/DT) of the product. Note that, a DT (AT) should

have {p1, p2,…, pN} as its initial (terminal) node and {p1}, {p2},…, {pN} as its

terminal (initial) nodes. Having N-1 hyper-arcs (assembly/disassembly tasks), a

AT/DT represents one way of completely assembling/disassembling the product.

In Figure 7, there are eight DT’s corresponding to the AOG in Figure 6

There are precedence relations among the hyper-arcs in the DT: Hyper-arc

hi is said to immediately precede hyper-arc hj, if the output node of hi is the input

node of hj. Using these precedence relations between the hyper-arcs, we transform

the AT/DT’s to a new form called transformed AT/DT (TAT/TDT). Although

TAT/TDT’s are like task precedence diagrams (TPD’s), we will not call them as

TPD to differentiate each other. Figure 8 shows the 8 TDT’s corresponding to the

8 DT’s in Figure 7. In this study, for the sake of simplicity we will use the terms

AT/DT instead of TAT/TDT.

In graph theory, a directed graph is said to be a tree if the corresponding

undirected graph has no cycles. The number of directed arcs adjacent from a node

is called the branch of the graph at the corresponding node. Based on this

terminology, it is appreciated that AT/DT’s are trees with at most two branches.

Expressing in the precedence-related words, in AT/DT, there is no task preceded

by more than one task and there is no task preceding more than two tasks. Hence,

AT/DT’s are restricted versions of TPD’s.

 21

 a) DT1 b) DT2

c) DT3 d) DT4

1

9

14

2

11

14

1

8

15

1

10

13

 22

 e) DT5 f) DT6

g) DT7 h) DT8
Figure 7 All of the 8 DT’s obtained from the AOG in Figure 2

4

6

11

4

7

12

3

12
15

4

5

13

 23

a) Transformed disassembly tree 1 (TDT1) b) Transformed disassembly tree 2 (TDT2)

c) Transformed disassembly tree 3 (TDT3) d) Transformed disassembly tree 4 (TDT4)

e) Transformed disassembly tree 5 (TDT5) f) Transformed disassembly tree 6 (TDT6)

4 5 13

12 13 2

1 10 13

13 12 2

1 9 14

13 6 6

1 8 15

13 14 1

3

15

12 16

1

7

2

14

11 17

6

1

 24

g) Transformed disassembly tree 7 (TDT7) h) Transformed disassembly tree 8 (TDT8)

Figure 8 Eight transformed disassembly trees (TDT) associated with the eight DT’s in

Figure 4

3.2 Theorem of Sub-optimality

We extend the definition of classical ALB problem to cover disassembly

studies as well. Since the disassembly is just the reverse of the assembly, from

now on, we call ALB problem as assembly/disassembly line balancing (ADLB)

problem. The ADLB problem for a task precedence diagram (TPD) has a fifty

years’ of history. There are numerous approaches, both exact and heuristic (Erel

and Sarin 1998, Baybars 1986). In this chapter, we define ADLB problem for an

AOG and compare it with the ADLB problem for a TPD. To be concise, let

ADLB-AOG show the latter problem and ADLB-TPD denote the former.

Definition 1 (ADLB-AOG problem): Choose a set of tasks from AOG such that

the chosen set of tasks constitutes an AT, and the solution (number of stations) to

the ADLB-TPD problem for the chosen AT is the best (minimum) of the ADLB-

TPD problems over all possible AT’s in AOG.

4 7

0
12

12 16 7

4 6 11

12 15 1

 25

Both AOG and TPD include the precedence relations between the tasks to be

applied to a product in the assembly/disassembly process. The tasks in AOG are

defined based on two properties (Appendix A.1.2): (i) The subassembly it is

applied to, (ii) and the contacts of the product it disassembles. The first property in

the definition causes a set of tasks that disestablishes the same contacts to be

labeled differently. For instance in Figure 10, tasks τ1 and τ5 break the same

contacts (c1, c2), i.e., disassembles {cap} from {receptacle}, but are labeled as

different tasks. Due to the first property, we call the tasks in AOG as subassembly-

dependent tasks (SD tasks). On the other hand, the tasks in TPD are defined based

only on the second property above. As a result, the tasks that break the same

contacts are labeled as the same task independent of the subassembly they are

applied to. Hence, we call the tasks in TPD as subassembly-independent tasks (SI

tasks).

Theorem 1 (Theorem of sub-optimality):

The optimal solution to the ADLB problem for a given TPD of a

product (*
TPDX) constitutes an upper bound on the optimal solution to

the ADLB problem for the AOG (*
AOGX) of the same product.

Proof: The solution to ADLB-TPD problem is a sequencing problem (Held and

Karp, 1962). That is, each SI task sequence obtained from the TPD has its

corresponding solution and one of these sequences characterizes the optimal

solution. Based on this, we prove the theorem in two steps:

 26

i) Any SI task sequence obtained from the TPD of a product is also

obtainable from the AOG of the same product.

ii) The solution to an SI task sequence is an upper bound on the

solution to the corresponding SD task sequence.

i) Each AT in AOG of a product includes a number of SD task

sequences. Denote the set of AT’s as SAT. Re-label the tasks in each AT such that

the tasks that break the same contacts are labeled as the same tasks. Denote the

resulting trees as ATm and the set of ATm’s as mAT
S . Note that ATm’s include SI

task sequences. We should show that any sequence of SI tasks in a TPD is

obtainable from one of the ATm’s in mAT
S .

Let a sequence of SI tasks be
121

,...,,
−nSISISI τττ , where n is the number of

parts in the product. Although these tasks are subassembly independent by

definition, they are actually performed on specific subassemblies. With the

additional consideration of subassemblies these tasks are defined in relation to

subassemblies, and are called SD tasks. Let the corresponding sequence of SD

tasks be
121

,...,,
−nSDSDSD τττ . Since all possible ways to assemble/disassemble a

product is embedded in AOG, the sequence
121

,...,,
−nSDSDSD τττ is obtainable from

one of the AT’s in SAT. Hence, the sequence
121

,...,,
−nSISISI τττ is in mAT

S .

ii) Let *
mAT

X be the best solution of the ADLB-TPD problem

on mAT
S and

*
ATX be the best solution on ATS .

The argument in the second step holds if and only if *
mAT

X ≥ *
ATX .

 27

If the duration of the SD tasks and corresponding SI tasks had been the

same, the two solutions, *
mAT

X and *
ATX , would be the same. The re-labeling step

in the procedure does not only re-label the SD tasks but also changes the durations

of the tasks. When one or more SD tasks are re-labeled to form a single SI task,

the duration of the resulting SI task should be taken as the maximum of durations

of these SD tasks. Otherwise, the cycle time constraint would be violated. To be

more specific, (w.l.o.g) suppose that;

τ11, τ12, …, τ1k is the only re-labeled SD tasks in AT1, AT2, …, ATk,

τ1 is the corresponding SI task in AT1
m, AT2

m, …, ATk
m,

the duration of τ11 (
11τd) is the maximum of

11τd ,
12τd , …,

k
d

1τ

1ATX is not the best solution among
1ATX ,

2ATX , …,
kATX

Suppose that the duration of SI task τ1 (
1τd) is not set to the maximum

duration (
11τd). Then, m

AT
X

1

 will be infeasible since the duration of τ1 in AT1
m is

considered to be smaller than the original duration, which is the duration of τ11 in

AT1. Hence, the job may not be completed within the cycle time. On the other

hand, if the duration of the SI task is set to the maximum of the durations of all

corresponding SD tasks, there will be no violation of exceeding the cycle time.

Suppose that the duration of the SI task is set to the maximum of the

durations of all corresponding SD tasks. The duration of τ1 in AT1
m will be same

with the original duration, which is the duration of τ11 in AT1. Hence,

m
AT

X
1

 =
1ATX . [3]

But the duration of τ1 in AT2
m, AT3

m, …, ATk
m will be higher than the original

durations, which are the durations of τ12, τ13, …, τ1k, in AT2, AT3, …, ATk. Hence,

 28

m
AT

X
2

 ≥
2ATX ,

m
AT

X
3

 ≥
3ATX

m
kAT

X ≥
kATX [4]

by [3] and [4],
******** },...,,min{},...,,min{

2121
ATATATATATATATAT

XXXXXXXX
k

m
k

mmm =≥= �

Figure 9 depicts theorem of sub-optimality.

 Figure 9 Theorem of sub-optimality

PRODUCT
STRUCTURE

(AOG)

SAT

Solution *
TPDX

Solution
*
AOGX

*
TPDX ≥≥≥≥ *

AOGX

Combination

Re-labeling

IP/D
P

ALB
Algorithm

mAT
S

STPD

SAT
Establishment

 29

3.3 The derivation of a TPD from the AOG

The ATm’s have the precedence relations between the SI tasks. In this

respect, although it seems that each of them corresponds to a TPD of the product,

they are still restricted version of a TPD, i.e., some of the ATm’s include exactly

the same tasks and may be combined to form a TPD. Two ATm’s that have exactly

the same tasks are called equitask AT
m
’s. To form a TPD from mAT

S , one

establishes the groups of equitask ATm’s and combines them to get one TPD for

each group (Let the set of TPD’s be STPD). For instance, suppose that AT1
m and

AT2
m consist of two tasks τ1 and τ2. Also, τ1 is the predecessor of τ2 in AT1

m and

successor of τ2 in AT2
m. Then, AT1

m and AT2
m are equitask AT

m
’s. We combine

AT1
m and AT2

m so that the resulting TPD does not have precedence relation

between τ1 and τ2. Note that if there are no equitask ATm’s, each ATm corresponds

to a TPD.

In all of the ALB studies so far, researchers used TPD’s that only have

AND-type precedence relations. In AND-type precedence relations, to accomplish

a task one should perform all of its predecessors. On the other hand, to accomplish

a task it may suffice to accomplish only one of its predecessors. We call these

types of precedence relations OR-type. Inclusion of OR-type precedence relations

in the TPD is more realistic. But in this study, while combining the ATm’s we only

look for the AND-precedence relations between the tasks. The inclusion of OR-

type precedence relations in establishing STPD from mAT
S deserves a different

study.

 30

We give three examples for the derivation of TPD from the AOG.

Example 1

We consider the product in Figure 5. AOG of the product is in Figure 6.

We obtain the set of AT’s (SAT) from the AOG in Figure 8. To re-label the SD

tasks as SI tasks we need to know which contacts each of the SD task break. In

Figure 10, each SD task is demonstrated by the corresponding contacts and the

subassemblies they are applied. It is seen that tasks τ1 and τ5 disestablish the same

contacts. Hence, they are re-labeled as E1. Also, the tasks τ4 and τ10 are re-labeled

as E2. After re-labeling the tasks the AT’s become ATm’s. The resulting set of

ATm’s (mAT
S) is in Figure 11. We group the ATm’s that include exactly the same

tasks (equitask ATm’s). There is only one group that includes more than one

equitask ATm, which are AT2
m and AT6

m. Hence, all of ATm’s except the second

and the sixth are accepted as a TPD. AT2
m and AT6

m are combined to get TPD5.

We get seven TPD’s. The resulting STPD is in Figure 12.

 31

c1
C

R H

S

c2 c3

c5

c4

τ1 → c1, c2 = 13
τ2 → c2, c3, c4 = 17
τ3 → c1, c3, c5 = 16
τ4 → c4, c5 = 12

C

R

S
c1

c2 c3
τ5 → c1, c2 = 11
τ6 → c2, c3 = 15
τ7 → c1, c3 = 6

C
R

H

S

c3

c5

c4
τ8 → c3, c5 = 14
τ9 → c3, c4 = 6
τ10 → c4, c5 = 10

C S
c1

τ11 → c1 = 1

R H
c5 τ14 → c5 = 6

a) subassembly b) GOC c) tasks with their durations and
corresponding contacts

 32

Figure 10 The subassemblies of AOG in Figure 6, their GOC and corresponding

tasks

C

R

c2

τ12 → c2 = 7

R

S

c3

H

S

c4

τ13 → c3 = 2

τ15 → c4 = 1

a) subassembly b) GOC c) tasks with their durations and
corresponding contacts

 33

Figure 11 The mAT

S obtained from SAT in Figure 8

E1 8 15

E1 E2 13

E1 9 14

2

14

11

3

15

12

E2 E1 13

E2 6 11

E2 7 12

a) AT1
m

b) AT2
m

c) AT3
m

d) AT4
m

e) AT5
m

f) AT6
m

g) AT7
m

h) AT8
m

13 14 1

13 12 2

13 6 6

12 13 2

12 15 1

12 6 7

17

6

1

16

1

7

 34

Figure 12 STPD obtained by combining equitask ATm’s in Figure 11

E1 8 15

E1 9 14

2

14

11

3

15

12

E2 6 11

E2 7 12

a) TPD1 (AT1
m)

b) TPD2 (AT3
m)

c) TPD3 (AT4
m)

d) TPD4 (AT5
m)

f) TPD6 (AT7
m)

g) TPD7 (AT8
m)

13 14 1

13 6 6

12 15 1

12 6 7

17

6

1

16

1

7

13

E1

E2

13

2

12

e) TPD5 (AT2
m, AT6

m)

 35

Example 2

All the related figures of this example are in Appendix 2. We consider the

product in Figure A.7. We derive the AOG of the product (Figure A.8). Figure A.9

is the set of AT’s (SAT) obtained from the AOG. In Figure A.10, each SD task is

demonstrated by the corresponding contacts and the subassemblies they are

applied to. By examining the contacts we re-label the tasks as below:

τj = τb = τs ⇒ τ1 (disassemble part 4)

τa = τc ⇒ τ2 (disassemble part 3 from part 9)

τk = τo ⇒ τ3 (disassemble part 2 from part 3)

τf = τh = τi ⇒ τ4 (disassemble part 7 from part 8)

τp = τd = τm ⇒ τ5 (disassemble part 9 from part 10)

τe = τg = τl = τq ⇒ τ6 (disassemble part 8 from part 9)

τn ⇒ τn (disassemble part 7 from parts 5 and 6)

τr ⇒ τr (disassemble part 5 from part 6)

τt ⇒ τt (disassemble part 1 from part 2)

The resulting mAT
S is in Figure A.11. We form the groups of equitask

ATm’s. There is only one group. That is, each of the ATm’s has includes the same

tasks. Hence, we combine all ATm’s to get a single TPD, which is in Figure A.12.

Example 3

We consider the product in Figure A.13 of Appendix A3. AOG of the

product is in Figure A.14. Figure A.15 is the set of AT’s (SAT). In Figure A.16,

 36

each SD task is demonstrated by the corresponding contacts and the subassemblies

they are applied to. By examining the contacts we re-label the tasks as below:

τ1 = τ6 = τ8 = τ14 = τ19 ⇒ τa

τ2 = τ4 = τ10 = τ12 = τ18 ⇒ τb

τ3 = τ5 = τ7 = τ11 ⇒ τc

τ9 = τ15 = τ13 = τ17 ⇒ τd

τ16 ⇒ τ16

τ20 ⇒ τ20

τ21 ⇒ τ21

τ22 ⇒ τ22

τ23 ⇒ τ23

The resulting mAT
S is in Figure A.17. We form the groups of equitask

ATm’s. There are two groups of equitask ATm’s. We combine AT2
m, AT4

m, AT5
m,

AT7
m, AT8

m, AT10
m, AT12

m, AT13
m, AT14

m, AT15
m, AT17

m to get TPD1 and AT1
m,

AT3
m, AT6

m, AT9
m, AT11

m, AT16
m to get TPD2. The two TPD’s are in Figure A.18.

3.4 An Example to compare TPD and AOG.

To illustrate the whole discussion in this chapter, we take the AOG and two

resulting TPD’s in the Appendix 3. We assign the durations to the tasks of AOG as

in the Table 1 below. Corresponding durations for the SI tasks of TPD1 and TPD2

are calculated as the maximum of the durations of the corresponding SD tasks.

 37

Based on these durations, we solve ADLB-AOG and ADLB-TPD for two

TPD’s. We solve the three problems for each value of cycle time (T) from 22 to

90. Since the task with the minimum duration has the duration of 22, cycle time

can not have the value less then 22. We limit the cycle time with 90 because above

90 the results of ADLB-AOG and ADLB-TPD problems are the same. The

solutions (number of stations) for each problem are listed in Table 2.

Table 1 Durations of the SD and SI tasks in the example

AOG task 1 6 8 14 19 2 4 10 12 18 3 5 7 11 9 15 13 17 16 20 21 22 23

SD task
duration

22 21 21 20 18 22 21 21 20 18 14 13 13 12 16 15 15 14 14 7 7 7 7

SI task duration 22 22 14 16 14 7 7 7 7

TPD task a b c d 16 20 21 22 23

In the Table 2, the leftmost column represents the problem when the cycle

time is equal to that value. For instance, when the cycle time is 28 the ADLB-

AOG problem yields a solution of 3 stations. On the other hand, the ADLB-TPD

problem for TPD1 yields a solution of 5 and the problem for the TPD2 yields a

solution of 4. Hence, when the cycle time is 28, with all the other data being fixed

as given, the ADLB-AOG problems yields better solutions than the ADLB-TPD

problem no matter which TPD is used.

 38

Table 2 The solutions to the three example problems

T AOG TPD1 TPD2 T AOG TPD1 TPD2 T AOG TPD1 TPD2

22 4 5 5 45 2 2 2 68 1 2 2

23 4 5 5 46 2 2 2 69 1 2 2

24 4 5 5 47 2 2 2 70 1 2 2

25 4 5 5 48 2 2 2 71 1 2 2

26 4 5 5 49 2 2 2 72 1 2 2

27 4 5 5 50 2 2 2 73 1 2 2

28 3 5 4 51 2 2 2 74 1 2 2

29 3 4 4 52 2 2 2 75 1 2 2

30 3 3 4 53 2 2 2 76 1 2 2

31 3 3 4 54 2 2 2 77 1 2 2

32 3 3 4 55 2 2 2 78 1 2 2

33 3 3 4 56 2 2 2 79 1 2 2

34 3 3 4 57 2 2 2 80 1 2 2

35 2 3 4 58 2 2 2 81 1 2 2

36 2 3 3 59 2 2 2 82 1 2 2

37 2 3 3 60 2 2 2 83 1 2 2

38 2 3 3 61 2 2 2 84 1 2 2

39 2 3 3 62 2 2 2 85 1 2 2

40 2 3 3 63 2 2 2 86 1 2 1

41 2 3 3 64 1 2 2 87 1 2 1

42 2 3 3 65 1 2 2 88 1 1 1

43 2 3 3 66 1 2 2 89 1 1 1

44 2 2 2 67 1 2 2 90 1 1 1

As can be easily seen from the table that if we pick up the TPD1 as the

precedence diagram and solve the ADLB-TPD problem for the cycle times 22-90,

we obtain the actual optimal 28 times and fail at 41 of them. When we solve the

ADLB-TPD problem for TPD2 we obtain the actual optimal 25 times and fail at 44

of them. To be on the optimistic side, if we take both of the TPD’s, solve ADLB-

TPD problem for each of them and take the best solution, we get the actual

optimal 30 times and fail at 39 of them.

 39

It is interesting that using even more than one TPD does not guarantee the

optimal solution in ADLB-TPD problem. This is mainly due to the increase in

durations of the SI tasks when they are re-labeled, as the theorem of sub-

optimality suggests. When we think that researchers or practitioners consider only

one TPD, the importance of ADLB-AOG problem stands out. What is more,

although some TPD’s has OR-type precedence relations, in the literature TPD’s

that are used has AND-type precedence relations. This deteriorates the solution of

the ADLB-TPD problem further.

 40

Chap t e r 4

THE SOLUTON TO THE ADLB-AOG PROBLEM

In this chapter we construct an integer programming (IP) and dynamic

programming (DP), to solve the ADLB-AOG problem. We also compare these

two methods in terms of the size of the ADLB-AOG problem solved.

In the formulation process we do not use the AOG since it does not show

explicitly the precedence relations between the tasks. Instead, we develop a new

graph, called transformed AOG (TAOG). TAOG is formed as follows: Each node

in the AOG corresponding to a subassembly is represented by an (artificial) node

in TAOG. Each hyper-arc in the AOG associated with a task is represented by a

(normal) node in TAOG. In TAOG, an artificial node is preceded by a normal

node such that, in AOG, the hyper-arc associated with the node will be adjacent to

the subassembly corresponding to the artificial node. Similarly, an artificial node

precedes a normal node such that, in AOG, the hyper-arc associated with the node

will be adjacent from the subassembly corresponding to the artificial node. We

label the artificial nodes by Ai’s and normal nodes by Bi’s. In Figure 13 we give an

example TAOG of the AOG in Figure A.14 of Appendix 3. From now on, to make

the notation more manageable, we use AOG to denote TAOG.

An artificial node may be preceded or succeeded by more than one normal

node. But only one of the predecessors and one of the successors should be

 41

processed. Hence, predecessors and successors of the artificial nodes are 1OR-type

meaning that exactly one of them must be chosen and it does not matter which one

it is. To differentiate between the AND-type and OR-type relations, we put a small

curve as indicator of OR-type relations. The fact that there are OR-type relations

in AOG reveals that only some percent of the tasks is sufficient to

assemble/disassemble the product completely, as opposed to the TPD in which all

the tasks should be accomplished. Appendix 4 shows how to store an AOG

(TAOG) in a matrix.

Figure 13 Transformed AND/OR Graph of the AOG in Figure A.14 of Appendix 3

A13

B4 A4 B11

A0

B1

B2

B3

A1

A2

A3

B5

B6

B7

B8

B9

B10

A5

A6

A7
B12

B13

B14

B18 A8

A9

B15

A12

B16

B17

B19

A10

A11

B20

B21

B22

B23

 42

4.1 The Proposed Dynamic Programming (DP) Formulation

 The proposed DP approach solves the problem by finding the solutions to

the partial problems, which eventually constitute the whole problem. It reduces the

permutation-size solution space to combination-size (Held and Karp, 1962).

4.1.1 Definitions and Terminology

4.1.1.1 Partial AOG’s

In the formulation of the problem we use some new terminology. A partial

AOG, AOG ({Ai}), is defined as a graph obtained from AOG in such a way that all

AT’s to be obtained from that partial graph should have Ai as one of their final

nodes. AOG ({Ai}) is obtained in two steps: First, delete nodes from AOG such

that the AT’s including the deleted nodes do not have the node Ai. Then, from the

resulting AOG, delete the node Ai together with all of its successors. We then

extend the definition of partial AOG to the following: Define AOG ({A1, A2, …,

Ak}) to be the graph obtained in k steps: First, find AOG ({
1i

A }) from AOG, then

find AOG ({
1i

A ,
2i

A }) from AOG ({
1i

A }), and so on until finding the AOG ({
1i

A ,

2i
A , …,

1−ki
A ,

ki
A }) from AOG ({

1i
A ,

2i
A , …,

1−ki
A }). Note that the sequence of

artificial nodes is arbitrary in this k-step procedure. By convention, AOG ({∅}) =

AOG, and AOG ({A0}) = ∅. In Appendix 5, some examples to form partial AOG

are given.

Let S = {A1, A2, …, Ak} be a set of artificial nodes. Final nodes of an AOG

(S), denoted by F(AOG(S)), is defined as the set of normal nodes that do not

 43

precede any other normal node in AOG (S). For instance the nodes B11, B12, B14

are the final nodes of the partial AOG in Figure A.21 of Appendix 5.

4.1.1.2 Assembly task sequences

We define assembly task sequences σ = (B1, B2, …, Bt) obtained from the

normal nodes (tasks) of AOG to be feasible if;

i. P(Bi) ≠ P(Bj) ∀i ≠ j

ii. |{ B1, B2, …, Bi-1 } ∩ P(P(Bi))| = 1 ∀ i = 2, 3, …, t

where P(Bi) is the artificial predecessor of the normal node Bi, P(P(Bi)) is the

normal predecessor of the artificial node P(Bi) and | | is the cardinality operator

defined on the sets.

The first property above prevents the sequence from having the two OR-

successors of an artificial node simultaneously. For instance the sequence {B1, B4,

B5} is prohibited by this property. Without the second property, the two normal

nodes that are not OR-successors of the same artificial node but belong to the

different AT’s may exist in the sequence. For instance, the sequence {B1, B4, B11,

B13} is not allowed. Furthermore, the second property guarantees the normal nodes

to follow the precedence relations dictated by the AT they belong to. For example,

the second property does not allow the sequence {B4, B11, B16, B20, B1, B21} since

the nodes (tasks) are not in the correct order, although they belong to the same AT.

Final nodes of a sequence, denoted by F(σ), are defined to be nodes of the

sequence such that the sequence still remains feasible when they are removed from

the sequence. For instance the tasks B20 and B21 are the final nodes of the sequence

{ B1, B4, B11, B16, B20, B21}.

 44

Associated with each feasible sequence σ is a particular assignment of tasks,

represented by normal nodes, to the stations, called the induced assignment for σ.

This assignment is obtained as follows: Assign as many tasks as possible from the

beginning of the sequence to the first station, as many as possible from the

beginning of the remaining subsequence to the second station, and so on, while not

violating the cycle time (T) constraint. Intuitively, the induced assignment for a

sequence is the optimal assignment. If the induced assignment for σ requires r

stations and w(r) is the sum of durations of the tasks assigned to the last station, the

quantity cσ =
T

 w
r-

(r)
1 + is a measure of the ‘cost’ of executing σ.

If a feasible sequence σ* is formed by adjoining a task Bt+1 to the end of σ,

then

cσ* = cσ + Γ (cσ,
1+tBd), where,

     
     




+=+=+

+<+<+−+
=Γ

TyxTyxorxTyxifTy

TyxTyxxifTyxTyx
yx

// / /

// / /
),([5]

where  x denotes the highest integer smaller than or equal to x.

The above equation can be interpreted as follows; if the unused idle time in

the last station that is used by the induced assignment σ is greater than or equal to

1+tBd , then Γ =
1+tBd / T; otherwise, new station is opened, which causes to the term

related with the unused idle time to be added to
1+tBd / T in the computation of Γ.

 45

4.1.1.3 Relation between partial AOG’s and assembly task sequences

There is a natural correspondence between partial AOG’s and feasible

sequences defined by two mappings; G(σ) = { AOG(S) | F(σ) = F (AOG(S))},

G-1(AOG(S)) = {σ | G (σ) = AOG(S)}.

Note that G is a one-to-many mapping. That is, for an AOG (S) the number of

feasible sequences is greater than or equal to one, while for each feasible sequence

there is only one AOG(S).

We define the cost of each partial AOG (S) as the cost of the sequence that

has the minimum cost over all the sequences to be obtained from that partial

graph. Hence,

C (AOG (S)) = σ

σ

c
SAOGG

min
))((1−∈

4.1.2 The Proposed DP Approach

From the discussion it follows that, solving the ADLB-AOG problem is

equivalent to find the quantity C (AOG (∅)). Furthermore, the minimum number

of stations required for the assembly line to perform the complete

assembly/disassembly of the product is  )((∅AOGC , where  x denotes the

smallest integer greater than or equal to x.

Before the formal setting, one can see how the DP method works. In the

solution of the problem (i.e., the induced assignment), one of the final nodes of the

AOG (∅) will be the last task. This task is chosen among the final nodes of the

AOG (∅). The solution of the problem is the minimum over the cost of the

 46

sequences in which the last task is the chosen node. When the last node is chosen,

say Bi, a graph that gives the rest of the solution is needed. This graph should be

such that any task to be obtained from it should belong to the same AT of the

AOG(∅) with the previously chosen task. This graph is AOG(∅∪P(Bi)).

Proceeding in this manner until obtaining the AOG{A0} gives the desired result.

It follows from the terms AOG (S), F (AOG) and the equation [5] that C

(AOG(S)) can be calculated by the following recursion:

C (AOG (S)) =







≠∪Γ+∪

=

∈

}{A Sfor)}))),(((()))((({

}{A Sfor 0

0
))((

0

min i

i

Bii
SAOGFB

dBPSAOGCBPSAOGC [6]

To see how the recurrence relations in [6] hold, it must be realized that, if

the solution to ADLB-AOG problem for an AOG(S) yields a sequence of t tasks,

the solution for the AOG(S ∪ P (Bi)) yields a sequence of t-1 tasks, where Bi ∈

F(AOG (S)). That is, the kth stage of the formulation is the set of AOG(S) that are

solved to the sequences with (n-1-k) tasks, where n is the number of parts in the

product. Hence, there are a total of n stages, together with stage 0, in the solution

of the whole problem. Stage 0 has only one state, which is AOG (∅). Similarly,

the final stage (stage n-1) has only one state, which is AOG ({A0}). The number of

states in the other stages depends on both the number of parts in the product and

the geometry of the parts (Appendix 1 A1.4).

 47

The recurrence relations in [6] enable us to determine C (AOG (∅)) by a

computation involving only partial AOG’s, which are much less than the number

of feasible sequences. When the cost of AOG (∅) is found, the optimal sequence

of the tasks can be obtained recursively by the equation below, finding Bt, then Bt-

1, and so on to B1:

)))),(((()))((())((
iBii dBPSCAOGBPSAOGCSAOGC ∪Γ+∪=

))((SAOGFBwhere i ∈ [7]

The proposed DP is implemented in Java. We give the code In Appendix 6.

4.1.3 Example

To illustrate the methodology explained in this section we solve an

example problem for the AOG given in Figure 14. The durations of the tasks are

given above the normal nodes. The cycle time (T) is 13.

There are three final nodes of AOG (∅∅∅∅), which are h, i, j. The partial

AOG’s corresponding to them are AOG ({A3}), AOG ({A4}) and AOG ({A5}),

respectively (Figure 15 –a, –b, –c). This gives the construction of stage 1 in Figure

16.

From [6], C (AOG (∅∅∅∅)) = min {C (AOG ({A3})) + Γ (C (AOG ({A3})), dh),

 C (AOG ({A4})) + Γ (C (AOG ({A4})), di),

 C (AOG ({A5})) + Γ (C (AOG ({A5})), dj)} [8]

 48

Figure 14 TAOG of the AOG in Figure A.4 of Appendix 1

There are two final nodes of AOG ({A3}), which are d, j. The partial

AOG’s corresponding to them are AOG ({A1}) and AOG ({A3, A5}), respectively

(Figure 15 –d, –e). This is part of the construction of stage 2 in Figure 16.

From [6], C (AOG ({A3})) = min {C (AOG ({A1})) + Γ (C (AOG ({A1})), dd),

 C (AOG ({A3, A5})) + Γ (C (AOG ({A3, A5})), dj)} [9]

There are two final nodes of AOG ({A4}), which are e, f. The partial

AOG’s corresponding to them are AOG ({A1}) and AOG ({A2}), respectively

(Figure 15 –e, –f). This is part of the construction of stage 2 in Figure 16.

From [6], C (AOG ({A4})) = min {C (AOG ({A1})) + Γ (C (AOG ({A1})), de),

 C (AOG ({A2})) + Γ (C (AOG ({A2 })), df)} [10]

0

c

b

a
e

d

A1

A4

A2

g

f

A3

A5 j

i

h
12

7

9

6

8

11

7

6

10

6

 49

There are two final nodes of AOG ({A5}), which are g, h. The partial

AOG’s corresponding to them are AOG ({A2}) and AOG ({A3, A5}), respectively

(Figure 15 –d, –f). This is part of the construction of stage 2 in Figure 16.

From [6], C (AOG ({A5})) = min {C (AOG ({A2})) + Γ (C (AOG ({A2})), dg),

 C (AOG ({A3, A5})) + Γ (C (AOG ({A3, A5})), dh)} [11]

There is only one final node of AOG ({A1}), which is a. The partial AOG

corresponding to it is AOG ({A0}). This is part of the construction of stage 3 in

Figure 16.

From [7], C (AOG ({A1})) = C (AOG ({A0})) + Γ (C (AOG ({A0})), da) [12]

There is only one final node of AOG ({A3, A5}), which is b. The partial

AOG corresponding to it is AOG ({A0}). This is part of the construction of stage 2

in Figure 16.

From [7], C (AOG ({A3, A5})) = C (AOG ({A0})) + Γ (C (AOG ({A0})), db) [13]

There is only one final node of AOG ({A2}), which is c. The partial AOG

corresponding to it is AOG ({A0}). This is part of the construction of stage 2 in

Figure 16.

From [7], C (AOG ({A2})) = C (AOG ({A0})) + Γ (C (AOG ({A0})), dc) [14]

By convention AOG ({A0})) = ∅∅∅∅. Hence, C (AOG ({A0})) = 0. [15]

 50

In summary, the DP computations are as follows: (i) Using the equations [8]-

[15], we get the solutions as;

C (AOG ({A1})) = 12/13, C (AOG ({A3, A5})) = 7/13,

C (AOG ({A2})) = 9/13, C (AOG ({A3})) = 19/13,

C (AOG ({A4})) = 21/13, C (AOG ({A5})) = 19/13,

C (AOG (∅∅∅∅)) = 2.

The optimal number of stations is  2 = 2.

(ii) Using [8], we find two optimal paths: Assign task a to Station 1 and tasks d

and h to Station 2, or assign task a to Station 1 and tasks e and i to Station 2.

0

a
A1 12

e) AOG ({A3, A1}) = AOG ({A1})

0 b

a

d

A1 A3

A5 j

12

7

6

10

a) AOG ({A3})

 51

Figure 15 The partial AOG’s obtained while solving the example problem

0

c A2

9

f) AOG ({A2, A4}) = AOG ({A2})

0 b

A3

A5

7

d) AOG ({A3, A5})

7

0

c

b

A2

g

A3

A5

h

7

9

c) AOG ({A5})
6

0

c

a
e

A1

A4

A2

f

12

9

8

11

b) AOG ({A4})

 52

The solution steps are depicted in Figure 16. Note that since the product has

four parts, there are four stages including the stage 0. There is only one state of the

stage 0, which is AOG (∅∅∅∅). Similarly, final stage has only one state, which is

AOG({A0}). Consider construction of stage 1.

Note that the AT’s composed of the tasks a-d-h and b-h-j have 25 and 24 task

durations, respectively. Although the latter AT has less duration, the former yields

the optimal induced assignment (optimal solution to the problem).

Figure 16 Dynamic programming solution to the ADLB-AOG problem for the AOG

in Figure 14

AOG (∅∅∅∅)

AOG ({A3}) AOG ({A4}) AOG ({A5})

AOG ({A1}) AOG ({A3, A5}) AOG ({A2})

AOG ({A0})
C = 0

C = 12/13 C = 9/13 C = 7/13

C = 21/13 C = 19/13 C = 19/13

C = 2

b (7) a (12) c (9)

d (6) j (10)

e (8)
f (11)

h (7)
g (6)

h (7) i (6) j (10)

T = 13
Stage 0

Stage 1

Stage 2

Stage 3

 53

4.2 The Proposed Integer Programming Formulation

4.2.1 The Formulation

In this section we formulate the ADLB-AOG problem as pure 0-1 integer

programming problem. The formulation can also be used for the classical ADLB-

TPD problems with slight modification.

List of parameters

Ak = artificial nodes in AOG k = 0, 1, 2, …, h,

Bi = normal nodes, in AOG i = 1, 2, …, l,

iBd = duration of node Bi

P (Ak) = immediate predecessor set of artificial node Ak.

S (Ak) = immediate successor set of artificial node Ak.

P (Bi) = immediate predecessor set of normal node Bi.

S (Bi) = immediate successor set of normal node Bi.

T = cycle time

Mj = station j j = 1, 2, …, M

Note that h and l are function of the number of parts (n) in the product.

Maximum values for them are calculated in Section A1.4 of Appendix 1. The

number M may be taken as equal to the number of tasks (n-1), or an upper bound

on the number of stations found by some heuristics. Note also that

predecessor/successor of artificial nodes are OR-type, whereas those of normal

nodes are AND-type.

 54

Decision variables Auxiliary variables





=
otherwise 0

Mstation toassigned is B task if 1 ji

ijx





=
otherwise 0

opened is Mstation if 1 j

jf





=
otherwise 0

performed is B task if 1 i
iz

The problem is formulated as, Minimize ∑
=

×
M

j

jfj
1

Subject to

1
)(:

=∑
∈ ki ASBi

iz for k = 0 [16]

∑∑
∈∈

=
)(:)(: kiki APBi

i

ASBi

i zz for k = 1, 2, …, h [17]

∑
=

=
M

j

iij zx
1

 for ∀ i = 1, 2, …, l [18]

∑ ∑∑ ∑
∈ =∈ =

×≤×
)(: 1)(: 1 kiki ASBi

M

j

ij

APBi

M

j

ij xjxj for ∀ k =1, 2, …, h [19]

∑
=

×≤×
l

i

jBij fTdx
i

1

 for j = 1, 2, …, M [20]

 55

}1,0{

}1,0{

}1,0{

∈

∈

∈

i

j

ij

z

f

x

 [21]

Constraints [16] and [17] assure that exactly one of the OR-successors is

selected. Hence, in the course of establishing a solution these two constraints force

the solution to be a set of tasks that constitute an AT. Constraint [18] makes sure

that if the task is selected it is assigned to one of the stations; if not, it is not

assigned. Constraint [19] handles the precedence relations between the normal

nodes: Since exactly one of the OR-predecessors and one of the OR-successors of

an artificial node will be selected, constraint [19] makes sure that the successor

chosen among the OR-successors will be assigned to the higher-indexed station

than the predecessor chosen among the OR-predecessors is assigned. Constraint

[20] is the cycle time constraint that forces the total workload of a station to be

less than the cycle time if the station is opened. If the station is not opened,

constraint [20] forces the workload to be zero. Constraint [21] is the 0-1 integrity

constraints.

Note that this formulation is a general case of the ALB problem studied in

the literature. When the auxiliary variable zi and the constraints [17], [18], [19] are

eliminated, and the constraint [20] is modified as constraint [22] below, the IP

formulation of ALB problem is obtained.

∑∑
==

×≤×
M

j

ij

M

j

rj xjxj
11

 ∀i, Br ∈ P(Bi) [22]

where P(Bi) = predecessor set of task Bi.

 56

4.2.2 Example

In this example, we formulate the ADLB-AOG problem for the AOG in

Figure 14 with the cycle time of 13 as a pure 0-1 integer programming problem. In

Appendix 7, we give a java code that takes an AOG matrix, duration array and

cycle time constant as input and gives the IP formulation as output.

Minimize 1f1+ 2f2+ 3f3

Subject to
Z1+ Z2+ Z3 = 1 Constraint for A0

 Z4+ Z5- Z1 = 0
 Z6+ Z7- Z3 = 0
 Z8- Z2- Z4 = 0 Constraints for A1-A5
 Z9- Z5- Z6 = 0
 Z10- Z2- Z7 = 0

1X1,1+ 2X1,2+ 3X1,3- 1X4,1- 2X4,2- 3X4,3- 1X5,1- 2X5,2- 3X5,3 <= 0
 1X3,1+ 2X3,2+ 3X3,3- 1X6,1- 2X6,2- 3X6,3- 1X7,1- 2X7,2- 3X7,3 <= 0
 1X2,1+ 2X2,2+ 3X2,3+ 1X4,1+ 2X4,2+ 3X4,3- 1X8,1- 2X8,2- 3X8,3 <= 0 Precedence
 1X5,1+ 2X5,2+ 3X5,3+ 1X6,1+ 2X6,2+ 3X6,3- 1X9,1- 2X9,2- 3X9,3 <= 0 constraints
 1X2,1+ 2X2,2+ 3X2,3+ 1X7,1+ 2X7,2+ 3X7,3- 1X10,1- 2X10,2- 3X10,3 <= 0

X1,1+ X1,2+ X1,3- Z1 = 0
 X2,1+ X2,2+ X2,3- Z2 = 0
 X3,1+ X3,2+ X3,3- Z3 = 0
 X4,1+ X4,2+ X4,3- Z4 = 0
 X5,1+ X5,2+ X5,3- Z5 = 0 Constraints for B1-B10
 X6,1+ X6,2+ X6,3- Z6 = 0
 X7,1+ X7,2+ X7,3- Z7 = 0
 X8,1+ X8,2+ X8,3- Z8 = 0
 X9,1+ X9,2+ X9,3- Z9 = 0
 X10,1+ X10,2+ X10,3- Z10 = 0

 12X1,1+ 7X2,1+ 9X3,1+ 6X4,1+ 8X5,1+ 11X6,1+ 6X7,1+ 7X8,1+ 6X9,1+ 10X10,1- 13f1 <=0 cycle
 12X1,2+ 7X2,2+ 9X3,2+ 6X4,2+ 8X5,2+ 11X6,2+ 6X7,2+ 7X8,2+ 6X9,2+ 10X10,2- 13f2 <=0 time
 12X1,3+ 7X2,3+ 9X3,3+ 6X4,3+ 8X5,3+ 11X6,3+ 6X7,3+ 7X8,3+ 6X9,3+ 10X10,3- 13f3 <=0 constraints

}1,0{

}1,0{

}1,0{

∈

∈

∈

i

j

ij

z

f

x

 i = 1,…, 10 j = 1, …., 3 integrity constraints

We formulated the problems by the java code, which is in Appendix 7.

 57

4.3 Solvable sizes of ADLB-AOG problem by DP and IP

methods

In this section, we compare the two exact methods in terms of the size of

the ADLB-AOG problem. There are three variables that define the size: The first

one is the number of the tasks (normal nodes) in the solution, denoted by n. Due to

the main assumption of AOG that each task disassembles a subassembly into

exactly two subassemblies or parts, the number of tasks in the solution is one less

than the number of parts in the product. For example, all of the AOG’s in Figure

17 belong to the products having n+1 parts. Second is the number of artificial

nodes at each level in the AOG, denoted by a. The number of artificial nodes at

each level may differ from one level to another. But we took them equal to each

other in order to standardize the AOG’s so that future studies can easily compare

their findings with ours. In Figure 17a, c the parameter a is 3, whereas in Figure

17b it is 5.

Third determinant of the size is the number of tasks (normal nodes) for

each artificial node, except the first artificial node and last a artificial node (i.e.,

A0, Aan-(a-1), Aan-(a-2), …, Aan-1, Aan), where a is the number of artificial nodes at

each level. This parameter is denoted by t. In Figure 17a and b the parameter t is 1,

whereas in Figure 17c it is 2. When the parameter t is greater than one, say x, we

generated the AOG’s as follows: Assign the successors of the artificial nodes at

level y to the artificial nodes at level y+1 one by one. The first successor of the

first artificial node at level y precedes the first artificial node at level y+1, the

second successor precedes the second artificial node, etc. The first successor of the

second artificial node precedes the (x+1)
st artificial node, the second successor

 58

precedes the (x+2)
nd artificial node, etc. Whenever no unassigned artificial nodes

are remained at level y+1, we start from the first artificial node again. Consider the

Figure 17c. The parameter t is 2. The first successor (B4) of the first artificial node

(A1) at level one precedes the first artificial node (A4) at level two; the second

successor (B5) precedes the second artificial node (A5); the first successor (B6) of

the second artificial node (A2) precedes the third artificial node. Then, the artificial

nodes at level two are finished. Hence, the second successor (B7) precedes the first

artificial node (A4), and so on.

Based on these parameters, total number of artificial nodes in the AOG

together with the node A0 is 1)2(+−× na . Total number of normal nodes

is]2)3([+−×× nta .

a) the sample AOG with a = 3, t = 1.

Ao

A1 B1

B2

B3

A2

A3

A3n-5

A3n-4

A3n-3

Level 1 Level n

B3n-2

B3n-1

B3n

B4

B5

B6

 59

b) the sample AOG with a = 5, t = 1.

c) the sample AOG with a = 3, t = 2.

Figure 17 Sample AOG’s to illustrate the experimentation

Ao

A1 B2

B3

B5

A2

A3

A5n-8

A5n-7

A5n-5

Level 1 Level n

B5n-3

B5n-2

B5n

B7

B8

B10

A1 B1 A5n-9 B5n-4 B6

B4 A2 A5n-6 B5n-1 B9

Ao

A1
B1

B2

B3

A2

A3

A3n-5

A3n-4

A3n-3

Level 1 Level n

B6n-4

B6n-5

B6n-6

B4

B6

B9

B8

B5

B7

A4

A5

A6

Level 2

B10

B12

B15

B14

B11

B13

A7

A8

A9

Level 3

 60

We did not consider a factor that brings randomness, which is the type of

the tasks. There are two types of tasks: the first one is named as sequential task

and the latter as parallel task (Srinivasan et al. 1997). Sequential tasks disassemble

only one part from the subassembly, whereas parallel tasks disassemble a

subassembly into two subassemblies each of them having at least two parts. In the

matrix notation of AOG, the row corresponding to the sequential task has only one

entry of 1 and one entry of -1; whereas the row corresponding to the parallel task

has two entries of 1 and one entry of -1. Since the output subassemblies of a

parallel task may differ from level to level, parallel task bring randomness. On the

other hand, the sequential task does not bring randomness since its output

subassembly is at one level below its input subassembly. To avoid this

randomness we first allow only the sequential tasks to exist in the AOG and find

the size of the solvable problem. After, we allow the parallel tasks randomly to

exist in the AOG and obtained the results.

In our computational experiments we decided that the problem is solvable

if it can be solved without exhausting the memory and within 10 minutes of CPU

time in the Pentium 4 Processor with 2.66 GHz using 512 MB RAM. The time

limit may seem too strict. Due to the fact that a large number of runs are required

to solve the problem is too much, we used strict time limits.

The JAVA code that generates sample AOG’s according to the parameters

is given Appendix 8.

 61

4.3.1 The DP formulation

Before the experimental results, we will discuss the impact of the

parameters n, a, t on the DP method. As discussed in Section 4.1.2, the number of

stages in the DP formulation is equal to the number of parts in the product (n).

We show that the number of states in each stage is equal to the parameter

a. Denote the set of partial AOG’s in the stage k by Gk. Let P (Bi) be the

predecessor of the normal node Bi, S(Ai) be the successor of the artificial node Ai,

and F(AOG(S)) be the final nodes of the partial AOG. Let Hk = {F(AOG(S)) |

AOG(S) ∈ Gk. }, and Ak = {P(F(AOG(S))) | AOG(S) ∈ Gk. }. It is easy to see that

Ak = {Aa(n-k)-(a-1), Aa(n-k)-(a-2), …, Aa(n-k)-1, Aa(n-k)}.

Let Hk = U
a

t

ktH
1=

, where Hkt
 = S(Aa(n-k)-(a-t)), and Gk = U

a

t

ktG
1=

, where Gkt =

{AOG(S) | AOG(S) ∈ Gk ∧ F (AOG(S)) ∩ Ht ≠ ∅}, where ∧ is the ‘and’ operator.

Let Zt
 = {AOG(S ∪ Bi) | AOG(S) ∈ Gt ∧ Bi = F (AOG(S)) ∈ Ht}.

Note that U
a

t

tZ
1=

= Gk+1. Furthermore, due to the definition of the partial

AOG’s, Zi ∩ Zj = ∅, where 0 < i < j < a; and | Zi | = 1, where 0 < i < a.

Hence, Gk+1 = a, where 0 ≤ k < n-2 and n is the number of parts in the product.

It is seen that the parameter t does not impact the number of states and

number of stages. It affects the number of connections between the states of the

successive stages. That is, each state in the stage k is connected with t stats in the

stage k+1.

 62

Table 3 Solvable size of the AOG’s without parallelism by the DP approach.

Nuber of
tasks for
each
artificial
node (t)

Maximum
solvable
number of
parts

Total
number
of

artificial
nodes

Total
number
of normal
nodes

Stopping
criteria

1 249 742 744 OM

2 98 289 576 OM

3 87 256 762 TR

5 67 196 966 TR

3

10 38 109 1056 TR

1 225 893 896 OM

2 74 289 576 OM

3 64 249 740 TR

5 48 185 908 TR

4

10 27 101 968 TR

1 206 1021 1025 OM

2 60 291 580 OM

3 53 256 760 OM

5 35 166 810 TR

5

10 21 96 910 TR

1 159 1571 1580 OM

2 32 301 600 OM

3 24 221 650 TR

5 17 151 720 TR

N
u
m
b
e
r
o
f
a
rt
if
ic
ia
l
n
o
d
e
s
 a
t
e
a
c
h
 l
e
v
e
l
(a
)

10

10 12 101 920 TR

Above discussion implies the followings: If one memory space is assigned

to each state, a total of 2)2(+×− an memory space is required. The computations

consist of additions and comparisons, which occur in equal amount. The number

of additions in the first phase of the DP method, which is finding the optimal cost,

is]2)3[(+×−× tna . The number of additions in the second phase, finding the

optimal path, is 1)3(+×−+ tna . It is seen that both the memory space and the

 63

computation time is polynomial with respect to all parameters. This shows the

efficiency of the DP method for the ADLB-AOG problem.

In real life applications, it is desired to know how big product can be

assembled and disassembled. Hence, we keep a and t constant and find the

solvable size of the problem with varying values of n. Table 3 is the results of the

hundreds of runs to determine the solvable size of the AOG’s without parallelism

by the DP approach. We allow the parameter t to take the values of 1, 2, 3, 5 and

10. For each of those values we allow the parameter a to take the values of 3, 4, 5

and 10. For each combination of these to factors, we run the DP approach many

times, increasing the number of parts in the product, i.e. the parameter n, each

time, until deciding that the AOG can not be solved by the DP approach. The

stopping reason for each case is given at the rightmost column in the table. ‘OM’

stands for the ‘out of memory’ case and ‘TR’ denotes the failure of time

requirements.

Many inferences can be drawn from Table 3. Figures 18-22 show both the

number of parts and the corresponding total number of tasks in AOG vs. the

number of artificial nodes at each level.

 64

0

50

100

150

200

250

300

3 4 5 6 7 10 20 30 40 50

Number of artificial nodes at each level

N
u
m
b
e
r
o
f
P
a
rt
s

0

500

1000

1500

2000

2500

3000

3500

T
o
ta
l
n
u
m
b
e
r
o
f

s
e
q
u
e
n
ti
a
l
ta
s
k
s

Number of parts

Total number of sequential tasks

Figure 18 Solvable problem sizes when the number of tasks for each artificial node is 1

0

20

40

60

80

100

120

3 4 5 10

Number of artificial nodes at each level

N
u
m
b
e
r
o
f
P
a
rt
s

560

565

570

575

580

585

590

595

600

605

T
o
ta
l
n
u
m
b
e
r
o
f

s
e
q
u
e
n
ti
a
l
ta
s
k
s

Number of parts

Total number of sequential tasks

Figure 19 Solvable problem sizes when the number of tasks for each artificial node is 2

 65

0

10

20

30

40

50

60

70

80

90

100

3 4 5 10

Number of artificial nodes at each level

N
u
m
b
e
r
o
f
P
a
rt
s

580

600

620

640

660

680

700

720

740

760

780

T
o
ta
l
n
u
m
b
e
r
o
f

s
e
q
u
e
n
ti
a
l
ta
s
k
s

Number of parts

Total number of sequential tasks

Figure 20 Solvable problem size when the number of tasks for each artificial node is 3

0

10

20

30

40

50

60

70

80

3 4 5 10

Number of artificials at each level

N
u
m
b
e
r
o
f
P
a
rt
s

0

200

400

600

800

1000

1200

T
o
ta
l
n
u
m
b
e
r
o
f

s
e
q
u
e
n
ti
a
l
ta
s
k
s

Number of parts

Total number of sequential tasks

Figure 21 Solvable problem size when the number of tasks for each artificial node is 5

 66

0

5

10

15

20

25

30

35

40

3 4 5 10

Number of artificials at each level

N
u
m
b
e
r
o
f
P
a
rt
s

800

850

900

950

1000

1050

1100

T
o
ta
l
n
u
m
b
e
r
o
f

s
e
q
u
e
n
ti
a
l
ta
s
k
s

Number of parts

Total number of sequential tasks

Figure 22 Solvable problem sizes when the number of tasks for each artificial node is 10

From the results displayed in the figures, we make the following observations;

- As the number of tasks for each artificial node increases, the solvable size

of the problem in terms of the number of parts behave in parallel with the

solvable size in terms of the total number of tasks. This shows that the

problems in which the parameter t is equal to 1 or 2, while the parameter n

is too big are not realistic. Hence the Figures 20, 21, 22, represent more

realistic scenarios

- When the number of artificial nodes for each level in the graph increases

the solvable size of the problem decreases. This result is expected since the

parameter a impacts the number of the states. This means that, when the

 67

number of feasible subassemblies increases, i.e., when the product tends to

be strongly connected, it takes more time for the DP approach to solve the

problem.

- When the number of tasks for each artificial node in the graph increases the

solvable size of the problem decreases. This result is also expected since

the parameter t affects the number of computations. This means that, when

the number of feasible tasks increases, i.e., when the product tends to be

strongly connected, it takes more time to solve the problem.

- As illustrated in Figure 18, the solvable size of the problem varies from

250 to 50 with varying number of artificial nodes. In the rest of the figures,

solvable size does not change significantly. In actual problem instances,

since the number of tasks for each artificial usually takes values more than

one, we can safely state that the solvable size of the problem do not change

with varying values of artificial nodes at each level.

- Usually in the real life, number of tasks for each artificial and the number

of artificial nodes at each level is related with the parameter n. When the

parameter n is in the range of 30 to 60, the parameters a and t are in the

range of 3 to 10. From the figures it is seen that, the solvable size of the

problem by the DP approach is 30 to 60.

We then allow three to five parallel tasks at some levels, adding up to a total of

ten to twenty parallel tasks. We take 20 experiments for each scenario of the

previous case to see how many times the previous problem sizes will be solved.

The results gave us two different scenarios. For the cases when the number of

 68

tasks for each artificial is not equal to one, the previous problems size can be

solved in 90 percent of the sample problems. Due to the difficulty that parallelism

brings, the 10 percent of the problems exceeds the strength of the DP approach.

For the case when the number of tasks for each artificial is equal to one, none of

the twenty sample problems can be solved. Hence, we reduced the size of the

problem gradually until 130, in which 90 percent of the sample problems can be

solved. Note that, we only allow ten to twenty parallel tasks in the graph due to the

limited time. Inclusion of hundreds of parallel tasks may yield a different outcome.

Final observation about the parallelism is that when the parallel tasks are

allowed at the upper levels of the graph it takes more time to solve the problem by

the DP approach as compared to when they are allowed at the lower levels. Hence

we define the difficulty of a parallel task as the multiplication of the levels of its

output subassemblies (artificial nodes). The difficulty of the AOG is defined as the

summation of the difficulties of all parallel tasks. We compare the solution times

of the 124 sample problems with their difficulty in Figure 23.

Since we do not use any state-eliminating techniques in the DP approach, the

power of the approach does not depend on the duration or cycle time data. Hence,

no matter what the duration of the tasks or the cycle time is, any solvable AOG

problem by the DP formulation is always solvable.

 69

Table 4 The difficulties of 124 sample problem and solution durations

 Diff.
Sol.
time

 Diff.
Sol.
time

 Diff.
Sol.
time

 Diff.
Sol.
time

1 514 3 32 815 60 63 904 444 94 987 200

2 568 4 33 820 100 64 905 110 95 988 210

3 617 9 34 824 311 65 908 192 96 992 95

4 645 15 35 824 143 66 909 146 97 994 281

5 648 10 36 827 71 67 910 221 98 995 498

6 649 20 37 832 182 68 913 378 99 996 153

7 653 14 38 833 121 69 917 234 100 1004 206

8 654 24 39 835 158 70 918 652 101 1015 577

9 654 91 40 838 134 71 919 352 102 1015 852

10 670 19 41 839 84 72 919 172 103 1028 790

11 682 81 42 840 119 73 921 50 104 1028 351

12 696 17 43 841 91 74 922 131 105 1029 62

13 702 18 44 845 237 75 926 818 106 1037 173

14 716 75 45 846 171 76 932 308 107 1038 549

15 720 18 46 853 85 77 934 767 108 1038 536

16 725 8 47 853 23 78 943 590 109 1040 598

17 736 16 48 858 24 79 947 617 110 1053 514

18 737 115 49 858 39 80 951 550 111 1083 411

19 744 21 50 864 128 81 952 428 112 1084 296

20 745 171 51 866 220 82 956 760 113 1084 472

21 750 494 52 872 129 83 956 881 114 1094 535

22 751 207 53 873 34 84 960 727 115 1101 915

23 753 271 54 875 180 85 962 410 116 1113 219

24 757 41 55 875 169 86 967 100 117 1123 704

25 759 102 56 882 350 87 968 445 118 1131 472

26 762 67 57 887 472 88 968 142 119 1135 635

27 769 337 58 893 213 89 974 61 120 1141 299

28 770 495 59 896 179 90 975 467 121 1143 515

29 778 9 60 896 406 91 978 151 122 1154 363

30 780 120 61 897 255 92 978 96 123 1171 351

31 800 320 62 902 150 93 986 667 124 1183 753

 70

4.3.2 The IP Formulation

As for the IP case, we used CPLEX (Version 8) to solve the formulations.

First thing to note is that CPLEX uses some fathoming techniques to expedite the

solution process. Since fathoming the nodes depend on the duration and cycle time

data, the solvable size of the problem by CPLEX depends on the data. The

solution time for the problems with the same input AOG may vary with different

data sets. But the variation is not too much. After obtaining the results, we see that

the IP formulation for these types of problems is not a suitable one. For instance,

while the DP approach solves up to problem size of 249 in the simplest case, i.e.,

when the parameter a is three and the parameter t is one; the IP approach can solve

up to problem size of 20. It can solve 28 instances out of 50.

 71

0

100

200

300

400

500

600

700

800

900

1000

500 600 700 800 900 1000 1100 1200

Difficulty

S
o
lu
ti
o
n
 d
u
ra
ti
o
n

Figure 23 The solution duration vs. difficulty of the problem

The main reason for this big gap between the DP and IP is that the number

of variables in the IP formulation increases polynomially with the increase in the

parameter n, in the order of O(n2). This can be realized as follows: For the

parameter n, the number of tasks, which is the upper bound on the index i (l), is

]2)3([+−×× nta . The upper limit of station index, which is M, is n. Furthermore,

the solution to the IP formulation increases exponentially with the increase in the

number of variables.

 72

On the other hand, the number of stages and the computation time in DP

formulation increases in the order of O(n), as discussed above. Since polynomial

increase for the DP formulation is not restrictive it can handle large problems

compared to the IP method.

As for the other parameters, t and a, they do not affect the IP formulation

as the parameter n. For the parameter n fixed at 18, IP can solve the problem

instances when a and t are 5 to 10. This is due to the fact that the number of

nonzero variables in the IP formulation is 






 +−××

n

nta

]2)3([
. Hence, the

increase in n increases the number of nonzero variables more than the other

parameters.

Due to exponential increase in the solution time of the IP method, we did

not consider improving it, either by modifying the constraints or adding some cuts.

As a final word, since the real life problems usually have the parameter n greater

than twenty, it must be appreciated that in ADLB-AOG problems the DP method

is better than the IP method.

 73

4.4 A DP based heuristic

Although the performance of DP is much superior to that of IP, the ‘curse

of dimensionality’ will eventually prevent us solving the problems of realistic

sizes. Hence, we develop a DP based heuristic in this section to overcome the

limitation of this section. The main characteristic of the heuristic is the

circumvention of the rapid growth in the size of the state space.

Figure 24 Solution of a sample problem by the DP method

In eliminating the states we chose a simple way. The maximum number of

states allowed at any stage is determined by the reduction parameter. If the

number of states in a stage turns out to be greater than the reduction parameter, we

(1)

(2) (3) (4)

(5) (6) (7)

(8)

Stage 0

Stage 1

Stage 2

Stage 3

 74

do not allow those additional states. While eliminating the states in a stage one

should be careful of not fathoming the states in the previous stages of the solution.

For instance, suppose that the stages and states of the DP solution in the exact

method turn out to be as in Figure 24, and we, in the heuristic method, allow the

states 2 and 3 to exist in the first stage. In the second stage, if we allow to both of

the succeeding states of the state 2 (states 5 and 6), we can not build a solution

using the state 3. Hence, we use the following strategy: At any stage k, we make

sure that there is at least one succeeding state of each state in stage k-1. To

guarantee this, we first allow only one succeeding state for each of the states in the

stage k-1 to exist in stage k. If the total number of states is still less than the

reduction parameter, we allow the second succeeding states of the states in stage

k-1, and so on until either there is no state left or the reduction parameter is

reached. Figure 25a is one of the heuristic solutions of the problem in Figure 24

when the reduction parameter is one, and Figure 25b is the solution when it is 2.

Note that, when the parameter is three the heuristic and the exact solutions are the

same.

Two terms affect the efficiency and the speed of the heuristic. First one is

the reduction parameter. As the parameter increases the solution time decreases

but the solution quality deteriorates. Second is the distribution of the number of

states in each stage of the solution. If the number of states in each state is close to

each other, the solution time decreases and quality of the solution deteriorates

more. To validate the second argument, we implemented the heuristic to the DP

example that we used in Section 4.3 with the parameters of n, a, t being equal to

20, 4 and 2, respectively. The number of states in each stage is equal to the each

 75

other, which is a. We generated the durations of each task uniformly between 1

and 20. The cycle time is 30. We generated 100 sample AOG’s and obtain the

results by both heuristic and the exact method. Average number of stations by the

exact method is 6.29, while that result by the heuristic is 1.92. This shows 30 %

inferiority of the heuristic. The heuristic is so bad because the reduction parameter

is 2 and the number of states in each stage is equal to each other. This means that

two states in each stage are eliminated. As for the speed, the exact method can

solve up to n equal to 74, whereas the heuristic can solve up to 114.

Figure 25 Heuristic solutions for the example problem in Figure 24

To validate the first argument we implemented the heuristic for the

example problem in Section 3.4 with varying reduction parameters. The results are

reported in Table 5 with the two values of the reduction parameter. Verifying our

(1)

(2) (3)

(5) (7)

(8)

(1)

(4)

(6)

(8)

a) reduction parameter = 1 b) reduction parameter = 2

 76

argument, the heuristic obtains the exact result 33 times when the reduction

parameter is 1, whereas it obtains all the exact results when the parameter is 3.

Table 5 The results of the heuristic solution to the ADLB-AOG problem
compared with the exact results of both ADLB-TPD and ADLB-AOG problem.

T AOG TPD1 TPD2 tp=1 tp=3 T AOG TPD1 TPD2 tp=1 tp=3 T AOG TPD1 TPD2 tp=1 tp=3

22 4 5 5 5 4 45 2 2 2 2 2 68 1 2 2 2 1

23 4 5 5 5 4 46 2 2 2 2 2 69 1 2 2 2 1

24 4 5 5 5 4 47 2 2 2 2 2 70 1 2 2 2 1

25 4 5 5 5 4 48 2 2 2 2 2 71 1 2 2 2 1

26 4 5 5 4 4 49 2 2 2 2 2 72 1 2 2 2 1

27 4 5 5 4 4 50 2 2 2 2 2 73 1 2 2 2 1

28 3 5 4 4 3 51 2 2 2 2 2 74 1 2 2 2 1

29 3 4 4 4 3 52 2 2 2 2 2 75 1 2 2 2 1

30 3 3 4 4 3 53 2 2 2 2 2 76 1 2 2 2 1

31 3 3 4 4 3 54 2 2 2 2 2 77 1 2 2 2 1

32 3 3 4 4 3 55 2 2 2 2 2 78 1 2 2 2 1

33 3 3 4 3 3 56 2 2 2 2 2 79 1 2 2 2 1

34 3 3 4 3 3 57 2 2 2 2 2 80 1 2 2 2 1

35 2 3 4 3 2 58 2 2 2 2 2 81 1 2 2 2 1

36 2 3 3 3 2 59 2 2 2 2 2 82 1 2 2 2 1

37 2 3 3 3 2 60 2 2 2 2 2 83 1 2 2 1 1

38 2 3 3 3 2 61 2 2 2 2 2 84 1 2 2 1 1

39 2 3 3 3 2 62 2 2 2 2 2 85 1 2 2 1 1

40 2 3 3 3 2 63 2 2 2 2 2 86 1 2 1 1 1

41 2 3 3 3 2 64 1 2 2 2 1 87 1 2 1 1 1

42 2 3 3 3 2 65 1 2 2 2 1 88 1 1 1 1 1

43 2 3 3 2 2 66 1 2 2 2 1 89 1 1 1 1 1

44 2 2 2 2 2 67 1 2 2 2 1 90 1 1 1 1 1

 77

What is more interesting is that, in some cases even the heuristic solutions

of the ADLB-AOG problem are better than the exact solutions of the ADLB-TPD

problem. Even the worst performance of the heuristic, i.e., when the reduction

parameter is 1, beats the exact solution of the ADLB-TPD problem for TPD2 nine

times out of sixty nine instances. Comparing with the TPD1, the heuristic ADLB-

AOG outperforms nine times whereas the exact ADLB-TPD outperforms three

times.

The JAVA code that implements the heuristic is given in Appendix 9.

 78

Chap t e r 5

CONCLUSIONS and FUTURE RESEARCH

DIRECTIONS

Assembly line balancing problem has been the vital element of the

manufacturing practices of the firms. As the environmental issues arise, reverse

manufacturing practices, in the form of both remanufacturing and

demanufacturing, gained an increasing attention, becoming as vital as the

manufacturing. Both of these practices require both disassembly and assembly

simultaneously, implying that disassembly and assembly should be considered

together. Inspired by this, we investigated the assembly and disassembly line

balancing problem

We give and compare the literature in assembly and disassembly line

balancing problem. After discussing some properties of the AND/OR Graph, we

considered the assembly/disassembly line balancing problem using the AND/OR

Graph. The problem consists of assigning a subset of the tasks from the AOG such

that the chosen set of tasks completely assembles/disassembles the product and the

number of stations required in the line is minimized. We proved and exemplified

the theorem of sub-optimality, which states that solving the ADLB-AOG problem

gives at least as good solution as the ADLB-TPD problem. In other words, the

ADLB-TPD problem solved to optimality may give inferior results than the

 79

ADLB-AOG problem solved by a heuristic. This is because of the fact that the

tasks in the AOG are more specifically defined than the tasks of the task

precedence diagram. That is, the durations of the task in the AOG is less then or

equal to the duration of the corresponding task in TPD. We also give three

examples on how to derive the TPD from the AOG.

We constructed dynamic programming and integer programming methods

to solve the ADLB-AOG problem. The construction of the DP method is

illustrated on sample problem. The 0-1 pure integer programming formulation is

implemented on the same problem. We compare the two methods over a set of

AOG’s defined by some parameters. The merits of DP technique over the IP are

remarkable. First is the power to handle the large sized problem. While the IP

method can not handle the simple problems, the DP method can bravely cope with

the large sized problems up to the problem size of 250. The reason behind this is

that the solution time of the DP method grows polynomially by the problem size

while that of IP grows exponentially. The second advantage is the rigorousness of

the DP method. Since the IP Solvers (CPLEX for instance) uses some fathoming

techniques, the solvability of the problem by IP varies with the problem data set.

On the other hand, total number of states and stages, and the computation time of

the DP method are independent of the data. This in turn implies that the DP

method is in its primitive form and can be enhanced.

We implement a DP based heuristic by limiting the number of states in

each stage. The heuristic decreases the solution time sacrificing the solution

quality. By a numerical example we showed that solving the ADLB-AOG problem

 80

by the heuristic gives better results than the ADLB-TPD problem solved to

optimality.

The java code implementing the DP method to a given AOG and a data set

is appended. The code that generates the IP formulation of a problem is given.

Finally, the code that generates AOG according to the given parameters is

included.

Since the research on assembly/disassembly balancing problem is too

scarce, the future research directions are numerous. The first one is to modify the

AOG. The AOG is fully related with the mechanical properties of the product. A

modified graph may include the properties of the shop floor so that the precedence

relations include the physical constraint imposed by the shop floor.

We give a procedure to derive TPD’s from a given AOG, by combining the

AT’s. But, we only allowed AND-type precedence relations to exist in the TPD. A

study is required to include the OR-type precedence relations as well. Also, the

assumption of ‘two subassemblies at a time’ in the AOG should be relaxed.

The IP and DP methods developed are in crude form. Some improvements

on these to methods may further enhance the solution time.

A heuristic that use wise strategies in the solution of the problem should be

developed. Also, it is worth to investigate which of the following is better: Solving

the ADLB-AOG problem optimally for an AOG, the size of which is reduced by a

heuristic, or solving the same problem for the original AOG by a heuristic.

 81

REFERENCES

[1] Alavi Y. 1985, “Graph theory with applications to algorithms and

computer science”, Wiley, New York.

[2] Altekin FT. 2005, Profit oriented disassembly line balancing, PhD

Dissertation, Middle East Technical University, Ankara.

[3] Ayres R, Ferrer G, van Leynseele T. 1997, “Eco-efficiency, asset

recovery and remanufacturing”, European Management Journal, 15 (5):

557-574.

[4] Azzone G, Bertele U, Noci G. 1997, “At least we are creating

environmental strategies which work”, Long Range Planning, 30 (4):

562-571.

[5] Barney J. 1991, “Firm resources and sustained competitive advantage”,

Journal of Management 17 (1): 99-120.

[6] Baybars I. 1986, “A survey of exact algorithms for the simple assembly

line balancing problem”, Management Science, 32(8): 909-932.

 82

[7] Bodily SE, Gabel HL. 1982, “A new job for businessman: managing the

company's environmental resources”, Sloan Management Review,

Summer 1982, 3-18.

[8] Boneschanscher N. et al. 1988, “Subassembly stability”, In Proc : AAAI-

88, Aug 88, 780-785.

[9] Bonifant BC, Arnold MB, Long FJ. 1995, “Gaining competitive

advantage through environmental investments”, Business Horizons,

July/August 1995, 37-47.

[10] Bras B, McIntosh MW. 1999, “Product, process and organizational

design for remanufacture – an overview of research”, Robotics and

Computer Integrated Manufacturing, 15: 167-178.

[11] Brennan L, Gupta SM, Taleb KN. 1994, “Operations Planning Issues in

Assembly/Disassembly Environment”, International Journal of

Operations & Production Management, 14(9): 57-67.

[12] Brown WB, Karagozoglu N. 1998, “Current practices in environmental

management”, Business Horizons, July/August 1998, 12-18.

[13] Chow W-M, “Assembly line design: methodology and applications”, M.

Dekker, New York, 1990.

[14] Corbett CJ, van Wassenhove LN. 1993, “The green fee: Internalizing and

operationalizing environmental issues”, California Management Review,

Fall 1993, 116-135.

 83

[15] De Mello LSH and Sanderson AC. 1990, “And/Or graph representation

of assembly plans,” IEEE Transactions on Robotics and Automation,

6(2): 188-199.

[16] De Mello LSH and Sanderson AC. 1991a, “A correct and complete

algorithm for the generation of mechanical assembly sequences,” IEEE

Transactions on Robotics and Automation, 6(2): 228-240.

[17] De Mello LSH and Sanderson AC. 1991b, “Representation of

mechanical assembly sequences,” IEEE Transactions on Robotics and

Automation, 7(2): 211-227.

[18] Elkington J. 1994, “Toward the sustainable corporation: win-win-win

business strategies for sustainable development”, California

Management Review, Winter 1994, 90-100.

[19] Epstein MJ. 1996, “You have got a great environmental strategy- now

what?”, Business Horizons, Sept/Oct 1996, 53-59.

[20] Erel E. and Sarin S.C. 1998, “A survey of the assembly line balancing

procedures”, Production Planning & Control, 9(5): 414-434.

[21] Flood M.M. 1956, “The traveling salesman problem”, Operations

Research, 4: 61-75.

[22] Florida R. 1996, “Lean and green: the move to environmentally

conscious manufacturing”, California Management Review 39 (1): 80-

105.

 84

[23] Grenchus E, Keene R, and Nobs C. 1997, “Demanufacturing of

information technology equipment,” 1997 IEEE Symposium on

Electronics and Environment, 157-160.

[24] Guide Jr VDR. 2000, “Production planning and control for

remanufacturing: industry practice and research needs,” Journal of

Operations Management, 18: 467-483.

[25] Guide Jr VDR, Jayaraman V, Srivastava R, and Benton WC. 2000,

“Supply-chain management for recoverable manufacturing systems,”

INTRFACES, 30(3): 125-142.

[26] Gungor A and Gupta SM. 1999, “Issues in environmentally conscious

manufacturing and product recovery: a survey,” Computers & Industrial

Engineering, 36: 811-853.

[27] Gungor A and Gupta SM. 2001a, “Disassembly sequence plan generation

using a branch-and-bound algorithm,” International Journal of

Production Research, 39(3): 481-509.

[28] Gungor A and Gupta SM. 2001b, “A solution approach to disassembly

line balancing problem in the presence of task failures,” International

Journal of Production Research, 39(7): 1427-1467.

[29] Gungor A and Gupta SM. 2002, “Disassembly line in product recovery,”

International Journal of Production Research, 40(11): 2569-2589.

 85

[30] Gupta MC. 1994, “Environmental management and its impact on the

operation function”, International Journal of Operations & Production

Management, 15 (8): 34-51.

[31] Gupta SM and Taleb KN. 1994, “Scheduling disassembly,” International

Journal of Production Research, 8: 1857-1866.

[32] Hart SL. 1997, “Beyond greening: strategies for a sustainable world”,

Harvard Business Review, Jan/Fab 97, 66-76.

[33] Hartman CL, Stafford ER. 1998, “Crafting environmental value chain

strategies through green alliances”, Business Horizons, March-April, 62-

72.

[34] Held M, Karp R.M. 1962, “A dynamic programming approach to

sequencing problems”, Journal of the Society for Industrial and Applied

Mathematics, 10 (1): 196-210.

[35] Held M, Karp R.M., Shareshian R. 1962, “Assembly line balancing-

dynamic programming with precedence constraints”, International

Business Machines Corporation, 442-459.

[36] Inman RA. 2002, “Implications of environmental management for

operations management”, Production Planning & Control 13 (1): 47-55.

[37] Johnson MR and Wang MH. 1995, “Planning product disassembly for

material recovery opportunities,” International Journal of Production

Research, 33(11): 3119-3142.

 86

[38] Johnson MR and Wang MH. 1998, “Economical evaluation of

disassembly operations for recycling, remanufacturing and reuse,”

International Journal of Production Research, 36(12): 3227-3252.

[39] Klassen RD, Angell LC. 1998, “An international comparison of

environmental management in operations: the impact of manufacturing

flexibility in the US and Germany”, Journal of Operations Management

16: 177-194.

[40] Klausner M and Hendrickson CT. 2000, “Reverse logistics strategy for

product take-back,” INTERFACES, 30: 156-165.

[41] Kochan A. 1995, “In search of a disassembly factory”, Assembly

Automation, 15(4): 16-17.

[42] Lambert AJD. 1997, “Optimal disassembly of complex products,”

International Journal of Production Research, 35(9): 2509-2523.

[43] Lambert AJD. 1999, “Linear programming in disassembly/clustering

sequence generation,” Computers & Industrial Engineering, 36: 723-

738.

[44] Lambert AJD, 2002. “Determining Optimum Disassembly Sequence in

Electronic Equipment,” Computers & Industrial Engineering, 43: 553-

575.

[45] Lambert AJD. 2003, “Disassembly sequencing: a survey”, International

Journal of Production Research, 41 (6): 3721-3759.

 87

[46] Lee D-H, Kang J-G, and Xirouchakis P. 2001, “Disassembly planning

and scheduling: review and further research, In Proceedings of the

Institution of Mechanical Engineers Part B, Journal of Engineering

Manufacture, Vol. 215 No. B5 (2001): 695-709.

[47] Lund RT. 1998, The remanufacturing industry: hidden giant, Boston

University, Boston, Massachusetts, January 1996.

[48] Maxwell J, Rothenberg S, Briscoe F, Marcus A. 1997, “Green schemes:

corporate environmental strategies and their implementation”, California

Management Review 39 (3): 118-134.

[49] Moore KE, Gungor A, and Gupta SM. 2001, “Petri net approach to

disassembly process planning for products with complex AND/OR

precedence relationships,” European Journal of Operational Research,

35(1-2): 165-168.

[50] Parkinson HJ, and Thompson G. 2003, “Analysis and taxonomy of

remanufacturing industry practice”, Proc. Instn Mech. Engrs, Vol. 217,

Part E, Journal of Process Mechanical Engineering.

[51] Penev KD and de Ron AJ. 1996, “Determination of a disassembly

strategy,” International Journal of Production Research, 34(2): 495-506.

[52] Pnueli Y and Zussman E. 1997, “Evaluating the end-of-life value of a

product and improving it by redesign,” International Journal of

Production Research, 35(4): 921-942.

 88

[53] Prenting T. and Battaglin R. 1964. “The precedence diagram: A tool for

analysis in assembly line balancing”, Journal of Industrial Engineering,

15 (4): 208-213.

[54] Rai R, Rai V, Tiwari MK, and Allada W. 2002, “Disassembly sequence

generation: A petri net based heuristic approach,” International Journal

of Production Research, 40(13): 3183-3198.

[55] Salveson M.E. 1955, “The assembly line balancing problem”, Journal of

Industrial Engineering, 6: 18-25.

[56] Scholl A and Klein R. 1999, “Balancing assembly lines effectively- A

computational comparison”, European Journal of Operational Research,

114: 50-58.

[57] Spicer A.J., Johnson M.R. 2004, “Third-party demanufacturing as a

solution for extended producer responsibility”, Journal of Cleaner

Production 12: 37-45.

[58] Srinivasan H., Shyamsundar N., Gadh, R. 1997, “A framework for

virtual disassembly analysis”, Journal of Intelligent Manufacturing, 8:

277-295.

[59] Thierry M, Salomon M, vans Nunen J, and van Wassenhove L. 1995,

“Strategic issues in product recovery management,” California

Management Review, 37 (2): 114-135.

 89

[60] Talbot F.B., Patterson J.H., Gehrlein W.V. 1986, “A comparative

evaluation of heuristic line balancing techniques”, Management Science,

32(4): 430-454.

[61] Tang Y, Zhou MC, Zussman E, Caudill R. 2000, “Disassembly

modeling, planning and application: a review” Proceedings of the 2000

IEEE International Conference on Robotics and Automation, April 2000,

San Francisco, 2197-2202.

[62] White CD, Masanet E, Rosen CM, Beckman SL. 2003, “Product

recovery with some byte: an overview of management challenges and

environmental consequences in reverse manufacturing for the computer

industry”, Journal of Cleaner Production 11: 445-458.

[63] Wiendahl HP, Seliger G, Perlewitz H, and Bürkner S. 1999, “A general

approach to disassembly planning and control,” Production Planning &

Control, 10(8): 718-726.

[64] Zhang HC, Kuo TC, and Lu H. 1997, “Environmentally conscious design

and manufacturing: A state-of-the-art survey,” Journal of Manufacturing

Systems, 16(5): 352-371.

[65] Zussman E. 1995, “Planning of disassembly systems”, Assembly

Automation, 15(4): 20-23.

 90

APPENDIX 1

AND/OR Graph and related concepts in

Assembly / Disassembly Process

Planning

To introduce the concepts in assembly process planning such as

subassembly, assembly task, and assembly sequence, we adopt some of the

terminology and assumptions given in De Mello and Sanderson (1990, 1991a and

1991b).

A1.1 Assembly

A mechanical assembly A is a composition of interconnected parts forming

a stable unit. It can be represented by a simple undirected graph <PA, CA> in

which PA= {p1, p2,…, pN} is the set of nodes, CA={c1, c2,…, cl} is the set of edges.

<PA, CA> is called the assembly graph of connections (GOC) (Figure A.1). Each

node in PA corresponds to a part in the subassembly, and there is only one edge in

CA connecting every pair of nodes whose corresponding parts have at least one

surface contact. Note that the number of parts in A (|PA|) is N and the number of

contacts (|CA|) is l.

A subassembly is a nonempty subset of parts that either has only one

element or is such that every part has at least one surface contact with at least one

another part in the subset. For instance, for the product in Figure 5 of chapter 2,

 91

{cap, stick} is a subassembly but {cap, handle} is not. We will denote the

subassembly by its set of parts written in brackets. For instance, {cap} denotes the

subassembly composed of cap and {cap, stick, receptacle} denotes the

subassembly composed of the parts cap, stick, and receptacle.

Figure A.1 Graph of connections (GOC) for the product in Figure 5 of Chapter 2

To denote whether or not a subset of parts constitutes a subassembly, we

will use the predicate notation sa(.). The argument to this predicate is a subset of

parts, and its value is either true or false depending on whether or not that subset

corresponds to subassembly. For instance, sa(cap, stick) = “T” means that {cap,

stick} is a subassembly; while sa{cap, handle} = “F” means that {cap, handle} is

not a subassembly. The value of this predicate for any subset of parts can be

determined from the GOC. If one deletes all the nodes that are not among the

argument of the predicate and their corresponding arcs from the GOC, the

remaining graph is either connected or not. If it is connected, the predicate is true

cap stick

receptacle handle

c2

c1

c3
c4

c5

 92

and if not, the predicate is false. For instance, to see whether sa(cap, stick) is either

true or not, we delete the nodes {receptacle} and {handle} from Figure A.1 and

corresponding arcs c2, c3, c4, c5. The remaining graph consisting of {cap} and

{stick} is connected with the arc c1. So, sa(cap, stick) = “T”.

According to the discussion above, one can claim that {cap, stick, handle}

is also a subassembly since its sa(.) is true. A closer examination reveals that it

cannot be a subassembly since the parts {cap}, {stick} and {handle} does not

constitute a stable unit. A subassembly is said to be stable if parts maintain their

relative positions and do not break spontaneously. Hence, a subassembly should

also satisfy stability predicate st(.) that determines whether or not a subassembly

described by its set of parts is stable. The determination of st(.) is addressed

elsewhere (Boneschanscer 1988). A subassembly is said to be feasible if both of

the sa and st are true.

When more than one part constitutes a subassembly, their relative positions

are assumed to be unique (Assumption 1). For instance, in Figure A.1 {cap, stick}

is a subassembly in which the stick has a contact with the open side of the cap and

inserted into it slightly. It cannot represent a subassembly in which the stick has a

contact with the closed side of the cap.

A1.2 Assembly Task

An assembly task τ takes two subassemblies and joins them. The

subassemblies to be joined are called the input subassemblies and the resulting

subassembly obtained after the task is applied is called the output subassembly. If

 93

the task is associated with a disassembly process, labeling of subassemblies as

input and output is reversed.

Assembly/disassembly tasks have three properties: First property is related

with the input and output subassemblies. Given the input subassemblies φ and θ

we say that joining them is an assembly task if the output, {Pφ, Pθ}, is also a

subassembly (i.e., sa(Pφ, Pθ) is true). For instance, joining {receptacle} and

{handle} is an assembly task, while joining {cap} and {handle} is not. This

property can be reversed for the disassembly task. Secondly, an assembly task

should be geometrically feasible. There should be a collision-free path to join the

two subassemblies. For instance, in Figure A.3 joining {cap, receptacle, handle}

with {stick} is not an assembly tasks since joining them is not geometrically

feasible, i.e., inserting {stick} into {cap, receptacle, handle} is impossible. We use

the geometrical-feasibility predicate gf (.) to denote whether or not an assembly

task is geometrically feasible. Thirdly, an assembly task should be mechanically

feasible. It should be feasible to establish the attachments that act on the contacts

between the two subassemblies. In our example all disassembly operations are

mechanically feasible. We use the mechanical-feasibility predicate mf (.) to denote

whether or not an assembly task is geometrically feasible. A task is said to be

feasible if it is both geometrically and mechanically feasible.

 94

Figure A.2 A feasible assembly sequence (τ1, τ2, τ3)

Assembly/disassembly tasks are assumed have two additional properties:

First, whenever two parts or subassemblies are joined all contacts or edges

between them should be established (Assumption 2). For instance, when {stick}

and {cap, receptacle} need to be assembled, both contacts c1 and c3 should be

established. Second, exactly two subassemblies are joined by each assembly task

(Assumption 3). In cases where this assumption does not hold, i.e., when more

than two parts can be assembled, we can model the situation as sequential

assembly operations that assemble those parts two at a time. In practice, one can

assemble the three subassemblies {cap, receptacle}, {stick}, {handle} by one

cap

stick

receptacle

handle

τ1

τ2

cap, receptacle

cap, receptacle cap, receptacle, stick

τ3

cap, receptacle, handle, stick
cap, receptacle, stick

 95

assembly operation. However this assumption implies that this operation is

performed by two sequential tasks: First, assemble {cap, receptacle} with {stick},

then assemble {cap, receptacle, stick} with {handle}.

Figure A.3 An infeasible assembly sequence (τ1, τ4, τ5)

cap

stick

receptacle

handle

τ1

τ4

cap, receptacle

cap, receptacle cap, receptacle, handle

cap, receptacle, handle

τ5 INFEASIBLE

 96

We denote an assembly task by the set of input subassemblies. If the task τ1

joins the {cap} with {receptacle} we denote it by τ1({cap}, {receptacle}) = {cap,

receptacle}. We denote a disassembly task by the input subassembly and the

contacts that are taken apart after the disassembly process. If the task ψ1

disassembles the {cap, receptacle} and obtains {cap} and {receptacle} we denote

it by ψ1({cap, receptacle}, c2) = {cap}, {receptacle}.

In graph theory, a cut-set of a connected graph is the subset of edges in the

graph such that the graph becomes more than one piece when those edges are

deleted from the graph (Alavi 1985). An assembly/disassembly task corresponds

to one of the cut-sets of the GOC that disintegrates it into two pieces. Hence, to

find all possible assembly/disassembly tasks that are applied to a subassembly, one

should search through all the cut-sets of the subassembly graph of connections that

disintegrates the graph into two pieces.

A1.3 Assembly Sequence

Given an assembly A with |PA| = N, an ordered set of N-1 assembly tasks τ1,

τ2, …. ,τN-1 is an assembly sequence if:

• There are no two tasks that have common input subassembly,

• the output subassembly of the last task is the whole subassembly.

• both of the input subassemblies to any task τi is either one-part

subassembly or the output subassembly of a task that precedes τi.

An example assembly sequence (Figure A.2) is τ1, τ2, τ3, where τ1 is joining

the cap to receptacle, τ2 is joining the stick to the output subassembly of τ1 and τ3

 97

is joining the handle to the subassembly made up by τ2. The sequence τ1, τ4, τ5

(Figure A.3) is not an assembly sequence, where τ1 is joining the cap to receptacle,

τ4 is joining the handle to the output subassembly of τ1 and τ5 is joining the stick

to the subassembly made up by τ4. The reason to that is the infeasibility of τ5.

A1.4 Discussion on AOG

Although AND/OR graph is a one of the complete representation scheme of

assembly/disassembly sequence representation, it has two drawbacks: First one is

related to its applicability. In real life, when a disassembly task is applied, the

product may yield into more than two subassemblies, whereas in the AND/OR

graph a disassembly task results in exactly two subassemblies (See the

Assumption 3 in Section A1.2). This restriction can be handled as follows:

Suppose that a disassembly task disintegrates a subassembly into more than two

pieces. We assume that these subassemblies are sequentially disintegrated from the

input node two at a time by two or more tasks. For instance, in Figure 6 of Chapter

3, when receptacle is to be disintegrated from the whole product, the product falls

apart into three parts: {cap}, {stick} and {receptacle, handle}. In the AOG

representation this is handled by applying two disassembly tasks: Either tasks ψi1

and ψi2 or tasks ψj1 and ψj2. First, task ψi1 is applied resulting in {Cap, stick} and

{receptacle, handle} pairs, then task ψi2 is applied resulting in {Cap}, {stick} and

{receptacle, handle}. Similarly first, task ψj1 is applied resulting in {Cap} and

{stick, receptacle, handle} nodes, than task ψj2 is applied resulting in {Cap},

{stick} and {receptacle, handle} pairs. This removes the restriction of Assumption

 98

3, but the duration and cost of the new tasks should be properly determined from

those of the old task.

We should also point out that although this assumption simplifies the

construction of AOG (De Mello and Sanderson 1991a.) by cutting down all

possible cut-sets to the ones that disintegrates the graph into two, it increases the

size of AOG. For instance, as seen in Figure 6 if the assumption were not made,

there would not be subassemblies {C, S, R}, {S, R, H}, {C, S}, {S. R}, {S, H} in

the AOG. When cap is disassembled, the product would fall apart into three parts

{{C}, {S}, {R, H}} or when handle is disassembled, the product would fall apart

into three parts {{C, R}, {S}, {H}}. Thus, the subassemblies that include {stick},

other than the last node, would disappear from the graph.

The second drawback is related to storage and computational requirements,

i.e., size of AOG. We will show how many nodes, tasks and AT/DT’s exist in an

AOG, although they are interrelated. Since a node in the AOG shows a feasible

subassembly which can be obtained by disassembling an input subassembly, we

require two conditions for it to exist in the AOG: All connections between the

parts of it should exist and the corresponding task should be feasible, which are

related to the number of connections between the parts of the input subassembly

and geometry of the parts, respectively. Hence, although every part in a product

may be connected to each other, every combination of the parts in the product

need not represent a subassembly. There may be some feasible subassemblies of

that product that does not exist in the AOG. For instance, there are 14

subassemblies (including the four 1-part subassemblies) in the AOG of the

strongly connected product in Figure A.5c instead of 15 (24-1=15). This is because

 99

of the nonexistence of the subassembly {2,3,4} in the graph. Although the

subassembly {2,3,4} is feasible, it is not included in the graph because of the

geometrical infeasibility of the disassembly task that disintegrates {1,2,3,4} into

{2,3,4} and {1}. As a result of the above discussion, number of nodes in the AOG

depends on the number of parts in the product, on the number of connections of

the parts and on the geometry of the parts.

To see the worst case, we will ignore the dependence of the size of AOG on

the geometry of the parts of the product. That is, we will assume that any feasible

subassembly of the product can exist in the AOG. Two extreme types of products

will be considered: Strongly and loosely connected products. In strongly

connected products, all of the components are connected with each other (Figure

A.5b). If the product consists of n components, there are at most 1

1

2 −

=

=







=∑ n

n

s s

n
h

feasible subassemblies of the product (i.e., of which subassembly predicate is

true). This constitutes the maximum number of possible nodes in the AND/OR

graph for an n-part product. The number of nodes in the AOG is, even, less then h,

due to infeasibility of some tasks as discussed above. As a future research, one

may prove the impossibility of strong connection between the parts of a

subassembly when the number of parts exceeds a certain number.

The graph of connections of the loosely connected product is a tree such that a

node is connected with at most two other nodes (Figure A4b). Thus, the number of

feasible subassemblies (h) is at most 







=

+×
=+−=∑

= 22

)1(
)1(

1

nnn
snh

n

s

.

 100

Total number of possible tasks in AOG of a strongly connected product (l) is

the total of subassemblies multiplied by the number of tasks applied to them.

Hence, number of tasks in the AOG of a strongly connected product with n parts is

[]∑
=

− −







=

n

s

s

s

n
l

2

1 12 =
2

123 1 +− +nn

. This number for the loosely connected product

is 






 +
=

−××+
=−+−=∑

= 3

1

6

)1()1(
)1)(1(

1

nnnn
ssnl

n

s

 101

Figure A.4 A loosely connected product, its graph of connections and AOG

1

2 3 4

a) product

1 2 3 4

b) graph of connections

1234

123 234

12 34 23

c) AOG

a
b c

d f g

h i j

e

 102

Figure A.5 A strongly-connected product, its graph of connections and AOG

a) product
b) graph of connections
connections

1

2 4

3

1

2 4

3

c) AND/OR graph of strongly connected product with 20 tasks

1234

124 123

12 34

134

14 24 23 13

 103

Total number feasible assembly sequences in AOG depends on the same

variables as well: It can be found by a recursive formula. Let NiS be the total

number of assembly sequences for a strongly connected subassembly with the

number of parts equal to i.

N2S = 1

N3S = 








2

3
* N2S = 3

N4S = 








3

4
* N3S + 









2

4
*

2

1
* N2S = 15

N5S = 








4

5
* N4S + 









3

5
* N3S* N2S = 105

∑
−

=
− ××








=

1

1
)(

2

1 i

j

jSSjiiS NN
j

i
N = ∏

=

−
i

j

j
2

)32(

 where i ≥ 2 and N1S = 1

 104

Let NiL be the total number of assembly sequences for a loosely connected

subassembly with the number of parts equal to i.

N2L = 1

N3L = 2* N2L = 2

N4L = 2* N3L + 1* (N2L)
2= 5

N5L = 2* N4L + 2* N3L* N2L = 14

∑
−

=
− ×=

1

1
)(

i

j

jLLjiiL NNN

 where i > 2 and N1S = 1.

Strongly connected and loosely connected products are two extremes. The

typical products are between the two extremes in terms of number of connections.

In the literature there is also a simplified representation of AOG that decreases

the number of nodes slightly. For example, Lambert (1999) proposes using normal

arcs instead of hyper-arcs that shows the input subassembly (to disassembly task)

and only one of the output subassemblies instead of the hyper-arc showing both of

the output subassemblies and the input subassembly. In this simplified

representation, one does not loose any information since it can be inferred from

the complementary nodes in AOG. Also, the subassemblies with a single part can

be eliminated as there are no tasks that can be applied to them. To realize how this

makes the representation easier, see Figure A.6 as compared to Figure 6 in Chapter

3.

 105

Figure A.6 Proposed AND/OR graph

 106

APPENDIX 2

Figures of the Example 2 in Section 3.3

Figure A.7 An example product and its GOC (Lambert 1999)

1

2

3

4

9 8 7 6

5

1 1

1

1 1 1 1 1 1

1 10
c1 c2 c4

c3
c6 c7 c8 c10 c12

c11

c5

c9

a) the product

b) its GOC

 107

Figure A.8 AOG of the product in Figure A.7

 108

b c

o

f

t

l p

r n

c) AT3

b c

o

d

t

g i r n

b) AT2

b c

o t

a) AT1
q

d h

n r

 109

a

k

f

t

s

r n

f) AT6 p l

b c

o

f

t

m q

r n

d) AT4

b c

o

e

t

p

r n i

e) AT5

 110

a

k

f

t

s

r n

g) AT7 q m

a

k

d

t

s

n h

i) AT9

r

q

a

k

e

t

s

n i

h) AT8

r

p

 111

a

j

d

n

q

o

r

l) AT12

t

h

a

j

d

o t

n i

k) AT11

r g

a

k

d

t

s

n i

j) AT10

r g

 112

Figure A.9 SAT established from the AOG in Figure A.8

a

j

f

n

m

o

r

o) AT15

t

q

a

j

f

n

l

o

r

n) AT14

t

p

a

j

e

n

p

o

r

m) AT13

t

i

 113

1

2

3

4

9 8 7 6

5

1 1

1

1 1 1 1 1 1

1 10
c1 c2 c4

c3
c6 c7 c8 c10 c12

c11

c5

c9

τa → c4, c5, c9
τb → c3

1

2

3

9 8 7 6

5

1 1 1 1 1 1 1 1

1 10
c1 c2 c4 c6 c7 c8 c10 c12

c11

c5

c9

τc → c4, c5, c9

9 8 7 6

5

1 1 1 1 1 1

10
c6 c7 c8 c10 c12

c11 τf → c8
τd → c6
τe → c7

 114

9 8 7 6

5

1 1 1 1 1
c7 c8 c10 c12

c11

τh → c8
τg → c7

8 7 6

5

1 1 1 1
c8 c10 c12

c11

τi → c8

τn → c10, c11

7 6

1 1 1
c10 c12

c11

5

τr → c12

6

1 1
c12

5

τl → c7
τm → c6

9 8

1 1 1

10
c6 c7

τp → c6

9

1 1

10
c6

τq → c7

9 8

1 1
c7

 115

Figure A.10 The subassemblies of AOG in Figure A.8, their GOC and

corresponding tasks

1

2

3

4

1 1

1

1
c1 c2

c3

τj → c3
τk → c2

1

2

3

1 1

1
c1 c2

τo → c2

3

4

1

1

c3
τs → c3 = 6

1

2

1

1
c1

τt → c1

 116

1 2

3

4

t

6 5

r n

c) AT3
m

1 2

3

5

t

6 4 r n

b) AT2
m

1 2

3 t

a) AT1
m

6

5 4

n r

 117

2

3

4

t

1

r n

f) AT6
m 5 6

1 2

3

4

t

5 6

r n

d) AT4
m

1 2

3

6

t

5

r n 4

e) AT5
m

 118

2

3

4

t

1

r n

g) AT7
m 6 5

2

3

5

t

1

n 4

i) AT9
m

r

6

2

3

6

t

1

n 4

h) AT8
m

r

5

 119

2

1

5

n

6

3

r

l) AT12
m

t

4

2

1

5

3 t

n 4

k) AT11
m

r 6

2

3

5

t

1

n 4

j) AT10
m

r 6

 120

Figure A.11 The mAT
S obtained from SAT in Figure A.9

2

1

4

n

5

3

r

o) AT15
m

t

6

2

1

4

n

6

3

r

n) AT14
m

t

5

2

1

6

n

5

3

r

m) AT13
m

t

4

 121

Figure A.12 STPD obtained by combining equitask ATm’s in Figure A.11

2

1

6

5

r8 n7

t9 3

4

 122

APPENDIX 3

Figures of the Example 3 in Section 3.3

Figure A.13 An example product and its GOC (Lambert 1999)

1 2

3 4
7

5

6

b) its GOC

a) the
product

1

2 3 7

5

4 6

c

c

c

c

c
 c

c

c

c

c10 c11

c12

 123

Figure A.14 AOG of the product in Figure A.13

1/7

2,4

1/5,7

3,4

1/6 1/4,6,7

1/5

1,3

1/4,6

1,2,5 3,4,6

1/4,7

1/4

1,2

1

2

3

4 5

6

7

8

9

10

11 12

13

14

15

16

17

18 19

20 21 22 23

0

1
2 3

4
5

6

7

8 9

10 11
12 13

 124

1 5 13

18 22

23

b) AT5

1 5 12 17

22

23

b) AT4

1 5 12 16

20

21

b) AT3

1 4 11 17

22

23

b) AT2

1 4 11 16

20

21

b) AT1

 125

2 7 14 17

22

23

b) AT10

2 7 14 16

20

21

b) AT9

2 7 15

19 23

22

b) AT8

2 6 11 17

22

23

b) AT7

2 6 11 16

20

21

b) AT6

 126

3 10 15

19 23

22

b) AT15

3 9

23

18 22

19

b) AT14

3 8 13

18 22

23

b) AT13

3 8 12 17

22

23

b) AT12

3 8 12 16

20

21

b) AT11

 127

Figure A.15 SAT established from the AOG in Figure A.14

3 10 14 17

22

23

b) AT17

3 10 14 16

20

21

b) AT16

 128

1

2 3

5

4 6

c1

c4

c3 c5

c8 c9 c11

c12

τ8 → c4, c5
τ9 → c1, c11
τ10 → c8, c12

1

2 3 7

5

4

c1
c2

c4

c3 c5

c6 c7

c9 c10 c11 τ6 → c4, c5
τ7 → c2, c6, c7, c10

1

2 3 7

4 6

c1
c2 c3

c6 c7

c8 c9 c10 c11

c12

τ4 → c8, c12
τ5 → c2, c6, c7, c10

1

2 3 7

5

4 6

c1
c2

c4

c3 c5

c6 c7

c8 c9 c10 c11

c12

τ1 → c4, c5
τ2 → c8, c12

τ3 → c2, c6, c7, c10

 129

1

2 3

4

c1
c3

c9 c11
τ16 → c3, c9
τ17 → c1, c11

1

2 3

5

4

c1

c4

c3 c5

c9 c11
τ14 → c4, c5
τ15 → c1, c11

1

2 3

4 6

c1
c3

c8 c9 c11

c12

τ12 → c8, c12
τ13 → c1, c11

1

2 3 7

4

c1
c2 c3

c6 c7

c9 c10 c11

τ11 → c2, c6, c7, c10

 130

Figure A.16 The subassemblies of AOG in Figure A.14, their GOC and

corresponding tasks

1

2

c3
τ23 → c3

3

4

c9

τ22 → c9

1

3

c1

τ21 → c1

2

4

c11 τ20 → c11

3

4 6

c8 c9

c12

τ18 → c8, c12

1

2

5
c4

c3 c5 τ19 → c4, c5

 131

a c d

b 22

23

b) AT5
m

a c b d

22

23

b) AT4
m

a c b 16

20

21

b) AT3
m

a b c d

22

23

b) AT2
m

a b c 16

20

21

b) AT1
m

 132

b c a d

22

23

b) AT10
m

b c a 16

20

21

b) AT9
m

b c d

a 23

22

b) AT8
m

b a c d

22

23

b) AT7
m

b a c 16

20

21

b) AT6
m

 133

c b d

a 23

22

b) AT15
m

c d

23

b 22

a

b) AT14
m

c a d

b 22

23

b) AT13
m

c a b d

22

23

b) AT12
m

c a b 16

20

21

b) AT11
m

 134

Figure A.17 The mAT

S obtained from SAT in Figure A.15

c b a d

22

23

b) AT17
m

c b a 16

20

21

b) AT16
m

 135

Figure A.18 STPD obtained by combining equitask ATm’s in Figure A.17

b

a

c d

23

22
b

a

c 16

20

21

TPD1
TPD2

 136

APPENDIX 4

Storing AOG in a Matrix

There are two types of nodes in AOG: artificial nodes and normal nodes.

Each normal node is adjacent from and adjacent to one artificial node. The rows of

the matrix represent the normal nodes and the columns represent the artificial

nodes. The (ij)th entry is 0, if the normal node i is neither adjacent from nor

adjacent to the artificial node j; it is 1 if the normal node i is adjacent to the

artificial node j; and -1, if it is adjacent from. The below matrix represents the

AOG in Figure 13 of Chapter 4.

 137

 A0 A1 A2 A3 A4 A5 A6 A7 A8 A9 A10 A11 A12 A13

1 -1 1 0 0 0 0 0 0 0 0 0 0 0 0
2 -1 0 1 0 0 0 0 0 0 0 0 0 0 0
3 -1 0 0 1 0 0 0 0 0 0 0 0 0 0
4 0 -1 0 0 1 0 0 0 0 0 0 0 0 0
5 0 -1 0 0 0 1 0 0 0 0 0 0 0 0
6 0 0 -1 0 1 0 0 0 0 0 0 0 0 0
7 0 0 -1 0 0 0 1 0 0 0 0 0 0 0
8 0 0 0 -1 0 1 0 0 0 0 0 0 0 0
9 0 0 0 -1 0 0 0 0 1 1 0 0 0 0
10 0 0 0 -1 0 0 1 0 0 0 0 0 0 0
11 0 0 0 0 -1 0 0 1 0 0 0 0 0 0
12 0 0 0 0 0 -1 0 1 0 0 0 0 0 0
13 0 0 0 0 0 -1 0 0 1 0 0 0 0 1
14 0 0 0 0 0 0 -1 1 0 0 0 0 0 0
15 0 0 0 0 0 0 -1 0 0 0 0 0 1 1
16 0 0 0 0 0 0 0 -1 0 0 1 1 0 0
17 0 0 0 0 0 0 0 -1 0 0 0 0 1 1
18 0 0 0 0 0 0 0 0 -1 0 0 0 1 0
19 0 0 0 0 0 0 0 0 0 -1 0 0 0 1
20 0 0 0 0 0 0 0 0 0 0 -1 0 0 0
21 0 0 0 0 0 0 0 0 0 0 0 -1 0 0
22 0 0 0 0 0 0 0 0 0 0 0 0 -1 0
23 0 0 0 0 0 0 0 0 0 0 0 0 0 -1

 138

APPENDIX 5

Some Examples to Partial AOG (AOG(S))

All partial AOG’s in this appendix are obtained from the AOG in Figure 13

of Chapter 4.

Figure A.19 AOG ({A13})

A13

B4 A4 B11

A0

B1

B2

B3

A1

A2

A3

B5

B6

B7

B8

B9

B10

A5

A6

A7
B12

B13

B14

B18 A8

A9

B15

A12

B16

B17

B19

A10

A11

B20

B21

B22

 139

Figure A.20 AOG ({A6})

Figure A.21 AOG ({A7})

A0 B2

B3

A2

A3

B7

B10

A6

B4 A4 B11

A0

B1

B2

B3

A1

A2

A3

B5

B6

B7

B8

B10

A5

A6

A7
B12

B14

 140

Figure A.22 AOG ({A8})

Figure A.23 AOG ({A8, A13})

A13

A0

B1

B3

A1

A3

B5

B8

B9

A5
B13

A8

A9 B19

A13

A0

B1

B3

A1

A3

B5

B8

B9

A5
B13

A8

A9 B19 B23

 141

Figure A.24 AOG ({A8, A13, A9}) = AOG ({A8, A9})

A0

B3 A3

B9

A8

A9

 142

APPENDIX 6

Java Code for the DP method to the ADLB-

AOG Problem

Class Result

import java.util.ArrayList;
public class Result {

 static Node[] nodes=new Node[10000];
 static int NUM=0;
 static int T = 20; //should be greater than the maximum duration

 static int [][] AOG = {{0,0,1,2,3,4,5,6,7,8,9,10,11,12,13},
 {1,-1,1,0,0,0,0,0,0,0,0,0,0,0,0},{2,-1,0,1,0,0,0,0,0,0,0,0,0,0,0},
 {3,-1,0,0,1,0,0,0,0,0,0,0,0,0,0},{4,0,-1,0,0,1,0,0,0,0,0,0,0,0,0},
 {5,0,-1,0,0,0,1,0,0,0,0,0,0,0,0},{6,0,0,-1,0,1,0,0,0,0,0,0,0,0,0},
 {7,0,0,-1,0,0,0,1,0,0,0,0,0,0,0},{8,0,0,0,-1,0,1,0,0,0,0,0,0,0,0},
 {9,0,0,0,-1,0,0,0,0,1,1,0,0,0,0},{10,0,0,0,-1,0,0,1,0,0,0,0,0,0,0},
 {11,0,0,0,0,-1,0,0,1,0,0,0,0,0,0},{12,0,0,0,0,0,-1,0,1,0,0,0,0,0,0},
 {13,0,0,0,0,0,-1,0,0,1,0,0,0,0,1},{14,0,0,0,0,0,0,-1,1,0,0,0,0,0,0},
 {15,0,0,0,0,0,0,-1,0,0,0,0,0,1,1},{16,0,0,0,0,0,0,0,-1,0,0,1,1,0,0},
 {17,0,0,0,0,0,0,0,-1,0,0,0,0,1,1},{18,0,0,0,0,0,0,0,0,-1,0,0,0,1,0},
 {19,0,0,0,0,0,0,0,0,0,-1,0,0,0,1},{20,0,0,0,0,0,0,0,0,0,0,-1,0,0,0},
 {21,0,0,0,0,0,0,0,0,0,0,0,-1,0,0},{22,0,0,0,0,0,0,0,0,0,0,0,0,-1,0},
 {23,0,0,0,0,0,0,0,0,0,0,0,0,0,-1}};

 static int[] durations = {22,22,14,21,13,21,13,21,16,21,12,20,15,20,15,14,14,18,18,7,7,7,7};

 //task numbers and task durations must match.

 public static void main(String[] args) {

 hyerarchy ();

 System.out.println("Optimal cost is "+cost(nodes[0]));

 143

 System.out.println("Optimal path is "+path());

 }// method main

 public static void hyerarchy (){

 ArrayList set = new ArrayList();
 ArrayList temp_set = new ArrayList();
 boolean bol = true;

 nodes[0]=new Node(NUM,AOG);
 set.add(""+NUM);

 while(set.size()!=0){

 for(int a=0;a<set.size();a++){

 if(nodes[Integer.parseInt(""+set.get(a))].matrix.length!=2){
 for (int
b=0;b<nodes[Integer.parseInt(""+set.get(a))].lastnodes.size();b++){
 if(temp_set!=null){
 for(int c=0;c<temp_set.size();c++){
 if(check_equivalence
(nodes[Integer.parseInt(""+temp_set.get(c))].matrix,Graph.graph_form
(nodes[Integer.parseInt(""+set.get(a))].matrix,
Integer.parseInt(""+nodes[Integer.parseInt(""+set.get(a))].lastnodes.get(b))))){

 nodes[Integer.parseInt(""+set.get(a))].set_torun(Integer.parseInt(""+temp_set.get(c)),Integer.parse
Int(""+nodes[Integer.parseInt(""+set.get(a))].lastnodes.get(b)));
 bol=false;
 }
 }
 }

 if (bol){
 NUM++;
 temp_set.add(""+NUM);

 nodes[Integer.parseInt(""+set.get(a))].set_torun(NUM,Integer.parseInt(""+nodes[Integer.parseInt(""
+set.get(a))].lastnodes.get(b)));
 nodes[NUM]=new
Node(NUM,Graph.graph_form(nodes[Integer.parseInt(""+set.get(a))].matrix,
Integer.parseInt(""+nodes[Integer.parseInt(""+set.get(a))].lastnodes.get(b))));

 }
 bol=true;

 }
 }

 144

 set.remove(a);
 a--;

 }

 for (int a=0;a<temp_set.size();a++){
 set.add(""+temp_set.get(a));
 }
 while(temp_set.size()!=0){
 temp_set.remove(0);
 }
 }

 }// method hyerarchy

 public static boolean check_equivalence(int[][] mat1, int[][] mat2){
 boolean ret_value = true;

 if (mat1.length==mat2.length){
 for (int a=0;a<mat1.length;a++){
 if (mat1[a].length!=mat2[a].length){
 ret_value=false;
 }
 }

 if(ret_value){
 for (int a=0;a<mat1.length;a++){
 for (int b=0;b<mat1[a].length;b++){
 if (mat1[a][b]!=mat2[a][b]) ret_value=false;
 }
 }
 }

 }

 else ret_value=false;

 return ret_value;

 } // method check_equivalence

 public static int cost (Node nd){
 int cost=0, alfa = 0, y = 0, al = 0, b = 100000000;
 if(nd.matrix.length==2){
 nodes[nd.number].set_cost(durations[nd.matrix[1][0]-1]);

 145

 }

 else {
 for (int a=0;a<nd.torun[0].size();a++){

 if(nodes[Integer.parseInt(""+nd.torun[0].get(a))].cost!=0){
 cost=nodes[Integer.parseInt(""+nd.torun[0].get(a))].cost;
 }

 else cost=cost(nodes[Integer.parseInt(""+nd.torun[0].get(a))]);

 y=durations[nd.matrix[Integer.parseInt(""+nd.torun[1].get(a))][0]-1];

 al=(int)((cost+y)/T);
 if(al==(float)(cost+y)/T||al==(int)(cost/T)){
 alfa=y;
 }
 else alfa=T*al+y-cost;

 if (cost+alfa<b){

 b= cost+alfa;
 }

 }

 nodes[nd.number].set_cost(b);
 b=100000000;

 }

 return nodes[nd.number].cost;

 }//method cost

 public static ArrayList path(){
 Node nod=nodes[0];
 ArrayList path = new ArrayList();
 int cost=0, y=0, al=0, alfa =0;

 while(nod.matrix.length>2){
 for(int a=0;a<nod.torun[0].size();a++){

 cost=nodes[Integer.parseInt(""+nod.torun[0].get(a))].cost;

 y=durations[nod.matrix[Integer.parseInt(""+nod.torun[1].get(a))][0]-1];

 146

 al=(int)((cost+y)/T);
 if(al==(float)(cost+y)/T||al==(int)(cost/T)){
 alfa=y;
 }
 else alfa=T*al+y-cost;

 if(nod.cost==cost+alfa){

 path.add(""+nod.matrix[Integer.parseInt(""+nod.torun[1].get(a))][0]);
 nod=nodes[Integer.parseInt(""+nod.torun[0].get(a))];
 a=nod.torun[0].size();
 }
 }

 }

 path.add(""+nod.matrix[1][0]);

 return path;

 }//method path

} // class Result

 147

Class Graph

public class Graph {

 public static int[][] graph_form (int[][] matrix, int deleted){

 return new_graph (remaining_nodes(matrix,deleted),matrix);

 }//method graph_form

 private static int[][] new_graph(int[] rem_nodes, int [][] matr){

//................................row_elimination................//
 int[][] parti1 = new int[rem_nodes.length+1][matr[0].length];

 for (int b=0;b<matr[0].length;b++){
 parti1[0][b]=matr[0][b];
 }

 for (int a=0;a<rem_nodes.length;a++){
 for(int b=0;b<parti1[0].length;b++){
 parti1[a+1][b]=matr[rem_nodes[a]][b];
 }
 }

//................................row_elimination................\\

//................................column_elimination.............//
//................................empty_columns.............//
 boolean del=false;
 ArrayList keep_art=new ArrayList();

 for(int b=1;b<parti1[0].length;b++){
 for (int a=1;a<parti1.length;a++){
 if (parti1[a][b]==-1){
 del=true;
 }

 }
 if(del) {
 keep_art.add(""+b);
 del=false;
 }

 }

 int [] columns = new int[keep_art.size()];

 148

 for(int a=0;a<keep_art.size();a++){
 columns[a]=Integer.parseInt(""+keep_art.get(a));
 }

//................................empty_columns.............\\

 int[][] parti2 = new int[parti1.length][columns.length+1];

 for (int a=0;a<parti1.length;a++){
 parti2[a][0]=parti1[a][0];
 }

 for (int b=0;b<columns.length;b++){
 for(int a=0;a<parti2.length;a++){
 parti2[a][b+1]=parti1[a][columns[b]];
 }
 }

//................................column_elimination............\\
 return parti2;

 }//method new_graph

 private static int[] remaining_nodes (int[][] par, int deleted){
 boolean check1 = false, check2 = true;
 boolean check_add1=true, check_add2=true, check_add3=true;

 ArrayList APtC = new ArrayList();
 ArrayList APC = new ArrayList();
 ArrayList NtC = new ArrayList();
 ArrayList NK = new ArrayList();
 ArrayList AStC = new ArrayList();
 ArrayList ASC = new ArrayList();
 ArrayList NStC = new ArrayList();

 NtC.add(""+deleted);

 while(NtC.size()!=0){
//......................................remove from normal to be checked//
//......................................add predecessor artificials//
 for (int a=0;a<NtC.size();a++){
 for(int b=1;b<par[0].length;b++){
 if(par[Integer.parseInt(""+(NtC.get(a)))][b]==-1){
 for(int c=0;c<APtC.size();c++){
 if(Integer.parseInt(""+APtC.get(c))==b){
 check_add2=false;
 }

 }
 if(check_add2){

 149

 APtC.add(""+b);
 }
 else check_add2=true;
 }
 }
//......................................add predecessor artificials\\

//......................................add successor artificials//

 for(int b=1;b<par[0].length;b++){
 if(par[Integer.parseInt(""+(NtC.get(a)))][b]==1){
 check1 = true;
 for (int l=0;l<APC.size();l++){
 if(b==Integer.parseInt(""+(APC.get(l)))){
 check2 = false;
 }
 }
 }
 if(check1&check2){
 for(int c=0;c<AStC.size();c++){
 if(Integer.parseInt(""+AStC.get(c))==b){
 check_add3=false;
 }

 }
 if(check_add3){
 AStC.add(""+b);
 }
 else check_add3=true;
 }
 check1=false;
 check2=true;
 }

//......................................add successor artificials\\

 NK.add(NtC.get(a));
 NtC.remove(a);
 a--;
 }
//......................................remove from normal to be checked\\

//................................SUCESSSSSSSSSOOOOOOOOOOOOOOOORRRRRRRRRRR
//......................................remove the previously checked artificial successor//

 while(AStC.size()!=0){
 for (int k=0;k<AStC.size();k++){
 for (int l=0;l<ASC.size();l++){

 if(Integer.parseInt(""+(AStC.get(k)))==Integer.parseInt(""+(ASC.get(l)))){

 150

 AStC.remove(k);
 l=ASC.size();
 k--;
 }
 }
 }

//......................................remove the previously checked artificial successor\\

//.........................remove from artificial successor to be checked//
//..add successor normals//
 for (int b=0;b<AStC.size();b++){
 for(int a=1;a<par.length;a++){
 if(par[a][Integer.parseInt(""+(AStC.get(b)))]==-1){
 NStC.add(""+a);
 }
 }
//......................................add successor normals\\

 ASC.add(AStC.get(b));
 AStC.remove(b);
 b--;
 }

//......................................remove from artificial suceesor to be checked\\
//......................................remove from normal successor to be checked//

 for (int a=0;a<NStC.size();a++){
 for(int b=1;b<par[0].length;b++){
 if(par[Integer.parseInt(""+(NStC.get(a)))][b]==1){
 for(int c=0;c<AStC.size();c++){
 if(Integer.parseInt(""+AStC.get(c))==b){
 check_add1=false;
 }

 }
 if(check_add1){
 AStC.add(""+b);
 }
 else check_add1=true;
 }
 }
 NK.add(""+Integer.parseInt(""+(NStC.get(a))));
 NStC.remove(a);
 a--;
 }

//......................................remove from normal successor to be checked\\

 151

 }//while
//..........................SUCESSSSSSSSSOOOOOOOOOOOOOOOORRRRRRRRRRR

//......................................remove the previously checked artificial predecessors//
 for (int k=0;k<APtC.size();k++){
 for (int l=0;l<APC.size();l++){

 if(Integer.parseInt(""+(APtC.get(k)))==Integer.parseInt(""+(APC.get(l)))){
 APtC.remove(k);
 l=APC.size();
 k--;
 }

 }
 }
//......................................remove the previously checked artificial\\
//......................................remove from artificial predeccessor to be checked//

 for (int b=0;b<APtC.size();b++){
 for(int a=1;a<par.length;a++){
 if(par[a][Integer.parseInt(""+(APtC.get(b)))]==1){
 NtC.add(""+a);
 }
 }
 APC.add(""+Integer.parseInt(""+(APtC.get(b))));
 APtC.remove(b);
 b--;
 }

//......................................remove from artificial to be checked\\
 }//while

//..delete the last node//
 for (int a=0;a<NK.size();a++){
 if(Integer.parseInt(""+NK.get(a))==deleted){
 NK.remove(a);
 break;
 }
 }
//..delete the last node\\

//..rearrange remaining nodes//
 int[] rows=new int[NK.size()];
 int s=par.length, t=0;

 while(NK.size()>0){
 s=par.length;
 for (int a=0;a<NK.size();a++){
 if(Integer.parseInt(""+NK.get(a))<s){

 152

 s=Integer.parseInt(""+NK.get(a));
 }
 }
 rows[t]=s;
 t++;

 for (int a=0;a<NK.size();a++){
 if(Integer.parseInt(""+NK.get(a))==s){
 NK.remove(a);
 break;
 }
 }

 }

//..rearrange remaining nodes//

 return rows;

 }//method remaining_nodes

}// class graph

 153

Class Node

class Node {
 int number, cost;
 int [][] matrix;
 ArrayList lastnodes;
 ArrayList [] torun;

 public Node(int no, int [][] matr){
 lastnodes = new ArrayList();
 torun = new ArrayList[2];
 torun[0]=new ArrayList();
 torun[1]=new ArrayList();

 matrix=matr;
 number=no;

 //latnodes are in terms of the row numbers in the matrix
 boolean last_node=false;
 for (int a=1;a<matrix.length;a++){
 for (int b=1;b<matrix[0].length;b++){
 if(matrix[a][b]==1) last_node=true;

 }
 if(last_node==false){

 lastnodes.add(""+a);
 }
 else last_node=false;
 }

 }//constructor

 public void set_torun(int tor, int last){
 torun[0].add(""+tor);
 torun[1].add(""+last);

 }

 public void set_cost(int cos){
 cost=cos;
 }

}//class Node

 154

APPENDIX 7

Java Code for the Formulation of ADLB-AOG
problem as pure 0-1 IP Programming

Class AOG_IP_Formulation

import java.io.*;
import java.util.ArrayList;
public class AOG_IP_Formulation {

 static int [][] AOG = {{0,0,1,2,3,4,5},
 {1,-1,1,0,0,0,0},{2,-1,0,0,1,0,1},
 {3,-1,0,1,0,0,0},{4,0,-1,0,1,0,0},
 {5,0,-1,0,0,1,0},{6,0,0,-1,0,1,0},
 {7,0,0,-1,0,0,1},{8,0,0,0,-1,0,0},
 {9,0,0,0,0,-1,0},{10,0,0,0,0,0,-1}};

 static int[] durations = {12,7,9,6,8,11,6,7,6,10};

 //task numbers and task durations must match.

 static int numParts = 4;
 static int T=13;

 public static void main(String[] args)throws IOException {

 ArrayList art_eksi1 = new ArrayList();
 ArrayList art_arti1 = new ArrayList();

 String file = "model.txt";
 final int M = numParts-1;

 FileWriter fw = new FileWriter(file);
 BufferedWriter bw = new BufferedWriter(fw);
 PrintWriter outFile = new PrintWriter(bw);

 155

//Objective Function
 outFile.println("minimize ");
 for (int a= 1; a<=M;a++){
 outFile.print("+ "+a+"f"+a);

 }

 outFile.println();
 outFile.println("subject to");

//constraint for A0

 outFile.println();
 for (int a=1;a<AOG.length;a++){
 if(AOG[a][1]==-1) art_eksi1.add(""+a);
 }

 for (int a = 0; a<art_eksi1.size();a++){
 outFile.print("+ Z"+art_eksi1.get(a));

 }
 outFile.println(" = 1");

// constraints for Ai

 outFile.println();
 for(int b=2;b<AOG[0].length;b++){
 art_arti1=new ArrayList();
 art_eksi1=new ArrayList();
 for (int a=1;a<AOG.length;a++){
 if(AOG[a][b]==-1) art_eksi1.add(""+a);
 if(AOG[a][b]==1) art_arti1.add(""+a);
 }

 for (int a = 0; a<art_eksi1.size();a++){
 outFile.print("+ Z"+art_eksi1.get(a));

 }

 for (int a = 0; a<art_arti1.size();a++){
 outFile.print("- Z"+art_arti1.get(a));

 }

 outFile.println(" = 0");
 }

 156

//constraints for assuring that the task is assigned to the station

 outFile.println();
 for(int a=1;a<AOG.length;a++){
 for(int j=1;j<=M;j++){
 outFile.print("+ X"+AOG[a][0]+","+j);

 }
 outFile.println("- Z"+AOG[a][0]+" = 0");
 }

//precedence constraints

 outFile.println();
 for(int b=2;b<AOG[0].length;b++){
 art_arti1=new ArrayList();
 art_eksi1=new ArrayList();
 for (int a=1;a<AOG.length;a++){
 if(AOG[a][b]==-1) art_eksi1.add(""+a);
 if(AOG[a][b]==1) art_arti1.add(""+a);
 }

 for (int a = 0; a<art_arti1.size();a++){
 for(int j=1;j<=M;j++){
 outFile.print("+ "+j+"X"+art_arti1.get(a)+","+j);

 }
 }

 for (int a = 0; a<art_eksi1.size();a++){
 for(int j=1;j<=M;j++){

 outFile.print("- "+j+"X"+art_eksi1.get(a)+","+j);

 }
 }

 outFile.println(" <= 0");
 }

//cycle time constraints

 outFile.println();
 for (int j=1;j<=M;j++){
 for(int a=1;a<AOG.length;a++){
 outFile.print("+ "+durations[a-1]+"X"+AOG[a][0]+","+j);
 }
 outFile.println("- "+T+"f"+j+" <=0");

 157

 }

 System.out.println ("File "+file+" is okey");
 outFile.close();

 }// class main

 private static void PrintToFile(int[][] matrix, PrintWriter outFile)throws IOException{

 for (int a=0;a<matrix.length;a++){
 for (int b=0;b<matrix[0].length;b++){

 if(b==1) outFile.print("\t");
 outFile.print(matrix[a][b]+" ");
 }
 if(a==0){
 outFile.println("\n");
 }
 else{
 outFile.println();
 }
 }

 }// method PrintToFile

}//class AOG_IP_Formulation

 158

APPENDIX 8

Java Code to Generate AOG

Class Generate_Graph

public class Generate_Graph {

 int numParts;
 int numArts;
 final int numTasks= 2;
 final int numParallel= 0;
 final int duration_ilk=1,duration_son=20;

 static int[][] AOG;
 static int[] durations;

 public Generate_Graph (int nub, int nua){
 numParts=nub;
 numArts=nua;
 }

 public int[][] AOG_generator() {

 Generate_Node[][] graph = new Generate_Node[numParts-1][];
 int count=0,assign=0;
 int toruns, tasks;

// Sequential Disassembly

 for (int a=numParts;a>2;a--){
 if (a==numParts){
 graph[numParts-a]=new Generate_Node[1];
 graph[numParts-a][0]=new Generate_Node(count);
 count++;

 toruns = numArts; //Rand.triangle(0,4,8,0.75);//
 graph[numParts-a+1]=new Generate_Node[toruns];

 for (int b=0;b<toruns;b++){
 graph[numParts-a+1][b]=new Generate_Node(count);

 159

 graph[numParts-a][0].set_tor(""+count);
 count++;
 }

 }

 else {

 int of=1;
 boolean tekrar=true;

 toruns = numArts; //Rand.triangle(0,4,8,0.75);//
 graph[numParts-a+1]=new Generate_Node[toruns];
 assign=count;
 for (int b=0;b<toruns;b++){
 graph[numParts-a+1][b]=new Generate_Node(count);
 count++;
 }

 while(tekrar&(assign!=count)){

 for (int b=0;b<graph[numParts-a].length;b++){
 tasks=numTasks;
 for(int c=0;c<tasks;c++){
 if((of==1)||tekrar){
 if (assign==count) {
 assign-=toruns;
 tekrar=false;
 }
 graph[numParts-a][b].set_tor(""+assign);
 assign++;
 if (assign==count) {
 tekrar=false;
 }
 }
 }
 }
 of++;
 }

 }
 }

/*

//Generate AOG

 int art_count=0,task_count=0; //count tasks and artificials

 160

 for(int a=0;a<graph.length;a++){
 if(a!=graph.length-1){
 for(int b=0;b<graph[a].length;b++){
 art_count++;

 for(int c=0;c<graph[a][b].tors.size();c++){
 task_count++;
 }
 }
 }
 else {
 art_count+=graph[graph.length-1].length;
 task_count+=graph[graph.length-1].length;
 }
 }
 System.out.print(task_count+"\t");

 for(int a=0;a<graph.length-2;a++){
 for(int b=0;b<graph[a].length;b++){
 for(int c=0;c<graph[a][b].p_tor1.size();c++){
 task_count++;
 }
 }
 }

 AOG=new int[task_count+1][art_count+1];

 for(int b=1;b<AOG[0].length;b++){
 AOG[0][b]=b-1;
 }

 int cou=1;
 for(int a=0;a<graph.length-1;a++){
 for(int b=0;b<graph[a].length;b++){
 for(int c=0;c<graph[a][b].tors.size();c++){
 AOG[cou][0]=cou;
 AOG[cou][graph[a][b].no+1]=-1;
 AOG[cou][Integer.parseInt(""+graph[a][b].tors.get(c))+1]=1;
 cou++;
 }
 }
 }

 for(int b=0;b<graph[graph.length-1].length;b++){
 AOG[cou][0]=cou;
 AOG[cou][graph[graph.length-1][b].no+1]=-1;
 cou++;
 }

 161

 for(int a=0;a<graph.length-2;a++){
 for(int b=0;b<graph[a].length;b++){
 for(int c=0;c<graph[a][b].p_tor1.size();c++){
 AOG[cou][0]=cou;
 AOG[cou][graph[a][b].no+1]=-1;
 AOG[cou][Integer.parseInt(""+graph[a][b].p_tor1.get(c))+1]=1;
 AOG[cou][Integer.parseInt(""+graph[a][b].p_tor2.get(c))+1]=1;
 cou++;
 }
 }
 }

 return AOG;
 }//method AOG_generator

 public int[] durations_generator() {
 durations=new int[AOG.length-1];

 for (int a=0;a<durations.length;a++){
 durations[a]=Rand.duration(duration_ilk,duration_son);
 }

 return durations;
 }//method duration_generator

}//class Generate_Graph

 162

Class Generate_Node

import java.util.ArrayList;
public class Generate_Node {

 int no;
 ArrayList tors = new ArrayList();
 ArrayList p_tor1 = new ArrayList();
 ArrayList p_tor2 = new ArrayList();

 public Generate_Node(int number) {
 no=number;
 }// constructor Generate_Node

 public void set_tor(String tor){
 tors.add(tor);
 }// method set_tor

 public void set_p_tors(String tor1,String tor2){
 p_tor1.add(tor1);
 p_tor2.add(tor2);
 }// method set_tor

}//class Generate_Node

 163

Class Rand

import java.util.ArrayList;
public class Rand {

 public static int triangle(int beg, int mean, int end, double ilk_frequency){
 int ok=0;
 double ran = Math.random();
 double alt, ust;

 for(int a=0;a<(mean-beg);a++){
 alt=(double)a*4*ilk_frequency/(mean-beg);
 ust=(double)(a+1)*4*ilk_frequency/(mean-beg);
 if(ran<ust&ran>=alt) ok= a+1+beg;
 }

 for(int a=0;a<(end-mean);a++){
 alt=(double)a*(1.0-ilk_frequency)/(end-mean)+ilk_frequency;
 ust=(double)(a+1)*(1.0-ilk_frequency)/(end-mean)+ilk_frequency;
 if(ran<ust&ran>=alt) ok= mean+a+1;
 }

 return ok;
 }// method triangle

 public static int tombala (ArrayList tops){
 double rastgele=Math.random();
 int sansli=-1;

 if(tops.size()!=0){
 int[]toplar=new int[tops.size()];
 for (int a=0;a<toplar.length;a++){
 toplar[a]=Integer.parseInt(""+tops.get(a));
 }

 for(int a=0;a<toplar.length;a++){

 if((rastgele>=(double)a/toplar.length)&(rastgele<(double)(a+1)/toplar.length)){
 sansli=toplar[a];
 }
 }
 }

 return sansli;
 }//method tombala

 public static int duration(int ilk, int son){

 int duration=ilk+(int)(Math.random()*(son-ilk));

 164

 return duration;
 }// method duratıon
}// class Rand

 165

APPENDIX 9

JAVA CODE FOR THE HEURISTIC

The classes and methods for the heuristic is the same as the DP codes given

in Appendix 6 except the method hierarchy in the class Result. Hence, we give

only this method.

Method Hierarchy

 public static void hyerarchy (int tp){

 ArrayList set = new ArrayList();
 ArrayList temp_set = new ArrayList();
 boolean bol = true;
 int iter_count,iter_count_temp, tin_par;

 nodes[0]=new Node(NUM,AOG);
 set.add(""+NUM);
 tin_par=tp;
 iter_count_temp=Math.min(nodes[0].lastnodes.size(),tin_par);

 while(set.size()!=0){
 iter_count=iter_count_temp;
 iter_count_temp=0;
 for (int h=0;h<iter_count;h++){
 for(int a=0;a<set.size();a++){

 if(nodes[Integer.parseInt(""+set.get(a))].matrix.length!=2&nodes[Integer.parseInt(""+set.get(a))].las
tnodes.size()>=h+1){
 if(temp_set!=null){
 for(int c=0;c<temp_set.size();c++){

 if(check_equivalence(nodes[Integer.parseInt(""+temp_set.get(c))].matrix,Graph.graph_form
(nodes[Integer.parseInt(""+set.get(a))].matrix,
Integer.parseInt(""+nodes[Integer.parseInt(""+set.get(a))].lastnodes.get(h))))){

 166

 nodes[Integer.parseInt(""+set.get(a))].set_torun(Integer.parseInt(""+temp_set.get(c)),Integer.parse
Int(""+nodes[Integer.parseInt(""+set.get(a))].lastnodes.get(h)));
 bol=false;
 }
 }
 }

 if (bol){
 NUM++;
 temp_set.add(""+NUM);

 nodes[Integer.parseInt(""+set.get(a))].set_torun(NUM,Integer.parseInt(""+nodes[Integer.parseInt(""
+set.get(a))].lastnodes.get(h)));
 nodes[NUM]=new
Node(NUM,Graph.graph_form(nodes[Integer.parseInt(""+set.get(a))].matrix,
Integer.parseInt(""+nodes[Integer.parseInt(""+set.get(a))].lastnodes.get(h))));

 if(nodes[NUM].lastnodes.size()>iter_count_temp)
 iter_count_temp= nodes[NUM].lastnodes.size();
 }
 bol=true;

 }
 if (temp_set.size()>=tin_par) {
 a=set.size();
 }
 }
 if (temp_set.size()>=tin_par) h=iter_count;
 }
 while(set.size()!=0){
 set.remove(0);
 }

 for (int a=0;a<temp_set.size();a++){
 set.add(""+temp_set.get(a));
 }
 while(temp_set.size()!=0){
 temp_set.remove(0);
 }
 }

 }// method hyerarchy

