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ABSTRACT

A LAYOUT ALGORITHM FOR
UNDIRECTED COMPOUND GRAPHS

Erhan Giral

M.S. in Computer Engineering

Supervisor: Assist. Prof. Dr. Uğur Doğrusöz

August, 2005

Graph layout is an important problem in information visualization. All data-

driven graph-based information visualization systems require some sort of an

automatic geometry generation mechanism, as it is generally not directly available

from the data being modeled. This is why graph layout problem has been studied

extensively. However, for the case of compound graphs, there are still important

gaps in this area. We present a new, elegant algorithm for undirected compound

graph layout. The algorithm is based on the traditional force-directed layout

scheme with extensions to handle nesting, varying node sizes, and possibly other

application-specific constraints. Experimental results show that the execution

time and quality of the produced drawings with respect to commonly accepted

layout criteria are quite satisfactory. The algorithm has also been successfully

implemented as part of a pathway integration and analysis toolkit named Patika

for drawing complicated biological pathways with compartmental constraints and

arbitrary nesting relations to represent molecular complexes and various types of

pathway abstractions.

Keywords: Visualization, Graph Visualization, Graph Drawing, Force Directed

Graph Layout, Compound Graphs.
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ÖZET

YÖNSÜZ BİLEŞİK ÇİZGELER İÇİN YERLEŞİM

ALGORİTMASI

Erhan Giral

Bilgisayar Mühendisliği, Yüksek Lisans

Tez Yöneticisi: Yard. Doç. Dr. Uğur Doğrusöz

Ağustos, 2005

Çizge yerleşimi bilgi görselleme alanındaki önemli bir problemdir. Bütün veriye

dayalı çizge tabanlı bilgi görselleme sistemleri bir özdevimli geometri yaratma

düzeneğine ihtiyaç duymaktadır. Çünkü geometri bilgisi çoğunlukla modellenen

bilgide bulunmaz. Bu nedenle çizge yerleşim probleminin etraflıca incelenmesine

rağmen bileşik çizgeler durumu aynı kapsamda araştırılmamıştır. Bu çalışmada

yönsüz bileşik çizgeler için yeni bir yerleşim algoritması sunulmaktadır. Al-

goritma, geleneksel güce-dayalı yerleşim şablonunu esas almakta ve iç içelik,

değişebilir düğüm şekli ve muhtemel diğer uygulamaya özel kısıtları halledebile-

cek şekilde geliştirmektedir. Deneysel sonuçlar hesaplama zamanı ve genelde

kabul edilen yerleşim niteliği açısından algoritmanın son derece başarılı olduğunu

ortaya koymaktadır. Algoritma, bir yolak bütünleştirme ve analiz araç takımı

olan Patika için de başarılı bir şekilde gerçekleştirilmiştir. Patika son derece

karmaşık yolak bilgisini görsellemektedir ve birçok değişik çeşit biyolojik yolağı

görselleyebilmek için, alansal kısıtlar ve rastgele iç içelik ilişkileri içermektedir.

Anahtar sözcükler : Görselleme, Çizge Görselleme, Çizge Çizimi, Çizge Yerleşimi,

Güce-dayalı Çizge Yerleşimi, Bileşik Çizgeler.
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and Assoc. Prof. Dr. İsmail H. Toroslu for showing keen interest to the subject

matter and accepting to read and review the thesis.

I would like to thank to my family for their guidance and support.

v



Contents

1 Introduction 1

1.1 Aesthetics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2 Constraints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.3 Use of compound graphs . . . . . . . . . . . . . . . . . . . . . . . 4

2 Definitions 7

3 Related Work 10

3.1 Orthogonal graph layout . . . . . . . . . . . . . . . . . . . . . . . 10

3.2 Hierarchical graph layout . . . . . . . . . . . . . . . . . . . . . . . 11

3.3 Circular graph layout . . . . . . . . . . . . . . . . . . . . . . . . . 13

3.4 Force directed graph layout . . . . . . . . . . . . . . . . . . . . . 14

3.5 Previous work on compound graph layout . . . . . . . . . . . . . 16

4 Layout Algorithm 19

4.1 Underlying Physical Model . . . . . . . . . . . . . . . . . . . . . . 19

vi



CONTENTS vii

4.2 Application-Specific Constraints . . . . . . . . . . . . . . . . . . . 21

4.3 Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

5 Implementation 35

5.1 An Application . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

5.2 Implementation Details . . . . . . . . . . . . . . . . . . . . . . . . 37

6 Experimental Results 38

6.1 Running time performance . . . . . . . . . . . . . . . . . . . . . . 38

6.2 Quality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

7 Conclusion 46



List of Figures

1.1 Two drawings of a computer network system. . . . . . . . . . . . 2

1.2 A constraint based layout example. Here we see examples for fixed

location and relative position constraints (courtesy of Tom Sawyer

Software). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.3 Part of a sample compound pathway. . . . . . . . . . . . . . . . . 6

1.4 A financial chart (courtesy of Tom Sawyer Software). . . . . . . . 6

2.1 A pictorial representation of the graph manager with inclusion tree

in Figure 2.2. The gradient arrows show inclusion relations and the

dashed edges are the intergraph edges [13]. . . . . . . . . . . . . 8

2.2 The inclusion tree of a graph manager, representing both ownership

(solid) and inclusion (gradient) relations [13]. . . . . . . . . . . . 9

2.3 Drawing of a graph manager with multiple levels of nesting realized

[13]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

3.1 Two orthogonal drawings (left: courtesy of Tom Sawyer Software,

right: courtesy of Tom Sawyer Software yFiles). . . . . . . . . . . 11

viii



LIST OF FIGURES ix

3.2 A hierarchical drawing of a cyclic graph. Cycles cause very bad

back edges in hierarchical drawings. Here such a back edge is

depicted as thick-dashed. . . . . . . . . . . . . . . . . . . . . . . . 12

3.3 Two very good hierarchical drawing samples. (left: courtesy of

Tom Sawyer Software, right: courtesy of yFiles) . . . . . . . . . . 13

3.4 Two circular drawing samples. (courtesy of Tom Sawyer Software) 14

3.5 Two symmetric drawing samples. (left: courtesy of Tom Sawyer

Software, right: courtesy of aiSee) . . . . . . . . . . . . . . . . . . 16

3.6 A hierarchical drawing sample with compound nodes, note that

graph is directed (courtesy of yFiles). . . . . . . . . . . . . . . . . 17

3.7 A hierarchical drawing sample with compound nodes; note that

graph is directed (courtesy of Tom Sawyer Software). . . . . . . . 18

4.1 Part of a sample compound graph (left) and the corresponding

physical model used by our algorithm (right). . . . . . . . . . . . 20

4.2 A sample graph with several inter graph edges. The ideal edge

length of each edge is modified with the factor shown in edge la-

bels. Notice that this factor is dependent on total depth from the

common ancestor. . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

4.3 An example of how the orientation of a transition is determined

shown on transition t1 of Figure 1.3 (left) and used to calculate the

relativity force on one of its substrates, Frz (right). O(t1), R(Frz),

and D(Frz) respectively denote orientation of t1, relativity force on

Frz due to t1, and desired location of Frz to obey this force, where

magnitude of R(Frz) is equal to that of O(t1), and the distance of

D(Frz) from t1 is equal to the desired edge length. . . . . . . . . . 23

4.4 The cell model assumed by our algorithm and used by Patika.

Each biological node is confined to its compartment. . . . . . . . . 24



LIST OF FIGURES x

4.5 The skeleton is shown dark and reduced trees are marked with

light color. Notice that only the trees that are members of the

root graph are allowed to be reduced. Reduced tree roots are

shown with circle nodes as they will be the tree growth origins for

later phases of the algorithm, where trees are grown in level-order. 26

4.6 Sample compound graphs (with varying desired edge lengths and

edge and intergraph edge density) laid out by our algorithm. The

nodes are color-coded to denote the depth of the node in the nesting

hierarchy (i.e., the deeper a node is, the darker its color is). . . . . 30

4.7 Another sample compound graphs laid out by our algorithm. No-

tice there are dense mesh like structures with many intergraph edges. 31

4.8 A sample business work flow graph (courtesy of Tom Sawyer Soft-

ware) laid out by our algorithm. . . . . . . . . . . . . . . . . . . . 32

4.9 A sample networking graph (courtesy of Tom Sawyer Software)

laid out by our algorithm. . . . . . . . . . . . . . . . . . . . . . . 33

4.10 A sample software modeling graph (courtesy of Tom Sawyer Soft-

ware) laid out by our algorithm. . . . . . . . . . . . . . . . . . . . 34

5.1 All information required to layout a view is stored as described here. 36

6.1 A randomly generated graph laid out by our algorithm. (n = 70,

m/n = 1.5, mig/m = 0.03, d = 3, b = 3, and p = 0.33) . . . . . . . 39

6.2 Number of nodes (n) vs. execution time of our algorithm. (m/n =

1.5, mig/m = 0.05, d = 3, b = 3, and p = 0.33) . . . . . . . . . . . 39

6.3 Maximum nesting depth (d) vs. execution time of our algorithm.

(n = 500, m/n = 1.5, mig/m = 0.05, b = 3, and p = 0.33) . . . . . 40



LIST OF FIGURES xi

6.4 Proportion of intergraph edges to all edges (mig/m) vs. execution

time of our algorithm. (n = 500, m/n = 1.5, d = 3, b = 3, and

p = 0.33) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

6.5 Maximum branching in the nesting tree (b) vs. execution time of

our algorithm. (n = 500, m/n = 1.5, mig/m = 0.05, d = 3, and

p = 0.33) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

6.6 A sample pathway (stabilization of p53 pathway as obtained from

the Patika database), laid out by our algorithm. . . . . . . . . . 42

6.7 A sample pathway (Lysine and ECoA hydratase pathway as ob-

tained from the Patika database), laid out by our algorithm. . . 43

6.8 Part of a very big pathway as obtained from the Patika database,

laid out by our algorithm. . . . . . . . . . . . . . . . . . . . . . . 44

6.9 A sample pathway (as obtained by several consecutive queries from

the Patika database) laid out by our algorithm. . . . . . . . . . . 45



Chapter 1

Introduction

A graph is an abstract structure that is used to model relational information.

Many information visualization systems require graphs to be drawn so that in-

formation being modeled becomes human interpretable.

There are various graphical representations for graphs. Usually, vertices are

represented by symbols such as points, boxes or ellipses and edges are repre-

sented by curves connecting the symbols that represent the associated vertices

[11]. However, graphical representations vary greatly according to the application

domain. Even within a graphical representation schema, there are infinitely many

ways to draw a graph, by simply changing coordinates of nodes in the plane.

When drawing a graph, we would like to take into account a variety of aesthetic

criteria. For example, planarity and the display of symmetries are often highly

desirable in visualization applications [11]. In general, in order to improve the

readability of drawings, it is important to keep the number of crossings and bends

low. Also, to avoid wasting of space on screen or page, it is important to keep

area of the drawing as small as possible. Trade-offs are often necessary as these

are conflicting objectives.

1



CHAPTER 1. INTRODUCTION 2

Figure 1.1: Two drawings of a computer network system.

1.1 Aesthetics

Aesthetics is a subjective term, however it is possible to formalize it in our context.

An aesthetic property specifies a geometric asset of underlying graph that we

would like to highlight as much as possible. Commonly adopted aesthetics are

[11]:

• Crossings: Minimization of edge-edge crossings is one of the most important

aesthetic criteria. Ideally we would like to have crossing free drawings, how-

ever non-planar graphs do not admit one. Node-edge crossings should also

be minimized, although they are not as important as edge-edge crossings.

• Overlaps: Minimization of node-node overlaps is another important aes-

thetic criterion.

• Uniform Edge Length: Minimization of the variance of the lengths of the

edges.

• Symmetry: Maximize displayed symmetries in the graph.

• Area: Minimization of the total area of the drawing. The ability to gen-

erate drawings that use screen area efficiently is very important as screen

space is an important and generally very limited resource for visualization

applications.
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Trying to satisfy all of these criteria is generally infeasible if not impossible,

as they are inherently conflicting. So one has to prioritize according to needs of

a particular application.

1.2 Constraints

Today’s demanding visualization systems require more than just aesthetics, in

which we establish metrics to define good drawings, universally. Many visual-

ization use cases require us to support several controls that the user can utilize

to influence the automated drawing process in some manner. These controls

enable users to create drawings that have a desired property that is, users can

incorporate their own aesthetic criteria by means of constraints.

Constraints are generally defined for subgraphs [11]. For example in biological

pathway drawings substrates of reactions are conventionally grouped together,

whereas products of the same reaction are grouped separately and these two

groups are drawn as far as possible from each other.

Commonly used constraints in visualization systems are:

• Fixed location: Layout algorithm may be restricted to place a subgraph

within a certain area (see Figure 1.2).

• Relative position: A subgraph would be needed to be placed to a relatively

fixed position with respect to another subgraph (see Figure 1.2).

• Flow: A directed graph may be placed according to a flow constraint (top-

bottom, left-right).

• Size: It is possible to allow users to specify size limits for the final drawing.

• Aspect ratio: Targeted drawing area is generally constrained by the physical

rendering system. It is also possible to allow users supply an aspect ratio

for the layout algorithm.
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Constraints are very powerful tools for users to have graphs drawn for a par-

ticular purpose. However they pose an additional difficulty to layout problem

and not all layout algorithms can provide good support for them.

1.3 Use of compound graphs

As graphical user interfaces have improved, and more state-of-the-art software

tools have incorporated visual functions, interactive graph editing and diagram-

ming facilities have become important components in visualization systems [12].

Whenever the visualization requirements of the system becomes complex a

new scheme for managing complexity is required. In the past years complexity

management issue took serious attention. Some studies [17, 22, 31] describe how

to extend graphs with a hierarchical structure. Some frameworks were designed

to specifically create clusters based on a given data set [26, 15]. HGV [28] is a

framework with support for multiple views and hierarchies. Also this issue took

serious attention from the industry as well. The systems described in [34, 36,

23, 3, 2, 1], are just a few examples where complexity management is part of a

visualization framework or application.

The notion of compound graphs has been used in the past to represent more

complex type of relations or varying levels of abstractions in data [24, 27, 21, 13]

(see Figures 1.3 and 1.4).

Effective analysis of the underlying data in graph visualization is only possible

with sound automatic layout capabilities of such systems. We will continue with

background on existing layout algorithms.
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Figure 1.2: A constraint based layout example. Here we see examples for fixed
location and relative position constraints (courtesy of Tom Sawyer Software).
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Figure 1.3: Part of a sample compound pathway.

Figure 1.4: A financial chart (courtesy of Tom Sawyer Software).



Chapter 2

Definitions

A graph G is defined by two finite sets V and E, where the elements of V are the

nodes of G, and the elements of E are the edges of G.

A graph manager M = (S, I, F ) is a structure based on compound graphs,

defined by a graph set S = {G1, G2, . . . , Gl}, an intergraph I, and a rooted

nesting tree F =
(

V F , EF
)

. Each graph Gi ∈ S, each node v ∈ V Gi , and each

edge e ∈ EGi is represented by a distinct node in V F . For each node v ∈ V Gi ,

there exists an edge (Gi, v) ∈ EF and for each edge e ∈ EGi , there exists an edge

(Gi, e) ∈ EF , representing ownership relations in the graph manager. Then Gi is

called the owner of v (or e); conversely v (or e) is called a member of Gi.

A nesting of a graph in its parent node facilitates drawing of multiple graphs

of a graph manager and their inter-relations simultaneously. The node within

which a graph is nested is said to be expanded. Expanded node sizes are as big as

the boundaries of the associated nested graph. This is represented in the nesting

tree by an edge (n,Gi) ∈ EF between a node n and a graph Gi, where Gi is not

the owner of n. Gi is said to be the child graph of the parent member m. The

graph at the root of the nesting tree is simply called root graph.

Another way of associating two different graphs in a graph manager M =

(S, I, F ) is via the intergraph I. Let u ∈ V Gi and v ∈ V Gj be two nodes where

7



CHAPTER 2. DEFINITIONS 8

Figure 2.1: A pictorial representation of the graph manager with inclusion tree
in Figure 2.2. The gradient arrows show inclusion relations and the dashed edges
are the intergraph edges [13].

Gi 6= Gj and Gi, Gj ∈ S. Then the edge (u, v) ∈ I is called an intergraph edge,

representing a relation between objects (nodes) that belong to different entities,

graphs Gi and Gj in this case.
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Figure 2.2: The inclusion tree of a graph manager, representing both ownership
(solid) and inclusion (gradient) relations [13].

Graph A
Graph B GraphC

Graph D

GraphE

+

A

E

DCB

Figure 2.3: Drawing of a graph manager with multiple levels of nesting realized
[13].



Chapter 3

Related Work

As we have stated in previous section, good drawings of graphs involve some sort

of prioritization of a set of aesthetic criteria. There is no universal algorithm that

will generate beautiful drawings for every kind of application-graph. Therefore

there are many algorithms in the literature that try to generate good automatic

drawings of family of graphs.

Now we will analyze existing work on graph layout. We will first have a look

at the state of art in non-compound graph layout and then compound graph

layout.

There has been a great deal of work done on general graph layout [11]. How-

ever it is possible to classify all of the major algorithms with following classifica-

tion.

3.1 Orthogonal graph layout

Orthogonal layout places the nodes of the graph on a grid of rows and columns,

and routes the edges strictly parallel to the x and y axes. Edges are drawn as

multi-lines however these lines are either vertical or horizontal, hence edge-edge

crossings are somewhat easier to read. Also as nodes are placed on a grid node

10
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spacing is regular by definition However edges are generally quite long, hence not

easy to track (see Figure 3.1). It is also possible to integrate incremental layout

support into orthogonal layout algorithms [36].

There are different algorithms in the market that try to efficiently generate

orthogonal drawings [6, 9, 8].

Figure 3.1: Two orthogonal drawings (left: courtesy of Tom Sawyer Software,
right: courtesy of Tom Sawyer Software yFiles).

3.2 Hierarchical graph layout

Hierarchical layout algorithms aims to highlight the main direction or flow within

a directed graph (see Figure 3.3). In hierarchical layout nodes are placed in

hierarchically arranged layers. The ordering of the nodes within each layer is

chosen in such a way that edge crossings are as small as possible [33, 29].

Edges are drawn as multi-lines however these lines may have arbitrary slopes

or even be replaced by curves. Like orthogonal algorithms, hierarchical layout

places nodes regularly, which is a great readability advantage. For the time being

hierarchical layout has the best support for compound nodes, as we will highlight

later.
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However if graph has cycles, meaning data being represented is not exactly

hierarchic, there will be ridiculously long back edges (see Figure 3.2). Therefore

if your data model allows cycles in graphs hierarchical graph layout may not be

a right choice.

Figure 3.2: A hierarchical drawing of a cyclic graph. Cycles cause very bad back
edges in hierarchical drawings. Here such a back edge is depicted as thick-dashed.

Typically all algorithms that fall into this category has following flow:

1. Partitioning into layers

2. Reduction of crossings

3. Coordinate Calculation

4. Edge Routing

Hierarchical layout is a good choice to visualize directed graphs as it utilizes

inherent hierarchy information in the graph. It is possible to define and maintain

constraints easily [34]. Hierarchical graph layout has excellent incremental layout

support as well [34, 36, 23].
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Figure 3.3: Two very good hierarchical drawing samples. (left: courtesy of Tom
Sawyer Software, right: courtesy of yFiles)

3.3 Circular graph layout

Circular layout algorithms emphasize group and tree structures within a graph.

It gives excellent drawings for graphs that have certain topological properties,

that is graphs containing trees and clusters [14].

In circular layout, nodes are first clustered according to topology and each

cluster is embedded on a circle in a way that edge crossings within the cluster is

minimized. Then clusters are placed in a way that minimizes inter cluster edges

(see Figure 3.4).

Having assumptions on topology, renders circular layout algorithm poor

against generic graphs.
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Figure 3.4: Two circular drawing samples. (courtesy of Tom Sawyer Software)

Circular layout is a good choice to visualize trees and highly clustered graphs.

State of the art implementations are [34, 36]. However it is hard to support

compound nodes as a compound node may span multiple clusters.

3.4 Force directed graph layout

In force directed layout, graph to be laid out is represented as a physical model

and a simulation of this model is done with a feasible accuracy. That is graph

layout problem is solved via simulating a physical system.

In the basic model, nodes are represented as charged particles that repel each

other and edges are represented with springs. The energy level of a node is

determined from the forces acting on it. The spring embedder tries to minimize

the global energy level by moving the nodes in the direction of the forces. Global

energy level, which is the sum of all energy levels of the nodes, is computed after

each iteration of the system to determine if the total energy is below a certain

amount.
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The accuracy and reality of this basic system is a trade off between perfor-

mance and quality. Generally, for performance reasons only one node is displaced

at a time [25].

It is always possible to include additional physical factors in the model to

have more realistic hence better resulting systems, like:

• Magnetic forces: These are generally used to enforce a flow in to the draw-

ing. For example; in directed graphs it is possible to emphasis the flow if

all edges are interpreted as compasses that align themselves according to a

magnetic field [32].

• Gravitational forces: These are generally used to produce more compact

drawings. As spring forces are only effective within components and re-

pulsive forces can make the drawing only bigger. Basic model should be

extended to be able to minimize inter component space. Hence gravita-

tional forces are introduced. All nodes are attracted to the mass center of

all the other nodes [3].

• Acceleration: It is also possible to add mass related factor momentum into

the model. This factors adds the previous velocity of a node to the move-

ment being calculated for an iteration. Acceleration is generally added to

improve running time performance as well as quality.

• Temperature: The basic model with its extensions described until now can

settle with a local minima. To overcome this problem it is possible to use

controlled amount of randomness. Researchers in optimization theory use

a technique from statistical mechanics called simulated annealing allowing

for changes into states with higher energy. With this addition calculated

node movement is disturbed with a relatively minor random vector to avoid

being trapped at a local energy minimum. At the beginning the magnitude

of this random vector is bigger, as the simulation matures the system is

cooled down meaning magnitude of the force is reduced in order to stabilize

the final layout [18].



CHAPTER 3. RELATED WORK 16

Figure 3.5: Two symmetric drawing samples. (left: courtesy of Tom Sawyer
Software, right: courtesy of aiSee)

Force directed layout algorithms are very popular and successful. They reveal

structural properties like symmetries, cycles and trees nicely. They have reason-

ably fast implementations utilizing Barnes-Hut trees and similar data structures.

However force directed layout algorithms do not guarantee anything about the

final drawing and unit edge length assumption may introduce serious problems

for some graphs. An excellent analysis for different approaches to force directed

layout is given in [11].

3.5 Previous work on compound graph layout

There has been a great deal of work done on general graph layout [11] but consid-

erably less on layout of compound graphs [30, 5, 16], probably due to the difficult

nature of the problem.

Straightforward approaches to layout compound graphs in a top-down or

bottom-up (with respect to the inclusion or nesting hierarchy) manner fail, due

to bidirectional dependencies (e.g., inter-graph edges) between levels of varying

depth. The limited work done on compound graph layout has mostly focused on
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layout of hierarchical graphs [31, 30], where underlying relational information is

assumed to be under a certain hierarchy (see Figures 3.6 and 3.7).

Figure 3.6: A hierarchical drawing sample with compound nodes, note that graph
is directed (courtesy of yFiles).

However such algorithms perform poorly if the graph is undirected (or edge

directions do not enforce a hierarchy) but still has structural properties like sym-

metry or include parts or substructures such as cycles. The work done on undi-

rected compound graphs [5, 35, 19], on the other hand, is either restricted in

the type of graphs addressed (e.g., nesting allowed for only one level) or unsat-

isfactory in terms of the quality of results produced (e.g., large compound nodes

overlapping with others).
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Figure 3.7: A hierarchical drawing sample with compound nodes; note that graph
is directed (courtesy of Tom Sawyer Software).



Chapter 4

Layout Algorithm

4.1 Underlying Physical Model

A force-directed layout algorithm with constraints to satisfy the general drawing

conventions in compound graphs has been chosen. Basic idea of the layout algo-

rithm is to simulate a physical system in which nodes are assumed to be physical

objects with certain “electrical charge”, connected via “springs” of a pre-specified

desired length. Objects pull or repel each other depending on current lengths of

any connected springs. In addition, relatively minor repulsion forces act on any

pair of objects that are “too close” to each other to avoid node-to-node overlaps.

Furthermore, each nested graph including the root of the nesting hierarchy is as-

sumed to have a dynamic (with respect to the graph bounds) “center of gravity”.

Thus the optimal layout is regarded as the state of this system, in which total

energy is minimal [20]. Following additions are made to this basic model:

• An expanded node and its associated nested graph are represented as a sin-

gle entity, similar to a “cart” which can move freely in orthogonal directions

(no rotations allowed). Multiple levels of nesting is modeled with smaller

carts on top of larger ones.

• The nodes and edges of a nested graph are to be set in motion on this

19
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Figure 4.1: Part of a sample compound graph (left) and the corresponding phys-
ical model used by our algorithm (right).

cart, confined within the bounds of the cart. Each cart is assumed to be

surrounded by a material, elastic enough to adapt to the current bounds of

the associated nested graph. Thus, as nodes of a nested graph are pushed

outwards, expanding the nested graph, the parent node adjusts its bounds

accordingly. Similarly should the bounds of the nested graph shrink, so

does the geometry of the parent node by the same amount.

• Each nested graph including the root graph is assumed to have a dynamic

(with respect to its graph bounds) center of gravity, pulling all its nodes in,

towards its center so as to keep them together, disallowing arbitrary drift

away. Strength of this force is independent from the size of the node and

the distance between node center and graph center. Similar to repulsion

forces, gravitational forces are assumed to be relatively weaker than spring

forces.

• In order to handle varying node sizes (especially expanded nodes) and avoid

overlaps with neighboring nodes, calculation of desired edge lengths are

based on the parts of edges in between borders of end-nodes, as opposed to

their centers.
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• Node-to-node repulsion forces take the node sizes into account. In other

words, the larger a node is, the stronger it repels any node that is too close

to itself. This repulsion schema can be implemented easily by calculat-

ing clipping points of the line connecting centers of nodes with the node

boundaries and calculating the repulsion for these clip points instead of

node centers. For simplicity and improved efficiency, two nodes repel each

other only if they are within the same graph.

• Intergraph edges are treated specially; the part of an intergraph edge e, if

any, from its end-node u in a nested graph Gu to the boundary of Gu is

represented by a constant force (similar to gravitational forces), instead of

a spring, so as to keep u as close to the boundary of Gu as possible. The

remaining part of the intergraph edge is represented with a regular spring.

Such a special treatment requires heavy computation and as the nesting tree

gets deeper, hence the average number of graphs spanned by an intergraph

edge increase, computational cost required to accurately simulate this model

will raise dramatically. However it is possible to approximate this model

by increasing the desired length of an intergraph edge with an amount

proportional to the sum of the depths of its end nodes from their common

ancestors in the nesting tree (see Figure 4.2) as inter graph edges are to

cross one or more graph boundaries. If this schema is chosen, forces of

intergraph edges should be propagated to ancestors of the end nodes. The

latter alternative, which is an approximation to the original performs as well

as the original schema in terms of quality and gives much better running

time performance.

Figure 4.1 illustrates the basics of our physical model with an example.

4.2 Application-Specific Constraints

Today’s sophisticated graph visualization applications require specific constraints

to be integrated into layout algorithms. These constraints may vary arbitrarily,
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Figure 4.2: A sample graph with several inter graph edges. The ideal edge length
of each edge is modified with the factor shown in edge labels. Notice that this
factor is dependent on total depth from the common ancestor.

however common examples include keeping relative position of a group of nodes

fixed and clustering a set of nodes that share a common property worth display-

ing [7]. However such constraints generally introduce conflicting goals even with

the core target of the basic spring embedder itself (minimal node-node overlap

and revealing symmetries).

We propose introducing additional forces to “blend” application-specific con-

straints into our method of drawing undirected compound graphs. In order to

preserve the nice properties of the core spring embedder, in case of conflict, the

default forces should govern such additional forces. Thus application-specific

forces are set to have constants of relatively smaller factors.

As a case study let us consider the Patika editor. Patika [10], a pathway

database and tool, is composed of a server-side, scalable, database and client-

side editors to provide an integrated, multi-user environment for visualizing and

manipulating network of cellular events. Patika is mainly intended for signaling

pathways whose underlying graph structure can be arbitrarily more complicated

and irregular than that of metabolic pathways.
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For a biological pathway drawing, it is quite important to group products,

substrates and effectors of a reaction. Hence we apply relativity constraint forces

or simply relativity forces on each substrate, product and effector states to po-

sition them properly around their associated transition(s). The convention is to

align substrates and products of a transition on opposite sides of the transition

to form a certain flow direction. Effector edges, on the other hand, are left freely.

When calculating relativity forces, we first determine a flow, called orientation,

for each transition by simply looking at the current, relative positions of their

associated substrates and products. Then each associated state of the transition

is applied a relativity force to respect this orientation (Figure 4.3).

Figure 4.3: An example of how the orientation of a transition is determined shown
on transition t1 of Figure 1.3 (left) and used to calculate the relativity force on
one of its substrates, Frz (right). O(t1), R(Frz), and D(Frz) respectively denote
orientation of t1, relativity force on Frz due to t1, and desired location of Frz
to obey this force, where magnitude of R(Frz) is equal to that of O(t1), and the
distance of D(Frz) from t1 is equal to the desired edge length.

Another application-specific constraint Patika has is due to cellular locations

of biological nodes called compartments. A layout algorithm must keep each bio-

logical node within the bounds of the associated compartment and must enlarge

or shrink it as required by the geometry of the enclosed part of the pathway.

The algorithm represents each compartment with a rectangular region and

treats them similar to an expanded node; however unlike an expanded node, a
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compartment neighbors one or more other compartments and a change in its

geometry affects its neighbors. So a special mechanism to resize a compartment

needs to be performed. Figure 4.4 shows the layout of compartments within a

cell assumed by our algorithm and used by the Patika editor.

Figure 4.4: The cell model assumed by our algorithm and used by Patika. Each
biological node is confined to its compartment.

Finally bond edges that represent the binding relations between members of a

molecular complex are conventionally shorter than other interaction edges; hence

we set their spring constants to be smaller.

Figure 6.9 shows a sample biological pathway drawing produced by the layout

algorithm as implemented within the Patika editor.
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4.3 Algorithm

We assume that the graph to be laid out is represented with a graph manager

object M = (S, I, F ), where each graph G = (V,E) in S is implemented using an

adjacency list representation. These objects can be referenced through structures

named GraphMgr, Graph, Node, and Edge. Layout specific data and functionality

are assumed to be kept in these structures as well.

The algorithm is composed of three major phases preceded by an initialization

phase. Please note that parameters for algorithm calls are left out to save space:

• Initialization: This is where initial node sizes, and threshold values for

determining convergence (based on number of nodes) are calculated, and

random initial positioning of nodes are performed.

In addition, for efficiency and layout quality reasons, parts of the given

graph that are trees are temporarily removed. In other words, root graph’s

leaf nodes are iteratively removed until no such node is left. The remaining

part of the graph forms the “skeleton” of the graph (see Figure 4.5). The

details of this method is given below:

algorithm ReduceTrees()

1) reducedTreeRoots := {}

2) for u ∈ V , where u is non-reduced do

3) if u has no neighbors then

4) mark u as reduced

5) else if u has one unmarked neighbor then

6) while u is not reduced and

! (u is compound or u is member of a compound node) do

7) mark u as reduced

8) add u to reducedTreeRoots

9) for e = (u, v) ∈ E and
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v is not reduced do

10) remove u from reducedTreeRoots

11) u := v

12) add u to reducedTreeRoots

The overall time complexity of this method is Θ(|V |) as each node is visited

Θ(1) times.

Figure 4.5: The skeleton is shown dark and reduced trees are marked with light
color. Notice that only the trees that are members of the root graph are allowed
to be reduced. Reduced tree roots are shown with circle nodes as they will be
the tree growth origins for later phases of the algorithm, where trees are grown
in level-order.

• Phase 1: In this phase the skeleton graph is laid out using the spring em-

bedder model described earlier but application constraint and gravitational

forces are disabled.

• Phase 2: Trees reduced earlier in the initialization phase are introduced

back level by level in this phase, also taking application constraint and
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gravitational forces into account.

• Phase 3: This phase is the stabilization phase where we “polish” the

layout.

The formula for calculating the spring force is

Fs = (λ − edgeLength)2/η,

where λ is the ideal edge length and η is the elasticity constant of the edge.

Ideal edge length of an intergraph edge is increased proportional to the sum of

the depths of its end nodes from their common ancestors in the nesting tree.

In addition, edges have different types based on their end-nodes being simple or

compound; as compound nodes require force calculations to be based on clipping

points rather than node centers. The following method is used for calculating

spring forces acting on each edge’s ends:

algorithm CalculateSpringForces(

Graph G = (V,E))

1) for e = (u, v) ∈ E do

2) if e is SIMPLE-SIMPLE

3) calculate Fs for u.center and v.center

4) else if e is COMPOUND-SIMPLE

5) calculate Fs for u.clipPoint(e) and v.center

6) else if e is SIMPLE-COMPOUND

7) calculate Fs for u.center and v.clipPoint(e)

8) else if e is COMPOUND-COMPOUND

9) calculate Fs for u.clipPoint(e) and v.clipPoint(e)

10) Fs(u) += Fs

11) Fs(v) −= Fs

The overall time complexity of this method is Θ(|E|) as all steps inside the

for-loop can be processed in Θ(1) steps.
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Node-to-node repulsion forces are calculated using the formula

Fr = α/(d2

x + d2

y),

where α is the repulsion constant and dx and dy are the differences in x and

y coordinates of the two repulsing nodes, respectively. Similar to spring forces,

repulsion forces require us to make clipping point calculations for compound nodes

based on the line passing through nodes’ centers:

algorithm ApplyRepulsionForces(

Graph G = (V,E))

1) S := {}

2) for u ∈ V do

3) add u into S

4) if u is a compound node then

5) cu := clipping point of the line(u.center, v.center) and u.boundRect

6) else

7) cu := u.center

8) for v ∈ V − S do

9) if v is a compound node then

10) cv := clipping point of the line(u.center, v.center) and v.boundRect

11) else

12) cv := v.center

13) if dist(cu, cv) < repulsionRange then

14) Calculate repulsion force Fr for cu and cv

15) Fr(u) += Fr

16) Fr(v) −= Fr

Steps 9-16 are handled in Θ(1) steps, which are executed a total of maximum

O(|V |2) times, making the overall complexity of the method O(|V |2). However,

since a node pair affect each other only when they are below a certain geometric

distance, the average complexity is expected to be asymptotically lower than this.

Gravitation forces have fixed magnitude and they are always towards the

center of the bounding rectangle of the owner graph:
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algorithm ApplyGravitationForces(

Graph G = (V,E))

1) for u ∈ V do

2) center := u.ownerGraph.boundRect

3) calculate gravitation force Fg towards center

4) Fg(u) += Fg

The overall time complexity of this method is Θ(|V |) as all steps inside the

for-loop can be processed in Θ(1) time.

The following method is used for calculating the relativity constraint forces in-

troduced in our case study as an example of application-specific force calculation:

algorithm ApplyAppSpecificForces(

Edge e = (u, v))

1) if phase ≥ 2 then

2) orientation := e.transition.orientation

3) if e is substrate then

4) orientation := −orientation

5) Calculate Frc on e according to its orientation

6) Fs(u) += Frc

7) Fs(v) −= Frc

The main method making use of earlier ones to implement the layout algo-

rithm is as follows:

algorithm CompoundLayout()

1) call Initialize()

2) phase := 1

3) if layout type is incremental then

4) phase := 3
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Figure 4.6: Sample compound graphs (with varying desired edge lengths and
edge and intergraph edge density) laid out by our algorithm. The nodes are
color-coded to denote the depth of the node in the nesting hierarchy (i.e., the
deeper a node is, the darker its color is).

5) while phase ≤ 3 do

6) step := 1

7) error := 0

8) while (step < maxIterCount(phase) and

error > errorThreshold(phase)) or !allT reesGrown do

9) call ApplySpringForces()

10) call ApplyRepulsionForces()

11) if phase 6= 1 then

12) call ApplyGravitationForces()

13) call ApplyAppSpecificForces()

14) call CalcNodePositionsAndSizes()

15) if phase = 2 and !allT reesGrown and

step % treeGrowingStep = 0 then

16) call GrowTreesOneLevel()
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Figure 4.7: Another sample compound graphs laid out by our algorithm. Notice
there are dense mesh like structures with many intergraph edges.

17) step := step + 1

18) phase := phase + 1

A quick analysis of the algorithm reveals that the running time of layout

of a compound graph is O(k · n2) where n is the total number of nodes in the

compound graph, and k is the number of iterations required to reach an energy

minimal state.
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Figure 4.8: A sample business work flow graph (courtesy of Tom Sawyer Software)
laid out by our algorithm.
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Figure 4.9: A sample networking graph (courtesy of Tom Sawyer Software) laid
out by our algorithm.
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Figure 4.10: A sample software modeling graph (courtesy of Tom Sawyer Soft-
ware) laid out by our algorithm.



Chapter 5

Implementation

The proposed layout algorithm has been tested within the example application of

Tom Sawyer Visualization for Java, version 7.0. The development environment

was Sun’s Java SDK 1.4 and Microsoft Windows XP operating system on an

ordinary personal computer (Pentium IV with 2GHz CPU and 512MB memory).

The results have been found quite satisfactory as far as the general graph drawing

criteria such as number of crossings and total area are concerned (Figures 4.6

and 4.9). Furthermore, the experimental executions have been found not only

reasonably fast for interactive use but also in line with the earlier theoretical

analysis as detailed out below.

5.1 An Application

We have also implemented our algorithm as part of a new version of the Patika

pathway editor.

It is expensive to move real Patika objects throughout the layout procedure.

Moreover during certain sub-phases of layout we only want to deal with a subset of

the view graph. Therefore a light-weight abstraction that captures the geometry

of subject view is necessary (see Figure 5.1).

35
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Figure 5.1: All information required to layout a view is stored as described here.

To be able construct such abstraction for layout manager to operate on; the

subject view of layout operations is analyzed and all geometric information is

collected. This information is used to fill in the class hierarchy shown above.

Layout manager exclusively runs on this abstraction and the resulting geometric

changes are propagated to the view periodically if not at once after layout is

finished.

The results have been found satisfactory as far as the general graph drawing

criteria such as number of crossings and total area are concerned. In addition,

application-specific constraints such as compartmental constraints and relative

positioning constraints seem to be highly satisfied. Figure 6.9 shows a sample

pathway drawing produced. Notice that subcellular location (i.e., compartments)

of biological nodes are respected as well as grouping (i.e., nesting), and compart-

ments are resized to tightly fit their contents.
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5.2 Implementation Details

During the implementation we were faced with certain issues, around which we

had to make adjustments to improve our algorithm.

Special intergraph edge treatment as described earlier is difficult to implement.

Instead we have chosen another schema that seems to work just as well. Let

e = (x, y) be an intergraph edge and l be the sum of the depth of the owner

graphs of x and y from their common ancestors in the nesting tree. The desired

edge length of e is set to be longer than the desired edge length of a regular edge

by an amount linearly proportional to l since such edges need to additionally

cross the associated nested graph boundaries.

In addition, to emulate the constant boundary forces on intergraph edges

discussed earlier, spring forces calculated for intergraph edges are reflected to the

ancestor nested graphs in the nesting tree, starting from owners of the intergraph

edge’s end-nodes, up until their common ancestor. The magnitude of this force,

however, decreases as we go up the nesting tree.

Furthermore, we have limited the movement of each node in each iteration to

avoid drastic movements, often resulting in “oscillations”.

Finally, the use of “momentum” or “temperature” for each node [18] has

helped the convergence greatly. Each node’s movement is not only based on the

total force calculated during the current iteration but also on the previous one.

For simplicity and efficiency reasons we have simply added a constant portion of

the previous iteration’s total force to this iteration’s total force for each node,

resulting in dramatic improvements in execution times.
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Experimental Results

6.1 Running time performance

We have performed experiments on execution time of our layout algorithm on

randomly generated graphs with one of several parameters changing for each set.

For each test, a random graph manager to be laid out has been generated with

the provided parameters:

• n: total number of nodes,

• m/n: proportion of number of edges to nodes; the number of edges is

assumed to be linear in the number of nodes,

• mig/m: proportion of intergraph edges to number of all edges,

• d: maximum nesting depth,

• b: maximum branching (i.e., number of children of a node) in the nesting

tree,

• p: probability of pruning a child in the nesting tree to avoid nesting trees

that are too uniform in structure.
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First we construct a nesting tree and a graph manager that realizes this nest-

ing structure with the specified parameters. Then the nodes are created and

distributed to graphs in the graph manager uniformly. Similarly end nodes of

each edge is picked randomly. Each test is executed 10 times and the average is

taken. Figure 6.1 shows an example of a randomly generated graph.

Figure 6.1: A randomly generated graph laid out by our algorithm. (n = 70,
m/n = 1.5, mig/m = 0.03, d = 3, b = 3, and p = 0.33)

Figure 6.2: Number of nodes (n) vs. execution time of our algorithm. (m/n = 1.5,
mig/m = 0.05, d = 3, b = 3, and p = 0.33)

From the theoretical analysis given earlier, a quadratic behavior of execution

time is expected, assuming k does not grow in the order of the graph size. The

experiments validate this argument (Figures 6.2).
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Figure 6.3: Maximum nesting depth (d) vs. execution time of our algorithm.
(n = 500, m/n = 1.5, mig/m = 0.05, b = 3, and p = 0.33)

We have also experimented with the nesting depth (Figures 6.3). The experi-

ments show that initially deeper nesting helps improve execution time as number

of nodes per graph decreases due to the fact that certain calculations such as

node-to-node repulsion forces are only performed within each graph. However as

the nesting depth increases the performance decreases dramatically due to the

increase in the number of compound nodes and nested graphs.

Figure 6.4: Proportion of intergraph edges to all edges (mig/m) vs. execution
time of our algorithm. (n = 500, m/n = 1.5, d = 3, b = 3, and p = 0.33)

Furthermore, we have performed a test set to see how the proportion of inter-

graph edges to regular edges affect the execution time (Figures 6.4). As expected

the time it takes to process an intergraph edge as opposed to a regular edge does
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not vary much.

Figure 6.5: Maximum branching in the nesting tree (b) vs. execution time of our
algorithm. (n = 500, m/n = 1.5, mig/m = 0.05, d = 3, and p = 0.33)

Lastly we wanted to see how the average number of nested graphs per graph

affected the execution time (Figures 6.5). Again, initially deeper nesting helps

decrease the execution time since some expensive calculations are then performed

in a divide-and-conquer fashion. However, as the nesting becomes even deeper,

the time it takes to process more compound nodes and deeper nodes dominate

and the execution gets slower.

6.2 Quality

In our experiments, quality of the resulting layout is also inspected. According

to commonly accepted layout quality criteria, results are found quite satisfactory.

In most of the cases edge lengths are uniform, space is used wisely and node-node

overlap is prevented (Figures 6.6, 6.7, 6.8, 6.9).

Also Patika specific constraints are handled quite nicely, note that compart-

ment sizes are just adequate to hold compartment members, while compartment

neighborhood information is preserved (Figures 6.7, 6.9).
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Figure 6.6: A sample pathway (stabilization of p53 pathway as obtained from the
Patika database), laid out by our algorithm.
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Figure 6.7: A sample pathway (Lysine and ECoA hydratase pathway as obtained
from the Patika database), laid out by our algorithm.
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Figure 6.8: Part of a very big pathway as obtained from the Patika database,
laid out by our algorithm.



CHAPTER 6. EXPERIMENTAL RESULTS 45

Figure 6.9: A sample pathway (as obtained by several consecutive queries from
the Patika database) laid out by our algorithm.



Chapter 7

Conclusion

We have presented a novel algorithm for layout of undirected compound graphs.

To our knowledge, this is the first spring embedder that can handle compound

graphs. Layout of complicated pathway graphs such as those in Patika are

among the target applications. The main novelty of our work is the use of a

modified spring embedder system that treats compound nodes and intergraph

edges as part of a physical system. In addition, our model is quite flexible; most

application-specific drawing conventions such as those in biological pathways can

be easily integrated into this physical system as additional constraints. Exper-

imental results have been found satisfactory both in terms of quality of layouts

and computational efficiency.

However there is still place for improvement. As future work, we may look

at ways to speed up our algorithm, as it is destined to be part of interactive

systems. We should investigate efficient ways to calculate repulsion forces as it

is the bottleneck. There are very popular data structures in the literature to

solve n-body problems efficiently, like Barnes-Hut trees and the K-D trees [4].

However we cannot define our nodes as simple points in the space as compound

nodes have variable size and aspect ratio, hence we could not make use of such

advanced data structures as is. Another improvement would be to come up with

a more advanced convergence criterion.
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