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I certify that I have read this thesis and that in my opinion it is fully adequate,

in scope and in quality, as a thesis for the degree of Master of Science.

Prof. Dr. Enis Çetin
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Prof. Dr. Ömer Morgül

Approved for the Institute of Engineering and Science:

Prof. Dr. Mehmet Baray
Director of the Institute Engineering and Science

ii



ABSTRACT

WATERMARKING VIA ZERO ASSIGNED FILTER
BANKS

Zeynep Yücel

M.S. in Electrical and Electronics Engineering

Supervisor: Prof. Dr. A. Bülent Özgüler

August 2005

A watermarking scheme for audio and image files is proposed based on wavelet

decomposition via zero assigned filter banks. Zero assigned filter banks are per-

fect reconstruction, conjugate quadrature mirror filter banks with assigned zeros

in low pass and high pass filters. They correspond to a generalization of filter

banks that yield Daubechies wavelets.

The watermarking method consists of partitioning a given time or space sig-

nal into frames of fixed size, wavelet decomposing each frame via one of two filter

banks with different assigned zeros, compressing a suitable set of coefficients in

the wavelet decomposition, and reconstructing the signal from the compressed

coefficients of frames. In effect, this method encodes the bit ‘0’ or ‘1’ in each

frame depending on the filter bank that is used in the wavelet decomposition of

that frame.

The method is shown to be perceptually transparent and robust against channel

noise as well as against various attacks to remove the watermark such as denois-

ing, estimation, and compression. Moreover, the original signal is not needed

for detection and the bandwidth requirement of the multiple authentication keys

that are used in this method is very modest.

Keywords: Wavelets, filter banks, zero assignment, watermarking.

iii



ÖZET

SIFIR ATAMALI SÜZGEC KÜMELERI ILE
DAMGALAMA

Zeynep Yücel

Elektrik ve Elektronik Mühendisliği, Yüksek Lisans

Tez Yöneticisi: Prof. Dr. A. Bülent Özgüler

Ağustos 2005

İşitsel ve görsel dosyalar için sıfır atamalı süzgeç kümeleri yoluyla dalgacık

ayrışımına dayalı bir damgalama yöntemi önerilmiştir. Sıfır atamalı süzgeç

kümeleri yüksek ve alçak geçiren süzgeçlerde atanmış sıfırlara sahip, mükemmel

yeniden inşa özelliğinde, bileşik dördül ikiz (conjugate quadrature mirror) süzgeç

kümeleridir. Bunlar Daubechies dalgacıklarını doğuran süzgeç kümelerinin bir

genellemesine tekabül eder.

Damgalama yöntemi, verilen bir zaman ya da uzay işaretini sabit boyuttaki

çerçevelere ayırmak, her çerçevenin değişik atanmış sıfırlara sahip süzgeç kümeleri

ile dalgacık ayrışımını hesaplamak, dalgacık ayrışımındaki uygun bir katsayı

kümesini sıkıştırmak ve çerçeveleri sıkıştırılmış katsayılarından yeniden inşa

etmekten oluşur. Gerçekte, bu yöntem her çerçeveye o çerçevenin dalgacık

ayrışımında kullanılan süzgeç kümesine bağlı olarak ‘0’ yada ‘1’ bitini kodlar.

Yöntemin algısal olarak saydam ve kanal gürültüsüne olduğu kadar damgayı or-

tadan kaldırmaya yönelik gürültüden arındırma, kestirme ve sıkıştırma gibi çeşitli

saldılara karşı da dinç olduğu gösterilmiştir. Ayrıca algoritma özgün işarete tespit

aşamasında ihtiyaç duymaz.Bu yöntemde kullanılan çoklu onay anahtarlarının

bant genişliği gereksinimi de makuldur.

Anahtar sözcükler : Dalgacıklar, süzgeç kümeleri, sıfır atama, damgalama.
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Chapter 1

Introduction

Due to the recent developments in Internet and multimedia services, digital data

has become easily attainable through the World Wide Web. Many properties of

digital technology such as error-free reproduction, efficient processing and storage,

and a uniform format for digital applications, make it more popular. However,

these advantages may present many complications for the owner of the multi-

media data. Unrestricted access to intellectual property and the ease of copying

digital files raise the problem of copyright protection.

In order to approve rightful ownership and prevent unauthorized copying and

distribution of multimedia data, digital watermarking is employed and impercep-

tible data is embedded into digital media files. Watermarking makes it possible

not only to identify the owner or distributor of digital files but also to track the

creation or manipulation of audio, image or video signals. Moreover, by embed-

ding a digital signature, one may provide different access levels to different users.

There are several essential conditions that must be met by an effective water-

marking algorithm. The signature of the author, the watermark, needs to be not

only transparent to the user but also robust against attacks, [1]. These attacks

may include degradations resulting from a transmission channel, compression of

the signal, rotation, filtering, permutations or quantization. On the other hand,

2



CHAPTER 1. INTRODUCTION 3

the watermarking procedure should be invertible. The watermark must be recov-

ered from the marked data preferably without access to the original signal. Since

watermarking plays an important role in copyright protection, security turns out

to be critical. Even if the exact algorithm is available to a pirate, he should not

be able to extract or predict the watermark without access to the security keys.

Furthermore, the marking procedure must be able to resolve rightful ownership

when multiple ownership claims are made. A pirate may modify the marked

signal in a way that if his fake original signal is used in detection process, both

claimants may gather equal evidence for ownership, [2]. The importance of de-

coding without the original signal arises here. The author should also provide

secret keys in order to obtain a more secure encryption technique that allows only

the authorized detections of the watermark with the help of proper keys.

Since human auditory and visual systems are imperfect detectors, the watermark

can be made imperceptible via appropriate masking. In masking, watermark sig-

nal is usually embedded in the detail bands of the signal. This may, however,

make the watermark more fragile against attacks like high frequency filtering and

such. Imperceptibility should be counterbalanced against robustness. Wavelets

and filter banks offer a great deal of advantages in terms of these requirements.

The motivation of wavelets is to decompose the input signal into approximation

and detail portions which complement each other. A series of these complemen-

tary decompositions lead us to the wavelet transformation, [3].

Watermarking may be performed in spatial domain or in frequency domain. Our

watermarking methods are developed in frequency domain and are based on Zero

Assigned Filter Banks. The image watermarking method presented here includes

also Shapiro’s embedded zero-tree wavelet algorithm.

Previous works in frequency domain watermarking are addressed in [1], [4], [5].

Wang et. al. discuss the practical requirements for watermarking systems, [5].

For standardized algorithms storing watermarks, original or marked signals and

secret keys may introduce excessive memory requirements and a great deal of

financial burden for registration of all those by the legal authority. Swanson et.
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al. describe the properties that a good marking scheme should meet in detail in

[1].

One of the early image watermarking methods using wavelets was suggested by

Xia et al., [6] (also see [7]), where a white noise with masking was added on top

of the detail portions, i.e., High-Low (HL), Low-High (LH) or High-High (HH)

frequency bands of the discrete wavelet transform of the image. The detection

scheme of [6] consisted of computing the correlation of the extracted watermark

with the original watermark signal so that one needs to store the embedded wa-

termark and transmit it to the receiver side. Embedded zero-tree wavelets (EZW)

has also been employed in watermarking applications in selecting the appropriate

detail band coefficients for embedding the watermark, [4], [8]. In 1993, Shapiro

proposed an efficient low bit rate image coding algorithm based on the self simi-

larity of wavelet coefficients, [9]. He found out that if the coefficients at a coarser

scale are insignificant with respect to some amplitude threshold T , the ones which

correspond to the same spatial location at a finer scale are also likely to be in-

significant with respect to T . Because of the spread spectrum handling of data

offered by the multiresolution property of the filter banks, there is an opportunity

to increase the robustness while keeping the degradations as small as possible,

[4]. In [8], in order to facilitate the decoding phase of the watermark, rather

than erasing the insignificant coefficients, a nonzero number called the embedded

intensity replaces these coefficients. In [10], another method based on the idea of

EZW is proposed based on qualified significant coefficients that are between two

thresholds T1 and T2.

In this thesis two frequency domain watermarking methods developed for dig-

ital audio and image signals based on Zero Assigned Filter Banks are presented.

As our approach accounts for the features of Human Auditory System (HAS)

and Human Visual System (HVS) during the design of the filter banks, their

frequency responses are adjusted to match the characteristics of HAS and HVS

and perceptual transparency condition is thus satisfied.
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Generally speaking, the watermarking algorithms proposed here consists of em-

bedding binary digital signature in audio and gray level image files. After parti-

tioning the input signal into subblocks, each subblock is processed by one of the

two zero assigned filter banks with different zeros assigned around the stop band

portion, each of them designating a ‘0’ or ‘1’. A multiresolution representation is

obtained in several stages of decomposition. Perceptual transparency is satisfied

by designing the filter banks appropriately to match HAS and HVS as well as by

selecting the best set of coefficients to embed the watermark. For audio inputs

the highest stage detail coefficients are used and for image inputs the embedded

zero tree wavelet algorithm is employed, [9]. In detection of the watermark, a

possibly attacked signal is partitioned into subblocks again and each subblock is

decomposed by both of the filter banks. The coefficients that are known to be in

the set of marked coefficients are checked and the ones that present a behavior

closer to what the corresponding decomposing filter bank implies are selected to

be dominant and the bit that filter bank implies is extracted. Detection procedure

requires the storage and transmission of the stage number, frame size, and values

of assigned zeros. As multiple keys are used in designing the filter banks, the wa-

termarking scheme is secure against pirates. Simulations show that even under

high channel noise rates when the signal itself is hardly intelligible, the watermark

can still be extracted with a bit reliability of more than 95%. Thus, robustness

against channel noise is obtained up to a considerable level. The algorithm is

tested against JPEG and MPEG compression and for image watermarking case

it is observed to be robust even when exposed to high levels of corruption. We

illustrate in detail that the proposed methods here improve PSNR properties in

comparison to the earlier methods proposed in [11], [12], and [13].

The outline of this thesis is as follows. In Chapter 2, the requirements of an

effective watermark are explained, the previous works in frequency domain wa-

termarking are summarized, and several types of attacks are treated in detail. In

Chapter 3, Fourier transform and time-frequency resolution issue together with

short time Fourier transform are handled and the necessity and advantages of

Wavelet Transform is explained. One of the main points of this work, the design

algorithm of perfect reconstruction zero assigned filter banks is also discussed in
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Chapter 3. In Chapter 4, the application of zero assigned filter banks in audio

and image watermarking is explained in detail and several experimental results

in noise free, noisy and attacked media are presented in Chapter 5.



Chapter 2

Watermarking

Due to rapid developments in information technology, digital data has become

easily accessible through the multimedia services on the Internet. This raises

issues of copyright and intellectual property protection. A popular approach

employed in embedding imperceptible data into digital media files in order to

approve ownership, hinder unauthorized copying and distribution of digital data

is digital watermarking. Besides identifying the owner or distributor of digital

data, watermarking has applications in tracking the creation or manipulation of

audio, image, and video signals. On the other hand, by embedding digital data

one may provide different access levels to different users. An effective watermark

should satisfy several requirements such as perceptual transparency, low bit rate,

and robustness against attacks. These attacks include additional noise, filtering,

compression, and estimation.

The outline of this chapter is as follows. First of all, the essential conditions

that need to be met by an effective watermarking algorithm are described. Sec-

tion 2.2 summarizes the watermarking in literature based on frequency domain

transformations. Performance against MPEG and JPEG compression is investi-

gated in Sections 2.3.4.1 and 2.3.4.2, respectively. Section 2.3 discusses several

type of attacks and the complications brought forth by those.

7



CHAPTER 2. WATERMARKING 8

2.1 Requirements on an Effective Watermark

Swanson et al., point out that the properties of an effective watermark are per-

ceptual transparency, data recoverability, bandwidth limitation, robustness, secu-

rity, and resolving rightful ownership, [14]. The watermark should not introduce

a perceptual degradation on the host image. The embedded information must be

recovered at the receiver side with or without access to the original signal. The

watermark must be robust against common signal processing operations, additive

noise, and attacks. When multiple ownership claims are made, it must be able to

resolve which watermark is inserted first. Each of these properties is examined

in more detail below.

2.1.1 Perceptual Transparency

One of the most important requirements of an effective watermark is perceptual

transparency. The signature of the author needs to be transparent to the user

and the embedding of digital data must not change the perceptual quality of the

host signal. In order to determine whether the watermark introduces a percep-

tual degradation or not blind tests are used. In these tests subjects are presented

digital data with or without embedded information and are asked to tell which

files have higher quality. If the ratio of selecting the signal without a watermark

is around 50%, the watermarking algorithm is supposed to be perceptually trans-

parent.

Numerically the level of degradation introduced by the watermark on the host

signal is computed in terms of the peak-to-peak signal to noise ratio. The re-

quirement of perceptual transparency states that the energy of the watermark

signal should not be significant compared to the energy of the original signal.

The peak-to-peak value of ratios of the energy of the watermark to the energy of
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the original signal at each pixel can be a good measure of degradations. Say I is

the p× q original image and a watermark of w is added on top of I. The water-

mark can simply be treated as a noise on the host signal and the peak-to-peak

signal to noise ratio (PSNR) of I to w, which is computed as in the equation

below , gives us the level of degradation.

PSNR = 10 log10




max
p,q

(I(i, j))2

1
pq

p∑
i=1

q∑
j=1

w(i, j)2


 .

PSNR is a good measure of imperceptibility and robustness. A high PSNR im-

plies the watermark is embedded firmly in the image and it is more robust against

signal processing operations. However, it should not be so high to violate the

transparency condition. A low PSNR implies that the watermark introduces less

degradations and the quality of the image is higher but it may be less robust

against attacks. Thus, it is desired to achieve a watermarking algorithm that

yield as low a PSNR as possible and that is robust against attacks.

Moreover, masking phenomenon helps the marker to decrease the perceptual-

ity of the watermark. Masking implies that in the presence of some other signal

the watermark becomes less perceptual. For instance in audio watermarking case,

the effect of the watermark which is a faint but audible sound becomes inaudible

in the presence of another louder audible sound, i.e., the masker, [1]. The masking

effect depends on the spectral and temporal characteristics of both the masked

signal and the masker. Say Vi is a one of the coefficients chosen to insert the

watermark and Xi is the watermark bit corresponding to that coefficient. Taking

the masking characteristics into consideration one may embed the watermark in

the following way.

V ′
i = Vi + αViXi, (2.1)

where α is a scaling parameter. This way, the larger the coefficient, α, the larger

the inserted watermark becomes. This ensures that the watermarked coefficient

is correlated with the original value and it is adaptively inserted.
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2.1.2 Recovery of Data

Some data embedding techniques may require access to the original signal or to

the original watermark to decode the information. However, it is not desired to

use the original signal in detection since its transmission or storage for detec-

tion phase is costly. Thus, most watermarking schemes, which are called blind

watermarking methods do not require the presence of the original signal or the

watermark while extracting the information.

Furthermore, consider the case in [2], where a pirate subtracts his own water-

mark from another marked signal and claims the difference to be his original.

By any similarity based method, there will be a strong correlation between the

difference between the pirate’s fake original and the the watermarked signal and

the pirate’s watermark. Moreover the true owner has as many evidence as the

pirate since the correlation between the true watermark and the watermarked

signal is already high. Such problems which may occur because of using a false

original in detection, are of no concern for blind watermarking methods.

2.1.3 Bandwidth Limitation

The applications in which the method embeds an identification number or the

authors name in the host signal, the watermark does not require a large band-

width. However, if one embeds a small image into a larger image or an audio

signal into video, the bandwidth requirement increases. As the size of the au-

thentication keys and the watermarked signal decreases, bandwidth requirement

decreases too and a low bit rate algorithm is achieved. On the other hand, for

standardized algorithms storing watermarks, original or marked signals and secret

keys may introduce excessive memory requirements and a great deal of financial

burden for registration of all those by the legal authority.
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2.1.4 Robustness

In most cases the watermarked signal travels along a noisy transmission channel

or may undergo some lossy signal processing operations such as filtering or lossy

coding. In these cases not only the host signal but also the embedded data is

damaged. That’s why one should be careful about the design of the watermarking

algorithm as the signal must be robust against manipulations caused by additive

Gaussian noise, linear or nonlinear filtering, compression such as JPEG or MPEG,

permutations, quantization, temporal averaging, spatial or temporal scaling.

2.1.5 Security

A secure data embedding procedure requires that a pirate can not break in the

embedded information unless he has access to the secret keys. Thus, a data

embedding scheme is secure if any unauthorized user can not detect the presence

of the embedded data even if the exact algorithm is available.

2.1.6 Ownership Deadlock

A pirate can simply add his own watermark on a previously marked signal and by

using his fake original in a similarity based detection procedure, he may obtain

equal evidence to prove that the signal carries his own watermark. Moreover, the

pirate may obtain as many evidence as the true owner by subtracting his water-

marked from the marked signal and claim the difference to be his fake original as

in the case explained in Section 2.1.2. The problem of multiple ownership claims

is called the deadlock problem. When more than one ownership claims are made,

a good algorithm must be able to resolve which watermark is embedded first.

Currently, most watermarking schemes are not able to resolve the deadlock issue.

In Chapter 5, we present the PSNR values of the marked signals and discuss

perceptual transparency and masking phenomenon for several assigned zero loca-

tions in detail. In our algorithms the detection of watermark does not depend on
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similarity based methods so neither the original signal nor the original watermark

is used in decoding. Problems that may occur because of using a false original are

not a concern. The watermarks of 4-7 letter words for audio inputs and 2×2 gray

level images for image inputs and the authentication keys which are composed

of the maximum allowable delay of the filter bank, assigned zeros, decomposition

stage number and the additional key of binary root locations matrix in image

watermarking case do not require a large bandwidth. The performance of our

methods against these attacks are explained in detail in Chapter 5. Security

issue is handled in detail in Section 2.3.2.

2.2 Classification of Frequency Domain Water-

marking Algorithms

In this section, a brief overview of the prior studies in the area of frequency

domain watermarking is given. According to the method used in transforming

into frequency domain, previous work in literature is classified to be the discrete

cosine transform based algorithms and the wavelet transform based algorithms.

Because majority of watermarking applications are based on wavelet transform,

these methods are further grouped according to the type of target data to be

marked.

Watermarking may be performed in time (spatial) domain or in frequency do-

main. Usually it is preferred to embed the watermark in frequency domain since

a spread of the watermark over all frequency bands offers a more robust struc-

ture. Below some popular frequency domain watermarking schemes are grouped

according to the frequency domain transformation method and summarized.
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2.2.1 Discrete Cosine Transform Based Methods

In [1], a watermarking algorithm based on discrete cosine transform (DCT) is

constructed, where the image is partitioned into subblocks and for each subblock

some pseudo random noise is generated to be used as the author’s signature.

After masking the watermark by a filter, which approximates the frequency char-

acteristics of the original signal, resultant watermark is added on top of the corre-

sponding subblock’s DCT coefficients. In detection, cross correlation is employed.

The authors claim that the method is robust against modifications and maximum

amount of information is embedded throughout the spectrum since in masking

phase the algorithm takes the frequency characteristics of the image into account.

In [15], a similar watermarking scheme is developed based on DCT. On the vector

of DCT coefficients of the host image, a number of coefficients are skipped and

the watermark is added on a set of coefficients after appropriate masking and

scaling. In decoding phase, the cross correlation of the original watermark and

the extracted watermark is compared to a threshold for detection. Embedding

information on a set of intermediate of coefficients results in a trade-off between

perceptual invisibility and robustness.

2.2.2 Discrete Wavelet Transform Based Methods

This section summaries the discrete wavelet transform based watermarking meth-

ods for audio and image inputs by pointing out the advantages and shortcomings

of each algorithm and grouping according to the input signal format.

In [4], Cox et al. emphasizes the importance of the spread spectrum analysis

of wavelets in watermarking. This property allows us to transmit a narrow band

signal over a much larger bandwidth channel such that the signal can not be de-

tected at any single frequency. Since the watermark is spread over all frequency

range, its location is not obvious. Moreover, this feature enables us to increase the

energy of watermark in particular frequency bands by making use of the masking
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phenomenon while keeping the degradations as small as possible.

2.2.2.1 Audio Watermarking Based on Discrete Wavelet Transform

Li et al., [16], define a scaling parameter in terms of signal-to-noise ratio (SNR)

which is the ratio of the power of the signal to the background noise power.

Particularly, for a p× q image I with a background noise n, SNR in dB’s is:

SNR = 10 log10




p∑
i=1

q∑
j=1

I(i, j)2

p∑
i=1

q∑
j=1

n(i, j)2


 .

In this method, a scaling coefficient is calculated by making use of SNR. After

partitioning the audio signal into frames they choose the largest discrete wavelet

transform coefficient of any detail subband of each frame and embed the wa-

termark after scaling by the scaling parameter calculated before. This way the

intensity of the watermark is greater and the robustness of the watermark is in-

creased.

A more complicated dual watermarking scheme is proposed in [17]. The audio

signal is added a perceptually shaped pseudo-random noise after being segmented

into smaller pieces. While masking, authors use the masking model defined in

ISO-MPEG Audio Psychoacoustic Model, for Layer I, which explained in Section

2.3.4.2.

2.2.2.2 Image Watermarking Based on Discrete Wavelet Transform

Here we present the innovations, advantages and disadvantages of certain discrete

wavelet transform based image watermarking methods sticking to the evolution

of progress and the novelty they introduce onto each other.

In one of the early works in watermarking [6], Xia et al. proposed a water-

marking scheme based on wavelet transform by adding a masked white Gaussian
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noise on top of the nth stage detail coefficients of the wavelet decomposed im-

age, namely on one of the frequency bands LHn, HLn or HHn. To satisfy the

perceptual transparency requirement they employed masking, i.e., the product

of the original coefficient at any particular pixel and the watermark is scaled

with some parameter α, which controls the amplification of large discrete wavelet

transform (DWT) coefficients as in (2.1). On the receiver side, a possibly water-

marked image is wavelet decomposed and the cross correlation of the nth stage

detail coefficients at a particular frequency band and the original watermark is

calculated. If a peak is observed in the cross correlations, the watermark is said

to be detected. This method presents several advantages such as the use of mul-

tiresolution characteristics, perceptual invisibility and robustness against wavelet

transform based compression schemes.

Kim et al. tried to improve the method of [6] by introducing level adaptive

thresholding and embedding a visually recognizable watermark into both ap-

proximation and detail portions of the wavelet decomposed image, [18]. Using

Box-Muller transform they generate the watermark to be a Gaussian distributed

random vector. To detect the perceptually significant coefficients at each sub-

band, they make use of the largest coefficient at each level. As in the previous

case, they use masking in adding the watermark on the perceptually significant

coefficients. Thus, the detection scheme is based on the cross correlation of the

original watermark and the subband decomposition coefficients at the receiver

side. Moreover, after calculating the similarity of the original and extracted wa-

termark they compare this number to the similarity threshold in order to detect

whether the image on the receiver side is marked or not. Embedding in perceptu-

ally significant coefficients provides a more robust structure against compression

attacks. However, this method requires storage and transmission of the original

watermark and may be subject to deadlock problem.

In [19], the coefficients at the detail subbands which are above a threshold are

selected as significant and after simple masking operation the watermark is added

on those coefficients. In decoding, another threshold is employed for the detection

of the watermark. Dugad et al. use a tighter bound and increase the threshold
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to 1.5 times of the one used in [15]. Tay and Havlicek, [20], use a similar method

to the ones in [18] and [6] but rather than embedding their visually recognizable

watermark in any of the detail bands or all subbands they employ an energy

based criterion to select the subband to embed the watermark. They define the

subband which has the least L2 energy to be the best basis for embedding. After

determining the best basis, they replace the detail coefficients with the scaled

watermark coefficients. The scaling parameter is chosen such that it does not

render perceptible image artifact and also it has high resiliency against attacks.

They extract the watermark by computing the wavelet transform at the receiver

side and scaling back the detail coefficients in the minimum energy subband. The

best basis selection in these two methods provides a more robust scheme against

compression.

Aboofazeli et al. try to develop a more robust watermarking technique against

compression, [21]. Rather than selecting a subband as in [20] they choose the

regions for watermark insertion pixel by pixel. The entropy of any pixel of the

host image is calculated in 9× 9 neighborhood and the ones with the highest en-

tropy are added the scaled watermark. In detection, a similarity measure based

on correlation is used. Note that this method requires the transmission of high

entropy coefficient indexes and the original watermark.

In [22], Kundur et al. propose a different method to calculate a scaling function

for the watermark. A binary watermark and the host image are both transformed

into wavelet domain where the decomposition is run for one stage for the water-

mark and for L stages for the host. The salience, which is defined as a numeric

measure of the perceptual importance of the detail bands is computed by making

use of the contrast sensitivity matrix. After scaling the watermark by a function

of the salience, they add the watermark onto the detail subbands. The normal-

ized correlation coefficient is used for detection. The method is robust against

compression, liner filtering and additive noise.

In [7], the host image is wavelet decomposed in n stages and the subbands LHn

and HLn are preferred for watermark insertion. Encoding scheme is similar to
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the one defined in [6]. The watermark is chosen to be a Gaussian noise with 0

mean and unit variance. The correlation of the DWT coefficients of a possibly

watermarked or corrupted image with the watermark is calculated and by means

of comparing the cross correlation of the original watermark to the extracted one,

the embedded watermark is detected. The threshold is determined to be a scaled

version of the mean of the subband coefficients. The simulation results show that

the method is robust against compression, smoothing, cropping and multiple wa-

termarking.

In one of their other works, Inoue et al. try to embed the watermark in the

approximation subband, [23]. The LLn band is decomposed into subblocks and

each subblock is quantized. The quantized coefficients are modified to be either

all even or all odd depending on the absolute value of the difference between the

original wavelet coefficients and the ratio of their mean to the quantization step

size. From the modified wavelet coefficients the image is reconstructed. On the

receiver side the decomposition operation is run and the low frequency band is

partitioned into subblocks. The embedded bit is determined depending on the

mean of the each subblock being even or odd. The method is observed to be

robust against compression, smoothing and additive noise.

In [24], Mıhçak et. al. develop an algorithm based on deriving robust semi-

global features in wavelet domain and quantizing them. They partition the DC

subband into nonoverlapping rectangles and form a series composed of the aver-

ages of these rectangles. The watermark embedding is done by quantization of

this series. Two different quantization functions are used in order to differenti-

ate between the embedded bits. The authors state that this methods is robust

against several benchmark attacks and compression.

Bao et al., [13], use a procedure based on singular value decomposition of the

wavelet domain signal. Image is partitioned into blocks and quantized singular

values of each block is modified in such a way that for an embedded bit of ‘1’ the

quantized value will be an odd number, for an embedded bit of ‘0’ it will be even.

On the receiver side the image is segmented again and and the embedded bit
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is determined according to the quantized singular values. This scheme is robust

JPEG compression but extremely sensitive against linear filtering and additive

noise.

For basis selection Véhel et al., [25], employ a method which handles the wavelet

packet decomposition by making use of the relation between successive scales of

the detail subbands. They select the coefficients which have energy larger than

some threshold value λ and whose offspring do not share this property, to be in

the basis to embed the watermark. A binary watermark is inserted on to the

selected basis.

Swanson et. al. describes a method to solve the problem of deadlock. The

watermark which is a pseudo random sequence is generated with the help of two

random keys by a suitable pseudo random sequence generator, [1]. Without the

two hidden keys, x1 and x2, the watermark is impossible to recover and unde-

tectable. The key x1 is chosen to be author dependent and the key x2 is signal

dependent. The author determines x1 as he wishes and x2 is computed from the

signal to be marked. A one-way hash function is used to derive the watermark.

As it is computationally infeasible to reverse the one-way hash function, the pi-

rate cannot derive the original signal thus cannot generate a desired watermark.

In [26], Tekalp et. al. propose an alternative algorithm to solve the deadlock

problem. The authors assume that the number of users of secret files are not

many and they can embed a unique watermark into each file composed of a

pseudo noise pattern which defines a particular user. Against collusion attacks,

the authors propose to apply pre-warping on the host signal. In case of a collusion

attack, the method ensures that there will be a perceptual degradation on the

signal and the attack will be obvious.

A method based on partitioning the input into frames and marking each frame

by one bit by all pass filters with different zeros is proposed in [27]. Cetin et. al.

make use of the fact that human ear is not sensitive to phase changes in speech

signal and process each frame by one of the two all pass filters with a different
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zero. This method is similar to ours in the respect that frames are marked by

filters with assigned zeros.

In 1993, Shapiro proposed an efficient low bit rate image coding algorithm based

on the self similarity of wavelet coefficients, [9]. He found out that if the coeffi-

cients at a coarser scale are insignificant with respect to some amplitude threshold

T , the ones which correspond to the same spatial location at a finer scale are also

likely to be insignificant with respect to T . A coefficient at a coarse scale satis-

fying this self similarity condition is called to be the parent and the coefficients

corresponding to the same spatial location at finer scales are called to be its

children. Identifying the parents and their children which are insignificant with

respect to T , one constructs a zero tree which lets him detect the perceptually

inconsequential regions and embeds a signature there. Because of the spread spec-

trum handling of data offered by the multiresolution property of the filter banks,

there is an opportunity to increase the robustness while keeping the degradations

as small as possible.

In [10], a method called qualified significant wavelet transform is defined. The

coefficients to be used in encoding are chosen to be the ones which are between

two amplitude thresholds provided that their children satisfy this property too.

In other words, a zero tree is constructed in a different manner where there is not

a single threshold by which the coefficients are determined to be insignificant but

instead two thresholds by which the coefficients are determined to be qualified

significant. In their experiments they embedded a scaled and masked watermark

in the 3rd stage LH band detail coefficients and employed normalized correlation

in decoding. Note that this method requires the transmission of the indexes of

the qualified significant coefficients for detection. It is observed that the method

is robust against JPEG compression, sharpening and median filtering.
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2.3 Attacks

This section points out the properties and complications of several type of at-

tacks such as attacks based on signal processing operations and attacks based on

estimation. The deadlock problem is addressed in detail and the backbone of the

compression schemes JPEG and MPEG is treated thoroughly.

2.3.1 Attacks Based on Signal Processing Operations

Removal type of attacks such as low pass filtering, quantization and compression,

aim to damage the watermark completely without any access to the security keys

or to the watermarking algorithm, [28]. These kind of effects can not remove

the watermark completely but they damage it significantly. After an effective

removal attack the watermark can not be recovered from the attacked signal.

This group of attacks may be modified in order to be more effective on some

particular watermarking algorithm when multiple copies of the marked data are

available. Another group of attacks called geometric attacks make use of shifting,

scaling and rotation of samples since human auditory or visual system is not very

sensitive to these operations. By these operations the watermark is not removed

completely but distorted significantly.

2.3.2 Estimation Based Attacks

Based on the assumption that the watermark or the original signal can be par-

tially or completely estimated from a marked signal, we may consider the risk of

estimation based attacks. A pirate may consider the watermark to be a noise on

the host signal and employ a denoising scheme to obtain the original signal.

Optimized compression strategies are also suitable for this aim as they are based

on the optimal rate-distortion trade-off principle and the distortions introduced

by the watermark can be eliminated by these algorithms up to a considerable



CHAPTER 2. WATERMARKING 21

level. Moreover, making even a coarse estimate of the watermark, the pirate can

subtract it from the marked signal and the detection procedure may be seriously

damaged. This procedure is like the denoising attack. Furthermore the pirate

may subtract a scaled version of the estimated watermark from the marked signal

and destroy decoding further.

After estimating the watermark from some marked signal and estimating an ap-

propriate mask for a target data, a copy attack may be employed in marking the

unmarked target with the estimated watermark.

2.3.3 Deadlock Problem

If a pirate aims to have as much evidence as the true owner, he may simply extract

his watermark from the marked data and claim that signal to be his original. In

this case the difference between the fake original and the marked data will have

a strong correlation with the pirate’s watermark. A high correlation will also

be observed between the marked data and the true owner’s watermark. In that

case the pirate will have as much evidence as the true owner to claim ownership.

A good watermarking algorithm must be able to resolve which watermark is

embedded first. However, most watermarking methods are not robust against

the deadlock problem described above.

2.3.4 Compression Schemes

Since we test our algorithms against MPEG and JPEG compression, we now

briefly describe these compression schemes.

2.3.4.1 Audio Compression

In this section the popular audio compression algorithm of MPEG/audio com-

pression will be explained in general.
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The algorithm consists of the following steps. A filter bank divides the input

audio into multiple frequency bands. A psychoacoustic model is employed in

determining the ratio of the signal energy to the masking threshold for each

subband. After determining the signal-to-mask ratio, the bit or noise allocation

block partitions the total number of code bits to minimize the perceptuality of

the quantization noise. Finally in the last step the quantized subband samples

are formatted and a coded bit stream is made up, [29].

Since the method provides compression rates up to 6 : 1 or even more, it is a

lossy coding algorithm but these losses are regarded to be transparent as the

algorithm makes use of the perceptual properties of the Human Auditory Sys-

tem (HAS), [30]. Actually exploiting the perceptual limitations of HAS rather

than making masking assumptions is the most important innovation that MPEG

coding has introduced. Much of the compression is achieved by the removal of

the imperceptible parts. After the experiments run by the expert listeners un-

der optimal listening conditions, the MPEG committee concluded that the lossy

quantization method which is the key point of this standard can give transparent,

i.e., perceptually lossless compression.

There are three independent layers of compression in MPEG coding. Layer I

is the simplest one and is most suitable for bit rates above 128 kbits/sec. Layer

II is more complex and is suitable for bit rates around 128 kbit/sec. Layer III

offers the most complex scheme and results in the best audio quality where the

bit rate is around 64 kbits/sec.

2.3.4.2 Image Compression

The first international compression for continuous tone still images, namely JPEG

compression standard, includes two basic methods where one of them is a DCT

based algorithm for lossy compression and the other is a predictive lossless scheme.

The modes of operation include sequential, progressive, lossless and hierarchical
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coding. In sequential coding a single left-right, top-to-bottom scan is employed.

Progressive coding is used when the transmission line is long. The image which

is encoded in multiple scans is built from coarse to clear at the receiver. In loss-

less coding rate of compression is lower but there is exact recovery. Hierarchical

coding encoding is run in multiple resolutions, [31].

For each mode of operation a different codec is employed. In the DCT based

scheme, the input image is grouped into 8×8 blocks and samples are transformed

into signed integers. Then, each block is DCT transformed. DCT transform may

be regarded as a harmonic analyzer. The coefficient with 0 frequency is the DC

component and the other 63 are AC components. However, neither DCT nor

inverse DCT can be computed with 100% accuracy. Thus, some amount of in-

formation is lost meanwhile. After the transformation coefficients are quantized

by a 64-element quantization table the quantization step sizes are adjusted for

desired precision. Psychovisual experiments determine the best thresholds of the

quantization coefficients that achieve imperceptibility. The quantized DC coeffi-

cients are treated separately as adjacent blocks have a strong correlation in terms

of DC coefficients. AC coefficients are scanned in zig-zag order since this ordering

helps in entropy coding. Based on the statistical characteristics of the quantized

DCT coefficients further compression is achieved in entropy coding phase.

Picture quality depends on the bit rate. 0.25-0.5 bits/pixel designates moder-

ate to good quality. 0.5-0.75 bits/pixel implies good to very good quality. When

bit rate is between 1.5-2 bits/pixel the compressed image is indistinguishable from

the original.

In this chapter, we have seen some desired properties of a good watermarking

scheme should have and listed certain attacks the marked signal may be subject

to in order to remove the watermark. The performance of our algorithms under

low pass filtering attack is handled in Section 2.3.2. Estimation based attacks

are handled in detail in Section 2.3.2. Audio watermarking algorithm is observed

to be fragile and a method to strengthen is against these type of attacks are

proposed in Section 5.1.3.2. Performance against MPEG and JPEG compression
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is investigated in Sections 5.1.3.1 and 5.2.2. In the next chapter we describe the

zero assignment method which can be used to satisfy many properties a good

watermarking scheme should have.



Chapter 3

Wavelets, Filter Banks and Zero

Assignment

In this chapter, Fourier transform which is the traditional frequency domain trans-

formation method is briefly described and the shortcomings of that in view of

time-frequency resolution are pointed out. Short time Fourier transform which is

proposed to be a first solution to the resolution problem is explained. In follow-

ing sections, wavelet transform which is the tool that best satisfies the resolution

requirements is explained in detail and some well known wavelets are derived.

Zero assignment algorithm is presented and illustrated by an example in Section

3.6.

In some signal processing operations, one may need to have both time and

frequency information. When the signal at hand is a time domain signal, a con-

version from time amplitude representation to frequency domain representation

may be obtained by the Fourier Transform (FT) as defined in the equation below.

X (ω) =

∞∫

−∞
x (t) e−jωtdt. (3.1)

FT decomposes a signal into its frequency components by multiplying with a

complex exponential which has sines and cosines of frequency ω, and integrates

over all times. So if the signal has a component of ω, that component and the

25
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sinusoidal term will coincide and give a relatively large value. Because of the in-

tegration term which runs over all time range, there is no time information in the

Fourier transformed signal. That’s why FT is a translation between two extreme

representations of a signal, namely between x(t), which is perfectly localized in

time and X(ω), which is perfectly localized in frequency.

On the other hand, a frequency domain signal may be transformed into time

domain by the inverse Fourier transform (IFT) as below.

x (t) =

2π∫

0

X (ω) ejωtdω.

It also follows no matter where in time, any frequency component occurs, it will

have the same effect on the integration in (3.1). But if we have a nonstationary

signal as frequency content changes over time, we may need time information be-

sides frequency information. Thus, it may be inferred that FT is not suitable for

nonstationary signals. On the other hand, as frequency content does not change

in time for stationary signals, all frequency components exist at all times. Since

there is no need for the time information for a stationary signal, FT can work well

for those. Both of the signals in Figures 3.1 and 3.2 contain same four frequency

components. However, the stationary signal S1, in Figure 3.1 contains them at all

times, while the nonstationary signal S2, in Figure 3.2 contains them successively.

Except the disturbance like components, the two FTs are alike. However, one can

not argue about the time localization of the four dominant frequency components

in Figure 3.2.

To obtain information both on time localization and frequency content of a signal

one may use the short time Fourier transform (STFT). The motivation of STFT

is assuming the signal to be stationary for a while.
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Figure 3.1: (a) Time domain representation and (b) frequency domain represen-
tation of a stationary signal

3.1 Short-Time Fourier Transform

Here we present the idea of short time Fourier transform which modifies FT to

transform an input signal into frequency domain at different resolution levels.

The innovation and shortcomings of the method are illustrated in several exam-

ples.

Assume a signal, x(t), is stationary along a time window of length l and take

FT of that part, i.e.

STFT ω
x (t, f) =

∫

l

[x (t′) ω∗ (t− t′)] e−i2πftdt′.

Suppose we change l which denotes the length, i.e., the support of the window.

Assigning l a value between 0 and ∞, changes the resolution of STFT. As we

assign the two extreme values, 0 and ∞, to l, we see that we end up with the

time domain representation and the Fourier transform of the signal respectively.

Namely, when l = 0, the integral does not run over an interval but acts like a

Dirac delta function and yields the instantaneous values of x(t) at times t. On
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Figure 3.2: (a) Time domain representation and (b) frequency domain represen-
tation of a nonstationary signal

the other hand, when l = ∞, the integration interval becomes the whole time

range and this is exactly the same as Fourier transform.

However, for a particular l, due to the fixed window length, STFT gives a fixed

resolution at all times. When our window is of finite length, it covers only a

portion of the signal, which causes the frequency resolution to get poorer. We

no longer know the exact frequency components that exist in the signal, but we

only know a band of frequencies that exist.

For example, a narrow window can not capture a sinusoid with a low frequency.

Thus, low frequencies are resolved better in frequency domain. Hence narrow

window leads to a good time resolution but poor frequency resolution. On the

other hand, as window size gets larger, frequency resolution improves but time

resolution gets worse. The effect of changing the window size of the STFT of the

signal at Figure 3.3 can clearly be seen in Figures 3.5, 3.7 and 3.9. Compared to

lower frequencies, higher frequency sinusoids can be detected more precisely in

windows with the same support so higher frequencies are resolved better in time.
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The problem with the STFT has something to do with the width of
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Figure 3.3: A series of four sinusoids

the window function, ω(t), that is used and may be explained with Heisenberg

Uncertainty Principle. This principle states that one cannot know the exact

time-frequency representation of a signal, i.e., one cannot know what spectral

components exist at what instances of time. What one can know is the time

intervals in which certain band of frequencies exist, which is a resolution problem.

Unlike FT, the four peaks in Figures 3.4, 3.6, and 3.8 are located at different

time intervals. Hence, time resolution of STFT is better than FT. Nevertheless

it is not perfect. On the other hand, to get perfect frequency resolution we may

use a window of infinite length but then we come up with FT itself. That’s why,

we should analyze time-frequency resolution with multiresolution analysis.

In this respect wavelets offer a great deal of advantages. Extending the time-

frequency resolution trade-off of STFT into a two dimensional transformation, it

enables us to express the signal in various resolutions.
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Figure 3.4: STFT of the signal in Figure 3.3 computed with size 512 windows

3.2 Wavelet Transform

In this section we explain the backbone of wavelet transform, i.e., multiresolu-

tion analysis, and describe the continuous and discrete time wavelet transforms.

Wavelets are introduced by a French geophysicist Morlet around early eighties.

When Ingrid Daubechies established a family of orthogonal wavelets in late eight-

ies, the theory became more popular in signal processing applications.

We explain the continuous wavelet transform in Section 3.2.1 and generalize this

into discrete time domain in Section 3.2.2. Finally in Section 3.2.3, multiresolu-

tion analysis which lies at the basis of wavelet transform is treated in general.

3.2.1 Continuous Wavelet Transform

Here the two main components of wavelet transform, i.e., the wavelet and scal-

ing functions are handled in continuous time domain. Wavelet transform gives

us the ability to compute the frequency content of the input signal in variable
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Figure 3.5: Spectogram of the STFT in Figure 3.4

resolutions. It provides a representation, in terms of a set of wavelet functions

which are the translated and scaled versions of a single mother wavelet function.

Say ψ(t) is the mother wavelet function. In this case the set of window func-

tions are

ψs,τ (t) =
1√
|s|

ψ
(

t− τ

s

)
,

where τ is the translation parameter, and s is the scale (dilation) parameter.

They are chosen to have a unit norm so that

∞∫

−∞

∣∣∣∣∣∣
1√
|s|

ψ
(

t− τ

s

)∣∣∣∣∣∣

2

dt = 1.

The equation below summarizes the idea of wavelet transform in continuous time.

CWT (ψ)
x (τ, s) = Ψψ

x (τ, s) =
1√
|s|

∫
x (t) ψ∗

(
t− τ

s

)
dt.

By taking the inner products of the input signal x(t) and the translated and

scaled versions of the mother wavelet function, one can express x(t) in terms of

the set of wavelet functions. When the windowing function is of finite length, the



CHAPTER 3. WAVELETS, FILTER BANKS AND ZERO ASSIGNMENT 32

Figure 3.6: STFT of the signal in Figure 3.3 computed with size 1024 windows

transform is said to be compactly supported.

In order to implement the idea of CWT in digital environment, one needs to

convert continuous time operations into discrete time domain. Next section ex-

plains discrete time wavelet transform in detail.

3.2.2 Discrete Wavelet Transform

With a special choice of dilation and translation parameters one can switch from

continuous wavelet transform to discrete time wavelet transform. Usually the

parameters are chosen according to equations:

s = s−m
0 ,

τ = nτ0s
−m
0 .
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Figure 3.7: Spectogram of the STFT in Figure 3.6

where m and n are integers. In this case the discrete time wavelet transform

equation becomes as in the equation below:

X (m, n) = s
m/2
0

∞∫

−∞
x (t) ψ (sm

0 t− nτ0) dt. (3.2)

In digital signal processing operations everything is in discrete time. Here the

function ψ(t) can be said to be discretized as the values of ψ(t) at instants

s0
mt − nτ0 is involved in the integral in (3.2). On the other hand, sampling

in time domain will take make x(t) a discrete function and we end up with the

discrete wavelet transform (DWT).

In most practical applications, low scales (high frequencies) do not last for the

entire duration of the signal, but they usually appear from time to time as short

bursts, or spikes. High scales (low frequencies) usually last for the entire duration

of the signal. Hence it is plausible to start the procedure from scale s = 1 and

continue for the increasing values of s, i.e., the analysis will start from high fre-

quencies and proceed towards low frequencies. This way we go from finer scales

to coarser scales. The first value of s will correspond to the most compressed



CHAPTER 3. WAVELETS, FILTER BANKS AND ZERO ASSIGNMENT 34

Figure 3.8: STFT of the signal in Figure 3.3 computed with size 2048 windows

wavelet. As the value of s is increased, the wavelet will expand.

This idea may be illustrated by the following simple case. Say we have a sequence

of samples of a digital signal at hand. Since averaging decreases the irregulari-

ties and results in a smoother signal, we may assume summing every successive

couple of samples results in an approximation to that signal. Furthermore we

may assume the irregularities to be the difference of every successive couple. By

applying the same procedure to the approximation signal one may obtain coarser

approximations and corresponding detail signals. This basic transformation is

called Haar transform and the wavelet function of this transformation is as in

Figure 3.10.

The method of obtaining the discrete time wavelet transform is based on mul-

tiresolution analysis which is discussed in detail next.
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Figure 3.9: Spectogram of the STFT in Figure 3.8

3.2.3 Multiresolution Analysis

Is this section the idea of complementary subspaces and the conditions that need

to be satisfied in order to have a multiresolution representation are described.

Let F be a field and V be a vector space over the field F . An inner product

on the vector space V in the field F (which must be either the field of real

numbers R or the field of complex numbers C) is a function and is denoted as

(, ) : V ×V → F . A vector space over R or C taken with a specific inner product

< x, y > forms an inner product space. The expression
√

< x, x > is written as

‖x‖ and is called the norm. With this norm, an inner product space is also a

normed vector space.

Multiresolution representation is a representation of a given signal in a series

of subspaces, {Vj}j satisfying the following conditions

1. Nesting condition

...V−1 ⊂ V0 ⊂ V1 ⊂ ...
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Figure 3.10: Haar wavelet

2. Density Condition

∪
j
Vj = L2.

3. Separation Condition

∩
j
Vj = 0.

4. Scaling Condition

Let Z be the set of integers. Then,

x(t) ∈ Vj ⇔ x
(
2−jt

)
∈ V0, j ∈ Z.

5. Orthonormal Basis

∃φ ∈ V0, called the scaling function, such that {φ(t−m)}m∈Z is an orthonormal

basis in V0. Scaling functions are particularly used to derive wavelets. The Vj’s

are called approximation spaces and φ(t) will be referred to as the orthonormal

basis function of Vj
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6. Complementary Basis

∃Wj, an orthonormal complement of Vj satisfying

Vj−1 = Vj ⊕Wj,

which admits an orthonormal basis {ψ(t −m)}m∈Z . Here, ψ(t) will be referred

to as the orthonormal basis function of Wj.

In practice the subspaces which define multiresolution analysis are obtained by the

cascade algorithm. Next section defines the cascade algorithm and the building

of the orthogonal subspaces with the above properties. Given a signal, represen-

tation of it can be obtained by projection of x(t) in successive subspaces Vj as

will be be explained next.

3.3 Orthogonal Filters

Let Vj be an orthonormal approximation subspace with an orthonormal basis

function φ(t). Then φ(2t) is an orthonormal basis function of Vj−1. Let the

complementary subspace be Wj with an orthonormal basis function ψ(t). Under

these circumstances, φ(t) and ψ(t) can be expanded in terms of φ(2t) as

φ(t) =
√

2
∞∑

k=−∞
k1[k]φ(2t− k),

ψ(t) =
√

2
∞∑

k=−∞
k2[k]φ(2t− k),

(3.3)

for coefficients k1[k] and k2[k], by the conditions 1 and 6. Any x(t) in Vj−1 can

be decomposed as

x(t) = xc(t) + xd(t),

due to condition 6, where xc(t) is the approximation of x(t) at the coarse scale

Vj and xd(t) is the detail part of x(t) at the complementary subspace Wj. Let

the representation of x(t) be given as

x(t) =
√

2
∞∑

k=−∞
aj−1[k]φ(2t− k). (3.4)
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Similarly, xc(t) and xd(t) have representations

xc(t) =
∞∑

k=−∞
aj[k]φ(t− k),

xd(t) =
∞∑

k=−∞
dj[k]ψ(t− k),

(3.5)

where aj is called the set of approximation coefficients and dj is called the set of

detail coefficients. Combining (3.5) and (3.4) we obtain

√
2

∞∑

k=−∞
aj−1[k]φ(2t− k) =

∞∑

k=−∞
aj[k]φ(t− k) +

∞∑

k=−∞
dj[k]ψ(t− k).

Multiplying both sides by
√

2φ(2t−n), integrating with respect to t and making

use of orthogonality property, aj−1[n] is found to be

aj−1[n] =
∞∑

k=−∞
aj[k]k1[n− 2k] +

∞∑

k=−∞
dj[k]k2[n− 2k]. (3.6)

Recall that, the operation of inserting M − 1 zeros between every other sample

of a signal is called M-fold upsampling and is defined by the following equation,

y[n] =





x[n/M ] if n = kM, k ∈ Z,

0 otherwise.

The expression (3.6) can be interpreted as upsampling aj[n] and dj[n] by 2 and

then filtering with k1[n] and k2[n], respectively.

The inverse operation of obtaining aj[n] and dj[n] in terms of aj−1[n] is also

possible. Note that from (3.5), one can find aj[n] and dj[n] as

aj[n] =
∞∫
−∞

x(t)φ(t− k)dt,

dj[n] =
∞∫
−∞

x(t)ψ(t− k)dt.

Replacing these in (3.5), one obtains

xc(t) =
∞∑

k=−∞

(
∞∫
−∞

x(t)φ(t− k)dt

)
φ(t− k),

xd(t) =
∞∑

k=−∞

(
∞∫
−∞

x(t)ψ(t− k)dt

)
ψ(t− k).
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Multiplying the first line by φ(t−n) and the second by ψ(t−n), integrating over

t, one gets

aj[n] =
∞∑

k=−∞
aj−1[k]k1[k − 2n],

dj[n] =
∞∑

k=−∞
aj−1[k]k2[k − 2n].

Taking every M th sample of the input signal and discarding the others is called

the operation of M-fold downsampling and is defined by the following equation

y[n] = x[Mn].

In a similar fashion to (3.6), it may be inferred that filtering aj−1[n] by k1[−n]

and then downsampling by 2 yields aj[n] and filtering aj−1[n] by k2[−n] and then

downsampling by 2 yields dj[n]. This is summarized by Figure 3.11

Given an input signal, x(t), one can use the cascade algorithm of Figure 3.12

Figure 3.11: Single level multiresolution analysis

in obtaining the wavelet decomposition of the input, [32]. In Figure 3.12, K1(z)

and K2(z) are transfer functions of filters k1[n] and k2[n], respectively. Filtering

X(z)

X (z)1

X (z)2

X (z)3

X (z)0
2

2

2

Figure 3.12: Three level cascade system

the input by K1(z) and then downsampling produces a coarse approximation of

the input. The details are obtained on the lower branch by filtering the input by
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K2(z) and then downsampling. Carrying out such a decomposition for several

stages as in Figure 3.12, one can obtain a multiresolution representation of the

input signal. For a three stage decomposition the equivalent system may be ex-

pressed as in Figure 3.13. where Kk
1 (ejω), k = 1, 2, 3 is defined in terms of K1(e

jω)

1

2

3

X(z)

X (z)0

X (z)1

X (z)2

X (z)38

8

4

2

Figure 3.13: The equivalent four channel system

as

Kk
1

(
ejω

)
= K1

(
ej2kω

)
.

The approximation signal X3(e
jω) becomes

X3

(
ejω

)
=

(
X

(
ejω

)
K3

1

(
ejω

))∣∣∣↓8 .

where ↓ 8 corresponds to downsampling the time domain signal x3(t) by 8. The

detail signals X2(e
jω), X1(e

jω), X0(e
jω) can be written similarly and an explicit

expression for the wavelet decomposition of the input can be obtained.

3.4 Perfect Reconstruction Filter Banks

This section lists the requirements of prefect reconstruction and derives the con-

ditions that need to be satisfied by the perfect reconstruction filter banks.

The two channel decomposition by a single stage filter bank is illustrated in

Figure 3.14. In order for X(z) to be equal to X ′(z), i.e., in order to obtain per-
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H2(z) F2(z)
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Figure 3.14: Two channel decomposition by a single stage filter bank

fect reconstruction (PR), the filters must satisfy several properties. X ′(z) may

be written in terms of X(z) and the filter transfer functions as

X ′(z) =
1

2
M(z)X(z) +

1

2
N(z)X(−z). (3.7)

Defining M(z) and N(z) as the following

M(z) = H1(z)F1(z) + H2(z)F2(z),

N(z) = H1(−z)F1(z) + H2(−z)F2(z).

One should note that the product of X(−z) in (3.7), N(z), should be equal to 0

in order to avoid any aliasing, i.e.,

H1(−z)F1(z) + H2(−z)F2(z) = 0,

H1(−z)F1(z) = −H2(−z)F2(z).

Choosing the filters F1(z) and F2(z) appropriately as in the equation below, the

term N(z) vanishes to 0.

F1(z) = H2(−z)V (z),

F2(z) = −H1(−z)V (z).
(3.8)

Moreover, to achieve PR, the magnitude of M(z) should be equal to 2 and it

should introduce a phase of 0 degrees. This implies

M(z) = 2z−n0 .

Replacing the condition derived in (3.8), in the equation of M(z), we obtain,

M(z) = [H1(z)H2(−z) + H2(z)H1(−z)] V (z).
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Assuming V (z) to be equal to 1 for a smaller filter bank delay, and making the

simplification

T0(z) = H1(z)H2(−z).

We obtain the odd function

T0(z)− T0(−z) = 2z−n0 .

For the equation above to be satisfied n0 should be an odd integer. Multiplying

both sides of the equation by zn0 and defining T (z) = T0(z)zn0

T (z) + T (−z) = 2z−n0 .

To sum up, if the analysis filters, H1(z) and H2(z), and the synthesis filters, F1(z)

and F2(z), satisfy (3.8), the signal X(z) can be perfectly reconstructed to X ′(z)

at the cost of an overall delay of n0, where n0 is an odd integer. The PR filter

bank is shown as in Figure 3.15.

H1(z) H2(-z)

H2(z) -H1(-z)

X(z) X(z)

2

2

2

2

Figure 3.15: Perfect reconstruction filter bank

3.5 Daubechies Filters

In this section we explain the construction of Daubechies filters. They are com-

posed of FIR filters with zeros on π or 0, have Conjugate Quadrature Mirror Filter

Bank (CQMF) property (see next section) and cancel aliasing. Daubechies’ filter

with N zeros on π is named as DN . The low pass analysis filter of DN is in the

form

H1

(
ejω

)
=

(
1 + e−jω

2

)N

β
(
ejω

)
.
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By PR equation on the unit circle implies the following

|H1 (ejω)|2 + |H1 (ejω+π)|2 = 2,(
cos2 ω

2

)N
B (ejω) +

(
cos2 ω+π

2

)N
B

(
ej(ω+π)

)
= 2,

where B (ejω) = |β (ejω)|2. Note that the cosine term comes from
∣∣∣1+e−jω

2

∣∣∣
2N

.

Writing the PR equation in terms of cosω and after a change of variables from ω

to sinw
2

and defining y =sinw
2
, one obtains

(1− y)N P (y) + yNP (1− y) = 2,

where

P (y) = B
(
ejω

)∣∣∣
sin ω

2
=y

.

Then, the explicit solution is

P (y) =
N−1∑

k=0


 N + k − 1

k


 yk + yNR

(
1

2
− y

)
,

where R(·) is an odd polynomial chosen such that P (y) ≥ 0 for y ∈ [0, 1]. This

is the set of all solutions. Individual solutions are obtained by spectral factor-

ization of P (y). After calculation B(ejω), a factorization is obtained such that

B(ejω) = β(ejω)β(e−jω). H1(z) is obtained by assigning the minimum phase zeros

obtained from this factorization to the low pass analysis filter.

Generalizing the construction of Daubechies wavelets where several number of

zeros are assigned on π or 0, one can assign arbitrary zeros with desired order

onto decomposition and reconstruction filters, while preserving the orthogonality

and perfect reconstruction properties.

3.6 Zero Assignment

In a PR filter bank, synthesis filters are completely determined by the analysis

filters, so that the construction of the filter bank reduces to the construction of

the analysis filters.
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If two analysis filters satisfy

∣∣∣H2(e
jw)

∣∣∣ =
∣∣∣H1(e

j(π−w))
∣∣∣ .

The pair is called to be quadrature mirror filters (QMF) since H2(e
jw) is the

mirror image of H1(e
jw) with respect to the quadrature frequency π/2. In discrete

time domain QMF relation is expressed as

H2(z) = H1(−z−1). (3.9)

One may shift the filter H1(z) in (3.9) by the filter order, n, in order to have

causal filters.

H2(z) = z−nH1(−z−1). (3.10)

To distinguish this property from the previous QMF property defined by (3.9),

(3.10) is referred as the conjugate quadrature mirror (CQMF) property.

The zero assignment in our method refers to the construction of finite impulse

response (FIR), conjugate quadrature mirror (CQM), and minimal length analy-

sis filters having assigned zeros at desired locations in the complex plane.

Suppose that a permitted odd filter bank delay of n0 is given. Further sup-

pose that G1(z) and G2(z) are two FIR transfer functions of order (number of

zeros) k each whose zeros coincide with the desired zeros of the analysis low-pass

filter H1(z) and analysis high-pass filter H2(z), respectively. Thus, the analysis

filters will contain desired zeros if and only if

H1(z) = Ĥ1(z)G1(z),

H2(z) = Ĥ2(z)G2(z).
(3.11)

The PR condition derived in (3.7) becomes

H1(z)H2(−z)−H1(−z)H2(z) = 2z−n0 . (3.12)

Replacing (3.11) in (3.12), we find:

Ĥ1(z)G1(z)Ĥ2(−z)G2(−z)− Ĥ1(−z)G1(−z)Ĥ2(z)G2(z) = 2z−n0 .



CHAPTER 3. WAVELETS, FILTER BANKS AND ZERO ASSIGNMENT 45

With a further simplification in the equation above the terms may be replaced

with G(z) and H(z) where

G(z) = G1(z)G2(−z),

Ĥ(z) = Ĥ1(z)Ĥ2(−z).
(3.13)

Arranging them by (3.13)

G(z)Ĥ(z)−G(−z)Ĥ(−z) = 2z−n0 . (3.14)

For this equation to have a solution, it is necessary that the greatest common

divisor of (G(z), G(−z)) is of the form z−m, i.e., it should be a pure delay. For

simplicity, assume that (G(z), G(−z)) are co-prime.

Fact 1:

G(z)M(z)−G(−z)N(z) = 2z−n0 .

Given any overall odd delay of n0, a solution (M(z), N(z)) to the equation above

is unique and satisfies M(z) = N(−z), provided each of M(z), N(z) has degree

equal to the degree of G(z).

By Fact 1, a solution Ĥ(z) to (3.14), exists, has order at most deg(G) − 1,

and is unique. However, note that H1(z) and H2(z) are still not unique since, a

factorization of Ĥ(z) is required in order to construct first Ĥ1(z) and Ĥ2(z), and

then H1(z) and H2(z).

Fact 2:

All analysis filters giving a PR filter bank of a time delay of n0 + l0, for an even

integer l0 ≥ 0 are given by

H1(z) = G1(z)Ĥ1p(z),

H2(z) = G2(z)Ĥ2p(z),

where

Ĥ1p(z)Ĥ2p(−z) = Ĥ1(z)Ĥ2(−z)z−l0 + G1(−z)G2(z)θ(z).

Again we note that, although each θ(z) yields a unique product low pass filter
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H1(z)H2(−z), the filters H1(z) and H2(z) are nonunique. This nonuniqueness

may be eliminated by employing a hand-rule in the factorization. Selecting right-

half plane poles and left-half plane zeros for low pass filters and left-half plane

poles and right-half plane zeros for high pass filters is one such hand-rule.

We now explain how the order condition derived in Fact 1 applies under the

new circumstances.

Say we have an analysis low pass filter, H1(z), and an analysis high pass filter,

H2(z) satisfying (3.10). Replacing this in the PR (3.12), we obtain

H1(z)H1(−z) + H1(−z)H1(z) = 2zn−n0 .

Upon replacing z with −z in the equation above, it is obvious that n = n0, i.e.,

the order of the individual (analysis or synthesis) filters equal to the overall time

delay of the PR filter bank.

Suppose the CQMF filters H1(z) and H2(z) have assigned zeros and they are

as in (3.11). So

G2(z)Ĥ2(z) = −z−nG1(−z−1)Ĥ1(−z−1).

Suppose that the assigned zeros are chosen in such a fashion that G1(z) and G2(z)

also satisfy the QMF property. Then

G2(z) = z−kG1(−z−1).

It follows that the following should also hold,

Ĥ2(z) = −zn̂Ĥ1(−z−1),

where n̂ is the order of Ĥ1(z). The product low pass filter becomes Ĥ(z) =

Ĥ1(z)Ĥ1(−z) and it has symmetric coefficients, i.e.

Ĥ(z) = z−2n̂Ĥ(z−1).

Suppose Ĥ(z) and G(z) which is of order 2k, have symmetry property. Let 2n̂

be the order of Ĥ(z). After basic algebraic operations we obtain

G(z)Ĥ(z)−G(−z)Ĥ(−z) = 2z−(2k+2n̂−n0) = 2z−n0 ,
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Table 3.1: Filter coefficients of Example i
H1 H2

0.3499 0.0506
0.8101 0.1172
0.4303 -0.0117
-0.1622 -0.4389
-0.0878 0.7865
0.0444 -0.3982

so that n̂ = n0 − k. The order of any symmetric solution to (3.13) has order

2n0 − 2k. A spectral factorization of Ĥ(z) = Ĥ1(z)Ĥ2(z), where roots of Ĥ1(z)

consists the zeros inside the unit circle and roots of Ĥ2(z) consists the zeros out-

side the unit circle, can be carried out.

We have shown that a minimal length FIR solution H(z) to the problem of de-

signing a low pass filter for the perfect reconstruction filter bank with the stated

permitted delay, exists and is unique whenever n0 < 4k and has order at most

2k − 2, where k is the number of assigned zeros provided that G(z) and G(−z)

are co-prime. The analysis filters are obtained by a factorization

H(z) = Ĥ1(z)Ĥ2(−z),

and are in general non-unique. A hand-rule is to select the left half plane zeros

in the low-pass filter and right half plane zeros in the high-pass filter. The values

of the k assigned zeros to the low-pass filter uniquely determines the filter bank

provided this hand rule is used and it is agreed that each filter in the filter bank

has order at most 2k − 2.

Example i: Suppose that the desired zeros to be assigned are at −1,−0.97 +

0.2431i,−0.97−0.2431i for the low-pass filter and at 1, 0.8+0.6i, 0.8−0.6i for the

high-pass filter. Suppose that the duration of the allowable delay is n0 = 5. Un-

der these circumstances, a minimal order solution to (3.11) and its factorization

according to the hand rule described above produces the following coefficients in

Table 3.1 and the high-pass and low-pass filters of order four where each have

frequency response given in Figure 3.16.
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Figure 3.16: Frequency responses of zero-assigned filters: (a) Low-pass filter, (b)
high-pass filter, (c)zoomed image, around the assigned zero for LPF, and (d)
zoomed image around assigned zero for HPF

Example ii: Say the analysis low pass filter has three desired zeros at z = −1.

Therefore,

G1 (z) =
(z + 1)3

z3
.

In order to satisfy the CQMF requirement G2(z) must be chosen as

G2 (z) = −(z − 1)3

z3
.

Degrees of G1(z)and G1(z) are equal to 3. By Fact 1 the overall filter bank delay

is 5. Given the values of assigned zeros and the filter bank delay we may solve

for the analysis low pass and high pass filters as explained in Section 3.6.

The coefficients are found to be as in Table 3.2. Note that these coefficients

correspond to the coefficients of analysis and synthesis filters of the Daubechies

wavelet D3. Thus it may be inferred that the zero assignment algorithm presented



CHAPTER 3. WAVELETS, FILTER BANKS AND ZERO ASSIGNMENT 49

Table 3.2: Filter coefficients of Example ii
H1 H2

0.0352 -0.3327
-0.0854 0.8069
-0.1350 -0.4599
0.4599 -0.1350
0.8069 0.0854
0.3327 0.0352

here is a generalization of Daubechies design in order to obtain filter banks with

assigned zeros not only on π or 0 but also on arbitrary locations. The assignment

of zeros on to π and 0 yield exactly the same filters as Daubechies’.



Chapter 4

Audio and Image Watermarking

Algorithms

In this chapter a new method for digital watermarking based on zero assigned

filter banks is presented. We improve the method proposed in [27] by introduc-

ing wavelet decomposition into the watermarking scheme, without increasing the

bandwidth requirement. Two filter banks with different assigned zeros around

the stop band where each of them designates a bit ‘0’ or ‘1’ are used in comput-

ing the wavelet decomposition of the signal and a perceptually insignificant set

of coefficients is selected by making use of the imperfections of HAS and HVS. In

audio watermarking case, the fact that human ear can not detect high frequency

sounds, namely 20 kHz or higher, is used and the basis to embed the water-

mark is chosen to be high frequency portion of the wavelet decomposed signal.

In image watermarking case, the watermark is placed around the edges as HVS

is less sensitive to edges compared to flat regions. However, most compression

schemes make use of the imperfections of HAS and HVS so it turns out that the

most corrupted frequency band after compression is the high frequency band for

audio signals and edges for image signals. Thus, watermarking becomes a com-

plicated issue as the two most important requirements of imperceptibility and

robustness against compression contradict. To overcome this problem, we merge

the compression scheme in the watermarking algorithm for audio signals and use

50
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the middle frequency subbands LH or HL together with a zero tree algorithm in

image watermarking scheme.

The outline of this chapter is as follows. In Section 4.1, the algorithm is

explained step by step indicating the variations in application in audio and image

watermarking. The details of encoding phase is explained in Section 4.1.1 and

the details of decoding phase are given in Section 4.1.2.

4.1 General Strategy

Generally speaking our method is used in embedding a sequence of binary data in

audio or gray level image signals. The input signal is partitioned into subblocks

where each subblock is embedded a bit. In order to differentiate between the as-

signed bits, two filter banks of the same order but with different assigned zeros are

constructed where each of them designates a ‘0’ or ‘1’. Each subblock is processed

by one of the filter banks to obtain a multiresolution representation. A basis to

embed the watermark is selected depending on the perceptual characteristics of

the input signal and the coefficients in the basis are marked by cancellation or

replacement by some constant. In decoding, the decomposition operation is run

by both of the filter banks. By looking at the coefficients in the basis chosen in

the encoding phase it is determined which filter bank marked that subblock and

thus which bit is embedded in it. We now go through the algorithm step by step.

4.1.1 Encoding

Step I

By considering the frequency characteristics of the input signal, the two sets of

assigned zeros, z0 and z1, where each of them has k elements, are determined.

Step II

The polynomials G1(z) and G2(z) of (3.11) are built, where the roots of those
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Figure 4.1: Decomposition into frames and wavelet decompositions for a single
frame

coincide with the sets z0 and z1 respectively. The algorithm defined in Section

3.6 is run in order to derive the two filter banks FB0 and FB1, where each of

them designates one of the bits ‘0’ or ‘1’.

Step III

The input is partitioned into subblocks, or frames, of a fixed size. Say these sub-

blocks are denoted as Si, for the image signal and Fi, for the audio signal. Here

i = 1, ...N where N is the number of subblocks and corresponds to the number

of bits to be embedded as a watermark.

Step IV:

A stage number, L, is fixed to be used in the wavelet decomposition as in Figure

4.3.

Step V

Each subblock Si or Fi is wavelet decomposed according to the “cascade algo-

rithm”, [3], where either FB0 or FB1 is employed depending on whether ‘0’ or

‘1’ is the bit to be embedded. An L-level multiresolution decomposition of each

subblock Di, i = 1, ...N is so obtained. (In our case L = 2 for audio watermarking

as shown in Figure 4.4 and L = 3 for image watermarking as shown in Figure
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Figure 4.2: An example image watermark
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Figure 4.3: L = 2 Stage implementation of the cascade algorithm

4.1.)

Step VI

The best set of coefficients to embed the watermark is determined to be the

perceptually insignificant coefficients in the multiresolution representation.

In audio watermarking: The highest stage detail coefficients Di
L

are chosen to be the best basis.

In image watermarking: The insignificant coefficients on LH or

HL bands of Di, i = 1, ..., N are determined according to the EZW al-

gorithm as in Figure 4.5. The root location matrices Mi are generated

for each i = 1, ..., N . (In our case, LH band is used.)

Step VII

The watermark is embedded on the best basis by an appropriate method depend-

ing on the signal characteristics. Since the filter banks are perfectly reconstructing
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Figure 4.4: Cancellation of details of the wavelet decomposition of frame 1 ob-
tained by FB0
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Figure 4.5: Formation of a zero tree

and the selected coefficients are not perceptually significant, one expects that the

marked signal will not suffer from any significant degradation.

In audio watermarking: A compressed version of each frame is

obtained by zeroing the coefficients Di
L obtained in Step VI.

In image watermarking: The zero tree elements of Di are replaced

with some fixed number m or −m, depending on whether Di is ob-

tained using FB0 or FB1.

Step VIII

Simple reconstruction operation is carried out with corresponding synthesis filters

according to the cascade algorithm to obtain the watermarked subblocks F̂i or

Ŝi.
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Step IX

The watermarked signal is the concatenation of the compressed subblocks F̂i or

Ŝi, i = 1, ...N of Step VIII. The sequence of ‘0’s and ‘1’s embedded in consecutive

frames allows us to encode a text information in an audio file or a gray level image

information in an image file.

4.1.2 Decoding

A similar procedure to embedding is employed in decoding. The required keys

for decoding are the assigned zero locations, number of filter bank decomposition

stages L, number of subblocks N , and size of subblocks. In addition to these, in

image watermarking case the root location matrices Mi, i = 1, ...N are transmit-

ted too.

Step I

The filter banks FB0 or FB1 are reconstructed using the assigned zero informa-

tion and the filter bank construction algorithm of [33].

Step II

The watermarked signal is partitioned into N subblocks of same size as the ones

used in encoding.

Step III

Each subblock is wavelet decomposed into D0i and D1i using FB0 and FB1, re-

spectively.

Step IV

The coefficients that are known to be at the best basis in encoding phase are

checked and the ones that present a behavior closer to what is implied by the

corresponding decomposition filter bank are said to be consistent so the bit that

particular filter bank designates is chosen to be the extracted bit.

In audio watermarking: The bit information embedded in a frame

is extracted by a comparison of the norms of highest stage detail

coefficients of the two wavelet decompositions of the frame Dik where
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i = 1, ...N and k = 0, 1. Here the norm used is given below:

∥∥∥DL
ik

∥∥∥ =
q∑

j=1

(
dL

ij

)2
. (4.1)

where DL
ik is the Lth stage detail coefficients of frame Fi obtained by

filter bank FBk, k = 0, 1 and q denotes the size of the Lth stage

detail coefficients. The ownership is verified by identifying the correct

sequence of ‘0’s and ‘1’s in the consecutive frames.

In image watermarking: Using the root locations matrix Mi both

for D0i and D1i, the mean values m0i and m1i of the “previously in-

significant coefficients” are computed. As illustrated in Figure 4.6,

if both m0i > 0 and m1i > 0, it may be inferred that m0i implies

a process by FB0 and m1i does not imply a process by FB1 so the

extracted bit is 1. In the reverse case where m0i < 0 and m1i < 0,

simply because the similar reason, the extracted bit is 0. On the other

hand, when m0i and m1i have opposite signs and m0i > 0 and m1i < 0,

both of these mean values imply the sign of the embedded intensity

that their corresponding filter banks. That’s why we choose the bit

that is embedded by the filter bank which has its original embedded

intensity and the mean of the zero tree elements closer, i.e., when

|m0 −m| < |m1 + m|, the extracted bit is 1, otherwise it is 0. When

neither m0i nor m1i support the sign of the embedded intensity of its

corresponding filter bank, i.e., m0i < 0 and m1i > 0, we again choose

the filter bank which produces a result that is close to its embedded

intensity. Namely, if |m0−m| > |m1 + m| the bit is determined to be

0, otherwise 1.

In this chapter we summarized the steps of our algorithms and indicate the differ-

ences in procedure between audio and image watermarking. Next chapter gives

the details in application and presents the results of experiments in noise free and

noisy environments and under several types of attacks.
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m0i,m1i

sign(m0i)=sign(m1i)

sign(m0i)=sign(m11i)=1 |m0i-m|<|m1i+m|
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Extracted bit = 1 Extracted bit = 0 Extracted bit = 1 Extracted bit = 0

YES NO NOYES

Figure 4.6: Decision algorithm



Chapter 5

Experimental Results

The algorithms defined in previous chapter need to be tested against several fac-

tors. First of all it must be verified that the methods satisfy the perceptual

transparency condition. It must be determined into which region the zeros can

be placed without any significant artifact. Moreover, the effect of the relative

positions of the zeros, i.e., the minimum distance between zeros which can be

resolved must be detected. The algorithms need also be tested against signal

processing attacks, noise and attacks such as compression and estimation.

Section 5.1 presents the experimental results of the audio watermarking algo-

rithm in noise free and noisy media and under attacks. In Section 5.1.1, the

region which the zeros may be placed without any significant distortion on the

marked signal is determined. The robustness of the audio watermarking algo-

rithm against the relative positions of the assigned zeros and the ability of the

method to distinguish the characteristics of subblocks is investigated. In Section

5.1.2 the performance of the audio watermarking algorithm under white Gaussian

noise and under channel noise is examined. Maximum tolerable SNR values are

determined for various assigned zero set pairs under white Gaussian noise in Sec-

tion 5.1.2.1. Section 5.1.3 discusses the performance of the audio watermarking

method under compression and estimation type of attacks. Details about assigned

zero locations, zero tree construction, stage number and frame size selections in

58
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image watermarking are presented in Section 5.2. In Sections 5.2.1 and 5.2.2 the

performance of the image watermarking algorithm under white Gaussian noise

and under compression attack is investigated.

5.1 Experimental Results in Audio Watermark-

ing

Here some details of the experimental results for the audio watermarking algo-

rithm described in Section 4.1 are presented. Mainly the following situations

are considered: Experiments in noise free medium, experiments under randomly

generated white Gaussian noise and channel noise, and experiments under com-

pression and estimation attacks.

We perform robustness experiments on audio files with different sound character-

istics. These files are the recordings of male and female voices and a music file

together with a male voice recording with pauses. All are sampled at 22 kHz and

sample values are represented in 8 bits.

In our experiments, given the overall permitted filter bank delay n0, a set of

two filter banks are obtained by assigning z0 or z1 as zeros to be suppressed by

the low-pass analysis filters as explained in Steps I and II of Section 4.1.1. The

knowledge of filter bank delay n0, assigned zero sets z0 and z1, stage number L,

frame size M , and the watermark sequence are the keys to be provided to the

validation authority for storage.

We can embed a sequence of several bits in an audio signal by dividing it into N

frames as in Step III of Section 4.1.1 and in Figure 5.1. Each frame is processed

by one of the filter banks, FB0 and FB1, with different assigned zeros z0 and z1

depending on the bit to be assigned in that particular frame, Fi, i = 1, ..., N as in

Step IV of Section 4.1.1. The audio watermarks are chosen to be 4-7 letter words

where each letter is represented in 7 bits in the ASCII table.
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Figure 5.1: Partitioning the input into Frames F1, F2, F3 and the bits to be
assigned to each frame

The following procedure is used to determine the zeros to be assigned. A fre-

quency value f is determined by examining the spectra of all frames of the orig-

inal audio signal. This value f should be a high frequency value at which each

frame should have a nonzero component. The determination of the suppressed

frequency f and the magnitude of that fixes one of the zeros. In order to empha-

size the suppression at that frequency, usually two or three copies of the same zero

is incorporated into the low-pass filter. After choosing the frequency f , placing

it on a distance d from the origin one determines the elements of to-be-assigned

zero sets, z. Once z is determined, the calculation of coefficients of G1(z) and

G2(z) is straightforward and the zero assignment procedure in Chapter 3 deter-

mines the analysis filters uniquely. Say the filter bank with a zero assigned at z0

is FB0 and the one with a zero assigned at z1 is FB1. The results presented here
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are obtained with the filter banks FBi, i = 0, 1, each of which have a couple of

assigned zeros around the stop band.

The distinction between the filters FB0 and FB1, and hence the distinction be-

tween the detail coefficients obtained by these different filters, is solely dependent

on the choices of z0 and z1. Obviously, closer values for the elements of z0 and

z1 will give rise to difficulties in the detection scheme. While both should be on

the high frequency portion for perceptual transparency, them being placed too

close will cause false alarms to occur more often. In our experiments, we worked

with the zeros assigned to low pass analysis filters of FBi, i = 0, 1 that are sepa-

rated by 1% to 23% of the whole spectrum and got good results in several media.

We note that, zeros may even be placed around the mid-frequency band while

watermarking in noisy environments. As the noise on the watermarked signal in-

creases, the distortion resulting from the inserted data becomes less perceptible.

Thus, the add-on-noise acts like a mask for the watermark. As a result, filter

banks with assigned zeros on 23% of the whole spectrum does not give rise to a

perceptual degradation on noisy watermarked signals.

There is a trade-off between the number of stages of the cascade algorithm and

the sound quality of the watermarked audio data. As the number of stages in-

creases, the number of coefficients of the highest stage detail band gets smaller.

Setting coefficients carrying less information to zero will yield less distortion on

the watermarked signal. However, it will now be harder for the authority to de-

tect which frequency is suppressed, and hence which bit information is embedded.

The result of the comparison of the detail coefficients obtained via FB0 and FB1

will now be more sensitive to noise and other sources of disturbance. The number

of stages to be employed in the cascade algorithm must generally be small in or-

der for the decoding process to succeed. Nevertheless, it can not be a single stage

implementation as this will violate the perceptual transparency requirement for

watermarking. In order to get closer to a pure tone, the filtering process is thus

carried out for two or three stages along the high frequency branch of the filter

bank. After filtering the input with the high-pass decomposition filter H2(z) sev-

eral times, components of frequency f1 is accumulated on the lower most branch.
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In our experiments, we examined the effect of changing the stage number. The

results for two and three stage decompositions are presented.

Although the filter banks of the cascade algorithm are determined for perfect

reconstruction, the reconstructed signal would not be the same as the original

one in the cascade algorithm of Figure 4.3. This is because a compressed version

of the original signal is fed into the synthesis part and imaging results from the

upsampling in the reconstruction phase. In the decoding phase, an authority

checks which frequency is suppressed in each frame by re-constructing FB0 and

FB1 and decomposing the marked signal with both of these filter banks. In order

to understand whether the highest stage detail signal is an image or not, a detec-

tion rule must be used. One possibility, followed in our application, is to compute

and compare the L1 norms of the detail coefficients obtained via FB0 and FB1

as in (4.1). In our case, this method of comparison has been very successful.

However, for different applications and depending on the attack or add-on noise

in the transmission channel, alternate detection schemes may be employed.

A careful choice of the watermark may increase the robustness of the algorithm

against false alarms during the detection process. Note that, fixing the frame size

also fixes the number of bits that can be embedded in the watermarked signal,

N . Duration of the experimented audio signal which is sampled at 22 kHz is

around 1-3 seconds. In the experiments, the text to be embedded is chosen to be

composed of a word with several letters, generally 4-7 letters. For a 6-letter word,

42 bits must be embedded as each letter is represented in 7 bits in the ASCII

table. For each bit a frame of 128, 256 or 512 samples is taken. This allows us,

e.g., to embed about 12 copies of a 6-letter word in a 3-second signal if we use

frames of size 128. This would tolerate one or two false diagnosis of the text in,

say, noisy environments.

We now go into the details of implementation and present the results of our

experiments. In Section 5.1.1 the effect of placement of the assigned zeros are

investigated from the aspect of perceptual transparency and the ability to distin-

guish between closely placed zeros. In Section 5.1.2, robustness against noise is
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investigated first by modeling the noise to be a white Gaussian one and then by

using a recording on a voiceless wireless telephone channel. Robustness against

compression attack and estimation type of attacks is discussed in Section 5.1.3.

5.1.1 Experiments in Noise Free Medium

In this section effects of stage number selection, frame size selection and place-

ment of zeros are examined in noise free environment.

The low pass analysis filters of FB0 and FB1 have one zero fixed at −1. The

other assigned zero of the low pass analysis filter of FB0 is fixed at 10% vicinity

of 2π, i.e., at {1 6 (1± 0.1)2π} with multiplicity of 2. The assigned zero of the

low pass analysis filter of FB1 is located at 3%, 5%, 7% or 9% vicinity of 2π with

multiplicity 2. The effect of these alternative zero configurations on bit reliability

is examined.

In Tables 5.1, 5.2, 5.3 and 5.4, the first column denotes the number of decompo-

sition stages L and the second column denotes the frame size M . At the third

column the argument of the assigned zero of the low pass filter (LPF) of FB1 is

given in terms of percentages of 2π. For instance in row 1 of Table 5.1, argument

of the assigned zero is noted as 1, which means that the LPF has assigned zeros

at {−1, 16 (1± 0.01)2π}, where the term {16 (1± 0.01)2π} has multiplicity two.

Our method works with 100% bit reliability even when the zeros are placed 2%

apart on the unit circle. Only when two zeros are on {16 (1± 0.09)2π} and the

other two are on {16 (1± 0.1)2π}, the bit reliability decreases to 0.964 for the

experiment on male voice recording. Note that as our watermarking scheme al-

lows us to insert multiple copies of the text into the audio signal, missing out

a few bits in the detection stage still provides many correct copies of text to be

detected. On the other hand, it should be noted that as long as the perceptual

transparency condition is satisfied, there is no absolute necessity to place zeros

too close to each other.
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Table 5.1: Success rate in extraction of watermark from male voice in noise free
medium

Stage Frame Size Argument of Zero Bit Reliability Success
2 128 3 1 10
2 128 4 1 10
2 128 5 1 10
2 128 6 1 10
2 128 7 1 10
2 128 8 1 10
2 128 9 1 10
2 256 3 1 10
2 256 4 1 10
2 256 5 1 10
2 256 6 1 10
2 256 7 1 10
2 256 8 1 10
2 256 9 1 10
2 128 3 1 10
3 128 4 1 10
3 128 5 1 10
3 128 6 1 10
3 128 7 1 10
3 128 8 1 10
3 128 9 0.964 10
3 256 3 1 10
3 256 4 1 10
3 256 5 1 10
3 256 6 1 10
3 256 7 1 10
3 256 8 1 10
3 256 9 1 10
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Table 5.2: Success rate in extraction of watermark from female voice in noise free
medium

Stage Frame Size Argument of Zero Bit Reliability Success
2 128 3 1 10
2 128 4 1 10
2 128 5 1 10
2 128 6 1 10
2 128 7 1 10
2 128 8 1 10
2 128 9 1 10
2 256 3 1 10
2 256 4 1 10
2 256 5 1 10
2 256 6 1 10
2 256 7 1 10
2 256 8 1 10
2 256 9 1 10
2 128 3 1 10
3 128 4 1 10
3 128 5 1 10
3 128 6 1 10
3 128 7 1 10
3 128 8 0.964 10
3 128 9 0.964 10
3 256 3 1 10
3 256 4 1 10
3 256 5 1 10
3 256 6 1 10
3 256 7 1 10
3 256 8 1 10
3 256 9 1 10
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Table 5.3: Success rate in extraction of watermark from music signal in noise free
medium

Stage Frame Size Argument of Zero Bit Reliability Success
2 128 3 1 10
2 128 4 1 10
2 128 5 1 10
2 128 6 1 10
2 128 7 1 10
2 128 8 1 10
2 128 9 1 10
2 256 3 1 10
2 256 4 1 10
2 256 5 1 10
2 256 6 1 10
2 256 7 1 10
2 256 8 1 10
2 256 9 1 10
2 128 3 1 10
3 128 4 1 10
3 128 5 1 10
3 128 6 1 10
3 128 7 1 10
3 128 8 1 10
3 128 9 1 10
3 256 3 1 10
3 256 4 1 10
3 256 5 1 10
3 256 6 1 10
3 256 7 1 10
3 256 8 1 10
3 256 9 1 10
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Table 5.4: Success rate in extraction of watermark from male voice with pauses
in noise free medium

Stage Frame Size Argument of Zero Bit Reliability Success
2 128 3 1 10
2 128 4 1 10
2 128 5 1 10
2 128 6 1 10
2 128 7 1 10
2 128 8 1 10
2 128 9 1 10
2 256 3 1 10
2 256 4 1 10
2 256 5 1 10
2 256 6 1 10
2 256 7 1 10
2 256 8 1 10
2 256 9 1 10
2 128 3 1 10
3 128 4 1 10
3 128 5 1 10
3 128 6 1 10
3 128 7 1 10
3 128 8 1 10
3 128 9 1 10
3 256 3 1 10
3 256 4 1 10
3 256 5 1 10
3 256 6 1 10
3 256 7 1 10
3 256 8 1 10
3 256 9 1 10
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5.1.2 Experiments in Noisy Medium

5.1.2.1 Experiments under Randomly Generated Gaussian Noise

In this section, Gaussian noise with a mean of 0 and a variance of 1, is added on

top of the watermarked signal and the success rate in extracting the watermarked

from the attacked signal is investigated.

As in case of the experiments in noise free medium, filter banks with assigned ze-

ros of multiplicity two are used in the two and three stage decomposition schemes

while the frame size M is either 128 or 256. The arguments of the assigned zeros

of FB0 and FB1 range between 1% and 23% of 2π, i.e., they are in the interval

{1 6 (1± 0.01)2π} - {16 (1± 0.23)2π}.

Typical SNR values for testing the robustness of an audio watermark are chosen

to be as the ones in [16]. As expected, bit reliability increases with decreasing

SNR. It reaches up to 80% when SNR is equal 50 dB while it is around 45% when

SNR is equal 20 dB. Choosing the frame size M to be 128 and stage number L

to be 2 produces better results. On the other hand, performance of the method

in male voice with pauses is not as good as continuous utterances and music.

We define the term tolerable SNR to be the SNR value for which the method

extracts the watermark with at least 95% bit reliability. From Figures 5.2, 5.3,

5.4, 5.5, 5.6, and 5.7 it is clear that when the two assigned zeros of filter banks

FB0 and FB1 are close, i.e., around x = y line, the tolerable SNR is higher than

other portions where the distance between assigned zeros are larger. Moreover,

one should note that on x = y line, tolerable SNR is higher when the two assigned

zeros have small arguments. As one follows the line to the higher values of as-

signed zero arguments, the tolerable SNR decreases. Namely, it is seen in Figures

5.2, 5.3, 5.4, 5.5, 5.6, and 5.7 that, as the frame size increases, the detection pro-

cedure gets more sensitive to the add-on noise when the zeros are located close

around the lower frequency values. On the other hand, the zeros that are close

around the higher frequencies lead to a detection scheme, which is less sensitive
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to channel noise. Moreover, when zeros are placed most apart, the bit reliability

gets higher for smaller frames.
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Figure 5.2: Tolerable SNR for male voice partitioned into frames of 128 × 128
and processed with 2 stage filter banks

5.1.2.2 Experiments under Channel Noise

In this section, the success rate in extracting the watermark from a marked signal

with an add-on channel noise that is chosen to be a recording on a voiceless

wireless telephone channel is examined. It is observed that only when arguments

of the assigned zeros are too close, i.e., 1% to 3% of 2π apart on the unit circle

bit reliability decreases to 71% - 96%, otherwise it is 100% for any stage number

or frame size selection.
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Table 5.5: Success rate for male voice under channel noise decomposed into 2
stages with frame size 128

Male Voice
Stage Frame Size Zero Bit Reliability Success

2 128 3 1 10
2 128 5 1 10
2 128 7 1 10
2 128 9 1 10
2 256 3 1 10
2 256 5 1 10
2 256 7 1 10
2 256 9 1 10
3 128 3 1 10
3 128 5 1 10
3 128 7 1 10
3 128 9 0.786 10
3 256 3 1 10
3 256 5 1 10
3 256 7 1 10
3 256 9 1 10

Table 5.6: Success rate for female voice under channel noise decomposed into 2
stages with frame size 128

Female Voice
Stage Frame Size Zero Bit Reliability Success

2 128 3 1 10
2 128 5 1 10
2 128 7 1 10
2 128 9 1 10
2 256 3 1 10
2 256 5 1 10
2 256 7 1 10
2 256 9 1 10
3 128 3 1 10
3 128 5 1 10
3 128 7 0.964 10
3 128 9 0.714 10
3 256 3 1 10
3 256 5 1 10
3 256 7 1 10
3 256 9 0.964 10
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Figure 5.3: Tolerable SNR for male voice partitioned into frames of 256 × 256
and processed with 2 stage filter banks

5.1.3 Experiments with Signals Under Attack

Here we present the experimental results in decoding the signal under MPEG

compression attack and estimation type of attacks.

5.1.3.1 Experiments under Compression Attack

Watermarked signals are converted to MP3 format at 144 Kbps and regular de-

tection scheme is employed. It is observed that compression causes a fair decrease

in bit reliability. Bit reliability changes between 0.4 and 0.5 for all cases. It is

obvious that the method is quite fragile against MPEG compression attack and

needs to be strengthened. One approach may be to employ EZW in selecting the

set of coefficients to be marked. However, the zero tree structure of the image

watermarking algorithm does not work well. The architecture of the zero tree
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Figure 5.4: Tolerable SNR for male voice partitioned into frames of 512 × 512
and processed with 2 stage filter banks

may be modified as in the case of [10].

5.1.3.2 Estimation Type of Attacks

Estimation type of attacks assume that the watermark can be estimated without

prior knowledge of the embedding rule or embedding keys. The watermark is

considered to be noise and a denoising scheme is employed [34]. Low pass fil-

tering seems a common approach for denoising. Our proposed method is fragile

under low pass filtering attack and hence needs to be strengthened. One counter

measure against low pass filtering is to employ a notch filter on a low frequency

component in wavelet decomposed signal. A notch filter of narrow stop band

can be shown not to degrade the perceptual quality of the signal. Moreover, the

watermark embedded by the notch filter can be detected efficiently.



CHAPTER 5. EXPERIMENTAL RESULTS 73

0

5

10

15

20

25 0

5

10

15

20

25

20

40

60

80

100

Second Zero(2*pi/100)

Tolerable SNR vs Location of Zeros

First Zero(2*pi/100)

T
ol

er
ab

le
 S

N
R

Figure 5.5: Tolerable SNR for female voice partitioned into frames of 128 × 128
and processed with 2 stage filter banks

In Tables 5.8 and 5.9 the details about the performance of notch filter support are

presented. The first column denotes the frame size M . In our experiments, the as-

signed zero of FB1 is kept fixed at 1% vicinity of 2π, i.e., at {16 (1± 0.1)2π}. The

second column denotes the argument of the assigned zero of FB2. For instance

in the first line 0.2 implies that the assigned zero of FB2 is at {16 (1± 0.2)2π}.
In column three, there is the bit reliability of decoding after extracting the wa-

termark from a marked signal which is attacked by a 5th order Butterworth low

pass filter with a cut-off frequency of 0.95π

Our watermark extraction experiment with different types of speech signals in-

dicate about 90% bit reliability provided the stop band of the notch filter is

determined taking into account the frequency characteristics of the set of signals

to be watermarked.
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Figure 5.6: Tolerable SNR for female voice partitioned into frames of 256 × 256
and processed with 2 stage filter banks

5.2 Experimental Results in Image Watermark-

ing

In this section we give the details in the application of our image watermarking

algorithm such as zero locations and the properties of the input image. The suc-

cess rate in noise free environments is presented. The algorithm is tested under

randomly generated white Gaussian noise with a mean of 0 and variance of 1 and

the results are given in Section 5.2.1. Performance of the method under compres-

sion attack is investigated in Section 5.2.2.

To satisfy the perceptual transparency requirement explained in Section 2.1.1

and provide robustness against attacks, the zero trees are constructed on LH or

HL frequency band, [9], and the tree elements are replaced with the embedded

intensity as in Step VII of Section 4.1.1, depending on the assigned bit either
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Figure 5.7: Tolerable SNR for male voice with pauses partitioned into frames of
256× 256 and processed with 2 stage filter banks

m or −m, where m is chosen to be the 5% of the maximum coefficient on the

highest branch of the chosen frequency band, [35]. Conceptually, the embedded

watermark in an image is as shown in Figure 4.2, where the diagonal frames cor-

respond to bits ‘0’ and the off-diagonal frames to bits ‘1’.

From the aspect of storage requirements and security, our method brings many

advantages. The argument and the magnitude of the assigned zero is enough to

compute the filter coefficients so this not only decreases the amount of transmit-

ted data, i.e the bandwidth, but also makes the algorithm more secure unless the

design procedure is available to anyone. Nevertheless one should note that the

locations of the insignificant coefficients must be stored in a simple binary matrix

against any attack on the watermarked image. Attacks may change the roots,

hence resulting in a different tree. Nevertheless the computational complexity or

storage space does not cost much, since it is enough the keep the root locations

as the whole tree can be reconstructed from the roots and since the size of the
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Figure 5.8: SNR vs bit reliability for male voice decomposed into 2 stages with
frame size of 128
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Figure 5.9: SNR vs bit reliability for male voice decomposed into 3 stages with
frame size of 128

location matrix is (1
8
)th of the original image as downsampling operations in the

filter bank structure half the size at every stage.

In our experiments, we used the conventional image of ‘Lena” because it con-

tains details, flat regions, shading, and texture. After a few experiments we

found out that for this method the most efficient scheme on “Lena” is observed

when the number of decomposition levels L = 3 and partitions Si, i = 1, ..., N

are of size 128 × 128. Furthermore the threshold for detecting the insignificant

coefficients is chosen to be 5% of the maximum coefficient in absolute value in

the 3rd detail band, i.e., D3
0i or D3

1i.

In Figure 5.16 the original and watermarked images of a 256 × 256 “Lena” are



CHAPTER 5. EXPERIMENTAL RESULTS 77

15 20 25 30 35 40 45 50
0.4

0.5

0.6

0.7

0.8

0.9

1

SNR

B
it 

R
el

ia
bi

lit
y

SNR vs BR

f2 = 3%
f2 = 5%
f2 = 7%
f2 = 9%

15 20 25 30 35 40 45 50
0.4

0.5

0.6

0.7

0.8

0.9

1

SNR

B
it 

R
el

ia
bi

lit
y

SNR vs BR

f2 = 3%
f2 = 5%
f2 = 7%
f2 = 9%

Figure 5.10: SNR vs bit reliability for female voice decomposed into 2 stages with
frame size of 128
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Figure 5.11: SNR vs bit reliability for female voice decomposed into 3 stages with
frame size of 128

presented. In Figure 4.2 the corresponding watermark can be seen. In obtaining

the watermarked image in Figure 5.16, filter banks FB0 and FB1 consisting of

filters of order 5 each are used. For this particular case, a filter bank with a

low pass decomposition filter which has an assigned zero on π ± 2π/100 with a

magnitude of 1 is used in the watermarking process together with a filter bank

with a low pass decomposition filter which has an assigned zero with magnitude

0.7 and argument π ± 26π/100.

Throughout the experiments the angles of the assigned zeros run from π±2π/100

to π± 26π/100. The distance of the assigned zeros to the origin range between 1

and 0.7. It is observed that for these assigned zero locations there is no perceptual

degradation on the watermarked image.



CHAPTER 5. EXPERIMENTAL RESULTS 78

15 20 25 30 35 40 45 50
0.4

0.5

0.6

0.7

0.8

0.9

1

SNR

B
it 

R
el

ia
bi

lit
y

SNR vs BR

f2 = 3%
f2 = 5%
f2 = 7%
f2 = 9%

15 20 25 30 35 40 45 50
0.4

0.5

0.6

0.7

0.8

0.9

1

SNR

B
it 

R
el

ia
bi

lit
y

SNR vs BR

f2 = 3%
f2 = 5%
f2 = 7%
f2 = 9%

Figure 5.12: SNR vs bit reliability for music decomposed into 2 stages with frame
size of 128
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Figure 5.13: SNR vs bit reliability for music decomposed into 3 stages with frame
size of 128

In Table 5.10 the PSNR of the marked image for corresponding zero configu-

rations is presented. For instance, in column one of Table 5.10, the value 2

corresponds to π± 2× 2π/100 in radians and is the value of the argument of the

assigned zero of FB0. Column two and four shows the distance of the assigned

zero of FB0 and FB1 to the origin. In column three, the values indicate the argu-

ment of the zero assigned to FB1. The last column shows the peak signal-to-noise

ratio when the image is watermarked by those two filter banks. It is observed that

PSNR values are high enough so the watermark may be claimed to be transparent.

After indicating the details about encoding phase explained in Section 4.1.1 and

pointing out the practical advantages of our image watermarking method, we
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Figure 5.14: SNR vs bit reliability for male voice with pauses decomposed into 2
stages with frame size of 128
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Figure 5.15: SNR vs bit reliability for male voice with pauses decomposed into 3
stages with frame size of 128

now present the performance of the algorithm against white Gaussian noise and

JPEG compression in Sections 5.2.1 and 5.2.2.

5.2.1 Robustness against White Gaussian Noise

This section presents the success rates in extracting the watermark from a signal

that is attacked by additive white Gaussian noise.

The exact watermark can be extracted even under exposure to a high white

Gaussian noise with zero mean and unit variance. In Tables 5.11, 5.12, 5.13, and

5.14, for the indicated noise values and corresponding zero configurations, the



CHAPTER 5. EXPERIMENTAL RESULTS 80

Table 5.7: Success rate for music under channel noise decomposed into 2 stages
with frame size 128

Music Signal
Stage Frame Size Zero Bit Reliability Success

2 128 3 1 10
2 128 5 1 10
2 128 7 1 10
2 128 9 1 10
2 256 3 1 10
2 256 5 1 10
2 256 7 1 10
2 256 9 1 10
3 128 3 1 10
3 128 5 1 10
3 128 7 0.964 10
3 128 9 0.714 10
3 256 3 1 10
3 256 5 1 10
3 256 7 1 10
3 256 9 0.964 10

method produces the correct watermark with 100% success. For all zero config-

urations, the mean signal-to-noise ratio (SNR) which the method achieves full

success is 5.30.

In [36], the experiments on audio watermarking show that as the zeros of the

filter banks get apart from each other it becomes easier to determine which filter

bank marks the frame. However, in this case there is no regular behavior about

the angles. This phenomenon may be explained with the fact that as in audio

watermarking case the detail coefficients are set to zero, the distinction of the

frequency response of the filter banks exhibits a more crucial effect. However,

in our image watermarking method, embedded intensity replaces the zero tree

coefficients thus assigned zero locations do not play such a significant role in

identification.
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Table 5.8: Success rates for male voice decomposed in 1 stage with notch filter
support under low pass filtering attack

Frame Size Zero Bit Rel.
128 2 0.893
128 3 0.893
128 4 0.893
128 5 0.893
128 6 0.893
128 7 0.929
128 8 0.929
128 9 0.929
128 10 0.929
128 11 0.929
128 12 0.929
128 13 0.929
128 14 0.929
256 2 0.786
256 3 0.786
256 4 0.786
256 5 0.786
256 6 0.786
256 7 0.786
256 8 0.786
256 9 0.786
256 10 0.786
256 11 0.786
256 12 0.786
256 13 0.786
256 14 0.786



CHAPTER 5. EXPERIMENTAL RESULTS 82

Table 5.9: Success rates for male voice decomposed in 2 stages with notch filter
support under low pass filtering attack

Frame Size Zero Bit Rel.
128 2 0.893
128 3 0.893
128 4 0.893
128 5 0.893
128 6 0.893
128 7 0.929
128 8 0.929
128 9 0.929
128 10 0.929
128 11 0.929
128 12 0.929
128 13 0.929
128 14 0.929
256 1 0.786
256 2 0.786
256 3 0.786
256 4 0.786
256 5 0.786
256 6 0.786
256 7 0.786
256 8 0.786
256 9 0.786
256 10 0.786
256 11 0.786
256 12 0.786
256 13 0.786
256 14 0.786
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Figure 5.16: Original and watermarked images of Lena

Figure 5.17: Watermarked image with noise on top

5.2.2 Robustness against Compression

Here we compress the marked signal in certain JPEG quality levels and the suc-

cess rates for several assigned zero locations are presented.

In Figure 5.18 three compressed images which are the JPEG compressed ver-

sions of the watermarked image in Figure 5.16 are presented. Though the images

are highly corrupted the watermark is still extracted with 100% success.

In Tables 5.15, 5.16, 5.17, and 5.18, the first four columns are as the ones in

the previous tables. The fifth column indicates the JPEG compression quality in

percentages. The PSNR value after encoding and compression is given in column

six. At the last column there is the Bit Error Rate (BER) in the decoding phase

for the corresponding zero orientations and JPEG compression quality.
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Table 5.10: PSNR on the watermarked image
Freq 0 Dist 0 Freq 1 Dist 1 PSNR

2 1 1 1 56.48
3 1 1 1 56.62
4 1 1 1 56.82
5 1 1 1 57.08
1 0.9 1 1 58.13
2 0.9 1 1 58.23
3 0.9 1 1 58.4
4 0.9 1 1 58.74
5 0.9 1 1 59.11
1 0.8 1 1 58.65
2 0.8 1 1 58.74
3 0.8 1 1 58.88
4 0.8 1 1 59.08
5 0.8 1 1 59.33
1 0.7 1 1 57.46
2 0.7 1 1 57.5
3 0.7 1 1 57.56
4 0.7 1 1 57.66
5 0.7 1 1 58.15

Watermarked images are tested against JPEG compression at qualities from

90% down to 10%. In Tables 5.15, 5.16, 5.17, and 5.18, it is observed that down to

10% compression quality, the watermark is extracted perfectly but at 10% or 5%

compression quality, one partition may be detected with a wrong bit. For some

zero configurations successful results are obtained for 10% compression quality.

So far we have presented the image and audio watermarking algorithms step

by step by indicating the differences in implementation in Chapter 4 and pointed

out the practical details about selections of several parameters such as frame

size, decomposition stage number, L, and the threshold for zero tree condition in

Sections 5.1 and 5.2. The rest of this chapter is dedicated to the experimental

results in noise free and noisy environments and under attacks.

In noise free environment, the region on the complex where any assigned zero

that does not lead to a significant artifact on the marked image may be placed
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Table 5.11: PSNR on watermarked image with Gaussian noise
Freq 0 Dist 0 Freq 1 Dist 1 PSNR BER

1 1 2 1 7.58 0
1 1 3 1 5.61 0
1 1 4 1 2.65 0
1 1 5 1 8.61 0
2 1 1 1 10.42 0
2 1 3 1 14.17 0
2 1 4 1 8.66 0
2 1 5 1 5.11 0
3 1 1 1 4.62 0
3 1 2 1 9.94 0
3 1 4 1 6.32 0
3 1 5 1 2.04 0
4 1 1 1 3.55 0
4 1 2 1 3.8 0
4 1 3 1 2.06 0
4 1 5 1 5.31 0
5 1 1 1 2.62 0
5 1 2 1 0.68 0
5 1 3 1 1.43 0
5 1 4 1 9.67 0

is determined. Moreover, the experiments in noise free environment test the ro-

bustness of the audio and image watermarking methods against relative positions

of elements of the assigned zero sets, z0 and z1, of filter banks FB0 and FB1.

The results indicate that just when the elements of the two assigned zero sets are

too close, misdetections may take place. However, note that for other selections

100% success is achieved in detection.

In noisy environment, the robustness of the method against white Gaussian noise

and channel noise is investigated. For image watermarking, tolerable SNR which

is the noise level that does not lead to more than 5% misdetection rate when

imposed onto a marked signal, is defined for several assigned zero set couples. It

is observed that even when the noisy marked signal is not intelligible, the wa-

termark may be extracted with more than 95% bit reliability. Under channel

noise the audio watermarking algorithm performs with 100% success except for

assigned zeros which are too close on complex plane.
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Table 5.12: PSNR on watermarked image with Gaussian noise on top
Freq 0 Dist 0 Freq 1 Dist 0 PSNR BER

1 0.9 1 1 0.62 0
1 0.9 2 1 10.01 0
1 0.9 3 1 4.84 0
1 0.9 4 1 -0.14 0
1 0.9 5 1 0.32 0
2 0.9 1 1 7.26 0
2 0.9 2 1 -0.42 0
2 0.9 3 1 1.78 0
2 0.9 4 1 -0.4 0
2 0.9 5 1 10.83 0
3 0.9 1 1 2.46 0
3 0.9 2 1 8.03 0
3 0.9 3 1 0.94 0
3 0.9 4 1 1.81 0
3 0.9 5 1 3.9 0
4 0.9 1 1 4.65 0
4 0.9 2 1 10.19 0
4 0.9 3 1 6.34 0
4 0.9 4 1 9.83 0
4 0.9 5 1 1.39 0
5 0.9 1 1 3.73 0
5 0.9 2 1 1.51 0
5 0.9 3 1 2.21 0
5 0.9 4 1 1.32 0
5 0.8 5 1 -0.43 0

The results of the experiments under compression attack indicate that the audio

watermarking algorithm is fragile against MPEG. The image watermarking algo-

rithm produces better results than several previously defined methods and can

yield 100% success rate even when compressed with 10% compression quality.
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Table 5.13: PSNR on watermarked image with Gaussian noise on top
Freq 0 Dist 0 Freq 1 Dist 1 PSNR BER

1 0.8 1 1 7.88 0
1 0.8 2 1 7.33 0
1 0.8 3 1 2.36 0
1 0.8 4 1 2.07 0
1 0.8 5 1 3.42 0
2 0.8 1 1 9.03 0
2 0.8 2 1 3.61 0
2 0.8 3 1 11.23 0
2 0.8 4 1 9.13 0
2 0.8 5 1 6.34 0
3 0.8 1 1 4.15 0
3 0.8 2 1 0.5 0
3 0.8 3 1 5.75 0
3 0.8 4 1 -0.11 0
3 0.8 5 1 3.97 0
4 0.8 1 1 0.38 0
4 0.8 2 1 1.01 0
4 0.8 3 1 0.89 0
4 0.8 4 1 0.63 0
4 0.8 5 1 3.22 0
5 0.8 1 1 10.6 0
5 0.8 2 1 4.47 0
5 0.8 3 1 2.35 0
5 0.8 4 1 8.27 0
5 0.8 5 1 8.7 0

Figure 5.18: Compressed images of above watermarked Lena with qualities 20%,
10% and 5%
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Table 5.14: PSNR on watermarked image with Gaussian noise on top
Freq 0 Dist 0 Freq 1 Dist 1 PSNR BER

1 0.7 1 1 3.73 0
1 0.7 2 1 0.5 0
1 0.7 3 1 -0.18 0
1 0.7 4 1 0.07 0
1 0.7 5 1 7.52 0
2 0.7 1 1 4.37 0
2 0.7 2 1 14.28 0
2 0.7 3 1 11.23 0
2 0.7 4 1 1.06 0
2 0.7 5 1 -0.13 0
3 0.7 1 1 5.36 0
3 0.7 2 1 5.82 0
3 0.7 3 1 6.32 0
3 0.7 3 1 12.89 0
3 0.7 4 1 2.93 0
4 0.7 5 1 5.76 0
4 0.7 1 1 6.37 0
4 0.7 2 1 7.06 0
4 0.7 3 1 0.12 0
4 0.7 4 1 1.39 0
5 0.7 5 1 2.04 0
5 0.7 1 1 0.01 0
5 0.7 2 1 5.15 0
5 0.7 3 1 8.18 0
5 0.7 4 1 3.02 0

Table 5.15: Bit error rate and PSNR in JPEG compressed signal
Freq 0 Dist 0 Freq 1 Dist 1 Qual PSNR BER

1 1 2 1 90 41.68 0
1 1 2 1 80 35.56 0
1 1 2 1 70 33.73 0
1 1 2 1 60 30.97 0
1 1 2 1 50 29.80 0
1 1 2 1 40 28.75 0
1 1 2 1 30 26.99 0
1 1 2 1 20 24.95 0
1 1 2 1 10 21.79 0
1 1 2 1 5 16.68 25%
1 1 2 1 3 12.30 50%
1 1 2 1 1 11.11 75%
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Table 5.16: Bit error rate and PSNR in JPEG compressed signal
Freq 0 Dist 0 Freq 1 Dist 1 Qual PSNR BER

1 0.9 2 1 90 41.67 0
1 0.9 2 1 80 35.67 0
1 0.9 2 1 70 33.66 0
1 0.9 2 1 60 30.87 0
1 0.9 2 1 50 29.69 0
1 0.9 2 1 40 28.53 0
1 0.9 2 1 30 26.91 0
1 0.9 2 1 20 25.08 25%
1 0.9 2 1 10 21.62 0
1 0.9 2 1 5 16.67 50%
1 0.9 2 1 3 12.32 50%
1 0.9 2 1 1 11.14 50%

Table 5.17: Bit error rate and PSNR in JPEG compressed signal
Freq 0 Dist 0 Freq 1 Dist 0 Qual PSNR BER

1 0.8 2 1 90 41.57 0
1 0.8 2 1 80 35.71 0
1 0.8 2 1 70 33.73 0
1 0.8 2 1 60 30.81 0
1 0.8 2 1 50 29.77 0
1 0.8 2 1 40 28.67 0
1 0.8 2 1 30 26.90 0
1 0.8 2 1 20 25.12 0
1 0.8 2 1 10 21.82 0
1 0.8 2 1 5 16.86 50%
1 0.8 2 1 3 12.26 50%
1 0.8 2 1 1 11.24 50%
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Table 5.18: Bit error rate and PSNR in JPEG compressed signal
Freq 0 Dist 0 Freq 1 Dist 1 Qual PSNR BER

1 0.7 2 1 90 41.99 0
1 0.7 2 1 80 36.09 0
1 0.7 2 1 70 33.68 0
1 0.7 2 1 60 30.80 0
1 0.7 2 1 50 29.79 0
1 0.7 2 1 40 28.60 0
1 0.7 2 1 30 26.79 0
1 0.7 2 1 20 24.90 0
1 0.7 2 1 10 21.75 0
1 0.7 2 1 5 16.85 50%
1 0.7 2 1 3 12.46 50%
1 0.7 2 1 1 11.32 50%



Chapter 6

Conclusions

We focused on employing zero assigned perfect reconstruction filter banks in audio

and image watermarking. The algorithms proposed here offer several advantages

over the previous methods. The following are the advantages and main contribu-

tions of our algorithms:

(i) The fundamental difference of our work from the previously proposed wavelet

based watermarking algorithms is that the watermark is synthesized by using two

alternative filter banks.

(ii) The keys required by a legal authority to decode the watermark do not de-

mand large storage space. In fact the only keys needed are maximum allowable

filter bank delay, n0, assigned zeros to the filter banks, z0 and z1, and the stage

number, L. In the image watermarking case, the root locations matrix is an

additional key. In audio watermarking scheme, the notch filter properties may

additionally be needed. Also note that, the filter banks, FB0 and FB1, can be

constructed solely based on information, z0, z1, and n0.

(iii) In both audio and image watermarking, the watermark consists of a built-in

compression scheme. In case where the watermarked signals are transmitted, this

has the advantage of being efficient in bandwidth requirement.

91
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(iv) In detection, neither the original input signal nor the original watermark

is needed. Hence this defines a blind watermarking algorithm and eliminates the

deadlock issue in similarity based ownership claims.

(v) Unless the filters used in encoding the watermark are available to a pirate,

which is highly improbable, our methods are safe against estimation type of at-

tacks.

(vi) Under white Gaussian noise, the proposed algorithms improve PSNR prop-

erties in comparison to many previously defined methods. Also under JPEG

compression attack the image watermarking algorithm performs better than the

previously defined methods.

We continue to explore more efficient watermarking schemes both for audio and

image signals. The main shortcoming of audio watermarking algorithm is that

the method is quite fragile against MPEG compression. Though the extension of

the zero tree approach of the image watermarking method is implemented in the

audio case, it is observed that no significant improvement takes place.

For image watermarking algorithm one shortcoming is that the amount of bits

that can be embedded is limited. Number of bits to be embedded increases by ei-

ther using a larger image or partitioning the input into smaller frames. However,

partitioning the input image smaller than 128 × 128 subblocks results in more

fragile schemes with a three stage decomposition structure. This is because the

size of the 3rd stage detail image decreases in size. Consequently, in most cases,

a zero tree can not be constructed since no root coefficient and its descendants

satisfy the condition of a zero tree.

Future work includes the design of an audio watermarking algorithm that is more

robust against MPEG compression attack. The image watermarking algorithm

needs to be modified in order to embed a larger amount of information. A pos-

sible technique to obtain more zero tree coefficients in smaller frames may be to
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change the construction of the zero tree. A variation of the method described in

[10] may be used in order to change the zero tree condition.
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