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Prof. Dr. Özgür Ulusoy (Advisor)

I certify that I have read this thesis and that in my opinion it is fully adequate,

in scope and in quality, as a thesis for the degree of Master of Science.

Asst. Prof. Dr. İbrahim Körpeoğlu
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Approved for the Institute of Engineering and Science:

Prof. Dr. Mehmet B. Baray
Director of the Institute

ii



ABSTRACT

CLUSTER BASED COLLABORATIVE FILTERING
WITH INVERTED INDEXING

Özlem Nurcan Subakan

M.S. in Computer Engineering

Supervisor: Prof. Dr. Özgür Ulusoy

August, 2005

Collectively, a population contains vast amounts of knowledge and modern

communication technologies that increase the ease of communication. However,

it is not feasible for a single person to aggregate the knowledge of thousands

or millions of data and extract useful information from it. Collaborative infor-

mation systems are attempts to harness the knowledge of a population and to

present it in a simple, fast and fair manner. Collaborative filtering has been suc-

cessfully used in domains where the information content is not easily parse-able

and traditional information filtering techniques are difficult to apply. Collabora-

tive filtering works over a database of ratings for the items which are rated by

users. The computational complexity of these methods grows linearly with the

number of customers which can reach to several millions in typical commercial

applications. To address the scalability concern, we have developed an efficient

collaborative filtering technique by applying user clustering and using a specific

inverted index structure (so called cluster-skipping inverted index structure) that

is tailored for clustered environments. We show that the predictive accuracy

of the system is comparable with the collaborative filtering algorithms without

clustering, whereas the efficiency is far more improved.

Keywords: Collaborative filtering, recommender systems, clustering, inverted

files, performance evaluation.
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ÖZET

EVİRİLMİŞ DİZİN YAPILI VE TOPAKLAMA TEMELLİ

İMECELİ SÜZGEÇLEME

Özlem Nurcan Subakan

Bilgisayar Mühendisliği, Yüksek Lisans

Tez Yöneticisi: Prof. Dr. Özgür Ulusoy

Ağustos, 2005

Çağımız toplumları, iletişimi kolaylaştıran büyük ölçekli bilgi ve çağdaş teknolo-

jilere sahiptirler. Ancak, bir şahsın çok büyük miktarlardaki verileri tek başına

kümeleyip bu verilerden yararlı bilgiler elde etmesi olanaklı değildir. İmeceli

bilgi sistemleri bir toplumun bilgilerini basit, hızlı ve adil bir şekilde bir araya

toplama çabalarının bütünüdür. İmeceli süzgeçleme, bilgi kaynağının kolayca

ayrıştırılamadığı ve geleneksel bilgi süzgeçleme tekniklerinin uygulanmasında zor-

luklarla karşılaşıldığı alanlarda başarıyla uygulanmaktadır. İmeceli süzgeçleme,

kullanıcılar tarafından oylanan bir madde değerlendirme veri tabanı üzerinde

çalışmaktadır. Bu yöntemlerin işlemsel karmaşıklıkları tipik ticari uygulamalarda

milyonları bulabilecek kullanıcı sayısına doğrusal orantılı olarak artmaktadır. Bu

tür ölçeklenirlik kaygılarını ortadan kaldırmak için, kullanıcı topaklaması uygu-

layan ve topaklanmış ortamlara uydurulmuş belirli evirilmiş dizin yapısında olan

(topak atlamalı evirilmiş dizin yapısı da denebilir) verimli imeceli süzgeçleme

tekniğini geliştirdik. Bu sistemin öngörücü doğruluğunun topaklama uygu-

lanmayan imeceli süzgeçleme algoritmalarıyla aynı ölçekte olmasına rağmen

verimliliğinin çok daha iyileştirilmiş olduğunu gösterdik.

Anahtar sözcükler : İmeceli süzgeçleme, tavsiye sistemleri, topaklama, evirilmiş

sistemler, başarım analizi.
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Chapter 1

Introduction

Recent years have brought about the exponential growth of the volume of ev-

eryday things with the developments in science and technology. The number of

products, news, movies, music, books, and the flow of papers is incredibly huge.

We are truly in an “information age”. People are overwhelmed when browsing

through today’s information ocean and could not possibly filter through the items

in order to select the ones they actually want and need. Which papers should

I read to learn about that area? Which movies should I watch? Which books

should I buy? People handle this information overload through their own effort.

They take into account the recommendation of other people for movies, CDs,

books, music, etc. by the word of mouth, by reviews, by surveys, etc. However

with the explosive growth of the information, this way of filtering becomes less

and less a factor. As the world becomes more digital and interactive, more and

more options will become available. We then will need much more time and effort

than we can dedicate in order to face this information process.

1



CHAPTER 1. INTRODUCTION 2

The field of information filtering, in general terms, attempts to automate this

process by supporting people by recommending the items they would really want

and need and eliminating the things that they do not want to be bothered with.

Currently, the application domain of recommendation is also very wide:

news [6], research papers [29], music [36], radio [20], movies [30], Web pages [41],

jokes [19], etc.

1.1 Common Methods to Handle Information

Overload

Currently, there are three different techniques commonly used to tackle the infor-

mation overload challenges: Information Retrieval (IR), Content Based Filtering

(CBF) and Collaborative Filtering (CF).

1.1.1 Information Retrieval

“Information retrieval is the art and science of searching for infor-

mation in documents, searching for documents themselves, search-

ing for metadata which describes documents, or searching within

databases, whether relational stand alone databases or hypertext net-

worked databases such as the Internet or intranets, for text, sound,

images or data.” 1

1http://en.wikipedia.org/wiki/Information retrieval
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In that sense, IR focuses on allowing users to express queries, and then se-

lect the items that match a topic of interest. Internet search engines such as

Google [18] and Yahoo! [42] are popular information retrieval systems. With the

exponential expansion of the Internet, such search engines may return millions

of pages for one keyword search. Each year, journals, conferences and magazines

report on thousands of researches. Intrinsically, retrieving the most relevant in-

formation from the Web is still difficult.

1.1.2 Content Based Filtering

This is the common and obvious technique used in this domain and also called

information filtering. The filter selects the items for the user’s consumption based

upon the correlations between the syntactic and semantic content of the items and

the user’s preferences. In content based filtering, the items must be in machine

parse-able form, or features must have been assigned to the items manually. In

that sense, application domain is restricted. System Lira which recommends Web

pages is an example of content based filter [4].

1.1.3 Collaborative Filtering

Collaborative filtering is a popular technique for information overload which has

been developed over the past decade. It works over a database of ratings for items

by users. It is based on the collaboration among the users, ideally like-minded

users. Therefore, collaborative filtering is also called social filtering. There are

generally two cases: It either provides prediction for some item or outputs a

recommendation (suggestion) list for some user based on the similarities between
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user rating histories. The logic behind collaborative filtering based systems is that

each user belongs to a community of like-minded people; hence the items favored

by these users can be used to form predictions or suggestions. A collaborative

filtering based system maintains a user profile database, which records each user’s

interests (positive and negative) in specific items. Then it compares the active

user’s profile to all the other profiles and weighs each profile for its degree of

similarity with the active user’s profile. Finally, the system considers a set of

the most similar profiles and uses information contained in them to recommend

items to the users. Collaborative filtering has been successfully used in domains

where the information content is not easily parse-able and traditional information

filtering techniques are difficult to apply [32].

1.2 Motivation

As we have discussed above, the main task in collaborative filtering systems is

defining a peer group and predicting the votes for the active user effectively and

efficiently. When a collaborative filtering system just starts, there does not exist

enough ranking data and it is hard to find the peer groups, so the accuracy of the

recommendation will not be good. After some time, when the database becomes

bigger, the efficiency of the system is influenced since the collaborative filters need

more time to scan the database to find the like-minded people. Therefore, the

major challenges for collaborative filtering are the effectiveness and the efficiency.

This thesis presents cluster based collaborative filtering with inverted indexing

and a hybrid approach that combines collaborative filtering with content based

filtering by a two-stage clustering based on first the attributes of the items to



CHAPTER 1. INTRODUCTION 5

be recommended and then the users’ profiles. Our approach is better than the

current social filters in terms of efficiency and it shows comparable accuracy.

The contributions of this thesis are as follows:

• We improve the efficiency of collaborative filtering by applying user cluster-

ing and using a specific inverted index structure (so called cluster-skipping

inverted index structure), that is tailored for clustered environments. We

show that the predictive accuracy of the system is comparable with the

collaborative filtering algorithms without clustering, whereas the efficiency

is far more improved.

• We present a hybrid filter which combines content based filtering with col-

laborative filtering by a two-stage clustering, i.e., first clustering the items

and then imposing user clusters on top of these item clusters. Although

clustering has been applied for users and items in previous works [39], and

inverted index structure for collaborative filtering has been adopted in a

nonclustered environment in a very recent work [14] separately, we are not

aware of any other studies that combine user clustering with an inverted

index structure.

• We choose our application domain as movie recommendation systems. Ex-

perimental results demonstrate the capabilities of the proposed technique

and its potential for immediate application. A prototype of the system,

namely MoRec, is currently in use.
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1.3 Overview of the Thesis

The remainder of the thesis is organized as follows. In Chapter 2, we discuss pre-

vious research in this area. In Chapter 3, we describe cluster based collaborative

filtering with inverted indexing and hybrid filtering. In Chapter 4, we provide

the experimental settings, and present the results for the proposed approaches.

In the last chapter, we detail possibilities for future work for the system and for

recommendation systems in general, and present our conclusions.



Chapter 2

Background and Related Work

The concept of collaborative filtering descends from the work in the area of in-

formation filtering. The term collaborative filtering was introduced by Goldberg

et al. [17] who published about collaborative filtering techniques in the filtering

of information. They developed a system called Tapestry for filtering emails.

Tapestry accepted the ratings or annotations of the users for the items, in this

case electronic documents such as emails and Netnews. As users read documents

they attach annotations to the documents. The filters that search the annotations

were however constructed by the user, using complex queries. The collaborative

filtering provided by Tapestry was not automated and required users to make

complex queries. The query may involve keywords, subject, authors, etc. and

the annotations given by the people. In this system, you still had to know who

the people are with tastes like yourself.

First automated collaborative system was introduced by GroupLens which

provided personalized predictions for UseNet news articles using a neighborhood

7
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based algorithm. It used Pearson correlations to weigh user similarity, used all

correlated neighbors and presented a weighted average of deviations from the

neighbor’s mean as the final prediction [32]. 1

In 1996, interest in collaborative filtering led to a workshop on the topic

at the University of California, Berkeley. The results of this workshop led to

Communications of the ACM special issue on recommender systems, the term

was introduced by Resnick and Varian [33]. Resnick and Varian define a rec-

ommender as a system which accepts user models as input, aggregates them,

and returns recommendations to users. Two early collaborative filtering recom-

mender systems were Firefly and LikeMinds. Firefly evolved from Ringo [36] and

HOMR (Helpful OnlineMusic Recommendation Service) and allows a website to

make intelligent book, movie, or music recommendations 2. Firefly’s underlying

algorithm is now used to power the recommendation engines of sites such as Bar-

nesandNoble.com. LikeMinds was acquired by MacroMedia. Various commercial

sites make use of collaborative based IF, including CDNow.com, reel.com, and

Amazon.com. Another example for collaborative filtering based systems is the

FAB system, which is a Web page recommendation system that computes the

similarity between user profiles to identify the advisors for active users [3]. In

FAB system, Web pages that are highly rated by the advisors are recommended

to the active user. WebWatcher is another example of collaborative filters [27].

After been fed some information, WebWatcher can accompany the users about

which links to take from a Web page on a website based on a short description

of the user’s interest which is learned from the user when entering the site. By

tagging each page the interests of all users who went to this page, the system is

1GroupLens technology is commercially available through Net Perceptions.
2FireFly was initially marketed by Agents Inc., which was later acquired by Microsoft.
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able to compare a user’s interest with this community interest and recommend

whether to follow the link going to that page.

Collaborative approaches constitute the main thrust of current recommender

systems research. Once users are modeled, the process of collaborative filtering

can be viewed operationally as a function which accepts a representation of users

and items as input and returns a recommended subset of those items as output.

Since people’s likes and dislikes are naturally not orthogonal it can be claimed

that collaborative filtering for recommendation is an effective technique.

Although there seems to be an increasingly strong demand for collaborative

filtering techniques, only a few different algorithms have been proposed in the

literature thus far, and there have been limited published results on the rela-

tive performance of various algorithms used in collaborative filtering systems.

Currently, the algorithms can be classified into memory-based and model-based

algorithms [8]. Model-based collaborative filtering algorithms provide item rec-

ommendation by first developing a model of user ratings whereas memory-based

algorithms utilize the entire user-item database to generate a prediction. Model-

based algorithms require more time to train but can provide predictions in shorter

time in comparison to memory-based algorithms. Memory-based algorithms re-

peatedly scan the preference (or profile) database to locate the peer groups for

the active users. A prediction is then computed by weighing the votes of the

users in the peer groups. The people in the peer groups are identified based on

their similarity in preferences to the active user in-memory. Then, different al-

gorithms are employed to provide a prediction or a top-N recommendation list

for the active user. Consequently, these algorithms can be equivalently called



CHAPTER 2. BACKGROUND AND RELATED WORK 10

correlation-based or nearest-neighbor collaborative filters. This structure is dy-

namic and immediately reacts to changes in the user database. Every new rating

added to the user database is included in the neighborhood calculation, since

similarities between users are calculated in memory when needed. Model-based

systems use a probabilistic approach and compute the expected value of a user

prediction, given his/her ratings on other items. In terms of accuracy, model

based algorithms performs as well as memory based ones [8]. These algorithms

do not suffer from memory bottlenecks found in memory based predictions. How-

ever, the inherent static structure of these techniques makes it difficult to update

the model without rebuilding it. The model building process is performed by

different machine learning algorithms such as Bayesian network, clustering, and

rule-based approaches. The Bayesian network model [8] formulates a probabilis-

tic model for collaborative filtering problem. The rule-based approach applies

association rule discovery algorithms to find association between co-purchased

items and then generates item recommendation based on the strength of the as-

sociation between items. The clustering model treats collaborative filtering as

a classification problem [39], and works by clustering similar users in the same

class and estimating the probability that a particular user is in a particular class,

and computes the conditional probability of ratings.

In general terms, clustering is the unsupervised division of data into group

of similar objects. In our case, either people or items or both are grouped into

clusters based on their similarity of interest. Some systems cluster items based on

user rating data [31]. Some others cluster users based on a model; generally com-

pute conditional probabilities of votes for certain items for each cluster, estimate

probability distributions for the active user for being in each cluster, and return

weighted sum of the votes. Also there exist models which cluster both users and
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Figure 2.1: Clustering methods [25]

items together simultaneously without assuming that each user and item should

only belong to a single cluster [37]. Besides, some approaches tend to cluster

the items returned as a result of a user query in an information retrieval system,

which may be called post-retrieval clustering [38].

There are many different ways to express the clustering problem. For instance,

the clusters that are identified may be exclusive, so that every object belongs to

only one group. Or, they may be overlapping, so that one object may fall into

several clusters, or they may be probabilistic, where an instance belongs to each

group according to a probability, or they may be hierarchical, such that there is a

rough division of the objects into clusters at a high level [25]. Figure 2.1 classifies

several clustering methods.

In hierarchical clustering the data are not partitioned into a particular cluster

in a single step. Instead, a series of partitions takes place, which may run from a
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single cluster containing all objects to n clusters each containing a single object.

The end result of the algorithm is a tree of clusters called a dendrogram, which

shows how the clusters are related. By cutting the dendrogram at a desired level,

a clustering of the data items into disjoint groups is obtained. Partitional clus-

tering, on the other hand, attempts to directly decompose the data set into a set

of disjoint clusters. They obtain a single partition of the data instead of a clus-

tering structure, such as the dendrogram produced by a hierarchical technique.

Partitional methods have advantages in applications involving large data sets for

which the construction of a dendrogram is computationally expensive.

The popular clustering algorithms used in this domain are k-nearest neighbor

and k-means. The K-means algorithm is based on a very simple idea: Given a set

of initial clusters, assign each point to one of them, and then each cluster center

is replaced by the mean point on the respective cluster. These two simple steps

are repeated until convergence. A point is assigned to the cluster which is close in

Euclidean distance to the point. It is easy to implement but has two drawbacks.

First, it can be slow since in each step the distance between each point to each

cluster has to be calculated, which can be expensive in the presence of a large

dataset. Second, this method is sensitive to the provided initial clusters. The

goal of k-nearest neighbor clustering method is to simply separate the data based

on the assumed similarities between various classes. It finds the k observations in

the learning set that are closest to some particular item and predicts the class of

that item by majority vote, i.e., chooses the cluster that is most common among

these k neighbors.

Another clustering method is Cover-Coefficient Based Clustering, shortly

C3M. This is a single-pass partitioning algorithm. It creates clusters of items
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that belong to only one cluster each. It chooses a set of seed items that are later

used as centroids, and assigns each non-seed item to a cluster by calculating the

similarity of the document with each centroid. The document is then placed into

a cluster whose centroid is most similar to it [12].

Cover Coefficient, CC is the base concept of the C3M clustering algorithm.

CC concept serves:

1. Identifying the relationships among documents of a database by means of

a matrix, the so-called CC matrix.

2. Determining and calculating the number of clusters that a document

database will have.

3. Selecting cluster seeds using a cluster seed power.

4. Forming clusters with respect to C3M, by applying the concepts 1-3.

5. Correlating the relationships between clustering and indexing.

During clustering and query/user cluster matching, based on the attribute val-

ues, the distances between the objects have to be determined. For this purpose,

several distance measures, i.e., metrics on the feature space are used to evaluate

the similarity of the patterns. Some of these measures are Euclidean distance,

Manhattan distance, Mahalanobis distance, cosine coefficient, Dice Coefficients,

Jaccard Coefficient, Hamming distance, Pearson Correlation Coefficient and vec-

tor similarity as illustrated in Figure 2.2 .

The cosine coefficient, Pearson correlation and the Euclidean distance are the

measures that have been commonly used. They work well when the data set has
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Figure 2.2: Similarity measures [25]

compact or isolated clusters [38]. One way of computing the similarity between

two items is to treat each item as a vector in the space of users and use the

cosine measure between these vectors as a measure of similarity. Formally, if R

is the n×m user-item matrix, then the similarity between two items x and y is

defined as the cosine of the n dimensional vectors corresponding to the xth and

yth column of matrix R. The cosine between these vectors is given by

sim(x, y) = cos (~x, ~y) =
~x · ~y

‖~x‖
2
· ‖~y‖

2

(2.1)

The most common measure for calculating the similarity is the Pearson cor-

relation algorithm. Pearson correlation measures the degree to which a linear

relationship exists between two variables. The Pearson correlation between users

a and i is defined as in [8]

w(a, i) =

∑

j(va,j − v̄a)(vi,j − v̄i)
√

∑

j(va,j − v̄a)2
∑

j(vi,j − v̄i)2

(2.2)
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where va : profile for user a (all votes of user a)

va,j : user a’s vote for item j

v̄a : mean value of the votes for user a

j : index that runs over all intersecting items in two profiles, i.e.

j ∈ {va ∩ vi}.

Once clusters are created, recommendations are produced, which can be of

two types, given a set of ratings for that user and other users in the system.

Prediction is a numerical value expressing the predicted score of the item for the

active user. Recommendation list is a list of N products that the system believes

the user will like the most. Simply, a prediction system can be extended to pro-

vide recommendations by predicting the user’s ratings for all items that have not

yet been rated and returning the top-rated items. There are several prediction

algorithms in the literature. SWAMI, a research conducted for collaborative fil-

tering algorithm development at University of California, Berkeley, exploits three

prediction algorithms, namely a Pearson correlation-based method, the support

vector method, and a scalable Pearson correlation-based method that uses cluster-

ing to improve scalability and accuracy [16]. Correlation-based prediction is one

of the mostly used methods in collaborative filtering applications. The underly-

ing idea in correlation-based method is to compute a user’s predicted rating of

an item as a weighted average of the ratings given to that item by other users.

Rather than sum over all of the users in the system to generate the prediction, the

algorithm [32] only considers the neighborhood of users who are well correlated

with the current users. This is more efficient, since the average is computed over

a much smaller set of values, and more accurate, since the votes of potentially
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large numbers of poorly correlated users do not affect the current user [22]. Sup-

port vector method views the prediction problem as a classification task. It uses

existing users to identify voting classes, and then uses these classes as a basis for

prediction. In order to overcome the scalability problems with Simple Pearson

method, the users are clustered according to their correlation level. Hence, the

clusters can be used to find out the neighbors of a specified user. As clustering

algorithm, a method similar to k-means algorithm is used. K-means algorithm

requires a distance metric between points, however it is not possible to provide

a metric value for correlations between users. Therefore, in each iteration the

center is determined by finding the user that has the best overall correlation with

all the other users in the cluster. The main advantage of Clustered Pearson is

improved scalability. However, on the other hand, the method requires a long

off-line training time to improve scalability. And also, using k-means algorithm

causes instability due to randomized initial cluster selection and due to undefined

k value, the number of clusters [16].

For faster calculation of predictions, some approaches adopt disk based in-

verted file structures [14]. Coster et al. have two reasons for this. Firstly,

matching user profiles in a collaborative filtering system can be very expensive.

Secondly, if all user preferences stored can be accessed directly from disk it is

possible to maintain a much larger set of users and titles. Actually the reason

for using inverted file search in this domain is that a user query contains a small

percentage of the total number of the items in the document collection. Here

a user’s votes for items can be seen as a document. Accumulators are stored

in main memory during the scan of each inverted list, for holding partial sums

of votes. For calculating the similarities between the active user and all other

users, several correlation methods are employed. One of them is Simple Pearson
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algorithm which is also used in [16]. Another algorithm is extended Pearson

algorithm, which uses Inverse User Frequency (IUF). The more the number of

votes that a title has, the lower weights it is assigned. This is due to the assump-

tion that the titles that are rated by many users are less useful in capturing the

similarity between two users. In addition to these, Default Voting (DEF) is used

in experiments. The idea is to assign default votes for the titles that have not

been rated by both users. The value of the default vote depends on the system.

Hence, the similarity is calculated by using all the titles. As a fourth method,

Default Voting is extended by Inverse User Frequency (DEFIUF). For speeding

up the algorithm, some early termination heuristics, such as Quit and Continue,

are also used.

Collaborative filtering recommendation systems are evaluated using different

metrics with different data sets. Breese et al. evaluate their algorithm for three

different data sets: i) MS Web, the data set capturing the individual visits to

various areas of the Microsoft corporate web site. ii) Television data set using

Neilsen network television viewing data for people. iii) EachMovie explicit voting

system for movie database. For prediction of some specific item x, in order to

judge the effectiveness they look at the average absolute deviation of the predicted

vote to the actual vote on items on which the users in the test set have actually

voted. These scores are then averaged over all the users in the test set of users

as in the GroupLens project. For top-N recommendation list, they estimate the

expected utility of a particular ranked list to a user. The expected utility of a

list is the probability of viewing a recommended item times its utility. In this

analysis, they set the utility of an item as the difference between the vote and

the default vote in the domain.
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SWAMI uses EachMovie data set for experimentation. To examine the ef-

ficiency and effectiveness, SWAMI has three metrics: The first is the mean

absolute error, already in common use in the literature, where the error is

the absolute value of the differences between the actual vote and the pre-

dicted vote. This measures the accuracy of the prediction algorithm. The

second metric is the variance of the mean absolute error, which measures how

reliable the prediction algorithm is. The third metric, weighted mean, aims

at measuring how well the prediction algorithm does on the “harder” movies

to predict, movies with high vote variance. The weight given to a movie is

| true user vote − mean user vote |. The weight is higher for movies that

are far from the user’s mean. Thus, the formula for the weighted mean is

| (true user vote − mean user vote) ∗ (true user vote − predicted user vote) |.

Ungar et al. experiment their system on both synthetic data and real data

from Purchase CDNow. They test their system on CDNow’s customers by sending

email recommendations of new artists. They claim that the automated system

resulted in doubling of the purchase rate.

Herlocker et al. use MovieLens data set for experimentation. They consider

three metrics for evaluation. Coverage is a measure of the percentage of the items

for which a recommendation system can provide predictions. They compute the

coverage as the percentage of the items over all users for which a prediction was

requested and the system was able to provide a prediction. To assess the accuracy,

they compute both mean absolute error and root mean squared error as statistical

accuracy metric, and ROC (receiver operator characteristic) sensitivity as the

decision support accuracy metric. ROC measures the sensitivity and specificity

of the test. Sensitivity is the probability of a randomly selected recommendable
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(good) item being accepted by the filter, whereas specificity is the probability of

a randomly selected bad item being rejected by the filter.

Although collaborative filtering based systems have been successful in several

domains, they still possess some problems such as:

Sparsity: One of the biggest problems is the extreme sparsity of the data. Con-

sider that there may be thousands of users, several million items. However,

each user may rate only a dozen of items, giving a highly sparse data. So,

there will be a real problem in obtaining a large amount of data about any

item or user with such little data.

Cold start: The sparsity problem can be difficult to overcome after users have

made a large number of recommendations; however it is even harder to

overcome when the system has just been started and there are no user

recommendations at all.

New item: Similarly, a new item that has not had many ratings also cannot

be easily recommended. New item problem can be handled by content

information gathered by inferring the similarities between existing items

and the new item [35]. Näıve Bayes text classifier applied to person/actor

data is used. For each person a separate näıve Bayes classifier is trained

so no collaborative information is used. The model is trained with Laplace

smoothing. All movies in the data set should be rated. Such hybrid recom-

mendation systems which combine content-based and collaborative filtering

can help the new item problems [35].

Scalability: The other major problem affecting most of the recommender sys-

tems is their ability to scale up to large systems. With millions of items and
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users a typical recommender system will suffer serious scalability problems.

Gray sheep: In a small or medium community of users, there are individuals

whose opinions do not agree or disagree with a group of people. These users

will rarely receive accurate predictions even after initial start up phase for

the user and the system.

On the other hand, in content-based techniques, the user model includes infor-

mation about the content of items of interest, e.g., whether these are web pages,

movies, music, or anything else. The items of interest are defined by their associ-

ated features. Using these items as a basis, the technique identifies similar items

that are returned as recommendations. A content-based recommender learns a

profile of the user’s interests based on the features present in objects the user

has rated. Schafer et al. call this item-to-item correlation [34]. The type of user

profile derived by a content-based recommender depends on the learning method

employed. Decision trees, neural nets, and vector-based representations have all

been used.

In content based systems, the first step is to gather content data about the

items. For example book title, author, description etc. for the books or the direc-

tor, cast etc. for the movies are some of the common content information. Most

systems use information extraction techniques to extract these data, and infor-

mation retrieval techniques to retrieve the relevant information [3]. Web crawlers

collecting data on the web are common tools in this step. Secondly, user ratings

are collected. Then using the using ratings together with the content information,

user profiles are compiled. Finally, unrated items’ contents are compared with

the user profiles and scores are assigned according to the degree of similarity.
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Content based techniques might prove highly suitable for users who have spe-

cific interests and who are looking for related recommendations. Many machine

learning techniques have been applied to this problem. Some researchers working

on these, such as Chen and Norcio [13] and Jennings and Higuchi [26] have mod-

eled users with the application of neural network methodology. NewsWeeder [28] ,

NewsDude [7] also belong to the category of content-based recommender systems.

However, content based filtering has limitations too:

• Either the items must be of machine parse-able form or attributes must be

assigned to the items by hand.

• This technique recommends more of what the user has already seen before,

i.e. it has no inherent method to generate serendipitous recommendations.

• Content-based techniques also have a start-up problem in that they must

accumulate enough ratings to build a reliable classifier.

In light of these issues, we aim an efficient and effective solution for informa-

tion overload which overcomes as many problems stated as possible. We present

collaborative filtering with inverted indexing using either C3M or K -Means clus-

tering algorithms and enhance the filtering process by adding the content in-

formation in a two-stage clustering strategy. Experiments and results show the

achievements.



Chapter 3

Methodologies

The approaches we use for handling information overload consist mainly of two

dominant research paradigms: content based filtering and collaborative filtering.

A pure content based filter recommends items based solely on a profile built up

by analyzing the content of the items that a user has rated [3]. Content based

filters are less affected by the mentioned problems of the pure collaborative filters

because they use techniques that apply across all documents. For example, a

filter that predicts high rating for movies with the word “Jedi” in their plot

summaries or with the genre “Action” can give the prediction before anyone has

watched the movie. Despite these strengths, content based filters alone can prove

ineffective. These techniques can have difficulty in deciding between high quality

and low quality information on the same theme. Also, as the number of items

increases, the number of items in the same content based category increases too,

further decreasing the effectiveness of these filters. Collaborative filtering exploits

the speed of computers with the intelligence of the people. Collaborative filters

correlate the ratings of a user with those of other users to determine how to make

22
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future predictions for the rater. As well, these filters share the ratings with other

users so they can use them in giving their own votes.

In light of these, we first introduce a cluster based collaborative filtering tech-

nique with a specific inverted index structure to improve the efficiency of the

collaborative filtering. We then describe a hybrid filter approach exploiting col-

laborative filtering added with content information with this inverted indexing,

cluster-skipping inverted index structure (CS-IIS), for further improvement in

performance. We evaluate the performance of our collaborative and hybrid filter-

ing approaches with a previously proposed technique, collaborative filtering with

inverted indexing [14].

3.1 Cluster Based Collaborative Filtering with

Cluster-Skipping Inverted Index Structure

Collaborative filtering is probably the most familiar, most widely implemented

and most mature of the technologies in recommendation systems. Collaborative

filters aggregate ratings of items, recognize the cohesion between users on the

basis of their votes for items, and generate new ratings (predictions) based on

inter-user similarities.

The greatest strength of collaborative filters is their applicability to all do-

mains of rating data being completely independent of any machine parse-able

representations of the items to be recommended. However, it is still challenging

to improve the efficiency and the accuracy of the collaborative filters. On this
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basis, we try to improve the performance of the collaborative filtering method-

ology by combining it with clustering algorithms. For comparative purposes, we

work on both K-means clustering algorithm, which is one of the mostly used al-

gorithms in this area, and Cover-Coefficient Based Clustering, shortly C3M, due

to its comparable efficiency [12]. Furthermore, we use a cluster-skipping inverted

index structure (CS-IIS) [11], a recently proposed file structure for clustered data

sets, for improving efficiency by reducing in-memory computation costs. We im-

prove the scalability of the collaborative filtering technique using these approaches

altogether.

Our approach involves a clustering phase of the users according to their cor-

relation in the ratings for the items. Clustering is done by either C3M or K -

means. In the search strategy, i.e., cluster-based retrieval (CBR), a two-stage

query processing is performed. The queries are first compared with the clus-

ters, or more accurately, with cluster representatives called centroids. Detailed

query-by-document comparison is performed only within selected clusters. So,

the first stage is selecting the best correlated clusters of a user profile, and the

second stage is selecting the best correlated neighbors from these best correlated

clusters. Best matching clusters are found by using the previously computed

centroids. An inverted index file is also created for the centroids. Then a cluster-

skipping inverted index structure is exploited to find the best matching users

among the best matching clusters to the given query profile. During this stage,

two alternatives can be applied, either all users of the best matching clusters are

searched, or only the centroids of the clusters are considered to be the best cor-

related “virtual” users. We use Simple Pearson correlation (see Equation 2.2) to

decide on the degree of similarity in both stages. A comprehensive example for

illustrating our filtering methodology is also provided later. After the formation
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of the neighborhood, the final step in the methodology is providing the prediction

considering the degree of correlation of the neighbors and the ratings given for

the items by these neighbors, specifically movies. We use a correlation based

method which is the most popular prediction technique in collaborative filtering

applications. It was originally used in the GroupLens project [32]. The basic idea

is to compute a user’s predicted rating of an item as a weighted average of the

ratings given to that item by other users. Specifically, prediction pu,x for user u

on item x is given by [16]:

pu,x = µu + κ
∑

i6=u

wu,xvi,x − µu (3.1)

where wu,i : similarity between user u and i

vi,x : user i’s vote for item x

µu : user u’s mean vote

v̄a : mean value of the votes for user a

κ : appropriate normalization factor

i : index that runs over selected neighbors in the system
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3.1.1 Clustering Techniques

3.1.1.1 K -Means

K -means clustering algorithm is the simplest and the most popular clustering

algorithm by far. This main-memory algorithm is based on a very simple idea.

Given a set of initial clusters, assign each point to one of them, then each cluster

center is replaced by the mean point of the respective cluster. These two simple

steps are repeated until convergence. A point is assigned to the cluster which is

the closest - according to a distance measure - to the point [25].

For a simple example, suppose we have five points as in Figure 3.1 and want

to have k=2 clusters. Suppose we assign the points 1, 2, 3, 4 and 5 in that order

for k=2. Then the points 1 and 2 are assigned to the cluster 1 and cluster 2

respectively, and become their centroids initially.

Figure 3.1: Example of a k-means clustering

Now we consider the points. Suppose point 3 is chosen and it is closer to point

1 than to point 2, so 3 goes to cluster 1. The centroid of that cluster changes to

c1. Now suppose we are to assign 4, and 4 is closer to point 2 than to c1. So,
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it is joined to the cluster 2 and the centroid of that cluster moves to c2. The

remaining point 5 is closer to c1 than to c2, therefore goes to cluster of c1. The

final situation is clusters {1, 3, 5} and {2, 4} with centroids c3 and c2, respectively.

The reasons for the popularity of this algorithm are [25]:

• It is easy to implement.

• Its time complexity is O(nkm), where n is the number of points/items, k

is the number of clusters and m is the number of iterations taken by the

algorithm to converge. Typically, k and m are fixed in advance and so the

algorithm has linear time complexity in the size of data set.

• Its space complexity is O(n + k).

• It is order independent, i.e. for a given initial seed set of clusters, it gener-

ates the same partitioning of the items independent of the order in which

the points/items are presented to the algorithm.

However, in the presence of a large data set, it can be slow since in each

iteration the distance between each point to each cluster has to be calculated.

Moreover, this algorithm is sensitive to the selection of the initial seed set. The

number of clusters, k, should be given to the algorithm.

Several variants of the k-means algorithm have been described in the litera-

ture [2]. Some of these methods attempt to select a good initial partition so that

the algorithm is more likely to find the global minimum value. Another variation

is to permit splitting and merging of the resulting clusters. Typically, a cluster is

split when its variance is above a specified threshold, and two clusters are merged
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when the distance between their centroids is below another specified threshold.

Using this variant, it is possible to obtain the optimal partition starting from any

arbitrary initial partition, provided that proper threshold values are specified [5].

Our k-means implementation uses a correlation based method. In the simple

k-means algorithm, a metric is required to calculate the distance between points,

however it is not possible to provide a metric value for correlations between

users in collaborative filtering. Therefore, we use a Pearson correlation method

formulated in Equation 2.2 for calculating neighbors.

3.1.1.2 Cover Coefficient based Clustering

In our methodology, as an alternative to popular k-means algorithm, we use C3M

which was shown to have many desirable properties for a clustering algorithm

with respect to other algorithms in the literature. This clustering method can be

used in dynamic environments incrementally for cluster maintenance [10]. This

method models the document collection in a vector space. Here a document

collection is represented by a document matrix D, of size mxn, where m is the

number of documents and n is the number of terms. An example D matrix is

given in Figure 3.2.

In the example, the terms t2, t4 and t6 appear in document d1. In our domain,

documents correspond to the users and terms correspond to the items, specifically

movies. The number of clusters is determined by using the cover coefficient

concept, CC [12]. For an m by n document matrix, this number, nc and the
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Figure 3.2: Example of a D matrix

average cluster size dc are specified as follows:

1 ≤ nc ≤ min(m,n) ; max(1,m/n) ≤ dc ≤ m. (3.2)

C3M maps the document matrix D to a cover coefficient matrix C of size m

by m by using a two-stage probability calculation. This C matrix represents the

relationships among the documents in the database. To illustrate this concept we

summarize the calculation of c12. According to the D matrix, d1 contains three

terms {t2, t4, t6}. According to the two-stage probability model, to calculate cl2

we must first randomly select each one of the terms of d1, and then try to select

d2, from the outcome (term) of the first stage. At the first stage, if we select t2

or t6, then d2 has a chance of 1

2
. However, if t4 is selected at the first stage, then

the probability of selecting d2 at the second stage is 1

4
. This is because t2 and

t6 appear in d1 and d2. On the other hand, t4 appears in d1, d2, d3and d5 . At

the first stage, the probability of selecting each element of {t2, t4, t6} from d1 is 1

3
,

and for the rest the probability is 0 (i.e., no term in {t1, t3, t5} appears in d1). If

we denote the probability of selecting document di from term tk at the first stage

with pik and similarly denote the probability of selecting document dj from term

tk at the second stage with p′
jk, then c12 can be given as follows 3.3:



CHAPTER 3. METHODOLOGIES 30

c12 =
6

∑

k=1

p1k × p′
2k =

1

3
×

1

2
+

1

3
×

1

4
+0× 0+0×

1

2
+

1

3
×

1

2
+0× 0 = 0.42 (3.3)

Some of the documents are chosen as cluster seeds and other documents are

assigned to the clusters initiated by the seed documents. For clustering process,

C3M does not need the entire C matrix. The diagonal entries of C matrix are

used to find the number of clusters, nc, and the cluster seeds. In order to assign

a non-seed document di to a cluster, the relationship between di and the seed

document dj is determined by calculating the cij entry of C, which shows the

extent with which di is covered by dj. Hence, only (m + (m − nc) ∗ nc) entries

of the total m2 entries of C matrix are required. This is actually a small value

compared to m2, since nc � m. A brief description of the algorithm is given in

Figure 3.3. A thorough discussion and complexity analysis of C3M are available

in [12].

Algorithm 1: C3M

1: Determine the cluster seeds of the database.

2: i = 1

3: repeat; /* construction of clusters */

4: if di is not a cluster seed then

5: Find the cluster seed (if any) that maximally covers di if there is more than one

cluster seed that meets this condition, assign di to the cluster whose seed power

value is the greatest among the candidates.

6: i = i + 1

7: until i ≥ m

8: If there remain unclustered documents, group them into a ragbag cluster (some

nonseed documents may not have any covering seed document).

Figure 3.3: C3M [12]



CHAPTER 3. METHODOLOGIES 31

The algorithm has been shown to satisfy some important characteristics. Clus-

ters produced are stable, i.e., small errors in the description of the documents lead

to small changes in the clustering. The algorithm is independent of the order of

the documents and so generates a unique classification. Extra data structures

needed for the implementation of the algorithms require a very small memory

space. The algorithm distributes the documents evenly among the clusters, i.e.,

it does not generate a few fat clusters and many singletons. Also, it does not

require nc to be pre-specified, but obtains it inherently.

3.1.2 File Structures

3.1.2.1 Inverted File Search Algorithm

In the basic inverted indexing, for each query term, corresponding inverted list

is scanned [40]. During this scan, accumulators are stored in main memory for

holding partial sums of ratings for items. In our case, partial sums will be the

partial similarities between the active user and the other users. After process-

ing all inverted lists, weight arrays such as containing normalization factors are

combined with the complete accumulators to produce the final score for a user.

To apply inverted search to correlation, we use the partial accumulators method

proposed by Coster et al. [14] and keep three different accumulator structures

in-memory for Equation 2.2: one for the sum in the nominator, and two for the

sums in the denominator. Figure 3.4 elucidates the algorithm of Coster et al. for

neighborhood calculation of collaborative filtering with inverted indexing.
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Algorithm 2: Inverted correlation neighborhood search

Input is the user profile va, max number of neighbors K and array of means MEANS.

Output is array of nearest neighbors.

1: Allocate accumulators SAI, SAA and SII of size N .

2: Allocate array TOP of size K for nearest neighbors.

3: for all j ∈ va do

4: locate inverted list L for title j

5: for each user u and vote v in L do

6: SAI[u] = SAI[u] + (va,j − v̄a) ∗ (v − MEANS[u])

7: SAA[u] = SAA[u] + (va,j − v̄a)
2

8: SII[u] = SII[u] + (v − MEANS[u])2

9: for all u ∈ SAI, such that SAI[u] 6= 0 do

10: corr = SAI[u]/
√

(SAA[u] ∗ SII[u])

11: if corr ≥ TOP [K − 1] then

12: add (u, corr) to TOP

13: restore TOP to sorted order

14: return TOP

Figure 3.4: Neighhborhood computation for collaborative filtering with inverted
indexing [14]

Notice that, theoretically Coster et al. defines 3 different accumulators instead

of a single one as in a typical information retrieval, to store required values for

computing Pearson coefficient. The mean values of votes for each user are stored

in the static array MEANS. N denotes the number of users in the database.

The algorithm computes the top K neighbours to user a. The sorting step is

performed by using min-heaps.

3.1.2.2 Cluster-Skipping Inverted Index Structure

One of our contributions to efficient collaborative filtering is the adaptation of

cluster-skipping inverted index structure (CS-IIS) [11]. This approach provides
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efficient and effective cluster based retrieval for large databases without consid-

erable additional storage overhead, and improves scalability which is one of the

important problems in collaborative filtering approaches. It significantly reduces

the cost of similarity calculations. CS-IIS provides efficient access to the clustered

documents based on the common terms with the queries.

In cluster based retrieval strategy, there are two components whose file struc-

tures crucially affect the efficiency of the system. These are selection of ns num-

ber of best matching clusters using centroids, and selection of ds number of best

matching documents of the selected best matching clusters. One of the possible

structures that can be used is inverted index for both centroids and documents,

i.e., IC inverted index of centroids and IIS inverted index of all documents. In

CS-IIS, Can et al. keep IC in its usual structure; however in IIS component they

store not only posting list information but also cluster membership information.

Posting list information associated with the members of a cluster is stored next

to each other, and it is followed by the members of the next cluster. Pointers are

used from the beginning of one cluster’s posting list to the next one for skipping

the clusters which are not selected as best matching clusters. An example is il-

lustrated in Figure 3.5. In this example, the given D matrix is clustered using

C3M.

In Figure 3.5 each posting list header contains the associated term, the number

of posting list elements associated with that term, and the posting list pointer

(disk address). The posting list elements are of two types, “cluster number -

position of the next cluster” and “document number - term frequency” for the

documents of the corresponding clusters. If we assume that the user query con-

tains the terms t3, t5 and the best-matching clusters for this query are C1, C3;



CHAPTER 3. METHODOLOGIES 34

Figure 3.5: Inverted file structure with skips [11]
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using the cluster-skipping IIS approach during query processing after selecting

the best-matching clusters we only consider the posting lists associated with t3

and t5. While processing the posting list of t3 we skip the portion corresponding

to C2 (since it is not a best-matching cluster). Similarly, while processing the

posting list of t5; we again skip the unnecessary C2 portion of the posting list

and only consider the part corresponding to C3. In other words, by using the

skip approach we only handle the documents that we really need to match with

the query.

The presented cluster based retrieval strategy has been shown to improve the

efficiency of query processing via in-memory similarity calculations. For large

databases, this strategy can achieve a time efficiency and effectiveness compara-

ble with full search. This characteristic helps us significantly in improving the

scalability of collaborative filters.

Example: We illustrate our methodology with an example. Suppose

we have movie set as M : {M1,M2,M3,M4,M5} and user set as U :

{U1, U2, U3, U4, U5}. Our document matrix which contains the ratings of these

users for these movies is as in Figure 3.6:

Figure 3.6: Document matrix of the example

Now suppose that these users are clustered and the clusters are as follows:
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C1 = {U1, U2}, C2 = {U3, U4}, and C3 = {U5}. According to the profiles

given in D matrix, we compute the centroids of the clusters by averaging the

votes for each movie item by the corresponding users of each cluster, i.e.,

Centroid-C1 : 〈M1 : 3 M3 : 1 M4 : 2〉
Centroid-C2 : 〈M1 : 1.5 M2 : 2 M3 : 1.5〉
Centroid-C3 : 〈M2 : 1 M4 : 3 M5 : 4〉

The corresponding inverted index structure for centroids can be given as in

Figure 3.7. So, for a given user query Uq : {M1 : 4,M4 : 2}, assume that we set

the number of best correlated clusters and the number of best correlated users to

1, i.e., we are to select the most correlated cluster considering the centroids, and

then to select the best matching user from this best cluster. Applying Pearson

correlation method as in Figure 3.4, we find the best cluster as C1.

Figure 3.7: IC- Inverted centroids structure of the example

Now for selecting best matching users, two alternatives, using centroids or

using all users in the best matching clusters exist. In order to find the best



CHAPTER 3. METHODOLOGIES 37

Figure 3.8: Cluster-skipping inverted index structure of the example

matching users considering all users in the best matching clusters, we use the

cluster-skipping inverted index structure given in Figure 3.8 and again by apply-

ing Pearson correlation, we find the 1 best matching user to be U1. Then we

can exploit the prediction method explained in Section 3.1 to give the predicted

ratings.
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3.2 Hybrid Filtering with Cluster-Skipping In-

verted Index Structure

Hybrid recommender systems combine two or more recommendation techniques

to gain better performance with fewer of the drawbacks of any individual rec-

ommender technique. Most commonly, collaborative filtering is combined with

some other technique in an attempt to avoid some of the associated problems

such as cold start1. One of the most common hybrid recommendation techniques

is the filtering scheme which combines content based and collaborative filters

together [9].

Content based filters only require one user, but have the weakness of not

being able to predict interest on information that is significantly different from

anything seen before. Collaborative filters require multiple users; they can handle

new and unseen information items, but only as long as some other user has seen

and rated the item. Thus, the goal of hybrid filters is to take the best features

of each technique and minimize the impact of their weaknesses with the goal of

outperforming each individually.

One of our approaches is to facilitate collaborative filtering without throwing

away the content information available so that alleviating some of the problems

each approach could possess. To accomplish this, we perform a repeated clus-

tering technique [39]. Firstly, we generate the clusters according to the genre

attribute of movies. In this stage, first the movies are partitioned into clusters

according to their genre attribute. This produces clusters such as Action, Drama,

Romance, etc. These clusters are overlapping, i.e., a movie may fall into several

1described in Chapter 2
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clusters, such as both Drama and Romance. Then the users are clustered ac-

cording to genre of the movies they watched. These clusters are non-overlapping,

since a user falls into the cluster from which s/he has watched the largest number

of movies. Then, the users of each cluster obtained in this stage are subject to

another clustering using either C3M or K-Means. For example, suppose we have

two clusters, e.g. Action and Drama, obtained in the first partitioning stage.

The users who have watched movies from Action cluster are clustered among

themselves and similarly the users who have watched movies from Drama cluster

are clustered among themselves. Then these clusters are presented to the rest

of the methodology, i.e., either collaborative filtering with inverted indexing or

collaborative filtering with cluster-skipping inverted index structure is applied.

The experimental results given in Chapter 4 verify our expectations.



Chapter 4

Experiments and Results

Throughout the previous chapters, we have described existing techniques for han-

dling information overload, discussed the problems associated with them and

provided our own approaches for improvement. In this chapter, we try to evalu-

ate the improvement gained via our approaches in comparison with the existing

algorithms by conducting a large set of experiments. We also describe the devel-

oped prototype movie recommender system, MoRec, which is currently in public

use1 [24].

Advancing in two ways, separate hardware and software configurations have

been employed for the experimental evaluation and for the development of MoRec.

The hardware needed to configure a test environment for our research includes

a machine, which operates on LINUX, with a memory of minimum 256 Mbytes

RAM and a 2.4 GHz Intel Pentium-IV processor. The proposed and existing

approaches were implemented in C programming language on a Linux platform.

1http://pcvideo.cs.bilkent.edu.tr/MoRec/index.aspx.
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C code was compiled by gcc, the GNU Compiler Collection,2 and for debugging

purposes, kdebugger, KDbg a graphical user interface to the GNU debugger,3 was

utilized. The hardware needed to configure MoRec consists of a machine with at

least 512 Mbytes RAM and a processor of at least 2 GHz since this machine is

both a Web and a database server. It also needs an Internet connection so that

the Web page requests can be satisfied. The software configuration of MoRec

includes Windows XP Professional as the operating system, Internet Information

Services (IIS) as the Web server and Microsoft Visual Studio .NET as the imple-

mentation platform. Storing, retrieving and interacting with the data are handled

by Microsoft SQL Server 2000 Personal Edition. As a result, the user interface

package of Microsoft Visual Studio .NET and the database management system

Microsoft SQL Server 2000 Personal Edition are used as off-the-shelf components.

We use the EachMovie dataset as both the test-bed of our approaches and as

the database of MoRec, collected by the Digital Equipment Corporation (DEC)

Systems Research Center from 1995 through 1997. This dataset comprises a total

of 2811983 ratings of 1628 movies by 60087 users. Each rating is on a scale of 0 to

5 4 [15]. We have used a Web crawler, WebSPHINX (Website-Specific Processors

for HTML INformation eXtraction) developed by Rob Miller at Carnegie Mellon

University, in order to gather the content data of movies from The Internet Movie

Database (IMDb) [23] for hybrid filtering approaches. Out of 1628 movies present

in EachMovie dataset, the content information –including synopsis, genre, key

actors and actresses– of 1482 movies could be downloaded. Out of these 1482

movies, 1224 movies have synopsis.

2http://gcc.gnu.org/
3KDbg is authored by Johannes Sixt.
4For more information see http://www.research.compaq.com/SRC/eachmovie/.
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To evaluate our approaches, we have conducted a set of experiments. We have

used a popular statistical accuracy metric, mean absolue error (MAE) to evaluate

the accuracy and the elapsed time for neighborhood formations to evaluate the

efficiency of our approaches. MAE calculates the absolute difference between the

actual vote and the prediction, averaged over all predictions.

4.1 Implementation Details

The underlying testing system consists of 7 modules responsible for different

stages of information filtering process:

1. Preprocessing : In this module, the data files provided by EachMovie

dataset, for movies, votes and users, are modified to form two document

vectors by eliminating the unnecessary parts in these files. One of these

document vector files includes the train user data used to train the predic-

tor. The other document vector file is for keeping the test user data. While

generating these files, the usual matrix representation is not used, instead

a sparse matrix representation of vectors is exploited. A simple example is

given in Figure 4.1. The actual document vector contains 15 movies in a

line instead of 6 as in the example.

2. Inverted Index Structure - IIS : In this module, the inverted index structure

of train user data is generated and kept as a binary file, so that it can

be accessed randomly, i.e., the votes of any user can be accessed without

reading the file sequentially.

3. Collaborative Filtering with IIS : This module performs the prediction. We
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Figure 4.1: Document vector format

read in train and test user binary files. Then we generate a pre-defined

number of predictions, usually 5, for each user and calculate the absolute

difference between the prediction generated by the system and the actual

vote given by the user. At last, we calculate the average of the absolute

differences of each prediction to form Mean Absolute Error. We output the

mean absolute error together with the time statistics.

4. Clustering : This module deals with the cluster formation of train users. It

groups similar users into one cluster. There are two algorithms as explained

in Chapter 3: C3M and K-Means. Both of these algorithms take train user

data and create two files, one that shows the users of each cluster and

another that shows the cluster of each user.

5. Centroid Generation: In this module, we create the centroids, virtual users

representing each cluster using the train user data and clustering files. We
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Figure 4.2: Inverted Index with skipping data format

generate a file, which holds the mean votes of these centroids. Another file

that is created is a binary file, which contains the movies with the votes of

each centroid as they are virtual users with votes on movies. The last output

of this module is another file which shows a list of movies with the number

of centroids that have votes on them. This file is used to determine the size

of the data structures used in the last module, Cluster Based Collaborative

Filtering with CS-IIS.

6. Cluster-Skipping Inverted Index Structure: This module reads in the in-

verted list of votes before clustering, as well as the clustering information.

It outputs the inverted index with skipping data structure as exemplified

in Figure 4.2.

7. Cluster Based Collaborative Filtering with CS-IIS : This module is a more

developed version of Collaborative Filtering with IIS. Again, it reads each

user’s votes from a binary file when needed; however, unlike Collaborative
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Filtering with IIS, it first selects a number of clusters, and then generates

a prediction from train users of these clusters.

In Figure 4.3, an overview of these modules is given according to components’

input and output relations.

4.2 Experimental Setting

We have used the largest available public dataset, EachMovie, for testing our

algorithms. We compare our approaches –cluster based collaborative filtering

with cluster-skipping inverted index structure and the hybrid approach– against

collaborative filtering with inverted indexing proposed by [14].

4.3 Efficiency and Effectiveness

Several evaluation metrics for evaluating the accuracy of collaborative filtering

approaches have appeared in the literature (see Chapter 2). The most common

metric is the Mean Absolute Error (MAE). MAE is the average absolute devia-

tion of the predicted ratings from the actual ratings on items the test users have

voted. The lower the mean absolute error, the more accurate the scheme. We

choose MAE in our experiments for two reasons: a) It is the most commonly

used metric and allows us to compare our results with a larger set of previous

works. b) There is a vast research literature on performing statistical significance

testing and computing confidence intervals for MAE. Furthermore, Herlocker et
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Figure 4.3: Modules of the System
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al. [22] have also suggested the use of MAE for prediction evaluation. For evaluat-

ing the efficiency, we measure the neighborhood formation times for comparative

purposes.

The MAE is calculated by summing the absolute errors of the correspond-

ing rating-prediction pairs and then computing the average as given in Equa-

tion 4.1 [22].

MAE =
N

∑

u=1

|Pu,i − Ru,i|

N
(4.1)

where Pu,i means the prediction for user u on item i; Ru,i means the actual rating

of the user u on item i in the test data; N is the number of rating-prediction

pairs between the test data and the prediction result.

We evaluated the algorithms on the AllBut1 protocol, meaning that for each

user we held out a single vote that should be predicted on the basis of all the

other votes in the profile as Coster et al. [14]. We experimented with a training

set size of 90% of all users, i.e., 55000 users. This choice is due to comparison

with Coster et al. who used the inverted file search algorithms for collaborative

filtering (see Chapter 2). We used a neighborhood size k of 30. We set the

number of clusters that are used as the best correlated clusters from which k

nearest neighbor is selected, to 10% of the total number of clusters. We set the

number of movies for which a prediction is calculated for each test user, to 5.

Different cluster sizes were experimented, 24, 200, and 1300, for both C3M and

K-means algorithms. 24 is due to C3M, since the algorithm itself determines the

cluster size if it is not predetermined by the user. Since we let C3M select the

number of clusters in each partial cluster for hybrid filtering approach, this stage

generates a total of nearly 200 clusters for all first-stage clusters. Therefore, in

order to compare the hybrid filtering approach with the collaborative filtering
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one, we set the number of clusters to 200. For the last setting, we determined

the number of clusters for each partial cluster to be 100 and this makes a total of

1300 clusters for hybrid filtering, since the first stage (see Chapter 3) in hybrid

filtering produces 13 clusters of users according to the content information of

movies. Again for comparative purposes we set the cluster size to 1300. Each

experiment was performed 5 times. There are two strategies for determining

the best matching neighbors: by using centroids of the best matching clusters

and by considering all users of these clusters. For two filtering approaches, i.e.,

collaborative filtering and hybrid filtering, this makes a total of 105 experiments,

including the experimentations of collaborative filtering with inverted indexing

for comparative purposes with Coster et al. [14].

We measure the total elapsed time for neighborhood formations for 5 queries

of all test users in seconds, and the mean nighborhood formation time (referred as

Mean NF Time in Tables from 4.1 to 4.4) for one user query in milliseconds. The

accuracy metric MAE is on a scale of 0 to 5. In tables, CF with IIS refers to col-

laborative filtering with inverted indexing proposed by Coster et al [14], CF with

Cluster-Skipping IIS refers to cluster based collaborative filtering with cluster-

skipping inverted index structure. C3M and K-Means refer to the algorithms

employed for clustering.

1. Effectiveness : We compare our results with the results of Coster et al.

As discussed in Chapter 2, Coster et al. proposed using a disk based inverted

file structure for collaborative filtering and used some early termination heuris-

tics [14]. They compare their results with typical in-memory vector search (see

Chapter 2) and show that their approach yields equivalent accuracy. Table 4.1

shows the results of the cluster based collaborative filtering with cluster-skipping
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Collaborative filtering

CF with Cluster Skipping-IIS
Algorithm CF with IIS

C3M K-Means

Cluster size 24 200 1300 24 200 1300

Accuracy 0.91 0.92 0.91 0.90 0.92 0.91 0.90
NF Time 1324.57 651.01 593.09 815.15 531.22 883.02 1027.05
Mean NF Time 49.86 24.15 22.00 30.24 19.71 32.76 41.52

Table 4.1: CBR - Users : Collaborative filtering

Collaborative filtering

CF with Cluster Skipping-IIS
Algorithm CF with IIS

C3M K-Means

Cluster size 24 200 1300 24 200 1300

Accuracy 0.91 1.18 1.25 1.29 1.22 1.30 1.32
NF Time 1324.57 81.27 72.06 111.74 70.68 73.79 84.78
Mean NF Time 49.86 3.02 2.67 4.15 2.62 2.74 2.92

Table 4.2: CBR - Centroids : Collaborative filtering

Hybrid filtering

CF with Cluster Skipping-IIS
Algorithm CF with IIS

C3M K-Means

Cluster size 184 1300 184 1300

Accuracy 0.91 0.90 0.90 0.94 0.94
NF Time 1324.57 623.82 902.78 829.22 1747.47
Mean NF Time 49.86 23.33 33.53 30.80 64.90

Table 4.3: CBR - Users : Hybrid filtering
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Hybrid filtering

CF with Cluster Skipping-IIS
Algorithm CF with IIS

C3M K-Means

Cluster size 184 1300 184 1300

Accuracy 0.91 1.18 1.29 1.32 1.31
NF Time 1324.57 73.13 74.58 73.81 84.52
Mean NF Time 49.86 2.74 2.77 2.74 2.91

Table 4.4: CBR - Centroids : Hybrid filtering

IIS for the case that considers all users of the best correlated clusters in deter-

mining the best correlated users. Table 4.2 shows the results of the alternative

which considers only cluster representatives for selecting the best correlated users

of a query user, i.e., CBR - centroids. Both tables prove that our approaches are

as effective as CF with IIS.

Tables 4.3 and 4.4 show our results for hybrid filtering approach for both users

and centroids cases using C3M and K-Means clustering algorithms. Interestingly,

the results are slightly better than CF with Cluster-Skipping IIS, while they are

still as well as CF with IIS, in terms of predictive accuracy.

Experiments reveal that the C3M produces comparable effectiveness with the

K-Means algorithm. Notice that in Table 4.4, the MAE for C3M with a clus-

ter size of 184, is 1.18 whereas it is 1.32 for K-Means while the neighborhood

formation time is still less. This difference is more significant in Table 4.3, i.e.,

CBR - users case of hybrid filtering approach. Besides, for larger cluster sizes,

the accuracy is better.

1. Efficiency : The overall time needed for a prediction includes the disk access

times and the in memory computation time. We evaluate the efficiency of our
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approaches considering these two measurements.

We simulated a disk based environment since it is very hard to obtain reli-

able measurements of disk access times due to enhanced caching capabilities of

modern operating systems. Values of the simulation parameters were determined

considering the characteristics of a Seagate Cheetah ST37405LC disk (in March

2002) for which the average seek time and latency add up to 8.6 ms and the

transfer time per sector of 512 bytes is 0.014 ms [21].

In our dataset, the mean number of votes by a user is 45.9. Our strategy re-

quires two random disk accesses per query term, one for the centroid and another

for user inverted lists. On the otherhand, collaborative filtering with inverted

indexing requires one random disk access, only for the term inverted lists. So, we

have an extra cost of disk access for inverted centroid index entries. This brings

an overhead of approximately 46 ∗ 8.6 = 395.6 milliseconds per user query. In

order to compensate the time due to extra random disk access per query term, we

keep the inverted file for centroids in memory, which is not larger than 4 Mbytes

in size. This is not much of a concern regarding today’s main memory capacities.

Also, this structure can be effectively buffered in main memory considering to-

day’s file caching capabilities. Furthermore, a recent work on this area eliminates

disk accesses needed for centroid inverted index posting lists by embedding the

centroid information to the document posting lists [1]. Hence, this extra I/O cost

can be avoided.

The mean number of votes for a movie in our dataset is 1732.4. So, number

of processed posting lists elements can be at most 1733*2 in the worst case, if all

clusters include only one document, which is impractical. Sequential reads per

query term bring an overhead of N ∗ 2 ∗ 4 ∗ 0.014/512 milliseconds, where N is



CHAPTER 4. EXPERIMENTS AND RESULTS 52

the number of entries (〈int, int〉 pairs) in a posting list, 4 is size of an integer in

bytes, 0.014 is the block transfer time and 512 is the page size in bytes. For our

computation, this causes 1733 ∗ 2 ∗ 4 ∗ 0.014/512 ≈ 0.4 milliseconds, and so less

than half millisecond extra I/O cost to our strategy.

Coster et al. show that they obtained a gain of 66% compared to in-memory

vector searching. On the other hand, timing results for neighborhood formations

in Tables 4.1 through 4.4 show that cluster based collaborative filtering with

cluster-skipping IIS, either using C3M or K-Means algorithms, runs faster than

collaborative filtering with inverted indexing, with a gain of at least 50%. This

gain is improved with CBR - centroids case, shown in Tables 4.3 and 4.4.

The experimental results can be briefly summarized as follows:

• Experiments show that collaborative filtering with user clustering is as ef-

fective as pure collaborative filtering with inverted indexing, and both of

the clustering algorithms, namely K-Means and C3M, yield almost the same

accuracy figures.

• In terms of neighborhood computation time in the main memory, collabora-

tive filtering with cluster-skipping IIS takes far more shorter time (in some

cases, almost 40%) than collaborative filtering with a typical IIS, since the

number of comparisons is significantly reduced by the use of cluster-skipping

index structure.

• Collaborative filtering with cluster-skipping IIS makes the same number of

disk accesses (given that the inverted list of centroids, which is quite smaller

than the cluster-skipping IIS, is kept in the main memory) as collaborative

filtering with IIS, and it has only slightly larger sequential access times,
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which is easily compensated by very fast sequential read time features of

today’s hard disks.

• Our results reveal that, computing the neighborhoods by inspecting the

actual users that fall into the best clusters yields higher prediction accuracy

in comparison to using only the centroids of these best clusters (i.e., as

a gigantic “virtual” user) for neighborhood formation. This result also

justifies the need for using cluster-skipping IIS file structure for the cluster-

based collaborative filtering task.

• Interestingly, the hybrid filtering approach does not improve the prediction

accuracy as it might be expected (e.g., see [39]). We attribute this to the

fact that in these experiments, the only content attribute used is the “genre”

for the initial clustering stage. Thus, employing other attributes such as

plot, artists etc. can further improve accuracy. This will be considered in

our future works.

4.4 MoRec: MOvie RECommendation System

The web application that rises as an immediate application of the proposed

approaches is a web service called Movie Recommendation System, MoRec for

short [24]. The underlying software is developed in C# programming language.

The required software for MoRec consists of IIS Web Server, Microsoft SQL Server

Personal Edition, and Microsoft Visual Studio .NET Framework. The WAP site

is also operable on the same platform with the same software components.
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MoRec facilitates various functionalities dedicated to movie lovers (Fig-

ure 4.4). Users may view all movies in the database (listed according to their

initials), view top rated movies (calculated as taking the average scores by the

votes of system users), search for movies, vote on movies, view plots and images of

movies, comment on movies and read comments of movies. All these operations

are provided as a web page. The process of generating predictions is based on

the idea of cluster based collaborative filtering with inverted indexing, with the

similarity measure algorithm Pearson put into practice. As an extension to the

predicting process, the system also recommends a list of movies, specific to each

user. The idea behind neighborhood generation is exploited during this proce-

dure. The movies that the neighbor users have voted on are of great importance

for this recommendation list to be satisfactory. All voting, prediction and recom-

mendation activities are provided by the server operating behind the web page.

The server enables a quick and client-server oriented type of service, satisfactory

in terms of performance.
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Figure 4.4: Index page of MoRec system

MoRec is a system where users need to create an account and sign in each

time they want to use it. MoRec is a web service, so no installation is required.

The following figures provide screenshots from the existing system.
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Figure 4.5: Sign-up page of MoRec system

To create a new account, the sign-up form displayed in Figure 4.5 should be

completed. Having successfully completed the signing up/in process, the system

directs you to your homepage such as the one displayed in Figure 4.6.
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Figure 4.6: A user homepage in MoRec system

A homepage provides access to current movies. As seen from the figure, the

user can vote on the movies in the resulting list, view the synopsis and sometimes

a picture of them or request prediction on them.
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Figure 4.7: Prediction on a movie in MoRec system

The user can ask for a prediction on a specific movie according to his/her

profile and the other users’ profile in the system. The prediction scores vary from

0 to 5, each range having an identifying picture and sentence about the prediction

result. Figure 4.7 illustrates a prediction for a movie on MoRec. Also the user

can provide feedback on the prediction whether the system was accurate enough

in its prediction process.
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Figure 4.8: Recommendation list for a user in MoRec system

Recommending user a list of movies is another facility provided by MoRec. A

list of movies recommended to the sample user is given in Figure 4.8.
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Conclusion

We have investigated the problem of information overload and proposed a new

approach, so-called cluster based collaborative filtering technique with cluster-

skipping inverted index structure. The application domain we have considered

for our work is movie recommender systems. Collaborative recommender systems

depend on overlap in ratings across users. These systems work best for a user who

fits into a niche with many neighbors of similar taste. Two different clustering

algorithms, namely C3M and K-Means, have been employed in our system. For

further improvement in performance, a hybrid approach that involves a two-

stage clustering has been developed. The first stage of this approach exploits the

content information available in movies, and clusters the users according to the

similarities of the genre attribute of the movies rated by these users. The second

stage involves another clustering of the generated initial clusters according to the

similarity of the user profiles. This two-stage clustering reduces the effect of the

new item problem1 inherent to the collaborative filtering techniques. Our strategy

1Described in Chapter 2
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also improves the scalability of the collaborative filtering based recommender

systems by the adapted cluster-skipping inverted index structure.

We have evaluated our approach on the largest publicly available dataset on

movie recommendation, EachMovie [15] and observed that all the algorithms

have the same effectiveness as the in memory search technique, whereas skipped

inverted index structure based approach improves the efficiency reported by a

typical inverted index structure in [14]. Interestingly, the effectiveness of cluster-

ing for collaborative filtering and hybrid approaches do not yield very significant

differences in the accuracy; whereas they are shown to be efficient for nonclus-

tered cases. Nevertheless, our approach proves itself as a worthwhile technique

as it reduces processing times considerably with almost no adverse effect on the

predictive accuracy.

Future work will employ a more sophisticated version of cluster-skipping in-

verted index structure proposed recently, to reduce the extra I/O cost. Besides, to

increase the storage efficiency state of the art data compression techniques will be

explored. Finally, aiming to provide a more efficient recommendation technique,

we will investigate adaptation of update handling methods for cluster-skipping

inverted file structures as a future work.



Bibliography
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[14] R. Cöster and M. Svensson. Inverted file search algorithms for collaborative

filtering. In Proceedings of the 25th annual international ACM SIGIR confer-

ence on Research and development in information retrieval, pages 246–252,

New York, NY, USA, 2002. ACM Press.



BIBLIOGRAPHY 64

[15] EachMovie. Compaq Systems Research Center. http://www.research.

compaq.com, August 2004.

[16] D. Fisher, K. Hildrum, J. I. Hong, M. Newman, M. Thomas, and R. Vuduc.

Swami: A framework for collaborative filtering algorithm development and

evaluation. In Proceedings of the 23rd annual international ACM SIGIR

conference on Research and development in information retrieval, pages 366–

368, New York, NY, USA, 2000. ACM Press.

[17] D. Goldberg, D. Nichols, B. Oki, and D. Terry. Using collaborative filtering

to weave an information tapestry. Communications of the ACM, 35(12):61–

70, 1992.

[18] Google. http://www.google.com, June 2005.

[19] D. Gupta, M. Digiovanni, H. Narita, and K. Goldberg. Jester 2.0: A new

linear-time collaborative filtering algorithm applied to jokes. In Proceed-

ings of ACM-SIGIR Workshop on Recommender Systems: Algorithms and

Evaluation. ACM Press, 1999.

[20] D. B. Hauver. Flycasting: Using collaborative filtering to generate a play list

for online radio. In Proceedings of International Conference on Web Delivery

of Music, 2001.

[21] J. L. Hennessy and D. A. Patterson. Computer Architecture : A Quantitative

Approach. Morgan Kaufmann, second edition, 2002.

[22] J. L. Herlocker, J. A. Konstan, A. Borchers, and J. Riedl. An algorithmic

framework for performing collaborative filtering. In Proceedings of the 22nd

annual international ACM SIGIR conference on Research and development



BIBLIOGRAPHY 65

in information retrieval, pages 230–237, New York, NY, USA, 1999. ACM

Press.

[23] IMDb. http://www.imdb.com, June 2005.
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