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Abstract

AN EXACT ALGORITHM FOR THE VEHICLE ROUTING

PROBLEM WITH BACKHAULS

Cumhur Alper GELO�GULLARI

M.S. in Industrial Engineering

Supervisor: Assoc. Prof. Dr. Osman O�guz

August 2001

We consider the Vehicle Routing Problem with Backhauls, in which a 
eet of

vehicles located at a central depot is to be used to serve a set of customers

partitioned into two subsets of linehaul and backhaul customers. The objective

of the problem is to minimize the total distance traveled by the entire 
eet.

The problem is known to be NP-hard in the strongest sense and �nds many

practical applications in distribution planning. We present an exact algorithm

for the Asymmetric Vehicle Routing Problem with Backhauls based on solving a

relaxation of the problem. In a cutting plane fashion, the algorithm iteratively

solves the relaxation while at each iteration, infeasible solutions are identi�ed

and seperated from the feasible set of the relaxation. The procedures to

identify infeasible solutions are presented, and a set of cuts to eliminate these

solutions is proposed. Local search procedures are incorporated to improve the

algorithm. Computational tests on randomly generated instances, involving up

to 90 customers, are given. The results show the e�ectiveness of the proposed

approach.



Keywords: Vehicle Routing Problem, Vehicle Routing Problem with Backhauls,

Subtour Elimination Constraints, Valid Inequalities, Local Search Heuristics.



�Ozet

DA�GITIM VE TOPLAMA G�UZERGAHI BULMA

PROBLEMLER_I _IC� _IN EN _IY_I C� �OZ�UML�U B_IR ALGOR_ITMA

Cumhur Alper GELO�GULLARI

End�ustri M�uhendisli�gi B�ol�um�u Y�uksek Lisans

Tez Y�oneticisi: Do�c. Dr. Osman O�guz

A�gustos 2001

Bu �cal��smada, Da�g�t�m ve Toplama G�uzergah� Bulma Problemi olarak bilinen

ve bir merkezde konu�sland�r�lm��s olan ara�clar�n, m�u�sterilerin gereksinimlerini

kar�s�lamak amac� ile gitmeleri gereken en d�u�s�uk maliyetli g�uzergahlar� bulma

problemini inceledik. Bu problem �c�oz�um�u zor bir problem olup da�g�t�m

planlamas� alan�nda bir �cok uygulamayla kar�s�m�za �c�kmaktad�r. Problemin

simetrik olmayan uyarlamas� i�cin en iyi �c�oz�um�un�u veren bir algoritma sunduk.

Bu y�ontem, kesikli d�uzlem y�onteminde oldu�gu gibi, en iyi �c�oz�um�u bulana

kadar problemin bir gev�setmesini tekrar tekrar �c�ozmek ve as�l problemin

olursuz �c�oz�umlerini uygun kesikler ile �c�oz�um k�umesinden ay�rmak �kri �uzerine

kuruludur. Olursuz �c�oz�umleri belirleyen y�ontemler ve bu olursuz �c�oz�umleri �c�oz�um

k�umesinden ay�ran kesikler �onerdik. Yerel arama y�ontemleri ile algoritman�n daha

da verimli olabilece�gini g�osterdik. Rassal olarak olu�sturulan problemler �uzerinde

algoritmay� test ettik. Sonu�clar �onerilen yakla�s�m�n olduk�ca etkili oldu�gunu

g�ostermektedir.



Anahtar Kelimeler: Da�g�t�m G�uzergah� Bulma Problemi, Da�g�t�m ve Toplama

G�uzergah� Bulma Problemi, yerel arama, alttur k�r�c� k�s�tlar
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Chapter 1

Motivation

\Vehicle routing has been one of the great success stories of

operations research in the last decade"

Arjang A. Assad [5], 1988.

Routing problems are problems of logistics concerned with allocation of customers

to depots and formation of routes to service these customers. The term logistics

is described in Encyclop�dia Britannica as \the organized movement of materials

and, sometimes, people". Council of Logistics Management, a trade organization

based in the United States, de�nes logistics as \that part of the supply chain

process that plans, implements, and controls the eÆcient, e�ective 
ow and

storage of goods, services, and related information from the point of origin to the

point of consumption in order to meet customers' requirements". More simply, it

is the science (and art) of ensuring that the right products reach the right place

in the right quantity at the right time to satify customer demand.

Logistics is now regarded as a means of cost-saving. Economic phenomena

such as the oil crisis of the early 1970's, which resulted in increased interest

rates and fuel costs, have stressed distribution as an area where substantial

improvements can be achieved. Problems of logistics have become more and

more important as the �rms started to compete on service di�erentiation and

widened the range of products they o�er.

1



CHAPTER 1. MOTIVATION 2

Logistics is often used as a blanket term, encompassing many di�erent

components of operations and in
uencing all aspects of business. One major

activity of logistics is the distribution activity. Distribution constitutes a notable

fraction of operating costs of individual �rms, as well as a substantial portion of

the economy of most developed nations. In a report prepared for the National

Council of Physical Distribution Management, Kearney [45] estimates annual

distribution costs in the United States in 1980 at $400 billion, and in 1983 at

$650 billion, almost 21% of the U.S. gross national product. Kearney also reports

that an average company can save 20% or more by adopting improvements in its

distribution systems.

Therefore, the importance of routing problems is primarily because of the large

cost of physical distribution. These problems are quite complex and frequently

cannot be solved to optimality. However, small improvements can yield signi�cant

savings. This economic importance has motivated both companies and academic

researchers to apply techniques of Operations Research/Management Science

(OR/MS) to improve the eÆciency of distribution systems.

One of the most important problems which play a central role in logistics is

known to be the Vehicle Routing Problem with Backhauls (VRPB). The solution

of vehicle routing problem with backhauls, which is the focus of this research,

a�ects the overall distribution cost. By identifying individual elements of a

distribution system, we can begin to examine trade-o�s between them, and come

up with an overall improved system.

In the following chapters, we provide information on characteristics and

applications of vehicle routing problem, and propose an algorithm that solves

it to optimality.



Chapter 2

Introduction

The Introduction consists of four sections. The �rst section gives a de�nition of

the vehicle routing problem and discusses its variants. Then, VRP with backhauls

is discussed. The next section includes applications of the VRPs in real-world.

The chapter concludes with the outline of the thesis.

2.1 Routing Problems

The Vehicle Routing Problem (VRP) is an important management problem in

the �eld of distribution and logistics. The problem appears in a large number of

practical situations and is known in the literature also as the vehicle scheduling

[24], truck dispatching [20], [30] or simply the delivery problem. Operations

researchers have been intensively involved with the vehicle routing problem since

it was �rst introduced by Dantzig & Ramser [30] in 1959.

Large number of VRP applications brings a challenge for one to design an

algorithm that is 
exible enough to meet all the variations faced in the real

world. Unfortunately, this is a goal unachieved by any of the existing solution

methods in the literature. This is because the problem is known to be NP-hard,
which means it is inherently a diÆcult combinatorial problem. The algorithm we

propose here is general enough to satify many but not all di�erent characteristics

3



CHAPTER 2. INTRODUCTION 4

of vehicle routing problems.

The classical or basic vehicle routing problem involves a set of delivery points

with known demands to be serviced by a homogeneous 
eet of �xed capacity

vehicles from a central depot or distribution center. Then, the objective of the

problem is to develop a set of routes such that all the delivery points are serviced

once and only once by exactly one vehicle, the total demand of the points assigned

to each route does not exceed the capacity of the vehicle which services the route,

and the total distance traveled by all of the vehicles is minimized. Each route

should start and end at the depot.

Figure 2.1 exhibits how a solution to a 4-vehicle and 19-customer VRP looks

like. The solid circle stands for the depot, and the other circles represent

customers.

depot

Route 1 Route 2

Route 3
Route 4

Figure 2.1: An Example of a solution to a VRP

The reason this problem is refered to as basic is that it is the core component

of a variety of applications. Pure routing problems consist of a geographical

component only; however, most real-world applications incorporate several side

constraints, as well.
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The Traveling Salesman Problem (TSP) is the simplest routing problem. It

can simply be stated as follows: Given a set of customers and distances between

them the objective is to �nd the shortest route that visits all customers exactly

once. An extension to the TSP is the m-TSP which is similar to the ordinary

TSP, but m routes starting and ending at a common depot, should be used.

While the TSP has been an area of interest for researchers for many decades,

study of the VRP began its rapid expansion only about 20 years ago. This

motivation comes from the numerous real world applications and the potential

for considerable savings that improved distribution systems represent. As will be

explained later, TSP and m-TSP are special cases of VRP.

As stated before, vehicle routing problems exhibit a wide range of real world

applications. This variety comes from the fact that every distribution system

posseses its own side constraints. In addition, there are some parameters of the

basic VRP, which further increase the number of variations. The objective of a

routing problem can be to minimize number of vehicles that can serve all the

customers or to minimize total distance traveled by the entire 
eet. The 
eet can

be composed of a single vehicle or multiple vehicles. Vehicles can be identical or

di�erent types of vehicles can constitute a heterogenous 
eet. Depending on the

nature of the distribution system, a single depot or multiple distribution centers

can serve as a basement for the vehicles. Generally, each vehicle is supposed to

operate one route per period (i.e. per day); however, a vehicle can go on a trip

several times during a given day. Demand of each customer may or may not be

known in advance. In real life, the distance between a customer and another is

generally not equal in both directions. In such cases the problem is referred to as

Asymmetric VRP (AVRP). However, in most of the cases the underlying graph

is considered to be symmetric. ( i.e. for all customers i and j, distance from i

to j is equal to the distance from j to i ). A partial list of these parameters and

their domains is presented in Table 2.1.

TSP is a well known NP-hard problem. It is clear that VRP is a

generalization of the m-TSP which is a generalization of the TSP. In the m-

TSP, if each customer has an associated demand and there is an upper limit on
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Parameter Domain

Objective Minimize distance / traveling time / # of vehicles
Fleet size one vehicle / multiple vehicles
Fleet type homogenous / heterogenous
# of depots single depot / multiple depots

# of routes per vehicle one route / multiple routes
Type of demand deterministic / stochastic
Vehicle capacity �nite / in�nite
Type of service delivery / pick-up / mixed / split
Underlying graph directed / undirected , symmetric / asymmetric

Table 2.1: Parameter settings for the general VRP

the sum of the demands a route can serve, then the resulting problem is a basic

VRP. Therefore, VRP is also NP-hard. The reader is referred to the paper by

Lenstra and Rinnooy Kan [55] for theNP-hardness of routing problems including

the VRP.

The VRP may contain several real-world constraints which complicate an

already diÆcult problem. Common side constraints that real vehicle routing

problems include beyond the basic model are as follows.

1. Total time or distance restrictions: Safety considerations and government

regulations prohibit drivers from driving more than a time or distance limit.

Therefore, the length of each route should be designed to be less than some

predetermined value.

2. Time Windows: The time of delivery to a customer may be constrained to

fall within a \time window". For example, a store may be open between 7:00

a.m. and 9:00 p.m., which means the vehicles can visit that store between

these hours. In such cases, the problem is refered to as Vehicle Routing

Problem with Time Windows (VRPTW). Time window constraints appear

frequently in practice.

3. Precedence Constraints: These constraints impose a partial ordering of the

customers. For example, some customers have to be the �rst or the last

one in a route.
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4. Site Dependencies: Sometimes, each site (customer) can be serviced by

some, but not necessarily all, vehicle types. Customers with high demands

may require large vehicles.

5. Delivery and/or Pick up: Besides the delivery aspect of the routing

problems, there is a pick up aspect, as well. The next section describes

the vehicle routing problem in more detail, when pick up operation is also

incorporated into the distribution system.

2.2 Vehicle Routing Problem with Backhauls

As stated in the previous sections, in the basic VRP a set of delivery customers

with known demands is to be serviced by a homogenous 
eet of �xed capacity

vehicles from a single depot. Typically, vehicles leave the depot almost fully

loaded, and come back to the depot, after the completion of deliveries, when

they become empty.

An extension of the basic VRP, which has received less attention, is the Vehicle

Routing Problem with Backhauls (VRPB). VRPB, also known as the linehaul-

backhaul problem, [17], [41], concerns the routing of vehicles over a set of mixed

customers. Some customers are delivery or linehaul points while the others are

pick up or backhaul points. Linehaul points are sites that are to receive a quantity

of goods from the depot. Backhaul points are sites that send a quantity of goods

back to the depot; when a vehicle visits such a point, some quantity of goods

are loaded on to the vehicle. Such a partitioning of customers is very frequent.

Large retail companies have many outlets to be supplied from the depot, and at

the same time, the depots must be resupplied by the vendors located in the same

region. A good example is the grocery industry. In this case, supermarkets are

linehaul customers, and grocery suppliers such as the vegetable and fruit vendors

are the backhaul customers.

VRPB replaces the deadhead trip back to the depot with a pro�table activity.

That is, linehaul-backhaul problem reduces the distribution costs by making use
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of the unused capacity of a vehicle on the trip back to the depot. Therefore, in

recent years, backhauling has been widely recognized as a means of signi�cant

savings. For example, the Interstate Commerce Commission estimated that the

yearly savings obtained by the USA grocery industry due to the introduction

of backhauling is almost $160 millions. (see Toth and Vigo, [69]). Kearney's

report [45] includes a summary of programs implemented by companies in the

period from 1978 to 1983 for improving productivity in logistics. The number one

program, utilized by 83% of the survey respondents was coordination of inbound

and outbound freight to provide private 
eet backhauls.

Like the VRP, VRPB is NP-hard. VRP is a special case of VRPB when

the number of linehaul customers is zero. Paper by Yano et al. [71] states

that \On the surface, the problem may appear to be a standard vehicle routing

problem. However, the special constraints, the presence of both delivery and pick

up requirements, and the necessity to consider common carrier alternatives make

it complex and interesting."

Since the trucks are assumed to be rear-loaded, backhaul customers are

supposed to be visited after the linehaul customers. Many of the solution

algorithms are designed to do so. However, di�erent types of trucks with multiple

doors for loading and unloading make it possible to construct routes in which

linehaul and backhaul customers are located in any sequence.

2.3 Applications of the VRP

There are many applications of the vehicle routing problem in many industries,

resulting from the di�erent parameter settings and a bundle of side constraints

that real world distribution systems face. These were explained in the previous

sections. The delivery operations of many consumer products, such as bread,

beer, gasoline and soft drinks, from a central warehouse to retail outlets involve

some variant of the vehicle routing problem. The following operations �t into the

models of the VRP.
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1. Dial-a-ride Problem: This problem concerns dispatching of vehicles to

satisfy the demands from the customers who call for a service request. One

application from the home health care industry requires the scheduling of a

nurse from home to several patients that call for some treatment, and back

home, subject to some feasibilty contraints. Another example is in the

public transportation industry where taxies are called by the customers.

Di�erent versions of the dial-a-ride problem are found in everday practice.

(see Teodorovic & Radivojevic [67], Stein [65], Psaraftis [62] and Kikuchi

[46])

2. School Bus Routing: A group of spatially distributed students must be

provided with public transportation from their residences to their schools

and back to their residences after the school is over. This problem generally

involves a school district with a number of schools each of which is assigned

a number of students, and a given time window for the student pickup and

delivery. With the time window restrictions, the problem can be modeled

as a VRPTW. The objective is to minimize the 
eet size and travel time of

the students. (see Bowerman et al. [14] and Braca et al. [15])

3. Inventory Routing: This problem (Christiansen [19], Reiman [63], Fed-

ergruen et al. [34]) addresses the problem of allocating some resource

available at a central depot among customers such as retail stores. The

customers keep some amount of the resource as their own inventory but

they experience a random demand pattern. Each day a 
eet of vehicles has

to be routed within a subset of the customers. Therefore, which customers

are to be visited and in what order is to be decided.

4. Waste Collection: A waste management company has to design a set of

routes within a city in order to collect the garbage. This problem is actually

an arc routing problem because each street, for example, should be traversed

for the collection of garbage from every waste basket. (see for example, Shih

& Lin [64] and Tung & Pinnoi [70])
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5. Package Delivery and Pick up: Package service companies like UPS and

FedEx try to eÆciently determine delivery/pick up routes. Packages should

be collected from the customers and sent to their destinations.

6. Meal and Soft Drink Delivery: A large meal delivery company servicing

a large territory would like to design minimum cost and/or time routes

to its customers. Such companies like the ones providing meals to airline

companies, have to deliver products within some time since meals are not

durable for a long time. Soft drink companies like Coca-Cola also try to

construct economic routes for delivering their products to supermarkets,

restaurants or stores.

7. Machine Scheduling Problems: If the term vehicle is interpreted as a

machine, and the term customer is thought to be any kind of demand,

then scheduling problems can be modeled as a vehicle routing problem.

(see Chan et al. [18])

8. Automated Guided Vehicle Scheduling Problems: Automated guided

vehicles in a production environment should be routed among the

production stations. (see e.g. Akt�urk & Y�lmaz [2])

The above is just a partial summary of the application areas of VRPs. See

also, Christo�des et al. [21], Bodin et al. [13], Magnanti [57] and most recently

Fisher [35] for the applications and classi�cations of vehicle routing problems.

2.4 Outline of the Thesis

The remainder of this thesis has the following structure: Chapter 3 discusses the

existing literature on the VRPs and related problems, the TSP and m-TSP. It

gives an overview of formulations and exact and heuristic methods proposed for

these problems. Following this review, Chapter 4 demonstrates the algorithm

we propose which is based on iteratively solving a relaxation of the VRP. This
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chapter discusses some feasibility check and seperation procedures. The chapter

then explains further improvements to the original algorithm. An illustrative

numerical example demonstrates how the algorithm works. Chapter 5 exhibits

the results of some computational experiments with randomly generated problem

instances, and discusses some of the implementation details. Finally, Chapter 6

gives conclusions on the experiments and introduces some ideas that can be used

for future research.



Chapter 3

Literature Review

3.1 The TSP and m-TSP

Given a set of customers represented by the nodes of a graph, traveling salesman

problem is the problem of �nding the shortest route which visits each customer

once. The multiple traveling salesman problem, on the other hand, is de�ned

as the problem of �nding a set of routes originating and terminating at a single

depot, where each node is visited once by exactly one salesman.

TSP was extensively studied by researchers and there is a huge literature on

it. The reader is directed to Burkard [16] and Lawler et al. [54] for comprehensive

surveys on the TSP.

3.1.1 Mathematical Formulations of the m-TSP

In terms of graph theory terminology, the m-TSP can be stated as follows: Given

a graph G = (V;A) where V = (1; 2; : : : ; n) is the set of nodes and A = f(i; j) :
i; j 2 V; i 6= jg is the set of edges, and let C = (cij) be a distance matrix of A,

�nd a minimum cost collection of m node disjoint circuits in the graph G where

each circuit starts and ends at the depot. The problem is said to be symmetric

if cij = cji for all (i; j) 2 A, and asymmetric otherwise.

12
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The mathematical formulations of the m-TSP are based on the assignment

model. These models are, essentially, extended versions of the models for the

TSP. This section summarizes some of the formulations in the literature.

Motivated by the de�nition above, the multiple Traveling Salesman Problem

can be modeled as an integer linear program (ILP) as follows. Let

xij =

8<
:

1; if edge (i; j) is in the optimal solution

0; otherwise

then we would like to �nd the xij's which are to become 1, i.e. �nding the arcs

that the salesmen should go through, for the distance traveled to be minimized.

Miller Tucker and Zemlin's Formulation

It seems that the �rst formulation of the m-TSP was given by Miller, Tucker and

Zemlin [58]. Their formulation allows the salesman to turn back to the origin,

denoted by 0, t times.

Minimize
Pn

i=0

Pn
j=0;i6=j cijxij

subject to
Pn

i=1 xi0 = t (3:1)Pn
i=0 xij = 1; j = 1; 2; : : : ; n i 6= j (3:2)Pn
j=0 xij = 1; i = 1; 2; : : : ; n j 6= i (3:3)

ui � uj + pxij � p� 1 1 � i 6= j � n (3:4)

xij 2 f0; 1g 8i; j
ui urs

The constraints (3.1) forces the salesman turn back to the origin t times. The

constraints (3.2) and (3.3) are the usual degree constraints of an assignment

problem. The constraints (3.4) prohibit the formation of the subtours, tours

that do not include the depot. These constraints are generally called subtour

elimination constraints or SEC in short. p denotes the maximum number of

nodes that a salesman is allowed to visit.
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Kulkarni and Behave's Formulation

Another formulation by Kulkarni and Behave includes two more constraints to

the usual assignment model. These constraints provide all of the salesmen to be

assigned to a tour. Their formulation is as follows, where the origin is node n:

Minimize
Pn

i=1

Pn
j=1 cijxij

subject to
Pn

i=1 xij = 1; j = 1; 2; : : : ; n� 1 i 6= j (3:5)Pn
j=1 xij = 1; i = 1; 2; : : : ; n� 1 j 6= i (3:6)Pn
i=1 xin = m (3:7)Pn
i=1 xni = m (3:8)

ui � uj + Lxij � L� 1 1 � i 6= j � n� 1 (3:9)

xij 2 f0; 1g 8i; j

Constraints (3.5) and (3.6) are the usual assignments constraints, whereas (3.7)

and (3.8) ensure that all the m salesmen are assigned. Constraints (3.9) are

the subtour elimination constraints where L is the maximum number of nodes a

salesman is allowed to visit.

Bekta�s's Formulation

Bekta�s [10] discusses about the subtour elimination constraints for the TSP and

m-TSP, and proposes a new formulation for the m-TSP based on the assignment

model. This formulation is compared with the formulation proposed by Miller,

Tucker and Zemlin. Computational study consists of asymmetricm-TSPs of sizes

ranging from 60 to 150. The results impose that the new formulation is the best

among these formulations, in terms of CPU time. This formulation is given as

follows, where 1 is the origin:
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Minimize
Pn

i=1

Pn
j=1 cijxij

subject to
Pn

i=1 xij = 1; j = 2; : : : ; nPn
j=1 xij = 1; i = 2; : : : ; nPn
i=1 x1i = m

ui � uj + (n�m)xij

+(n�m� 2)xji � n�m� 1; i; j = 2; : : : ; n i 6= j

ui + (n�m� 1)x1i � n�m i = 2; : : : ; n

ui + x1i � 2 i = 2; : : : ; n

ti � ui � 0 i = 2; : : : ; n

ti � ui � (n�m� 1)xi1 � �n+m + 1 i = 2; : : : ; n

ti � (n�m)xi1 � 0 i = 2; : : : ; nPn
i=2 ti = n� 1 i = 2; : : : ; n

First two constraints are the usual assignment constraints. Third constraint

ensures that m circuits will be created. The remaining constraints are subtour

elimination constraints and ensure that all the m tours include the depot node 1.

3.1.2 Solution Methods of m-TSP

Since the m-TSP is NP-hard, it is highly unlikely that a polynomial time

algorithm to solve it exists. This nature of the problem lead to two alternative

methods for its solution. Exact methods to �nd an optimum solution require

too much computation time, while heuristic approaches need much more less

computational e�ort but do not guarantee optimality. Exact methods are mainly

based on branch & bound and branch & cut methods. On the other hand,

heuristic techniques use local search methods such as tabu search, simulated

annealing, genetic algorithms and neural networks. For a detailed review of these

solution methods, the reader is referred to Bodin et al. [13], Laporte [48] and

Lawler et al. [54].
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Exact Solution Methods for the m-TSP

Exact algorithms require too much computation time but they guarantee to

obtain the optimum solution. The most promising exact methods seem to be

branch & bound and branch & cut methods.

The branch & bound method's main idea is to use a relaxation of the IP to

recursively partition its solution set so that ultimately, for each element of the

partition, the solution of the initial IP restricted to that subset is either known

exactly or known to be not optimal. Branch & bound remains as the method

of `�rst attack' on an IP. Most branch & bound methods use a relaxation of

the m-TSP obtained by either relaxing the degree constraints, the integrality

constraints or the subtour elimination constraints or a combination of them.

Svestka & Huckfelt [66] introduced an ILP formulation based on that of Miller,

Tucker and Zemlin's but with a new set of SECs. Then, they employed their

formulation in a branch & bound framework. Gavish & Srikanth [38] applied

a branch & bound method to the m-TSP, obtaining a lower bound through a

Lagrangian relaxation of the problem.

There exist another traditional method to solve IPs to optimality: the cutting

plane algorithm. Its main idea is to solve a sequence of LP relaxations of the

initial problem to optimality; each time the solution is nonintegral, an inequality

is added to the current relaxation, that is valid for the solution set of original

IP but is violated by the optimal solution for the current relaxation. The �rst

example of the cutting plane method was due to Dantzig, Fulkerson and Johnson

[29] when they published a description of a method for solving the TSP and

illustrated the power of this method by solving a 49-city TSP which was an

impressive size for 1950s.

Branch & cut method can be thought of a combination of branch & bound

method with the cutting plane algorithm. For each partition of the solution set

of the LP relaxation several cuts are added to the current formulation to tighten

the problem. That is, in the bounding step, instead of solving one relaxation, a

sequence of relaxations is solved each time adding an inequality that is violated
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by the current fractional solution.

A cutting plane algorithm due to Laporte & Nobert [50] uses subtour

elimination and integrality constraints as cutting planes. This work proposes

two ILPs for the symmetric and asymmetric cases of m-TSP. Their algorithm

introduces necessary SECs only when the solution to the relaxation is integral.

Exact solution methods for the m-TSP are similar to those for the TSP. This

is natural because of the similarities between the structures of the two problems.

Many researchers studied on the transformations of m-TSP to TSP. By eÆcient

transformation algorithms, methods for the TSP can be used to solve m-TSPs.

Bellmore & Hong [11] showed that the asymmetric m-TSP with m salesmen and

n nodes can be transformed to an asymmetric TSP with n+m�1 nodes. Jonker

& Volgenant [44] improved the standard transformation of the symmetric m-TSP

to a standard TSP with a sparse edge con�guration.

Heuristic Solutions for the TSP and m-TSP

A heuristic is a solution strategy that produces an answer without any formal

guarantee for optimality. Heuristic procedures produce near-optimal solutions in

a reasonable amount of time. Many heuristics have been proposed for the TSP.

On the other hand, m-TSP attracted less attention in terms of the number of

heuristics proposed. Heuristics developed for the standard TSP are applied to

the m-TSP by transformong it to a standard TSP. The heuristics proposed for

the TSP and m-TSP can be classi�ed as tour construction heuristics and tour

improvement heuristics.

Tour construction heuristics involve construction of a tour from scratch

following some construction criteria and stop whenever an initial tour is formed.

In the Nearest Neighbour procedure, the salesman starts from a city and then

visits the city nearest to him. From there he visits the nearest city that was

not visited so far. Insertion heuristic, starts with a tour on small subsets like

a trivial tour of one or two nodes and then extends the tour by inserting the

remaining nodes. Clarke & Wright [24] introduced the famous savings algorithm
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for the VRP, but it is also applied to TSP. In savings method, initially there are

jCj tours each of which start from a base node, visit only one customer and end

at the base node. Then, the savings that can be obtained by combining di�erent

tours are computed and the tours are combined starting from the combination

that yields the largest saving.

Tour improvement heuristics try to improve the quality of a given tour by

simple tour modi�cations. In other words, these algorithms search for the best

tour among a neighborhood of the given feasible tour. This neighborhood depends

on the tour modi�cation procedure. A well known tour improvement heuristic

is the 2-opt procedure proposed by Croes [27]. This procedure removes two arcs

from the initial tour and replaces two di�erent arcs that improve the quality

of the tour. The new arcs are chosen so that the new solution is still a tour.

When such a modi�cation is done, the new tour is treated as the initial tour

and the modi�cations are seeked on this new solution. Algorithm terminates

when there is no possible improvement. A famous procedure proposed by Lin &

Kernighan [56] which considers r-exchanges for the improvement while r changes

dynamically during the procedure.

Improvement heuristics may get stuck in local optima. To prevent this, several

heuristics such as simulated annealing and tabu search, are proposed. Simulated

annealing procedure moves from a given solution to a minimum cost solution by

gradually changing the initial solution. However, sometimes, the initial solution

is substituted by the new solution although the new solution is more costly. This

increases the probability to of getting closer to the global optimum. Simulated

annealing has been applied to TSP by several researchers including Rossier et

al. (1986) and Nahar et al. (1989) (see Laporte [48]). Tabu search also tries to

prevent getting stuck at local minima. In order to prevent cycling, the solutions

that are already been examined are stored in a `tabu list'. The success of this

method depends on the careful choice of control parameters. Several researchers

that applied tabu search to the TSP include Knox (1988), Malek (1988) and

Fiechter (1990) (see Laporte [48]).
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The heuristics proposed for the m-TSP are limited and includes exchange

heuristics, tabu search, evolutionary programming, and neural networks.

3.2 Vehicle Routing Problem

We gave a de�nition for the basic VRP in x2.1 on page 4. Here, we give the

notation we use for the mathematical formulations of the VRP.

We denote the set of customer locations by C =f1,2,. . . ,ng and the depot

location by 0. Let G = (N;E) be a complete directed graph representing the

Vehicle Routing Network where N = C [f0g = f0; 1; 2; : : : ; ng is the set of nodes
and E = f(i; j) : i; j 2 N; i 6= jg is the set of edges. Further, we adopt the

following notation:

di = demand of customer i, i 2 C
m = number of delivery vehicles

Qk = capacity of vehicle k, k 2 f1; 2; : : : ; mg
cij = distance from location i to location j

We note that cii = 1 for all i 2 N . The VRP then consists of �nding a

minimum-cost collection of m simple circuits such that each vehicle performs

exactly one circuit, each circuit visits node 0, each node di�erent from node 0 is

visited by exactly one circuit, and for a given circuit the sum of the demands of

all the nodes in the circuit does not exceed the capacity of the vehicle servicing

that circuit. The objective is to minimize the total distance traveled, de�ned as

the sum of all the arcs belonging to the circuits.

The following sections demonstrate mathematical formulations and solution

methodologies of the vehicle routing problems.

3.2.1 Mathematical Formulations of the VRP

This section does not give a comprehensive survey on the VRP formulations

which are many and varied, but rather gives basic formulations which led to
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di�erent solution methods. The reader is referred to Christo�des et al. 1979 [21],

Magnanti 1981 [57], Bodin et al. 1983 [13], Golden & Assad 1988 [42], Laporte

1992 [49], and most recently to Fisher 1995 [35] for surveys on the VRP.

Formulation due to Fisher and Jaikumar

This formulation was given by Fisher and Jaikumar in 1981 [36].

Let

xijk =

8>>><
>>>:

1; if vehicle k visits customer j imme-

diately after customer i

0; otherwise

and

yik =

8<
:

1; if customer i is visited by vehicle k

0; otherwise

The basic VRP is then

Minimize
P

i;j cij
P

k xijk

subject to
P

k yik = 1 i = 1; : : : ; n (3:2:1)P
k yik = m i = 0 (3:2:2)P
i diyik � Qik k = 0; : : : ; m (3:2:3)P
j xijk =

P
i xjik = yik i = 0; : : : ; n k = 1; : : : ; m (3:2:4)P

i;j2S xijk � jSj � 1 for all S � f2; : : : ; ng k = 1; : : : ; m (3:2:5)

yik 2 f0; 1g i = 0; 1; : : : ; n k = 1; : : : ; m

xijk 2 f0; 1g i; j = 0; 1; : : : ; n k = 1; : : : ; m

Constraints (3.2.1) and (3.2.2) ensure that every customer is allocated to

some vehicle, except for the depot which is visited by all of the m vehicles.

Constraints (3.2.3) are the vehicle capacity constraints, constraints (3.2.4) ensure

that a vehicle which visits a customer also leaves it, and (3.2.5) are the usual

subtour elimination constraints of the TSP.
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Formulation due to Laporte, Nobert and Desrochers

In 1985, Laporte, Nobert and Desrochers [53] adapted a formulation of the TSP

to the VRP by adding extra variables, and a constraint to model the depot and

vehicle capacities. In this formulation, xij represents the number of vehicles

traveling directly between customers i and j. V (S) = dPi2S di=Qe where dye
denotes the smallest integer not less than y. That is, V (S) is a lower bound on

the number of vehicles needed to serve all the customers in S. All the vehicles

are assumed to be identical and Q is the common vehicle capacity. They consider

a symmetric VRP.

Minimize
P

i<j cijxij

subject to
P

j<i xij +
P

j>i xji = 2 i = 1; 2; : : : ; n (3:2:6)P
j x0j = 2m (3:2:7)P
(i;j)2S�S xij � jSj � V (S) for all S � f1; : : : ; ng (3:2:8)

xik 2 f0; 1g 1 � i � j � n

x0j 2 f0; 1; 2g j = 1; 2; : : : ; n

Constraints (3.2.6) ensure that the degree of every node except the depot is

two, meaning that there is an incoming and outgoing arc. Constraint (3.2.7)

provide that m vehicles enter and leave the depot, so the degree of the depot is

2m. Constraints (3.2.8) are the subtour elimination constraints, where V (S) is

a lower bound on the number of vehicles needed to serve the customers in the

set jSj. The case x0j = 2 corresponds to a route containing only customer j. If

single customer routes cannot occur, x0j can be restricted to be 0 or 1.

3.2.2 Solution Methods of the VRP

It is quite clear that the mathematical formulations of the VRP, exhibited in the

previous section, are too complex in solving VRPs of non-trivial size. Since VRP

is NP-hard, solution methods are dominated by heuristic approaches. We will
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discuss some of the heuristics and exact methods for the VRP in the following

sections.

Exact Solution Methods for the VRP

Exact methods for the VRP are based on the formulations given before. As with

any combinatorial problem, their success or failure is dependent on the degree

to which they exploit problem structure. Exact methods for the VRP can be

classi�ed into three broad categories: Direct tree search techniques, dynamic

programming and integer linear programming. We review a few examples to

illustrate the variety of exact methods for the VRP.

Direct tree search methods typically embed a non-LP based lower bounding

procedure within a branch & bound scheme. For example, Laporte, Nobert

and Desrochers [53], used the formulation presented on page 21 but relaxed this

formulation by dropping the capacity constraints. They added these constraints

as they are violated since these are too numerous to specify apriori. Later

Laporte, Mercure & Nobert [52] used a similar formulation in a branch & bound

algorithm. The relaxation was obtained by dropping the capacity constraints

which results in a formulation of m-TSP. Then m-TSP is transformed to a

standard TSP. Throughout the branch & bound algorithm, they eliminate the

solutions that violate the capacity constraints by branching on proper variables

when an integral solution is achieved. (i.e. partition the search space by setting

the variables, that are in an infeasible tour, to 0 or 1)

Another example to the direct tree search methods is due to Christo�des,

Mingozzi and Toth [22] in 1981. In a branch & bound procedure the quality of

the lower bounds is extremely important for the eÆciency. In this method, the

lower bound is obtained from k-degree center tree. A k-degree center tree is a tree

(that is, a subset of n� 1 edges, T , such that T is a single connected component

containing no cycles) where the degree of the depot is k. The lower bound on

the VRP is obtained by shortest path computations using the tree. Problems

from the literature ranging from 10 to 25 nodes were successfully solved by this
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procedure. Later, in 1987 Kolen et al. [47] generalized this method for the VRP

with time windows.

Dynamic programming was �rst proposed for the VRPs by Eilon et al. [33].

Let the number of vehicles m be �xed and c(S) denote the cost of a vehicle route

through node 0 and all the nodes of a subset S of N nf0g. Also let, fk(U) be the
minimum cost that can be achieved using k vehicles and delivering to a subset U

of N nf0g. Then the minimum cost can be found through the following recursion:

fk(U) =

8<
:

c(U); k = 1

min[fk�1(U n U�) + c(U�) j U� � U � N n f0g]; k > 1

The cost of the solution is fm(N n f0g) and the optimal solution corresponds

to the optimizing subsets U� in the above recursion. It is clear that the fk(U)

has to be computed for all subsets of U and all values of k. Therefore, the

number of computations is too high. The authors propose techniques to reduce

the number of states by means of a relaxation procedure, and by using feasibility

or dominance criteria. By that way, instances of 10 to 25 nodes were solved.

Balinkski & Quandt [7] were �rst to propose a set partitioning formulation for

the VRP. Let r denote a feasible route and the index set of all feasible routes be

R. Also let air be a binary coeÆcient equal to 1 if and only if node i > 0 appears

on route r. Let c�r be the optimal cost of route r and xr, a binary variable equal

to 1 if and only if route r is used in the optimal solution. Then, the VRP can be

stated as:

Minimize
P

r2R c
�
rxr

subject to
P

r2R airxr = 1 i 2 N n f0g
xr 2 f0; 1g 8r 2 R

The number of binary variables xr in this formulation can reach to millions in

real-life instances. In addition, it is diÆcult to compute c�r, the cost of each route.

To �nd c�r of route r, which includes the nodes in S, one must solve a TSP within

the node set S. However, if the objective is to minimize the number of vehicles
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(i.e. c�r = 1 for all r 2 R) and the number of variables is relatively small, the

linear relaxation of the above set partitioning problem provides integral solutions.

A good way to overcome the diÆculties underlying the set use of partitioning

formulation is to use column generation algorithm. This technique is successfully

applied to the VRP by Orlof [60] and Desrosiers et al. [32]. In column generation,

a reduced problem which includes only a subset of all possible columns (variables)

is repeatedly solved. The approach to solve a linear program requires in each

iteration, the solution of a pricing problem to determine whether or not the

current set of columns contains an optimal solution for the linear program. In

the case of the VRP, the pricing problem involves �nding a tour through a subset

of the nodes for which the reduced cost of the associated column is negative, or

proving that no such tour exists. This pricing model is equivalent to �nding a

negative cycle in an edge-weighted graph with the additional restrictions that the

cycle pass through the depot, and the sum of the demands of the nodes in the

cycle does not exceed the vehicle capacity.

Fisher & Jaikumar [36] developed an algorithm for the VRP based on the

formulation they propose (see page 20). The algorithm is designed as a heuristic

but it guarantees optimality in a �nite number of steps. The algorithm is based on

Benders' Decomposition. A generalized assignment problem (GAP) that assigns

customers to vehicles is solved iteratively while the routes are formed by solving

a TSP within the customers assigned to each route. The algorithm generates a

feasible solution even if it does not run to completion. Therefore, it is sometimes

called as the generalized assignment heuristic.

Perhaps the most promising algorithm to optimally solve combinatorial

problems is branch & cut. We have explained branch & cut algorithm shortly in

section 3.1.3. The success of branch & cut algorithm for the TSP encourages its

use for the vehicle routing problems. Consequently, as the polyhedral structure

of the VRP was explored (see, for example, Cornuejols & Harce [26]) successful

implementations of this algorithm for the VRP were reported. Araque et al. [4]

report the solution of instances up to 60 identical customers. Bard et al. [8]
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report a branch & cut algorithm for the vehicle routing problem with satellite

facilities. More recently, Corber�an et al. [25] developed a branch & cut algorithm

for the general routing problems.

Although there are a number of exact methods proposed for the VRP, VRPB

attracted less attention. To our knowledge, there are two exact algorithms

proposed for the VRPB. One is due to Mingozzi & Giorgi [59]. The authors

present a new 0-1 program for the VRPB and compute a lower bound to the

optimal solution cost by combining di�erent heuristic methods for solving the dual

of the LP-relaxation of the exact formulation. This algorithm solved symmetric

instances up to 100 customers.

The other exact algorithm, proposed by Toth & Vigo [68], makes use of a

new linear integer programming model and a Lagrangian lower bound which

is strenghtened in a cutting plane fashion. The Lagrangian lower bound is then

combined, with a lower bound obtained by dropping the capacity constraints, thus

obtaining an e�ective overall bounding procedure. A branch & bound algorithm,

reduction and dominance criteria are also described. Symmetric and asymmetric

instances involving up to 100 customers are solved successfully.

Yano et al. [71] proposed an exact algorithm for a special case of the VRPB

where each route can have at most four points. This procedure uses set covering

to �nd an optimal set of routes.

Heuristic Solutions for the VRP

Heuristic algorithms for the VRP are often derived from the algorithms for

the TSP. The nearest neighbour algorithm, insertion algorithms and tour

improvement procedures can be applied to the VRP almost without modi�cation.

The only di�erence is that, the routes constructed by the procedure should be

checked for feasibility since VRPs contain several side constraints.

The savings algorithm proposed by Clarke & Wright [24] in 1964 starts with

vehicle routes containing the depot and just one customer. At each step, two
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routes are combined in the order of the largest savings that can be generated

by combining the routes. More formally, the algorithm can be stated as follows.

Compute the savings sij = ci0 + c0j � cij for i; j = 1; : : : ; n and i 6= j. Generate

n routes (1; i; 1) for i = 1; : : : ; n. Then, order the savings in a non-increasing

fashion. Starting from the top of the list, merge the two routes containing

nodes i and j into a new route (0; i; j; 0). This step is repeated until no further

improvement is possible.

The sweep algorithm proposed by Gillet & Miller [40] is a two-phase method

and represents customers by their polar coordinates (�i; �i) where �i is the angle

and �i is the ray length. Then the customers are ranked in increasing order of their

�i. Then, an unused vehicle is chosen; starting from the unrouted customer with

the smallest angle, customers are assigned to the vehicle as long as its capacity

is not exceeded. If there are unrouted customers another vehicle is chosen and

same steps are repeated. At the end, each vehicle route is optimized by solving

the corresponding TSP.

Another two phase method is given by Christo�des et al. [21]. Their method

selects a seed node and constructs a route by including other nodes according

to some insertion cost criteria until the capacity of the vehicle is reached. After

all vehicles are used, the algorithm computes the insertion cost of a node into a

feasible cluster relative to the seed of the cluster. The node with the minimum

insertion cost is assigned to its corresponding cluster. In the second phase, TSP

is solved for each of the cluster.

As discussed in the previous section, the two phase method of Fisher &

Jaikumar [36] is an exact algorithm if allowed to run to completion. But it

is generaly referred to as the generalized assignment heuristic since it generates

feasible routes at each step. Baker & Sheasby [6] proposed an extension to the

generalized assignment heuristic.

As in the case of the exact algorithms, the number of heuristics for the VRPB

is less than those for the VRP.

Deif & Bodin proposed a modi�ed savings algorithm for the VRPB where the
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linehauls have to preceed backhauls in a given route (Casco et al. [17]). As the

�rst step, the usual savings are computed but the condition that backhauls must

occur after linehauls is also imposed. Therefore, once a backhaul customer is

located at the end of a route, no linehaul customer is added to that route. This

way, the routes become too short and therefore to have longer routes a penalty

for the backhaul customers to be merged in a route is used.

Goetschalckx & Jacobs-Bella [41] propose a heuristic for the VRPB based on

space �lling curves developed by Bartholdi & Platzman [9]. Toth & Vigo [69]

propose a cluster-�rst-route-second type heuristic which uses a new clustering

method. The algorithm is applicable to both symmetric and asymmetric

instances.

Tabu search, simulated annealing and genetic algorithms are recently being

used to develop heuristic algorithms for the vehicle routing problems. The reader

is referred to Gendreau et al. [39] for a detailed study on such recent heuristics

for the VRPs.



Chapter 4

The Algorithm

In this chapter we propose an exact algorithm for the asymmetric vehicle routing

problem with backhauls (AVRPB). Although the algorithm is designed for

AVRPB, it can also be used for standard AVRPs (without backhauls) by simply

setting the number of backhaul customers to 0. This chapter is organized as

follows: Section 4.1 gives preliminaries including our notation and de�nitions.

Section 4.2 describes the algorithm we propose for the VRPB. Section 4.3

discusses procedures that improve the proposed algorithm. Finally, section 4.4

demostrates the algorithm on a numerical example.

4.1 Preliminaries

We gave the notation we adopted for the VRP in x3.2 on page 19. Extended

for the VRPB, we re-present our notation here. Additional notation will be

introduced when necessary.

The set of linehaul customer locations is denoted by L = f1; 2; : : : ; Lg and

the set of backhaul customer locations by B = fL + 1; L+ 2; : : : ; L +Bg where

L is the number of linehaul customers and B is the number of backhaul customers.

Thus, the set of all customers is given by C = L [ B = f1; 2; : : : ; L+Bg. The

depot location is represented by 0. Let G = (N;E) be a complete directed graph

28
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representing the Vehicle Routing Network where N = C [ f0g = f0; 1; 2; : : : ; L+

Bg is the set of nodes and E = f(i; j) : i; j 2 N; i 6= jg is the set of edges.

Further, we adopt the following notation:

di = demand of (or amount supplied by) customer i, i 2 C
m = number of delivery vehicles

Qk = capacity of vehicle k, k 2 f1; 2; : : : ; mg
cij = distance from location i to location j, (i; j) 2 E

We note that cii =1 for all i 2 N and d0 = 0. The cost matrix is asymmetric;

that is, cij 6= cji for some (i; j) 2 E. Whenever we are dealing with identical

vehicles case, Q denotes the common vehicle capacity. The AVRPB then consists

of �nding a minimum-cost collection of m simple circuits such that each vehicle

performs exactly one circuit, each circuit visits node 0, each node di�erent from

node 0 is visited by exactly one circuit, and for a given circuit the minimum

capacity required to serve the nodes (i.e. deliver goods to linehaul customers and

collect goods from the backhaul customers) on that circuit does not exceed the

capacity of the vehicle servicing the circuit. The objective is to minimize the total

distance traveled, de�ned as the sum of all the edges belonging to the circuits.

We de�ne a vehicle route for the kth vehicle as a sequence of locations Rk =

(i1 = 0; i2; i3; : : : ; ir = 0) beginning and ending at the depot, and all intermediate

locations are distinct. We also de�ne q(Rk) as the capacity required for the

route. In other words, it is the maximum amount of load on an in�nite-capacity

imaginary vehicle during its trip on the route.

As discussed in Chapter 2, in the literature, it is generally considered for the

VRPB that the backhaul customers have to come after the linehaul customers

in a route (see for example, Mingozzi & Giorgi [59], Toth & Vigo [68]). There

are few heuristic examples with no obligation of this kind and to our knowledge,

there is not an exact algorithm for the VRPB without this restriction. It is clear

that with such precedence constraints, the capacities of vehicles can be reduced

while still servicing the customers. In such cases, for a given route of linehaul

customers preceeding backhaul customers, the capacity of the vehicle servicing
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the route should be greater than or equal to the maximum of the sum of the

demands of the linehaul customers and the sum of the amounts supplied by the

backhaul customers. Consider the following example:

Consider the route (0; 1; 2; 3; 4; 5; 0) and let the locations 1; 2 and 3 be linehaul,

and 4 and 5 be backhaul customers. The �gure below summarizes the route

characteristics.

Route: 0 1 2 3 4 5 0
Type of customer: - L L L B B -

Demand: 0 10 5 5 15 10 0

Figure 4.1: A route with backhauls after linehauls

It is clear that vehicle k which is assigned to this route should have a capacity

of at least 25 units. The vehicle loaded with the goods to be delivered to the

linehaul customers (10 + 5 + 5 = 20 units) starts its trip from the depot. But

after it delivers all the goods, it should visit backhaul customers to pick up

goods (15 + 10 = 25 units). Therefore, its capacity should be at least q(Rk) =

maxfPi2(Rk\L) di ;
P

j2(Rk\B) djg = maxf10 + 5 + 5; 15 + 10g = 25.

On the other hand, consider that it is not obligatory for the backhaul

customers to be visited after the linehaul customers. Customers of both type can

be visited in any sequence in a route. Considering the same example, suppose

that the route is now (0; 4; 1; 2; 3; 5; 0). Now, the vehicle starts with a load of 20

units. But the �rst customer it should visit is a backhaul customer. That is, at

customer 4 it should have empty space for 15 units. The capacity required by

this route when it is at customer 4 is 20+15 = 35 units. After visiting customers

1 and 2, 15 units will be delivered and the remaining empty space will be enough

to collect goods from customers 3 and 5. Therefore, the capacity required by the

entire route is 35 units. In the next sections, we give an algorithm to determine

the capacity of a route where the linehaul and backhaul customers are in any

sequence.
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This simple example demonstrates that it is better to restrict the con�guration

of the routes so that the backhaul customers are visited after the linehaul

customers, if it is desired to use smaller vehicles. But note that, the objective

of the problem is to minimize the total distance traveled by the entire 
eet.

Without such a restriction, it is clear that the distance traveled will probably be

less than that of restricted case (one of the constraints is now relaxed). This may

be preferred considering the bene�ts in the long run.

As opposed to many of the algorithms proposed in the literature, the algorithm

we propose here has no precedence relation between these two types of customers.

The algorithms and heuristic methods proposed for the VRPB also generally

allow formation of routes with only linehaul customers, commonly however, they

prohibit the routes consisting of only backhaul customers. Our algorithm also

allows the routes of linehaul or backhaul customers alone.

4.2 The Default Algorithm

In the previous chapters we explained that m-TSP is just a special case of the

VRP. This is clear intuitively: m-TSP concerns with �nding m tours within

geographically dispersed customers where each tour starts and ends at the depot,

and each customer is visited once. It is well known that when an additional

constraint is added to a problem, its feasible set shrinks or stays the same since

that constraint may be violated by some points within the original feasible set.

In the m-TSP, if each customer has an associated demand and there is an upper

limit on the sum of the demands a route can serve, then the resulting problem

is a basic VRP with m vehicles. Note also that VRP is a special case of VRPB

with number of backhaul customers equal to zero (i.e. B = 0).

Therefore, the m-TSP is a relaxation of the VRP and VRPB, obtained by

dropping the capacity constraints. This implies that XmTSP � XV RP where

XmTSP denotes the feasible set of the m-TSP and XV RP denotes the feasible

set of the VRP with m vehicles. This is equivalent to saying that any feasible
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solution to the VRP is also a feasible solution to the m-TSP. This statement is

not necessarily true in the reverse direction. That is, a feasible solution to the

m-TSP may or may not be a feasible solution to the VRP.

This is the main motivation underlying the proposed approach for the solution

of the VRP. One can make use of the fact that it is easier to solve m-TSP

compared to VRPs. The core of the algorithm we propose to solve the VRP

and VRPB is this: Solve the corresponding m-TSP obtained by dropping the

capacity constraints of the VRP. Check the solution to the m-TSP and identify

whether this solution is feasible for the VRP. If the solution is feasible for the

VRP, it is also optimal for the VRP. If the solution is infeasible for the VRP then

add necessary inequalities valid for the VRP but violated by the current m-TSP

solution to the m-TSP formulation. After appending the inequalities, repeat the

same steps.

Let x�V RPB and x�m�TSP denote the optimal solution for the VRPB and the

corresponding m-TSP, respectively. Then, a more formal description of the

default algorithm can be given as in Figure 4.2.

The Default Algorithm

Step 1. Solve the corresponding m-TSP formulation for the VRPB.

let x�
m�TSP

be its solution.

Step 2. Check whether x�
m�TSP

2 XV RPB

Step 3. If x�
m�TSP

2 XV RPB stop, x�
V RPB

= x�
m�TSP

.

else add inequalities valid for the VRPB but

violated by x�
m�TSP

. Go to Step 1.

Figure 4.2: The Default Algorithm

It is quite apparent that this is a �nite algorithm since the number of solutions

to the m-TSP is �nite as in any combinatorial optimization problem. The

algorithm will eventually �nd a feasible solution to the VRP, if of course the

number and capacity of the vehicles are enough to service all the customers, or

will declare infeasibility otherwise.
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The above algorithm is just like cutting plane algorithms. The only di�erence

is that, in the cutting plane algorithm, the LP relaxation of the IP is iteratively

solved while at each iteration nonintegral solutions are chopped o� by adding

proper cuts. Both of the algorithms stop whenever the solution to the relaxation

is feasible for the original problem (cutting plane algorithm stops when an integral

solution is at hand).

It is clear that each step of the algorithm can be realized by di�erent

approaches. The following discussion includes the way we handle the steps of

the algorithm.

4.2.1 Solution of the m-TSP

The heart of the default algorithm is the solution of the m-TSP formulation

eÆciently. Because m-TSP is solved again and again during the execution of

the algorithm, fast algorithms should be used to solve it. Among the alternative

formulations of the m-TSP in the literature, the formulation due to Bekta�s [10] is

reported to be the most e�ective for the asymmetric problems. This formulation

was presented on page 14.

We propose solving the corresponding m-TSP for the VRPB by branch &

bound which is quite e�ective for the asymmetric m-TSPs. We solve the problem

with the subtour elimination constraints included in the formulation proposed by

Bekta�s [10]. Therefore, the optimal solution of the m-TSP denoted by x�m�TSP

is integral.

4.2.2 Checking Feasibility for the VRPB

This section illustrates how it can be determined whether a given solution to the

m-TSP is feasible for the VRPB or not.

Remember that the number of vehicles is represented by m and the capacity

of each vehicle is denoted by Qk, for all k = 1; : : : ; m. Note also that, the solution

to the m-TSP is a set of m routes, each denoted by Rk, that does not include any
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common node other than the depot. Finally, let Qmax be equal to the maximum

of the capacities of the vehicles (i.e. Qmax = maxfQkjk = 1; : : : ; mg).
Suppose that we are given a solution to the corresponding m-TSP, x�m�TSP .

It is clear that one should try to assign vehicles to each of the m routes given in

the solution. There are two situations. One should �rst check whether each route

in this solution requires a capacity more than Qmax or not. Still, the vehicles may

not be assigned to routes although each of the routes requires capacity less than

or equal to Qmax.

Before discussing these two situations, we explain how the capacity required

by route k, q(Rk), can be computed.

Computation of q(Rk):

We demonstrated how q(Rk) can be computed for a route k in which backhauls

come after linehauls in x4.1 and noted that we would explain an algorithm which

computes the capacity required by a route in which backhauls and linehauls

can be in any sequence. In this section we propose a simple algorithm for the

computation of q(Rk) for any route.

It is clear that a vehicle must be loaded with the goods it should deliver

before it leaves the depot. Therefore, that vehicle should have a capacity of at

least the sum of the linehaul customers in the route. The computation of q(Rk) is

simply keeping track of the maximum load on the vehicle during its trip: Starting

with a load equal to the sum of the linehaul customers, at each linehaul customer

decrease the load on the vehicle by the demand of that customer; and increase the

load by the amount supplied by each backhaul customer. This simple procedure

is depicted in Figure 4.3.

Consider the previous example:

The sum of the demands of linehaul customers in this route is 20 units.

Starting with 20 units, the vehicle arrives backhaul customer 4 and picks up

15 units. The total load on the vehicle is now 35 units. Then comes linehaul
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Pseudo Code for Algorithm Compute q(Rk)

Input: Rk = (i1 = 0; i2; i3; : : : ; ir = 0)

Step 1. q(Rk) 0

for i = i1 to i = ir

if (i 2 L)

q(Rk) q(Rk) + di

maxq  q(Rk)

Step 2. for i = i1 to i = ir

if (i 2 L)

q(Rk) q(Rk)� di

else

q(Rk) q(Rk) + di

if maxq < q(Rk)

maxq  q(Rk)

Step 3. q(Rk) = maxq

Figure 4.3: Algorithm Compute q(Rk)

Route: 0 4 1 2 3 5 0
Type of customer: - B L L L B -

Demand: 0 15 10 5 5 10 0
Total Load: 20 35 25 20 15 25 0

Figure 4.4: Computation of q(Rk), an example

customer 1 and 10 units of goods are delivered. Therefore, there are 25 units on

the vehicle. The last row on the table exhibits the load on the vehicle during its

trip. The maximum amount of load on the vehicle is after it visits customer 4,

and is 35 units.

Feasibility Check, Case 1:

A solution to the m-TSP is a collection of m routes. As stated before, one should

�rst check whether each route in the solution requires a capacity more than Qmax

or not.
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After computing the capacity required by each of the routes in the solution,

it is easy to compare them with Qmax. Formally, the route Rk = (i1 =

0; i2; i3; : : : ; ir = 0) is infeasible for the VRPB if q(Rk) > Qmax. This feasibility

check should be applied to all of them routes. For example, suppose that we have

3 vehicles of capacities 10, 15 and 20. Then, the route in Figure 4.4 is infeasible

because it requires a capacity of at least 25 which cannot be provided by any of

the vehicles.

We will call this algorithm as feasibility check algorithm 1.

Feasibility Check, Case 2:

For a given solution, suppose that

q(Rk) � Qmax 8k 2 f1; : : : ; mg

or, in other words, all of the m routes require some capacity less than or equal to

the capacity of the biggest vehicle. The solution at hand passes feasibility check

algorithm 1 discussed in the previous section.

Still, we may not be able to assign vehicles to the routes, meaning that the

solution is infeasible for the VRPB. Consider the following example:

Suppose that there are 3 vehicles of capacities 15, 20 and 30. Suppose also that

the m-TSP solution is 3 routes such that R1 = f0; 1; 2; 3; 4; 0g, R2 = f0; 5; 6; 0g
and R1 = f0; 7; 0g. Let q(R1) = 25, q(R2) = 22 and q(R3) = 12. As explained in

Figure 4.5, it is clear that vehicle 1 can be assigned to route 1, and vehicle 3 to

route 3. But vehicle 2 cannot be assigned to route 2. Therefore, this solution is

Rk Route # q(Rk) Qk Vehicle #
f0; 1; 2; 3; 4; 0g 1 25 !p! 30 1
f0; 5; 6; 0g 2 22 ! �! 20 2
f0; 7; 0g 3 12 !p! 15 3

Figure 4.5: Infeasibility Check, Case 2: An infeasible solution
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infeasible for the VRPB.

We need to check the feasibility of the solution second time if it passes the

feasibility check algorithm 1. We describe here what we call as feasibility check

algorithm 2 :

For simplicity, we assume that the vehicles are indexed so that

i < j () Qi � Qj i 6= j i; j = 1; : : : ; m

(i.e. biggest vehicle has the smallest index) and the routes are indexed so that

i < j () q(Ri) � q(Rj) i 6= j i; j = 1; : : : ; m

Then feasibility check algorithm 2 can simply be described as follows: Starting

from vehicle 1, try to assign each vehicle to the route with the same index. If a

route requires more capacity than the capacity of the corresponding vehicle, then

the solution at hand is infeasible.

4.2.3 Cuts for the elimination of infeasible solutions

In the previous section we described the two cases which declare that a given

collection of m routes is infeasible for the VRPB. In this section we introduce

two types of cuts that are valid for the VRPB but seperate the infeasible solutions

from the feasible set of m-TSP.

In this section l(Rk) denotes the number of edges in route k.

Route Elimination Constraints

Note that route k, Rk = (i1 = 0; i2; i3; : : : ; ir = 0), is a path of nodes starting

and ending at the depot. Suppose that a given solution fails to pass feasibility

check algorithm 1, or in other words there is at least one route, say route k, in

this solution such that q(Rk) > Qmax. Then it can be eliminated by adding the
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following route elimination constraint to the m-TSP formulation.

X
i;j2Rk
i6=j

xij � l(Rk)� 1 (1)

where l(Rk) corresponds to the number of edges in route k. Such a constraint

forces one of the edges in a route not to be chosen for the solution, therefore

prohibits the formation of the route. For example, assume that Qmax = 30. Then

the route previously mentioned in Figure 4.4 is infeasible because it requires a

capacity of 35 units. This route is visualized in Figure 4.6, circles represent

backhaul customers and squares represent linehaul customers. We add

x04 + x41 + x12 + x23 + x35 + x50 � 5 (2)

to eliminate this particular route from the solution. Note that since the graph

depot

 1  2  3

4 5

Figure 4.6: Two di�erent routes among 5 customers

is directed (we have asymmetric VRPB), the permutations of this route, which

may be feasible tours, are not eliminated by the addition of constraint 2. For

example, the route R = (0; 1; 2; 3; 4; 5; 0), depicted with the dashed lines above,

is feasible since q(R) = 25 � 30 = Qmax. With the addition of 2, we can still

have x01 = x12 = x23 = x34 = x45 = x50 = 1 which represents R.

Multiple Routes Elimination Constraints

Consider a collection of m routes such that each route passes feasibility check

algorithm 1, but the set fails feasibility check algorithm 2. Remember that the
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routes and vehicles are ordered in a nondecreasing fashion according to their

capacities. Without loss of generality, we can assume that kth route cannot be

assigned to a vehicle. Then the following multiple routes elimination constraint

should be added to the m-TSP formulation.

X
(i;j)2R1

i6=j

xij +
X

(i;j)2R2
i6=j

xij + : : :+
X

(i;j)2Rk
i6=j

xij �
� kX
i=1

l(Rk)
�
� 1 (3)

Such a constraint prohibits simultenous formation of the �rst k routes, by

restricting the sum of the number of edges belonging to these routes. Consider

the example given in Figure 4.5. First two routes should not occur together. So,

we add

x01 + x12 + x23 + x34 + x40 + x05 + x56 + x60 � 7 (4)

This constraint will eliminate either route 1 or route 2, or both. Note again that

addition of constraint 4 will not eliminate any feasible route or set of routes.

In the case of the identical vehicles where Q1 = Q2 = : : : = Qm = Qmax, we

do not need to apply feasibility check algorithm 2. Because since the capacities of

vehicles are same, if each route requires capacity less than the identical capacity,

it is clear that these m routes will pass feasibility check algortihm 2.

The main steps of the Default Algorithm are described above. However,

the algorithm can be improved signi�cantly. The next section discusses some

procedures that accelerates the Default Algorithm.

4.3 Acceleration Procedures

The Default Algorithm solves the m-TSP iteratively, at each iteration checking

the feasibility of the solution and adding the cuts, discussed in the previous

section, for the elimination of infeasible routes. At a given iteration, the

solution of the m-TSP is within some neighbourhood of the solutions obtained

at the previous iterations. This means that, once a solution for the m-TSP

is obtained, by searching a neighbourhood of this solution de�ned by some
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local search operators, we can generate routes that will possibly come out as

solutions of the next iterations of the Default Algorithm. So, we can check the

feasibility of these routes and prevent their formation if they are infeasible for the

VRPB by adding proper cuts explained before. We will call such cuts as route

prevention constraints (rather than route elimination) because they are generated

for potential infeasible solutions. The details are as follows:

First of all, for any pair of customers i and j of the same type, if di+dj > Qmax

then i and j cannot belong to the same route. Thus, xij and xji need not be

de�ned.

Approximation algorithms for the vehicle routing problems usually have two

phases: a construction phase, in which an initial feasible solution is constructed,

and a local search phase, in which an attempt is made to improve that initial

solution by repeatedly searching a speci�ed neighbourhood for a better one.

Most neighbourhoods that are being used in the context of VRPs are based

on the well-known k-exchange procedures, which were originally proposed for the

TSP. A k-exchange procedure for the TSP selects k edges in a given tour and

replaces them by di�erent k edges while keeping the solution as a tour shorter

than the previous one. The techniques developed for the TSP have to be modi�ed

in order to handle multiple routes and various side constraints. Traditional k-

exchange procedures can be used to improve a VRP solution by considering the

routes one at a time. However, the multiple-route structure o�ers additional

opportunities. In the next section, we focus on how we can generate potential

routes, from the existing set of routes, using edge-exchange operators.

4.3.1 Edge-Exchange Neighbourhoods

As stated before, edge-exchange procedures search a neighbourhood of a solution

for a better one. In our case, at each iteration, we solve the m-TSP to optimality.

The solution is generally not feasible for the VRPB but provides a lower bound

for the optimal objective function value of the VRPB. We add cuts to eliminate
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the infeasible solutions and solve the m-TSP again. The objective value of the

new solution will be greater than or equal to the previous objective value. In

other words, the objective value of the m-TSP we are solving increases or stays

the same after each iteration. Therefore, we should search for candidate solutions

worse than the current solution.

Suppose we try to apply k-exchange procedures to the �rst m-TSP solution.

Since this solution is optimal, we cannot �nd a better solution. Also suppose that

we try to apply k-exchange procedures to the solution of the m-TSP which now

contains a number of tour elimination constraints. It is clear that the k-exchange

procedures may identify better solutions for the m-TSP since current solution has

a cost much greater than the original m-TSP cost. But these solutions will not

appear in the following iterations because the optimal cost of the m-TSPs in the

following iterations cannot be less than the cost of the current solution. (As we

add additional cuts, the cost of the optimal solution will increase.) Therefore, to

generate potential solutions that will appear in the following iterations, we should

search the neighbourhood of the current solution and select worse solutions rather

then better ones.

It makes no sense to check the feasibility of every candidate solution obtained

by local search. If the local search generates a solution whose cost is very high

compared to the current solution, we may not check its feasibilty since it will not

probably come out as a solution before the algorithm stops. We try to identify

solutions worse than the current solution but have costs less than or equal to

some percentage of the cost of the current solution. To be formal, we try to �nd

xcandidatem�TSP , such that cx�m�TSP � cxcandidatem�TSP � � � cx�m�TSP where cx�m�TSP is the

current m-TSP solution and � > 1 is �xed in advance. For example, if the cost of

the current solution is 200 and � = 1:05 then we try to �nd candidate solutions

whose costs are between 200 and 200 � 1:05 = 210. Note, the larger values of

� the more generated candidate solutions we will check, but most of them will

be unnecessary. We have chosen � = 1:02 in our experiments given in the next

chapter.
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In the following section, we focus on the algorithms that provide edge-

exchanges within a single route and between multiple routes.

Representation of the set of routes

The two prerequisites for a neighbourhood search approach are a representation

for the problem and a set of operators which can be applied to that representation.

The VRP as shown in Figure 2.1 can be transformed so that it can be represented

by a single vector. (see Figure 4.7) The depot is replaced with four copies of

itself, each copy located between the routes. In this way, the four routes can

be represented as one large string. This representation has a structure (e.g.

depot depot

depot depot

Figure 4.7: Representation of the routes as a single string

the routes are directed). We need operators that will preserve the structure

while generating permutations of the string in order to allow us to explore its

neighbourhood. Two of such operators are illustrated in Figures 4.8 and 4.9.

The Swap operator identi�es two nodes, i and j, of the string and swaps their

positions. This operator realizes a 4-exchange each time it is called. If predecessor

of i is denoted by prei and suci represents successor of i, swap operator excludes



CHAPTER 4. THE ALGORITHM 43

edges (prei; i), (i; suci), (prej; j), (j; sucj) from the string and introduces the

edges (prei; j), (j; suci), (prej; i), (i; sucj).

pre i pre isuc i suc i

suc
j suc

j
pre

j pre
j

i

j

i

j

Figure 4.8: Swap operation

The Relocate operator, on the other hand, removes a node, i, and replaces it

between two adjacent nodes, j and sucj. This operator realizes a 3-exchange as

illustrated in Figure 4.9.

pre isuc i

suc
j

suc i pre i

suc
j

i

j

i

j

Figure 4.9: Relocate operation

Note that, these operators realize intra-route node exchanges when i and j

are in the same route, and inter-route node exchanges when i and j belong to

di�erent routes. These operators can easily be used for asymmetric problems

since they preserve the orientation of the parts of the string that remain the

same.
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Without using the representation described above, we also incorporate

another neighbourhood search operator which is the Crossover operator. Given

two di�erent routes, Crossover operator divides each of the routes into two paths

and forms two new routes by changing these paths between the routes. Figure

4.10 clari�es this operation.

suc i

suc j suc j

suc ii

j j

i

depot depot depot depot

Figure 4.10: Crossover operation

Infeasible solutions generated by these operaters are eliminated by appending

proper cuts as explained before. If any operator identi�es a feasible solution for

the VRPB, then this solution is given as an initial solution for the m-TSP. This

solution will provide an upper bound for the m-TSP of the next iteration and

hence reduce the size of the branch & bound tree.

The next section demonstrates the proposed algorithm on a numerical

example.

4.4 A Numerical Example

Consider the example below. There are 10 customers of which 5 are linehaul

customers. For simplicity, we have identical vehicles and we use only Relocate

operator for local search and set � = 1:01. This means that, a solution

encountered during the local search will be considered only if its cost is worse than

the cost of the current solution by at most 1%. There are 3 vehicles. Problem
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data is summarized below:

Customer No: 1 2 3 4 5 6 7 8 9 10

Type: L L L L L B B B B B

Demand/Supply: 39 20 99 51 90 92 52 95 47 65

Vehicle No: 1 2 3

Capacity: 230 230 230

That is, Q1 = Q2 = Q3 = 230 = Qmax. The distance matrix is given in Table

4.1.

0 1 2 3 4 5 6 7 8 9 10
0 - 26 94 33 66 48 2 53 41 28 97
1 56 - 66 20 7 53 73 99 15 22 73
2 24 25 - 27 48 47 50 47 22 72 9
3 46 50 49 - 11 73 82 94 67 26 86
4 12 48 1 22 - 31 23 25 39 25 71
5 64 42 75 11 80 - 61 50 31 59 28
6 10 15 39 91 82 10 - 86 93 39 87
7 69 65 60 39 47 13 42 - 11 33 54
8 70 23 27 74 10 43 34 51 - 88 25
9 81 41 48 62 75 16 93 28 63 - 46
10 8 43 33 91 35 54 29 48 94 48 -

Table 4.1: Distance matrix for the example problem

Iteration 0:

The m-TSP solution for the given distance matrix is:

R1 : 0� 9� 7� 5� 3� 4� 0 q(R1) = 339

R2 : 0� 6� 0 q(R2) = 92

R3 : 0� 1� 8� 2� 10� 0 q(R3) = 160

with a cost of 200.

Clearly, route 1 is not feasible for the VRPB, since it requires a capacity of

339 units, which is more than Qmax = 230. Routes 2 and 3 are feasible routes.

So, add

x09 + x97 + x75 + x53 + x34 + x40 � 5
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to the m-TSP formulation.

From the routes above, the Relocate operator identi�es the following set of

routes:

�R1 : 0� 9� 7� 5� 3� 4� 2� 0 q( �R1) = 359

�R2 : 0� 6� 0 q( �R2) = 92

�R3 : 0� 1� 8� 10� 0 q( �R6) = 74

The cost of this solution is 202. First route is infesible, so also add

x09 + x97 + x75 + x53 + x34 + x42 + x20 � 6

to the m-TSP formulation.

Iteration 1:

Resolving the m-TSP after adding the cuts found above gives the solution

R1 : 0� 9� 7� 5� 3� 0 q(R1) = 288

R2 : 0� 6� 0 q(R2) = 92

R3 : 0� 1� 8� 4� 2� 10� 0 q(R3) = 166

with a cost of 207. Route 1 is infeasible, we add

x09 + x97 + x75 + x53 + x30 � 4

to the m-TSP formulation. Local search does not give a candidate m-TSP

solution this time.

Iteration 2:

The m-TSP solution is

R1 : 0� 1� 9� 5� 3� 4� 0 q(R1) = 287

R2 : 0� 6� 0 q(R2) = 92

R3 : 0� 7� 8� 2� 10� 0 q(R3) = 212

with a cost of 218. We add

x01 + x19 + x95 + x53 + x34 + x40 � 5

to the m-TSP formulation. Relocate operator generates two solutions. Among

these, the following routes appear for the �rst time:
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�R : 0� 1� 9� 5� 3� 4� 2� 0 q( �R) = 307

�R : 0� 7� 8� 10� 0 q( �R) = 212

�R : 0� 1� 9� 7� 5� 3� 4� 0 q( �R) = 339

�R : 0� 8� 2� 10� 0 q( �R) = 160

The �rst and third routes are infeasible, so we add

x01 + x19 + x95 + x53 + x34 + x42 + x20 � 6

and

x01 + x19 + x97 + x75 + x53 + x54 + x40 � 6

to the m-TSP formulation.

Iteration 3:

The m-TSP solution is

R1 : 0� 9� 7� 5� 3� 2� 10� 0 q(R1) = 308

R2 : 0� 6� 0 q(R2) = 92

R3 : 0� 1� 8� 4� 0 q(R3) = 63

with a cost of 221. We add

x09 + x97 + x75 + x53 + x32 + x2;10 + x10;0 � 6

to the m-TSP formulation. Local search gives no solution.

Iteration 4:

The m-TSP solution is

R1 : 0� 1� 9� 7� 5� 3� 4� 2� 0 q(R1) = 359

R2 : 0� 6� 0 q(R2) = 92

R3 : 0� 8� 10� 0 q(R3) = 160

with a cost of 222. We add

x01 + x19 + x97 + x75 + x53 + x34 + x42 + x20 � 7

to the m-TSP formulation. Local search gives no solution.

Iteration 5:

The m-TSP solution is
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R1 : 0� 3� 9� 7� 5� 10� 0 q(R1) = 189

R2 : 0� 6� 0 q(R2) = 92

R3 : 0� 1� 8� 4� 2� 0 q(R3) = 166

with a cost of 224. This solution is feasible for the VRP and hence optimal for

it.

When the local search is not incorporated into the algorithm, the example

above is solved after 9 iterations. Notice that we used just one local search

operator. The use of several operators will be more successful in identifying more

candidate solutions.



Chapter 5

Computational Experiments

We now report the results of experimenting with the algorithm described in

Chapter 4. We implemented our algorithm in C programming language on a

SUN Enterprise 4000 work station operating at CPU clock of 248 Mhz and 1024

real memory. We use CPLEX Linear Optimizer 5.01 as the IP solver for the

m-TSP. The interface between the C code and the optimizer is realized by using

CPLEX Callable Library [43] routines. The code is available in Appendix C.

We generated to sets of asymmetric VRPB instances by our random problem

generator, and tested the proposed algorithm on these instances. A total of 720

problems are tested. The �rst set consists of problems with identical vehicles and

the second set includes instances with heterogenous 
eet.

1Copyright c
1997 ILOG
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Instances with a homogenous 
eet

There are 540 instances in this set. These instances are generated as follows:

� Number of customers (problem size) range from 10 to 90 in increments of

10.

� For a given problem size, 3 instances are generated so that the percentage

of backhauls customers is 0%, 20% and 50%. For each pair of problem size

and backhaul percentage value, 5 instances are generated.

� As proposed in Laporte et al. [52], the distances cij and the customer

demands/supplies di are generated from a uniform distribution over [0; 100].

� The common vehicle capacity, Q, is determined also as in [52], that is:

Q = (1� �)(maxfdij i 2 Cg) + �
X
i2C

di

then, lowest feasible value for the number of vehicles is:

m =
�P

i2C di
Q

�

where � is parameter chosen in the interval [0; 1]. For each instance of size

less than or equal to 50, we ran the algorithm by setting � equal to 0:25,

0:50, 0:75 and 1:00. This way, the number of vehicles are generated as 4,

2, 2 and 1, respectively. Note that, the smaller the value of �, the harder

the problem to solve. Because small values of � yield more vehicles with

less capacities whereas large values give less number of vehicles with more

capacities. We set � equal to 0:50, 0:75 and 1:00 for instances of size greater

than 50.

The generated problems are accepted so that the utilization of the 
eet is likely

to be higher. For example, the cases
P

i2C
di

Q
= 3:12 and

P
i2C

di

Q
= 3:85 will both

have m = 4 but the solution to the former will have a utilization less than that

of the later.
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The results from this set of instances are presented in Appendix A. To observe

the e�ectiveness of the acceleration procedures, we ran the Default Algorithm and

the Improved Algorithm, which includes the acceleration procedures, on the same

instances. Tables 5.1-5.3 exhibit a summary of these results. The column Avg.

Time stands for the average computation time of 5 instances. Columns named

Avg. # iter, Avg. # TEC and Avg. # TPC represent average values of the

number of iterations, average number of the tour elimination constraints added,

and average number of tour prevention constraints generated during the execution

of the algorithm, respectively. Note that, for the identical case, there is no need

for the feasibility check algorithm 2 ; hence, multiple tour elimination constraints

are not reported. Notice also that for � = 1:00, the problem reduces to a 1-TSP;

no cuts will be added.
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%B=0% Default Algorithm Improved Algorithm

Avg. Avg. Avg. Avg. Avg. Avg. Avg.
jCj � Time # iter. # TEC Time # iter. # TEC # TPC

10 0.25 1.00 5.40 5.80 0.97 4.60 4.80 5.00
0.50 0.74 3.20 3.40 0.73 3.00 3.20 0.60
0.75 0.42 1.20 1.20 0.43 1.00 1.00 0.40
1.00 0.12 - - - - - -

20 0.25 7.80 11.20 14.00 6.13 8.20 9.20 10.00
0.50 7.68 6.80 5.60 6.16 6.20 6.20 4.20
0.75 4.40 3.00 3.00 3.16 2.20 2.20 3.00
1.00 0.45 - - - - - -

30 0.25 70.69 15.80 17.40 43.46 10.40 11.40 18.80
0.50 15.32 2.20 2.40 13.98 2.00 2.00 4.20
0.75 9.67 0.60 0.60 8.71 0.40 0.40 1.60
1.00 3.60 - - - - - -

40 0.25 256.34 28.20 32.40 186.60 12.60 14.40 15.00
0.50 46.14 5.80 6.40 44.61 5.20 5.60 4.00
0.75 28.38 2.80 3.00 28.84 2.60 2.60 2.20
1.00 12.32 - - - - - -

50 0.25 502.79 18.80 23.20 391.69 12.60 13.80 29.80
0.50 105.20 5.80 5.80 100.78 5.20 5.20 15.00
0.75 15.87 0.60 0.60 14.40 0.60 0.60 1.60
1.00 31.18 - - - - - -

60 0.25 805.08 28.80 35.60 546.21 19.40 21.20 32.60
0.50 446.90 8.20 8.20 181.58 4.20 4.20 8.00
0.75 36.62 1.20 1.40 37.66 1.20 1.40 0.40
1.00 41.59 - - - - - -

70 0.25 1.383.60 21.00 23.60 1.193.22 17.60 17.80 32.40
0.50 392.28 9.40 9.80 332.89 8.60 9.00 6.20
0.75 27.71 1.00 1.00 28.07 1.00 1.00 0.40
1.00 73.61 - - - - - -

80 0.25 1.790.07 21.80 23.80 1.553.99 18.00 18.00 24.00
0.50 645.59 14.20 15.40 497.18 11.40 11.60 19.40
0.75 43.42 1.60 1.80 31.34 1.00 1.20 3.40
1.00 139.86 - - - - - -

90 0.25 2.496.71 23.40 24.20 2.227.70 18.40 18.40 34.60
0.50 1.427.34 18.20 19.60 990.53 14.20 14.60 22.60
0.75 77.09 0.80 0.80 78.56 0.80 0.80 4.00
1.00 293.72 - - - - - -

Table 5.1: Average Results for 5 instances from data set 1. (%B = 0)

Average utilization of the 
eet of vehicles is 0.92, 0.88, 0.79 and 1 for � = 0:25,

� = 0:5, � = 0:75 and � = 1:00, respectively.
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%B=20% Default Algorithm Improved Algorithm

Avg. Avg. Avg. Avg. Avg. Avg. Avg.
jCj � Time # iter. # TEC Time # iter. # TEC # TPC

10 0.25 1.02 4.60 4.60 0.90 4.00 4.00 1.60
0.50 0.60 2.40 2.40 0.59 2.00 2.00 1.40
0.75 0.42 0.80 0.80 0.34 0.60 0.60 0.60
1.00 0.16 - - - - - -

20 0.25 6.38 6.00 6.60 5.00 3.80 4.00 9.20
0.50 2.00 2.40 2.40 1.87 1.80 2.00 3.00
0.75 0.20 0.20 0.48 0.20 0.20 0.80
1.00 0.55 - - - - - -

30 0.25 32.65 12.40 13.80 31.69 11.60 12.80 3.40
0.50 17.74 5.00 5.00 16.72 4.20 4.40 2.40
0.75 2.36 0.40 0.40 2.43 0.40 0.40 0.00
1.00 2.08 - - - - - -

40 0.25 59.09 9.40 10.00 48.92 7.20 7.60 5.40
0.50 41.95 4.00 4.00 39.83 3.60 3.60 1.40
0.75 12.63 0.60 0.60 12.40 0.60 0.60 0.40
1.00 10.05 - - - - - -

50 0.25 204.91 10.80 11.40 180.80 9.40 9.60 16.80
0.50 89.27 2.60 2.60 76.63 2.20 2.20 2.80
0.75 35.03 0.20 0.20 35.81 0.20 0.20 0.80
1.00 34.95 - - - - - -

60 0.25 769.28 18.80 23.40 407.83 12.40 13.40 26.60
0.50 202.75 1.40 1.80 203.57 1.20 1.60 3.20
0.75 94.19 0.40 0.60 94.97 0.40 0.60 0.60
1.00 38.67 - - - - - -

70 0.25 1.399.61 21.00 22.00 1.095.86 17.00 17.00 24.00
0.50 227.61 3.20 3.20 220.50 2.80 2.80 2.80
0.75 35.36 0.60 0.60 36.73 0.60 0.60 0.40
1.00 91.55 - - - - - -

80 0.25 1.572.84 18.60 20.40 1.478.81 16.20 16.60 18.80
0.50 392.85 6.00 6.60 314.81 5.20 5.40 18.20
0.75 45.02 1.40 1.60 46.08 1.40 1.60 3.20
1.00 173.95 - - - - - -

90 0.25 2.606.85 26.40 27.80 2.124.82 21.20 22.00 27.00
0.50 371.21 5.60 6.60 332.21 5.00 5.60 11.00
0.75 93.60 1.20 1.40 96.40 1.00 1.00 3.20
1.00 365.29 - - - - - -

Table 5.2: Average Results for 5 instances from data set 1. (%B = 20)

Average utilization of the 
eet of vehicles is 0.89, 0.82, 0.74 and 1 for � = 0:25,

� = 0:5, � = 0:75 and � = 1:00, respectively.
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%B=50% Default Algorithm Improved Algorithm

Avg. Avg. Avg. Avg. Avg. Avg. Avg.
jCj � Time # iter. # TEC Time # iter. # TEC # TPC

10 0.25 1.24 6.60 6.80 1.11 5.60 5.80 6.40
0.50 0.24 0.60 0.60 0.26 0.60 0.60 0.80
0.75 0.20 0.20 0.20 0.21 0.20 0.20 0.00
1.00 0.17 - - - - - -

20 0.25 7.40 8.60 9.40 6.72 7.20 7.60 6.00
0.50 6.43 4.40 4.40 6.79 4.40 4.40 2.00
0.75 2.63 2.20 2.40 2.67 2.20 2.40 1.40
1.00 0.70 - - - - - -

30 0.25 19.92 7.00 7.20 18.18 6.40 6.60 5.80
0.50 11.05 2.60 2.80 11.02 2.20 2.40 2.20
0.75 4.58 0.40 0.60 4.90 0.40 0.60 0.60
1.00 4.08 - - - - - -

40 0.25 123.88 10.40 11.40 108.98 8.00 8.20 12.40
0.50 24.48 2.40 2.40 24.07 2.00 2.00 2.00
0.75 7.80 0.00 0.00 8.10 0.00 0.00 0.00
1.00 9.36 - - - - - -

50 0.25 404.51 16.20 17.60 280.14 12.00 13.20 33.80
0.50 36.63 2.20 2.40 35.40 1.40 1.40 4.40
0.75 28.45 1.00 1.00 28.91 1.00 1.00 1.40
1.00 19.11 - - - - - -

60 0.25 664.97 12.00 12.40 222.58 3.80 4.20 12.60
0.50 266.61 3.60 3.80 204.00 2.80 3.00 4.60
0.75 43.66 0.40 0.60 43.55 0.40 0.60 1.60
1.00 40.83 - - - - - -

70 0.25 1.318.47 17.20 19.20 1.200.16 13.80 14.20 19.80
0.50 224.13 2.80 3.00 223.14 2.80 3.00 3.80
0.75 97.33 1.00 1.00 97.83 1.00 1.00 1.60
1.00 102.74 - - - - - -

80 0.25 1.428.46 13.40 14.20 1.125.90 11.00 11.00 23.60
0.50 240.47 2.40 2.60 243.66 2.40 2.60 1.80
0.75 119.45 0.80 0.80 120.45 0.80 0.80 1.20
1.00 102.74 - - - - - -

90 0.25 2.058.27 15.60 16.40 1.728.97 11.80 12.00 32.40
0.50 367.36 3.00 3.60 330.20 2.60 2.80 9.40
0.75 115.59 0.80 1.00 117.87 0.80 1.00 2.00
1.00 217.31 - - - - - -

Table 5.3: Average Results for 5 instances from data set 1. (%B = 50)

Average utilization of the 
eet of vehicles is 0.85, 0.80, 0.71 and 1 for � = 0:25,

� = 0:5, � = 0:75 and � = 1:00, respectively.

The following observations are made for tables presented above:

� As expected, the problem gets harder to solve as � gets smaller. For a given

instance of �xed backhaul percentage, the solution times for � = 0:25 are

quite reasonable. But it seems to increase sharply when compared to the
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solution times for � = 0:5, � = 0:75 and � = 1:00.

� The improved algorithm, which is the combination of the Default Algorithm

and the acceleration procedures discussed in Chapter 4, reduces the

computation time considerably as proposed. Table 5.4-5.6 exhibit the

average results and % improvement in computation time for each � value.

%B = 0% Default Algorithm Improved Algorithm

Avg. Avg. Avg. Avg. Avg. Avg. Avg. % Improvement
� Time # iter. # TEC Time # iter. # TEC # TPC in Time

0,25 741,93 18,02 20,58 625,07 12,70 13,42 21,72 15,75
0,5 310,31 7,44 7,72 218,28 6,06 6,22 8,58 29,66
0,75 27,48 1,42 1,49 25,69 1,20 1,24 1,89 6,52

Table 5.4: Averages and % Improvement in Time. (%B = 0)

%B = 20% Default Algorithm Improved Algorithm

Avg. Avg. Avg. Avg. Avg. Avg. Avg. % Improvement
� Time # iter. # TEC Time # iter. # TEC # TPC in Time

0,25 739,18 14,22 15,56 597,18 11,42 11,89 14,76 19,21
0,5 149,55 3,62 3,84 134,08 3,11 3,29 5,13 10,35
0,75 35,42 0,64 0,74 36,15 0,60 0,71 1,15 -2,06

Table 5.5: Averages and % Improvement in Time. (%B = 20)

%B = 50% Default Algorithm Improved Algorithm

Avg. Avg. Avg. Avg. Avg. Avg. Avg. % Improvement
� Time # iter. # TEC Time # iter. # TEC # TPC in Time

0,25 669,68 11,89 12,73 521,42 8,84 9,20 16,98 22,14
0,5 130,82 2,67 2,84 119,84 2,36 2,47 3,44 8,39
0,75 46,63 0,76 0,84 47,17 0,76 0,84 1,09 -1,15

Table 5.6: Averages and % Improvement in Time. (%B = 50)

� For a given value of �, the computation time reduces as the backhaul

percentage increases. This is because when all the customers are of type
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linehaul (i.e. %B = 0) the capacity required by the routes is higher than

the cases when %B = 20 and %B = 50. Because when %B = 20 and

%B = 50, backhaul customers are placed between linehaul customers which

reduces the capacity required by the routes. This results in �nding a feasible

solution (set of m routes with q(Rk) � Qk for all k = 1; : : : ; m) earlier. In

addition, since the capacity required by the routes reduces as the backhaul

percentage increases, the utilization of the 
eet also reduces.

Instances with a heterogenous 
eet

There are 180 instances with heterogeneous 
eet in the second set of problems.

Exactly the same method is used to generate the problems in the second set. But,

to have a heterogenous 
eet of vehicles with di�erent capacities, we adjusted the

capacities of each vehicle so that they all di�er while the total capacity of the

vehicles (m �Q) remains the same. For example, if we have Q = 100 and m = 4,

we modify the capacities such that Q1 = 125, Q2 = 113, Q3 = 87 and Q4 = 75.

We only give results for backhaul percentage of 0% and 50%, and � = 0:25 and

� = 0:50.

The results from this set of instances is presented in Appendix B. Table 5.7

and 5.8 exhibit a summary of these results.

The results for the heteregenous case yields to the same observations as

in homogenous case. Table 5.9 and 5.10 contain the average results and %

improvement in computation time for each � value. The column Avg. # MTEC

stands for the average number of tour elimination constraints ideti�ed throughout

the execution of the algorithm.
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%B=0% Default Algorithm Improved Algorithm

Avg. Avg. Avg. Avg. Avg. Avg. Avg. Avg. Avg.
jCj � Time # iter. # TEC # MTEC Time # iter. # TEC # MTEC # TPC

10 0.25 1.93 9.00 6.00 3.00 1.93 8.40 5.40 2.00 0.60
0.50 1.77 4.60 4.60 0.00 1.62 4.20 4.20 0.00 0.60

20 0.25 11.23 15.20 9.60 5.80 9.18 13.80 8.20 5.80 5.80
0.50 3.48 4.80 0.20 4.60 3.47 4.80 0.20 4.60 0.00

30 0.25 46.47 15.00 13.80 2.00 36.07 12.40 11.60 1.60 6.80
0.50 11.68 3.75 3.00 0.75 8.61 2.75 2.50 0.50 4.00

40 0.25 137.60 14.60 12.80 2.20 111.85 11.60 10.80 1.20 12.80
0.50 64.67 7.80 6.60 1.20 56.08 6.20 5.60 0.60 6.40

50 0.25 336.91 18.40 15.60 2.80 292.09 14.00 13.00 1.00 24.20
0.50 94.71 6.20 5.40 0.80 84.24 5.00 4.40 0.60 13.60

60 0.25 863.48 27.40 24.60 2.80 675.12 19.00 17.80 1.20 28.80
0.50 283.16 12.80 12.00 1.20 203.87 10.00 9.60 0.40 21.40

70 0.25 1.164.61 17.20 14.00 3.40 999.02 13.20 10.80 1.60 28.20
0.50 461.07 12.00 10.00 2.00 403.81 9.60 8.00 1.60 8.80

80 0.25 1.823.69 19.40 17.20 2.80 1.558.03 15.40 14.00 1.40 27.80
0.50 835.70 15.20 12.00 3.20 701.89 12.60 9.00 1.80 17.20

90 0.25 2.060.09 20.00 17.60 2.60 1.670.53 15.80 14.80 1.20 26.60
0.50 1.506.83 17.20 14.40 3.20 1.292.92 13.20 11.60 2.00 22.20

Table 5.7: Average Results for 5 instances from data set 2. (%B = 0)

Average utilization of the 
eet is 0.92 and 0.87 for � = 0:25 and � = 0:5,

respectively. Average utilization of the 
eet is 0.87 and 0.83 for � = 0:25 and

� = 0:5, respectively.
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%B=50% Default Algorithm Improved Algorithm

Avg. Avg. Avg. Avg. Avg. Avg. Avg. Avg. Avg.
jCj � Time # iter. # TEC # MTEC Time # iter. # TEC # MTEC # TPC

10 0.25 0.58 2.40 2.00 0.40 0.53 2.20 1.80 0.40 0.20
0.50 0.36 1.00 1.00 0.00 0.37 1.00 1.00 0.00 0.40

20 0.25 13.69 12.40 12.40 0.60 11.85 11.00 11.00 0.60 3.00
0.50 4.45 4.00 2.60 1.40 4.91 4.00 2.60 1.40 2.60

30 0.25 20.18 5.20 4.80 0.40 13.11 3.60 3.20 0.40 3.40
0.50 7.44 1.80 1.40 0.40 5.32 1.40 1.00 0.40 2.60

40 0.25 100.11 12.40 11.00 1.80 80.62 8.60 7.60 0.80 10.60
0.50 34.58 4.00 3.40 0.60 32.88 3.40 3.00 0.40 6.80

50 0.25 429.03 19.40 16.80 2.60 322.70 16.00 14.20 1.00 17.40
0.50 33.94 5.80 4.20 1.60 31.62 4.40 3.40 1.00 10.20

60 0.25 479.10 12.20 10.80 1.00 383.87 9.40 8.60 0.80 17.60
0.50 146.40 8.40 6.40 2.00 112.65 6.40 5.60 0.80 13.80

70 0.25 1.245.73 16.40 14.00 2.40 1.049.28 12.80 12.40 1.20 25.40
0.50 286.46 8.80 7.00 1.80 268.50 7.00 6.00 1.00 11.40

80 0.25 1.565.90 17.60 15.00 2.80 1.386.98 14.00 12.40 1.60 23.80
0.50 481.95 9.00 6.20 2.80 370.27 7.00 5.60 1.40 19.40

90 0.25 1.682.95 15.20 13.60 2.20 1.388.06 12.00 11.20 1.00 21.00
0.50 1.413.27 12.80 10.20 2.60 1.151.94 9.80 9.00 1.00 24.00

Table 5.8: Average Results for 5 instances from data set 2. (%B = 50)

%B = 0% Default Algorithm Improved Algorithm

Avg. Avg. Avg. Avg. Avg. Avg. Avg. Avg. Avg. % Impvmnt
� Time # iter. # MTEC # TEC Time # iter. # MTEC # TEC # TPC in Time

0,25 620,35 15,93 13,51 2,67 512,90 12,60 10,95 1,64 17,87 17,31
0,5 368,38 10,61 8,82 1,89 307,65 8,40 7,05 1,25 12,56 16,49

Table 5.9: Averages and % Improvement in Time. (%B = 0) Heterogenous Fleet

%B = 50% Default Algorithm Improved Algorithm

Avg. Avg. Avg. Avg. Avg. Avg. Avg. Avg. Avg. % Impvmnt
� Time # iter. # MTEC # TEC Time # iter. # MTEC # TEC # TPC in Time

0,25 615,25 12,58 11,16 1,58 515,22 9,96 9,16 0,87 13,60 16,26
0,5 267,65 6,18 4,71 1,47 219,83 4,93 4,13 0,82 10,13 17,87

Table 5.10: Averages and % Improvement in Time. (%B = 50) Heterogenous
Fleet



Chapter 6

Conclusion

In this thesis, we discussed about the Vehicle Routing Problem (VRP) which is

an important management problem in the �eld of distribution and logistics. We

proposed an exact algorithm for a generalization of the problem, Vehicle Routing

Problem with Backhauls (VRPB).

Many solution methods are proposed for the VRP and VRPB. These methods

seem to be designed for just one version of the problem, and are generally obtained

by modifying an already existing method. There are a number of exact algorithms

for the VRP. On the other hand, we encountered just two exact algorithms for

the VRPB [59], [68]. In both of the methods proposed, it is obligatory that

the backhaul customers come after the linehaul customers in a given vehicle

route. The algorithm we propose is unique in the sense that a combination of

di�erent aspects of the applications is handled. The algorithm works when the

vehicle 
eet is homogenous or heterogenous. Although the algorithm is designed

for the VRPBs, it can be used to solve VRPs by simply setting the number

of backhaul customers to zero. Finally, to our knowledge, we proposed the only

exact algorithmwhich allows routes composed of linehaul and backhaul customers

in any sequence in a vehicle route. We also allow routes of only backhaul or only

linehaul customers.

The proposed method is based on iteratively solving a relaxation of the

59
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VRPB, namely Multiple Traveling Salesman Problem (m-TSP). At each iteration,

infeasible solutions for the VRPB are identi�ed and seperated from the feasible

set of them-TSP by means of proper cuts. The procedures for the identi�cation of

infeasible solutions and cuts to eliminate these infeasible solutions were discussed.

To improve the algorithm, several acceleration procedures which are based on

local search methods are also presented. Chapter 4 gives the details of the

algorithm.

The algorithm is tested on randomly generated problems, involving up to 90

customers. Although the problem is NP-hard, the proposed algorithm is quite

fast in �nding the optimum solution. The acceleration procedures are proved to

be very e�ective.

An area of further research may be the application of the proposed algorithm

for di�erent versions of the VRPs and VRPBs. The algorithm can be modi�ed

easily so that it can be used to solve VRPs with restrictions on the duration

and/or distance of the routes. It can also be adapted or the VRPs with time

windows. The number of infeasible solutions will be much more than the cases

we examined but strong cuts that can eliminate several of them at the same time

can be investigated.

Yet another area for further research can be on the acceleration procedures.

We applied three local search operators. Additional operators may be useful in

identifying more candidate solutions. We propose local search operators that

only involve relocation of single nodes of the string. Instead of single nodes,

relocation of paths can also be considered. Alternatively, Lin-Kernighan [56]

type improvement heuristics, which allow r-exchange while r can change in each

iteration, can be modi�ed to be used for the algorithm we propose.
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� = 0:25 Default Algorithm Improved Algorithm

jCj %B Time # iter. # TEC Time # iter. # TEC # TPC

10 0 0,27 1 1 0,32 1 1 0
0 0,73 5 6 0,64 3 4 6
0 0,93 6 6 0,93 6 6 0
0 0,75 5 5 0,89 5 5 6
0 2,31 10 11 2,05 8 8 13

AVG: 0 1,00 5,40 5,80 0,97 4,60 4,80 5,00

20 0,35 1 1 0,36 1 1 0
20 3,28 14 14 2,67 11 11 5
20 0,39 2 2 0,41 2 2 2
20 0,79 4 4 0,75 4 4 1
20 0,28 2 2 0,30 2 2 0

AVG: 20 1,02 4,60 4,60 0,90 4,00 4,00 1,60

50 0,81 5 6 0,70 4 5 1
50 2,75 12 12 2,17 10 10 6
50 0,95 5 5 0,79 4 4 5
50 0,25 2 2 0,32 2 2 5
50 1,44 9 9 1,59 8 8 15

AVG: 50 1,24 6,60 6,80 1,11 5,60 5,80 6,40

Table A.1: Results for 5 instances. (� = 0:25)

� = 0:50 Default Algorithm Improved Algorithm

jCj %B Time # iter. # TEC Time # iter. # TEC # TPC

10 0 0,58 3 3 0,49 3 3 0
0 0,12 0 0 0,15 0 0 0
0 0,81 4 4 0,75 3 3 3
0 0,25 1 1 0,23 1 1 0
0 1,95 8 9 2,01 8 9 0

AVG: 0 0,74 3,20 3,40 0,73 3,00 3,20 0,60

20 0,23 0 0 0,24 0 0 0
20 2,12 9 9 1,98 7 7 5
20 0,21 1 1 0,22 1 1 1
20 0,32 2 2 0,35 2 2 1
20 0,12 0 0 0,15 0 0 0

AVG: 20 0,60 2,40 2,40 0,59 2,00 2,00 1,40

50 0,30 1 1 0,33 1 1 0
50 0,36 1 1 0,35 1 1 0
50 0,22 1 1 0,29 1 1 1
50 0,15 0 0 0,17 0 0 0
50 0,16 0 0 0,18 0 0 3

AVG: 50 0,238 0,6 0,6 0,264 0,6 0,6 0,8

Table A.2: Results for 5 instances. (� = 0:50)
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� = 0:75 Default Algorithm Improved Algorithm

jCj %B Time # iter. # TEC Time # iter. # TEC # TPC

10 0 0,26 1 1 0,28 1 1 0
0 0,16 0 0 0,13 0 0 0
0 0,35 0 0 0,37 0 0 0
0 0,16 0 0 0,21 0 0 0
0 1,16 5 5 1,18 4 4 2

AVG: 0 0,42 1,20 1,20 0,43 1,00 1,00 0,40

20 0,12 0 0 0,14 0 0 0
20 1,54 4 4 1,06 3 3 2
20 0,11 0 0 0,16 0 0 1
20 0,19 0 0 0,20 0 0 0
20 0,12 0 0 0,16 0 0 0

AVG: 20 0,42 0,80 0,80 0,34 0,60 0,60 0,60

50 0,19 0 0 0,16 0 0 0
50 0,40 1 1 0,41 1 1 0
50 0,14 0 0 0,18 0 0 0
50 0,09 0 0 0,14 0 0 0
50 0,19 0 0 0,17 0 0 0

AVG: 50 0,20 0,20 0,20 0,21 0,20 0,20 0,00

Table A.3: Results for 5 instances. (� = 0:75)

jCj %B Time

10 0 0,11
0 0,15
0 0,16
0 0,09
0 0,10

AVG: 0 0,12

20 0,13
20 0,18
20 0,15
20 0,18
20 0,14

AVG: 20 0,16

50 0,20
50 0,12
50 0,21
50 0,18
50 0,12

AVG: 50 0,17

Table A.4: Results for 5 instances. (� = 1:00)
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� = 0:25 Default Algorithm Improved Algorithm

jCj %B Time # iter. # TEC Time # iter. # TEC # TPC

20 0 7,33 8 11 6,57 7 10 9
0 18,62 21 25 15,03 15 15 26
0 2,90 7 8 2,95 7 8 0
0 0,25 0 0 0,28 0 0 0
0 9,90 20 26 5,83 12 13 15

AVG: 0 7,80 11,2 14 6,13 8,2 9,2 10

20 1,18 2 2 0,52 1 1 3
20 1,44 3 3 1,24 1 1 3
20 18,61 11 13 14,92 7 8 23
20 4,17 7 7 2,37 4 4 16
20 6,48 7 8 5,96 6 6 1

AVG: 20 6,38 6,00 6,60 5,00 3,80 4,00 9,20

50 0,98 1 2 1,18 1 1 5
50 6,11 7 7 5,92 6 6 8
50 7,53 15 17 6,27 12 13 6
50 16,84 12 13 15,48 11 12 1
50 5,55 8 8 4,73 6 6 10

AVG: 50 7,40 8,6 9,4 6,72 7,2 7,6 6

Table A.5: Results for 5 instances. (� = 0:25)

� = 0:50 Default Algorithm Improved Algorithm

jCj %B Time # iter. # TEC Time # iter. # TEC # TPC

20 0 7,67 9 9 7,72 9 9 0
0 23,07 15 15 15,10 12 12 16
0 2,31 3 3 2,32 3 3 0
0 4,83 6 0 5,03 6 6 4
0 0,50 1 1 0,65 1 1 1

AVG: 0 7,68 6,8 5,6 6,16 6,2 6,2 4,2

20 0,78 0 0 0,83 0 0 0
20 0,29 0 0 0,30 0 0 0
20 3,92 6 6 3,21 4 5 9
20 1,65 3 3 1,56 2 2 6
20 3,37 3 3 3,45 3 3 0

AVG: 20 2,00 2,4 2,4 1,87 1,8 2 3

50 0,60 0 0 0,76 0 0 1
50 4,11 4 4 5,05 4 4 7
50 2,12 3 3 2,52 3 3 0
50 21,16 11 11 21,31 11 11 2
50 4,16 4 4 4,30 4 4 0

AVG: 50 6,43 4,4 4,4 6,79 4,4 4,4 2

Table A.6: Results for 5 instances. (� = 0:50)
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� = 0:75 Default Algorithm Improved Algorithm

jCj %B Time # iter. # TEC Time # iter. # TEC # TPC

20 0 0,40 0 0 0,37 0 0 0
0 20,10 14 14 13,80 9 9 13
0 0,30 0 0 0,35 0 0 0
0 0,91 1 1 0,92 1 1 1
0 0,29 0 0 0,35 1 1 1

AVG: 0 4,40 3 3 3,16 2,2 2,2 3

20 0,77 0 0 0,80 0 0 0
20 0,30 0 0 0,25 0 0 0
20 0,31 0 0 0,33 0 0 0
20 0,66 1 1 0,72 1 1 4
20 0,30 0 0 0,32 0 0 0

AVG: 20 0,47 0,2 0,2 0,48 0,2 0,2 0,8

50 2,12 4 5 2,06 4 5 5
50 2,85 3 3 2,94 3 3 2
50 0,68 0 0 0,72 0 0 0
50 7,18 4 4 7,23 4 4 0
50 0,34 0 0 0,39 0 0 0

AVG: 50 2,63 2,2 2,4 2,67 2,2 2,4 1,4

Table A.7: Results for 5 instances. (� = 0:75)

jCj %B Time

20 0 0,39
0 0,72
0 0,43
0 0,37
0 0,35

AVG: 0 0,45

20 0,36
20 0,35
20 0,39
20 1,28
20 0,35

AVG: 20 0,55

50 0,66
50 0,45
50 0,69
50 1,27
50 0,44

AVG: 50 0,70

Table A.8: Results for 5 instances. (� = 1:00)
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� = 0:25 Default Algorithm Improved Algorithm

jCj %B Time # iter. # TEC Time # iter. # TEC # TPC

30 0 188,25 37 44 56,21 14 18 21
0 80,31 9 9 78,60 8 8 17
0 4,27 2 2 5,40 2 2 13
0 30,02 16 17 24,78 15 16 19
0 50,58 15 15 52,30 13 13 24

AVG: 0 70,69 15,8 17,4 43,46 10,4 11,4 18,8

20 80,80 20 23 82,50 20 23 1
20 8,81 6,00 7,00 8,92 6,00 7,00 0,00
20 23,98 12 13 22,15 11 12 8
20 15,86 10 11 14,01 8 8 7
20 33,80 14 15 30,85 13 14 1

AVG: 20 32,65 12,4 13,8 31,69 11,6 12,8 3,4

50 3,95 1 1 4,14 1 1 2
50 45,23 9 9 32,59 7 7 15
50 26,64 12 13 32,12 12 13 11
50 8,78 5 5 8,88 5 5 0
50 15,02 8 8 13,15 7 7 1

AVG: 50 19,92 7 7,2 18,18 6,4 6,6 5,8

Table A.9: Results for 5 instances. (� = 0:25)

� = 0:50 Default Algorithm Improved Algorithm

jCj %B Time # iter. # TEC Time # iter. # TEC # TPC

30 0 27,43 6,00 6,00 28,12 6,00 6,00 10,00
0 36,41 2,00 3,00 27,60 1,00 1,00 4,00
0 6,65 2,00 2,00 7,65 2,00 2,00 5,00
0 4,28 1,00 1,00 4,44 1,00 1,00 2,00
0 1,85 0,00 0,00 2,11 0,00 0,00 0,00

AVG: 0 15,32 2,20 2,40 13,98 2,00 2,00 4,20

20 15,81 4,00 4,00 16,41 4,00 4,00 1,00
20 2,68 1,00 1,00 2,69 1,00 1,00 0,00
20 10,84 3,00 3,00 11,02 3,00 3,00 0,00
20 7,13 4,00 4,00 5,29 2,00 3,00 6,00
20 52,26 13,00 13,00 48,18 11,00 11,00 5,00

AVG: 20 17,74 5,00 5,00 16,72 4,20 4,40 2,40

50 2,05 0,00 0,00 2,26 0,00 0,00 0,00
50 8,45 2,00 3,00 9,12 2,00 3,00 5,00
50 12,17 4,00 4,00 10,19 3,00 3,00 4,00
50 28,41 4,00 4,00 29,56 4,00 4,00 0,00
50 4,16 3,00 3,00 3,96 2,00 2,00 2,00

AVG: 50 11,05 2,60 2,80 11,02 2,20 2,40 2,20

Table A.10: Results for 5 instances. (� = 0:50)

73



� = 0:75 Default Algorithm Improved Algorithm

jCj %B Time # iter. # TEC Time # iter. # TEC # TPC

30 0 4,17 0 0 4,12 0 0 0
0 36,61 2 2 31,15 1 1 5
0 3,47 1 1 4,16 1 1 3
0 2,24 0 0 2,27 0 0 0
0 1,87 0 0 1,86 0 0 0

AVG: 0 9,67 0,6 0,6 8,71 0,4 0,4 1,6

20 6,04 1 1 6,23 1 1 0
20 0,82 0 0 0,85 0 0 0
20 2,59 0 0 2,42 0 0 0
20 0,81 0 0 0,85 0 0 0
20 1,53 1 1 1,79 1 1 0

AVG: 20 2,36 0,4 0,4 2,43 0,4 0,4 0

50 2,20 0 0 2,32 0 0 0
50 5,34 0 0 6,02 0 0 0
50 9,85 2 3 10,42 2 3 3
50 4,13 0 0 4,33 0 0 0
50 1,36 0 0 1,43 0 0 0

AVG: 50 4,58 0,4 0,6 4,90 0,4 0,6 0,6

Table A.11: Results for 5 instances. (� = 0:75)

jCj %B Time

30 0 0,93
0 7,18
0 2,38
0 2,04
0 5,45

AVG: 0 3,60

20 1,83
20 2,25
20 1,43
20 3,95
20 0,93

AVG: 20 2,08

50 2,12
50 5,54
50 2,19
50 4,74
50 5,81

AVG: 50 4,08

Table A.12: Results for 5 instances. (� = 1:00)
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� = 0:25 Default Algorithm Improved Algorithm

jCj %B Time # iter. # TEC Time # iter. # TEC # TPC

40 0 395,30 57 68 213,75 9 11 17
0 40,19 9 13 41,59 9 13 4
0 228,16 17 18 186,73 13 14 14
0 257,62 19 21 180,79 11 11 21
0 360,41 39 42 310,12 21 23 19

AVG: 0 256,34 28,20 32,40 186,60 12,60 14,40 15,00

20 165,70 23 25 171,12 23 24 15
20 33,78 4 4 34,69 4 4 0
20 8,26 2 2 7,16 1 1 3
20 40,50 8 8 15,18 3 3 2
20 47,21 10 11 16,44 5 6 7

AVG: 20 59,09 9,40 10,00 48,92 7,20 7,60 5,40

50 112,53 10 10 107,56 8 8 19
50 270,41 20 23 255,53 16 16 21
50 162,51 13 15 109,91 8 9 8
50 63,02 7 7 60,23 6 6 13
50 10,95 2 2 11,66 2 2 1

AVG: 50 123,88 10,40 11,40 108,98 8,00 8,20 12,40

Table A.13: Results for 5 instances. (� = 0:25)

� = 0:50 Default Algorithm Improved Algorithm

jCj %B Time # iter. # TEC Time # iter. # TEC # TPC

40 0 28,11 4 4 29,01 4 4 2
0 31,12 5,00 5,00 33,12 5,00 5,00 3,00
0 36,79 4,00 6,00 35,83 3,00 4,00 6,00
0 55,56 7,00 7,00 49,67 5,00 6,00 5,00
0 79,12 9,00 10,00 75,41 9,00 9,00 4,00

AVG: 0 46,14 5,80 6,40 44,61 5,20 5,60 4,00

20 6,02 2,00 2,00 5,91 1,00 1,00 3,00
20 54,20 1,00 1,00 57,65 1,00 1,00 0,00
20 25,51 2,00 2,00 24,12 2,00 2,00 1,00
20 73,69 7,00 7,00 69,12 7,00 7,00 2,00
20 50,32 8,00 8,00 42,33 7,00 7,00 1,00

AVG: 20 41,95 4,00 4,00 39,83 3,60 3,60 1,40

50 4,92 2,00 2,00 4,11 1,00 1,00 5,00
50 20,15 1,00 1,00 20,75 1,00 1,00 2,00
50 14,47 5,00 5,00 10,54 4,00 4,00 3,00
50 9,95 1,00 1,00 10,95 1,00 1,00 0,00
50 72,93 3,00 3,00 73,99 3,00 3,00 0,00

AVG: 50 24,48 2,40 2,40 24,07 2,00 2,00 2,00

Table A.14: Results for 5 instances. (� = 0:50)
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� = 0:75 Default Algorithm Improved Algorithm

jCj %B Time # iter. # TEC Time # iter. # TEC # TPC

40 0 24,31 3 3 26,13 3 3 2
0 26,30 3 3 27,19 3 3 1
0 35,20 4 5 32,87 3 3 5
0 49,66 4 4 51,12 4 4 3
0 6,44 0 0 6,90 0 0 0

AVG: 0 28,38 2,8 3 28,84 2,6 2,6 2,2

20 3,95 0 0 3,99 0 0 0
20 30,18 0 0 30,03 0 0 0
20 21,60 2 2 20,53 2 2 0
20 5,41 1 1 5,56 1 1 2
20 1,99 0 0 1,89 0 0 0

AVG: 20 12,63 0,6 0,6 12,40 0,6 0,6 0,4

50 4,08 0 0 4,12 0 0 0
50 11,58 0 0 12,02 0 0 0
50 4,35 0 0 4,46 0 0 0
50 6,36 0 0 7,21 0 0 0
50 12,63 0 0 12,68 0 0 0

AVG: 50 7,80 0 0 8,10 0 0 0

Table A.15: Results for 5 instances. (� = 0:75)

jCj %B Time

40 0 4,57
0 11,10
0 19,34
0 9,15
0 17,44

AVG: 0 12,32

20 8,10
20 15,73
20 14,38
20 7,43
20 4,61

AVG: 20 10,05

50 5,99
50 10,02
50 7,72
50 4,03
50 19,04

AVG: 50 9,36

Table A.16: Results for 5 instances. (� = 1:00)
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� = 0:25 Default Algorithm Improved Algorithm

jCj %B Time # iter. # TEC Time # iter. # TEC # TPC

50 0 75,57 5 5 81,45 5 5 24
0 235,22 14 18 215,87 12 13 20
0 841,14 23 26 819,10 20 21 32
0 949,73 42 56 452,37 17 21 52
0 412,30 10 11 389,65 9 9 21

AVG: 0 502,79 18,80 23,20 391,69 12,60 13,80 29,80

20 21,35 3 3 22,61 3 3 4
20 209,13 12 12 200,00 11 11 16
20 184,91 13 13 144,60 10 10 37
20 296,58 14 14 256,21 13 13 11
20 312,59 12 15 280,56 10 11 16

AVG: 20 204,91 10,80 11,40 180,80 9,40 9,60 16,80

50 35,83 4 4 17,73 2 2 10
50 654,12 17 19 612,29 14 15 41
50 127,53 9 9 120,14 8 8 16
50 108,16 7 7 105,23 6 6 13
50 1.096,91 44 49 545,31 30 35 89

AVG: 50 404,51 16,20 17,60 280,14 12,00 13,20 33,80

Table A.17: Results for 5 instances. (� = 0:25)

� = 0:50 Default Algorithm Improved Algorithm

jCj %B Time # iter. # TEC Time # iter. # TEC # TPC

50 0 145,77 10 10 135,16 9 9 32
0 36,49 3,00 3,00 39,10 3,00 3,00 7,00
0 30,75 2,00 2,00 33,41 2,00 2,00 7,00
0 226,13 10,00 10,00 205,10 8,00 8,00 15,00
0 86,88 4,00 4,00 91,12 4,00 4,00 14,00

AVG: 0 105,20 5,80 5,80 100,78 5,20 5,20 15,00

20 54,68 1,00 1,00 58,79 1,00 1,00 3,00
20 80,22 3,00 3,00 77,05 3,00 3,00 3,00
20 169,00 5,00 5,00 103,11 3,00 3,00 2,00
20 46,87 0,00 0,00 45,02 0,00 0,00 0,00
20 95,60 4,00 4,00 99,16 4,00 4,00 6,00

AVG: 20 89,27 2,60 2,60 76,63 2,20 2,20 2,80

50 15,12 1,00 1,00 16,21 1,00 1,00 6,00
50 25,84 2,00 2,00 24,99 0,00 0,00 2,00
50 32,41 2,00 3,00 26,41 1,00 1,00 6,00
50 23,60 0,00 0,00 24,54 0,00 0,00 0,00
50 86,19 6,00 6,00 84,83 5,00 5,00 8,00

AVG: 50 36,63 2,20 2,40 35,40 1,40 1,40 4,40

Table A.18: Results for 5 instances. (� = 0:50)
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� = 0:75 Default Algorithm Improved Algorithm

jCj %B Time # iter. # TEC Time # iter. # TEC # TPC

50 0 7,11 0 0 7,16 0 0 0
0 12,59 1 1 13,25 1 1 5
0 7,19 0 0 7,25 0 0 0
0 41,28 2 2 33,16 2 2 3
0 11,20 0 0 11,16 0 0 0

AVG: 0 15,87 0,6 0,6 14,40 0,6 0,6 1,6

20 30,89 0 0 34,16 0 0 2
20 13,20 0 0 13,45 0 0 0
20 15,84 0 0 15,01 0 0 0
20 47,00 0 0 46,23 0 0 0
20 68,21 1 1 70,19 1 1 2

AVG: 20 35,03 0,2 0,2 35,81 0,2 0,2 0,8

50 5,27 0 0 5,32 0 0 0
50 20,14 0 0 21,50 0 0 0
50 24,57 1 1 25,36 1 1 4
50 24,11 0 0 25,27 0 0 0
50 68,17 4 4 67,11 4 4 3

AVG: 50 28,45 1 1 28,91 1 1 1,4

Table A.19: Results for 5 instances. (� = 0:75)

jCj %B Time

40 0 61,37
0 17,55
0 14,39
0 23,97
0 38,64

AVG: 0 31,18

20 96,12
20 11,72
20 21,21
20 16,21
20 29,51

AVG: 20 34,95

50 9,65
50 22,35
50 16,21
50 28,10
50 19,26

AVG: 50 19,11

Table A.20: Results for 5 instances. (� = 1:00)
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� = 0:25 Default Algorithm Improved Algorithm

jCj %B Time # iter. # TEC Time # iter. # TEC # TPC

60 0 351,69 16 21 221,27 11 15 35
0 107,24 6 9 90,55 4 4 19
0 1.558,92 55 76 1.004,60 32 36 49
0 1.387,73 46 51 990,64 36 37 33
0 619,84 21 21 424,00 14 14 27

AVG: 0 805,08 28,80 35,60 546,21 19,40 21,20 32,60

20 1.292,41 20 23 286,18 9 10 35
20 144,41 8 9 120,60 6 7 15
20 942,79 27 35 446,93 19 20 34
20 446,68 9 14 301,18 7 7 12
20 1.020,11 30 36 884,24 21 23 37

AVG: 20 769,28 18,80 23,40 407,83 12,40 13,40 26,60

50 100,37 3 3 89,27 3 3 3
50 646,00 9 9 170,36 1 1 5
50 849,97 11 12 301,61 4 4 9
50 783,71 22 23 264,54 9 10 35
50 944,79 15 15 287,12 2 3 11

AVG: 50 664,97 12,00 12,40 222,58 3,80 4,20 12,60

Table A.21: Results for 5 instances. (� = 0:25)

� = 0:50 Default Algorithm Improved Algorithm

jCj %B Time # iter. # TEC Time # iter. # TEC # TPC

60 0 1.807,21 26 26 586,58 10 10 22
0 41,06 1,00 1,00 42,98 1,00 1,00 6,00
0 256,82 11,00 11,00 145,24 7,00 7,00 11,00
0 58,21 1,00 1,00 59,93 1,00 1,00 0,00
0 71,21 2,00 2,00 73,15 2,00 2,00 1,00

AVG: 0 446,90 8,20 8,20 181,58 4,20 4,20 8,00

20 215,91 1,00 1,00 219,35 1,00 1,00 3,00
20 159,86 1,00 1,00 160,64 1,00 1,00 0,00
20 284,09 2,00 2,00 278,64 1,00 1,00 4,00
20 167,25 1,00 2,00 169,19 1,00 2,00 2,00
20 186,64 2,00 3,00 190,02 2,00 3,00 7,00

AVG: 20 202,75 1,40 1,80 203,57 1,20 1,60 3,20

50 741,89 10,00 10,00 475,92 8,00 8,00 3,00
50 60,83 1,00 2,00 61,12 1,00 2,00 3,00
50 256,23 5,00 5,00 205,61 3,00 3,00 6,00
50 214,91 1 1 216,16 1,00 1,00 2,00
50 59,19 1,00 1,00 61,21 1,00 1,00 9,00

AVG: 50 266,61 3,60 3,80 204,00 2,80 3,00 4,60

Table A.22: Results for 5 instances. (� = 0:50)
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� = 0:75 Default Algorithm Improved Algorithm

jCj %B Time # iter. # TEC Time # iter. # TEC # TPC

60 0 28,25 0 0 28,11 0 0 0
0 38,33 0 0 38,15 0 0 0
0 35,26 2 2 37,74 2 2 0
0 41,27 2 2 43,13 2 2 0
0 39,99 2 3 41,17 2 3 2

AVG: 0 36,62 1,2 1,4 37,66 1,2 1,4 0,4

20 112,47 0 0 110,70 0 0 0
20 81,15 0 0 83,00 0 0 0
20 121,43 1 1 121,92 1 1 0
20 49,56 0 0 51,12 0 0 0
20 106,32 1 2 108,13 1 2 3

AVG: 20 94,19 0,4 0,6 94,97 0,4 0,6 0,6

50 9,69 0 0 9,89 0 0 1
50 30,80 0 0 31,12 0 0 0
50 34,28 1 1 35,13 1 1 2
50 93,49 0 0 92,14 0 0 0
50 50,06 1 2 49,48 1 2 5

AVG: 50 43,66 0,4 0,6 43,55 0,4 0,6 1,6

Table A.23: Results for 5 instances. (� = 0:75)

jCj %B Time

60 0 14,70
0 30,03
0 62,02
0 38,56
0 62,62

AVG: 0 41,59

20 14,56
20 27,15
20 50,54
20 42,85
20 58,26

AVG: 20 38,67

50 62,18
50 75,70
50 24,48
50 14,72
50 27,06

AVG: 50 40,83

Table A.24: Results for 5 instances. (� = 1:00)
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� = 0:25 Default Algorithm Improved Algorithm

jCj %B Time # iter. # TEC Time # iter. # TEC # TPC

70 0 1.142,41 10 11 846,59 8 8 15
0 1.024,20 12 13 1.031,44 12 13 4
0 987,90 12 12 906,03 11 11 21
0 1.944,51 38 43 1.612,70 31 31 65
0 1.819,00 33 39 1.569,34 26 26 57

AVG: 0 1.383,60 21,00 23,60 1.193,22 17,60 17,80 32,40

20 1.387,08 21 23 1.039,20 18 18 19
20 1.149,25 16 16 978,26 14 14 16
20 1.429,25 22 23 1.021,36 18 18 28
20 1.829,37 28 30 1.489,97 20 20 39
20 1.203,09 18 18 950,50 15 15 18

AVG: 20 1.399,61 21,00 22,00 1.095,86 17,00 17,00 24,00

50 1.490,50 16 18 1.209,10 14 14 21
50 194,00 3 3 172,36 2 2 9
50 1.819,57 29 30 1.680,17 21 22 29
50 1.648,30 20 23 1.499,59 15 15 31
50 1.440,00 18 22 1.439,57 17 18 9

AVG: 50 1.318,47 17,20 19,20 1.200,16 13,80 14,20 19,80

Table A.25: Results for 5 instances. (� = 0:25)

� = 0:50 Default Algorithm Improved Algorithm

jCj %B Time # iter. # TEC Time # iter. # TEC # TPC

70 0 559,60 10 10 320,56 8 8 9
0 581,17 18,00 18,00 583,21 18,00 18,00 5,00
0 380,18 12,00 12,00 319,20 10,00 10,00 6,00
0 160,05 2,00 3,00 161,31 2,00 3,00 7,00
0 280,39 5,00 6,00 280,19 5,00 6,00 4,00

AVG: 0 392,28 9,40 9,80 332,89 8,60 9,00 6,20

20 122,52 2,00 2,00 124,35 2,00 2,00 1,00
20 149,64 3,00 3,00 131,19 2,00 2,00 6,00
20 216,38 2,00 2,00 207,13 2,00 2,00 1,00
20 304,45 4,00 4,00 291,73 3,00 3,00 3,00
20 345,06 5,00 5,00 348,12 5,00 5,00 3,00

AVG: 20 227,61 3,20 3,20 220,50 2,80 2,80 2,80

50 60,46 0,00 0,00 61,12 0,00 0,00 2,00
50 159,00 1,00 1,00 149,00 1,00 1,00 3,00
50 316,08 5,00 5,00 319,20 5,00 5,00 9,00
50 315,23 4 5 316,25 4,00 5,00 2,00
50 269,87 4,00 4,00 270,12 4,00 4,00 3,00

AVG: 50 224,13 2,80 3,00 223,14 2,80 3,00 3,80

Table A.26: Results for 5 instances. (� = 0:50)
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� = 0:75 Default Algorithm Improved Algorithm

jCj %B Time # iter. # TEC Time # iter. # TEC # TPC

70 0 20,34 0 0 21,01 0 0 0
0 24,12 1 1 24,83 1 1 0
0 31,29 2 2 31,88 2 2 1
0 41,64 2 2 40,19 2 2 1
0 21,16 0 0 22,45 0 0 0

AVG: 0 27,71 1 1 28,07 1 1 0,4

20 31,12 0 0 32,23 0 0 0
20 38,91 1 1 39,59 1 1 1
20 29,50 0 0 31,56 0 0 0
20 32,16 1 1 34,19 1 1 0
20 45,10 1 1 46,08 1 1 1

AVG: 20 35,36 0,6 0,6 36,73 0,6 0,6 0,4

50 59,12 0 0 58,01 0 0 1
50 61,56 0 0 63,29 0 0 5
50 146,30 2 2 149,25 2 2 1
50 130,55 2 2 130,45 2 2 0
50 89,10 1 1 88,16 1 1 1

AVG: 50 97,33 1 1 97,83 1 1 1,6

Table A.27: Results for 5 instances. (� = 0:75)

jCj %B Time

70 0 60,62
0 68,50
0 54,43
0 75,82
0 108,70

AVG: 0 73,61

20 80,42
20 115,56
20 82,06
20 68,81
20 110,90

AVG: 20 91,55

50 175,06
50 118,06
50 74,69
50 99,74
50 46,15

AVG: 50 102,74

Table A.28: Results for 5 instances. (� = 1:00)
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� = 0:25 Default Algorithm Improved Algorithm

jCj %B Time # iter. # TEC Time # iter. # TEC # TPC

80 0 1.193,64 9 11 886,54 8 8 13
0 1.449,05 13 15 1.264,60 11 11 16
0 2.059,31 30 31 1.896,20 25 25 42
0 1.789,15 19 19 1.565,81 16 16 25
0 2.459,20 38 43 2.156,80 30 30 24

AVG: 0 1.790,07 21,80 23,80 1.553,99 18,00 18,00 24,00

20 1.539,13 19 22 1.230,01 16 16 27
20 1.405,90 14 15 1.407,00 14 14 18
20 1.689,26 20 21 1.596,26 19 19 23
20 2.410,67 33 35 2.340,13 25 25 21
20 819,26 7 9 820,67 7 9 5

AVG: 20 1.572,84 18,60 20,40 1.478,81 16,20 16,60 18,80

50 1.463,02 10 10 519,69 6 6 30
50 1.194,19 12 12 1.076,41 11 11 13
50 1.975,53 25 27 1.789,65 21 21 18
50 1.064,00 8 8 1.025,00 7 7 46
50 1.445,55 12 14 1.218,76 10 10 11

AVG: 50 1.428,46 13,40 14,20 1.125,90 11,00 11,00 23,60

Table A.29: Results for 5 instances. (� = 0:25)

� = 0:50 Default Algorithm Improved Algorithm

jCj %B Time # iter. # TEC Time # iter. # TEC # TPC

80 0 628,27 12 13 456,90 10 10 8
0 589,60 15,00 16,00 556,32 14,00 14,00 6,00
0 875,21 21,00 21,00 653,04 16,00 16,00 29,00
0 360,30 8,00 9,00 330,64 5,00 5,00 23,00
0 774,59 15,00 18,00 489,00 12,00 13,00 31,00

AVG: 0 645,59 14,20 15,40 497,18 11,40 11,60 19,40

20 259,69 5,00 5,00 261,20 5,00 5,00 12,00
20 316,63 7,00 7,00 280,10 6,00 6,00 19,00
20 294,60 3,00 3,00 296,30 3,00 3,00 14,00
20 412,08 6,00 7,00 295,16 5,00 5,00 24,00
20 681,26 9,00 11,00 441,27 7,00 8,00 22,00

AVG: 20 392,85 6,00 6,60 314,81 5,20 5,40 18,20

50 18,12 0,00 0,00 19,00 0,00 0,00 0,00
50 118,82 0,00 0,00 119,30 0,00 0,00 1,00
50 412,36 3,00 3,00 413,65 3,00 3,00 5,00
50 249,36 4 5 261,32 4,00 5,00 2,00
50 403,70 5,00 5,00 405,05 5,00 5,00 1,00

AVG: 50 240,47 2,40 2,60 243,66 2,40 2,60 1,80

Table A.30: Results for 5 instances from data set 1. (� = 0:50)
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� = 0:75 Default Algorithm Improved Algorithm

jCj %B Time # iter. # TEC Time # iter. # TEC # TPC

70 0 35,26 0 0 21,01 0 0 0
0 37,16 2 2 22,30 1 1 3
0 41,26 2 3 31,88 2 3 5
0 64,50 4 4 41,38 2 2 9
0 38,91 0 0 40,12 0 0 0

AVG: 0 43,42 1,6 1,8 31,34 1 1,2 3,4

20 33,26 0 0 34,21 0 0 0
20 45,62 2 2 46,31 2 2 6
20 42,10 1 2 44,39 1 2 4
20 48,91 2 2 49,25 2 2 3
20 55,23 2 2 56,23 2 2 3

AVG: 20 45,02 1,4 1,6 46,08 1,4 1,6 3,2

50 19,30 0 0 19,15 0 0 0
50 106,91 0 0 109,13 0 0 1
50 178,49 1 1 179,60 1 1 1
50 156,30 2 2 158,20 2 2 1
50 136,24 1 1 136,18 1 1 3

AVG: 50 119,45 0,8 0,8 120,45 0,8 0,8 1,2

Table A.31: Results for 5 instances. (� = 0:75)

jCj %B Time

80 0 115,19
0 130,14
0 103,42
0 144,05
0 206,52

AVG: 0 139,86

20 152,81
20 219,56
20 155,91
20 130,74
20 210,72

AVG: 20 173,95

50 43,36
50 54,93
50 141,91
50 189,51
50 87,69

AVG: 50 102,74

Table A.32: Results for 5 instances. (� = 1:00)
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� = 0:25 Default Algorithm Improved Algorithm

jCj %B Time # iter. # TEC Time # iter. # TEC # TPC

90 0 2.103,40 19 20 1.897,73 15 15 32
0 2.203,61 18 20 1.846,50 14 14 21
0 2.659,48 25 26 2.406,64 21 20 46
0 3.067,83 31 31 2.397,66 20 21 51
0 2.449,21 24 24 2.589,96 22 22 23

AVG: 0 2.496,71 23,40 24,20 2.227,70 18,40 18,40 34,60

20 2.786,94 25 28 2.456,30 20 21 41
20 2.698,46 26 26 2.356,95 23 23 16
20 3.450,60 36 38 1.918,60 28 30 31
20 2.218,67 29 31 2.469,17 25 25 33
20 1.879,60 16 16 1.423,08 10 11 14

AVG: 20 2.606,85 26,40 27,80 2.124,82 21,20 22,00 27,00

50 1.948,26 15 16 1.716,40 12 12 31
50 1.658,69 12 14 1.546,31 10 10 17
50 2.462,34 19 19 1.907,45 14 15 37
50 2.062,18 16 17 1.872,36 13 13 26
50 2.159,87 16 16 1.602,34 10 10 51

AVG: 50 2.058,27 15,60 16,40 1.728,97 11,80 12,00 32,40

Table A.33: Results for 5 instances. (� = 0:25)

� = 0:50 Default Algorithm Improved Algorithm

jCj %B Time # iter. # TEC Time # iter. # TEC # TPC

90 0 725,60 14 15 665,32 11 11 16
0 1.012,00 12,00 13,00 554,21 8,00 9,00 19,00
0 1.543,20 19,00 21,00 1.456,82 18,00 18,00 8,00
0 2.402,61 27,00 29,00 1.405,04 20,00 21,00 34,00
0 1.453,27 19,00 20,00 871,26 14,00 14,00 36,00

AVG: 0 1.427,34 18,20 19,60 990,53 14,20 14,60 22,60

20 389,12 6,00 6,00 301,15 5,00 5,00 11,00
20 305,64 5,00 5,00 270,60 4,00 4,00 17,00
20 258,60 2,00 3,00 261,12 2,00 3,00 9,00
20 354,97 5,00 7,00 356,24 5,00 7,00 7,00
20 547,73 10,00 12,00 471,94 9,00 9,00 11,00

AVG: 20 371,21 5,60 6,60 332,21 5,00 5,60 11,00

50 164,60 1,00 1,00 166,31 1,00 1,00 9,00
50 206,80 2,00 3,00 207,60 2,00 3,00 5,00
50 354,08 2,00 2,00 358,13 2,00 2,00 6,00
50 489,60 4 5 402,50 3,00 3,00 15,00
50 621,73 6,00 7,00 516,48 5,00 5,00 12,00

AVG: 50 367,36 3,00 3,60 330,20 2,60 2,80 9,40

Table A.34: Results for 5 instances. (� = 0:50)
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� = 0:75 Default Algorithm Improved Algorithm

jCj %B Time # iter. # TEC Time # iter. # TEC # TPC

90 0 96,89 1 1 97,11 1 1 2
0 49,57 0 0 52,36 0 0 3
0 116,59 2 2 118,14 2 2 4
0 66,50 1 1 68,26 1 1 9
0 55,91 0 0 56,91 0 0 2

AVG: 0 77,09 0,8 0,8 78,56 0,8 0,8 4

20 85,54 1 1 88,91 1 1 4
20 56,67 0 0 58,12 0 0 2
20 46,29 1 1 49,30 1 1 4
20 124,60 2 3 126,34 1 1 3
20 154,92 2 2 159,32 2 2 3

AVG: 20 93,60 1,2 1,4 96,40 1 1 3,2

50 67,89 0 0 68,91 0 0 0
50 101,10 0 0 104,52 0 0 0
50 89,46 0 0 91,21 0 0 0
50 154,26 2 3 156,23 2 3 5
50 165,23 2 2 168,49 2 2 5

AVG: 50 115,59 0,8 1 117,87 0,8 1 2

Table A.35: Results for 5 instances. (� = 0:75)

jCj %B Time

90 0 217,18
0 241,89
0 433,70
0 273,30
0 302,51

AVG: 0 293,7

20 461,08
20 442,51
20 327,40
20 274,54
20 320,89

AVG: 20 365,3

50 298,01
50 184,15
50 115,35
50 91,05
50 397,98

AVG: 50 217,3

Table A.36: Results for 5 instances. (� = 1:00)
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Appendix B

Test Results for Instances with

Heterogenous Fleet
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� = 0:25 Default Algorithm Improved Algorithm

jCj %B Time # iter. # TEC # MTEC Time # iter. # TEC #MTEC # TPC

10 0 0,65 3 1 2 0,58 3 1 2 0
0 3,69 15 10 5 4,00 15 10 0 0
0 2,76 12 8 4 2,78 10 6 4 2
0 0,50 3 2 1 0,51 3 2 1 0
0 2,07 12 9 3 1,77 11 8 3 1

AVG: 0 1,93 9,00 6,00 3,00 1,93 8,40 5,40 2,00 0,60

50 1,12 4 3 1 0,83 3 2 1 1
50 0,24 1 1 0 0,25 1 1 0 0
50 0,47 2 2 0 0,50 2 2 0 0
50 0,39 2 1 1 0,39 2 1 1 0
50 0,70 3 3 0 0,69 3 3 0 0

AVG: 50 0,58 2,40 2,00 0,40 0,53 2,20 1,80 0,40 0,20

Table B.1: Results for 5 instances. (� = 0:25)

� = 0:50 Default Algorithm Improved Algorithm

jCj %B Time # iter. # TEC # MTEC Time # iter. # TEC #MTEC # TPC

10 0 0,26 0 0 0 0,27 0 0 0 0
0 0,70 4 4 0 0,67 4 4 0 0
0 6,19 12 12 0 5,66 11 11 0 2
0 1,46 6 6 0 1,25 5 5 0 1
0 0,25 1 1 0 0,23 1 1 0 0

AVG: 0 1,77 4,60 4,60 0,00 1,62 4,20 4,20 0,00 0,60

50 0,45 1 1 0 0,49 1 1 0 2
50 0,33 0 0 0 0,35 0 0 0 0
50 0,34 2 2 0 0,36 2 2 0 0
50 0,17 0 0 0 0,20 0 0 0 0
50 0,50 2 2 0 0,45 2 2 0 0

AVG: 50 0,36 1,00 1,00 0,00 0,37 1,00 1,00 0,00 0,40

Table B.2: Results for 5 instances. (� = 0:50)
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� = 0:25 Default Algorithm Improved Algorithm

jCj %B Time # iter. # TEC # MTEC Time # iter. # TEC #MTEC # TPC

20 0 23,53 31 11 20 19,24 29 9 20 3
0 4,21 8 4 4 3,99 8 4 4 0
0 7,99 12 7 5 6,51 11 6 5 3
0 6,34 10 11 0 5,95 9 10 0 6
0 14,07 15 15 0 10,21 12 12 0 17

AVG: 0 11,23 15,20 9,60 5,80 9,18 13,80 8,20 5,80 5,80

50 32,77 29 31 0 28,14 26 28 0 4
50 5,63 6 7 0 4,98 5 6 0 6
50 23,32 19 19 0 19,18 16 16 0 3
50 2,64 3 3 0 2,71 3 3 0 1
50 4,11 5 2 3 4,25 5 2 3 1

AVG: 50 13,69 12,40 12,40 0,60 11,85 11,00 11,00 0,60 3,00

Table B.3: Results for 5 instances. (� = 0:25)

� = 0:50 Default Algorithm Improved Algorithm

jCj %B Time # iter. # TEC # MTEC Time # iter. # TEC #MTEC # TPC

20 0 6,71 10 0 10 6,59 10 0 10 0
0 7,15 10 0 10 7,34 10 0 10 0
0 0,39 0 0 0 0,43 0 0 0 0
0 1,14 2 1 1 1,08 2 1 1 0
0 2,03 2 0 2 1,89 2 0 2 0

AVG: 0 3,48 4,80 0,20 4,60 3,47 4,80 0,20 4,60 0,00

50 3,16 3 0 3 3,47 3 0 3 3
50 2,09 2 0 2 2,46 2 0 2 2
50 2,16 2 2 0 2,59 2 2 0 3
50 9,94 9 9 0 10,26 9 9 0 2
50 4,89 4 2 2 5,79 4 2 2 3

AVG: 50 4,45 4,00 2,60 1,40 4,91 4,00 2,60 1,40 2,60

Table B.4: Results for 5 instances. (� = 0:50)
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� = 0:25 Default Algorithm Improved Algorithm

jCj %B Time # iter. # TEC # MTEC Time # iter. # TEC #MTEC # TPC

30 0 6,59 4 6 0 6,84 4 6 0 0
0 11,03 7 7 2 10,51 6 6 1 5
0 9,35 6 5 1 8,24 5 4 1 3
0 121,10 36 33 4 109,10 33 30 4 12
0 84,26 22 18 3 45,67 14 12 2 14

AVG: 0 46,47 15 13,80 2 36,07 12,4 11,60 1,6 6,80

30 50 30,82 4 4 0 27,29 3 3 0 1
50 3,40 2 2 0 3,61 2 2 0 1
50 52,73 12 12 0 26,59 9 9 0 6
50 9,61 6 6 0 3,84 2 2 0 7
50 4,35 2 0 2 4,21 2 0 2 2

AVG: 50 20,18 5,20 4,80 0,40 13,11 3,60 3,20 0,40 3,40

Table B.5: Results for 5 instances. (� = 0:25)

� = 0:50 Default Algorithm Improved Algorithm

jCj %B Time # iter. # TEC # MTEC Time # iter. # TEC #MTEC # TPC

30 0 4,33 2 2 0 3,12 1 1 0 6
0 5,36 2 1 1 3,45 1 1 1 2
0 8,32 3 2 1 3,59 2 1 1 4
0 24,91 7 6 1 19,25 5 5 0 7
0 8,12 3 3 0 8,13 3 3 0 3

AVG: 0 11,68 3,75 3,00 0,75 8,61 2,75 2,50 0,50 4,00

30 50 4,89 0 0 0 4,91 0 0 0 0
50 6,21 2 1 1 6,20 2 1 1 2
50 12,39 3 2 1 6,05 2 1 1 3
50 11,38 3 3 0 7,01 2 2 0 5
50 2,31 1 1 0 2,41 1 1 0 3

AVG: 50 7,44 1,80 1,40 0,40 5,32 1,40 1,00 0,40 2,60

Table B.6: Results for 5 instances. (� = 0:50)
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� = 0:25 Default Algorithm Improved Algorithm

jCj %B Time # iter. # TEC # MTEC Time # iter. # TEC #MTEC # TPC

40 0 107,93 14 16 0 74,81 10 12 0 22
0 46,50 2 1 1 47,21 2 1 1 3
0 88,12 9 8 1 76,15 8 7 1 5
0 186,20 19 17 2 159,57 14 12 2 16
0 259,24 29 22 7 201,49 24 22 2 18

AVG: 0 137,60 14,60 12,80 2,20 111,85 11,60 10,80 1,20 12,80

40 50 31,03 3 3 0 32,59 3 3 0 2
50 81,11 12 10 2 68,19 8 7 1 13
50 201,54 25 20 5 146,37 15 12 2 17
50 108,67 13 15 0 94,56 11 11 0 13
50 78,19 9 7 2 61,41 6 5 1 8

AVG: 50 100,1 12,4 11 1,8 80,62 8,6 7,6 0,8 10,6

Table B.7: Results for 5 instances. (� = 0:25)

� = 0:50 Default Algorithm Improved Algorithm

jCj %B Time # iter. # TEC # MTEC Time # iter. # TEC #MTEC # TPC

40 0 52,82 8 7 1 39,26 6 5 1 6
0 31,59 5 4 1 32,11 5 4 1 2
0 45,69 6 6 0 37,81 4 4 0 6
0 71,60 11 8 3 61,04 8 7 1 11
0 121,67 9 8 1 110,16 8 8 0 7

AVG: 0 64,67 7,8 6,6 1,2 56,08 6,2 5,6 0,6 6,4

40 50 23,12 2 2 0 24,16 2 2 0 2
50 11,27 1 1 0 12,50 1 1 0 5
50 37,54 4 3 1 33,45 3 2 1 6
50 59,81 8 6 2 51,12 6 5 1 14
50 41,16 5 5 0 43,19 5 5 0 7

AVG: 50 34,58 4 3,4 0,6 32,88 3,4 3 0,4 6,8

Table B.8: Results for 5 instances. (� = 0:50)
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� = 0:25 Default Algorithm Improved Algorithm

jCj %B Time # iter. # TEC # MTEC Time # iter. # TEC #MTEC # TPC

50 0 99,18 7 7 0 94,57 6 6 0 16
0 167,17 11 8 3 147,51 7 7 0 18
0 689,44 34 30 4 587,05 25 23 2 31
0 527,38 25 21 4 441,34 20 18 2 29
0 201,40 15 12 3 189,97 12 11 1 27

AVG: 0 336,91 18,40 15,60 2,80 292,09 14,00 13,00 1,00 24,20

50 50 128,68 8 6 2 114,23 6 2 0 8
50 274,18 17 15 2 235,60 15 13 2 7
50 976,19 42 36 6 847,72 35 32 3 37
50 154,50 9 8 1 148,83 8 8 0 14
50 611,61 21 19 2 267,12 16 16 0 21

AVG: 50 429 19,4 16,8 2,6 322,7 16 14,2 1 17,4

Table B.9: Results for 5 instances. (� = 0:25)

� = 0:50 Default Algorithm Improved Algorithm

jCj %B Time # iter. # TEC # MTEC Time # iter. # TEC #MTEC # TPC

50 0 142,2 11 10 1 134,20 10 9 1 15
0 94,68 4 4 0 96,21 4 4 0 8
0 74,50 5 4 1 70,16 4 3 1 12
0 124,87 8 6 2 85,52 5 4 1 25
0 37,31 3 3 0 35,13 2 2 0 8

AVG: 0 94,71 6,2 5,4 0,8 84,24 5 4,4 0,6 13,6

50 50 22,50 3 3 0 24,56 3 3 0 8
50 31,09 4 2 2 33,07 4 2 2 3
50 32,51 7 5 2 31,16 5 4 1 14
50 41,24 8 6 2 34,10 5 4 1 17
50 42,37 7 5 2 35,20 5 4 1 9

AVG: 50 33,94 5,8 4,2 1,6 31,62 4,4 3,4 1 10,2

Table B.10: Results for 5 instances. (� = 0:50)
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� = 0:25 Default Algorithm Improved Algorithm

jCj %B Time # iter. # TEC # MTEC Time # iter. # TEC #MTEC # TPC

60 0 387,12 18 16 2 321,15 12 11 1 24
0 1.489,62 49 45 4 1.100,30 32 31 1 46
0 1.028,64 23 20 3 743,55 15 14 1 22
0 1.125,50 39 35 4 986,48 30 28 2 37
0 286,50 8 7 1 224,12 6 5 1 15

AVG: 0 863,48 27,40 24,60 2,80 675,12 19,00 17,80 1,20 28,80

50 50 86,00 4 2 1 80,45 3 2 1 11
50 659,55 11 11 0 546,30 8 8 0 19
50 978,21 28 25 2 711,42 21 20 1 32
50 578,16 14 12 2 502,00 12 10 2 18
50 93,57 4 4 0 79,16 3 3 0 8

AVG: 50 479,098 12,2 10,8 1 383,866 9,4 8,6 0,8 17,6

Table B.11: Results for 5 instances. (� = 0:25)

� = 0:50 Default Algorithm Improved Algorithm

jCj %B Time # iter. # TEC # MTEC Time # iter. # TEC #MTEC # TPC

60 0 896,3 23 21 2 551,24 15 14 1 35
0 91,24 5 4 1 88,20 4 3 1 26
0 246,81 18 17 1 213,59 15 15 0 18
0 112,67 8 8 2 95,21 6 6 0 17
0 68,79 10 10 0 71,12 10 10 0 11

AVG: 0 283,162 12,8 12 1,2 203,872 10 9,6 0,4 21,4

60 50 124,24 8 8 0 108,17 6 6 0 15
50 86,37 5 4 1 78,16 4 4 0 10
50 271,31 16 12 4 200,14 13 12 1 17
50 115,29 7 2 5 91,24 5 2 3 11
50 134,81 6 6 0 85,55 4 4 0 16

AVG: 50 146,404 8,4 6,4 2 112,652 6,4 5,6 0,8 13,8

Table B.12: Results for 5 instances. (� = 0:50)
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� = 0:25 Default Algorithm Improved Algorithm

jCj %B Time # iter. # TEC # MTEC Time # iter. # TEC #MTEC # TPC

70 0 1.096,51 15 13 2 879,61 11 10 1 24
0 1.234,10 18 17 1 986,27 14 12 2 26
0 881,27 11 8 3 809,40 9 9 0 18
0 846,59 10 4 6 796,14 8 2 2 22
0 1.764,59 32 28 5 1.523,67 24 21 3 51

AVG: 0 1.164,61 17,2 14 3,4 999,02 13,2 10,8 1,6 28,2

70 50 1.304,20 18 16 2 1.102,30 15 14 1 25
50 1.597,31 21 17 4 1.268,10 15 13 2 29
50 1.870,60 24 20 4 1.615,21 20 22 2 38
50 758,34 11 10 1 645,57 8 7 1 19
50 698,21 8 7 1 615,20 6 6 0 16

AVG: 50 1245,73 16,4 14 2,4 1049,28 12,8 12,4 1,2 25,4

Table B.13: Results for 5 instances. (� = 0:25)

� = 0:50 Default Algorithm Improved Algorithm

jCj %B Time # iter. # TEC # MTEC Time # iter. # TEC #MTEC # TPC

70 0 691,24 18 16 2 614,79 15 14 1 6
0 647,19 16 12 4 596,21 15 11 4 5
0 426,80 10 9 1 355,58 7 6 1 10
0 394,51 11 11 0 321,19 8 8 0 14
0 145,60 5 2 3 131,30 3 1 2 9

AVG: 0 461,068 12 10 2 403,814 9,6 8 1,6 8,8

70 50 215,35 3 3 0 218,20 3 3 0 3
50 245,71 4 2 2 255,13 4 2 2 5
50 311,59 12 10 2 226,15 7 6 1 24
50 183,43 8 8 0 184,67 5 5 0 9
50 476,23 17 12 5 458,37 16 14 2 16

AVG: 50 286,462 8,8 7 1,8 268,504 7 6 1 11,4

Table B.14: Results for 5 instances. (� = 0:50)
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� = 0:25 Default Algorithm Improved Algorithm

jCj %B Time # iter. # TEC # MTEC Time # iter. # TEC #MTEC # TPC

80 0 1.468,83 12 10 2 1.256,31 10 9 1 16
0 2.454,37 34 28 6 1.925,64 27 25 2 39
0 1.945,20 14 12 2 1.859,96 12 10 2 27
0 1.293,25 9 10 1 1.102,50 7 7 0 15
0 1.956,80 28 26 3 1.645,72 21 19 2 42

AVG: 0 1.823,69 19,4 17,2 2,8 1.558,03 15,4 14 1,4 27,8

80 50 1.285,64 11 10 1 1.098,00 9 9 0 24
50 1.542,21 15 12 3 1.249,37 11 10 1 20
50 1.876,24 27 25 3 1.724,54 20 18 2 41
50 1.682,10 19 14 5 1.504,20 16 13 3 19
50 1.443,33 16 14 2 1.358,81 14 12 2 15

AVG: 50 1565,9 17,6 15 2,8 1386,984 14 12,4 1,6 23,8

Table B.15: Results for 5 instances. (� = 0:25)

� = 0:50 Default Algorithm Improved Algorithm

jCj %B Time # iter. # TEC # MTEC Time # iter. # TEC #MTEC # TPC

80 0 772,11 13 10 3 682,54 11 2 1 16
0 1.027,25 21 19 2 955,25 18 16 2 13
0 545,20 9 7 2 505,13 8 6 1 15
0 896,45 15 10 5 665,42 12 10 2 23
0 937,50 18 14 4 701,12 14 11 3 19

AVG: 0 835,702 15,2 12 3,2 701,892 12,6 9 1,8 17,2

80 50 105,23 2 1 1 108,20 2 1 1 9
50 245,90 5 2 3 215,20 4 2 2 13
50 609,52 9 6 3 396,11 7 6 1 19
50 764,61 15 12 3 589,24 11 10 1 30
50 684,49 14 10 4 542,60 11 9 2 26

AVG: 50 481,95 9 6,2 2,8 370,27 7 5,6 1,4 19,4

Table B.16: Results for 5 instances. (� = 0:50)
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� = 0:25 Default Algorithm Improved Algorithm

jCj %B Time # iter. # TEC # MTEC Time # iter. # TEC #MTEC # TPC

90 0 1.980,60 15 12 3 1.335,84 12 10 2 21
0 2.153,20 19 17 2 1.648,11 15 15 1 16
0 1.756,22 14 14 0 1.253,79 12 12 0 30
0 2.350,35 24 21 3 1.964,53 19 18 1 34
0 2,596,72 28 24 5 2.150,40 21 19 2 32

AVG: 0 2.060,09 20 17,6 2,6 1.670,53 15,8 14,8 1,2 26,6

90 50 1.562,56 12 8 4 1.005,80 8 8 0 24
50 1.040,05 10 9 1 1.043,21 10 9 1 6
50 2.019,94 21 22 2 1.952,34 14 13 2 37
50 1.883,57 16 14 2 1.189,30 13 12 1 22
50 1.908,61 17 15 2 1.749,65 15 14 1 16

AVG: 50 1682,946 15,2 13,6 2,2 1388,06 12 11,2 1 21

Table B.17: Results for 5 instances. (� = 0:25)

� = 0:50 Default Algorithm Improved Algorithm

jCj %B Time # iter. # TEC # MTEC Time # iter. # TEC #MTEC # TPC

90 0 1024,21 11 10 1 870,54 8 8 0 24
0 2.159,30 24 21 5 1.795,30 19 15 4 16
0 1.489,30 18 17 1 1.127,31 12 12 0 33
0 1.359,32 16 12 4 1.307,17 12 10 3 20
0 1.502,03 17 12 5 1.364,29 15 13 3 18

AVG: 0 1506,832 17,2 14,4 3,2 1292,922 13,2 11,6 2 22,2

90 50 1.140,20 9 8 1 998,31 7 7 0 23
50 1.211,07 10 7 3 976,37 8 7 0 19
50 1.352,74 12 11 1 1.215,45 10 10 0 25
50 2.102,91 20 15 5 1.546,77 15 12 3 35
50 1.259,41 13 10 3 1.022,80 9 9 2 18

AVG: 50 1413,266 12,8 10,2 2,6 1151,94 9,8 9 1 24

Table B.18: Results for 5 instances. (� = 0:50)
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