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ABSTRACT 
 

QUALITY AND PRODUCTION CONTROL 

WITH OPPORTUNITIES AND EXOGENOUS RANDOM SHOCKS  

 
Ayhan Özgür Toy  

 
Ph.D. Dissertation in Business Administration 

 
Supervisor: Asst. Prof. Dr. Emre Berk 

 
September 2005 

 
 

In a production process, opportunities arise due to exogenous or indigenous factors, 
for cost reduction. In this dissertation, we consider such opportunities in quality 
control chart design and production planning for the lot sizing problem. In the first 
part of the dissertation, we study the economic design of X control charts for a single 
machine facing exogenous random shocks, which create opportunities for inspection 
and repair at reduced cost. We develop the expected cycle cost and expected operating 
time functions, and invoking the renewal reward theorem, we derive the objective 
function to obtain the optimum values for the control chart design parameters. In the 
second part, we consider the quality control chart design for the multiple machine 
environment operating under jidoka (autonomation) policy, in which the opportunities 
are due to individual machine stoppages. We provide the exact model derivation and 
an approximate model employing the single machine model developed in the first 
part. For both models, we conduct extensive numerical studies and observe that 
modeling the inspection and repair opportunities provide considerable cost savings.  
We also show that partitioning of the machines as opportunity takers and opportunity 
non-takers yields further cost savings. In the third part, we consider the dynamic lot 
sizing problem with finite capacity and where there are opportunities to keep the 
process warm at a unit variable cost for the next period if more than a threshold value 
has been produced. For this warm/cold process, we develop a dynamic programming 
formulation of the problem and establish theoretical results on the optimal policy 
structure. For a special case, we show that forward solution algorithms are available, 
and provide rules for identifying planning horizons. Our numerical study indicates 
that utilizing the undertime option results in significant cost  savings, and it has 
managerial implications for capacity planning and selection. 
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İçsel ve dışsal etkenler, bir üretim sürecinde, maliyet azaltan fırsatlar yaratır. Bu 
tezde, bu tür fırsatları, kalite kontrol diyagramlarının tasarımı ve kafile büyüklüğü 
belirleme problemi kapsamında ele alıyoruz. Tezin ilk kısmında, X kontrol 
diyagramlarının ekonomik tasarımını, daha düşük maliyetli inceleme ve onarım 
fırsatları yaratan dışsal ve rassal şokların bulunduğu bir ortamda inceliyoruz. 
Beklenen çevrim maliyeti ve beklenen çalışma zamanı fonksiyonlarını elde ederek, 
yenilenen ödül (renewal reward) teoremi sayesinde, kontrol diyagramı parametrelerini 
bulmak için eniyileme probleminin amaç fonksiyonunu oluşturuyoruz. İkinci kısımda, 
jidoka politikası uygulanan, fırsatların makinaların tek başına sistemi 
durdurmalarından kaynaklandığı, çok makinalı bir üretim ortamı için kontrol 
diyagramı tasarımını ele alıyoruz. Gerçek modelin nasıl çıkarılacağını gösteriyoruz; 
daha sonra, ilk kısımda geliştirilen tek makina modelini kullanan yaklaşık bir model 
öneriyoruz. Her iki model için, kapsamlı bir sayısal çalışma yapıyoruz. Modellemeye 
inceleme ve onarım fırsatlarının dahil edilmesinin, dikkate değer maliyet tasarrufları 
sağladığını gözlemliyoruz. Ayrıca, makinaların fırsatları kullananlar ve 
kullanmayanlar olarak iki kümeye ayrılmalarının daha da fazla maliyet tasarrufu 
sağlayacağını gösteriyoruz. Tezin üçüncü kısmında, kapasitenin kısıtlı olduğu ve 
sürecin, üretim miktarının bir eşik değerinden daha fazla olduğu periyottan bir sonraki 
periyoda birim değişken maliyetle sıcak tutulma olanağının bulunduğu bir üretim 
ortamını ele alıyoruz. Bu sıcak/soğuk süreç için, dinamik kafile büyüklüğünün 
belirlenmesi problemini, dinamik programlama yöntemiyle kuruyoruz. En iyi 
politikanın yapısal özelliklerini belirliyoruz. Özel maliyet yapısı altında, baştan sona 
doğru ilerleyen çözüm algoritmalarının (forward algorithms) varlığını ispat ediyoruz. 
Bu yapı altında, ayrıca planlama ufkunu belirleyen kuralları elde ediyoruz. Sayısal 
çalışmamızda, kapasitenin altında üretmenin önemli maliyet tasarrufları sağladığı ve 
kapasite planlaması ve seçimi konularına ilişkin yönetim kararlarında 
kullanılabileceği gözlenmiştir.  
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Chapter 1

General Introduction

In a production process, there may be exogenous and indigenous factors creating

opportunities for cost reduction. One such opportunity comes from the jidoka op-

erating policy. In jidoka policy, when there is an indication of defective production

in any of the machines, the whole system is forced to cease production. Any kind

of operations that will be performed on the machines such as calibrating, clean-

ing, inspecting, component replacement, etc., can be rescheduled to utilize the

idle time and repair assets, which become available following the system stoppage

instances. Another such opportunity is the setup carryover. There may be oppor-

tunities for maintaining the readiness level of the process for production so that

it does not require many operations and the production can start immediately in

the next period. Keeping the process ready for the production results in smaller

number of setups, which may yield cost reduction. We study the quality control

1



chart design problem and dynamic lot-sizing problem under such opportunities to

exploit the possible cost savings.

This dissertation is composed of three parts. In the first part, we develop a

model for the economic design of quality control charts for a single machine facing

opportunities for inspection and repair that incur reduced cost. We assume that

inspection opportunities come exogenously as random shocks. Using a renewal

theoretic approach, we develop the expressions for the operating characteristics of

the system and then construct the quality control (QC) chart under the objective

of minimizing the expected cost rate. Through an extensive numerical study, we

conduct (i) a sensitivity analysis of the control parameters, (ii) an investigation

of the cost breakdown structure of the optimum cost rate, and (ii) an analysis of

the cost improvements provided by the opportunistic inspections and repairs over

the control chart designed by the classical model of the economic design.

In the second part, we consider the economic design of quality control charts

for the multiple machine environment which exploits the inspection/repair oppor-

tunities that arise due to individual machine stoppages. In case of a production

line with multiple machines, the stoppage frequency that any machine faces can

no longer be modeled as an exogenous parameter. When the machines in the

production line have different characteristics, i.e. different cost parameters and

different reliability, opportunistic inspections may be decreasing the cost for some

machines whereas increasing the cost for the others. We presume that, in addition

to the control parameters of the individual machines, in the optimal control plan,

2



partitioning of the machines as opportunity takers and opportunity non-takers is

another decision variable. This partitioning depends on the reliability and the cost

characteristics of the machines. First we show that exact model of the multiple

machine environment can be derived by formulating the problem as an embedded

Markov chain. Then we provide an approximate model which employs the single

machine model developed in the first part. We also provide an algorithm for the

solution of the control chart design problem for the joint system in an iterative

fashion. In a numerical study, (i) we analyze the optimum control parameters and

partitioning under various settings of machines with respect to their cost parame-

ters and reliability, (ii) we provide a comparison of the jointly optimized system

cost rate with the cost rate obtained from individual machine optimizations by the

classical control chart model, and (iii) we conduct a simulation study to observe

the performance of the approximations we make.

In our numerical studies for the single machine and multiple machine envi-

ronments, we have observed that significant cost savings can be achieved when

opportunities are incorporated into the model and that the control parameters of

the classical model.

In the third part of this dissertation, we study a dynamic lot sizing problem,

where demands are deterministic and known and there is a capacity over the

production quantity in a period. We introduce a model which incorporates the

opportunities of keeping the process at a unit variable cost for the next period

only if more than a threshold value has been produced, the process would be cold,

3



otherwise. We (i) develop a dynamic programming formulation of the dynamic

lot sizing problem for a warm/cold process, (ii) establish the structure of the

optimal policy, (iii) show that polynomial and linear time solution algorithms

exist, (iv) provide several planning horizon rules in the presence of warm/cold

process, and (v) examine, via a numerical study, the sensitivity of the optimal

production schedule and total cost to various system parameters, illustrate that

restricting or ignoring the use of undertime (warming) option results in substantial

savings, and study the horizon length that allows problem partitioning for each

planning horizon rule. Our numerical study indicates that utilizing the undertime

option (i.e., keeping the process warm via reduced production rates) results in

significant cost savings, and it has managerial implications for capacity planning

and selection.

The rest of this dissertation is organized as follows. In Chapter 2 we provide

an introduction to the quality control, lean manufacturing, statistical process con-

trol and control charts, we also provide a review of the relevant literature. In

Chapter 3, we develop the single machine model with exogenous opportunistic

inspection/repairs, and provide the results of a numerical study of this model in

Chapter 4. We next move on the multiple machine environment and develop the

model in Chapter 5. Numerical study for the multiple machine model is provided

in Chapter 6. Chapter 7 comprises an introduction the dynamic lot sizing prob-

lem with warm/cold setups, a review of the literature follows in Chapter 8. In

Chapter 9 we provide assumptions, formulation and structural results of the lot
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sizing problem we consider. A special case of the problem is when the warm setup

costs are negligible. In Chapter 10 we consider this special case, and we show

that the special case allows us to develop forward solution algorithms. Moreover,

we also prove that the planning horizons developed for the classical dynamic lot

sizing problem may be implemented, and show that we can construct additional

planning horizon rules in the existence of warm process. We exhibit the results of

a numerical study for the dynamic lot sizing problem with warm/cold processes

in Chapter 11. Finally in Chapter 12, we provide a summary, conclusion and

suggestions for the future work.
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Chapter 2

Introduction to QC Chart Design

with Opportunistic Inspections

and Literature Review

2.1 Quality Management and Lean Manufactur-

ing

In this chapter we present the basics of the quality control, lean manufacturing,

statistical process control (SPC) and QC-charts, and we review some of the liter-

ature in the area of the economic design of the QC-charts.

In today’s highly competitive global economy, for ensuring customer satisfac-
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tion, which is the basis for the Total Quality Management Philosophy, reducing

the costs and increasing the quality of the product are becoming the key factors

of production.

There are different definitions of quality in the literature. Some of these are:

"a measure for excellence", "a desirable characteristic", "the concept of making

products fit for a purpose and with the fewest defects", "reduction of variation

around the mean", "products and services that meet or exceed customers’ expec-

tations", "value to some person", "the totality of features and characteristics of

the product, process or service that bear on its ability to satisfy stated or im-

plied needs" (ISO 8402-Quality Management and Quality Assurance Vocabulary)

or simply: "fitness for use" (Juran and Godfrey, 1998). Quality (or fitness for use)

has two components: quality of design and quality of conformance. Quality of

design is mostly related to the physical characteristics of the product that are the

result of deliberate engineering and management decisions. Inventors, engineers,

architects, and draftsmen are viewed as the responsible people from the quality of

design. In the manufacturing process, where the design specifications are trans-

formed into final products, quality of conformance becomes important. Quality

of conformance is how closely the final product meets the design specifications.

Therefore, the goal of quality of conformance is the production of identical and

defect-free items, hence the systematic reduction of variability and elimination

of defects. Since fitness for use incorporates reducing the variability in the key

parameters, the focus of the quality studies is on the reduction of unnecessary
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variability in these parameters.

A typical manufacturing facility has production lines consisting of machines

working interdependently, in terms their inputs and outputs. Each of these ma-

chines receives materials, processes and submits them to another machine as input.

Hence, establishing the required coordination among these machines is very im-

portant. One of the procedures for establishing this coordination is the Kanban

control (JIT, Just-in-time management). Kanban control ensures that parts are

not processed except in response to a demand. The coordination is provided by

circulating cards, between the machine and downstream buffer. In the kanban

control a machine must have a card before it can start an operation. Hence, the

system works as a pull system. It receives input material out of its upstream

buffer, performs the operation, attaches the card to the processed material, and

puts it in the downstream buffer. This tight control also implies/results in that

the whole line be stopped whenever a single machine is stopped due to a failure.

Moreover, the quality of finished good, coming out of the production process,

depends on the quality of each operation performed on every single machine. The

sequential nature of production also implies that care must be taken to ensure the

detection of the quality problems as early as possible at each machine. Therefore,

lack of coordination in a multi-machine environment could intensify the costs due

to poor quality.

Lean manufacturing, also known as The Toyota Production System (TPS) (see
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Ohno 1988), is frequently modeled as a house with two pillars (see Figure 2-1).

The top of the house consists "highest quality, lowest cost, shortest lead time",

whereas one of the two pillars represents just-in-time (JIT), and the other pillar

the concept of jidoka. Jidoka (translated as autonomation) is a defect detection

system which automatically or manually stops the production operation whenever

an abnormal or defective condition arises. The manufacturing system introduced

will not stand without both of the pillars. Yet many researchers and practitioners

focus on the mechanisms of implementation—one piece flow, pull production, tact

time, standard work, kanban—without linking those mechanisms back to the pillars

that hold up the entire system. Although JIT, one of these pillars, is fairly well

understood, jidoka, the other pillar is key to making the entire system hold up. We

can state that a lot of failed implementations can be traced back to not building

this second pillar. In the concept of jidoka when a team member encounters a

problem in his or her work station, he/she is responsible for correcting the problem

by pulling an andon cord, which can stop the line. The objective of jidoka can

be summed up as: Ensuring quality 100% of the time, preventing equipment

breakdowns, and working efficiently.

In his talk at the 2003 Automotive Parts System Solution Fair held in Tokyo,

June 18, 2003, Teruyuki Minoura, Toyota’s managing director of global purchasing

at the time, stated that:

"It is essential to halt the line when there’s a problem. If the line
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doesn’t stop, useless, defective items will move on to the next stage.

If you don’t know where the problem occurred, you can’t do anything

to fix it. That’s where the concept of visual control comes from. The

tool for this is the andon electric light board."

2.2 Statistical Process Control

The manufacturing systems benefit from statistical tools for defect detection and

quality improvement. Some of the applications of the statistical method in the

manufacturing systems for the quality management are: comparison of different

materials, components, ingredients; monitoring of a production process which im-

proves the process capability, which is a measure of the proportion of the items

produces that conforms the standards/specifications when the process is in sta-

tistical control, by minimizing the variability in the process; optimizing processes

in order to increase the yield and reduce the manufacturing costs; development of

a measurement system which can be readily used for decision making about the

process. Among the statistical methods, SPC has been one of the most successful

tools in quality management. Most of the production organizations implement

programs that incorporates SPC methods in their manufacturing and engineer-

ing activities. Statistical Process Control (SPC) is defined as the application of

statistical and engineering methods in measuring, monitoring, controlling, and im-

proving quality. An overview of the historical development and current status of
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the statistical process control is provided by Stoumbos et al. (2000).

The variability in any production process is unavoidable, hence there is a cer-

tain probability that the output of a production system will not fit the quality

specifications of the final product. The objective of continuos improvement of

the process performance and reducing the variability is achieved through statisti-

cal process control. Tools of statistical process control are called as “Magnificent

Seven” in Montgomery (2004). These tools are: histogram, check sheet, Pareto

chart, cause and effect diagram, defect concentration diagram, scatter diagram,

and control chart. All of these tools, hence the SPC is based on the observation

of the process. These tools translate the data collected into a meaningful display

for decision making. Our focus in this dissertation is the control charts.

2.3 Quality Control Charts

The concept of statistical control and the use of control charts for the statistical

stability are first introduced by Walter A. Shewhart in the 1920s (see Shewhart,

1931 and 1939). His work considered to be the foundation of modern statistical

process control and quality control charts. Shewhart (1931) defines the control as

follows:

“A phenomenon will be said to be controlled when, through the

use of past experience, we can predict, at least within limits, how
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the phenomenon may be expected to vary in the future. Here it is

understood that prediction within limits means that we can state, at

least approximately, the probability that the observed phenomenon

will fall within the given limits.”

He states that a constant and predictable process has only random causes

(chance causes). He called the unknown causes of variability in the quality of the

product which do not belong to a stable (constant) system as assignable causes

(special causes). He builds a control chart model to distinguish between "chance

causes" and "assignable causes" of variability in the process. When only the ran-

dom causes are present in the process, it is considered that variability is at an

acceptable level, hence the outputs conform the specifications. A process that is

operating with only random causes of variation present is said to be in (statis-

tical) control. Although a production process mostly operates in the in-control

status, other kinds of variability may occur in the process. If this kind of variabil-

ity due to an assignable cause exists than the output of the process does not meet

the specifications. The sources of this kind of variability are: improperly adjusted

machines, operator errors, or defective raw materials. A process that is operating

in the presence of assignable causes is said to be out of control. Once the process

is in the out-of- control status the source of the variability should promptly be

identified and corrective actions should be taken to restore the process to the in

control state.
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There are two different purposes of the control charts suggested by Shewhart

(1931): (i) To determine whether a process has achieved a state of statistical

control, (ii) To maintain current control of a process.

The basis of the QC-charts is sampling from the output of a machine and

conducting a hypothesis test to see whether or not the output meets certain spec-

ifications. If these specifications are not met, the machine is then inspected for an

assignable cause and corrected/adjusted, if necessary. An illustration of a typical

control chart is depicted in Figure 2-2. In a control chart, a specific quality char-

acteristic is measured by the samples taken usually at fixed time intervals, and

these measurements are plotted on a chart in chronological fashion. The center

line represents the average value of the quality characteristic. The lower control

limit and the upper control limit determine the bounds of the in-control region,

i.e. as long as the measurement of the sample taken falls in between these two

lines the process is assumed to be in the in-control status. Only random causes

exist if the sample data points fall between the two control limits. If the process

shifts to the out-of-control status then we expect that most of the observations

are outside the control limits. Moreover, when in-control, the data points plotted

on the chart should be evenly distributed between the control limits. Sometimes

the data points are located only on one side of the center line and close to each

other. This also may be an evidence for a systematic variation, hence, out-of-

control state. It is assumed that, at the start of a production run after the last

restoration, the production process is in the in control status, producing items of
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acceptable quality. After a period of time in production, the production process

may shift to the out-of-control status. A major objective of QC-charts is to quickly

and cost effectively detect the occurrence of assignable causes or process shifts so

that investigation of the process and corrective action may be undertaken before

many nonconforming units are manufactured.

Distance of control limits from the center line are expressed in standard devi-

ation units. Shewhart (1931) suggests the use of 3σ control limits over a control

chart, and taking samples of size four or five. He leaves the sampling interval

determination to the quality control engineers. This type of control charts are

referred as Shewhart Control Charts in the literature.

Control charts are quite popular for the following reasons (Montgomery, 2004):

1. Control charts are a proven technique for improving productivity

2. Control charts are effective in defect prevention

3. Control charts prevent unnecessary process adjustments

4. Control charts provide diagnostic information

5. Control charts provide information about process capability

Determination of the control parameters of the control charts is called design of

the control charts. Literature on the design of the control charts can be classified

in several different ways; for example, depending on the methods in selecting the

control parameters, depending on the data type of the quality characteristic or
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depending on the class of assumptions made in the problem formulation.

Depending on the method in control parameter selection, control charts can

be classified as follows: (i) Purely statistical approach: the statistical performance

of the chart is the only consideration and purely statistical aspects are considered

when selecting the operating values of control parameters. In the statistical design

of control charts, the power of the test for detecting an assignable cause, and value

for Type I error are set to their predetermined values, and decision variables are

calculated such that power and Type I error objectives are achieved. However

this approach completely disregards the economical consequences of the design.

(ii) Fully economic approach: the quality costs and chart maintenance costs are

taken into account explicitly in selecting the operating values of the control para-

meters. Quality costs used in many manufacturing and service organizations are

summarized in Table 2.1 (reproduced, Montgomery 2004). (iii) Economic statis-

tical (semi-economic) approach: the economical and the statistical performances

of the control charts are simultaneously optimized. This approach is due to some

criticism raised for the fully economic approaches for their ignorance of the statis-

tical performance of the charts and the difficulty in estimating and collecting the

cost data.

The economic models are generally formulated using the total cost per unit

time function. The most commonly used objective in the economic design of con-

trol charts is minimizing the cost rate and determining the values of the decision

variables that satisfy the objective. Overall production time is divided into sto-
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chastically identical cycles. Each cycle starts with the production in the in-control

status. At some sampling instant, control chart indicates an out-of-control status,

as described above. Then, a search for the assignable cause is conducted and if

discovered the process is stored to the in-control status. The time between these

two time points is called a cycle. Hence the expected cost within this cycle is

computed and divided by the expected duration of the cycle. Minimization of this

cost rate yields the design parameters of the control chart. There has been an in-

creased interest in the economic design of the control charts in the late 1980’s and

early 1990’s in accordance with developments in lean management of production

systems.

Many research have been done during the recent half-century on the economic

design of the quality control charts, following the pioneering work of Duncan

(1956). Surveys and reviews of this extensive literature can be found in Gibra

(1975), Montgomery (1980), Vance (1983), Ho and Case (1994), and Tagaras

(1998). They also provide some future directions for the field. We will provide a

review of relevant literature, covering only some of the important works that are

the closest to our problem setting, and the summaries of the articles reviewing the

literature.

Choosing the control chart design parameters by taking the costs into account

is first brought up by Duncan (1956). The objective of his study is to maximize

the long run average net income per unit time of a process operating under the

surveillance of a control chart. The process net income is equal to the difference
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between the total income and the total cost. The total income is composed of (i)

income when the process is in-control, and (ii) income when the process is out-

of-control. The total cost is composed of (i) the cost of looking for an assignable

cause when none exists, (ii) the cost of looking for an assignable cause when it

exists, (iii) the cost of maintaining the chart. He considers only one assignable

cause case (he also provides some introduction to the multiple assignable case). He

assumes that assignable cause occurrences follow a Poisson process and causes a

shift in the process mean. He assumes that the production continues while investi-

gating and correcting the process. He specifies that he doesn’t consider the cost of

adjustment and repair and the cost of bringing the process back to the in-control.

It is assumed that the rate of production is sufficiently high, so that the possibility

of a shift occurrence during the sample taking is negligible. He incorporates the

time between taking the sample and plotting it on to the chart (delay in plotting)

into the model. He develops expressions for the proportion of time the process is

in-control and that when it is out-of-control. The average number of times the

process actually goes out of control and the expected number of false alarms are

determined. His solution procedure is based on solving numerical approximations

to a system of first partial derivatives of the loss-cost with respect to the control

parameters.

To explain the objectives of economic design of quality control charts and their

classifications we will quote from Saniga (2000).
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"In the control chart design problem, the objective is to determine

the parameters of a control chart such that cost is minimized or profit

is maximized according to an economic model, desired average run

length or average time to signal are achieved, or both are achieved

simultaneously. These problems are called economic design, statistical

design, and economic statistical design, respectively."

When control charts are designed appropriately, taking into account the eco-

nomical considerations, they contribute to maintaining the desired level of the

quality and result in considerable amount of cost savings by reducing the waste

and scrap.

Gibra (1975) discusses the developments in the control charts according to the

following classification: (i) Shewhart control charts, (ii)Modifications of Shewhart

control charts, (iii) Cumulative Sum control charts, (iv) Economic design of X̄-

control charts, (v) Acceptance control charts, and (vi) Multi-characteristic control

charts.

Montgomery (1980), in his review, summarizes the assumptions that are rela-

tively standard for the formulation of the economic design of the control charts.

These assumptions that are considered as standard are:

(i) The production process is assumed to be characterized by a single in-control

state.

(ii) The process may have more than one out of control states.
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(iv) Assignable causes occur according to a Poisson process.

(v) Transitions between states are instantaneous.

(vi) Process is not self-correcting.

He also explains the three categories of the customarily considered cost struc-

tures in the formulation of the quality control charts. These categories are: (i) the

cost of sampling and testing; (ii) the cost associated with the investigation of an

alarm signal and with the repair or correction of any assignable causes detected;

(iii) the costs associated with the production of defective items. His conclusions

about the optimum economical design are:

1. The optimum sample size is largely determined by the magnitude of the

shift.

2. The hourly penalty cost for production in the out-of-control state mainly

effects the interval between samples, h.

3. The cost associated with looking for assignable causes mainly affect the

width of the control limits.

4. Variation in the costs of sampling affects all three design parameters.

5. Changes in the mean number of occurrences of the assignable cause per hour,

λ, primarily affect the interval between samples.
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6. The optimum economic design is relatively insensitive to errors in estimating

the cost coefficients.

Another classification of the control charts depends on the type of the data

collected. When the quality characteristic can be measured and expressed on a

continuous scale (length, weight, volume, etc.) then a variables control chart is

employed. These are the charts for controlling the central tendency and variability

of the quality characteristic. The variables control charts are called: X̄-control

charts if the mean of the subgroup data is measured, R-chart if the range of

the subgroup data is measured and is used when the sample size is small (<10),

s-chart if the standard deviation of the subgroup data is measured and is used

when either the sample size is moderately large (>10 or 12) or the sample size is

variable. In order to maintain the process control, both the mean and the vari-

ance of the quality characteristics have to be examined. In the variables control

charts, the distribution of the quality characteristic is assumed to be normally

distributed. However, because of the Central Limit Theorem the results are still

approximately correct even if the underlying distribution is not normal. Some

of the seminal works for the "economic design of variables control charts" are as

follows. Duncan (1956), Lorenzen and Vance (1986), Von Collani (1988), Saniga

(1989), and many other research we review here, develop models for economic

design of X̄-control charts. Von Collani and Sheil (1989) develop an economic

model for the s-chart. Saniga (1977), Jones and Case (1981) consider the joint

economic design of X̄ and R control charts, and Rahim, Lashkari, and Banerje
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(1988) consider the joint economic design of X̄ and s control charts. For moni-

toring and controlling the processes with small shifts, Cumulative-Sum (CUSUM)

and Exponentially Weighted Moving-Average (EWMA) control charts are more

effective alternatives. The advantage of CUSUM and EWMA charts is that each

plotted point includes several observations, so central limit theorem can be used to

say that the average of the points (or the moving average in this case) is normally

distributed and the control limits are clearly defined.

If the data collected for the product evaluation is of a count or discrete response

type (pass/fail, yes/no, good/bad, number of defectives, etc.) then an attribute

control chart is employed. In an attribute control chart: if the sample size of

the subgroups are not equal and the percentage of the nonconformities are the

control parameter then the control chart is called p-chart; if the sample size in

the subgroups are equal and the count of the nonconformities are plotted then

it is called np-chart (note that this is a special case p-chart); if the number of

nonconformities per unit (per day, per square meter, etc.) is the measure then

a c-chart is employed; when the inspection unit is not fixed (for example, some

inspections are per day, some are per shift, and some are per week) then the

number of nonconformities is normalized with respect to the inspection unit and a

u-chart is employed. "Economic design of attribute control charts" is beyond the

scope of our study, excellent reviews of the literature on this topic are provided

by Montgomery (1980), Vance (1983), and Ho and Case (1994).
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Lorenzen and Vance (1986) present a general method for fully economical ap-

proach, that applies to all control charts, for determining the economic design of

control charts. The basic feature of their modeling approach is that it is based

on the in-control and out-of-control average run lengths (ARL), rather than the

Type I and Type II error probabilities. They introduce a model in which the total

cost of quality, including cost of producing nonconforming items while in control,

is minimized. They make all the standard assumptions in Montgomery (1980).

They discuss two assumptions, exponentially distributed assignable cause occur-

rences, and single assignable cause with known amount of shift. They state that

since the occurrences of the assignable causes are rare events and independent

of each other, exponential inter-occurrence times assumption is reasonable. They

also argue that if a different distribution is assumed and if the process continues

after a false alarm as if the false alarm never occurred then the average time in

the in-control status is unchanged by the false alarms, hence the effect of relaxing

the exponential assumption would be minor. They develop the expressions for es-

timating the expected time in-control and expected time in out-of-control. They

considered that cycle time is the sum of the following components:

(i) The time until the assignable cause occurs

(ii) The time until the next sample is taken

(iii) The time to analyze the sample and chart the result

(iv) The time until the chart gives an out-of-control signal, and
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(v) The time to discover the assignable cause and repair the process

The costs considered in the model are those incurred during the in-control and

out-of-control periods and are as follows:

(i) Cost per hour of production of defective items while in-control

(ii) Cost per hour of production of defective items while out-of-control

(iii) Cost per false alarm

(iv) Cost for locating and repairing the assignable cause when one exists

(v) Cost of sampling: a fixed cost per sampling and cost per unit sampled.

Expected cost per hour is calculated by dividing expected cost per cycle by

expected cycle time in hours. The model has the advantage that it allows other

control charts to be incorporated simply by changing the probability distribution

function that generates the average run lengths. In order to minimize the expected

cost per hour, they use Fibonacci search if the control limits are discrete, and the

golden section search if the control limits are continuous. They give an example

and present sensitivity analysis results. They observe that the value of the ex-

pected cost rate function is sensitive to the (constant) amount of process shift,

however sampling plan is not sensitive to the amount of process shift. Hence, they

state that control parameters can fairly be approximated.

Goel, Jain, Wu (1968), employ the fully economic approach to the single

assignable cause, variables control chart model. They develop an algorithm based
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on the model described in Duncan (1956) for determining the optimum values of

the control parameters. They evaluate two functions to search over policy para-

meters, one of the functions is an implicit equation in sample size, y and control

limits constant, k, i.e. f (y, k), the other one is an explicit function for sampling

interval, h, f(h). Using an initial integer value for y, they obtain values for k that

satisfy equation f (y, k) as closely as possible, then, for each of the k values they

calculate h, from f(h). Then, they substitute the policy parameter value triplet

(y, k, h) into the loss-cost function and find the local minimum. They repeat the

procedure for different values of y, and finally comparing the loss-cost function val-

ues for different values of n, they determine the optimum policy parameters. They

provide a sensitivity analysis study. They observe that (i) k is linearly increasing

in y, (ii) h is increasing by following a concave curve in y, (iii) loss-cost function

surface is relatively insensitive to y, such that when y varies from its optimum

value within an interval of ±2, the change in the loss-cost function value is only

4%. Their results show that there is only one local minimum for each value of y,

but for a fixed k there exist two h values, and similarly for a fixed h there exists

two k values satisfying the identical loss-cost function value. They also observe

that changes in the shift rate primarily affect sampling interval h, changes in the

other two parameters are relatively small. They compare their new algorithm with

the Duncan’s approximate method for 15 examples.

Gibra(1971) employs the fully economic approach to the single assignable

cause, variables control chart model. He makes the standard assumptions in
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Montgomery(1980). However, he assumes that sum of the times to take samples,

inspection, plotting, and discovering and eliminating the assignable cause follows

an Erlang distribution. His justification for the choice of Erlang is that it provides

a good fit to empirical distributions. For the design of the control chart he focuses

on the length of time that elapses between the occurrence of the assignable cause

and its detection, and includes the criterion of the permissible mean expected

number of defectives produced within a cycle, addition to the economic criterion.

He also extends the cost structure of Duncan(1956) by considering: the cost of

searching for the assignable cause when a false alarm is raised, the cost of detect-

ing and eliminating the assignable cause, the penalty cost per unit of defective

items, the cost of inspection and plotting per unit sample and the overhead cost

per inspected sample for maintaining the X̄-chart. After developing his model he

suggests a trial and error technique to determine the optimum values for y and k,

and then computing h through a provided equation by substituting the y and k

values obtained from the previous step.

Economic statistical approach and joint optimization for the variables control

charts models are developed by researchers such as Saniga (1977, 1989).

Saniga(1977) has developed a model for the joint economic design of X̄ and R

control charts. He presumes that the process can be in one of three states (note

that in previous works researchers considered only two states), and there are two

types of assignable causes that generate the shifts. In the first type process mean

shifts but the process standard deviation remains the same, in the second type
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process standard deviation shifts but the process mean remains the same. The

control design parameters are: sample size, number of units produced between

successive samples, control limits on the X̄ chart, and the upper control limit

factor on the R chart. He reports solutions to 81 numerical examples. His results

indicate that joint optimization of the X̄ and R control charts yields less frequent

sampling compared to the case where only the X̄ control chart optimized.

Saniga (1989) considers the joint economic design of X̄ and R charts. He de-

velops a model where the economic-loss cost function is minimized subject to some

constraints such that, there are a minimum value for the power and a maximum

value for the Type I error probability and for the average time to signal an ex-

pected shift. This new formulation is called "Economic Statistical Design (ESD)".

He claims that the economic statistical design avoids many of the disadvantages

of heuristic, statistical, and economic designs. Advantages of ESD are listed as:

improved assurance of long term product quality and maintenance; reduction of

the variance of the distribution of the quality characteristic.

The literature we reviewed so far consider the existence of only one assignable

cause, hence is called single assignable cause models. Standard assumption in the

economic design of the control charts is the existence of single assignable cause,

however there are also multiple assignable cause models. Duncan (1971), Tagaras

and Lee (1988), Tagaras and Lee (1989) are among those who consider multiple

assignable cause in the economical control chart design.
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Duncan (1971) extends the single assignable cause model and considers control

of a process when there exist multiple assignable causes. The state of the process

is still defined as either in-control or out-of-control. He assumes that there are s

assignable causes, and each assignable cause shifts the process mean by a certain

amount. Shift times due to each assignable cause is independent and exponen-

tially distributed. He considers two models. In the first model, he assumes that

when the process shifts to the out-of-control state due to one of the assignable

causes, another type of assignable cause may not occur. In his second model,

this assumption is relaxed. He assumes that the process is kept running until the

assignable cause is actually discovered. Cost of repair and restoration is not in-

cluded in the objective function. He develops the models and through a numerical

study presents the sensitivity results. The results indicate that for the multiple

assignable cause case, the effects of variations in the cost parameters on the opti-

mal design are identical to those of the single cause model. Additionally, he shows

that a reasonably good approximation to the multiple assignable cause model can

be obtained from a single assignable cause model.

Tagaras and Lee (1988) deal with use of a control chart having multiple control

limits defining multiple areas on the chart with different respective correction

actions. At fixed intervals of time units, the process is observed by taking fixed

amount of samples of the output quality measurement. When an alarm is raised

indicating that the process mean has shifted, there are two possible levels of action.

The first level corresponds to a minor adjustment of the process, and the second
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level calls for a major and usually more costly intervention. The classical single

assignable cause control chart can be viewed as a special case of the X̄-chart with

two pairs of control limits. Expected cost per time unit is calculated as the ratio

of expected cycle cost to expected cycle length. Then a two-step procedure is used

for the optimization of this ratio. In the first step, for a given sample size, optimal

values of sampling interval and control limits and the resulting expected cost per

time unit is determined, and in the second step the sample size that minimizes

expected cost per time unit is calculated. Experimental results of 126 numerical

examples are given. They also present the results of a sensitivity analysis.

Results given in sensitivity analyses are: (i) As the rate of the assignable

cause increases, that is assignable cause is more likely to occur, sample size and

sampling interval decreases, (ii) Optimal sample size is drastically reduced when

shift in process mean is increased, (iii) An increase in expected profit result in

increase in both sample size and sampling interval. They also provide a comparison

of multiple assignable cause model with single assignable cause approximation.

Results indicate that control chart with multiple control limits provide a significant

improvement on a single state, single response approximation.

When multiple assignable causes require different restoration procedures and

the search for the assignable cause in effect is very expensive, control charts with

multiple control limits may be preferred. A simplified scheme for approximate

economic design of control charts with multiple control limits is proposed in this

research. In the semieconomic design probability of true alarm is considered to be
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given as data, so that number of variables to be optimized reduces, from four(in

two control limits) to two. This reduction in the number of variables is due to

defining the control limits in terms of the true alarm probability. Expected cost

and expected cycle time equations are modified and again two step optimization

technique has been used.

Proposed method is tested with 126 numerical examples. Results show that

proposed approximate method results in solutions that are very close to the true

optima and can be obtained with minimal computational effort.

Tagaras and Lee (1989) propose a simplified procedure for the approximate

economic design of control charts with multiple control limits, since finding the

optimal control parameter values using the exact cost function derived in Tagaras

and Lee (1988) is very complex. The process they consider has three states: one

in-control and two out-of-control states (one indicating a minor problem and the

other indicating a major problem). There are different control limits associated

with each of the out-of-control states. Shift times to the each of the out-of-control

states are independent and exponentially distributed. They assume that if the

state of the process is correctly identified when an alarm raised, the process can

be restored to the in-control state, hence it restarts afresh. However if the control

chart indicates that process is in the out-of-control state associated with the minor

problem, although there is a major problem, restoration is not possible hence the

process maintains its state in restart. They propose a semieconomic approach

for the approximation where the true alarm probabilities associated with each
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of the out-of-control state are given (preset). In this case control limits can be

computed from the true alarm probabilities and the number of control parameters

reduces to two, sample size and sampling interval. They proceed with making more

assumptions since the cost rate function is still very complicated. They present

the results of a numerical study in which they compare the cost rate obtained

from the approximation with the optimal cost rate. Numerical study is performed

over 126 examples. True alarm probabilities are set to 0.8 for the inner out-of-

control state and 0.95 for the outer out-of-control state. They conclude that the

approximations they provide performs well.

Tagaras (1989) proposes an approximate method for the optimal economic

design of process control charts. He provides a log-power approximation for both

single assignable cause and multiple assignable cause cases. In his approximation

rather then working with preset value for the power of the control charts, he predict

the power from the model parameters by using the log-power approximation.

In the literature of the economic design of the quality control charts, assignable

cause occurrences are assumed to be follow a Poisson process. Hence, the time be-

tween assignable cause occurrences are distributed exponentially. Validity of this

assumption is discussed by several authors. We have provided above the argument

by Lorenzen and Vance (1986) about the validity of this assumption. The motiva-

tion of this assumption is that, due to extensive burn-in tests, beyond some initial

age failure function of the machinery is relatively flat. Tagaras and Lee (1988)

also discuss that this assumption is also true for the case where equipment failures
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result from the failure of any of its components and the number of components are

fairly large. However, the constant failure rate assumption is not valid when, for

example, the assignable causes are due to tool wear and there is the predictability

of the assignable causes, mostly for the mechanical system rather then electronic.

There are models in the literature assuming non-exponential assignable causes. A

comprehensive review of these models can be found in Ho and Case(1994) and

Tagaras(1998). One of the pioneering work in relaxing the exponential assump-

tion is by Banerjee and Rahim (1988). They propose a model for the economic

design of the X̄-control charts where the shift occurrence times follow a Weibull

distribution instead of exponential. They allow the sampling intervals vary with

time, contrary to the fixed sampling interval assumption of the previous work.

They assume that the sampling and plotting times are negligible and production

is stopped during the search for the assignable cause and restoration. They per-

form a numerical study for the implementation of the search algorithm and the

sensitivity analysis.

In the last decade, there are studies for the economical design of the control

charts for the finite horizon problems. All of the studies and models discussed

above, assumes infinite horizon problems. However, one can intuitively state that

the optimal control policy and parameters of the control charts would be different

if the horizon is finite. Crowder (1992) discusses the economic design of control

charts for the short production runs (or finite horizon problem). He derives the

model for the finite horizon problem and shows that the control strategy depends
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on the length of the production run. He also shows that treating a short-run prob-

lem incorrectly as an infinite-run problem can significantly increase the expected

costs associated with the control strategy. In his model there is only one decision

variable, which is the control limits. In his model he allows the control limits

change in every time period. He shows that control limits increases as the end of

the finite production horizon approaches.

Tagaras (1994) proposes a dynamic programming approach to the economic

design of X̄-control charts. He concentrates on the economics of process monitor-

ing in finite production runs. He uses the expected value of total process control

related costs incurred during a production run of specified, finite length, as the

performance criterion. He presents results of 24 numerical examples. The average

expected total cost improvement with regard to the optimal static chart is 14.5%

in these examples, and in many cases savings are over 20%.

Del Castillo and Montgomery (1996) consider the design of X̄ control charts

for finite-horizon production runs. They also consider the case of imperfect setups.

They assume that there is a probability of having a perfect setup at the beginning

of each cycle, and this probability is constant throughout time. They compare

their model with the model in Duncan (1956) and the model in Ladany (1973).

They also present the results of a numerical study.

Another recent field of study in the economic design of the quality control

chart literature is combining the maintenance policies and availability of the main-
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tenance capabilities with the control charts. Preventive and opportunistic main-

tenance policies may provide a major improvement on the control chart designs.

Preventive maintenance is performing proactive maintenance in order to prevent

system problems. Opportunistic maintenance is the preventive maintenance per-

formed at opportunities, either by choice or based on the physical condition of the

system. Lee and Rosenblatt (1988) consider the costs of different policies for pro-

viding detection and restoration capabilities. Four monitoring policies depending

on the availability of the detection and restoration capabilities are considered in the

paper: Policy 1: “continuous detection capability” and “ at inspection available

restoration capability”, Policy 2: “periodic detection capability” and “at inspec-

tion available restoration capability”, Policy 3: “continuous detection capability”

and “periodically available restoration capability”, Policy 4: “periodic detection

capability” and “periodically available restoration capability”. They make the

standard assumptions listed in Montgomery (1980). They derive the cost models

and the optimal cost for each of the four policies. They provide a comparative

analysis of the different monitoring policies, focusing on the impact of the rate of

the shift of the production process and the cost of operating in out-of-control state

on the choice of the policies. They illustrate their propositions with a numerical

example. The analysis of the monitoring strategies yields following conclusions:

1. When the system is very reliable Policy 4 may be dominant

2. When the process become less reliable, the cost of defective items forces
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tighter control of the process, hence continuous inspection is favorable and

Policy 3 dominates

3. For very unreliable processes, due to the frequent need, availability of the

restoration capabilities becomes more important, hence Policy 1 dominates

4. For the low cost of operating in out-of-control state, continuous monitoring

and inspecting the process is not preferable, hence Policy 3 or 4 dominates.

5. For higher cost of out-of-control operation, it is necessary to provide both

continuous inspection as well as restoration capabilities, thus Policy 1 dom-

inates.

Ben-Daya and Rahim (2000) provide a study to incorporate the effects of main-

tenance on quality control charts. They develop a model which allows jointly

optimizing the quality control charts and preventive maintenance level. They as-

sume that when a preventive maintenance activity is conducted on the process it

reduces the failure rates but not to the level of a fresh process. They model the

above described process for increasing failure rate of the shifts. They assume that

the preventive maintenance and the sampling are simultaneous. They provide

an example which shows that as the preventive maintenance level gets higher, the

quality control costs reduce. They propose to increase the preventive maintenance

level up to the level in which the savings compensate the added maintenance cost.

Some of the other recent works in the area of study are as follows:
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Del Castillo et al. (1996) study multiple-criteria optimal design of X̄ control

charts. They provide a model without explicitly considering the costs of false

alarms and running in the out-of-control state. They formulate the problem as a

nonlinear, constrained, multiple-objective programming model. There are three

objective functions to be minimized in their model: (1) expected number of false

alarms, (2) average time to signal, (3) sampling cost per cycle, and two constraints

which limit the probability of Type I and Type II errors. They show that, using

their model, control chart designs can be obtained without explicit estimation of

the quality related costs, namely cost of operating in the out-of-control state, cost

of incurring and investigating a false alarm, and cost of finding an assignable cause,

which the single objective economic design models rely on. They also provide a

practical illustration through an example.

Costa and Rahim (2001) develop a model for the economic design of X̄ charts

in which they allow the control parameters, y, k, and h, vary between their min-

imum and maximum values. They assume Poisson arrivals of the process shifts.

They divide the control chart into three regions: the central region, the warning

region, and the action region. If a sample points falls into the warning region

then the control is tightened in the next sampling by reducing the sampling in-

terval and control limits to their minimum values and increasing the sample size

to its maximum value. If, however, the sample point is in the central region then

the control is relaxed for the next sampling, by increasing the sampling interval

and control limits to their maximum values and decreasing the number of samples
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taken to its minimum value. Through a numerical analysis they show that variable

parameters design is more economical compared to the static parameters design.

Independent from the design of quality control charts, opportunity based age-

replacement models have also been studied in the literature. Dekker and Dijkstra

(1992) consider the problem where preventive replacements are allowed only at op-

portunities. Opportunities are due to the failure of the other components in series

configuration to the component in consideration. They assume that opportunities

arise according to a Poisson process. They use the renewal reward theorem to

derive the long-term average cost expression. Since the opportunities occurrences

are according to a Poisson process, due to the memoryless property, the renewal

cycles end either with a failure or with an opportunity in their model. They derive

the optimality equation.

In the first and second part of our research, we focus is on the variable control

charts, specifically on the economical design of X̄−control charts. All of the work,

to our knowledge, in this area are tailored for the single machine environment. We

consider quality control chart design for the multiple machine environment. Design

of QC-charts in the multi-machine environment may have major implications.

As alluded to above, in a production line operated with the JIT management

philosophy, whenever a machine is stopped for an inspection and/or repair, the

whole line is stopped and thereby the production ceases. Each such stoppage

results in a profit loss due to the downtime. In previous works on economic design

of QC-charts, the negative impact (i.e., downtime cost) has been considered as an
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explicit cost absorbed into the so-called alarm costs. However, each stoppage of

the line also has a positive impact (i.e.,presents an opportunity) to inspect / repair

the machines that have not triggered the stoppage. This potential positive impact

has not been studied analytically before, despite numerous anecdotal evidence

pointing to the common practice in industry. When the number of the machines

in a line becomes larger, the frequency of the line stoppages and the number

of opportunistic inspection/repair instances increases. Hence, one would expect

the benefits of the opportunistic inspections/repair to get larger in production

processes with considerably large number of workstations. We are not aware of

any effort for combining the opportunistic inspection/repair (maintenance) with

the quality control chart design that we consider herein.
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Chapter 3

Economic Design of X̄ Control

Charts With Exogenous

Opportunistic Inspection/Repairs

In this chapter, we will consider a single machine subject to exogenous stoppages

for opportunistic inspections. We elaborate the economic design of quality control

charts that we introduced in the previous chapter. We provide the cycle definition

in the presence of opportunistic inspections, and derive the probability functions

for each cycle type. Next, we provide the expressions for the expected cycle cost

and expected operating time, and introduce the objective function. Finally, we

show that the classical economic design of QC chart problem is a special case of

the model we develop herein.
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3.1 Preliminaries

A production process is intended to generate products with certain specifications.

We consider a production process with a single assignable cause and single control

limits. Hence, the production process can be characterized by a single in-control

status (1) and a single out-of-control status (0). For convenience, we suppose that

the process is performed on a single machine so that we can use the terms process

and machine interchangeably. It is assumed that, at the start of a production run

after the last intervention, the production process is in status 1, producing items

of acceptable quality when operational. After some time in production, the pro-

duction process may shift to status 0. From that point on, items of unacceptable

quality are produced until an intervention occurs and the process is stopped. We

assume that the transition from the in-control status to the out-of-control status

is instantaneous, i.e. through arrival of an exogenous shock.

There is a single quality characteristic, X, by which the process is evaluated

and controlled. Without loss of generality, we assume that X is continuous and

that it is always distributed normally with the mean depending on the status

of the process. This assumption relies on the well-known central limit theorem.

When the process is in the in-control status, X has the mean µ0 and the standard

deviation σ; in the out-of-control status, the process mean experiences a shift of

magnitude ∓δσ, where δ is known and positive. We assume that the standard

deviation of the process does not change in the out-of-control status. More explic-
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itly; when in the in-control status: X ∼ N(µ0, σ), and when in the out-of-control

status: X ∼ N(µ0 ± δσ, σ). Tagaras and Lee (1988) have shown that ignoring

the variability of the process variance has almost no effect on the economic design

of control charts. Lorenzen and Vance (1986) discuss the validity of the single

assignable cause and a shift by a known amount. They rest their case on the stud-

ies and conclusions of Duncan (1971), who have studied many assignable cause

cases. In summary, they agree that single assignable cause model with a weighted

average time to out-of-control state closely approximates the multiple assignable

cause model.

Occurrence of the single assignable cause constitutes the shift in the process

mean. The assignable cause is assumed to be non-observable so that inference

about the status of the process can only be drawn indirectly through observation

of a sample statistic of X. The elapsed time for the process to be in the in-control

state, before a shift occurs, is assumed to be distributed exponentially with mean

1/λ. Lorenzen and Vance (1986) also provide arguments for the validity of the

exponential shift times assumption and discuss that when the assignable causes

are not random events, events such as tool wear which exhibit certain degree of

predictability, this assumption would not be valid. The exponential assumption

for the shift of the production process has been widely used in the quality control

literature (see Duncan, 1956; Goel and Wu, 1973; Chiu ,1975, 1975b, 1976; Gibra,

1971; and Lorenzen and Vance, 1986) and is empirically supported (Davis, 1952;

and Eppstein, 1958). The primary justification of such an assumption is that
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production equipment typically have flat failure rates due to extensive initial burn-

in tests. For further discussion of the plausibility of exponential shift times, see

Drenick (1960), and Rosenblatt and Lee (1986).

The production process we consider is not self-correcting; that is, after a shift

occurs, the process cannot improve by itself and remains in the out-of-control sta-

tus until it is discovered by some detection mechanism and corrected by restorative

action. Defective items, if produced, are eventually discarded at a prespecified

cost. Although considered in isolation, the production process at hand is assumed

to constitute a part of a bigger system operated under the principles of jidoka so

that it undergoes forced (system-wide) shutdowns originating from the rest of the

system. The exogenous shutdowns with a fixed duration of LO are assumed to

arrive according to a Poisson process with mean µ.

Before we proceed with the proposed quality control policy, a few remarks are

in order regarding the memoryless nature of the exogenously forced shutdowns.

In a complex production system where jidoka is employed, there will also be

some system-wide forced shutdowns, which originate from the other machines

in the system and arise from the alarms signalled on those machines. When

there are a large number of machines in the system and/or when the sampling

instances are different, due to, for example, different reliability and cost parameters

of the machines, it will appear to a particular machine that the shutdowns come

randomly. An assembly line typically consists of tens of workstations working

in tandem. When autonomation is employed on such a line, population from
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which the stoppages come is very large. Assuming that the sampling intervals are

different, as they would be in general for nonidentical machines as workstations, it

is reasonable to assume that there is a positive probability that a shutdown signal

may be issued in a small time increment. Given the exponential nature of shift

occurrences and the large number of machines involved in the population, it is

again reasonable to assume that the stoppage probability over a time increment

is stationary.

In this setting, we propose that the process is operated under what we call the

jidoka process control (JPC), which is a combination of the standard operation

under the surveillance of control charts and randomly occurring opportunity-based

inspections.

The basic control mechanism of the proposed JPC may be outlined as follows:

A sample of a certain size is taken from the process at prespecified intervals. The

sample units are analyzed and measured; the sample statistic is computed and

plotted on a control chart with prespecified control limits. The value of the sample

statistic determines whether or not an adjustment or restoration of the process is

called for, depending on the position of the sample statistics in the control chart:

If it is outside the control limits, an inspection of the process or a search for the

assignable cause is conducted. If the process is indeed in the out-of-control state,

the signal is said to result in a true alarm followed by a complete restoration of

the process to the in-control status; otherwise, the signal results in a false alarm

which requires no adjustment or restoration. So far, it is supposed that the process
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stops itself; this is the standard SPC scheme. Under the proposed JPC policy,

the process at hand also acts as an opportunity-taker. That is, if the process

faces an exogenous shutdown, its operator uses this stoppage as an opportunity

to carry out an inspection of the process although no signals have been received

from the control chart to initiate one. Upon inspection, if the process is found to

be in the out-of-control status, the opportunity is said to be a true opportunity

which is followed by a complete restoration of the process to the in-control state;

otherwise, the opportunity is a false opportunity which requires no adjustment.

Thus, under JPC, the process stops either by itself via an alarm arising from the

inferring procedure or by an exogenous opportunity generated by a system-wide

shutdown. Assuming perfect repair/restoration after each stoppage, the process

restarts in the in-control status.

The instances at which the process restarts are regeneration points, since, at

each restart, the process is in the in-control status, and occurrences of shifts and

opportunities are memoryless processes. Therefore, define a regenerative cycle as

the time between two consecutive process restarts. Clearly, a cycle is composed

of two components: operating time, denoted by τ and down time, denoted by L.

Then, we can describe a cycle in terms of how the process is stopped (s), the time

of the process shift (x), and the arrival time of an opportunity (z). (Note that,

for any cycle realization, x and z can easily be related to the number of samples

taken before the shift has occurred (n1) and the number of samples taken after

the shift (n2) in that cycle, and vice versa.) We identify four cycle classes s ∈
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S = {T, F,OT,OF} where, T (as in T rue alarm) denotes the class of cycles in

which an alarm triggers the process stoppage and the process is in the out-of-

control status at the time of stoppage; F (as in False alarm) denotes the class of

cycles in which an alarm triggers the process stoppage and the process is in the

in-control status at the time of stoppage; OT (as in T rue Opportunity) denotes

the class of cycles in which an opportunity triggers the process stoppage and the

process is in the out-of-control status at the time of stoppage; and, finally, OF (as

in False Opportunity) denotes the class of cycles in which an opportunity triggers

the process stoppage and the process is in the in-control status at the time of

stoppage. Each class s will have only certain permissible values for x and z (and,

thereby, for n1 and n2), as we shall discuss shortly.

We assume that the entire process of analysis for a sample (i.e., measurement

of the sample units, computing and plotting on the chart of the sample statistic)

takes negligible time, whereas, both the search for the assignable cause and the

possible restoration of the process necessitate the stoppage of a machine and take

non-negligible time. The durations of the search and restoration activities depend

on the status of the process. The inferring is done following a three-parameter

(y, h, k) policy such that a sample of size y is taken every h time units while the

process is operational, and the sample statistic (i.e., sample mean, x̄) is checked

against the control limits specified as ±kσ/√y, all three parameters are non-

negative. Then the control limits are:
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Upper Control Limit (UCL) = µ0 + kσ/
√
y

Lower Control Limit (LCL) = µ0 − kσ/
√
y

There are two types of errors associated with the control process, Type I and

Type II. Type I error is denoted by α and is the inference of out-of-control status

although the process is in the in-control status in fact. Type I error is illustrated

in Figure 3-1.

α = P {out-of-control signal | process in-control}

= P (X ≥ UCL) + P (X ≤ LCL)

= P (X ≥ µ0 + kσ/
√
y) + P (X ≤ µ0 − kσ/

√
y)

= P (Z ≥ k) + P (Z ≤ −k)

= 1− Φ (k) + Φ (−k)

= 2Φ (−k) (3.1)

We will denote the Type II error by β, and it is the inference that the process

is in the in-control status although it is in the out-of-control status. Figure 3-2

depicts Type II error.
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β = P {in-control signal | process out—of-control}

= P (LCL ≤ Y ≤ UCL)

= P (Y ≤ µ0 + kσ/
√
y)− P (Y ≤ µ0 − kσ/

√
y)

= P

Ã
Z ≤

(µ0 +
kσ√
y
)− (µ0 + δσ)
σ√
y

!
− P

Z ≤
³
µ0 − kσ√

y

´
− (µ0 + δσ)

σ√
y


= Φ (k − δ

√
y)− Φ (−k − δ

√
y) (3.2)

Then the probability that the assignable cause will be detected when it has

occurred, or the power of the test is:

(1− β) = 1− [Φ (k − δ
√
y)− Φ (−k − δ

√
y)]

= Φ (δ
√
y − k) + Φ (−k − δ

√
y) (3.3)

We consider the following categories of costs: (i) the costs of sampling and

testing, (ii) the costs associated with the production of defective items, and (iii)

the costs associated with the investigation and correction of the assignable cause

of variation. The cost of sampling and testing is assumed to consist of both fixed

and variable components, denoted by u and b, respectively, such that the total

cost of sampling and testing for each sample u + by. The cost associated with
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operating in the out-of-control status is taken as a per time unit of the process

operating in the out-of-control status, due to, for example, substandard outputs.

The costs of investigating an assignable cause and possibly restoring the process to

the in-control status consist of out-of-pocket repair or replacement costs due to, for

example, scrapped components and destructive inspection, and opportunity costs

of foregone profit due to downtime of the machine. For cycle class s ( ∈ S), Rs

is the out-of-pocket component and the opportunity cost component is computed

as πLs, where π is the profit (lost) per unit of time and Ls denotes the downtime

of the process.

In the economic design of the control chart we consider, the objective is to

determine the control parameters (y, h, k) which minimize the expected cost per

unit produced, E[TC]. We assume that any defective item out of the process

will be corrected through some rework operations. To this end, we shall use the

renewal theoretic approach so that the objective is to minimize the ratio of the

expected cycle cost, E[CC], and the expected operating time in a cycle, E[τ ],

where a cycle and operating time are as defined before.

Renewal reward process can be summarized as: long-run average reward is just

the expected reward earned during a cycle divided by the expected length of a cycle.

We will state renewal reward theorem once again, proof of which is available in

Ross (1993) (pp.318).

Renewal Reward Theorem:
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Consider a renewal process {N(t), t ≥ 0} having inter-arrival times

Xn, n ≥ 1, and each time a renewal occurs we receive a reward Rn. If

R(t) represents the total reward earned by time t:

R(t) =

N(t)X
n=1

Rn

Let

E [R] = E [Rn] , E [X] = E [Xn]

If E [R] <∞ and E [X] <∞, then with probability 1

R(t)

t
→ E [R]

E [X]
as t→∞

3.2 Derivation of the Cost Rate Expression

Let f(τ , s, n1, n2, x, z) denote the joint probability function of operating time, τ ,

of a cycle of class s, in which n1 samples have been taken in the in-control state, n2

samples have been taken in the out—of-control state, the time of the process shift

is x and, the time of the opportunity arrival is z. Note that f(τ , s, n1, n2, x, z)

is a probability function of a mixed nature, consisting of point mass and density

components for certain values of the joint random variable. Define Ps (µ) as the

probability that a cycle ends in cycle class s ∈ {T, F,OT,OF} for a given value of

µ. Define also Ω(s) for s ∈ {T, F,OT,OF} as the set of values that the sextuple

48



(τ , s, n1, n2, x, z) can assume.

Then, the expected length of the operating time, E[τ s], is given by:

E[τ s] = E[τ |cycle ends in class s]Ps (µ)X
{n1,n2} ∈ Ω(s)

Z
{τ,s,x,z} ∈ Ω(s)

τ · f(τ , s, n1, n2, x, z)dxdz (3.4)

Similarly, the expected cycle cost for a cycle of class s, E[CCs], is given by:

E[CCs] = E[CC|cycle ends in class s]Ps (µ)X
{n1,n2} ∈ Ω(s)

Z
{τ,s,x,z} ∈ Ω(s)

C(τ , s, n1, n2, x, z) · f(τ , s, n1, n2, x, z)dxdz(3.5)

A schematic representation of the evolution of a production process subject to

the specified jidoka process control scheme is depicted in Figures 3-3 through 3-6.

Next, to construct our objective function, we describe each cycle class and derive

the corresponding operating characteristics.

3.2.1 Case 1: Cycle ends with a true alarm, s = T

In this cycle class, the process is stopped by a signal from the control chart, and is

found upon inspection to be in the out-of-control status. A self-stoppage implies

that there have been no exogenous opportunity arrivals during this cycle; that is,

z > τT , where τ s denotes the operating time of a cycle in class s. Furthermore,
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since the shift must have occurred before the process is stopped, some of the

samples may have been taken before the shift has occurred and some afterwards.

(For convenience, we make the customary assumption that the shift does not occur

while a sample is being taken and, thereby, that all units in a sample come from

the same status of the process.) Considering possible realizations for this class, we

have n1 ≥ 0, n2 ≥ 1, n1h < x < (n1 + 1)h, and z > τT . The minimum value that

n1 can attain is 0, since process may shift to the out-of-control status before the

first sample is taken, for n2 however, at least one sample must be taken since the

cycle ends with an alarm from the chart. Each one of n1 samples provides accurate

inference about the true state of the process whereas, by definition, each one of

n2−1 samples causes a Type II error (i.e., causes the inference that the process is

in the in-control status where, in fact, it is in the out-of-control state) and lets the

shift go undetected. The last (n2th) sample taken after the shift detects the shift

and stops the process; that is, τT = (n1 + n2)h. The downtime required for the

inspection/search and restoration activities in this cycle class is LT . Considering

the possible cycle class realizations, we have:

Ω(T ) = {τ = (n1+n2)h, s = T, n1 ≥ 0, n2 ≥ 1, n1h < x < (n1+1)h, z > (n1+n2)h}
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For the cycle class s = T , f(τ , s, n1, n2, x, z) is computed as described below,

f(τ , T, n1, n2, x, z) = (1− α)n1β(n2−1)(1− β)µ exp[−µz]λ exp[−λx] (3.6)

for (τ , s, n1, n2, x, z) ∈ Ω(T )

Then,

PT (µ) =
∞X

n1=0

∞X
n2=1

Z (n1+1)h

x=n1h

Z ∞

z=(n1+n2)h

µ exp[−µz]λ exp[−λx](1− α)n1

× β(n2−1)(1− β)dzdx

=
e−µh (1− β)

¡
1− e−λh

¢
[1− βe−µh] [1− {(1− α) e−(µ+λ)h}] (3.7)

Since τT = (n1+n2)h, then the expected operating time for this cycle class, E[τT ],

is given by

E[τT ] =
∞X

n1=0

∞X
n2=1

Z (n1+1)h

x=n1h

Z ∞

z=(n1+n2)h

[(n1 + n2)h](1− α)n1

× µ exp[−µz]λ exp[−λx]β(n2−1)(1− β)dzdx (3.8)

Likewise, the expected cost for this cycle class, E[CCT ], is given by

E[CCT ] =
∞X

n1=0

∞X
n2=1

Z (n1+1)h

x=n1h

Z ∞

z=(n1+n2)h

{[(n1 + n2)(u+ by)]

+ a[(x− n1h) + n2h] + πLT +RT}

× µ exp[−µx]λ exp[−λx](1− α)n1β(n2−1)(1− β)dzdx (3.9)
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3.2.2 Case 2: Cycle ends with a false alarm, s = F

In this class, the cycle ends with a self-stoppage triggered by an out-of-control

signal from the control chart, but the process is found upon inspection to be in

the in-control status. As in class T , there are no exogenous opportunity arrivals

during a cycle of this class. Hence, we have τF = n1h < x < z, n1 ≥ 1, and

n2 = 0. Note that each one of n1−1 samples provides accurate inference about the

true state of the process but the last (i.e., nth1 ) sample taken causes a Type I error

(i.e., causes the inference that the process is in the out-of-control status where, in

fact, it is in the in-control status) and stops the process. Thus, τF = n1h.

Ω(F ) = {τ = n1h, s = F, n1 ≥ 1, n2 = 0, n1h < x <∞, n1h < z <∞}

Then for s = F ,

f(τ , F, n1, n2, x, z) = α(1− α)(n1−1)µ exp[−µz]λ exp[−λx] (3.10)

for (τ , s, n1, n2, x, z) ∈ Ω(F )
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For a given µ,

PF (µ) =
∞X

n1=1

Z ∞

x=n1h

Z ∞

z=n1h

α (1− α)n1−1 µ exp [−µz]

× λ exp [−λx] dzdx

=
α.e−(µ+λ)h

1− {(1− α) e−(µ+λ)h} (3.11)

The expected operating time, E[τF ], is given by

E[τF ] =
∞X

n1=1

Z ∞

x=n1h

Z ∞

z=x

[n1h] µ exp[−µz]λ exp[−λx]α(1− α)(n1−1)dzdx (3.12)

Likewise, the expected cost for this cycle class, E[CCF ], is given by

E[CCF ] =
∞X

n1=1

Z ∞

x=n1h

Z ∞

z=x

{ ([n1(u+ by)] + πLF +RF )

× µ exp[−µx]λ exp[−λx]α(1− α)(n1−1)dzdx} (3.13)

The above two types of cycles are the cycle types that are also encountered in

the classical SPC environment. Next, we look at the other two types which are

unique to the JPC setting.
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3.2.3 Case 3: Cycle ends with a true opportunity, s = OT

In this cycle class, the machine stoppage is triggered by an opportunity arrival

and, upon inspection, the process is found to be in the out-of-control status.

Unlike a self-stoppage, when the machine is stopped by an opportunity arrival,

the stoppage instance does not coincide with the sampling instance due to the

continuous nature of the inter-arrival times and the machine remains in operation

for some additional time after the last sample has been taken. Hence, τOT = z.

Considering possible realizations for this class, we have either (i) n1 ≥ 0, n2 = 0,

n1h < x < z < (n1 + 1)h, or (ii) n1 ≥ 0, n2 > 0, n1h < x < (n1 + 1)h,

(n1 + n2)h < z < (n1 + n2 + 1)h. Each one of n1 samples accurately infers the

in-control status of the process, and each one of n2 samples (for n2 > 0) causes a

Type II error.

Ω(OT ) = {{τ = z, s = OT, n1 ≥ 0, n2 = 0, n1h < x < z < (n1 + 1)h};

{τ = z, s = OT, n1 ≥ 0, n2 > 0, n1h < x < (n1 + 1)h,

(n1 + n2)h < z < (n1 + n2 + 1)h}}
Then for s = OT ,

f(τ ,OT, n1, n2, x, z) = (1− α)n1βn2µ exp[−µz]λ exp[−λx] (3.14)

for (τ , s, n1, n2, x, z) ∈ Ω(OT )
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Then for a given µ,

POT (µ) =
∞X

n1=0

Z (n1+1)h

x=n1h

Z (n1+1)h

z=x

µ exp[−µz]λ exp[−λx](1− α)n1dzdx

+
∞X

n1=0

∞X
n2=1

Z (n1+1)h

x=n1h

Z (n1+n2+1)h

z=(n1+n2)h

µ exp[−µz]λ exp[−λx]

× (1− α)n1βn2dzdx

=

£¡
β.e−µh

¢ ¡
1− e−λh

¢
(1− e−µh)

¤
[1− β.e−µh] [1− {(1− α) e−(µ+λ)h}]

+

· ¡
1− e−λh

¢− λ
(µ+λ)

¡
1− e−(µ+λ)h

¢¸
·
1− {(1− α) e−(µ+λ)h}

¸ (3.15)

The expected operating time for this cycle class, E[τOT ], is given by

E[τOT ] =
∞X

n1=0

Z (n1+1)h

x=n1h

Z (n1+1)h

z=x

z µ exp[−µz]λ exp[−λx](1− α)n1dzdx

+
∞X

n1=0

∞X
n2=1

Z (n1+1)h

x=n1h

Z (n1+n2+1)h

z=(n1+n2)h

z µ exp[−µz]λ exp[−λx]

× (1− α)n1βn2dzdx
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The expected cost for this cycle class, E[CCOT ], is given by

E[CCOT ] =
∞X

n1=0

Z (n1+1)h

x=n1h

Z (n1+1)h

z=x

{[ [n1(u+ by)] + a (z − x)

+ πLOT +ROT ](1− α)n1µ exp[−µz]λ exp[−λx]dzdx}

+
∞X

n1=0

∞X
n2=1

Z (n1+1)h

x=n1h

Z (n1+n2+1)h

z=(n1+n2)h

{[a (z − x)

+ [(n1 + n2)(u+ by)] + πLOT +ROT ]

× µ exp[−µz]λ exp[−λx](1− α)n1βn2dzdx} (3.16)

3.2.4 Case 4: Cycle ends with a false opportunity, s = OF

Finally, in this cycle class, the machine stoppage is triggered by an opportunity and

the process is in the in-control status at the time of stoppage. Since the machine is

stopped by an opportunity arrival, τOF = z. Considering the possible realizations

for this class, we have n1(≥ 0) samples accurately inferring the in-control state of

the process, and because there has been no shift, n2 = 0. Furthermore, n1h < z <

(n1 + 1)h < x.

Ω(OF ) = {τOF = z, s = OF, n1 ≥ 0, n2 = 0, n1h < z < x <∞}
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Then for s = OF ,

f(τ , s, n1, n2, x, z) = µ exp[−µz]λ exp[−λx](1− α)n1 (3.17)

for (τ , s, n1, n2, x, z) ∈ Ω(OF )

POF (µ) =
∞X

n1=0

Z (n1+1)h

z=n1h

Z ∞

x=z

µ exp[−µz]λ exp[−λx](1− α)n1dzdx

=

·
µ

µ+ λ

¸
1− e−(µ+λ)h

[1− {(1− α) e−(µ+λ)h}] (3.18)

The expected operating time for this cycle class, E(τOF ), is given by

E(τOF ) =
∞X

n1=0

Z (n1+1)h

z=n1h

Z ∞

x=z

zµ exp[−µz]λ exp[−λx](1− α)n1dzdx (3.19)

The expected cost for this cycle class, E[CCOF ], is given by

E(CCOF ) =
∞X

n1=0

Z (n1+1)h

z=n1h

Z ∞

x=z

[n1(u+ by) + πLOF +ROF ] (3.20)

× µ exp[−µz]λ exp[−λx](1− α)n1dzdx
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In summary,

f(τ , s, n1, n2, x, z) =



(1− α)n1β(n2−1)(1− β)µ exp[−µz]λ exp[−λx]

for (τ , s, n1, n2, x, z) ∈ Ω(T )

(1− α)(n1−1)α µ exp[−µz]λ exp[−λx]

for (τ , s, n1, n2, x, z) ∈ Ω(F )

(1− α)n1βn2µ exp[−µz]λ exp[−λx]

for (τ , s, n1, n2, x, z) ∈ Ω(OT )

µ exp[−µz]λ exp[−λx](1− α)n1

for (τ , s, n1, n2, x, z) ∈ Ω(OF )

0 otherwise

(3.21)

The cycle cost incurred for a cycle of class s, Cs, is

C(τ, s, n1, n2, x, z) =



(n1 + n2)(u+ by) + a[(x− n1h) + n2h] + πLT +RT

for (τ , s, n1, n2, x, z) ∈ Ω(T )

n1(u+ by) + πLF +RF

for (τ , s, n1, n2, x, z) ∈ Ω(F )

(n1 + n2)(u+ by) + a (z − x) + πLOT +ROT

for (τ , s, n1, n2, x, z) ∈ Ω(OT )

n1(u+ by) + πLOF +ROF

for (τ , s, n1, n2, x, z) ∈ Ω(OF )

(3.22)
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The individual activities involved in inspecting the machine to identify the assignable

cause of variation and restoring the process to its in-control status are pre-specified,

and, hence, their actual duration do not depend on whether the machine was

stopped by itself or by an opportunity. However, the effective durations of those

activities will be different for each case. To see this, consider a self-stoppage and

an opportunity stoppage. When the machine is stopped by an alarm, the effective

durations of the search and possible restoration activities are their actual dura-

tions. When the machine is stopped by an opportunity, the process lies idle, by

definition, for LO time units during which the inspection and possible restoration

activities are conducted. If LO is shorter than the time for the required activi-

ties, then the effective duration of the performed activities is their actual duration.

However, if LO is longer than the time for the required activities, then the effective

duration of the performed activities is the duration of the opportunity stoppage,

LO. Therefore, we have

Ls =



LT if s = T

LF if s = F

LOT = max [LT , LO] if s = OT

LOF = max [LF , LO] if s = OF

(3.23)

The effective out-of-pocket repair costs are such thatROT = RT andROF = RF

because the activities are prespecified.
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3.3 Objective Function

We are now ready to construct the objective cost function. From the renewal

reward theorem, the objective is given by:

Minimizey,h,k>0 E[TC] =
E[CC]

E[τ ]
=

P
s∈S E[CCs]P
s∈S E[τ s]

(3.24)

The expected length of the operating time within a cycle is given by:

E[τ ] =
X
s∈S

E[τ s] (3.25)

Carrying out the expectation, we get,

E[τT ] =
(1− β)

¡
1− e−λh

¢
e−µhh [1− {(1− ζ) (1− γ)}]

γ2ζ2
(3.26)

E[τF ] =
αhe−(µ+λ)h

ζ2
(3.27)

E[τOT ] =

"
(1− γ)

¡
1− e−λh

¢
γζ

#Ã
h.
¡
1− e−µh

¢ ·(1− ζ)

ζ
+
1

γ

¸

+
1− e−µh

µ
− h.e−µh

!

+
1

ζ

(
h.µ. (1− ζ)

ζ
.

·
1− e−µh

µ
− 1− e−(µ+λ)h

λ+ µ

¸

+

"¡
1− e−µh (1 + hµ)

¢
µ

− µ.
¡
1− e−(µ+λ)h (1 + h (µ+ λ))

¢
(µ+ λ)2

#)
(3.28)

60



E[τOF ] =
µ

(µ+ λ) ζ

"
h.
¡
1− e−(µ+λ)h

¢
(1− ζ)

ζ
+

1

µ+ λ

− e−(µ+λ)h
µ
h+

1

µ+ λ

¶#
(3.29)

Similarly, the expected cycle cost is given by

E[CC] =
X
s∈S

E[CCs] (3.30)

Carrying out the expectation, we obtain

E[CCT ] =
(1− β) e−µh

¡
1− e−λh

¢
ζγ

(
(yb+ u) (1− ζ)

ζ
+ πLT +RT

− a

λ
+

a.h.e−λh

(1− e−λh)
+
(yb+ u+ ah)

γ

)
(3.31)

E[CCF ] =
αe−(µ+λ)h

ζ

·
πLF +RF +

(y.b+ u)

ζ

¸
(3.32)
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E[CCOT ] =

(
(1− γ)

¡
1− e−λh

¢ ¡
1− e−µh

¢
ζγ

×
"
yb+ u+ ah

γ
+
(yb+ u) (1− ζ)

ζ
+ πLOT

+ROT +
a

µ
− a

λ

#
+

ah
¡
e−λh − e−µh

¢
(1− γ)

ζγ

)

+
λ (yb+ u) (1− ζ)

ζ2

"
1− e−(µ+λ).h

λ+ µ
−
¡
1− e−λh

¢
e−µh

λ

#

+
λ

ζ

"
a.e−µh

µ
1− e−λh

λ2
− h.e−λh

λ

¶

−
¡
1− e−λh

¢
e−µh

³
πLOT +ROT + a.h+ a

µ

´
λ

+

³
πLOT +ROT +

a
µ

´ ¡
1− e−(µ+λ)h

¢
µ+ λ

 (3.33)

E[CCOF ] =
µ.
¡
1− e−(µ+λ).h

¢
(λ+ µ) .ζ

.

·
πLOF +ROF +

(yb+ u) (1− ζ)

ζ

¸
(3.34)

where ζ =
£
1− ©(1− α) e−(µ+λ)h

ª¤
and γ =

£
1− β.e−µh

¤
.

The derivation of these expressions are presented in Appendix B and C.

3.4 A Special Case when µ→ 0

We will show that limµ→0E [TC] =
limµ→0E[CCT ]+limµ→0E[CCF ]

limµ→0E[τT ]+limµ→0E[τF ]
.

First consider the operating time of the opportunity true cycle type, i.e.
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limµ→0E[τOT ]:

E[τOT ] =

"
(1− γ)

¡
1− e−λh

¢
γζ

#µ
h
¡
1− e−µh

¢ ·(1− ζ)

ζ
+
1

γ

¸
+
1− e−µh

µ
− he−µh

¶

+
1

ζ

(
h.µ. (1− ζ)

ζ
.

·
1− e−µh

µ
− 1− e−(µ+λ)h

λ+ µ

¸

+

"¡
1− e−µh (1 + hµ)

¢
µ

− µ.
¡
1− e−(µ+λ)h (1 + h (µ+ λ))

¢
(µ+ λ)2

#)
(3.35)

When take the limit as µ→ 0 in the equation above, we have,

lim
µ→0

E[τOT ] = 0 + lim
µ→0

("
(1− γ)

¡
1− e−λh

¢
γζ

#µ
1− e−µh

µ
− h.e−µh

¶

+
1

ζ

"¡
1− e−µh (1 + hµ)

¢
µ

#)

= lim
µ→0

("
(1− γ)

¡
1− e−λh

¢
γζ

#µ
1− e−µh

µ
− h.e−µh

¶
+
1

ζ

·
1− e−µh

µ
− he−µh

¸¾
(3.36)

Applying L’Hopital and taking the derivative of numerator and denominator of

expression 1−e−µh
µ

with respect to µ we get he−µh, and taking the limit yields

limµ→0 1−e
−µh
µ

= h. Hence limµ→0E[τOT ] = 0
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Next we have

lim
µ→0

E[τOF ] = lim
µ→0

(
µ

(µ+ λ) ζ

"
h.
¡
1− e−(µ+λ)h

¢
(1− ζ)

ζ
+

1

µ+ λ

− e−(µ+λ)h
µ
h+

1

µ+ λ

¶¸¾
= 0 (3.37)

Consider E[CCOT ]

lim
µ→0

E[CCOT ] = lim
µ→0

((
(1− γ)

¡
1− e−λh

¢ ¡
1− e−µh

¢
ζγ

×
"
yb+ u+ ah

γ
+
(yb+ u) (1− ζ)

ζ
+ πLOT

+ROT +
a

µ
− a

λ

#
+

ah
¡
e−λh − e−µh

¢
(1− γ)

ζγ

)

+
λ (yb+ u) (1− ζ)

ζ2

"
1− e−(µ+λ).h

λ+ µ
−
¡
1− e−λh

¢
e−µh

λ

#

+
λ

ζ

"
a.e−µh

µ
1− e−λh

λ2
− h.e−λh

λ

¶

−
¡
1− e−λh

¢
e−µh

³
πLOT +ROT + a.h+ a

µ

´
λ

+

³
πLOT +ROT +

a
µ

´ ¡
1− e−(µ+λ)h

¢
µ+ λ

 (3.38)
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= lim
µ→0

(
(1− γ)

¡
1− e−λh

¢ ¡
1− e−µh

¢
ζγ2

(yb+ u+ ah)

+
(1− γ) (1− ζ)

¡
1− e−λh

¢ ¡
1− e−µh

¢
ζ2γ

(yb+ u)

+
(1− γ)

¡
1− e−λh

¢ ¡
1− e−µh

¢
ζγ

(πLOT +ROT )

+
(1− γ)

¡
1− e−λh

¢
ζγ

a

µ
1− e−µh

µ
− he−µh

¶
−(1− γ)

¡
1− e−µh

¢
ζγ

a

µ
1− e−λh

λ
− he−λh

¶
+
λ (yb+ u) (1− ζ)

ζ2

"
1− e−(µ+λ).h

λ+ µ
−
¡
1− e−λh

¢
e−µh

λ

#

+
λ

ζ

"
a.e−µh

µ
1− e−λh

λ2
− h.e−λh

λ

¶

−
¡
1− e−λh

¢
e−µh

³
πLOT +ROT + a.h+ a

µ

´
λ

+

³
πLOT +ROT +

a
µ

´ ¡
1− e−(µ+λ)h

¢
µ+ λ

 (3.39)

then limµ→0
¡
1− e−µh

¢
= 0 and limµ→0 1−e

−µh
µ

= h. Hence,

= 0 + lim
µ→0

(
λ (yb+ u) (1− ζ)

ζ2

"
1− e−(µ+λ).h

λ+ µ
−
¡
1− e−λh

¢
e−µh

λ

#

+
λ

ζ

"
a.e−µh

µ
1− e−λh

λ2
− h.e−λh

λ

¶

−
¡
1− e−λh

¢
e−µh

³
πLOT +ROT + a.h+ a

µ

´
λ

+

³
πLOT +ROT +

a
µ

´ ¡
1− e−(µ+λ)h

¢
µ+ λ

 (3.40)
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E[CCOT ] =

(
(1− γ)

¡
1− e−λh

¢ ¡
1− e−µh

¢
ζγ

a

µ
+

ah
¡
e−λh − e−µh

¢
(1− γ)

ζγ

)

+
λ

ζ

·
a.e−µh

µ
1− e−λh

λ2
− h.e−λh

λ

¶

−
¡
1− e−λh

¢
e−µh

³
a.h+ a

µ

´
λ

+

³
a
µ

´ ¡
1− e−(µ+λ)h

¢
µ+ λ

 = 0 (3.41)

Consider E[CCOF ]

lim
µ→0

E[CCOF ] = lim
µ→0

(
µ
¡
1− e−(µ+λ).h

¢
(λ+ µ) ζ

·
πLOF +ROF +

(yb+ u) (1− ζ)

ζ

¸)
= 0

(3.42)

Similarly,

lim
µ→0

E[τT ] =
(1− β)

¡
1− e−λh

¢
h [1− {(1− ζ) (1− γ)}]
γ2ζ2

(3.43)

lim
µ→0

E[τF ] = lim
µ→0

½
αe−(µ+λ)hh

ζ2

¾
=

α.e−λhh
ζ2

(3.44)

lim
µ→0

E[CCT ] = lim
µ→0

(
(1− β) e−µh

¡
1− e−λh

¢
ζγ

(
(yb+ u) (1− ζ)

ζ
+ πLT +RT

− a

λ
+

ahe−λh

(1− e−λh)
+
(yb+ u+ ah)

γ

))

=
(1− β)

¡
1− e−λh

¢
ζγ

(
(yb+ u) (1− ζ)

ζ
+ πLT +RT

− a

λ
+

ahe−λh

(1− e−λh)
+
(yb+ u+ ah)

γ

)
(3.45)
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lim
µ→0

E[CCF ] = lim
µ→0

½
αe−(µ+λ)h

ζ

·
πLF +RF +

(yb+ u)

ζ

¸¾
=

αe−λh

ζ

·
πLF +RF +

(y.b+ u)

ζ

¸
(3.46)

Thus, it can be verified that the classical setting of the QC chart design is a special

case of our problem.
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Chapter 4

Numerical Study: Single Machine

Model

4.1 Introduction and Search Algorithm

We have implemented the single machine model inMicrosoft Visual C++ Version

6.0. We have run the codes on a PC (Pentium III computer). Primarily, we have

investigated the change in the cost rate with respect to the decision variables,

i.e. y, k, h. For a preliminary experimental set, we have conducted an exhaustive

search with respect to the decision variables, changing their values one at a time.

The search results indicate that, the cost rate is unimodal for all the decision vari-

ables. Hence, there exists a global minimum of the cost rate function. Figures 4-1

and 4-2 are the contour plots of the cost rate function for two selected experiments
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and illustrate the unimodality of the function. Parameter set for these graphics is:

π = 500, LT = LF = 0.1, LO = 0.1, a = 100, u = 5, b = 0.1, λ = 0.05, µ = 0.25

in both of them, but sample size, y is 1 in Figure 4-1 and 6 in Figure 4-2. The

minimum cost rate for the first illustrative experiment is 18.22, and the minimiz-

ing values for k and h are 1.65 and 2.35, respectively. For the second illustrative

experiment the minimum cost rate is 14.83, and the minimizing values for k and

h are 2.9 and 1.8, respectively.

Goel, Jain, Wu (1968) show that cost rate function of the classical model,

which is a special case of the model developed herein for µ −→ 0, is unimodal.

Similarly, we have observed numerically that the cost rate function of the model

we develop is unimodal. Hence, we have implemented a search algorithm in order

to find the optimal values for the policy parameters y, k, and h. Among the policy

parameters y is integer where as k and h are real numbers. In our algorithm, for

a wide range of parameter values, we have used the golden section search (GSS)

method for determining the optimum values of k and h, and exhaustive search

over y. The search domain for k, h and y are [0.001, 50], [0.001, 50] and [1, 50]

respectively.

GSS is a method of locating a minimum (see Bazaraa et al. 1993, pp. 270). It

involves evaluating the function at some point x in the larger of the two intervals

(a, b) or (b, c). If f(x) < f (b) then x replaces the midpoint b, and b becomes an

end point. If f(x) > f (b) then b remains the midpoint with x replacing one of the

end points. Either way the width of the bracketing interval will reduce and the
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position of the minima will be better defined (See Figure 4-3). The procedure is

then repeated until the width achieves a desired tolerance. The new test point, x,

is chosen to be a fraction 0.38197 from one end, and 0.61803 from the other end

(these fractions are called golden section), then the width of the full interval will

reduce at an optimal rate. The Golden Section Search requires no information

about the derivative of the function.

A brief pseudo code for the implemented algorithm is presented below. (An

expended version is in Appendix D) We will call this algorithm OPTIMIZE () .

Algorithm- OPTIMIZE (ymin, ymax, hmin, hmax, kmin, kmax)

for y = ymin → ymax{

set k = kmin

while (TCRold − TCR > ){

SEARCH over h in the interval [hmin, hmax] to find ĥmin and ĥmax

set h = (ĥmin + ĥmax)/2

SEARCH over k in the interval [kmin, kmax] to find k̂min and k̂max

set k = (k̂min + k̂max)/2

compute α, β, and CR

TCRold = TCR

TCR = E [TC]}

if (TCR ≤ TCRopt){

TCRopt = TCR

hopt = h
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kopt = k

yopt = y}}

4.2 Design of the Numerical Study and the Data

Set

In our numerical study for the single machine setting, we have carried out a number

investigations. (i) In our first set of experiments, we have conducted a sensitivity

analysis in order to provide some insight on how the control parameters and the

total cost rate changes when we vary the cost parameters and the opportunity

rate. Our observations in the sensitivity analysis are in line with the results in

the literature. (ii) In the second set of experiments we have analyzed the cost

breakdown structure of the optimum cost rate. We have investigated how the cost

components change with respect to the opportunity arrival rate, tried to identify

if any particular cost component is more reactive to the opportunities. (iii) In

the final set of experiments we have provided a comparison of the cost rate of a

machine which utilizes the exogenous shut downs with that of a machine which

doesn’t utilize the exogenous shut downs for investigation and repair of the process.

The parameter set we used in the experiments is presented in Table 4.1.

For the opportunity rate we used multiples of the shift rate, such that µ ∈

{0, 0.5λ, λ, 1.5λ, 2λ, 5λ, 10λ}. Our data set comprises three different values for
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a, b, u, LF , LT , Lo. Overall, we have generated 5103 different experiment instances

for our numerical study.

In the reports below optimum values of the control parameters are denoted by

y∗, h∗ and k∗.

4.3 Sensitivity Analyses

In order to provide some useful managerial insights and to observe the behavior of

the control parameters to the changes in the model parameters we have conducted

a series of experiments. In these experiments we have changed the value of one of

the parameters at a time while keeping all the others fixed. Some sample results

and our observations are given below.

4.3.1 Sensitivity with respect to cost parameters

We observe that, as the fixed component of the sampling cost, u increases, opti-

mal cost rate increases, the percentage savings in the cost rate fits in a concave

curve, where the savings have an increasing trend for smaller values of Lo and

decreasing trend for the Lo values closer to Lt (or Lf); control limit coefficient,

k∗, does not have consistent behavior with respect to u; the sample size, y∗ tends

to increase while u increases, however, the rate of increase reduces when u gets

larger; sampling interval, h∗, increases. Since the sampling becomes more costly,
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taking more samples but less less frequently is more desirable. A set of examples

is depicted in Table 4.2.

As the per unit sampling cost, b increases, optimal cost rate and sampling

interval increases;.both the sample size and the control limits coefficient decrease.

Since, an increase in the per unit sampling cost motivates to take smaller samples

and less frequently, in order to achieve a certain degree of power the control limits

must become more tight. This can be followed from the example set presented in

Table 4.3.

When the cost of operating in the out-of-control status, a increases, optimum

cost rate increases; control limits coefficient does not change significantly, how-

ever we observe slight decrease in some experiment instances; sample size does

not changes significantly; sampling interval, h∗, decreases. When operating in

out-of-control status become more costly, system will be better off detecting the

assignable cause as soon as possible. (See Table 4.4)

LO is the forced shutdown duration in case of a stoppage by an opportunity.

Total cost rate decreases as Lo increases. Sample size and control limits are insen-

sitive to the changes in LO. For small values of LT , when Lo increases h∗ decreases.

However, for large LT , h∗ has an increasing trend with respect to Lo. For example,

when LT = 0.1 and LF = 0.5, h∗|Lo=0.1 > h∗|Lo=0.25 > h∗|Lo=0.5. However, when

LT = 0.25 and LF = 0.5, h∗|Lo=0.1 ≤ h∗|Lo=0.25 > h∗|Lo=0.5, and when LT = 0.5

and LF = 0.5, h∗|Lo=0.1 ≤ h∗|Lo=0.25 < h∗|Lo=0.5.
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Since, exogenous opportunities do not incur any cost, the policy parameters of

the process remain the same, however as the free time for inspection and repair

increases, the total cost rate decreases as expected.

We observe that when the inspection and repair time in case of a true alarm, LT

increases, k∗ and y∗ don’t change significantly, but both h∗ and the total cost rate

increase. Inspection and repair time only contributes to the cost in our cost rate

function. Hence, if all the policy parameters are fixed, the total cost rate would

increase, which explains our observation in this case. However, to compensate

for this increase and to reduce the cost without sacrificing much from the cost of

operating in the out-of-control status, sampling interval increases slightly.

When the inspection and repair time in case of a true alarm, LT increases, the

total cost rate increases; all the policy parameters y∗, k∗ and h∗ increase. When

LF increases the total cost rate increases. In order to decrease the false alarm, i.e.

Type I error probability (see Equation 3.1), control limit coefficient, k∗ increases,

yielding more relaxed control limits. However, as k∗ increases, Type II error

probability increases as well (see Equation 3.3). To compensate the increasing

effect of k∗ on the Type II error probability the sample size, y∗ increases as well,

which follows from Equation 3.3. Moreover, due to the effect of increasing k∗

and y∗ over the cost rate, we observe that sampling frequent decreases, i.e. h∗

increases.

A summary of the sensitivity study results are presented on Table 4.8.
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4.3.2 Impact of opportunistic inspection rate µ

We observe that changes in the optimum cost rate with respect to µ depend on

the relationship between LO and LF . Specifically, when LO is strictly less then LF

(LO < LF ) , independent of the relationship either between LO and LT or between

LF and LT , the total cost rate increases in µ. In all of the other cases the total

cost rate decreases in µ.

To explain the rationale behind this observation, first consider the case

(LO ≥ LF ) and (LO ≥ LT ). Recall that, when the system stoppage is triggered

by an opportunity, the machine incurs lost profit cost only for the additional time

it delays the system restart, i.e. LOT

¡
= [LT − LO]

+¢ or LOF

¡
= [LF − LO]

+¢.
Hence, the conditions LO ≥ LF and LO ≥ LT imply that the machine will

be ready for the operation before the opportunistic inspection/repair time, LO

elapses. Then, in case of a stoppage by an opportunity, the machine will be re-

stored to the in-control status free of charge. Therefore, under the conditions

above, more frequent opportunities are beneficial in order to keep the machine in

the in-control status and to provide savings in cost of operating in out-of-control

status and cost of inspection and repair. Thereby, the overall cost rate decreases.

Next consider the case (LO ≥ LF ) and (LO < LT ). A similar argumentation

applies. Since the duration of opportunity is longer than the false alarm restoration

duration, opportunities arriving when the machine is in the in-control status can

be taken at no cost. Although LO < LT , more frequent opportunities contribute
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to the early detection of the out-of-control status with less cost, i.e. π.(LO −LT ).

Hence, more frequent opportunities decreases the cost rate.

Finally consider the case (LO < LF ) with either (LO < LT ) or (LO > LT ). In

this case stoppages due to opportunities are more costly, since the restoration time

takes longer than the opportunistic inspection/restoration duration if the system

is in the in-control status at the stoppage instant. When the opportunity rate

increases, it is more likely that the process will be in the in-control status at an

opportunistic stoppage instant. Hence, the overall expected cost rate increases as

the opportunity rate increases whenever the above conditions apply.

Our numerical results indicate that k∗ and y∗ are very insensitive to the oppor-

tunity rate µ. However, the sampling interval h∗ increases as the opportunity rate

increases. This is due to the fact that, when there are more frequent exogenous

stoppages for inspection and repair, the process status can be assessed without in-

ference from sampling. Therefore, sampling less frequently yields a lower sampling

cost, resulting in a lower total cost rate.

4.4 Cost Breakdown

In this section of the numerical studies we present the cost breakdown of the

optimal cost rate. As discussed in Chapter 3, overall cost of the system consists

of costs of each cycle type s ∈ {T, F,OT,OF}. We would expect that, as the

opportunity rate increases, it is more likely that a cycle will be of type opportunity

76



true or opportunity false. Hence, cost components corresponding to the true and

false cycle type would decrease in µ.

The cost breakdown of the selected experiments are presented in Tables 4.13

through 4.18. The tabulated values show cost component of each cycle type as

the percentage of the overall cost rate, i.e. %E [CRs] = 100 × E[CCs]/E[τs]
E[TC]

for

s ∈ {T, F,OT,OF}. We have observed that when µ is small, almost 98% of

the total cost rate can be attributed to true cycle cost rate. When µ increases,

the proportion of the true cycle cost rate decreases. The slope of this decrease

is steeper when LO is small. Increase in opportunity arrival rate indicates more

frequent machine stoppages, therefore it is more likely that the machine will be in

the in-control status when an opportunity arrives. For all values of LO, when the

proportion of true cycle cost rate decreases, the proportion of opportunity false

cost rate tends to increase. The proportion of the false cycle cost rate is always

the smallest. The effect of both the variable and fixed parts of the sampling cost

over the cost proportions is very small.

4.5 Advantages of JPC

In this section we explore the advantages of jidoka process control versus the clas-

sical SPC. Before presenting our methodology and study results, a discussion of

the no opportunity (µ = 0) special case is in line. As shown in Section 3.4, the

model introduced herein reduces to the classical single machine setting considered
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in the literature. In the absence of the model we provide here, a decision maker

would use the classical model to obtain the control parameters of the QC-chart,

which does not take the opportunities into account. Hence, when opportunistic

inspection and repairs are available indeed, control chart would operate with the

suboptimal control parameters. Therefore, we compare the optimal cost rate with

the cost rate obtained with the classical model, in order to evaluate the improve-

ment provided by the opportunistic model.

Let
³
ŷ, k̂, ĥ

´
triplet denote the global minimizer values of the arguments of the

expected cost rate function at µ = 0, i.e.
³
ŷ, k̂, ĥ

´
= argmin(y,k,h) (limµ→0E [TC]).

Similarly let (y∗, k∗, h∗) triplet denote the global minimizer values of the arguments

of the expected cost rate function at µ = µ0, i.e. (y∗, k∗, h∗) = argmin(y,k,h)E [TC] |µ=µ0.

Then, the percentage improvement provided by optimization with the opportunis-

tic model is:

%∆ = 100×
E [TC] |µ=µ0,(ŷ,k̂,ĥ) −E [TC] |µ=µ0,(y∗,k∗,h∗)

E [TC] |µ=µ0,(ŷ,k̂,ĥ)
(4.1)

In the Tables 4.2 through 4.7 we report percentage improvements for the se-

lected experiment sets. For these selected cases the mean of the percentage savings

is 2.37%, the median is 0.415%, and the maximum and the minimum savings are

43.48% and 0% respectively.

We observed that as b and u increase %∆ increases in general, however there

are instances when a = 50, the percentage savings decrease for large µ as b and u
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increase. The percentage improvement decreases as a increases. We have observed

that in the following settings %∆ decreases, (i) (LT < LO;LF < LO;LT < LF ) ,

(ii) (LT < LO;LF > LO;LT < LF ) , (iii) (LT > LO;LF > LO;LT = LF ) , (iv)

(LT > LO;LF = LO;LT > LF ) , (v) (LT = LO;LF > LO;LT < LF ). In all of the

other settings %∆ increases.

Table 4.19 depicts the summary statistics of the %∆ for each opportunity

rate and for the overall experimental set. In this table we observe that the im-

provements increases as the opportunity rate increases. For example, when the

opportunity rate is five times more than the shift arrival rate, the mean of the

percentage savings is 3.527%, and there are improvements up to 34.5%. For the

overall experimental set, the mean of the savings is 1.92%, the standard deviation

is 5.98%, and the maximum and minimum are 59.77% and 0%. The maximum

percentage saving we observed occurs when LT = 0.5, LF = 0.1, LO = 0.5, a = 50,

u = 0, b = 0.1, µ = 0.5. Figure 5.5 shows the changes in the mean and median of

the percentage improvements with respect to the opportunity rate, µ.

Experimental results indicate that when opportunities exist, employing the

model developed herein is always beneficial. Moreover, with the increase in true

restoration time, LT , savings increase drastically. This is because of the relatively

lower restoration time, LOT . Notice that, cost of operating in the out-of-control

status, a, is constant. Therefore depending on LT , lost profit cost due to the

idle time (π.LT ) increases, and as a result, relative cost of operating in the out-

of-control status decreases. Per unit sampling cost has the similar effect on the
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savings. Thus, if opportunities are included in the model, one is always better off.
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Chapter 5

Economic Design of X̄ Control

Chart Design: Multiple Machine

Setting

In the single machine model, inspection opportunities were exogenous. In this

chapter, we develop the multiple machine model, where the inspection/repair op-

portunities are no longer exogenous to the system at hand. The opportunities

are now due to individual machine stoppages. That is, every time an alarm is

raised and the system stoppage is triggered by a machine, it creates an inspection

opportunity for the rest of the machines in the system.

A typical production facility consists of machines working in coordination,

such as output of one of these machines is input for another machine. Although
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variety of layouts are available for a production facility, a line is the most common

layout. For all practical purposes, the system we consider in this chapter can be

represented by a production line.

In the sequel, we will: (i) provide an exact derivation of the multiple machine

model, and (ii) through a series of approximations develop a model that uses the

results obtained in the single machine with opportunities model.

Let M denote the set of machines working in coordination in the production

line, and let |M |, i.e. the number of machines, be m. These machines can be

identical or non-identical. We use the same notation for the multiple machine

model as for the single machine case, but since there are multiple machines, we

introduce the superscript (i) notation to denote the parameters of machine i (∈M).

Every machine i in the system is subject to control with an X̄-control chart, i.e.

sample of size y(i) is taken at every h(i) time intervals, and the mean of the quality

specification of the sample, x̄ is plotted on a control chart, if the sample mean falls

outside the control limits defined by µ(i)0 ± k(i)σ(i)/
p
y(i), then the line is stopped

and searched for the assignable cause and restoration activities, if necessary, are

conducted.

We assume that the production process is operated in accordance with the

Jidoka concept. Jidoka (translated as autonomation) is a defect detection system

which automatically or manually stops the production operation whenever an

abnormal or defective condition arises. In the concept of jidoka when a team
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member encounters a problem in his or her work station, he/she is responsible for

correcting the problem by pulling an andon cord, which can stop the line. Hence,

when an alarm is issued by any machine belonging to the set M , a system-wide

shut down is triggered and the production is ceased until the inspection/restoration

of the triggering machine. Here, we assume that holding WIP (work-in-process)

inventory between the machines, that keeps upstream and downstream of the

line working during restoration of an intermediate machine, is not feasible or

undesirable.

Since, raising of an alarm by a machine causes a system-wide shutdown, during

the inspection and restoration of the stoppage triggering machine the rest of the

line is idle. It is likely that some of the machines have shifted to the out-of-

control status but not issued an alarm yet. Hence, the idle period provides an

opportunity to inspect the other machines and restore those shifted to the out-

of-control status. We assume that these opportunistic inspections are conducted

by the operating personnel, hence no additional repair assets are required for the

inspection. However, if there is a malfunction detected, i.e. the machine is in the

out-of-control status, then the repair assets are requested at some positive cost for

the restoration of that machine.

In our setting, we allow the machines in the system to be non-identical. Hence,

when the machines have different reliability, restoration times, sampling interval

etc., inspection opportunities may be beneficial, i.e., resulting in cost reduction,

for some machines, it may be not beneficial, i.e., increasing the cost, for the
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others. As an example consider a very reliable machine for which the shift rate

is very low compared to other machines. Then inspecting this machine at every

system stoppage instant will increase the cost it incurs, hence will increase the

overall cost of the system. On the other hand, in the case of a machine with very

low reliability, inspecting the machine at every possible stoppage would decrease

the sampling and operating in the out-of-control state cost. We will designate a

machine that utilizes the opportunities as an opportunity taker, and a machine

that does not utilizes the opportunities as an opportunity non-taker. The set of

opportunity taker machines will be denoted by MTK , and the set of opportunity

non-taker machines will be denoted by MNTK. Then, M = MTK ∪MNTK and

MTK ∩MNTK = 0.

In the multiple machine model we want to determine: (i) optimum control

parameters, y(i), h(i) and k(i) for each machine i (∈M), (ii) optimum partitioning

of the machines into the opportunity taker and opportunity non-taker sets, both

of which minimize the long run expected cost per unit produced. Let E [TC]

denote the expected per unit cost, E [CC] denote the expected cycle cost, and

E [τ ] denote the expected operating time in a cycle. (We will discuss and provide

the definition of a cycle below.) Then assuming constant production rate and

invoking the Renewal Reward Theorem discussed in Chapter 3 objective function

can be written as:
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Minimizey(i),k(i),h(i) ∀i∈M E [TC] =
E [CC]

E [τ ]
(5.1)

The multiple machine case is different from the single machine case in a number

of respects:

1. In the single machine model, we have assumed that opportunity arrival

times follow an exponential distribution with rate µ , which was given. We have

argued that, given the exponential nature of shift occurrences and the large num-

ber of machines involved in the population, it is reasonable to assume that the

stoppage probability over a time increment is stationary, hence inter-arrival times

are exponential as well. However, in the multiple machine setting we need to

compute the opportunity rate observed by each machine, µ(i) for i ∈ M . The

opportunity rate for machine i ∈ MTK is the sum of the stoppage rates generated

by all of the machines except itself. Let γ(i) denote the stoppage rate that is gener-

ated by machine i. Then µ(i) =
P

j∈M\{i} γ
(j) for the opportunity taker machines,

where M\ {i} denotes all of the machines except i. We will discuss the details of

computing the stoppage rate later in this chapter. Clearly, the opportunity rate

for any opportunity non-taker machine is effectively zero, since they do not utilize

system stoppages. Without loss of generality we will indicate the stoppage rate

observed by an opportunity non-taker machine as 0. Hence;
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µ(i) =


P

j∈M\{i} γ
(j) for i ∈ MTK

0 for i ∈ MNTK

(5.2)

2. The system regeneration points in the single machine case are identified as

the machine restart instances, and in that setting, following every system stoppage

the machine is restored to the in-control status, hence the machine starts every

cycle in the in-control status. In the multiple machine setting, consider the system

restart instants as possible regeneration points. When there are opportunity taker

and opportunity non-taker machines together in the system, those opportunity

non-taker machines which are in the out-of-control status at the stoppage instant

will not be restored to the in control state. For an opportunity non-taker machine

to be in the in-control status at a system restart either it must be in the in-control

status at the previous stoppages instance or the stoppage must be triggered by

itself. Thus, system restarts, by themselves, may not always correspond to the

regeneration points. This issue is elaborated with an example in Section 5.1.

3. The cost computation of the multiple machine case also requires some

care. In the multiple machine environment, the sampling cost and the cost of

operating in the out-of-control status are still incurred by individual machines,

however the idleness (lost profit) cost, unlike in the single machine case, is incurred

by the overall system. Hence, following a system-wide stoppage, the stoppage

triggering machine incurs an idleness cost for the duration of its inspection and

repair time, and if the longest inspection and repair time among the opportunity
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taker machines is longer than that of the stoppage triggering machine, the machine

with the longest inspection and repair time incurs an idleness cost for the extra

duration until it will become ready. We discuss this issue in detail in Section 5.4.

5.1 Exact Derivation

Alluded to above, in the multiple machine setting, the state of the system is not

identical at each system restart. Opportunity taker machines are restored to the in-

control status, whereas opportunity non-taker machines retain their status at the

system stoppage instant, unless the stoppage is triggered by an opportunity non-

taker machine, in which case the status of the triggering machine is restored to the

in-control status. Moreover, although the regenerative cycle is completed for the

opportunity taker machines at every system restart, as in the single machines case,

the regenerative cycle is not completed for the opportunity non-taker machines,

since they maintain their status as at the previous system stoppage. Additionally,

as a consequence, at a system restart, the time to first sampling may be less

than the fixed sampling interval, h(i), for the opportunity non-taker machines.

Therefore, the information about the time left to the next sampling at the previous

system stoppage is needed in the system restart, and the analysis must take this

into account.

We provide an illustration of the multiple machine process in Figure 5-1, for a

three-machine-sytem. In this illustration, first and second machines are opportu-
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nity taker machines and the third machine is an opportunity non-taker machine.

Numbers in the circles are the status of each machine at that time instant, where

1 denotes the in-control status and 0 denotes the out-of-control status. Cross

marks (X) indicate a system stoppage and the triggering machine. Observe in the

figure that opportunity taker machines are in the in-control status at every sys-

tem restart whereas the opportunity non-taker machine is in the in-control status

either when it is in the in-control status at the previous stoppage instant or when

the stoppage is triggered by itself.

We model the described process as a semi-markov process where time between

two consecutive system restarts are embedded cycles. A semi-markov process is

a stochastic process where the number of the states that the process can visit

is finite, transition between states are with fixed probability and takes random

amount of time (see Ross, 1983 and Tijms 1994).

Next, we will describe this semi-Markov process. Define the system state,

(φ;η) =
n³

φ(1); η(1)
´
,
³
φ(2); η(2)

´
, · · ·,

³
φ(m); η(m)

´o
at each system restart by

(i) status of the machine i, φ(i) ∈ {0, 1}, φ(i) = 1 when machine i is in the in-

control status and φ(i) = 0 when machine i is in the out-of-control status at the

system restart, (ii) time from the system restart to the first sampling instant for

machine i, η(i) where 0 ≤ η(i) ≤ h(i). Clearly, for an opportunity taker machine

i ∈ MTK ,
³
φ(i) = 1; η(i) = h(i)

´
and for an opportunity non-taker machine j ∈

MNTK φ(j) ∈ {0, 1} and 0 ≤ η(j) ≤ h(j). Additionally, define (i) as the status of

machine i at a stoppage instant, (i), (i) = 1 when machine i is in the in-control

88



status and (i) = 0 when machine i is in the out-of-control status at the system

stoppage instant, and $ =
©

(1), (2), · · ·, (m)
ª
is the associated system status

vector.

A particularity of the machine that triggers the system stoppage is that, inde-

pendent of whether it is an opportunity taker or opportunity non-taker machine it

will be restored to the in-control state in the next system restart. All of the other

machines in the system operate independently except for the triggering of system

stoppage and system restart. Therefore, the state transition probability for each

machine can be written separately.

Define e
h³

φ(i); η(i)
´
,
³
φ́
(i)
; ή(i)

´
; j
i
to be the state transition probability of

machine i from state
³
φ(i); η(i)

´
to
³
φ́
(i)
; ή(i)

´
when the system stoppage is trig-

gered by machine j. We can group the machines into three, depending on their

state transition behavior, such that: Group 1: the stoppage triggering machine,

Group 2: opportunity taker machines except the stoppage triggering machine, and

Group 3: opportunity non-taker machines except the stoppage triggering machine.

State transition probabilities of individual machines will be derived through this

grouping. Before deriving the transition probabilities, for ease of notation, we de-

fine a binary indicator variable I (x) such that I (x) = 1 if x ≥ τ (j), and I (x) = 0

otherwise. For convenience, we also introduce the notation ξ(i)j to denote the maxi-

mum number of samples taken by machine i, during the operating time of stoppage

triggering machine j, therefore ξ(i)j =
j
τ (j)

h(i)

k
if η(i) = 0 and ξ

(i)
j =

³j
τ (j)−η(i)

h(i)

k
+ 1
´

if η(i) > 0.
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Group 1: Since j itself triggers the system-wide stoppage, its status in the next

system restart will be in-control, and the time to the next sampling is its fixed

sampling interval, hence, φ́
(j)
= 1, and ή(j) = h(j).

Therefore, for j ∈M , e
h³

φ(j); η(j)
´
,
³
φ́
(j)
; ή(j)

´
; j
i
can be derived as follows.

First consider the transition probability for machine i from
³
φ(j) = 1; η(j)

´
to³

φ́
(j)
= 1; ή(j)

´
where 0 ≤ η(j) ≤ h(j), ή(j) = h(j). This transition may occur

in two different ways: (i) the status of the machine j may have shifted to the

out-of-control state before the system stoppage, i.e. (j) = 0 and been restored

to the in-control status, or (ii) machine j may be in the in-control status at the

system stoppage, i.e. (j) = 1 and retains its status at the system restart. The

transition probability is the sum of the probabilities of these two alternatives. For

either (j) = 0 or (j) = 1 the total number of samplings is n(j)1 + n
(j)
2 = ξ

(j)
j .

If (j) = 0, then there are n(j)1 correct inference about the in-control status, i.e.

(1 − α(j))n
(j)
1 , process shifts to the out-of-control status sometime between the

samplings n(j)1 and n
(j)
1 + 1, i.e.

R η(j)+n(j)1 h(j)

x=
h
η(j)+

³
n
(j)
1 −1

´
h(j)

i+ λ(j)e−λ(j)xdx, after the shift
there are (n(j)2 −1) type II error, i.e.

h
β(j)

i(n(j)2 −1)
, and one correct inference about

the out-of-control status, i.e. (1 − β(j)). If (j) = 1, the process does not shift

during the operating time of machine j, i.e. e−λ
(j)τ (j), there are ξ(j)j − 1 correct

inference about the in-control status i.e. (1− α(j))ξ
(j)
j −1 and one type I error, i.e.
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α(j). Hence,

e
h³

φ(j); η(j)
´
,
³
φ́
(j)
; ή(j)

´
; j
i
=
£
1− I

¡
η(j)
¢¤

(5.3)

×


ξ
(j)
j −1X
n
(j)
1 =0

Z η(j)+n
(j)
1 h(j)

x=
h
η(j)+

³
n
(j)
1 −1

´
h(j)

i+
"
(1− α(j))n

(j)
1

h
β(j)

i(ξ(j)j −n(j)1 −1)

× (1− β(j))λ(j)e−λ
(j)x

¸
dx + α(j)(1− α(j))ξ

(j)
j −1e−λ

(j)τ (j)


for φ(j) = φ́

(j)
= 1 and

0 ≤ η(j) ≤ h(j), ή(j) = h(j)

Next consider the transition from
³
φ(j) = 0; η(j)

´
to
³
φ́
(j)
= 1; ή(j)

´
where 0 ≤

η(j) ≤ h(j), ή(j) = h(j). This transition explicitly implies that machine j is an

opportunity non-taker machine, since its status at the system restart is out-of-

control. The machine is in the out-of-control status at the system restart, so

that it must be in the out-control status at the system stoppage, i.e. (j) = 0,

because the process is not self correcting. Hence, there are ξ(j)j −1 type II error, i.e.³
β(j)

´ξ(j)j −1
and one correct inference about the out-of-control state, i.e. (1−β(j)).

Hence:

e
h³

φ(j); η(j)
´
,
³
φ́
(j)
; ή(j)

´
; j
i
=

£
1− I

¡
η(j)
¢¤
(1− β(j))

³
β(j)

´ξ(j)j −1
(5.4)

for φ(j) = 0 , φ́
(j)
= 1 and

0 ≤ η(j) ≤ h(j), ή(j) = h(j)
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The machine that triggers a stoppage can never be in the out-of-control status in

the system restart, and only possible value ή(j) can take is h(j), hence:

e
h³

φ(j); η(j)
´
,
³
φ́
(j)
; ή(j)

´
; j
i
= 0 for φ́

(j)
= 0 or ή(j) < h(j) (5.5)

Group 2: Since i is an opportunity taker machine it is restored to the in-control

status whenever there is a system-wide stoppage, and the time to the next sampling

is always equal to its fixed sampling interval, hence, φ(i) = φ́
(i)
= 1, and η(i) =

ή(i) = h(i). Therefore, for i ∈MTK , i 6= j and j ∈M, e
h³

φ(i); η(i)
´
,
³
φ́
(i)
; ή(i)

´
; j
i

can be derived as follows.

First consider the transition probability for machine i from
³
φ(i) = 1; η(i) = h(i)

´
to
³
φ́
(i)
= 1; ή(i) = h(i)

´
. This transition may occur in three different ways: (i) the

status of the machine i may have shifted to the out-of-control state before the

system stoppage, i.e. (i) = 0 where shift and system stoppages occur in different

sampling intervals, (ii) the status of the machine i may have shifted to the out-

of-control state before the system stoppage, i.e. (i) = 0 where shift and system

stoppages occur within the same sampling interval, (iii) machine i may be in the

in-control status at the system stoppage, i.e. (i) = 1 and retains its status at

the system restart. The transition probability is the sum of the probabilities of

these three alternatives. For (i) = 0 and the system stoppage and the shift occur

in different sampling intervals, n(i)1 can take on values between 0 and ξ
(i)
j , then

n
(i)
2 = ξ

(i)
j −n

(i)
1 . In this case, there are n

(i)
1 correct inferences about the in-control
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status, i.e. (1 − α(i))n
(i)
1 , process shifts to the out-of-control status between the

samplings n(i)1 and n
(i)
1 + 1, i.e.

R η(i)+n(i)1 h(i)

x=
h
η(i)+

³
n
(i)
1 −1

´
h(i)

i+ λ(i)e−λ(i)xdx, there are n
(i)
2

Type II errors, i.e.
h
β(i)
i(ξ(i)j −n(i)1 )

. For (i) = 0 and the system stoppage and the

shift occur within the same sampling interval, then n
(i)
1 = ξ

(i)
j and n

(i)
2 = 0, there

are n(i)1 correct inferences about the in-control status, i.e. (1 − α(i))n
(i)
1 , and the

process shifts to the out-of-control status between the last sampling and system

stoppage, i.e.
R τ (j)
x=
h
η(i)+

³
n
(i)
1 −1

´
h(i)

i+ λ(i)e−λ(i)xdx. For (j) = 1, the process does not

shift before the system stoppage, i.e. e−λ
(i)τ (j) , and there are ξ(i)j correct inferences

about the in-control status i.e. (1− α(i))ξ
(i)
j . Hence,

e
h³

φ(i); η(i)
´
,
³
φ́
(i)
; ή(i)

´
; j
i
=
£
1− I

¡
η(i)
¢¤
(1− α(i))ξ

(i)
j e−λ

(i)τ (j)

+ I
¡
η(i)
¢
e−λ

(i)τ (j) +
£
1− I

¡
η(i)
¢¤

ξ
(i)
jX

n
(i)
1 =0

³
1− I

³
η(i) + n

(i)
1 h(i)

´´

×
Z η(i)+n

(i)
1 h(i)

x=
h
η(i)+

³
n
(i)
1 −1

´
h(i)

i+(1− α(i))n
(i)
1

×
h
β(i)
i(ξ(i)j −n(i)1 )

λ(i)e−λ
(i)xdx

+ I
³
η(i) + n

(i)
1 h(i)

´
(5.6)

×
"Z τ (j)

x=
h
η(i)+

³
n
(i)
1 −1

´
h(i)

i+(1− α(i))n
(i)
1 λ(i)e−λ

(i)xdx

#
+ I

¡
η(i)
¢ ³
1− e−λ

(i)τ (j)
´

for φ(i) = φ́
(i)
= 1 and

η(i) = ή(i) = h(i)
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Opportunity taker machines are restored to the in-control status following

every system stoppage, therefore any initial out-of-control status for the opportu-

nity taker machines is not possible. Hence,

e
h³

φ(i); η(i)
´
,
³
φ́
(i)
; ή(i)

´
; j
i
= 0 for φ(i) = 0 or φ́

(i)
= 0 (5.7)

or η(i) < h(i) or ή(i) < h(i)

Group 3: the state transition probability for the opportunity non-taker ma-

chine i, where the stoppage is triggered bymachine j, i.e. e
h³

φ(i); η(i)
´
,
³
φ́
(i)
; ή(i)

´
; j
i

where i 6= j. Since i is an opportunity non-taker machine, at the system restart

it retains its status in the previous system stoppage. For i ∈ MNTK , i 6= j and

j ∈M state transition probabilities can be derived as follows.

First consider the transition probability for machine i from
³
φ(i) = 1; η(i)

´
to³

φ́
(i)
= 1; ή(i)

´
where 0 ≤ η(i) ≤ h(i), 0 ≤ ή(i) ≤ h(i). This transition implies that

the status of the machine i at the previous stoppage instance is in-control. Then,

there are ξ(i)j correct inferences about the in-control status, i.e.(1 − α(i))ξ
(i)
j , and

the process does not shift before the system stoppage, i.e. e−λ
(i)τ (j). Hence:
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e
h³

φ(i); η(i)
´
,
³
φ́
(i)
; ή(i)

´
; j
i
=
¡
1− I

¡
η(i)
¢¢ ³

(1− α(i))ξ
(i)
j e−λ

(i)τ (j)
´

+ I
¡
η(i)
¢
e−λ

(i)τ (j) for φ(i) = 1, φ́
(i)
= 1 and (5.8)

0 ≤ η(i) ≤ h(i), ή(i) = η(i) + ξ
(i)
j h(i) − τ (j)

Next, consider the transition probability for machine i from
³
φ(i) = 0; η(i)

´
to³

φ́
(i)
= 0; ή(i)

´
where 0 ≤ η(i) ≤ h(i), 0 ≤ ή(i) ≤ h(i). This transition implies that

there are ξ(i)j Type II error, i.e.
h
β(i)
iξ(i)j

. Hence:

e
h³

φ(i); η(i)
´
,
³
φ́
(i)
; ή(i)

´
; j
i
= I

¡
η(i)
¢ h

β(i)
iξ(i)j

+
¡
1− I

¡
η(i)
¢¢

for φ(i) = φ́
(i)
= 0 and (5.9)

0 ≤ η(i) ≤ h(i), ή(i) = η(i) + ξ
(i)
j h(i) − τ (j)

Now, consider the transition probability for machine i from
³
φ(i) = 1; η(i)

´
to³

φ́
(i)
= 0; ή(i)

´
where 0 ≤ η(i) ≤ h(i), 0 ≤ ή(i) ≤ h(i). This transition may occur in

two different ways: (i) the process shift and system stoppages occur in different

sampling intervals, (ii) the process shift and system stoppages occur within the

same sampling interval. The transition probability is the sum of the probabilities

of these two alternatives. For the case where system stoppage and the shift occur

in different sampling intervals, n(i)1 can take on values between 0 and ξ
(i)
j , then
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n
(i)
2 = ξ

(i)
j −n

(i)
1 . In this case, there are n

(i)
1 correct inferences about the in-control

status, i.e. (1 − α(i))n
(i)
1 , process shifts to the out-of-control status between the

samplings n(i)1 and n
(i)
1 + 1, i.e.

R η(i)+n(i)1 h(i)

x=
h
η(i)+

³
n
(i)
1 −1

´
h(i)

i+ λ(i)e−λ(i)xdx, there are n
(i)
2

Type II errors, i.e.
h
β(i)
i(ξ(i)j −n(i)1 )

. For the case where the system stoppage and

the shift occur within the same sampling interval, there are n
(i)
1 = ξ

(i)
j correct

inferences about the in-control status, i.e. (1 − α(i))n
(i)
1 , and the process shifts

to the out-of-control status between the last sampling and system stoppage, i.e.R τ (j)
x=
h
η(i)+

³
n
(i)
1 −1

´
h(i)

i+ λ(i)e−λ(i)xdx. Hence:

e
h³

φ(i); η(i)
´
,
³
φ́
(i)
; ή(i)

´
; j
i
=
£
1− I

¡
η(k)
¢¤

×


ξ
(i)
jX

n
(i)
1 =0

³
1− I

³
η(i) + n

(i)
1 h(i)

´´
(5.10)

×
Z η(i)+n

(i)
1 h(i)

x=
h
η(i)+

³
n
(i)
1 −1

´
h(i)

i+(1− α(i))n
(i)
1

×
h
β(i)
i(ξ(i)j −n(i)1 )

λ(i)e−λ
(i)xdx

+ I
³
η(i) + n

(i)
1 h(i)

´

×
"Z τ (j)

x=
h
η(i)+

³
n
(i)
1 −1

´
h(i)

i+(1− α(i))n
(i)
1 λ(i)e−λ

(i)xdx

#
+ I

¡
η(i)
¢ ³
1− e−λ

(i)τ (j)
´

for φ(i) = 1, φ́
(i)
= 0 and

0 ≤ η(i) ≤ h(i), ή(i) = η(i) + ξ
(i)
j h(i) − τ (j)
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The process is not self correcting, therefore transition from out-of-control status

to the in-control status is impossible. Hence:

e
h³

φ(i); η(i)
´
,
³
φ́
(i)
; ή(i)

´
; j
i
= 0 for φ(i) = 0, φ́

(i)
= 1 or (5.11)

ή(i) 6= η(i) + ξ
(i)
j h(i) − τ (j)

Define Q as the one step transition matrix, where each entry is the transition

probability from state (φ;η) at the stoppage instant l, to state
³
φ́; ή

´
at the

stoppage instant l + 1, when the system stoppage is triggered by machine j. We

denote element of Q by Q
h
(φ;η) ,

³
φ́; ή

´
; j
i
. Then,

Q
h
(φ;η) ,

³
φ́; ή

´
; j
i
=

∞Z
τ (j)=0

mY
i=1

e
h³

φ(i); η(i)
´
,
³
φ́
(i)
; ή(i)

´
; j
i
dτ (j) (5.12)

Define the probability matrix π̃ (φ;η) of stationary probability of the system

being in state (φ;η), which can be obtained from the one step transition probabil-

ity matrix Q
h
(φ;η) ,

³
φ́; ή

´
; j
i
. Each element of stationary probability matrix

π̃ (φ;η) can be obtained by solving the set of equations below:
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π̃
³
φ́; ή

´
= π̃ (φ;η)

mX
j=1

Q
h
(φ;η) ,

³
φ́; ή

´
; j
i

(5.13)

X
(φ́;ή)

π̃
³
φ́; ή

´
= 1 (5.14)

Although the embedded cycles we define are between two consecutive system

restarts, system state at the end of a cycle is different than the system state at

the immediate next system start, because of the repair and restoration activities

over the opportunity taker and the stoppage triggering machines. In our model

construction below, we will take this into account and define events that are partic-

ular realizations of the process, and compute the event probabilities and expected

event costs.

First, consider the following event, {E(j)
T | (φ;η)}: A cycle, where system state

is (φ;η) at the previous system stoppage and with operating time length τ (j) ends

when the machine j triggers a system-wide stoppage by signaling a true alarm, i.e.

(j) = 0 and, at the time of stoppage, the opportunity taker machines grouped

in set Ψ(j)
OF are in the in-control state, i.e.,

(i) = 1, ∀i ∈ Ψ
(j)
OF , and the machines

grouped in set Ψ(j)
OT are in the out—of-control state, i.e.,

(i) = 0, ∀i ∈ Ψ
(j)
OT . Hence,

MTK\ {j} = Ψ
(j)
OT ∪Ψ(j)

OF . The opportunity non-taker machines are grouped in set

Ψ
(j)
F are in the in-control state, i.e., (i) = 1, ∀i ∈ Ψ

(j)
F and machines grouped in set

Ψ
(j)
T are in the out-of-control state, i.e., (i) = 0, ∀i ∈ Ψ

(j)
T . Hence, MNTK\ {j} =

Ψ
(j)
T ∪ Ψ

(j)
F . The machines in the set Ψ

(j)
T are also grouped in to two depending
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on their state at the previous system start instant, such that machines that were

in the in-control state when the system start but in the out-of-control state at

the stoppage,
³
Ψ
(j)
T ;φ

(r) = 1
´
and machines that were in the out-of-control state

when the system start and in the out-of-control state at the stoppage instant³
Ψ
(j)
T ;φ

(r) = 0
´
.Then,

Pr{E(j)
T | (φ;η)} = Pr


machine j signals a true

alarm at time τ (j)|
³
φ(j); η(j)

´


×Π
i∈Ψ(j)OF

Pr


machine i is stopped at time τ (j)

and (i) = 1 |
³
φ(i); η(i)

´


×Π
k∈Ψ(j)OT

Pr


machine k is stopped at time τ (j)

and (k) = 0 |
³
φ(k); η(k)

´
 (5.15)

×Π
n∈Ψ(j)F

Pr


machine n is stopped at time τ (j)

and (n) = 1|
³
φ(n); η(n)

´


×Π
r∈Ψ(j)T ,φ(r)=1

Pr


machine r is stopped at time τ (j)

and (r) = 0 |
³
φ(r) = 1; η(r)

´


×Π
w∈Ψ(j)T ,φ(w)=0

Pr


machine w is stopped at time τ (j)

and (w) = 0 |
³
φ(w) = 0; η(w)

´
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Substituting the previously derived probabilities we get:

Pr{E(j)
T | (φ;η)} =

 £1− I
¡
η(j)
¢¤ ξ

(j)
j −1X
n
(j)
1 =0

Z η(j)+n
(j)
1 h(j)

x=
h
η(j)+

³
n
(j)
1 −1

´
h(j)

i+

× (1− α(j))n
(j)
1

h
β(j)

i(ξ(j)j −n(j)1 −1)
(1− β(j))λ(j)e−λ

(j)xdx


+
£
1− I

¡
η(j)
¢¤
(1− β(j))

³
β(j)

´ξ(j)j −1


×
Y

i∈Ψ(j)OF

 £1− I
¡
η(i)
¢¤
(1− α(i))ξ

(i)
j e−λ

(i)τ (j) (5.16)

+ I
¡
η(i)
¢
e−λ

(i)τ(j)


×
Y

k∈Ψ(j)OT

 £1− I
¡
η(k)
¢¤ ξ

(k)
jX

n
(k)
1 =0

³
1− I

³
η(k) + n

(k)
1 h(k)

´´

×
Z η(k)+n

(k)
1 h(k)

x=
h
η(k)+

³
n
(k)
1 −1

´
h(k)

i+(1− α(k))n
(k)
1

×
h
β(k)

i(ξ(k)j −n(k)1 )

λ(k)e−λ
(k)xdx+ I

³
η(k) + n

(k)
1 h(k)

´
×
Z τ (j)

x=
h
η(k)+

³
n
(k)
1 −1

´
h(k)

i+(1− α(k))n
(k)
1 λ(k)e−λ

(k)xdx


+ I

¡
η(k)
¢ ³
1− e−λ

(k)τ (j)
´

×
Y

n∈Ψ(j)F

 ¡1− I
¡
η(n)

¢¢
(1− α(n))ξ

(n)
j e−λ

(n)τ (j)

+ I
¡
η(n)

¢
e−λ

(n)τ (j)
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×
Y

r∈Ψ(j)T ,φ(r)=1

 ¡1− I
¡
η(r)
¢¢ ξ

(r)
jX

n
(r)
1 =0

³
1− I

³
η(r) + n

(r)
1 h(r)

´´

×
"Z η(r)+n

(r)
1 h(r)

x=
h
η(r)+

³
n
(r)
1 −1

´
h(r)

i+(1− α(r))n
(r)
1

h
β(r)

i³ξ(r)−n(r)1 ´

× λ(r)e−λ
(r)xdx

#
+ I

³
η(r) + n

(r)
1 h(r)

´

×
"Z τ (j)

x=
h
η(r)+

³
n
(r)
1 −1

´
h(r)

i+(1− α(r))n
(r)
1 λ(r)e−λ

(r)xdx

#
+ I

¡
η(r)
¢ ³
1− e−λ

(r)τ (j)
´

×
Y

w∈Ψ(j)T ,φ(r)=0

I
¡
η(w)

¢ h
β(w)

iξ(w)j

+
¡
1− I

¡
η(w)

¢¢
and Pr{E(j)

F | (φ;η)} can be written in a similar way as follows:

Pr{E(j)
F | (φ;η)} =

 £1− I
¡
η(j)
¢¤
α(j)(1− α(j))ξ

(j)
j −1e−λ

(j)τ (j)


×
Y

i∈Ψ(j)OF

 £1− I
¡
η(i)
¢¤
(1− α(i))ξ

(i)
j e−λ

(i)τ (j)

+ I
¡
η(i)
¢
e−λ

(i)τ (j)

 (5.17)
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×
Y

k∈Ψ(j)OT

 £1− I
¡
η(k)
¢¤ ξ

(k)
jX

n
(k)
1 =0

³
1− I

³
η(k) + n

(k)
1 h(k)

´´

×
Z η(k)+n

(k)
1 h(k)

x=
h
η(k)+

³
n
(k)
1 −1

´
h(k)

i+(1− α(k))n
(k)
1

×
h
β(k)

i(ξ(k)j −n(k)1 )

λ(k)e−λ
(k)xdx+ I

³
η(k) + n

(k)
1 h(k)

´
×
Z τ (j)

x=
h
η(k)+

³
n
(k)
1 −1

´
h(k)

i+(1− α(k))n
(k)
1 λ(k)e−λ

(k)xdx


+ I

¡
η(k)
¢ ³
1− e−λ

(k)τ (j)
´

×
Y

n∈Ψ(j)F

 ¡1− I
¡
η(n)

¢¢
(1− α(n))ξ

(n)
j e−λ

(n)τ (j)

+ I
¡
η(n)

¢
e−λ

(n)τ (j)


×

Y
r∈Ψ(j)T ,φ(r)=1

 ¡1− I
¡
η(r)
¢¢ ξ

(r)
jX

n
(r)
1 =0

³
1− I

³
η(r) + n

(r)
1 h(r)

´´

×
"Z η(r)+n

(r)
1 h(r)

x=
h
η(r)+

³
n
(r)
1 −1

´
h(r)

i+(1− α(r))n
(r)
1

h
β(r)

i³ξ(r)−n(r)1 ´

× λ(r)e−λ
(r)xdx

#
+ I

³
η(r) + n

(r)
1 h(r)

´
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×
"Z τ (j)

x=
h
η(r)+

³
n
(r)
1 −1

´
h(r)

i+(1− α(r))n
(r)
1 λ(r)e−λ

(r)xdx

#
+ I

¡
η(r)
¢ ³
1− e−λ

(r)τ (j)
´

×
Y

w∈Ψ(j)T ,φ(r)=0

I
¡
η(w)

¢ h
β(w)

iξ(w)j

+
¡
1− I

¡
η(w)

¢¢
Now we can derive the expression for the embedded cycle length and embedded

cycle cost.

Define C(τ , s(i), n(i)1 , n
(i)
2 , x(i), z(i),$) as the total cost incurred by machine i,

for a given operating time τ of a cycle class s(i) ∈ {T, F,OT,OF}, where the

number of samplings taken before the shift is n(i)1 , the number of samplings after

the shift is n(i)2 , the process shifts to the out-of-control status at time x(i), op-

portunity arrival time is z(i), and status of the machines at the system stoppage

are given by the vector $. Let
³
C
(j)
T | (φ;η)

´
denote the cost associated with the

event
³
E
(j)
T | (φ;η)

´
given that the system state at the previous system stoppage is

(φ;η) and
³
C
(j)
F | (φ;η)

´
denote the cost associated with the event

³
E
(j)
F | (φ;η)

´
given that the system state at the previous system stoppage is (φ;η), then the

expected embedded cycle cost for the given state is :
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E
³
C
(j)
T | (φ;η)

´
=

 £1− I
¡
η(j)
¢¤ ξ

(j)
j −1X
n
(j)
1 =0

Z η(j)+n
(j)
1 h(j)

x=
h
η(j)+

³
n
(j)
1 −1

´
h(j)

i+

C(τ (j), T, n
(j)
1 , ξ

(j)
j − n

(j)
1 , x,

¡
z(j) > τ (j)

¢
,$)

× (1− α(j))n
(j)
1

h
β(j)

i(ξ(j)j −n(j)1 −1)
(1− β(j))λ(j)e−λ

(j)xdx


+
£
1− I

¡
η(j)
¢¤
C(τ (j), T, 0, ξ

(j)
j , x,

¡
z(j) > τ (j)

¢
,$)

(1− β(j))
³
β(j)

´ξ(j)j −1


×
Y

i∈Ψ(j)OF

 £1− I
¡
η(i)
¢¤
C(τ (j), OF, ξ

(i)
j , 0,

¡
x > τ (j)

¢
, τ (j),$)

× (1− α(i))ξ
(i)
j e−λ

(i)τ (j) (5.18)

+ I
¡
η(i)
¢
C(τ (j), OF, 0, 0,

¡
x > τ (j)

¢
, τ (j),$)e−λ

(i)τ (j)


×
Y

k∈Ψ(j)OT

 £1− I
¡
η(k)
¢¤ ξ

(k)
jX

n
(k)
1 =0

³
1− I

³
η(k) + n

(k)
1 h(k)

´´

×
Z η(k)+n

(k)
1 h(k)

x=
h
η(k)+

³
n
(k)
1 −1

´
h(k)

i+ C(τ (j), OT, n(k)1 , ξ
(k)
j − n

(k)
1 , x, τ (j),$)

× (1− α(k))n
(k)
1

h
β(k)

i(ξ(k)j −n(k)1 )

λ(k)e−λ
(k)xdx+ I

³
η(k) + n

(k)
1 h(k)

´
×
Z τ (j)

x=
h
η(k)+

³
n
(k)
1 −1

´
h(k)

i+ C(τ (j), OT, n(k)1 , 0, x, τ (j),$)
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× (1− α(k))n
(k)
1 λ(k)e−λ

(k)xdx


+ I

¡
η(k)
¢
C(τ (j), OT, 0, 0, x, τ (j),$)

³
1− e−λ

(k)τ(j)
´

×
Y

n∈Ψ(j)F

 ¡1− I
¡
η(n)

¢¢
C(τ (j), OF, ξ

(n)
j , 0,

¡
x > τ (j)

¢
, τ (j),$)

× (1− α(n))ξ
(n)
j e−λ

(n)τ (j)

+ I
¡
η(n)

¢
C(τ (j), OF, 0, 0,

¡
x > τ (j)

¢
, τ (j),$)e−λ

(n)τ (j)


×

Y
r∈Ψ(j)T ,φ(r)=1

 ¡1− I
¡
η(r)
¢¢ ξ

(r)
jX

n
(r)
1 =0

³
1− I

³
η(r) + n

(r)
1 h(r)

´´

×
"Z η(r)+n

(r)
1 h(r)

x=
h
η(r)+

³
n
(r)
1 −1

´
h(r)

i+ C(τ (j), OT, n(r)1 , ξ
(r)
j − n

(r)
1 , x,

¡
z(r) > τ (j)

¢
,$)

× (1− α(r))n
(r)
1

h
β(r)

i³ξ(r)−n(r)1 ´
λ(r)e−λ

(r)xdx

#
+ I

³
η(r) + n

(r)
1 h(r)

´
"Z τ (j)

x=
h
η(r)+

³
n
(r)
1 −1

´
h(r)

i+ C(τ (j), OT, ξ(r)j , 0, x,
¡
z(r) > τ (j)

¢
,$)

#

× (1− α(r))n
(r)
1 λ(r)e−λ

(r)xdx


+ I

¡
η(r)
¢
C(τ (j), OT, 0, 0, x,

¡
z(r) > τ (j)

¢
,$)

³
1− e−λ

(r)τ (j)
´
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×
Y

w∈Ψ(j)T ,φ(r)=0

I
¡
η(w)

¢
C(τ (j), OT, 0, ξ

(w)
j , 0,

¡
z(w) > τ (j)

¢
,$)


×
h
β(w)

iξ(w)j

+
¡
1− I

¡
η(w)

¢¢
C(τ (j), OT, 0, 0, 0,

¡
z(w) > τ (j)

¢
,$)

E
³
C
(j)
F | (φ;η)

´
can be written in a similar way.

Pr{E(j)
F | (φ;η)} =

 £1− I
¡
η(j)
¢¤
C
³
τ (j), F, ξ

(j)
j , 0, x,

¡
z > τ (j)

¢
,$ (́5.19)

× α(j)(1− α(j))ξ
(j)
j −1e−λ

(j)τ (j)



E
³
C
(j)
F | (φ;η)

´
=

 £1− I
¡
η(j)
¢¤
C
³
τ (j), F, ξ

(j)
j , 0, x,

¡
z > τ (j)

¢
,$
´

× α(j)(1− α(j))ξ
(j)
j −1e−λ

(j)τ (j)

 (5.20)

×
Y

i∈Ψ(j)OF

 £1− I
¡
η(i)
¢¤
C(τ (j), OF, ξ

(i)
j , 0,

¡
x > τ (j)

¢
, τ (j),$)

× (1− α(i))ξ
(i)
j e−λ

(i)τ (j)
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+ I
¡
η(i)
¢
C(τ (j), OF, 0, 0,

¡
x > τ (j)

¢
, τ (j),$)e−λ

(i)τ (j)


×
Y

k∈Ψ(j)OT

 £1− I
¡
η(k)
¢¤ ξ

(k)
jX

n
(k)
1 =0

³
1− I

³
η(k) + n

(k)
1 h(k)

´´

×
Z η(k)+n

(k)
1 h(k)

x=
h
η(k)+

³
n
(k)
1 −1

´
h(k)

i+ C(τ (j), OT, n(k)1 , ξ
(k)
j − n

(k)
1 , x, τ (j),$)

× (1− α(k))n
(k)
1

h
β(k)

i(ξ(k)j −n(k)1 )

λ(k)e−λ
(k)xdx

+ I
³
η(k) + n

(k)
1 h(k)

´
×
Z τ (j)

x=
h
η(k)+

³
n
(k)
1 −1

´
h(k)

i+ C(τ (j), OT, n(k)1 , 0, x, τ (j),$)

× (1− α(k))n
(k)
1 λ(k)e−λ

(k)xdx


+ I

¡
η(k)
¢
C(τ (j), OT, 0, 0, x, τ (j),$)

³
1− e−λ

(k)τ (j)
´

×
Y

n∈Ψ(j)F

 ¡1− I
¡
η(n)

¢¢
C(τ (j), OF, ξ

(n)
j , 0,

¡
x > τ (j)

¢
, τ (j),$)

× (1− α(n))ξ
(n)
j e−λ

(n)τ (j)

+ I
¡
η(n)

¢
C(τ (j), OF, 0, 0,

¡
x > τ (j)

¢
, τ (j),$)e−λ

(n)τ (j)
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×
Y

r∈Ψ(j)T ,φ(r)=1

 ¡1− I
¡
η(r)
¢¢ ξ

(r)
jX

n
(r)
1 =0

³
1− I

³
η(r) + n

(r)
1 h(r)

´´

×
"Z η(r)+n

(r)
1 h(r)

x=
h
η(r)+

³
n
(r)
1 −1

´
h(r)

i+ C(τ (j), OT, n(r)1 , ξ
(r)
j − n

(r)
1 , x,

¡
z(r) > τ (j)

¢
,$)

× (1− α(r))n
(r)
1

h
β(r)

i³ξ(r)−n(r)1 ´
λ(r)e−λ

(r)xdx

#
+ I

³
η(r) + n

(r)
1 h(r)

´
"Z τ (j)

x=
h
η(r)+

³
n
(r)
1 −1

´
h(r)

i+ C(τ (j), OT, ξ(r)j , 0, x,
¡
z(r) > τ (j)

¢
,$)

#

× (1− α(r))n
(r)
1 λ(r)e−λ

(r)xdx


+ I

¡
η(r)
¢
C(τ (j), OT, 0, 0, x,

¡
z(r) > τ (j)

¢
,$)

³
1− e−λ

(r)τ (j)
´

×
Y

w∈Ψ(j)T ,φ(r)=0

I
¡
η(w)

¢
C(τ (j), OT, 0, ξ

(w)
j , 0,

¡
z(w) > τ (j)

¢
,$)


×
h
β(w)

iξ(w)j

+
¡
1− I

¡
η(w)

¢¢
C(τ (j), OT, 0, 0, 0,

¡
z(w) > τ (j)

¢
,$)

We will introduce the renewal reward theorem for the Semi-Markov process be-

low (Theorem 3.5.1, after Tijms (1992) p.219) Suppose that the embedded Markov

chain {Xn} associated with policy R has no two disjoint closed sets. Then

lim
t→∞

Z (t)

t
= g (R) with probability 1
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for each initial state X0 = i, where the constant g (R) is given by

g (R) =

P
j cj (Rj)πj (R)P
j τ j (Rj)πj (R)

where Z (t) is the total cost incurred up to time t, ci (a) is the expected cost

incurred until the next decision epoch if action a is chosen in the present state

i, τ i (a) is the expected time until the next decision epoch if action a is chosen

in the present state i, πi (R) is the stationary distribution of Markov chain {Xn}

associated with policy R.

Hence, the long run expected cost per unit produced, E [TC] can be written

as follows by invoking the above theorem:

E [TC] =
E [CC]

E [τ ]
(5.21)

where

E [CC] =

Z
π̃

π̃ (φ;η)
mX
j=1

∞Z
τ (j)=0

h
E
³
C
(j)
F | (φ;η)

´
+E

³
C
(j)
T | (φ;η)

´i
(5.22)

and

109



E [τ ] =

Z
π̃

π̃ (φ;η)
mX
j=1

∞Z
τ (j)=0

τ (j)
h
Pr
n
E
(j)
F | (φ;η)

o
+Pr

n³
E
(j)
T | (φ;η)

´oi
(5.23)

Since η(i) is a continuous parameter, we can discretize the Markov process by

dividing a sampling interval h(i) into smaller time segments ∆h(i). Let d be the

number of time intervals that a sampling interval divided into, i.e. d = h(i)

∆h(i)
. Then

the dimension of the transition probability matrix Q would be (2mdm)× (2mdm)×

m, a size that cannot be used for the practical purposes. Next, we will consider

some approximations for the multiple machine environment which will allow us to

use the results obtained from the single machine model which is constructed in

Chapter 3.

5.2 Approximate Model

Depending on the partitioning of the machines in the system, there are three

possible cases: (i) All non-taker case: all of the machines are opportunity non-

takers, (ii) All taker case: all of the machines are opportunity takers or (iii)

Mixed case: some of the machines are opportunity takers and some of them are

opportunity non-takers We will construct the approximate model by considering

these three cases separately.
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5.2.1 All non-taker case:

We first consider the case where all of the machines are opportunity non-takers,

i.e.MTK = ∅. In the all non-taker case, machines are inspected and repaired

only through self-stoppages. Assuming that there exists a Least Common Multi-

ple (LCM) of the individual sampling intervals, at the intervals which constitute

these LCMs, all of the machines will take samples simultaneously. At each of these

instances, there is a positive probability that a system stoppage will be triggered

at least by all of the machines in the out-of-control state; hence, all the machines

will restart in the in-control status and the time to the next sampling instance

for each machine will be exactly h(i). These LCM instances, although very infre-

quent, constitute the system regeneration points. Between two consecutive system

regeneration points, each restart of a machine will also constitute a regeneration

point only for that particular machine. The machines may then be viewed as go-

ing through regenerative cycles independently. By invoking the Renewal Reward

Theorem, the long run cost rate of the system can be computed by the expected

cost rate of a system cycle. Since within each system cycle, there are individual

cycles for particular machines, the system can be analyzed by considering each

machine separately. As shutdowns are not utilized for inspecting the processes,

the cost of downtime as foregone profit will be charged only to the machine that

stops the system. The expected cost rate for the m machine system can, then, be

written as the sum of expected cost rates incurred for individual machines facing
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no opportunities:

E[TC] =
X
∀i∈M

limµ(i)→0E[CC
(i)]

limµ(i)→0E[τ (i)]
(5.24)

Expressions E[CC(i)] and E[τ (i)] are as given in the single machine model in

equations 3.30 and 3.25. Since in the all non-taker case, machines do not utilize

the opportunities, they operate and stop independently and individually, therefore,

cycle cost and operating time functions should be evaluated at µ(i) = 0.

5.2.2 All taker case

Now, we consider the case where all of the machines are opportunity takers, i.e.

MNTK = ∅. When all the machines are opportunity takers, at each system restart

all of the machines are in the in-control status. The time to the first sampling

instance is exactly h(i), ∀i ∈ M . Therefore each system restart is a regeneration

point for all of the machines and hence, for the overall system. Therefore we can

use the exact model derived in Section 5.1.

Consider the following event, {E(j)
T |φ,$}: A cycle with operating time length

τ (j) ends when machine j triggers a system-wide stoppage by signaling a true

alarm, i.e. (j) = 0, and, the status of the machines at the start of the cycle

is given by the vector φ and their status at the stoppage instant is given by the

vector$, the machines grouped in setΨ,(j)
OF are in the in-control state, i.e.

(i) = 1
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∀i ∈ Ψ
(j)
OF , and the machines grouped in set Ψ

,(j)
OT are in the out—of-control state,

i.e. (i) = 0 ∀i ∈ Ψ
(j)
OT . Then, define:

Pr{E(j)
T |φ,$} = Pr


machine j signals a true

alarm at time τ (j)|φ,$


×
Y

i∈Ψ(j)OF

Pr


machine i is stopped at time τ (j)

and (i) = 1|φ,$

(5.25)

×
Y

k∈Ψ(j)OT

Pr


machine k is stopped at time τ (j)

and (k) = 0|φ,$



Pr{E(j)
T |φ,$} =

¹
τ(j)

h(j)

ºX
n
(j)
1 =0

Z (n
(j)
1 +1)h(j)

x=n
(j)
1 h(j)

"
(1− α(j))n

(j)
1

h
β(j)

iµ¹ τ(j)
h(j)

º
−n(j)1 −1

¶

× (1− β(j))λ(j)e−λ
(j)x

#
dx

×
Y

i∈Ψ(j)OF

(1− α(i))

¹
τ(j)

h(i)

º
e−λ

(i)τ (j)

 (5.26)
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×
Y

k∈Ψ(j)OT


¹
τ(j)

h(k)

ºX
n
(k)
1 =0

"³
1− I

³³
n
(k)
1 + 1

´
h(k)

´´

×
Z (n

(k)
1 +1)h(k)

x=n
(k)
1 h(k)

(1− α(k))n
(k)
1

h
β(k)

iµ¹ τ(j)
h(k)

º
−n(k)1 −1

¶
λ(k)e−λ

(k)xdx

+ I
³³

n
(k)
1 + 1

´
h(k)

´Z τ (j)

x=n
(k)
1 h(k)

(1− α(k))n
(k)
1 λ(k)e−λ

(k)xdx

#
Similarly for the event {E(j)

F |φ,$} in which the machine j triggers the system

stoppage with a false alarm the probability is as follows:

Pr{E(j)
F |φ,$} = α(j)(1− α(j))

µ¹
τ(j)

h(j)

º
−1
¶
e−λ

(j)τ (j)

×
Y

i∈Ψ(j)OF

(1− α(i))

¹
τ(j)

h(i)

º
e−λ

(i)τ (j)


×
Y

k∈Ψ(j)OT


¹
τ(j)

h(k)

ºX
n
(k)
1 =0

"³
1− I

³³
n
(k)
1 + 1

´
h(k)

´´
(5.27)

×
Z (n

(k)
1 +1)h(k)

x=n
(k)
1 h(k)

(1− α(k))n
(k)
1

h
β(k)

iµ¹ τ(j)
h(k)

º
−n(k)1 −1

¶
λ(k)e−λ

(k)xdx

+ I
³³

n
(k)
1 + 1

´
h(k)

´Z τ (j)

x=n
(k)
1 h(k)

(1− α(k))n
(k)
1 λ(k)e−λ

(k)xdx

#
The expressions above give the exact probability of the events defined. How-

ever, it is quite tedious to compute them, especially if we need to compute the
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expectation over the given number of samplings taken before and after the shift.

Even though the state space for the all taker case is smaller compared to that

of the general exact model, (2mvs.2mdm), the size increases exponentially in the

number of machines in the system, which may easily become beyond the manage-

able sizes. However, through some reasonable approximations we can develop an

approximate model for practical purposes, that uses the model for single machine

with opportunities. Therefore, we would like to approximate this expression with

the help of the single machine results obtained in Chapter 3.

Now consider the probability of event {E(j)
T |φ,$}, i.e. Pr{E(j)

T |φ,$}, and

multiply and divide the probability function of each machine i that were stopped,

by
¡
Γ− γ(i)

¢
e−(Γ−γ

(i))τ (j) , where Γ denote the system stoppage rate.

Hence we have,

Pr{E(j)
T |φ,$} =

¹
τ(j)

h(j)

ºX
n
(j)
1 =0

Z (n
(j)
1 +1)h(j)

x=n
(j)
1 h(j)

"
(1− α(j))n

(j)
1

h
β(j)

iµ¹ τ(j)
h(j)

º
−n(j)1 −1

¶

× (1− β(j))λ(j)e−λ
(j)x

#
dx

×
Y

i∈Ψ(j)OF

(1− α(i))

¹
τ(j)

h(i)

º
e−λ

(i)τ (j)

¡
Γ− γ(i)

¢
e−(Γ−γ

(i))τ (j)

(Γ− γ(i)) e−(Γ−γ
(i))τ (j)


×
Y

k∈Ψ(j)OT


¹
τ(j)

h(k)

ºX
n
(k)
1 =0

³1− I
³³

n
(k)
1 + 1

´
h(k)

´´
(5.28)
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×
Z (n

(k)
1 +1)h(k)

x=n
(k)
1 h(k)

(1− α(k))n
(k)
1

h
β(k)

iµ¹ τ(j)
h(k)

º
−n(k)1 −1

¶

×λ(k)e−λ(k)xdx
¡
Γ− γ(k)

¢
e−(Γ−γ

(k))τ (j)

(Γ− γ(k)) e−(Γ−γ
(k))τ(j)

+I
³³

n
(k)
1 + 1

´
h(k)

´Z τ (j)

x=n
(k)
1 h(k)

(1− α(k))n
(k)
1

× λ(k)e−λ
(k)xdx

¡
Γ− γ(k)

¢
e−(Γ−γ

(k))τ (j)

(Γ− γ(k)) e−(Γ−γ
(k))τ (j)




Pr{E(j)
T |φ,$} =

¹
τ(j)

h(j)

ºX
n
(j)
1 =0

Z (n
(j)
1 +1)h(j)

x=n
(j)
1 h(j)

"
(1− α(j))n

(j)
1

h
β(j)

iµ¹ τ(j)
h(j)

º
−n(j)1 −1

¶

× (1− β(j))λ(j)e−λ
(j)x

#
dx

×
Y

i∈Ψ(j)OF


R∞
x=τ (j)

f (i)
³
τ (j), OF,

j
τ (j)

h(i)

k
, 0, x, τ (j) | ¡Γ− γ(i)

¢´
dx

(Γ− γ(i)) e−(Γ−γ
(i))τ (j)
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×
Y

k∈Ψ(j)OT


¹
τ(j)

h(k)

ºX
n
(k)
1 =0

³1− I
³³

n
(k)
1 + 1

´
h(k)

´´
(5.29)

×
R (n(k)1 +1)h(k)

x=n
(k)
1 h(k)

f (k)
³
τ (j), OT, n

(k)
1 ,
j
τ (j)

h(k)

k
− n

(k)
1 , x, τ (j) | ¡Γ− γ(k)

¢´
dx

(Γ− γ(k)) e−(Γ−γ
(k))τ (j)

+I
³³

n
(k)
1 + 1

´
h(k)

´
×
R τ (j)
x=n

(k)
1 h(k)

f (k)
³
τ (j), OT, n

(k)
1 , 0, x, τ (j) | ¡Γ− γ(k)

¢´
dx

(Γ− γ(k)) e−(Γ−γ
(k))τ (j)




Now define the point probability p(i)s
¡
τ ,
¡
Γ− γ(i)

¢¢
to be the probability that

machine i ∈ MTK , faced with an opportunity rate
¡
Γ− γ(i)

¢
, is stopped at time

τ . Hence,

p
(i)
OF

¡
τ ,
¡
Γ− γ(i)

¢¢
=

Z ∞

x=τ

f (i)
³
τ , OF,

j τ

h(i)

k
, 0, x, τ | ¡Γ− γ(i)

¢´
dx (5.30)

and
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p
(k)
OT

¡
τ ,
¡
Γ− γ(k)

¢¢
=

j
τ

h(k)

kX
n
(k)
1 =0

"³
1− I

³³
n
(k)
1 + 1

´
h(k)

´´
(5.31)

×
Z (n

(k)
1 +1)h(k)

x=n
(k)
1 h(k)

f (k)

 τ (j), OT, n
(k)
1 ,
j
τ (j)

h(k)

k
− n

(k)
1 ,

x, τ (j) | ¡Γ− γ(k)
¢

 dx

+ I
³³

n
(k)
1 + 1

´
h(k)

´
×
Z τ(j)

x=n
(k)
1 h(k)

f (k)
³
τ ,OT, n

(k)
1 , 0, x, τ | ¡Γ− γ(k)

¢´
dx

#

Then by substituting we can rewrite:

Pr{E(j)
T |φ,$} =

¹
τ(j)

h(j)

ºX
n
(j)
1 =0

Z (n
(j)
1 +1)h(j)

x=n
(j)
1 h(j)

(1− α(j))n
(j)
1

h
β(j)

iµ¹ τ(j)
h(j)

º
−n(j)2 −1

¶

×(1− β(j))λ(j)e−λ
(j)xdx

×
Y

i∈Ψ(j)OF

(
p
(i)
OF

¡
τ (j),

¡
Γ− γ(i)

¢¢
(Γ− γ(i)) e−(Γ−γ

(i))τ (j)

)
(5.32)

×
Y

k∈Ψ(j)OT

(
p
(k)
OT

¡
τ (j),

¡
Γ− γ(k)

¢¢
(Γ− γ(k)) e−(Γ−γ

(k))τ (j)

)

Then, we can approximate

p(i)s (τ ,
¡
Γ− γ(i)

¢
) ≈ ¡Γ− γ(i)

¢
e−(Γ−γ

(i))τe−γ
(i)τ

P
(i)
s∈{OT,OF}

¡
Γ− γ(i)

¢
P
(i)
OT (Γ− γ(i)) + P

(i)
OF (Γ− γ(i))

(5.33)
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and

p(i)s (τ , 0) ≈ γ(i)e−γ
(i)τ

P
(i)
s∈{T,F}(0)

P
(i)
T (0) + P

(i)
F (0)

(5.34)

where P (i)
s (·) is as defined before in Chapter 3 for s ∈ {T, F,OT,OF}. The term

P
(i)
s∈{OT,OF}(Γ−γ(i))

P
(i)
OT (Γ−γ(i))+P (i)OF (Γ−γ(i))

approximates the probability that machine i, facing an op-

portunity rate of
¡
Γ− γ(i)

¢
, has the cycle class s ∈ {OT,OF}, having the status

at the system stoppage (i) ∈ {0, 1}, and the term ¡
Γ− γ(i)

¢
e−(Γ−γ

(i))τe−γ
(i)τ

approximates the probability that the machine i does not trigger a stoppage up

to time τ and opportunity arrives at time τ . Similarly for p(i)s (τ , 0), the term

P
(i)
s∈{T,F}(0)

P
(i)
T (0)+P

(i)
F (0)

approximates the probability that the triggering machine i has the

cycle class s ∈ {T, F}, having the status at the system stoppage (i) ∈ {0, 1},

and the term γ(i)e−γ
(i)τ approximates the probability that the machine i triggers

a stoppage at time τ . Hence we have introduced our first key assumption of ap-

proximation at this point. Specifically, we assume that, for each machine, time

from the system start to the stoppage time of each machine is exponentially dis-

tributed. Since the time until the shift to the out-of-control state is exponentially

distributed and the power of the control chart is high enough (implying that the

probability of correct inference about the process status at a sampling instant is

close to 1), it is reasonable to approximate the time to stoppage by an exponential

distribution. Then;
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Pr{E(j)
T |φ,$} ≈

¹
τ(j)

h(j)

ºX
n
(j)
1 =0

Z (n
(j)
1 +1)h(j)

x=n
(j)
1 h(j)

(1− α(j))n
(j)
1

h
β(j)

iµ¹ τ(j)
h(j)

º
−n(j)2 −1

¶

× (1− β(j))λ(j)e−λ
(j)xdx

×
Y

i∈Ψ(j)OF

(¡
Γ− γ(i)

¢
e−(Γ−γ

(i))τ (j)e−γ
(i)τ (j)

(Γ− γ(i)) e−(Γ−γ
(i))τ (j)

× P
(i)
OF

¡
Γ− γ(i)

¢
P
(i)
OT (Γ− γ(i)) + P

(i)
OF (Γ− γ(i))

)
(5.35)

×
Y

k∈Ψ(j)OT

(¡
Γ− γ(k)

¢
e−(Γ−γ

(k))τ (j)e−γ
(k)τ (j)

(Γ− γ(k)) e−(Γ−γ
(k))τ (j)

× P
(k)
OT

¡
Γ− γ(k)

¢
P
(k)
OT (Γ− γ(k)) + P

(k)
OF (Γ− γ(k))

)

Pr{E(j)
T |φ,$} ≈

¹
τ(j)

h(j)

ºX
n
(j)
1 =0

Z (n
(j)
1 +1)h(j)

x=n
(j)
1 h(j)

(1− α(j))n
(j)
1

h
β(j)

iµ¹ τ(j)
h(j)

º
−n(j)2 −1

¶

× (1− β(j))λ(j)e−λ
(j)xdx

×e(Γ−γ(j))τ (j)
Y

i∈Ψ(j)OF

P
(i)
OF

¡
Γ− γ(i)

¢
P
(i)
OT (Γ− γ(i)) + P

(i)
OF (Γ− γ(i))

×
Y

k∈Ψ(j)OT

P
(k)
OT

¡
Γ− γ(k)

¢
P
(k)
OT (Γ− γ(k)) + P

(k)
OF (Γ− γ(k))
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Pr{E(j)
T |φ,$} ≈ p

(j)
T

¡
τ (j),

¡
Γ− γ(i)

¢¢
×
Y

i∈Ψ(j)OF

P
(i)
OF

¡
Γ− γ(i)

¢
P
(i)
OT (Γ− γ(i)) + P

(i)
OF (Γ− γ(i))

(5.36)

×
Y

k∈Ψ(j)OT

P
(k)
OT

¡
Γ− γ(k)

¢
P
(k)
OT (Γ− γ(k)) + P

(k)
OF (Γ− γ(k))

We define event {E(j)
F |φ,$} to be a cycle with operating time length τ (j),

ends when machine j triggers a system-wide stoppage by signaling a false alarm.

Following the similar derivation procedure and approximations we obtain:

Pr{E(j)
F |φ,$} ≈ p

(j)
F

¡
τ (j),

¡
Γ− γ(i)

¢¢
×
Y

i∈Ψ(j)OF

P
(i)
OF

¡
Γ− γ(i)

¢
P
(i)
OT (Γ− γ(i)) + P

(i)
OF (Γ− γ(i))

(5.37)

×
Y

k∈Ψ(j)OT

P
(k)
OT

¡
Γ− γ(k)

¢
P
(k)
OT (Γ− γ(k)) + P

(k)
OF (Γ− γ(k))

Thus, we can approximate the probability of event {E(j)
s |φ,$} by the prob-

ability that: machine j, which is a single machine facing exogenous opportunity

rate
¡
Γ− γ(j)

¢
, has the cycle class s (T or F ) at time τ (j); and, each machine i of

those in the set Ψ(j)
OF , which is a single machine facing exogenous opportunity rate¡

Γ− γ(i)
¢
, is stopped exogenously and is in the in-control status at the time of
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stoppage; and, each machine k of those in the set Ψj
OT , which is a single machine

facing exogenous opportunity rate
¡
Γ− γ(k)

¢
, is stopped exogenously and is in the

out—of-control status at the time of stoppage.

Next, consider in isolation one of the machines that have been stopped ex-

ogenously, say of index m. Then, we can approximate the probability of event

{E(j)
T |φ,$} as follows:

Pr{E(j)
T |φ,$} =

¹
τ(j)

h(j)

ºX
n
(j)
1 =0

Z (n
(j)
1 +1)h(j)

x=n
(j)
1 h(j)

(1− α(j))n
(j)
1

h
β(j)

iµ¹ τ(j)
h(j)

º
−n(j)2 −1

¶

× (1− β(j))λ(j)e−λ
(j)xdx

× ¡1− α(m)
¢¹ τ(j)

h(m)

º
e−λ

(m)τ (j)

×
Y

i∈Ψ(j)OF \m

(
(1− α(i))

¹
τ(j)

h(i)

º
e−λ

(i)τ (j)

)
(5.38)

×
Y

k∈Ψ(j)OT


¹
τ(j)

h(k)

ºX
n
(k)
1 =0

"³
1− I

³³
n
(k)
1 + 1

´
h(k)

´´

×
Z (n

(k)
1 +1)h(k)

x=n
(k)
1 h(k)

(1− α(k))n
(k)
1

h
β(k)

iµ¹ τ(j)
h(k)

º
−n(k)1 −1

¶
λ(k)e−λ

(k)xdx

+ I
³³

n
(k)
1 + 1

´
h(k)

´Z τ (j)

x=n
(k)
1 h(k)

(1− α(k))n
(k)
1 λ(k)e−λ

(k)xdx

#
Multiply and divide the probability function of each machine i ∈ Ψ

(j)
OF\ {m}

and i ∈ Ψ
(j)
OT by

¡
Γ− γ(i)

¢
e−(Γ−γ

(i))τ (j) ; and machine m by
¡
Γ− γ(m)

¢
we get:
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Pr{E(j)
T |φ,$} =

¹
τ(j)

h(j)

ºX
n
(j)
1 =0

Z (n
(j)
1 +1)h(j)

x=n
(j)
1 h(j)

(1− α(j))n
(j)
1

h
β(j)

iµ¹ τ(j)
h(j)

º
−n(j)2 −1

¶

× (1− β(j))λ(j)e−λ
(j)xdx

× ¡1− α(m)
¢¹ τ(j)

h(m)

º
e−λ

(m)τ (j)

¡
Γ− γ(m)

¢
(Γ− γ(m))

×
Y

i∈Ψ(j)OF \m

(
(1− α(i))

¹
τ(j)

h(i)

º
e−λ

(i)τ (j)

¡
Γ− γ(i)

¢
e−(Γ−γ

(i))τ (j)

(Γ− γ(i)) e−(Γ−γ
(i))τ (j)

)

×
Y

k∈Ψ(j)OT


¹
τ(j)

h(k)

ºX
n
(k)
1 =0

"³
1− I

³³
n
(k)
1 + 1

´
h(k)

´´
(5.39)

×
Z (n

(k)
1 +1)h(k)

x=n
(k)
1 h(k)

(1− α(k))n
(k)
1

h
β(k)

iµ¹ τ(j)
h(k)

º
−n(k)1 −1

¶
λ(k)e−λ

(k)xdx

×
¡
Γ− γ(k)

¢
e−(Γ−γ

(k))τ (j)

(Γ− γ(k)) e−(Γ−γ
(k))τ (j)

+ I
³³

n
(k)
1 + 1

´
h(k)

´

×
Z τ (j)

x=n
(k)
1 h(k)

(1− α(k))n
(k)
1 λ(k)e−λ

(k)xdx

¡
Γ− γ(k)

¢
e−(Γ−γ

(k))τ (j)

(Γ− γ(k)) e−(Γ−γ
(k))τ (j)

#
By using the approximations we have introduced above, we get:
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Pr{E(j)
T |φ,$} =

¹
τ(j)

h(j)

ºX
n
(j)
1 =0

Z (n
(j)
1 +1)h(j)

x=n
(j)
1 h(j)

(1− α(j))n
(j)
1

h
β(j)

iµ¹ τ(j)
h(j)

º
−n(j)2 −1

¶

× (1− β(j))λ(j)e−λ
(j)xdx

× ¡1− α(m)
¢¹ τ(j)

h(m)

º
e−λ

(m)τ (j)

¡
Γ− γ(m)

¢
(Γ− γ(m))

×
Y

i∈Ψ(j)OF \{m}


¡
Γ− γ(i)

¢
e−(Γ−γ

(i))τ (j)e−γ
(i)τ (j)

(Γ− γ(i)) e−(Γ−γ
(i))τ (j)

(5.40)

× P
(i)
OF

¡
Γ− γ(i)

¢
P
(i)
OT (Γ− γ(i)) + P

(i)
OF (Γ− γ(i))


×
Y

k∈Ψ(j)OT


¡
Γ− γ(k)

¢
e−(Γ−γ

(k))τ (j)e−γ
(k)τ (j)

(Γ− γ(k)) e−(Γ−γ
(k))τ (j)

× P
(k)
OT

¡
Γ− γ(k)

¢
P
(k)
OT (Γ− γ(k)) + P

(k)
OF (Γ− γ(k))



Pr{E(j)
T |φ,$} =

¹
τ(j)

h(j)

ºX
n
(j)
1 =0

Z (n
(j)
1 +1)h(j)

x=n
(j)
1 h(j)

(1− α(j))n
(j)
1

h
β(j)

iµ¹ τ(j)
h(j)

º
−n(j)2 −1

¶

× (1− β(j))λ(j)e−λ
(j)x

¸
dx

× ¡1− α(m)
¢¹ τ(j)

h(m)

º
e−λ

(m)τ (j)

¡
Γ− γ(m)

¢
(Γ− γ(m))

e−(Γ−γ
(j)−γ(m))τ (j)

×
Y

i∈Ψ(j)OF \{m}

P
(i)
OF

¡
Γ− γ(i)

¢
P
(i)
OT (Γ− γ(i)) + P

(i)
OF (Γ− γ(i))

(5.41)

×
Y

k∈Ψ(j)OT

P
(k)
OT

¡
Γ− γ(k)

¢
P
(k)
OT (Γ− γ(k)) + P

(k)
OF (Γ− γ(k))
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Approximating the probability associated with machine j by

γ(j)e−γ
(j)τ (j) P

(j)
T (0)

P
(j)
T (0) + P

(j)
F (0)

we get:

Pr{E(j)
T |φ,$} ≈ γ(j)e−γ

(j)τ (j) P
(j)
T (0)

P
(j)
T (0) + P

(j)
F (0)

eγ
(j)τ (j)

(Γ− γ(m))

× ¡1− α(m)
¢¹ τ(j)

h(m)

º
e−λ

(m)τ (j)
¡
Γ− γ(m)

¢
e−(Γ−γ

(m))τ (j)

×
Y

i∈Ψ(j)OF \{m}

P
(i)
OF

¡
Γ− γ(i)

¢
P
(i)
OT (Γ− γ(i)) + P

(i)
OF (Γ− γ(i))

(5.42)

×
Y

k∈Ψ(j)OT

P
(k)
OT

¡
Γ− γ(k)

¢
P
(k)
OT (Γ− γ(k)) + P

(k)
OF (Γ− γ(k))

Pr{E(j)
T |φ,$} ≈

¡
1− α(m)

¢¹ τ(j)

h(m)

º
e−λ

(m)τ (j)
¡
Γ− γ(m)

¢
e−(Γ−γ

(m))τ (j)

× γ(j)

(Γ− γ(m))

P
(j)
T (0)

P
(j)
T (0) + P

(j)
F (0)

×
Y

i∈Ψ(j)OF \{m}

P
(i)
OF

¡
Γ− γ(i)

¢
P
(i)
OT (Γ− γ(i)) + P

(i)
OF (Γ− γ(i))

(5.43)

×
Y

k∈Ψ(j)OT

P
(k)
OT

¡
Γ− γ(k)

¢
P
(k)
OT (Γ− γ(k)) + P

(k)
OF (Γ− γ(k))
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Pr{E(j)
T |φ,$} ≈ p

(j)
OF

¡
τ (j),

¡
Γ− γ(i)

¢¢
× γ(j)

(Γ− γ(m))

P
(j)
T (0)

P
(j)
T (0) + P

(j)
F (0)

×
Y

i∈Ψ(j)OF \{m}

P
(i)
OF

¡
Γ− γ(i)

¢
P
(i)
OT (Γ− γ(i)) + P

(i)
OF (Γ− γ(i))

(5.44)

×
Y

k∈Ψ(j)OT

P
(k)
OT

¡
Γ− γ(k)

¢
P
(k)
OT (Γ− γ(k)) + P

(k)
OF (Γ− γ(k))

Similarly for the machine m ∈ Ψj
OT in isolation the event probability is:

Pr{E(j)
T |φ,$} ≈

¹
τ(j)

h(m)

ºX
n
(m)
1 =0

·³
1− I

³³
n
(m)
1 + 1

´
h(m)

´´

×
Z (n

(m)
1 +1)h(m)

x=n
(m)
1 h(m)

(1− α(m))n
(m)
1

h
β(m)

iµ¹ τ(j)

h(m)

º
−n(m)1 −1

¶

×λ(m)e−λ(m)x ¡Γ− γ(m)
¢
e−(Γ−γ

(m))τ (j)dx

+I
³³

n
(m)
1 + 1

´
h(m)

´Z τ (j)

x=n
(m)
1 h(m)

(1− α(m))n
(m)
1

× λ(m)e−λ
(m)x

¡
Γ− γ(m)

¢
e−(Γ−γ

(m))τ (j)dx

¸
(5.45)

× γ(j)

(Γ− γ(m))

P
(j)
T (0)

P
(j)
T (0) + P

(j)
F (0)

×
Y

i∈Ψ(j)OF

P
(i)
OF

¡
Γ− γ(i)

¢
P
(i)
OT (Γ− γ(i)) + P

(i)
OF (Γ− γ(i))

×
Y

k∈Ψ(j)OT \{m}

P
(k)
OT

¡
Γ− γ(k)

¢
P
(k)
OT (Γ− γ(k)) + P

(k)
OF (Γ− γ(k))
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Pr{E(j)
T |φ,$} ≈ p

(j)
OT

¡
τ (j),

¡
Γ− γ(i)

¢¢
× γ(j)

(Γ− γ(m))

P
(j)
T (0)

P
(j)
T (0) + P

(j)
F (0)

×
Y

i∈Ψ(j)OF

P
(i)
OF

¡
Γ− γ(i)

¢
P
(i)
OT (Γ− γ(i)) + P

(i)
OF (Γ− γ(i))

(5.46)

×
Y

k∈Ψ(j)OT \{m}

P
(k)
OT

¡
Γ− γ(k)

¢
P
(k)
OT (Γ− γ(k)) + P

(k)
OF (Γ− γ(k))

Above probabilities for machine m in the event {E(j)
F |φ,$} are as follows:

Pr{E(j)
F |φ,$} ≈ p

(j)
OF

¡
τ (j),

¡
Γ− γ(i)

¢¢
× γ(j)

(Γ− γ(m))

P
(j)
F (0)

P
(j)
T (0) + P

(j)
F (0)

×
Y

i∈Ψ(j)OF

P
(i)
OF

¡
Γ− γ(i)

¢
P
(i)
OT (Γ− γ(i)) + P

(i)
OF (Γ− γ(i))

(5.47)

×
Y

k∈Ψ(j)OT \{m}

P
(k)
OT

¡
Γ− γ(k)

¢
P
(k)
OT (Γ− γ(k)) + P

(k)
OF (Γ− γ(k))
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Pr{E(j)
F |φ,$} ≈ p

(j)
OF

¡
τ (j),

¡
Γ− γ(i)

¢¢
× γ(j)

(Γ− γ(m))

P
(j)
F (0)

P
(j)
T (0) + P

(j)
F (0)

×
Y

i∈Ψ(j)OF

P
(i)
OF

¡
Γ− γ(i)

¢
P
(i)
OT (Γ− γ(i)) + P

(i)
OF (Γ− γ(i))

(5.48)

×
Y

k∈Ψ(j)OT \{m}

P
(k)
OT

¡
Γ− γ(k)

¢
P
(k)
OT (Γ− γ(k)) + P

(k)
OF (Γ− γ(k))

Pr{E(j)
F |φ,$} ≈ p

(j)
OT

¡
τ (j),

¡
Γ− γ(i)

¢¢
× γ(j)

(Γ− γ(m))

P
(j)
F (0)

P
(j)
T (0) + P

(j)
F (0)

×
Y

i∈Ψ(j)OF \{m}

P
(i)
OF

¡
Γ− γ(i)

¢
P
(i)
OT (Γ− γ(i)) + P

(i)
OF (Γ− γ(i))

(5.49)

×
Y

k∈Ψ(j)OT

P
(k)
OT

¡
Γ− γ(k)

¢
P
(k)
OT (Γ− γ(k)) + P

(k)
OF (Γ− γ(k))

Thus, we can approximate the probability of event {E(j)
s |φ,$} by the prob-

ability that: machine m, which is a single machine facing exogenous opportunity

rate
¡
Γ− γ(m)

¢
, is stopped at time τ (j), and its cycle class is of OT or OF at the

time of stoppage; and, the stoppage was signaled by machine j; and, machine j,

which is a single machine facing no exogenous opportunities with a cycle class s
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(T or F ); and, each machine i of those in the set Ψj
OF , which is a single machine

facing exogenous opportunity rate
¡
Γ− γ(i)

¢
, is stopped exogenously and is in the

in-control status at the time of stoppage; and, each machine k of those in the set

Ψj
OT , which is a single machine facing exogenous opportunity rate

¡
Γ− γ(k)

¢
, is

stopped exogenously and is in the out-of-control status at the time of stoppage.

Similarly, we can write the expected cost incurred during the cycle which ends

with the occurrence of an event. Let {C(j)
T |φ,$,τ (j)} and {C(j)

F |φ,$,τ (j)} be the

costs associated with the events {E(j)
T |φ,$} and {E(j)

F |φ
(i)} respectively. Then,

we can write the expected cost of these events as follows:
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E
h
C
(j)
T |φ,$,τ (j)

i
=

¹
τ(j)

h(j)

ºX
n
(j)
1 =0

Z (n
(j)
1 +1)h(j)

x=n
(j)
1 h(j)

C

 τ (j), T, n
(j)
1 ,
³j

τ (j)

h(j)

k
− n

(j)
1

´
, x,
¡
z(j) > τ (j)

¢
,$


× (1− α(j))n

(j)
1

h
β(j)

i(n(j)2 −1)
(1− β(j))λ(j)e−λ

(j)xdx

×
Y

i∈Ψ(j)OF

(
C

µ
τ (j), OF,

¹
τ (j)

h(i)

º
, 0, x > τ (j), τ (j),$

¶

× (1− α(i))

¹
τ(j)

h(i)

º
e−λ

(i)τ (j)

)

×
Y

k∈Ψ(j)OT


¹
τ(j)

h(k)

ºX
n
(k)
1 =0

"³
1− I

³³
n
(k)
1 + 1

´
h(k)

´´
(5.50)

×
Z (n

(k)
1 +1)h(k)

x=n
(k)
1 h(k)

C

µ
τ (j), OT, n

(k)
1 ,

¹
τ (j)

h(k)

º
− n

(k)
1 , x, τ (j),$

¶

×(1− α(k))n
(k)
1

h
β(k)

iµ¹ τ(j)
h(k)

º
−n(k)1 −1

¶
λ(k)e−λ

(k)xdx

+I
³³

n
(k)
1 + 1

´
h(k)

´Z τ (j)

x=n
(k)
1 h(k)

C
³
τ (j), OT, n

(k)
1 , 0, x, τ (j),$

´

× (1− α(k))n
(k)
1 λ(k)e−λ

(k)xdx

#
and,
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E
h
C
(j)
F |φ,$,τ (j)

i
= C

µ
τ (j), F,

¹
τ (j)

h(j)

º
, 0, x > τ (j),

¡
z(j) > τ (j)

¢
,$

¶
×α(j)(1− α(j))

µ¹
τ(j)

h(j)

º
−1
¶
e−λ

(j)τ (j)

×
Y

i∈Ψ(j)OF

C

µ
τ (j), OF,

¹
τ (j)

h(j)

º
, 0, x > τ (j), τ (j),$

¶

× (1− α(i))

¹
τ(j)

h(i)

º
e−λ

(i)τ (j)

 (5.51)

×
Y

k∈Ψ(j)OT


¹
τ(j)

h(k)

ºX
n
(k)
1 =0

³1− I
³³

n
(k)
1 + 1

´
h(k)

´´

×
Z (n

(k)
1 +1)h(k)

x=n
(k)
1 h(k)

C

µ
τ (j), OT, n

(k)
1 ,

¹
τ (j)

h(k)

º
− n

(k)
1 , x, τ (j),$

¶

×(1− α(k))n
(k)
1

h
β(k)

iµ¹ τ(j)
h(k)

º
−n(k)1 −1

¶
λ(k)e−λ

(k)xdx

+I
³³

n
(k)
1 + 1

´
h(k)

´Z τ (j)

x=n
(k)
1 h(k)

C
³
τ (j), OT, n

(k)
1 , 0, x, τ (j),$

´

× (1− α(k))n
(k)
1 λ(k)e−λ

(k)xdx




Following the steps in the event probability generation and approximation we

get:
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E
h
C
(j)
T |φ,$,τ (j)

i
≈ C

(j)
T

¡
τ (j),

¡
Γ− γ(i)

¢¢
×
Y

i∈Ψ(j)OF

P
(i)
OF

¡
Γ− γ(i)

¢
P
(i)
OT (Γ− γ(i)) + P

(i)
OF (Γ− γ(i))

(5.52)

×
Y

k∈Ψ(j)OT

P
(k)
OT

¡
Γ− γ(k)

¢
P
(k)
OT (Γ− γ(k)) + P

(k)
OF (Γ− γ(k))

E
h
C
(j)
F |φ,$,τ (j)

i
≈ C

(j)
F

¡
τ (j),

¡
Γ− γ(i)

¢¢
×
Y

i∈Ψ(j)OF

P
(i)
OF

¡
Γ− γ(i)

¢
P
(i)
OT (Γ− γ(i)) + P

(i)
OF (Γ− γ(i))

(5.53)

×
Y

k∈Ψ(j)OT

P
(k)
OT

¡
Γ− γ(k)

¢
P
(k)
OT (Γ− γ(k)) + P

(k)
OF (Γ− γ(k))

For the machine m ∈ Ψ
(j)
s∈{OT,OF} in isolation the expected cost of event

{E(j)
T |φ,$} is:
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E
h
C
(j)
T |φ,$,τ (j)

i
≈ C(m)

s

¡
τ (j),

¡
Γ− γ(m)

¢¢
× γ(j)

(Γ− γ(m))

P
(j)
T (0)

P
(j)
T (0) + P

(j)
F (0)

×
Y

i∈Ψ(j)OF \{m}

P
(i)
OF

¡
Γ− γ(i)

¢
P
(i)
OT (Γ− γ(i)) + P

(i)
OF (Γ− γ(i))

(5.54)

×
Y

k∈Ψ(j)OT \{m}

P
(k)
OT

¡
Γ− γ(k)

¢
P
(k)
OT (Γ− γ(k)) + P

(k)
OF (Γ− γ(k))

For the machine m ∈ Ψ
(j)
s∈{OT,OF} in isolation the expected cost of event

{E(j)
F |φ,$} is:

E
h
C
(j)
F |φ,$,τ (j)

i
≈ C(m)

s

¡
τ (j),

¡
Γ− γ(m)

¢¢
× γ(j)

(Γ− γ(m))

P
(j)
F (0)

P
(j)
T (0) + P

(j)
F (0)

×
Y

i∈Ψ(j)OF \{m}

P
(i)
OF

¡
Γ− γ(i)

¢
P
(i)
OT (Γ− γ(i)) + P

(i)
OF (Γ− γ(i))

(5.55)

×
Y

k∈Ψ(j)OT \{m}

P
(k)
OT

¡
Γ− γ(k)

¢
P
(k)
OT (Γ− γ(k)) + P

(k)
OF (Γ− γ(k))
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Define

Ξ̂(s;m;ψ
(j)
OF ;ψ

(j)
OT ) : =

γ(j)

(Γ− γ(m))

P
[j]
s (0)

P
[j]
T (0) + P

[j]
F (0)

×
Y

i∈ψjOF
i6=m

P
[i]
OF (Γ− γ[i])

P
[i]
OT (Γ− γ[i]) + P

[i]
OF (Γ− γ[i])

(5.56)

×
Y

k∈ψjOT
k 6=m

P
[k]
OT (Γ− γ[k])

P
[k]
OT (Γ− γ[k]) + P

[k]
OF (Γ− γ[k])

(5.57)

³
for Ξ̂ : s ∈ {T, F} ,m 6= j,m /∈ {ψj

OF ∪ ψj
OT}

´
and

Ξ(s; j;ψ
(j)
OF ;ψ

(j)
OT ) : =

Y
i∈ψjOF

P
[i]
OF (Γ− γ[i])

P
[i]
OT (Γ− γ[i]) + P

[i]
OF (Γ− γ[i])

(5.58)

×
Y

k∈ψjOT

P
[k]
OT (Γ− γ[k])

P
[k]
OT (Γ− γ[k]) + P

[k]
OF (Γ− γ[k])

³
for Ξ̂ : s ∈ {T, F}

´
The expected cycle cost is, then, the sum over all machines of the expected

cycle costs that each machine, say j incurs (i) when it stops the system and

(ii) when it is stopped exogenously by another machine. Then, integrating and

summing over the appropriate variable domains, the expected cycle cost E [CC]

can be written as:
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E [CC] ≈
X
j∈M

 X
s∈{T,F}

Z
τ (j)

C(j)
s

¡
τ (j),

¡
Γ− γ(i)

¢¢
Ξ(s; j;ψ

(j)
OF ;ψ

(j)
OT ) dτ

(j)

+
X

m=(i∈M\{j})

X
s0∈{OT,OF}

X
s∈{T,F}

Z
τ (j)

C
(m)
s0
¡
τ (j),

¡
Γ− γ(m)

¢¢
(5.59)

× Ξ̂(s;m;ψ
(j)
OF ;ψ

(j)
OT )dτ

(j)



Similarly expected operating time in a cycle E [τ ] can be written as follows:

E [τ ] ≈
X

j=(i∈M)

 X
s∈{T,F}

Z
τ (j)

τ (j)p(j)s
¡
τ (j),

¡
Γ− γ(i)

¢¢
Ξ(s; j;ψ

(j)
OF ;ψ

(j)
OT ) dτ

(j)

+
X

m=(i∈M\{j})

X
s0∈{OT,OF}

X
s∈{T,F}

Z
τ (j)

τ (j)p
(j)
s0
¡
τ (j),

¡
Γ− γ(i)

¢¢
(5.60)

× Ξ̂(s;m;ψ
(j)
OF ;ψ

(j)
OT )dτ

(j)



Note that since all of the machines are opportunity-takers, they start and end

their cycles simultaneously; therefore, the expected cycle length for all machines

are identical.

The fact that all expected cycle lengths for individual machines are identical

allows us to express the expected cost rate for the whole system as the sum of the

expected cost rates for individual machines. Hence,

135



E[TC] ≈ E[CC]

E[τ ]
=

mX
i=1

E[CC(i)]

E[τ (i)]
=

mX
i=1

E[CC(i)]

E[τ ]
(5.61)

5.2.3 Mixed case

Finally, consider the cases where some of the machines are opportunity takers and

some of them are opportunity non-takers, i.e. MNTK 6= ∅ and MTK 6= ∅. In

the presence of opportunity taker and opportunity non-taker machines together

in the system, system regeneration points are similar to those in the all non-taker

case, i.e. LCM instances constitute the regeneration points. Each system restart

instant is still a regeneration point for the opportunity taker machines, in which

opportunity non-taker machines maintain their existing states. In the mixed case

system stoppage can be triggered either by an opportunity taker machine or by an

opportunity non-taker machine. Due to the complex structure of the exact model

described in the previous section we will develop an approximate model.

Before proceeding any further, we will demonstrate the mixed case by an ex-

ample. Suppose in a system with three machines, machines #1 and #2 are oppor-

tunity takers and #3 is an opportunity non-taker machine. Suppose, at time t1

machine #1 raises a false alarm, and suppose also that, machines #2 and #3 have

already shifted to their out-of-control status without having been detected before

the system is stopped. Since machine #2 is an opportunity taker, it is inspected

and restored to the in-control state. However, machine #3, being a non-taker is
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not inspected; therefore, it remains in the out-of-control state. Hence, when the

system is started, machines #1 and#2 will be in the in-control state, but machine

#3 will be in the out-of-control state. Therefore, this stoppage instant does not

constitute a regeneration point.

Let’s demonstrate what happens when machine #3 triggers the system stop-

page. The stoppage triggered by machine #3 presents an inspection opportunity

for machines #1 and #2 since they are opportunity takers, they will be inspected

and repaired along with the restoration of machine #3. All three of them will

be in-control when the production is resumed. The stoppage triggered by ma-

chine #3 is a regeneration point for the system, however in the existence of more

than one opportunity non-taker machines, any stoppage wouldn’t be regeneration

point, unless coincidentally.

For the mixed case we will use the Renewal Reward Theoretic approach to

model the system. We will use an approximation for the computation of the

system cost rate. For the opportunity taker machines we will use the cost rate

computation described in the "all taker" section, and for the opportunity non-

takers we will compute their individual cost rates as described in all non-taker

case. To obtain the overall cost rate of the system we will add up all these cost

rates.

E[TC] =
X

i∈MTK

E[CC(i)]

E[τ ]
+

X
i∈MNTK

limµ(i)→0E[CC
(i)]

limµ(i)→0E[τ (i)]
(5.62)
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5.3 Computation of Stoppage Rates

Previously, we have introduced the notion of stoppage rate generated by machine

i (∈M), and the notation γ(i). The stoppage rate generated for a machine is a

function of its operating time, such that;

γ(i) =
1

E[τ (i)]
(5.63)

As discussed above, when all the machines in the system are opportunity tak-

ers then every machine stoppage is a regeneration point for all the machines.

Therefore the expected operating time for machine i is the sum of the expected

operating time of its true cycle and the expected operating time of its false cycle,

i.e. E[τ (i)] = E[τ
(i)
T ] +E[τ

(i)
F ].

However, when there are opportunity non-taker machines in the system along

with the opportunity takers, system stoppages are no longer regeneration points

for all the machines. An opportunity non-taker machine i ∈MNTK will maintain

its state at a stoppage instant unless it triggers the stoppage itself. Moreover,

due to the fact that there is no restriction on h(i), if system stops at t time units

after the last sampling of machine i, when the system restarts, first sampling

interval will be in η(i) = h(i) − t time units for machine i. Therefore, following a

system-wide shutdown the operating time for the opportunity non-taker machines

will depend on their status and the time remaining to their next sampling. Hence,
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although for the computation of operating times of the opportunity taker machines

it is sufficient to know that they are opportunity takers , for the opportunity non-

taker machines we need information on whether they were in the in-control status

or in the out-of-control status at the previous system restart and the time to the

first sampling η(i). Hence, we will introduce an approximation to overcome the

difficulty in operating time computation for the opportunity non-taker machines.

We will approximate the operating times for the opportunity non-taker ma-

chines by implementing the "alternating renewal process theorem". Alternating

renewal process considers that a system can be in one of two states: ON or OFF.

Initially it is ON and it remains on for a time T1, it then goes OFF and remains

OFF for a time Z1. It then goes ON for a time T2, then OFF for a time Z1.

The process continues in this fashion. Let TimeON denote the time in the ON

state and TimeOFF denote the time in the OFF state. Random vectors (Tn, Zn),

n ≥ 1 are independent and identically distributed. Then the station probability

that system is on, PON , and the system is off, POFF is given as follows:

PON =
E[TimeON ]

E[TimeON ]+E[TimeOFF ]
; POFF =

E[TimeOFF ]
E[TimeON ]+E[TimeOFF ]

More detailed information on the alternating renewal process can be found in

Ross (1993).

In our problem setting, the in-control status corresponds to the ON state,

and the out-of-control status corresponds to OFF state in the alternating renewal

process described above. Expected time in the in-control status is given by the
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expected time to shift, then for machine i ∈MNTK : E[Timein−control] = 1
λ(i)
. The

expected time in the out-of-control state is the time interval from occurrence of

the shift to the system stoppage. Following the previously introduced notation,

after the shift there will be n2 (≥ 1) sampling, in (n2 − 1) of which there will be

Type II error and in the last one a correct inference about the process’ state. Let

t be the time from the last sampling to the shift, then for machine i ∈MNTK :

E[Timeout−of−control] =
Z h(i)

t=0

∞X
n2=1

£
h(i) − t+ (n2 − 1)h(i)

¤ ³
β(i)
´(n2−1)

×
³
1− β(i)

´
λ(i) exp

h
−λ(i)t

i
dt (5.64)

=
h(i)

³
1− exp

h
−λ(i)h(i)

i´
1− β(i)

+ h(i) exp
h
−λ(i)h(i)

i
−
³
1− exp

h
−λ(i)h(i)

i´
λ

For the machines that are in the in-control status at the system restart, ex-

pected operating time is given by E[τ (i)T ]+E[τ
(i)
F ] for i ∈M . An opportunity non-

taker machine, however, can be in the out-of-control status at a system restart,

then the operating time will be different and computed such:
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lim
µ(i)→0

E[τ (i)] = E
£
η(i)
¤
+

∞X
n2=1

(n2 − 1)h(i)
³
β(i)
´(n2−1) ³

1− β(i)
´

=
¡
h(i)/2

¢
+ h(i)

Ã
β(i)

1− β(i)

!
(5.65)

where η(i) denotes the time to the first sampling from a system restart for an

opportunity non-taker machine, as before. Note that the occurrence time of the

shift, given that it occurs between 0 and h(i) has the probability density function

1
h(i)
, since the event occurrences are distributed uniformly within the given interval.

Therefore, E
£
η(i)
¤
= h(i)/2.

Now, we are ready to compute the stoppage rate generated by an opportunity

non-taker machine:

γ(i) = PON · lim
µ(i)→0

E[τ (i)] + POFF · lim
µ(i)→0

E[τ (i)]

=
PON

limµ(i)→0E[τ
(i)
T ] + limµ(i)→0E[τ

(i)
F ]
+

POFF

(h(i)/2) +
³
h(i)β(i)

1−β(i)
´ (5.66)

Hence;
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γ(i) =


1

E[τ
(i)
T ]+E[τ

(i)
F ]

for i ∈MTK

PON

lim
µ(i)→0

E[τ
(i)
T ]+lim

µ(i)→0
E[τ

(i)
F ]
+ POFF

(h(i)/2)+
µ
h(i)β(i)

1−β(i)

¶ for i ∈MNTK

(5.67)

Note that the operating time of an opportunity non-taker machine is underes-

timated for the case when it starts in the in-control status. To be precise, for the

opportunity non-taker machines we considered that the time to the first sampling

instance, η(i) is always equal to the fixed sampling interval h(i) when they start

the cycle in the in-control status, which is not always the case.

5.4 Repair Times and Costs

In the multi-machine model, the cost of sampling, the cost of operating in the out-

of-control state cost and the cost of inspection/repair are incurred by machines

individually, identical to the single machine case. But the idleness (lost profit) cost

is incurred by the overall system. Therefore, the idleness cost should be incurred

by only one machine.

Example: Let’s illustrate this situation by the 3-machine-example we have

introduced previously, where MTK = {1, 2} and MNTK = {3}.

First suppose machine #1 triggers a stoppage. Let’s presume that restoration

time of machine #2 is longer than the restoration time of machine #1, then

142



although machine #1 provides an opportunity for the inspection of machine #2,

the total time the system remains out of operation is as much as the restoration

time of machine #2. Since machine #1 triggers the stoppage it incurs the lost

profit cost for the duration until it becomes ready, however machine #2 causes

a profit loss for the additional time until it becomes ready. Machine #3 will be

waiting until machine #2 is ready for the production.

Next suppose machine#3 triggers the stoppage and let’s presume that restora-

tion of machine #2 takes longer than the restoration time of machines #1 and

#3, then again lost profit cost will be incurred by machine #3 for the time dura-

tion until it becomes ready, but the lost profit cost for the additional time will be

incurred by machine #2. No lost profit cost will be incurred by machine #1.

In the single machine model we have introduced the notation Lo for the exoge-

nously given, forced shutdown duration by the opportunities. This parameter was

given for the single machine model. However, in the multiple machine model, Lo

is a random variable taking values depending on the repair time of the machine

j that triggers a system wide stoppage. L
(i)
OT and L

(i)
OF are the additional times

required to complete the inspection and repair for machine i under consideration

if its inspection and repair time is longer than those of all the other opportunity

taker machines (except the one triggers the stoppage) in the system.

Define Lmax ($, j) as the maximum inspection and repair time of the overall

system, when the system stoppage is triggered by machine j and the status of the
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machines are given by the vector $; and define imax ($, j) as the index of the

machine with the maximum inspection and repair time Lmax ($, j). Then,

Lmax ($, j) = max


L
(j)
s∈{T,F},max

n
L
(i)
T , ∀i ∈MTK\{j} and (i) = 0

o
,

max
n
L
(i)
F , ∀i ∈MTK\{j} and (i) = 1

o

(5.68)

and

imax ($, j) = argmax
i

{Lmax ($, j)} (5.69)

Now we are ready to provide the inspection and repair time parameters for the

system. When machine j triggers the system-wide stoppage:

LO =


L
(j)
T if (j) = 0

L
(j)
F if (j) = 1

(5.70)

L
(i)
OT =


h
L
(i)
T − Lo

i+
if i = imax and i 6= j

0 otherwise

(5.71)

and,

L
(i)
OF =


h
L
(i)
F − Lo

i+
if i = imax and i 6= j

0 otherwise
(5.72)
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Then the idleness or lost profit cost of the overall system in the multiple ma-

chine setting is given by π · Lmax ($, j) = π
³
LO + L

(imax)
s

´
where s = OT if

(imax) = 0 and s = OF if (imax) = 1.

Then the cost expression for the stoppage triggering machine j ∈ M is given

by:

C(τ (j), s, n
(j)
1 , n

(j)
2 , x(j),

¡
z > τ (j)

¢
,$) = (5.73)³

n
(j)
1 + n

(j)
2

´ ¡
y(j)b(j) + u(j)

¢
+ a

¡
τ (j) − x(j)

¢+
+ πLO +Rs

for j ∈M and s = T if (j) = 0

and s = F if (j) = 1

for an opportunity taker machine i ∈MTK\{j} :

C(τ (j), s, n
(i)
1 , n

(i)
2 , x(i), τ (j),$) = (5.74)³

n
(i)
1 + n

(i)
2

´ ¡
y(i)b(i) + u(i)

¢
+ a

¡
τ (j) − x(i)

¢+
+ πLs +Rs

for i ∈MTK , i 6= j and s = OT if (i) = 0

and s = OF if (i) = 1

Note that for the opportunity non-taker machines, i ∈ MNTK cost expression
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is as provided above for the stoppage triggering machine.

Since we have defined system stoppage rate, opportunity rate and the cost

parameters for each machine, we are ready to provide the objective function:

min
y(i),h(i),k(i) ∀i∈M

E[TC] (5.75)

where

E[TC] =
X

i∈MTK

E[CC(i)]

E[τ ]
+

X
i∈MNTK

limµ(i)→0E[CC
(i)]

limµ(i)→0E[CL(i)]
(5.76)

as described before.
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Chapter 6

Numerical Study: Multiple

Machine Model

6.1 Introduction

We have conducted numerical studies for the multiple machine model we have

developed in the previous Chapter 5. Through the studies, we intend:

1. To analyze the optimum control parameters and partitioning under various

setting of machines with respect to their cost parameters and reliability;

2. To provide some insight on the comparison of the jointly optimized sys-

tem cost rate and the system cost rate where opportunities are not utilized and

machines are individually optimized; and,
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3. To analyze the performance of our approximations through a simulation.

First, to demonstrate the size of the problem we will revisit the objective

function and its construction. We have introduced the algorithm OPTIMIZE

for the single machine model in Chapter 3 which implements the golden section

search method. In that algorithm opportunity rates and duration of the idle period

in case of a stoppage by an opportunity were given and the search was over three

control parameters, namely y, k, and h. In the multiple machine model with m

machines, there are 2m different partitioning of the machines into the opportunity

taker and non-taker set, and for each of these 2m partitioning to find the minimum

system cost rate the function must be searched over 3m control parameters, y(i),

k(i), and h(i) i ∈ M . Moreover, the opportunity rate µ(i) that each machine has

to be computed from the individual stoppage rates of the machines which need to

be revised whenever the values for y(i)and k(i) change, as described in Chapter 5.

We have implemented two search algorithms, one for obtaining the best par-

titioning of the machines and the other one is for the search on the surface of the

total cost rate function. In the next section we will describe these algorithms.
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6.2 Algorithms

6.2.1 Cost rate convergence algorithm

In the multiple machine setting, finding the optimal values of y(i), k(i), h(i) ∀i ∈

M requires joint optimization of the m machines, since the opportunity rates

µ(i) ∀i depend on the other machines policy parameters. We have developed an

algorithm for joint optimization of the multiple machine model which uses the

single machine model. In this algorithm we independently optimize each machine

to get y(i), k(i), h(i) ∀i. Based on this optimization, we compute the opportunity

rates µ(i)’s they observe from the optimal policy parameters. We compute the

system cost rate by substituting µ(i), y(i), k(i), h(i) into the cost rate expressions

introduced in Chapter 5. We repeat this procedure until we obtain a sufficient

convergence in the cost rate between each iteration. Although cost convergence

is achieved for all the experiments in our numerical study, there is no guarantee

of convergence. We call this algorithm CONV ERGE (). This algorithm takes

the sets of opportunity taker machines and opportunity non-taker machines as

input. A step by step description of this algorithm is below. The more detailed

and unified pseudo code for the multiple machine is provided in Appendix D.

Algorithm CONV ERGE(MTK ,MNTK) :

Step 1: Let µ(i) = 0 for i = 1, ...m . OPTIMIZE: get ŷ(i), k̂(i), ĥ(i) -

optimal (y, k, h) triplet

Step 2: Compute µ(i) using ŷ(i), k̂(i), ĥ(i) for all i = 1, ...,m.
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Step 3: Using µ(i) and ŷ(i), k̂(i), ĥ(i) compute E [TC]old

Step 4: Using µ(i) OPTIMIZE: get ŷ(i), k̂(i), ĥ(i)

Step 5: Compute µ(i) using ŷ(i), k̂(i), ĥ(i) for all i = 1, ...,m.

Step 6: Using µ(i) and ŷ(i), k̂(i), ĥ(i) compute E [TC]new

Step 7: If (|E [TC]new −E [TC]old| /E [TC]old > )

set E [TC]old = E [TC]new and go to Step 4.

else STOP.

6.2.2 Partitioning heuristic

In the multiple machine setting, in addition to the operating parameters y(i),

k(i) and h(i), whether a machine will be opportunity taker or opportunity non-

taker is a decision variable as well. For finding the optimal partition of the m

machines to the sets MTK and MNTK total cost rate for 2m possible combination

should be computed by implementing the previously derived cost rate functions

and compared to find the best partitioning. However, the computational time

increases exponentially in the number of machines, hence infeasible. This problem

is identified as "set partitioning problem" in the literature, and is known to be

NP-complete.

Instead of complete enumeration we implement a simple heuristic search algo-

rithm for separation of the machines. The algorithm works as follows:
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As the initial solution we assign all the machines to the opportunity taker set

and compute the corresponding cost rate. Then, we assign machines one by one

to the opportunity non-taker set and compute the cost rate. If the minimum of

these cost rates is less than the all taker cost rate then we include the machine,

assignment of which yields the minimum cost, to the non-taker set. We repeat the

process for the machines remaining in the opportunity taker set, and compare the

best cost rate with the optimum cost rate of the previous partitioning. We continue

in the similar fashion until either we get an empty taker set or no improvement

can be achieved by including another machine into the opportunity non-taker set.

We call this algorithm PARTITION , and provide below its pseudo code.

Algorithm-PARTITION

Step 1: set i ∈MTK , ∀i and compute E[TC]old

Step 2: for i = 1→ m

if i ∈MTK then

set M 0
NTK =MNTK ∪ {i} ;M 0

TK =MTK\ {i}

compute E(i)[TC] by CONV ERGE(MTK ,MNTK)

if E(i)[TC] < E[TC]min then

E[TC]min = E(i)[TC]

Imin = i

Step 3: if (E[TC]min < E[TC]old) then

E[TC]old = E[TC]min

MNTK =MNTK ∪ {Imin}
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MTK =MTK\ {Imin}

else STOP.

Step 4: if (MTK = ∅) STOP

else go to STEP2.

6.3 Implementation and Data Set

We have implemented the multiple machine models inMicrosoft Visual C++ Ver-

sion 6.0. We have run the codes on a PC (Pentium III computer). For the experi-

ments in the multiple machine environment, we assume that the production facility

consists of 8 machines. We use the algorithms PARTITION , CONV ERGE and

OPTIMIZE introduced above and in Chapter 3. We presume that separation

of the machines would be a consequence of the differences in their reliability (λ),

restoration times (LT and LF ), and cost of operating in out-of-control state (a).

In the experiments presented below we looked at LT = LF case only. Therefore,

we will denote values corresponding to LT and LF by L, in the rest of this chapter.

In our experimental set we fixed the per unit cost of sampling b = 0.1, fixed cost

per sampling u = 5, and the repair costs RT = RF = 0. The rest of the parameters

of the experimental set are as follows:
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π ∈ {500, 1500}
λ ∈ {0.01, 0.03, 0.05, 0.06, 0.07, 0.08, 0.09, 0.1}
L ∈ {0.025, 0.05, 0.075, 0.1, 0.125, 0.15, 0.2, 0.25}
a ∈ {50, 150, 250, 300, 350, 400, 450, 500}

We consider 14 different experiments depending on the patterns of the values

of λ, a, and L. Table 5.1 summarizes these 14 experiments. In this table (↔)

indicates that corresponding parameter is identical for all of the machines, (%)

indicates that values of the corresponding parameter assigned to the machines in

an increasing trend, such that machine #1 has the smallest value and machine #8

has the largest value of the corresponding parameter, likewise (&) indicates that

the machine #1 has the largest and machine #8 has the smallest parameter value.

are assigned to as the index of the machine increases When the parameters are

identical throughout the machines they have the following values: λ = 0.05, L =

0.15, a = 250. To illustrate, consider a few examples.

For the experiment #1: all of the machines have identical values for all three

of the parameters, such that λ(i) = 0.05, L(i) = 0.15, and a(i) = 250 ∀i.

For the experiment #5: λ(1) = 0.01, λ(2) = 0.03, · · ·, λ(8) = 0.1; L(1) = 0.025,

L(2) = 0.05, · · ·, L(8) = 0.25; a(i) = 250 ∀i.

For the experiment #13: λ(1) = 0.1, λ(2) = 0.09, · · ·, λ(8) = 0.01; L(1) = 0.025,
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L(2) = 0.05, · · ·, L(8) = 0.25; a(1) = 500, a(2) = 450, · · ·, a(8) = 50.

6.4 Test for the Poisson Opportunity Arrival Process

Recall that we approximated the system stoppages by an exponential distribution.

In fact, the sampling process for each machine is not continuous, and this process

can be better approximated by a geometric distribution. Then, for the multiple

machine case, the system stoppage rate would be computed as the minimum of

geometric random variables. However, we assume that, when the number of ma-

chines in the system is large enough, system stoppages can be approximated by

a continuos distribution, namely a Poisson process. For some multiple machine

configurations it will be difficult to capture this continuous behavior. When, for

example, all of the machines are identical, sampling time of every machine will

be identical and every system stoppage will be at some sampling instant for every

machine. Therefore, probability of a system stoppage at times other then the

sampling instances will be zero, and our exponential approximation would fail.

In order to test how good is the exponential assumption, we have conducted a

Goodness-of-Fit Test by using the stoppage times obtained from simulation for

the eight machine system. As the maximum likelihood estimator for the exponen-

tial distribution mean we took the average of the operating times. We present,

in Figures 5-2 through 5-7, observed system stoppage time distribution vs. the

cumulative density function of the fitted exponential distribution for the selected
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experiment sets. According to test results we don’t have enough evidence to ac-

cept the null hypothesis that the system stoppages are distributed exponentially.

However, by looking at the cost savings provided by the approximate model we

still believe that the exponential assumption can be used by practical purposes.

Moreover, we also believe that as the number of machines in the system increases,

exponential assumption will become a good approximation for the operating time

distribution.

Since, tests for Poisson opportunity arrival process failed, we have implemented

a simulation in order to identify the impact of the model developed herein. We

implemented the simulation code in Microsoft Visual C++ Version 6.0. This

simulation code allows us to find the exact cost rate of the system for a given

machine partitioning and control parameter values, and analyze and compare the

analytic solution with the simulated solution. In our numeric study, we solved

each experiment with the analytic model, then we exported the optimum control

parameter values and optimal partitioning into the simulation code. We picked

simulation run lengths long enough to reach saturation. The simulation run length

we use was 50000 time units. We didn’t do any replications for the simulations.
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6.5 Results

6.5.1 Machine partitioning

First we report the partitioning of the machines into the opportunity taker and

opportunity non-taker sets. The resulting partitioning of the machines is sum-

marized for π = 500 in Table 5.2 In this table T denotes that a machine is an

opportunity taker machine and N denotes that a machine is an opportunity non-

taker machine. For both π = 500 and π = 1500 in 5 out of the 14 experiments all

the machines are opportunity takers. Only in one experiment, experiment number

6 for π = 1500, we have an all opportunity non-taker solution, i.e. MTK = ∅.

Partitioning is primarily determined by parameter L, and the machines with

larger L tend to be opportunity takers. For example, compare experiments 7, 11,

and 13. In all of these experiments λ and a have the same pattern with respect

to the machine indices, however L is fixed in experiment number 7, increases in

experiment number 11 and decreases in experiment number 13. We observe that

in experiment number 7 all of the machines are opportunity takers, whereas in

experiments 11 and 13 machines with larger L tend to be opportunity non-takers.

The machines with larger L, would cause the system idle time, hence the lost

profit cost, to increase, if they were opportunity takers. Therefore, independent

of their reliability the system is better off if they are opportunity non-takers.

The parameters, λ and a have no or little effect on the partitioning. For exam-
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ple, compare experiments 3, 9, and 10. In all of these there cases L increases as

the index of the machine increases however a remains fixed in experiment number

3, increases in experiment number 9, and decreases in experiment number 10. The

optimal partitioning is the same for all of these experiments. Although λ does not

affect the partitioning by itself, it has a magnifying effect on the partitioning, so

that the machines with the smaller λ tend to be opportunity non-taker. The ma-

chines with smaller shift rate, λ are more reliable. Therefore, in a system stoppage

instant it is more likely that those machines will be in the in-control status. If

these machines utilize the opportunities, and if they have higher repair time L,

they would cause the system to stop for longer time periods yielding an increase

in the system cost rate.

The resulting partitioning of the machines in the experiments we consider in-

dicates that (except the experiment number 6 for π = 1500) there are opportunity

taker machines in the system. Hence, joint consideration of the machines pays off.

6.5.2 Cost rates

Next, we discuss the impact on cost rates. We present, on the tables 5.3 and

5.4, “all non-taker”, “all taker”, and “optimum partition” cost rates and percent-

age deviation from the cost rate obtained from the simulation. The percentage
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deviations are computed as

%∆ =
100 ∗ (E [TCsimulation]−E [TCanalytic])

E [TCsimulation]

Since for the all non-taker case, analytical cost rates are obtained from the

individual machine optimizations for µ(i) = 0 one would expect to get the same

cost rate from the simulation; hence, the deviations would be due to the simulation

errors. However, this argument would only be true if the simulation run time

could capture enough of the system regeneration points, which are LCM of the

sampling intervals of the machines, as we discussed in Chapter 5. Optimum control

parameters of the machines for the selected experiments are depicted in Table 5.7

and LCMs of the sampling intervals for these selected experiments are presented in

Table 5.8. In these tables we present both from the analytical model, denoted byA,

and simulation, denoted by S. Due to the difficulty in guaranteeing the existence of

enough system regeneration points, for some experiments, we observe a significant

amount of deviation between analytical cost rate and simulation cost rate for the

all non-taker case. The summary statistics of the percentage deviation in the

all non-taker case are as follows: mean=−0.07%, median=−0.03% for π = 500;

mean=0.27%, median=0.35% for π = 1500.

Percentage deviations between analytical and simulation solutions for the all-

taker and optimum cases are indicators of the performance of the approximations

we make (in addition to the simulation errors). Comparison of the analytical
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and simulation results show that there is no consistent over or under estimation

in our model. However, percentage deviations hence the approximations worsen

when π = 1500. We observe that as the number of opportunity non-taker machines

increases the difference between the analytical solution and the simulation solution

decreases.

We observe that when all the machines are identical the analytical model has

the worst performance. This is due to the fact that assumption of the Poisson

arrival of the opportunities fails in this case since all the machines have identical

operating parameters and opportunity arrivals are at the sampling instances only.

It is interesting to compare the optimum cost rate with the all opportunity

non-taker case in order to evaluate the improvement provided by the introduction

of the Jidoka Process Control. If the production line is operated in the classical

fashion, all machines would be naturally opportunity non-takers. Hence compari-

son of the all opportunity non-taker case with the optimum partition case gives us

the percentage improvement provided by JPC. Table 5.5 depicts these improve-

ments. Entries of this table are 100× E[TC|Case1]−E[TC|Case3]
E[TC|Case1] , where in Case 1 all of

the machines are opportunity takers and in Case 3 machines are assigned to oppor-

tunity taker and opportunity non-taker sets according to the optimal partitioning.

We provide the percentage improvements for both the analytically computed costs

and simulation costs. We observe that in the presence of opportunistic inspections,

there is a significant improvement in the cost rate. Summary statistics of the per-

centage improvements for the 14 experiments are depicted in Table 5.6. According
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to the simulation results, there improvements provided by JPC are between 1.03%

and 14.98% with mean 5.65% and median 5.01% for π = 500 and up to 18.32%

with mean 6.15% and median 3.05% for π = 1500.

160



Chapter 7

Introduction: Dynamic Lot Sizing

Problem for a Warm/Cold

Process

Inventory replenishment processes, whether they are direct production or purchas-

ing in a supply chain, typically involve setups. In a manufacturing setting, a setup

is a certain set of activities to prepare the process for production which may in-

clude cleaning, warming up and calibrating the equipment, readying the shop-floor

and the work force along with other operations. In a purchasing setting, the fixed

set of activities performed with each order may include identification of suppli-

ers, legal and clerical documentation, customs clearance of imports, shipment of

goods, inspection of incoming goods, unloading etc. Associated with each of these
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activities, an out-of-pocket setup cost may be incurred. The dynamic lot sizing

problem is the management of such a replenishment process by determining the

production (purchasing) plan which minimizes the total setup, production (pur-

chasing) and holding costs for an inventorable item, facing known demands over

a finite number of time periods. More specifically, dynamic lot sizing problem’s

objective is to determine a production plan which minimizes the total cost of the

system.

In some cases, it may be possible to avoid some of the activities typically

included in a setup by carrying over the setup through keeping the process "warm"

for the next time period. Then, a smaller portion of the set of setup activities

(such as only cleaning), if any, are performed at the beginning of the next period.

Thus, one can speak of a major setup, which involves the original set of readying

activities, for a cold process and a minor setup, which involves a smaller subset of

readying activities, for a warm process. Agra and Constantino (1999) consider a

single item setting in which a minor setup cost is incurred if the process is ready

(i.e., if it was set up for production in the previous period) and a major setup

cost, otherwise. In their formulation, it is assumed that if a setup was performed

for the item in a period, the process will be ready for use in the following period

regardless of the quantity produced. However, as we discuss below, this may not

be feasible and/or desirable in certain production/replenishment environments.

In this part of the dissertation, we consider the dynamic lot sizing problem with

finite capacity and where the process could be kept warm for the next period only
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if a minimum amount has been produced and would be cold, otherwise.

The lot sizing problem setting that we investigate herein is encountered in a

number of environments. The process industries such as glass, steel and ceramic

production provide the foremost examples in which the physical nature of the

production processes dictates that the processes be literally kept warm in certain

periods to avoid expensive shutdown/startups. A particularly striking example

with which we are familiar comes from the glass industry: In some periods, pro-

duction of glass is continued in order to avoid substantial shutdown/startup costs

but the produced glass is deliberately broken on the production line and fed back

into the furnace! In this case, the process is being kept warm at an additional

cost of breakage (plus some costs for non-reusable materials consumed). Similar

practices are employed in foundries; ceramic and brick ovens are also kept warm

sometimes even though no further production is done in the current period to

avoid costly cooling-and-reheating procedures. Aside from such literal manifesta-

tions, a process can be kept warm in an abstract sense, as well. Robinson and

Sahin(2001) cite specific examples in food and petrochemical industries where cer-

tain cleanup and inspection operations can be avoided in the next period if the

quantity produced in the current period exceeds a certain threshold (that is, the

current production continues onto the next period). This may be done through

either overtime or undertime. The treatment of the overtime option is outside

the scope of our analysis; however, deliberate undertime practices can be stud-

ied within our context of warm/cold processes. With undertime, processes can
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be kept warm by reducing the "nominal" or "calibrated" production rate within

a prespecified range. As an illustration, suppose that the process is capable of

producing at most R units at a nominal production rate in a certain time period.

Further suppose that its production rate can be reduced so that, within the same

time period, the process can produce Q (< R) units at the slowest rate. Thus,

it is possible to keep this process warm by having it operate at rates lower than

nominal so long as the quantity to be produced is between Q and R. Such variable

production rates are quite common in both process and discrete item manufactur-

ing industries - feeder mechanisms can be adjusted so as to set almost any pace

to a line; some chemical operations such as electroplating and fermentation can

be decelerated deliberately (within certain bounds), and, manual operations can

be slowed down by inserting idle times between units. Depending on the nature

of the operations involved, the reduction in production rate can be obtained at

either zero or positive additional cost. This additional variable cost is then the

variable cost of keeping the process warm onto the next period. Furthermore,

if one can use the process for multiple purposes (e.g., different products) there

may be additional variable costs due to keeping the process idle for the remain-

der of the current period (e.g., foregone profit on other product(s) nor produced).

Then, the cost of keeping the process warm would include such idleness costs, as

well. Aside from direct economic calculations, a managerial decision on a warm

process threshold may also be made with non-economic considerations such as

safety of mounted tools and fixtures left idle on the machinery, impact on worker
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morale of engaging them in non-productive activities for a longer duration, impact

of learning/forgetting phenomena on subsequent runs, etc. Hence, there may be

managerially imposed policies in place that dictate the process be kept warm onto

the next period only if the production quantity in the current period exceeds a

certain level, say, Q.

Another example of the setting we consider herein can be found in a replen-

ishment environment where the supplier and/or shipper offers rebates that can be

exercised in the next period if the amount ordered in the current period exceeds

a certain quantity. In this procurement setting, the replenishment process is kept

warm by ordering in quantities larger than a pre-specified amount, say, Q, in a cer-

tain period. The additional cost of keeping the replenishment process warm onto

the next period is then zero for periods with ordering quantities larger than Q.

Although such rebate structures would have significant impact on the operational

performance of supply chains via coordination and smoothing of orders between

echelons, they have not received any attention in the literature. We believe that

the model herein provides a building block in the analysis and design of such two-

party contracts, as well. Note that the production processes cited above need to

be modeled as capacitated, whereas, the replenishment processes in the last may

be uncapacitated.

As the above examples illustrate, the dynamic lot-sizing problem in the pres-

ence of production quantity-dependent warm/cold processes is a rather common

problem. However, to the best of our knowledge, this problem has not been studied
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before.

The works that are most closely related to ours are those that consider re-

serving a period for production with the option of not producing anything in that

period. This setting also occurs as a subproblem of the multi-item capacitated lot-

sizing problem with the Lagrangean multipliers as the reservation costs for each

of the periods. Although the models on lot-sizing with reservation options employ

the notion of a warm process, they do not consider a lower bound on the quantity

produced for keeping the process warm onto the next period. Thus, previous re-

sults are not readily applicable to a setting with positive warm process thresholds

which we consider herein. Similarly, we cannot rely on the results in the vast liter-

ature on the multi-item capacitated lot-sizing problems with sequence-dependent

setups which consider warm processes but assumes only warm process thresholds

of zero production.

Another body of work that uses the notion of warm processes is the discrete lot-

sizing and scheduling problem (DLSP) literature (e.g. Fleischmann 1990, Brugge-

mann and Jahnke 2000, Loparic et al. 2003). This group of work differs from ours

in the use of small bucket approach (i.e. R = 1 in every period) and, more impor-

tantly, in that the process can be kept warm only if there has been capacitated

production in the current period (i.e. Q = R in every period). Thus, the results

in the DLSP literature are not readily applicable to our general setting, as well.

Our model differs from the works on lot sizing with undertime option in that
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our setting employs periodic review over a finite horizon and has a single product

with deterministic but variable demands. Due to the variable nature of demand,

we do not obtain a single, stationary solution as in other works but rather establish

the structure of the optimal production plan and conditions on the existence of

forward solutions.

Planning horizons and forecast horizons have been of interest in the dynamic

lot sizing literature, due to their contribution to computational efficiency. A period

t is said to form a planning horizon if the optimal production plan for periods 1

through t remains unchanged in an optimal solution to the t+j-period problem for

all j > 0. A forecast horizon is that, beyond which the information on the demand

and cost structure does not effect the production decision in the initial period. We

show that planning horizon rules developed by Wagner and Within(1958), Zabel

(1964), and Lundin and Morton (1975) still hold.

To the best of our knowledge, this is the first work that considers warm/cold

processes in the presence of warm process thresholds which depend on the produc-

tion quantities in the previous period. We believe that our main contribution lies

in establishing the structure of the optimal solution and proving a number of other

properties of the dynamic lot sizing problem with warm process thresholds. Our

numerical results also provide managerial insights into capacity selection decisions

for warm/cold processes.
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Chapter 8

Literature Review

Below, we briefly review related works in the vast dynamic lot-sizing problem,

its variants and planning horizons literature. We also devote a section for the

heuristics literature in the area.

The first formulation of the dynamic lot-sizing problem is by Wagner and

Whitin (1958) and assumes uncapacitated production and no shortages; hence,

it is also called the Wagner-Whitin problem. We shall henceforth refer to this

problem and its setting as the "classical problem". Wagner and Whitin (1958)

provided a dynamic programming solution algorithm and structural results on the

optimal solution of the classical problem. Their fundamental contribution lies in

the identification of planning horizons, which makes forward solution algorithms

possible. The Planning Horizon Theorem identifies the points where the problem

will stabilize such that the production plan up to that point remains unchanged
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in an optimal solution to the complete problem. Planning horizons provide con-

siderable computational savings for the forward solution algorithm.

Manne (1958) introduces the dynamic lot sizing problem simultaneously with

Wagner and Whitin (1958) in a similar setting. He provides a linear programming

formulation. He starts with the multiple item problem and by aggregating those

reaches the same formulation of the problem.

Zabel (1964) extends the planning horizon theorem of Wagner and Within

(1958) by providing additional rules. His rules allow planning horizon to be dis-

covered in shorter horizon subproblem solutions. He also introduces a general

procedure for the cases in which the zero initial inventory level assumption of

Wagner and Within (1958) is relaxed. If t denotes the number of periods, de-

mands of which can be met by the initial inventory, then he suggests setting the

demands of first t periods to zero, and reducing the (t+ 1)st period’s demand as

much as the remaining initial inventory and solving the problem with the same

algorithm. The solution of the new problem yields the same plan, which would

be obtained from the original problem. Additionally, he studies the dynamic lot

sizing problem when variable unit ordering costs are incorporated. He provides

a backward dynamic programming solution algorithm for the new cost structure,

due to the fact that the planning horizon theorem vanishes in the existence of

variable unit ordering costs.

Zangwill (1966) provides a model for the dynamic lot sizing problem with back-
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ordering. He considers a backlog limit α; that is, all units must be delivered within

α periods after the scheduled delivery. When α = 0, no backordering is allowed,

which is the assumption in the classical problem. The study assumes concave

holding and shortage costs. He develops a dynamic programming algorithm for a

commonly found cost structure which selects an optimal vector from the set of all

possible production plans.

Eppen et al. (1969) extend the classical problem model by incorporating mar-

ginal production cost and develop a forward algorithm to determine the optimal

production plan. They develop “the general planning horizon” based on the “vi-

olator set”; such that, if ai,j denotes the cost of producing one item in period i

and carrying it to j, then a period t is in the violator set m(t1, t2), if at,t2 < at1,t2.

In their first theorem they state that, in an optimal solution to the t + 1-period

problem, last setup occurs either in l(t) or in the violator set m(l(t), t+ 1). They

also define the “strong minimum”, such that the period with minimum ai,t for

i ≤ t is called a strong minimum. Then, their planning horizon theorem states

that, if the last period with setup for a t-period problem, l(t), is also a strong

minimum for t, then periods 1 through l(t)− 1 constitute a planning horizon.

Florian and Klein (1971) provide methods for production planning when there

exists a capacity constraint - Capacitated Lot Sizing Problem (CLSP). They study

the cases both with and without backordering when the production and the in-

ventory holding costs are concave. The structure of optimal plans are described;

optimal plans consist of independent subplans in which (a) inventory level is zero
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in the last period and non-zero in all the others; (b) the production level is at

capacity when there is production except at most one period. A shortest path al-

gorithm is also developed based on the above characterizations, for the problems

in which the production capacities are identical.

Jagannathan and Rao (1973) extend the capacitated lot sizing model of Florian

and Klein (1971) to a more general cost structure, where the production cost

function is neither convex nor concave.

Love (1973) considers the capacitated lot sizing problemwith piecewise concave

production and inventory holding costs, when the production and inventory levels

in each period are required to lie within certain upper and lower bounds. He defines

an “inventory point” as a period in which the inventory carried to that period is

at the level of yLi , 0, or y
U
i , where yLi is the maximum amount of backorders

allowed, and yUi is the maximum amount of on-hand inventory allowed at the end

of a period (note that in the classical problem yUi = ∞, and yLi = 0). He refers

to a production plan “extreme” if there is an inventory point between any two

periods of nonzero production. He develops a solution algorithm for this bounded

inventory model, based on the characteristics of the set of extreme schedules.

Blackburn and Kunreuther (1974) incorporate the backordering into the clas-

sical problem. They assume concave backordering and inventory holding costs.

They define the “regeneration point”, “production point” and “planning period”:

A period is a regeneration point, if the inventory carried to that period is zero; a
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production point, if there is a positive production in that period; and, a planning

period if there is no speculative motive for producing in any other period to sat-

isfy the demand in that period. If, in a t-period problem, k(t) and l(t) denote the

next-to-last regeneration point, and the last production point, respectively, then

they show that when l(t) is a planning period k(t∗) ≥ k(t) and l(t∗) ≥ l(t) for all

t∗-period problems, such that t∗ > t. Furthermore, when k(t) = t − 1 and t is a

planning period, then t − 1 is a planning horizon. They also provide a recursive

forward solution algorithm in their study.

Lundin and Morton (1975) develops “protective planning horizon” procedures.

They observed that, if at period t, the first regeneration point, denoted by f(.),

of the subproblems with length from l(t) (l(t) is the last regeneration period for

t period problem) through t − 1, is the same , then, periods from 1 to f(t − 1)

constitute a planning horizon. They proposes a simpler rule (heuristic) in order

to estimate the horizon length such that the time that EOQ, calculated with the

average forecasted demand, spans is multiplied by 5, which gives the estimated

planning horizon length.

Baker et al. (1978) consider the dynamic lot sizing problem with time vary-

ing capacity constraint and they provide a tree search solution algorithm. They

present the properties of an optimal solution, which are; (1) if the ending inventory

in the previous period is positive then production in the present period is either

at capacity or zero; (2) if there is production in present period and the production

level is less than the capacity then ending inventory in the previous period should
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be zero; (3) in seeking an optimal solution it is sufficient to consider only plans

in which the last production quantity is equal to capacity or to demand for the

periods remaining in the problem. They also present results of a numerical study

which show the performance of the tree search algorithm. They empirically show

that, although the problem is in the class of NP-complete problems, the algorithm

performs quite well.

Bitran and Yanasee(1982) provide a study on the computational complexity of

the capacitated lot sizing problems. They group the dynamic lot sizing problems

into families according to the cost parameters’ (setup cost, holding cost, produc-

tion cost) and the capacity’s assumed patterns, such that: constant, nonincreas-

ing, nondecreasing, zero or no pre-specified pattern. They show the computational

complexity of the each family.

Bitran and Matsuo (1986) provide approximate formulations for the NP-hard

single item capacitated lot sizing problem. They provide two different reformula-

tion with two different assumptions. The first approximation is about a restriction

on the production quantity in any period. They assume that production in any

period can only be multiples of a known constant K. Their second assumption is,

what they call, "softness of demand". They assume that the standard deviation of

the forecast errors is large enough to allow the demands rounded-up to the nearest

multiple of K. They provide algorithms for both of the approximations. They ob-

serve that the relative error bound of the algorithms is proportional to 1/m while

the order of calculations is proportional to m or m2, where m is a nonnegative
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integer such at mK is the capacity in a period.

Bean, Smith and Yano (1987) study the conditions for the existence of planning

and forecast horizons in a discounted dynamic lot sizing problem setting. They

assume the existence of a speculative motive for carrying inventory ( i.e. unit

production cost in a period is greater than the sum of unit production and unit

holding cost of previous period). They provide a rolling variable-horizon algorithm.

Karmarkar et al. (1987) consider the dynamic lot sizing problem with start-up

and reservation costs. They assume that there production in a period is capac-

itated, and when the process is switched from "off" to "on", start-up cost is in-

curred, however the setup of the process can be kept by producing at the capacity

or by incurring a positive reservation cost. The capacitated lot sizing problem is

a special case of the problem introduced in this work, hence, since the CLSP is

NP-complete, this general version is also NP-hard. They employ a Lagrangian

relaxation strategy to find bounds on the problem, and use one of the bounds in

a branch-and-bound algorithm.

Eppen and Martin (1987) describe to use and develop mixed integer program-

ming models to solve multi-item capacitated lot sizing problems. They start with

providing an overview and background of mixed integer linear programming, then

consider the single item capacitated lot sizing problem similar to the one consid-

ered by Karmarkar et al. (1987). They reformulate the problem as a shortest

path problem. Then they move on to the multi item setting, and provide formu-
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lations of this problem as small bucket and big bucket problems. They conduct a

numerical study.

Chand, Sethi, and Proth (1990) study the existence of the forecast horizons

for the undiscounted dynamic lot sizing problem. They assume constant demand

throughout the horizon. They propose that T = m(m+ 1) is a forecasts horizon

where m is the planning horizon such that the number of periods the EOQ order

spans.

Chand, Sethi, and Sorger (1992) study the forecast horizons under discounted

dynamic lot sizing problem setting, where the demand is constant. They show

that T = m(m + 1) , the forecast horizon for the undiscounted case still hold.

However, due to the increasing nature of EOQ with respect to the discount factor,

they conclude that the forecast horizon decreases in discounting factor.

Aggarwal and Park (1993) provide algorithms for uncapacitated dynamic lot

sizing problem. They assume that the demands are deterministic and known,

and backordering is possible. They provide a review, description and results of

the previous models and algorithms with the above assumptions. The algorithms

they develop are implementations of dynamic programming and array searching

(namely Monge arrays). They compare the complexity of their algorithm with

those of the previous algorithms, and they conclude that provided algorithms

improve the running time of the previous algorithms by factors of n or n/ log(n),

where n is the horizon length in terms of number of periods.
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Wolsey (1995), in this invited review, provides historical overview of the un-

capacitated economic lot sizing problem. He mentions some of the important

extensions and reformulations of the classical problem. He also provides informa-

tion on the development of dynamic programming algorithms and their complexity

for the economic lot sizing problem.

Hindi (1995) considers the capacitated lot sizing problem with start-up and

reservation costs, introduced by Karmarkar et.al. (1987). He formulates the prob-

lem by redefinition of the variables as a shortest path problem. Then he uses a

tailored version of the formulations which has smaller number of variables and con-

straints to obtain lower bounds. Then he suggests a procedure to obtain an upper

bound by repeatedly solving a small trans-shipment problem. He also provides

some computational results.

Pochet and Wolsey (1995) in their comprehensive work present algorithms and

reformulations for lot sizing problems. They first consider the single item lot

sizing problems by first presenting dynamic programming algorithms for those

problems solvable in polynomial time, then they present reformulations such as

multicomodity and facility location reformulations. They proceed developing a

branch and cut algorithm by solving separation problem. Later on they move on

to constant capacity and variable capacity lot sizing problem reformulations.

Sox (1997) incorporates the random demand and non-stationary costs into the

dynamic lot sizing problem. He assumes that the cumulative demand distribution
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for each period is known, backorders are allowed, and all the costs are time-varying.

He provides an optimal solution procedure.

Agra and Constantino (1999) consider dynamic lot sizing problem with back-

ordering. There are two types of costs associated with the setups in their model:

setup cost and start-up cost. Setup cost is incurred when the process is ready

and able to produce, however the start-up cost is incurred if the process is setup

in the present period and is not setup in the previous period. They develop the

model for the Wagner-Whitin cost structure. Their solution procedure relies on

the extreme points.

Allahverdi et al. (1999) provide a comprehensive review of the literature on

scheduling problems involving setup times and costs. They group the relevant

problems into groups and reviews, such as: single machine models, parallel machine

models, flowshop problems, and job shop problems.

Eiamkanchanalai and Banerjee (1999) examine the lot sizing problem under

deterministic conditions with variable production rate. They assume constant

demand, and convex manufacturing cost in production rate. They consider pro-

duction rate as one of the decision variables. They allow for bidirectional changes

in the production rate. In their setting, once a production rate is chosen it cannot

be changed after production starts. They also incorporate the idle capacity cost

into their model. They provide an example and sensitivity analysis, which shows

the trade offs involved in simultaneously determining production run lengths and
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output rates.

Karimi et al. (2003) provide a review of the models and algorithms on the

capacitated lot sizing problem focusing on the research since the late 1980’s. The

later works and their review can be found in a recent work by Brahimi et al.

(2006).
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Chapter 9

Model: Assumptions and

Formulation

In this chapter we present the basic assumptions of our model, formulate the

optimization problem, and we provide theoretical results on the structure of the

optimal solution.

We assume that the length of the problem horizon, N is finite and known.

The amount of demand in period t is denoted by Dt (t = 1, 2, · · ·, N). All of the

demands are non-negative and known in advance, but may be different over the

problem horizon. No shortages or backordering are allowed; that is, the amount

demanded in a period has to be produced in or before its period. The amount

of production in period t is denoted by xt. For every item produced in period t,

a positive unit production cost ct is incurred. The inventory on hand at the end
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of period t is denoted by yt, since we don’t allow backordering and the demand

in period t must be satisfied by production during that period or during earlier

periods, then yt may attain only nonnegative values. A positive inventory holding

cost ht is incurred for every unit of ending inventory in period t. Without loss

of generality, we assume that the initial inventory level is zero. In any problem

violating this assumption, by invoking the Proposition 2 below, it can be converted

to an equivalent problem which satisfies the zero initial inventory assumption.

The production in a period is non-negative with a maximum capacity, Rt. We

assume that physical capacities are non-decreasing, i.e. Rt−1 ≤ Rt for all t and

make no assumption on the demand structure other than that
Pj

i=tDi ≤
Pj

i=tRi

for 1 ≤ t ≤ j ≤ N . Suppose that the demand structure does not satisfy the

above inequality, i.e.
Pj

i=tDi >
Pj

i=tRi, which implies that the total demand

up to period j is larger than the total capacity up to j. Since we don’t allow

backordering or lost sales then any solution to the problem would be infeasible due

to some unsatisfied demand. Hence, the inequality
Pj

i=tDi ≤
Pj

i=tRi ensures the

feasibility.

We consider warm and cold production processes: The production process may

be kept warm onto the beginning of period t if xt−1 ≥ Qt−1; otherwise, the process

cannot be kept warm and is cold. In order to keep the process warm onto period

t, ωt−1 is charged for every unit of unused capacity in period t − 1. That is,

the warming cost incurred in period t − 1 would be ωt−1(Rt−1 − xt−1) monetary

units. Note that even if the quantity produced in period t− 1 is at least Qt−1, it
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may not be optimal to keep the process warm onto the next period if during the

next period, there would not be any production; in such instances, there will be

no warming costs incurred although xt−1 ≥ Qt−1(since xt = 0). In other words,

there are two necessary conditions to keep the process warm onto period t; the

production quantity in period t−1 must be at least Qt−1, and production quantity

in period t must be positive.

A warm process requires a warm setup with an incurred cost kt, and a cold

process requires a cold setup with an incurred cost Kt, if production is to be done

in period t; Kt ≥ kt for all t. We assume that all setup costs are non-negative, with

Kt+1 ≤ Kt and kt+1 ≤ kt for all t. It may occur that considering constant setup

costs over time is more realistic, however our assumption of non-increasing setup

cost does not preclude this scenario. By treating the setup costs as nonstationary

we are able to provide a more general setting. Introduction of nonstationary costs

also allows us to handle the objective of discounted costs. Thus, one can think of

a cost in period t, Kt as Kα(t−1) where K is the constant setup cost and α (< 1) is

the discount factor per period. Similar argument applies for the warm setup cost,

kt.

Furthermore, in the sequel, we assumemax(0, Q̂t) < Qt ≤ Rt where Q̂t denotes

the point of indifference for a cold setup and is defined as Rt−
³
Kt+1−kt+1

ωt

´
for all

t. In words: the cost of producing as much as Q̂t in period t, keeping to process

warm onto t+1, and making a warm setup in t+1
³
ctQ̂t + ωt

³
Rt − Q̂t

´
+ kt+1

´
is

equal to the cost of producing as much as Q̂t in period t, and making a cold setup
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in t+ 1
³
ctQ̂t +Kt+1

´
. We discuss the consequences of relaxing this assumption

in Section 9.2.

Clearly, for Qt ≥ Rt and kt = Kt, we have the classical CLSP setting; for

Qt = Rt we have the CLSP with start-up costs setting; and, as Qt(= Rt) → ∞,

we get the classical (uncapacitated) problem setting.

The single-item capacitated lot-sizing problem with complex setup structures

is known to be NP-hard (Bitran and Yanasse 1982). Therefore, it is very difficult

to optimally solve large instances of the problem. In fact, the solution time grows

exponentially as the number of planning periods increase. However, for certain

cost structures, it is possible to obtain analytical results on the structural and

computational properties of the optimal production plan. Hence, we consider

only the so-called Wagner-Whitin-type cost structures over the horizon of the

problem. Specifically, we assume ct + ht > ct+1, ct + ht − ωt > ct+1, ct + ht −

ωt > ct+1 − ωt+1 for all t. This cost structure ensures that Wagner-Whitin-type

costs are incurred for productions not exceeding the warm thresholds in both of

the consecutive periods, for productions exceeding the threshold in one but not

in the other, and for productions exceeding in both of the consecutive periods,

respectively. Eppen et al. (1987) have shown that assuming ct + ht > ct+1 (i)

provides simplifications in forward algorithm for computing optimal schedules, and

(ii) guarantees that partitioning will occur in the classical problem. Our additional

assumptions ensure that this condition is satisfied at all levels of production (that
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is, below and above the threshold in successive periods). This, in turn, enables us

to derive the analytical properties of the optimal production plan. The assumed

conditions hold in practice, as well. When ct = c ∀t, the condition ct+ht > ct+1 is

valid for any realistic setting with ht > 0. Similarly, if we allow for discounting, we

have ct > ct+1; and, hence, the condition holds. Therefore, the first cost structure

that we assume holds in general. For ct = c ∀t, ct + ht > ct+1 + ωt holds when

ht > ωt. As we noted in Chapter 7, ωt can also be viewed as the cost of idleness

for the production system with undertime incurred during the production time

equivalent of a unit. Hence, in settings where warehousing costs are significant, this

condition is also satisfied. A similar argument also holds when there is discounting.

In the presence of stationary costs, the condition ct + ht − ωt > ct+1 − ωt+1 holds

for ht = h > 0. When there is discounting, this condition also follows immediately

from the first two conditions. Although the assumed cost structure is realistic,

clearly, there may be particular instances where they do not hold. In such cases,

some of our results do not hold. Therefore, the above cost structure is essential

for the results obtained in this research.

The objective is to find a production schedule xt ≥ 0 (t = 1, 2, · · ·, N) (tim-

ing and amount of production), such that all demands are met at minimum total

cost. We develop a dynamic programming formulation of the problem (P ). Let

fNt (xt−1,yt−1) denote the minimum total cost under an optimal production sched-

ule for periods t through N , where xt is the production quantity and yt−1 is the

starting inventory for period t. Then,
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fNt (xt−1, yt−1) = min
0≤xt≤Rt

xt+yt−1≥Dt


Kt · δt · zt

+[kt + ωt−1(Rt−1 − xt−1)] · δt · (1− zt)

+ct · xt + ht · yt + fNt+1(xt, yt)

 (9.1)

where

yt = yt−1 + xt −Dt for t = 1, 2, · · ·, N (9.2)

xt ≥ 0 for t = 1, 2, · · ·, N (9.3)

yt ≥ 0 for t = 1, 2, · · ·, N (9.4)

δt =


0 if xt = 0

1 if xt > 0

for t = 1, 2, · · ·, N (9.5)

zt+1 =


0 if xt ≥ Qt

1 if xt < Qt

for t = 1, 2, · · ·, N − 1 (9.6)

with the boundary condition in period N :
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fNN (xN−1, yN−1) = min
0≤xN≤RN

xN+yN−1≥DN


KN · δN · zN

+[kN + ωN−1(RN−1 − xN−1)] · δN · (1− zN)

+cN · xN + hN · yN


(9.7)

The constraint (9.2) is the conservation of flow constraint and it requires that

the sum of the inventory at the start of a period and the production during that

period equals the sum of the demand during that period and the inventory at

the start of the next period. The constraints (9.3) and (9.4) limit production

and inventory to nonnegative values. The constraint (9.5) ensures that the binary

variable δt attains values 0 or 1 depending on the production in period t; if there

is a production δt = 1, otherwise 0. The binary variable zt indicates whether the

process can kept warm onto period t or not, hence, the constraint (9.6) ensures

that it is equal to 1 if the process cannot be kept warm, 0 otherwise.

The optimal solution is found using the above recurrence and fN1 (0,0) denotes

the minimum cost of supplying the demand for periods 1 through N (where we

arbitrarily set xt−1 = 0). We are now ready to examine some of the structural

properties of the optimal solution to the above formulation. (Without loss of

generality we assume throughout that y0 = yN = 0 and, for convenience, R0 =

ω0 = 0).
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9.1 Structural Results

In this section, we present structural results on the optimal production plan for

the lot sizing problem with a warm/cold process. In particular, we establish the

conditions under which production is to be done and the amount of production

in a period. Furthermore, we show that certain production plans enable one to

partition the original problem into independently solvable subproblems.

First, we provide an equivalence property which will simplify our development

of further structural results.

Proposition 1 If problem (P ) is feasible, it can be written as an equivalent ca-

pacitated lot sizing problem where in each period the demand is not greater than

the capacity.

Proof. Proof is similar to that in Bitran and Yanasse (1982) and consists

of defining a new inventory variable, It−1 and rewriting the objective function in

terms of the new inventory variable. To this end, for every feasible production

plan of problem (P ) with production quantities xt and inventory levels yt, define a

new production plan for t = 1, 2, · · ·, N such that production quantities are equal

to the those of the original plan and inventory levels given as:

It−1 = yt−1 − max
τ=0,···,N−t

{0,
t+τX
j=t

(Dj −Rj)}
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Since the original plan is feasible then yt−1 ≥ maxτ=0,···,N−t{0,
Pt+τ

j=t(Dj−Rj)}

and consequently It−1 ≥ 0. Let D0
t = It−1 + xt − It then,

It−1 + xt − It = xt + yt−1 − max
τ=0,···,N−t

(
0,

t+τX
j=t

(Dj −Rj)

)

−yt + max
τ=1,···,N−t

(
0,

t+τX
j=t+1

(Dj −Rj)

)

since yt−1 + xt − yt = Dt, we have

It−1 + xt − It = Dt − max
τ=0,···,N−t

(
0,

t+τX
j=t

(Dj −Rj)

)

+ max
τ=1,···,N−t

(
0,

t+τX
j=t+1

(Dj −Rj)

)

= Rt − max
τ=1,···,N−t

(
Rt −Dt,

t+τX
j=t+1

(Dj −Rj)

)

+ max
τ=1,···,N−t

(
0,

t+τX
j=t+1

(Dj −Rj)

)

Hence, D0
t ≥ 0 and D0

t ≤ Rt. Substituting yt as a function of It in the objective

function we get the new objective function. The new objective function differs from

the original one only by a constant, hence the result.

Therefore, without loss of generality, we shall assume in the sequel thatDt ≤ Rt

for all t; this, naturally, ensures the feasibility condition. An important property

that plays a key role in developing algorithms to solve lot-sizing problems is the

one that states when to do a setup and to produce. In the absence of warm/cold
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processes, Bitran and Yanasse(1982) introduce a notation α/β/γ/ν in order to

classify the special families of the capacitated lot sizing problem, where α, β,

γ and ν specify respectively a special structure for setup costs, holding costs,

production costs, and capacities. Each of these parameters may be equal to G

(no prespecified) pattern, C (constant), ND (nondecreasing), NI (nonincreasing)

and Z (zero). They provide a property of the optimal solution which states that,

for capacitated settings where, over the horizon, no prespecified pattern exists

for setup costs, unit holding costs and capacities, and unit production costs are

non-increasing (G/G/NI/G setting in their notation) production is done in a

period only if there is not enough inventory to satisfy the demand of the period

(Proposition 2.4 in Bitran and Yanasse 1982). In the presence of warm/cold

processes, this property no longer holds. Below, we present an extension of their

result to the instance when there are quantity-dependent warm processes.

Theorem 1 An optimal production plan has the property zt · xt · [yt−1 −Dt]
+ =

0 for t = 1, 2, · · ·, N where zt, xt and yt−1are as given in (9.2)-(9.6).

Proof. Suppose the contrary (i.e., zt · xt · [yt−1 −Dt]
+ > 0). That is, suppose

a proposed production plan suggests xt−1 < Qt−1, [yt−1 −Dt]
+ > 0, and xt > 0.

Since the production in period t − 1 is less than the warm process threshold,

the process will be cold in period t. As in the classical lot sizing problem, the

solution can be improved; hence, it cannot be optimal. Therefore, whenever zt = 1

production is done if and only if the starting inventory is strictly less than the
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demand for that period. With zt = 0, however, there is no such restriction on the

production plan; hence optimal production plan satisfies the stated condition.

As expected, Theorem 1 reduces to Proposition 2.4 in Bitran and Yanasse(1982)

when kt = Kt (i.e., zt = 1) for all t. In the presence of warm/cold processes, how-

ever, we see that it may be optimal to produce even in a period of zero demand,

which is not the case for the classical CLSP setting (see Corollary 2.1 in Bitran

and Yanasse 1982).

In the classical problem setting, it is established that, in an optimal production

plan, the values that the production quantities can take on in any period are either

zero or exactly equal to a sum of demands for a finite number of periods into the

future. In CLSP, however, the optimal production plan is composed of subplans

in which the production quantities in any period are either zero or at capacity,

except for at most one period in which it is less than capacity. In the presence of

quantity-dependent warm/cold processes, these fundamental results no longer hold

in general for all periods. In the sequel, we establish certain structural properties

of the optimal plans and gradually develop the structure of the optimal solution for

the capacitated lot-sizing problem with quantity-dependent warm/cold processes.

We introduce the following definitions. Let X = {x1, · · ·, xN} denote a feasible

production plan constructed over periods 1 through N then;

Definition 1 Period t is "a regeneration point" if yt−1 = 0, zt = 1 and xt > 0.
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Definition 2 Define "a production series", Ψuv|Iu−1,Iv−1, which is a subset of X

between two consecutive cold setups u and v with given starting and ending inven-

tories given such that yu−1 = Iu−1 and yv−1 = Iv−1. We have

Ψuv|Iu−1,Iv−1 = {xi|xi > 0, i = u, · · ·,m; xi = 0 for i = m+ 1, · · ·, v − 1;

zu = 1 = zv; zi = 0 for u+ 1 ≤ i ≤ m;

zm+1 ≥ 0 and zi = 1 for m+ 2 ≤ i ≤ v − 1}

where m denotes the latest period in which production is done between u and v−1

for 0 ≤ u ≤ m ≤ v − 1 ≤ N .

Definition 3 A period t for u+1 ≤ t ≤ m−1 is called "an intermediate production

period".

Note that, a production series may begin and end with positive inventory,

i.e. Iu−1 ≥ 0, Iv−1 ≥ 0. Therefore, the first period of a production series is not

necessarily a regeneration point as defined above (i.e. for it be regeneration point

we must have yu−1 = 0, zu = 1 and xu > 0). However, from Theorem 1, for cold

setups to exist in periods u and v, we must have It−1 < Dt for t = u, v. (It is

possible to form feasible series which violate this condition, but they may safely be

ignored due to their suboptimality.) By using the following result, we will further

simplify our development and, henceforth, consider only production series that

have zero starting and ending inventories.
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Proposition 2 If Ψuv|Iu−1,Iv−1 (with Iu−1 < Du and Iv−1 < Dv) is a subset of an

optimal plan for problem (P ) with demands Dt over periods u through v− 1, then

Ψ
0
uv|0,0, which has the same production schedule, is a subset of an optimal plan

for problem (P 0) with demands D
0
u = Du − Iu−1 and D

0
v−1 = Dv−1 + Iv−1 ceteris

paribus.

Proof. With respect to problem (P ), we only change the demands in periods

u and v−1 in (P 0). From Proposition 1, feasibility is ensured for problem (P 0). In

both problems, under the same production schedule, the net demands in periods

u through v − 1 are the same. Therefore, the costs are also the same. Hence, the

result.

It follows from above that a series denoted by Ψuv|Iu−1,Iv−1can be substituted by

Ψuv|0,0, which we will refer to in shorthand asΨuv. Feasibility of a production series

implies that the physical capacity constraint and no backordering assumption are

not violated. Hence, in the optimal plan [Di − yi−1]
+ ≤ xi ≤ Ri for u ≤ i ≤ m.

Furthermore, from the definition of a warm setup one intuitively obtains xi ≥ Qi

for u ≤ i ≤ m− 1. Thus, for any optimal series;

max(Qi, [Di − yi−1]
+) ≤ xi ≤ Ri for u ≤ i ≤ m− 1

For exposition purposes, we make a distinction between two instances of pro-

duction at capacity. We shall refer to the production instance xi = Ri as capaci-
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tated production only if [Di − yi−1]
+ < Ri. Hence xi = [Di − yi−1]

+ = Ri will not

be referred to as capacitated production but will simply be called production at

capacity. (As it will be clear below, we make this distinction to identify the succes-

sive capacitated periods which emerge from/are found in the end of a production

series.)

As we establish in the following lemma, in addition to the physical capacity

in period t, there is also an economic bound, Et on the production quantity in

the presence of warm/cold processes. That is, Et is such a quantity that, produc-

ing more than this quantity in period t for a future period, is more costly than

producing the excess quantity in period t+ 1.

Lemma 1 In an optimal production plan,

(i) xt ≤ Et where Et =
max(Qt,[Dt−yt−1]+)·(ct+ht−ct+1−ωt)+kt+1+Rt·ωt

ct+ht−ct+1 , ∀t ,

(ii) xt = Rt only if Et ≥ Rt.

Proof. (i) Consider the production series Ψuv and let m be the last period

with production within this series. First, suppose u ≤ t = m = v − 1. In this

case, xt = [Dt − yt−1]
+ and, by definition, Et > [Dt − yt−1]

+; therefore, xt ≯ Et.

Hence, the result. Next, suppose u ≤ t ≤ m < v − 1 or u ≤ t < m = v − 1. We

will prove by contradiction. In particular, we will show that any production series

that violates the above result can be improved and, hence cannot be optimal.

Suppose that series Ψuv is feasible but violates the above lemma, such that Rt ≥
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xt > Et for some t (u ≤ t ≤ m) where t = max{i : xi > Ei}. Consider another

production series Ψ0
uv such that Ψ

0
uv = {x0u = xu, · · ·, x0t−1 = xt−1, x0t = Et +

e0, x
0
t+1 = xt+1 + e1, x

0
t+2 = xt+2 + e2, · · ·, x0v−1 = xv−1 + ev−1−t} where x0t < xt,

0 ≤ ei := x0t+i − xt+i ≤ si := [min
¡
Rt+i, E

0
t+i

¢− xt+i]
+ for 1 ≤ i ≤ v − 1− t andPv−1−t

i=1 ei = (xt − x0t). (Throughout in our proofs, all entities with notation (
0)

retain their original definition and indicate recomputation for a new sequence.)

Note that in this new production series, for t+1 ≤ i ≤ v−1, y0i = yi−(xt − x0t)+Pi
j=t+1

¡
x0j − xj

¢
, hence, y0i ≤ yi;therefore,

£
Di − y0i−1

¤+ ≥ [Di − yi−1]
+ implying

E0
i ≥ Ei. Furthermore, due to the construction of the new series, x0i ≤ E0

i. Let ∆

denote the cost difference between production series Ψ0uv and Ψuv. Then,

∆ = − (xt − x0t) (ct + ht − ωt) +
v−1X
i=t+1

ci (x
0
i − xi)

+
v−1X
i=t+1

hi (y
0
i − yi)−

mX
i=t+1

ωi (x
0
i − xi)

+
v−1X

i=m+1

(ki + ωi(Ri − x0i)δ
0
i+1)δ

0
i

where δ
0
i is a binary variable indicating whether or not production is done in

period i. Noting that (xt − x0t) =
Pv−1

i=t+1 (x
0
i − xi) and y0i = yi − (xt − x0t) +
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Pi
j=t+1

¡
x0j − xj

¢
, and arranging the terms, we get

∆ = −
v−1X
i=t+1

"
(x0i − xi) (ct + ht − ωt +

i−1X
j=t+1

hj)

#

−
v−1X
i=t+1

(x0i − xi)
v−1X
j=i

hj +
v−1X
i=t+1

ci (x
0
i − xi)

−
m−1X
i=t+1

ωi (x
0
i − xi)− ωm (x

0
m − xm) δ

0
m+1

+
v−1X
i=t+1

hi

iX
j=t+1

¡
x0j − xj

¢
+

v−1X
i=m+1

(ki + ωi(Ri − x0i)δ
0
i+1)δ

0
i

Using the equivalence between
Pv−1

i=t+1 (x
0
i − xi)

Pv−1
j=i hj and

Pv−1
i=t+1 hi

Pi
j=t+1

¡
x0j − xj

¢
,

we finally obtain,

∆ =
v−1X
i=t+1

"
(x0i − xi)

Ã
ci −

Ã
ct + ht − ωt +

i−1X
j=t+1

hj

!!#

−
mX

i=t+1

ωi (x
0
i − xi) δ

0
i+1 +

v−1X
i=m+1

(ki + ωi(Ri − x0i)δ
0
i+1)δ

0
i

If
Pm−t

i=1 si ≥ xt − Et, then one can construct a feasible series Ψ0uv such that

m0 = m (where m0 is defined like m for the series Ψ0
uv), ei = 0 for m− t+1 ≤ i ≤

v − 1− t and
Pm−t

i=1 ei ≥ xt −Et with e0 ≤ 0. Then,

∆ =
mX

i=t+1

"
(x0i − xi)

Ã
ci − ωiδ

0
i+1 −

Ã
ct + ht − ωt +

i−1X
j=t+1

hj

!!#
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Since ci−ωiδ
0
i+1 <

³
ct + ht +

Pi−1
j=t+1 hj

´
due to the assumed marginal production

cost structure and (x0i − xi) ≥ 0 for all i ≥ t+ 1, we have ∆ < 0. Thus, Ψ0
uv with

x0t ≤ Et yields a lower cost than Ψuv; therefore, Ψuv cannot be optimal. If,

however,
Pm−t

i=1 si < xt−Et, one can construct another Ψ0
uv such that m

0 = m+1,

e0 = max(Qt, [Dt − yt−1]+) − Et, ei = si for 1 ≤ i ≤ m − t, and em+1−t =h
kt+1+Rtωt−max(Qt,[Dt−yt−1]+)ωt

ct+ht−ct+1 + q
i
where q = xt − Et −

Pm−t
i=1 ei, and ei = 0 for

m − t + 2 ≤ i ≤ v − 1− t. Note that this series is feasible since em+1−t ≤ Rm+1

due to non-decreasing capacities. (Also note that we construct a series such that

e0 ≤ 0 in this case as well.) Then,

∆ =
m−1X
i=t+1

"
(x0i − xi)

Ã
ci − ωi −

Ã
ct + ht − ωt +

i−1X
j=t+1

hj

!!#

+(x0m − xm)

Ã
cm −

Ã
ct + ht − ωt +

m−1X
j=t+1

hj

!!
+ km+1 + (Rm − x0m)ωm

+

Ã·
kt+1 +Rtωt −max (Qt, [Dt − yt−1]+)ωt

ct + ht − ct+1
+ q

¸"
cm+1 − ct + ωt −

mX
j=t

hj

#!

We need to consider the two possible values that s0m−t may take on. First,

suppose that s0m−t = Rm − x0m, which implies that x
0
m = Rm. Then, due to

the assumed cost structure, ∆ < 0. Next, suppose that s0m−t = E0
m − x0m. Then,

x0m = E0
m; using the defining expression forE

0
m, it is again easy to show that∆ < 0.

Hence, Ψ0uv yields a lower cost than Ψuv; therefore, Ψuv cannot be optimal. If the

newly constructed Ψ0
uv has x

0
m+1 ≤ E0

m+1, we conclude our proof. Otherwise, we

carry the same argumentation over periods m+1 and onward successively. Hence,
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the result.

(ii) Follows immediately from (i).

Lemma 2 A production series Ψuv, in which there is at least one period t such

that xt = Rt(> Qt), 0 < xt+1 < Rt+1, and yt > 0, cannot be optimal.

Proof. We will prove by contradiction. Suppose a feasible production series

Ψuv where for some t, xt = Rt(> Qt), 0 < xt+1 < Rt and yt > 0. Since yt >

0, production in period t covers some of the demands in periods later than t;

therefore, one can construct another feasible production series,

Ψ0
um0v,r0 = {x0u = xu, · · ·, x0t−1 = xt−1, x0t = Rt − e,

x0t+1 = xt+1 + e, x0t+2 = xt+2, · · ·, x0v−1 = xv−1}

with e > 0. Clearly, Ψ0
uv yields a lower cost due to the assumed marginal produc-

tion cost structure. Hence, the result

From Lemmas 1 and 2, we get the following corollary:

Corollary 1 In a production series (of an optimal production plan) in which m

denotes the last period of production in the series,

(i) if xt = Rt(> Qt) and 0 < xt+1 < Rt+1 then yt = 0 for u ≤ t ≤ m− 1.

(ii) if xt = Rt(> Qt) and yt > 0 then xt+1 = Rt+1 for u ≤ t ≤ m− 1.
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(iii) Let m − r + 1 denote the first period in which capacitated production is

done in a production series of an optimal plan. Then, m−r+1 ≥ max(j|Ej < Rj

for u ≤ j ≤ m) and xt = Rt for m− r + 1 ≤ t ≤ m.

The above corollary provides the basis of the subtle distinction we like to make

between "production at capacity" and "capacitated production". The first refers

to the case where production at capacity is done solely to satisfy the net demand

of the period (i.e. yt = 0 ) in (i), whereas the latter refers to production again at

capacity but to satisfy more than the net demand in that period (i.e. yt > 0 ) in

(ii). Corollary 1 also implies that, if there is a succession of capacitated production

periods, the last capacitated production period coincides with the last production

period in the series of an optimal production plan! This result is important in

that it gives us the structure in which an optimal production series ends.

Lemma 3 In an optimal production series Ψuv, (for u ≤ t ≤ m − 1), xt >

max(Qt, [Dt − yt−1]+) only if xt+1 = Rt+1 and yt+1 > 0.

Proof. We will prove by contradiction. First, suppose a feasible production

series Ψ0uv such that x
0
t > max(Qt, [Dt − y0t−1]

+), 0 < x0t+1 < Rt+1 and y0t+1 ≥ 0.

Let

qt = min
¡
[Rt+1 − x0t+1], [x

0
t −max(Qt, [Dt − y0t−1]

+)]
¢

Then, there is a feasible series Ψuv such that xt = x0t − qt, xt+1 = x0t+1 + qt,

yt+1 = y0t+1 and x0i = xi for all other i. If [Rt+1 − x0t+1] < [x0t − max(Qt, [Dt −
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yt−1]+)], we have xt+1 = Rt+1 and xt > max(Qt, [Dt − yt−1]+); otherwise, xt =

max(Qt, [Dt−yt−1]+) and xt+1 < Rt+1. In either case, Ψuv yields a lower cost due to

the assumed marginal production cost structure; therefore, Ψ0
uv cannot be optimal.

Next, suppose a feasible production series Ψ0
uv such that x0t > max(Qt, [Dt −

y0t−1]
+), x0t+1 = Rt+1 and y0t+1 = 0. This implies that x

0
t+1 = [Dt+1 − y0t]

+ = Dt+1

from the demand structure that Dt+1 ≤ Rt+1. If so, y0t = 0 and, thereby, x0t =

[Dt − y0t−1]
+ which, jointly, contradict x0t > max(Qt, [Dt − y0t−1]

+). Hence, the

result.

Corollary 2 In a production series Ψuv (of an optimal production plan) in which

production is done last in period m, if xm < Rm then xt = Rt(> Qt) only if yt = 0

for u ≤ t ≤ m− 1.

We are now in a position to provide the structure of a production series in an

optimal production plan.

Theorem 2 (Optimal Production Quantity Theorem)

In a production series Ψuv of an optimal production plan, in which m is the last

period where production is done and r (≥ 0) is the number of successive periods

with capacitated production,

(i) xt = max(Qt, [Dt − yt−1]+), for u ≤ t ≤ m− r − 1 and m− u > r ≥ 0,

(ii) xm−r =
£Pv−1

i=m−r Di − ym−r−1 −
Pm

i=m−r+1Ri

¤+
< min (Em−r, Rm−r) and

m− u ≥ r ≥ 0,
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(iii) xt = Rt (≤ Et) for m− r + 1 ≤ t ≤ m and r ≥ 1.

Proof. For convenience, we will prove in reverse order.

(iii) Follows from Lemma 1 and Corollary 1 (ii).

(ii) Note t = m− r. Due to no shortages assumption,

mX
i=m−r

xi + ym−r−1 =
v−1X

i=m−r
Di.

From (iii) we have xi = Ri for m− r + 1 ≤ i ≤ m. Hence,

xm−r =
v−1X

i=m−r
Di − ym−k−1 −

mX
i=m−r+1

Ri

Invoking Lemma 1, we have the result.

(i) u ≤ t ≤ m − r − 1. By definition t is an intermediate period; therefore,

xt ≮ max(Qt, [Dt − yt−1]+). First consider t = m− r − 1. From (ii), xt+1 = ε <

Rt+1. Since xt+1 6= Rt+1, from Lemma 3 xt ≯ max(Qt, [Dt − yt−1]+). Hence the

result. Next consider t = m− r− 2. If xt+1 < Rt+1, the argumentation for period

m− r− 1 also holds. If, however, xt+1 = Rt+1, from Corollary 1(i) yt+1 = 0, since

xt+2 = ε (from Theorem 2(ii) with t+2 = m−r). Since xt+1 = Rt+1 and yt+1 = 0,

from Lemma 3, xt ≯ max(Qt, [Dt − yt−1]+). Inductively, the argumentation can

be carried out for every period until t = u. Hence, the result.

Theorem 2 gives the values that production quantities in any period may
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assume in an optimal production plan in the presence of quantity-dependent

warm/cold processes. The above theorem gives, as special cases, the results in

Wagner and Whitin(1958) (Theorem 2, p.91) when Qt(= Rt)→∞, and those in

Florian and Klein(1971) (Corollary, p.16) when Qt = Rt = R and kt = Kt, for

all t. Thus, it enables one to identify the forms of the production series to be

considered in solving problem (P ) and forms the basis of the solution algorithms

we develop in a later section. To that end, we provide the following corollary.

Corollary 3 In an optimal production plan, the series Ψuv can only have the

following forms:
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(i)

xi =


Pv−1

i=u Di

0

for i = u

for u+ 1 ≤ i ≤ v − 1

(ii)

xi =


max(Qt, [Dt − yt−1]+)Pv−1

i=mDi − ym−1

0

for u ≤ i ≤ m− 1

for i = m

for m+ 1 ≤ i ≤ v − 1

(iii)

xi =


Ri

0

for u ≤ i ≤ m

for m+ 1 ≤ i ≤ v − 1

(iv)

xi =



£Pv−1
i=m−rDi − ym−r−1 −

Pm
i=m−r+1Ri

¤+
Ri

0

for i = u

for u+ 1 ≤ i ≤ m

for m+ 1 ≤ i ≤ v − 1

(v)

xi =



max(Qt, [Dt − yt−1]+)£Pv−1
i=m−rDi − ym−r−1 −

Pm
i=m−r+1Ri

¤+
Ri

0

for u ≤ i ≤ m− r − 1

for i = m− r

for m− r + 1 ≤ i ≤ m

for m+ 1 ≤ i ≤ v − 1

Maintaining the definition of a regeneration point given above;

Definition 4 Define "a production sequence", Suv as a subset of a feasible pro-
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duction plan X such that Suv includes the components of X for all periods between

the two consecutive regeneration points u and v; that is,

Suv = {xi, i = u, · · ·, v − 1|zu = 1 = zv and yu−1 = 0 = yv−1; yi ≥ 0 for u < i < v − 1}

where 0 ≤ u < v − 1 ≤ N .

Clearly, any feasible production plan is composed of one or more production

sequences and since y0 = yN = 0, at least one production sequence exists in an

N-period problem. Moreover, any production sequence is composed of at least

one production series.

In the CLSP setting, a capacity constrained production sequence is defined in

Florian and Klein(1971) as a production sequence in which the production level

of at most one period is positive but less than capacity, and all other productions

are either zero or at their capacity. In the presence of warm/cold processes, we

define a capacity constrained production series as a production series in which all

productions are either zero or at their capacity. That is, we accept only the series

of the form given in Corollary 3 (iii) as a capacity constrained series.

Theorem 3 (Capacity Constrained Series Theorem).

(i) In the presence of warm/cold processes, an optimal production plan

consists of production sequences in which at most one series is not a capacity

constrained production series.
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(ii) Moreover, if there exists a series which is not capacity constrained,

then, it is the first series of that sequence.

Proof. (i) First consider a feasible production sequence Suv, in an optimal

plan, consisting of two series such that Suv = Ψuτ−1|0,yτ−1∪Ψτv|yτ−1,0 By definition,

yτ−1 > 0. Furthermore, let m1 and m1 − r1 + 1 denote, respectively, the latest

period in which production is done and the earliest period in which capacitated

production is done in series Ψuτ−1|0,yτ−1 , and let m2 and m2 − r2 + 1 denote,

respectively, the latest period in which production is done and the earliest period

in which capacitated production is done in series Ψτv|yτ−1,0. Suppose that Ψτv|yτ−1,0

is an uncapacitated production series, i.e.,
Pm2

i=τ (Ri − xi) > 0. It is easy to show

that a new series Ψ0
τt2|y0τ−1,0 constructed such that x

0
m2−r2 = xm2−r2+ and y0τ−1 =

yτ−1 − while keeping everything the same improves the cost; hence, Suv cannot

be optimal. One can carry on this construction until either
Pm2

i=τ (Ri − x0i) = 0 or

y0τ−1 = 0.

If with the new seriesΨ0τv|y0τ−1,0, we end up with y
0
τ−1 > 0 under

Pm2

i=τ (Ri − x0i) =

0, then, the sequence consists of one non-capacitated and one capacitated series.

If we end up with y0τ−1 = 0 under
Pm2

i=τ (Ri − x0i) = 0, then period τ is a re-

generation period which implies that there are two production sequences such as

S0uτ and S0τv, and each of these sequences consists of one series where Ψ0uτ−1|0,0

is uncapacitated production series and Ψ0τv|0,0 is capacity constrained production

series. A similar conclusion is drawn if y0τ−1 = 0 but
Pm2

i=τ (Ri − x0i) 6= 0 under the
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new construction of series, as well, in which both of the series are uncapacitated.

Hence, a production sequence which comprises of two uncapacitated series cannot

be optimal.

For the production sequences that comprises more than two series, we can

apply the above argument to the last uncapacitated production series and the

immediate preceding series.

Hence the result.

(ii) Proof follows immediately from the new series construction described in

part (i).

Corollary 4 An optimal production plan has the property zt ·yt−1 ·xt · (Rt−xt) =

0 for t = 1, 2, · · ·, N where zt, xt and yt−1are as given in (9.2)-(9.6) .

Proof. Follows fromProposition 2.1 in Bitran and Yanasse (1982) when zt = 1.

Note that the above result is another extension of the result on G/G/NI/G

(in the notation of Bitran and Yanasse 1982) capacitated lot-sizing problem with

warm/cold processes.
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9.2 A Digression: If Qt < Q̂t

The structural results presented so far are based on the assumption that Qt ≥ Q̂t

∀t , where Q̂t, defined asRt−Kt+1−kt+1
ωt

, represents the point of indifference between

the costs of keeping the process warm onto the next period and of incurring a cold

setup in the next period. As the discussion below reveals, this is the most realistic

setting. However, for completeness, we discuss the consequences of relaxing this

assumption. WhenQt < Q̂t, for the production quantities such thatQt ≤ xt < Q̂t,

the cost of keeping the process warm onto the next period is (Rt − xt)ωt. Since

xt < Q̂t, we have (Rt − xt)ωt > Kt+1−kt+1, which implies that keeping the system

warm in this period yields a cost higher than that incurred by having a cold setup

in the next period. Hence, when the managerially selected value of the warm

process threshold is below Q̂t, the DP formulation (P ) provided by (9.1) subject

to (9.2)-(9.6) does not reveal the optimal schedule and the cost. This is mainly

due to (9.6) which is constructed under the assumption that Qt ≥ Q̂t. In the case

of Qt < Q̂t, a new DP formulation must include the warm process indicator zt as

a binary decision variable, and, as such, the state of the system must be redefined

to include zt, as well. Possible to reconstruct the DP formulation as it may be,

it is easy to see that, in an optimal solution, no warming would be done if the

production quantity is less than Q̂t regardless of the value of the managerially

set warm process threshold. Therefore, Q̂t acts as a bound on the warm process

decision. Therefore, it is possible to slightly modify the formulation provided in
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(9.1) subject to (9.2)-(9.6) to allow for arbitrarily set warm process thresholds

by redefining Qt used in our formulation such that Qt = max
¡
Q̄t, Qt

¢
, where Q̄t

denotes the warm process threshold arbitrarily set by the management. The DP

formulation (P ) can then be used as is.

From the above argumentation, it also follows that Q̂t is the threshold value

which gives the lowest possible cost for a given problem setting. Hence, if the

management is free to choose the warm process threshold, it would always set

it at the point of indifference. This observation was validated by our numerical

study, as well.

An illustrative numerical example highlighting the key features of the optimal

solution series and some other key results presented above is provided in the next

chapter.
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Chapter 10

A special case kt = 0

A case of theoretical interest and practical significance is when kt = 0. This cor-

responds to a production setting where setup carry-over is possible at no cost.

For example, in glass manufacturing, keeping the furnaces warm essentially en-

sures that production in the next period starts with no setup. Other practical

applications include a production line whose physical layout or a machine whose

calibration is maintained for the next period at no or almost no additional fixed

cost.

Theorem 4 (Single Series Theorem). When kt = 0 ∀t = 1, 2, · · ·, N,

(i) Each sequence Suv comprises only one production series Ψuv. This series
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is of the form:

xt =


max(Qt, [Dt − yt−1]+) for u ≤ t ≤ m− 1 and m− u > 0

ε =
£Pv−1

i=mDi − ym−1
¤+

< Rm for t = m and m− u ≥ 0

0 for m+ 1 ≤ t ≤ v − 1

(ii) an optimal production plan has the property zt · xt · yt−1 = 0 where zt, xt,

yt−1 are as given in (9.2)-(9.6).

Proof. (i)Wewill prove by contradiction. Consider the seriesΨuv|yu−1,yv−1with

yu−1 > 0 and yv−1 = 0. By choosing yv−1 = 0, we start our argumentation with

the last series in a production sequence by definition. From Theorem 3 this series

is a capacitated production series due to positive beginning inventory, yu−1. Let

m be the latest period in which the production done in the series and, let j be

the latest production period (in an earlier series) before u. Consider constructing

another series Ψ0
uv|yu−1− ,yv−1, i.e. producing (> 0) units in period m + 1 and

decreasing the initial inventory in period u by the same amount. The newly

constructed series results in a cost difference (old cost minus new cost) of at least

([cj +
Pm

i=t hi − cm+1] − km+1). (Note that this difference is only a conservative

lower bound because producing units less in period j may also result in further

cost reductions due to changes within that production series, as well.) Since

kt = 0 for all t, due to the assumed cost structure, the difference is positive

implying that the change in the series structure yields a lower cost. Hence, the
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original series cannot be optimal. In a similar fashion, one can continue the cost

reduction until one gets yu−1 = 0. If there are production series prior to the one

under consideration in the sequence in which the initial inventory level is positive,

starting with the last one of such series, we apply the same argument to them,

until we end up with all series in the original sequence with zero beginning and

ending inventories. Hence, in an optimal plan, if there is a cold setup in period t,

i.e. (zt · xt > 0), then yt−1 = 0; thus, every period in which a cold setup is done is

a regeneration point. Thus, every series is a sequence. Moreover, when km+1 = 0,

Em in Lemma 1 reduces to

Em =
max(Qm, [Dm − yt−1]+) · (cm + hm − cm+1 − ωm) +Rm · ωm

cm + hm − cm+1

which implies that Em ≤ Rm. From Corollary 1(iii) there is no capacitated pro-

duction in the given series, and production schedule is the one given in Corollary

3(ii). Hence the remainder of the result.

(ii) Follows immediately from Theorem 1 since we have established above that

at a cold setup period, yt−1 = 0.

Another useful property in solving lot sizing problems is that of partition. In

the absence of warm/cold processes, it is possible to optimally partition a longer

problem if the constraint yt = 0 is imposed in a period within the horizon for both

the classical problem (Wagner and Whitin 1958) and the CLSP while ensuring

capacity feasibility for the remainder of the decomposed problem (Florian and
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Klein 1971). In the presence of quantity-dependent warm/cold processes, however,

the state of the system is no longer fully represented by the current inventory level

in a period and further conditions are needed for a partition.

In the following theorem, we state such conditions.

Theorem 5 (Partition Theorem) Suppose that kj = 0 for ∀j.

(i) If yt−1 = 0 and xt−1 < Qt−1 in a t−period problem then it is optimal to

consider periods 1 through t − 1 by themselves in any feasible t∗−period problem

(t∗ ≥ t); that is, a cold partition occurs in period t.

(ii) If xt−1 ≥ Qt−1, yt−1 = 0, xt > 0 and Et < Rt in a t−period problem,

then it is optimal to consider periods 1 through t− 1 by themselves in any feasible

t∗−period problem (t∗ ≥ t); that is, a warm partition occurs in period t.

Proof. (i) If the demand in period t is positive, the solution to the t-period

problem implies that a setup be done in that period to satisfy the demand. Since

xt−1 < Qt−1, the setup will be a cold one. If the demand in period t is zero, then

there will be no production due to the marginal production cost structure over the

horizon. In either case, the production decision is independent of the decisions in

periods 1 through t− 1. Hence, the proposed result.

(ii) The solution to the t-period problem implies that production in period t

be done with a warm setup. From yt−1 = 0, we have that the demand in period

t must be supplied by the production in period t. Furthermore, from Corollary

210



1(iii), Et < Rt implies that demands in the future for longer horizons can, at the

earliest, be supplied by the production in period t. Hence, a longer problem can

be partitioned at period t as proposed. (Note that if the warm setup condition

is eliminated, it is easy to design problems where the production plan in periods

prior to t may change as the horizon of the problem is extended, and, thereby, (ii)

no longer holds.)

Note that a partition condition exists only for the case when the warm setup

cost is zero. Otherwise, as the horizon of the problem is extended, it is possible

to encounter optimal solutions that modify the production schedules in periods 1

through t even if the above stated conditions hold. The existence of a partition

implied in Theorem 5 is very important in that it also implies the existence of a

forward solution algorithm. In Chapter 11, we elaborate more on such algorithms.

Based on the structural properties of the optimal solution presented above,

a number of planning horizons can be developed in the presence of quantity-

dependent warm/cold processes for the special case of kt = 0 and ωt = 0. We

use the term planning horizon for a t−period problem to mean a sequence of

periods starting with period 1 for which the production plan does not change

for any t∗−problem (t∗ > t). In the sequel, we introduce four different types of

planning horizons that may be encountered in the dynamic lot sizing problem with

warm/cold processes.

Theorem 6 (Cold Wagner-Whitin-type Planning Horizon)
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(i) Let l(t) be the last period in which a cold setup occurs for the optimal

production plan associated with a t-period problem. Then, for any problem of

length t∗ > t, it is necessary to consider only periods l(t) ≤ j ≤ t∗ as candidate

periods for the last cold setup.

(ii) Furthermore, if l(t) = t, the optimal solution to a t∗− period problem

requires a cold setup in period t; therefore, periods 1 through t−1 constitute a cold

Wagner-Whitin-type planning horizon.

Proof. Follows from the arguments in Wagner and Whitin (1958) and Theo-

rem 5.

Theorem 7 (Warm Planning Horizon Theorem)

(i) Suppose w(t) is the last period in which a warm setup is done for the optimal

production plan associated with a t-period problem where w(t) > l(t) (l(t) is as in

Theorem 6 (i)). Then, for any problem of length t∗ > t, it is necessary to consider

only periods w(t) ≤ j ≤ t∗ as candidate periods for the last setup, which may be

warm or cold.

(ii) Furthermore, if w(t) = t and there exists t̂ (l(t) ≤ t̂ < t) defined as the

latest period such that xt̂ ≥ Qt̂ , yt̂ = 0, xt̂+1 > 0 and Et̂+1 < Rt̂+1, the optimal

solution to a t∗-period problem requires a warm setup in period t̂ + 1. Therefore,

periods 1 through t̂ constitute a warm planning horizon.
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Proof. (i) In this theorem, we consider the last warm setup (if it exists)

done after the last cold setup. Clearly, w(t) (> l(t)) is the last period in which

production is done in a t−period problem; therefore, the demands up to (and

including) period t must have been produced in the periods up to (and including)

period w(t). When a new period is added, it is easy to see that it is not optimal to

supply its demand by producing in a period earlier than w(t), since its setup cost

is already sunk. However, it may be beneficial to postpone some of the production

scheduled in periods w(t) and earlier to later periods and, possibly, combine them

with the production for the demand of the newly added period. Hence, the last

production would be at or later than period w(t).

(ii) By definition, a production sequence starts in period l(t) and continuously

runs through the end of the horizon of the problem since w(t) = t. Since yt̂ = 0

the production in period t̂ satisfies some or all of the demand of that period only

(and none of Dt̂+1). Furthermore, since Et̂+1 < Rt̂+1, Corollary 1 ensures that

m− r > t̂ ; thereby, future demands cannot be produced in periods prior to t̂+ 1

for any problem with longer horizons. With xt̂+1 > 0, invoking Theorem 5 (ii),

we have the proposed result.

Theorems 6 and 7 provide planning horizons under a rather restrictive condi-

tion that there be a setup in the last period (warm or cold, respectively). Lundin

and Morton (1975) have illustrated for the classical problem setting that Wagner-

Whitin planning horizons exist for only relatively small lot sizes (i.e. small setup

costs vis a vis unit holding costs). Although warm planning horizons as in The-

213



orem 7 occur more frequently than cold Wagner-Whitin-type horizons, it may

still be desirable to have more commonly occurring planning horizons. Next, we

present two such planning horizons defined by cold and warm setups.

Theorem 8 (Zabel-type Planning Horizons Theorem)

(i) If the optimal t-period solution has the last cold setup in period l(t), then

at least one optimal solution to any t∗-period problem (where t∗ > t) will have a

cold setup in period t such that l(t) ≤ t ≤ t∗.

(ii) If the optimal (t− 1)-period solution, for all t such that l(t) ≤ t < t, has

the last cold setup in period t̆ (< l(t)), then periods 1 through t̆ − 1 constitute a

cold Zabel-type planning horizon.

(iii) Let t̃ denote the latest period, such that t̆ ≤ t̃ < l(t)− 1 and xt̃ ≥ Q
t̃
and

yt̃ = 0 and Dt̃+1 > 0 and Et̃+1 < Rt̃+1 (where t̆ and l(t) as in (ii)), then periods 1

through t̃ constitute a warm Zabel-type planning horizon.

Proof. (i), (ii) : The result is identical to that for the classical problem

(Theorem 4, p.467 in Zabel, 1964) and follows from similar arguments omitted for

brevity.

(iii) : Follows from (ii) that the production plan for periods 1 through t̆ − 1

does not change for any problem with a longer horizon, and that, for the rest of

the problem, any production plan will start with a cold setup in period t̆. Clearly,

for any problem of a longer length, the total amount of production scheduled
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for the production sequence starting with period t̆ may increase but may not

decrease. Also xt̃ ≥ Q
t̃
and yt̃ = 0 with Dt̃+1 > 0 imply that, for a longer

problem, the production in period t̃ will only satisfy the demand in that period

and the rest of the demands will be satisfied by the production done in periods

afterwards. Furthermore, Corollary 1 ensures that m − r > t̃ for any problem

with longer horizons. Hence, the production plan up to t̃ does not change for any

t∗ (> t)−period problem.

10.1 An Illustrative Example

We consider the following example setting: ct = c, ht = h, ωt = ω, Kt = K,

kt = k, Rt = R and Qt = Q for t = 1, · · · , N . We set N = 25, c = 0, h = 1,

ω = 0.85, K = 15, k = 0, R = 10 and Q = 7. The demand over the problem

horizon is given byD = {4, 2, 4, 4, 3, 7, 9, 1, 6, 4, 10, 2, 1, 5, 8, 2, 9, 2, 5, 2, 7, 3, 4, 5, 8}.

Below, we present every step of a forward solution. At every step, we consider

a T -period problem (i.e., a problem with the horizon length of T starting from

the very first period), and generate a set of possible production schedules of this

T -period problem by imposing the condition yt−1 = 0 for a period t (1 ≤ t ≤ T ).

In the tables below, each row corresponds to such a schedule. We compute the

cost of each suggested schedule such that the cost of the periods 1 through t− 1

is the optimal cost obtained from the (t− 1)-period problem, and the cost of the

periods t through T computed afresh. The notation (∗) denotes the schedule that
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yields the lowest cost as the optimal schedule for the T -period problem.

Note that, since k = 0, we only need to consider the production sequences that

consist of a single production series. Further note that, we directly use Theorem 4

in constructing the alternative schedules that need to be considered in an optimal

solution.

1-period problem:

{4} f∗0,0 = 0 f1,1 = 15 f1,1 = 15 f∗1,1 = 15

2-period problem:

{6,0} f∗0,0 = 0 f1,2 = 17 f1,2 = 17 f∗1,2 = 17

Ψ(1,1), {2} f∗1,1 = 15 f2,2 = 15 f1,2 = 30

3-period problem:

{7,3,0} f∗0,0 = 0 f1,3 = 24.55 f1,3 = 24.55 f∗1,3 = 24.55

Ψ(1,1), {6, 0} f∗1,1 = 15 f2,3 = 19 f1,3 = 34

Ψ(1,2), {4} f∗1,2 = 17 f3,3 = 15 f1,3 = 32

4-period problem:

{7,7,0,0} f∗0,0 = 0 f1,4 = 32.55 f1,4 = 32.55 f∗1,4 = 32.55

Ψ(1,1), {7, 3, 0} f∗1,1 = 15 f2,4 = 26.55 f1,4 = 41.55

Ψ(1,2), {7, 1} f∗1,2 = 17 f3,4 = 20.55 f1,4 = 37.55

Ψ(1,3), {4} f∗1,3 = 24.55 f4,4 = 15 f1,4 = 39.55
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5-period problem:

{7, 7, 3, 0, 0} f∗0,0 = 0 f1,5 = 41.10 f1,5 = 41.10

Ψ(1,1), {7, 6, 0, 0} f∗1,1 = 15 f2,5 = 32.55 f1,5 = 47.55

Ψ(1,2), {7,4,0} f∗1,2 = 17 f3,5 = 23.55 f1,5 = 40.55 f∗1,5 = 40.55

Ψ(1,3), {7, 0} f∗1,3 = 24.55 f4,5 = 18 f1,5 = 42.55

Ψ(1,4), {3} f∗1,4 = 32.55 f5,5 = 15 f1,5 = 47.55

6-period problem:

{7, 7, 7, 3, 0, 0} f∗0,0 = 0 f1,6 = 61.65 f1,6 = 61.65

Ψ(1,1), {7, 7, 6, 0, 0} f∗1,1 = 15 f2,6 = 50.10 f1,6 = 65.10

Ψ(1,2), {7, 7, 4, 0} f∗1,2 = 17 f3,6 = 36.10 f1,6 = 53.10

Ψ(1,3), {7,7,0} f∗1,3 = 24.55 f4,6 = 27.55 f1,6 = 52.10 f∗1,6 = 52.10

Ψ(1,4), {7, 1} f∗1,4 = 32.55 f5,6 = 21.55 f1,6 = 54.10

Ψ(1,5), {5} f∗1,5 = 41.10 f6,6 = 15 f1,6 = 56.10

7-period problem:

{7, 7, 7, 7, 5, 0, 0} f∗0,0 = 0 f1,7 = 86.20 f1,7 = 86.20

Ψ(1,1), {7, 7, 7, 7, 1, 0} f∗1,1 = 15 f2,7 = 73.20 f1,7 = 88.20

Ψ(1,2), {7, 7, 7, 6, 0} f∗1,2 = 17 f3,7 = 56.65 f1,7 = 67.65

Ψ(1,3), {7, 7, 7, 2} f∗1,3 = 24.55 f4,7 = 39.65 f1,7 = 64.20

Ψ(1,4), {7, 7, 5} f∗1,4 = 32.55 f5,7 = 28.10 f1,7 = 60.65

Ψ(1,5), {7,9} f∗1,5 = 40.55 f6,7 = 17.55 f1,7 = 58.10 f∗1,7 = 58.10

Ψ(1,6), {9} f∗1,6 = 52.10 f7,7 = 15 f1,7 = 67.10
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Note that in this illustrative example, in period 7, the partition condition in

Theorem 5(ii) is satisfied; hence, a partition occurs in period 7. The production

schedule obtained up to period 6 in the 7-period problem remains the same for any

problem with a longer horizon length. In this example, in the optimal solution,

there are 8 production series. The solution is as follows: X = {[6, 0] ; [7, 4, 0] ;

[7, 9, 7, 4, 0] ; [10, 3, 0] ; [7, 8, 0] ; [9, 9, 0, 0] ; [7, 7, 0] ; [7, 6]}. The optimal solution to

the full problem is also depicted in Figure 7-1 along with the demands indicated

by a diamond mark.
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Chapter 11

Computational Issues and

Numerical Study

The optimal solution to the problem (P ) can, theoretically, be obtained by a

backward solution algorithm. However, in a backward solution algorithm, the

state of the system needs to be described by the number of periods in the horizon,

the ending inventory and production quantity in the previous period, and the

maximum of the capacity and the total demand for the remainder of the horizon for

each period. Even for discrete demand or largely discretized continuous demand

scenarios, the size of the state space for reasonable problem settings becomes

prohibitively high. Therefore, it is essential to develop forward solution algorithms

when available.

For zero warm setup costs, (kt = 0 ∀t), by invoking Theorems 3 and 4, one
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can obtain a forward DP solution algorithm which provides an optimal solution in

polynomial time. Below, we provide such an algorithm. (Prior to using the sug-

gested solution algorithm, we assume that the individual demands are smoothed

to ensure feasibility of the problem, which can be done in O(N).)

We retain the labels for the corresponding system parameters in the model

but switch to a vector notation, such as D[·], etc. Furthermore, we introduce the

following new notation: s[·] is the setup cost actually incurred, Z [i] [j] is defined

as f j−11 (0, 0) + f i1(0, 0) and is an intermediate variable, Z [i] [best[i]] is defined as

f i1(0, 0) and denotes the cost of an optimal production policy for the i-period

problem, and π [i] [j] [t] is the production quantity in period t when a cold setup

is forced in period j for an i-period problem. The algorithm is as follows:

Z[·][·] = 0

π[·][·][·] = 0

best[·] = 1

for i←− 1 to n {

for j ←− 1 to i {

for t←− 1 to j − 1 {

π[i][j][t] = π[j − 1][best[j − 1]][t] }

if (π[i][j][j − 1] < Q[j − 1]) then setup = K[j];

else setup = ω[j − 1] ∗ (R [j − 1]− π[i][j][j − 1])
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s[j] = 0

for m←− j to i {

F =
Pi

r=j D[r]−
Pm−1

r=j π[i][j][r]

H =
Pm

r=j D[r]−
Pm−1

r=j π[i][j][r]

E[m] = (max(Q [m] ,H)∗(c [m] + h [m]− c [m+ 1]− ω [m])+ω [m]∗R [m])/

(c [m] + h [m]− c [m+ 1])

if (F ≤ E[m]) then π[i][j][m] = F

else{ if (H < Q[m]) then π[i][j][m] = Q[m]

else π[i][j][m] = H }

if (π[i][j][m] ≥ Q[m]) then s[m+ 1] = ω [m] ∗ (R [m]− π[i][j][m])

else if (π[i][j][m] > 0) then s[m+ 1] = K[m+ 1]

else s[m+ 1] = 0

}

Z[i][j] = Z[j − 1] [best[j − 1]] + setup+
Pi

r=j(s[r] + (c[r] · π[i][j][r])+ h[r] ·Pr
w=j (π[i][j][w]−D[j]))

}

best[i] = i

for l←− 1 to i {
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if Z [i] [j] < Z [i] [best[i]] then best[i] = l }

}

For the computational complexity of the proposed algorithm, we provide the

following brief argumentation: For any given horizon length T , one generates T

sub-problems such that the problem over the periods 1 through T with yT = 0,

(P1,T ), can be solved by decomposing as P1,T = P1,t + Pt+1,T with the imposed

constraint that yt = 0 for 0 ≤ t < T . Thus, for problem (P ), one needs to solve

a total of 1
2
N(N + 1) sub-problems. Each of these subproblems can be solved in

O (N) time. Hence, the algorithm provides an optimal solution in O(N3) time.

The numerical study was conducted via this algorithm.

With additional conditions, it may be possible to obtain solution algorithms

with less complexity, as well. In the following theorem, we state that an improved

O(N) time solution algorithm exists for one such special case.

Theorem 9 (Improved O(N) Solution Algorithm Theorem):

Given an N-period instance of the dynamic lot sizing problem with warm/cold

processes such that, Dt < Qt, kt = 0 (thereby, Rt ≥ Et = max(Qt, [Dt− yt−1]+) =

Qt ) and ωt = 0 for 1 ≤ t ≤ N , an optimal production schedule can be found in

O(N) time.

Proof. Following Aggarwal and Park(1993), let V (j) denote the minimum

cost of supplying the demands of periods 1 through j − 1 such that yj−1 is zero
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for 1 < j ≤ N +1 and V (1) = 0. This definition implies that V (N +1) is the cost

the optimal production plan for periods 1 through N . Now, consider a production

sequence

Sij = {xi = Qi, xi+1 = Qi+1, ..., xm−1 = Qm−1,

xm =

Ã
jX
t=i

Dt −
m−1X
t=i

Qt

!
, xm+1 = 0, ..., xj = 0}

Note that the optimality of such a sequence follows from Theorem 2. For Dt < Qt

(t = 1, · · ·, N), define the N × (N + 1) array A = {a[i, j]}, where

a[i, j] =


V (i) +Ki +

Pj
t=i+1 ηtkt +

Pj
t=i ctxt if i < j

+
Pj

t=i ht(
Pt

j=1 xj −
Pt

j=1Dj)

+∞ otherwise

Following Theorem 2, we have xt = ηtmax{(Dt−yt−1),min{Qt,
Pj

u=tDu−yt−1}}

with ηt = 1 if
Pj

u=tDu − yt−1 > 0 and 0, otherwise. Then, for 1 < j ≤ N + 1,

V (j) = min1≤i≤n a[i, j] if Dj−1 > 0 and, V (j − 1) otherwise.

Definition 5 After Aggarwal and Park(1993) (p. 556), an p×q two-dimensional

array A = {a[i, j]} is Monge if for 1 ≤ i < p and 1 ≤ j < q,

a[i+ 1, j + 1]− a[i+ 1, j] ≤ a[i, j + 1]− a[i, j]. (11.1)
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Consider the production sequence

Sij = {xi = Qi, xi+1 = Qi+1, · · ·, xm−1 = Qm−1,

xm = (

jX
t=i

Dt −
m−1X
t=i

Qt), xm+1 = 0, · · ·, xj = 0}

The given production sequence will result in a total cost of a[i, j] as defined in

(11.1). Clearly, if a new period (j + 1) is added to the horizon, the quantity to

satisfy some or all of its demand Dj+1 can at the earliest be produced in period

m; and, the portion of the production sequence up to m− 1 remains unchanged.

Then, a[i, j+1] is the sum of a[i, j] and the costs of producing Dj+1 units starting

from period m and carrying them in inventory until period j + 1. That is, the

cost difference as a new period is added is only due to the production and holding

costs incurred for the quantity to satisfy Dj+1. Now, consider the same demand

pattern from period i + 1 to period j. The production sequence in this case will

be the same for periods i+1 through m− 1, and the quantity Qi−Di, which was

produced in period i previously will now be produced in period m (and in later

periods if necessary). Let m0 (≥ m) denote the latest period in which production

is done for the production sequence starting in period i+1. Then, if a new period

(j+1) is added to the horizon, some or all of its demandDj+1can at the earliest be

produced in period m0; and, the portion of the production sequence up to period

m0 − 1 remains unchanged. The total cost of production a[i + 1, j + 1] is the

sum of a[i + 1, j] and the costs of producing Dj+1 units starting from period m0

224



and carrying them in inventory until period j + 1. Again, the cost difference as

a new period is added is only due to the production and holding costs incurred

for the quantity to satisfy Dj+1. We see that the increase in the total costs for

a production sequence to satisfy demands over a given horizon as a new period

j + 1 is added to the horizon is equal to the production and holding costs of the

quantity to satisfy the demand in period j + 1. Due to the marginal production

cost structure imposed, the production cost of any quantity to satisfy a demand in

the future decreases as the quantity is produced in periods closer to the demand

period. The holding cost decreases as well, since the number of periods over which

inventory is held decreases. Therefore, a[i, j+1]−a[i, j] ≥ a[i+1, j+1]−a[i+1, j].

Hence, we establish the Mongité of A given below:

Lemma 4 A is Monge if Dt ≤ Qt, kt = 0 and ωt = 0 for t = 1, 2, · · ·, N .

Given the Mongité of A and linear preprocessing time, we can apply Eppstein’s

on-line array-searching algorithm (Eppstein(1990)). Hence, we have Theorem 6.

¥

Following the arguments presented in the proof, note that for positive kt’s,

there may be additional cost reductions when period j + 1 is added if xm > Qm

and/or xm0 > Qm0 which imply that some of the production may be pushed forward

due to Lemma 4. Hence, the Monge condition for A may not hold any more.

Likewise, if Dt ≥ Qt for some t, then we no longer have a two-dimensional array

to define the costs since it is not guaranteed that a[i, j] will always involve a cold
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setup as assumed in the above formulation. It may be interesting for future work

to investigate similar linear search algorithms for this case using the properties of

higher-dimensional Monge arrays (see Aggarwal and Park 1989 and Aggarwal and

Park 1993).

11.1 Numerical Study

We conducted our numerical study to investigate three aspects: (i) the sensitivity

of the optimal production schedule to various system parameters, (ii) the im-

pact of managerial policies of keeping processes warm, and (iii) optimal capacity

determination in the presence of warm/cold processes.

For our numerical study, we considered a problem horizon of 100 periods. A

base demand series was developed such that the base demand in period t, Dbase
t ,

is equal to 0 with probability 0.20 and, with probability 0.80 it is generated from

the distribution U(1, 40). We considered only integer demands in our analysis;

hence, we truncated the random demand values generated to ensure integer values.

Different tightness levels of capacity was achieved through six demand patterns

as a multiple of the base series (i.e. Dt = M · Dbase
t ). We considered constant

parameters over the horizon of the problem; for all t, we set ht = h = 1, kt = 0,

Kt = K, Rt = R, Qt = Q, ωi = ω and ct = c. Since no shortages are allowed, we

ignored the unit production cost (i.e. c = 0). The rest of the parameters of the
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experimental set is as follows:

K ∈ {75, 50, 25}

R ∈ {154, 152, · · ·, 54, 52}

M ∈ {1, 1.75, 2.5, 3.5, 4.5, 5.5}

For warming costs, we used

ω ∈ {0, 0.05, 0.1, 0.15, · · ·, 0.85, 0.9, 0.95}

and ω > 1 as a special case (Q = R). Note that, since h = 1, one can interpret

the values of ω used herein as the ratio of unit warming cost to unit holding cost

per period, as well. As discussed above, the least cost is achieved when the warm

process threshold is set at the point of indifference; therefore, in our numerical

study, we used Q = Q̂, unless stated explicitly otherwise.

All instances were solved on an IBM Pentium III using the forward DP algo-

rithm provided above of complexity O(N3) after smoothing the given individual

demands to ensure feasibility, which is done in O(N) time.
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11.1.1 Sensitivity

As a representative sample of our results, consider the medium demand case (M =

2.5) tabulated in Table 8.1; for brevity only the first 25 periods of the optimal

solution are presented. In this table, the periods where there are no production

and no warming are left blank, italics indicate the periods where the process is

kept warm at the end of the previous period.

We notice that for some values of ω, the optimal solution is the lot-for-lot

policy; this is actually the case for all parameter combinations where the point of

indifference Q̂ is found to be less than or equal to zero (⇒ Q = 0). This is to be

expected since keeping the process warm onto the next period is more beneficial

than incurring a cold setup in the next period even if there is no production done

in the current period (indicated with 0). Incidentally, in such cases, the process is

being kept warm throughout. For positive Q̂, batching occurs as expected. As ω

increases, batching becomes more beneficial and run sizes increase.

The impact of the cold setup cost,K is similar to that of ω in inducing batching

albeit in opposite direction, and it is more pronounced. As K decreases, the point

of indifference Q̂ increases; thus, the option of keeping the process warm loses its

appeal since it would imply too big run sizes resulting in higher carrying costs.

Hence, for small K, the optimal production schedule is closer to the lot-for-lot

policy with a few big batches in between. Hence, when K decreases, the number

of periods in which there is production increases; however, there are more cold
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setups done than warm setups.

For the unreported cases of low and high demands, we observed less sensitivity

of the optimal schedule to the system parameters. We also observed that the

impact of capacity R is primarily through Q̂ except in cases of very tight capacity

levels.

Our results indicate that the warm process threshold, Q̂ plays a more critical

role in warm/cold process decisions than the individual values of system parame-

ters. This observation motivated us to investigate the special case of the ’warm-

only-if-at-capacity’ policy, where Qt = Rt for all t. This policy would give the

optimal solution when ωt ≥ ht since Q̂t ≤ 0 for all t. In other instances, it is a

heuristic corresponding to a constrained solution of the problem. This policy is

important because it also corresponds to the cases where undertime options are

deliberately not used by management even though they are available. It may also

be viewed as a ‘big bucket version’ of the DLSP. The best schedule obtained under

the warm-only-if-at-capacity policy for our base problem is also given in Table 8.1.

Since it corresponds to the optimal solution when ω > 1, we see most batching

in this case. Furthermore, the imposed policy encourages batching in the best

solution for large K values; but, for small K, it gives a schedule similar to that

obtained for moderate unit warming costs. This tendency was validated for low

and high demand scenarios with other values of the cost parameters, as well.

Similarly, we observe that the deviation of the total cost under the Q = R
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policy from the optimal decreases as ω increases, for all demand levels and setup

cost values. (For an instance of R, we refer the reader to Figure 8-1). For smaller

demand levels and smaller cold setup costs, the deviation becomes zero at smaller

values of ω. The speed of convergence is more sensitive to the changes in K.

11.1.2 Managerial Implications: Capacity Selection

Next, we study capacity issues for warm/cold processes. We report our findings

on the medium demand case with K = 75 for a broad range of capacity values,

R = [52, 154], where R = 52 corresponds to the minimum capacity level for which

a feasible solution exists under the given demand pattern. Throughout, we assume

that Q = Q̂, which provides the lowest attainable cost. (Note that as R changes,

so does Q̂.) We focus on the behavior of the total cost and its components as

the capacity of the process changes and report them in Figures 8-1 - 8-2. The

reported costs are for the entire problem horizon (N = 100).

We observe a non-monotonic behavior in the total cost with respect to capacity.

As capacity decreases, the total cost initially decreases; then, there is an increase

for all values of ω. For large values of ω (and for the imposed warm-only-if-at-

capacity policy), the total cost curve fluctuates and, in some instances, exhibits

sudden jumps (see Figure 8-1). This erratic behavior is best explained through

individual cost components.

First consider the setup costs depicted in Figure 8-2. As R decreases, the in-
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curred setup cost decreases almost monotonically followed by a sudden downward

jump to the value of K(= 75) after which it remains flat. That the setup cost

equals a value of K implies that there is a single cold setup over the entire horizon

of the problem in the optimal solution. This instance corresponds to the capac-

ity level at which Q̂ ceases to attain a positive value as R decreases; hence, the

process can be kept warm throughout the horizon even if no production is done.

Note that this happens at higher capacity levels for smaller ω.

For the warming cost depicted in Figure 8-3, we observe an opposite behav-

ior. As R decreases, the warming cost increases albeit non-monotonically until a

sudden upward jump, followed by an almost steady decrease. The jump coincides

with the same capacity level observed in the behavior of setup costs. Similarly,

the jump in warming costs occurs at higher capacity levels for smaller ω. The be-

havior of the two cost components visa vis each other illustrates the fundamental

trade off in the presence of warm/cold processes. In fact, a closer examination of

the numerical results reveals that the two cost components go in tandem. This is

intuitive but still important to observe.

The main component that causes the total cost curve to exhibit a bumpy

behavior is the inventory holding cost depicted in Figure 8-4. As R decreases,

the holding cost tends to decrease, as expected, since with lower R values, less

inventory is carried. At the capacity level where Q̂ ≤ 0, the production schedule is

the lot-for-lot policy; hence, no inventory is carried in those cases and we observe

zero holding costs after this point, as R decreases. However, if R decreases further,

231



we begin to see the effects of prior demand smoothing to ensure feasibility. That

is, to ensure feasibility, the solution is forced a priori to carry more and more

inventory in advance as the capacity tightness increases. This increasing portion

of the inventory cost is what causes the increase in the total cost as R gets smaller.

Although non-monotonic, we observe that there is an overall ’convex’ trend in

the total cost with respect to the capacity limit. That is, there is an ’optimal’

capacity level which minimizes the total costs over the horizon. The optimal

capacity level appears to increase as ω decreases. The analysis of the total cost

provides further managerial implications regarding capacity selection and use of

undertime options. Next, we discuss such issues.

The model and the solution procedures discussed herein provide a manager

with the tools to determine the optimal capacity level in the presence of warm/cold

processes, as well. For example, from Figure 8-1, it is easy to see that an econom-

ically rational manager would choose R = 72 as the optimal capacity level when

ω = 0.35 for the numerical setting considered. (However, we should point out that

this conclusion is based on a single known sample path of demands and cannot be

generalized to a more realistic scenario of stochastic demands. For brevity, in our

discussion herein, we consider such robustness issues to be outside the scope of our

analysis, which can be addressed in a simulation context.) Yet, the question re-

mains: What are the implications of suboptimal capacity decisions? In particular,

what happens if the manager ignores the availability of the undertime option?
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We consider two such scenarios. In the first case, the manager restricts warm

process decisions to only the instances when production quantity in a period is

equal to the capacity limit; that is, the manager sets Q = R and chooses the best

capacity level accordingly. Note that the manager is aware of the advantages of

keeping a process warm but behaves as if ω is prohibitively high (⇒ Q̂ ≥ R). In

the second case, the manager totally ignores the possibility of keeping the process

warm and bases the capacity selection decision on the solution of the classical

(uncapacitated) problem. Specifically, in this case, the best capacity is selected to

equal the maximum production quantity obtained in the Wagner-Whitin solution.

In Table 8.2, we present a representative sample of our findings where R∗opt, R
∗
1

and R∗2 are, respectively, the optimal and the best capacity levels selected for the

first and second cases. We let ∆i% (for i = 1, 2) denote the respective percentage

deviations in total costs with respect to the total cost under the optimal capacity

decision, and compute it as follows:

∆i% =

³
TCR=R∗i − TCR=R∗opt

´
TCR=R∗opt

× 100 (11.2)

We find that R∗1 < R∗opt < R∗2 for all ω. This implies that ignoring poten-

tial benefits of warm processes results in selecting a capacity level higher than

the optimal schedule necessitates, yielding a lower equipment utilization rate and

possibly lower rates of return on investment (ROI). On the other hand, impos-
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ing the warm-only-if-at-capacity policy results in selecting a capacity level lower

than the optimal. Thus, it yields a higher equipment utilization rate and possibly

higher ROI. This apparent efficiency may be the reason behind the popularity of

this policy among practitioners. However, the ensuing tigthness of capacity, in

fact, increases the total operating costs incurred. Operating with R∗1 results in

an excessively large cost differential for low unit warming costs; as ω increases,

the differential vanishes in the limit, as expected. The cost differential monoton-

ically decreases over ω. When R∗2 is used instead of R
∗
opt, interestingly, the cost

differential exhibits a concave behavior over ω. It increases very steeply for low

ω, is concave over a large range of unit warming cost, and decreases slowly for

large ω. Thus, the total ignorance of the undertime option results in the worst

performance (more than 100% deviation from the optimal) over a broad range of

parameter values. Its concave behavior also implies that management would most

benefit from the use of the undertime option in capacity selection decisions for

moderate values of unit warming cost.

In conclusion, the presence of warm/cold processes impacts total operating

costs not only by yielding differently structured production schedules compared

to the classical settings, but also through optimal capacity selection decisions

taking into account the undertime option.
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11.1.3 Planning Horizons

Using the medium demand case, i.e. M = 2.5, and kt = 0, ωt = 0 we have

observed the planning horizon occurrences, for each of the planning horizon rule

introduced in Chapter 10. In this part of the numerical study the warm process

threshold takes on values between 100 and 60 with the increments of 5, i.e.

Qt ∈ {100, 95, · · ·, 65, 60}. For each of the experiments we have recorded the

periods where each planning horizon occurs. We present the planning horizon

occurring periods for each planning horizon rule in Table 8.3, for Kt = 75 and

Qt ∈ {100, 80, 60}, as an illustration. We observe that both warm and cold

Zabel-type planning horizons occur more frequently then the Wagner-Whitin-type

planning horizons for all the values of Qt. When Qt is large cold planning hori-

zons are more frequent than the warm planning horizons. However, both warm

Wagner-Whitin-type and warm Zabel-type planning horizon occurrences increases

as the Qt decreases. When the warm process threshold is large, warm process is

rare, therefore the planning horizons are more likely to be cold type. As Qt de-

creases, the warm process is more likely, hence the warm type planning horizon

occurrences increase.

235



Chapter 12

Conclusions

In this dissertation we have considered opportunities existing in the quality control

chart design and dynamic lot sizing environment.

Firstly, we have provided procedures for economical design of X̄−control charts

for a single machine facing exogenous stoppages which are opportunities for in-

spection and restoration of the process at reduced cost. These opportunities arise

from the line stoppages due to the alarms from other machines in the line. We have

assumed that opportunities arrive due to a Poisson process. We have formulated

the problem as a cost rate minimization problem by invoking the renewal reward

theorem in order to determine the control chart design parameters. Regeneration

points in the renewal reward process correspond to machine stoppage instances.

With this setting we have derived the expected cycle time and expected cycle cost

functions which are used in the total cost rate function to be minimized. Through
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a numerical study we have conducted a sensitivity analysis and shown that using

exogenous opportunities for inspection and restoration can significantly improve

the cost rate, hence provide savings.

Although we consider the design of X̄−control charts, the idea of the op-

portunistic inspections in the economic design can be applied to other variables-

and attributes- control charts, as well. The exponentially distributed opportunity

arrival assumption can be relaxed in future studies. Hence, models incorporat-

ing Weibull or Gamma distributions for the opportunity arrivals can be studied.

Moreover, models incorporating different distributions for the assignable cause oc-

currences and the opportunistic inspections may be some extensions of the model

developed in this research. When the distribution of the assignable cause occur-

rences does not have the memoryless property (i.e., is IFR or DFR), then con-

jecturally we can state that an opportunity taker machine behaves selectively to

utilize the inspection opportunities depending on the timing of the opportunity.

Dekker and Dijkstra (1992) consider one-opportunity-look-ahead policy for the

opportunistic maintenance. A similar policy may be implemented for the control

charts design in the presence of opportunistic inspections.

Secondly, we have provided exact model derivation for the multiple machine en-

vironment by employing semi-Markov processes. For the exact derivation, we con-

sider embedded cycles which are defined between two consecutive system restarts.

System state at a system restart is given by the status of each machine and the

remaining time to the next sampling instance for each machine. We show that
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system state transition probabilities can be derived from individual machine state

transition probabilities. However, due to the tedious expressions and lack of prac-

tical applicability, we have developed an approximate model using the single ma-

chine model. We have shown that partitioning of the machines in a line as oppor-

tunity takers and opportunity non-takers can further improve the costs. We have

employed a greedy heuristic to search over the partitioning alternatives. We have

conducted a numerical study to show the partitioning and the joint optimization

of the control chart parameters. Furthermore, with a simulation study we have

tested our approximate analytical cost rates with the actual, and observed that

approximations are acceptable.

For future work, additional robust approximations can be developed. One such

approximation may be using the optimal values of the sample size and control

limits obtained from the classical model (µ = 0) for each machine and optimizing

over only the sampling interval. Heuristics for the partitioning problem other than

the greedy one used herein can also be implemented for searching the partitioning

of the machines.

In the third part, we have considered lot sizing decisions for a process which

can be kept warm for the next period at an additional linear cost if the production

quantity in the current period is at least a positive threshold amount. We have

formulated the problem as a dynamic programming model. We have established

the structure of the optimal production schedule and the conditions under which a

forward polynomial time solution is possible. As a special case, we also presented
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a linear time solution and established conditions for the existence of planning

horizons. Through a numerical study, we have also investigated the impact of a

warm process option on the required capacity for a given stream.

A number of extensions of the model and the solution techniques herein are

possible as future work. Although our focus has been to establish the structure

of the optimal solution, development of heuristic solutions remains an open re-

search area. We can conjecture that forward heuristics, in general, would perform

relatively better for the case when kt = 0, since, in this case, a forward optimal so-

lution is possible. In addition, meta-heuristics such as tabu search and simulated

annealing are also interesting venues of research. Furthermore, most real-world

problems exhibit demand uncertainty. Hence, the robustness of the solutions to

such changes in demands is also important. Our structural results indicate that

the option of keeping the process warm enables longer production series vis a vis

the CLSP setting. One can conjecture that a warm/cold process would be less

susceptible to the ‘nervousness’ phenomenon, since production is kept going over

a number of successive periods. However, it is not possible to say a priori which

type of heuristic would be the best and it is another fertile research topic. In-

corporating the lost sales and backordering options into the model would be an

interesting extension. Multiple product scheduling can also be studied under this

setting. Additionally, ordering policies with rebates can be modeled as warm/cold

processes introduces here, such that if the order quantity is more than a certain

quantity (or value), a discount, valid during a certain time window, can be offered
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for the next purchase. Another extension would be modeling the problem with

setup times and production rates instead of setup and constant production costs.
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Figure 2-1: The house of Toyota Production System

Figure 2-2: An illustration of control charts.
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Table 2.1: Categories of quality costs (after Montgomery 2004)
Preventive Costs Internal Failure Costs

Quality planning and engineering
New product review
Product/process design
Process control
Burn-in
Training
Quality data acquisition and analysis

Scrap
Rework
Retest
Failure analysis
Downtime
Yield losses
Downgrading(off-spacing)

Appraisal Costs External Failure Costs

Inspection and test of incoming material
Product inspection and test
Materials and services consumed
Maintaining accuracy of test equipment

Complaint adjustment
Returned product/material
Warranty charges
Liability costs
Indirect costs

Figure 3-1: Type I error.
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Figure 3-2: Type II error.

Figure 3-3: Illustration of the cycle type true
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Figure 3-4: Illustration of the cycle type false

Figure 3-5: Illustration of the cycle type opportunity true

Figure 3-6: Illustration of the cycle type opportunity false

250



Figure 4-1: Contour plot of the cost rate function over k − h plane for π = 500,
LT = LF = 0.1, LO = 0.1, a = 100, u = 5, b = 0.1, λ = 0.05, µ = 0.25 and y = 1.

Figure 4-2: Contour plot of the cost rate function over k − h plane for π = 500,
LT = LF = 0.1, LO = 0.1, a = 100, u = 5, b = 0.1, λ = 0.05, µ = 0.25 and y = 6.
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Figure 4-3: Illustration of the Golden Section Search algorithm.

Figure 4-4: Change of the mean and median of the percentage improvement with
respect to µ
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Table 4.1: The parameter set for the single machine numerical study
Parameter Values

λ 0.05
π 500
a 50 100 250
b 0.1 0.2 1
u 0 5 10
LF 0.1 0.25 0.5
LT 0.1 0.25 0.5
Lo 0.1 0.25 0.5
RF 0
RT 0

Table 4.2: Sensitivity analysis with respect to u. LT = 0.1;LF = 0.5;LO =
0.25; a = 100; b = 0.2

u = 0 u = 5 u = 10
(y∗; k∗;h∗) E[TC ]

∗ %∆ (y∗; k∗;h∗) E[TC]
∗ %∆ (y∗; k∗;h∗) E[TC ]

∗ %∆

0 (5; 3.43; 0.60) 6.32 0 (8; 3.45; 1.69) 10.5 0 (8; 3.35; 2.27) 13.1 0
0.025 (5; 3.43; 0.62) 9.2 0.02 (8; 3.45; 1.74) 13.2 0.03 (8; 3.35; 2.35) 15.5 0.03
0.05 (5; 3.43; 0.64) 12 0.02 (8; 3.45; 1.80) 15.8 0.09 (8; 3.35; 2.43) 18 0.12
0.075 (5; 3.43; 0.66) 14.8 0.06 (8; 3.45; 1.86) 18.3 0.17 (8; 3.35; 2.52) 20.3 0.23
0.1 (5; 3.43; 0.68) 17.4 0.11 (8; 3.45; 1.93) 20.8 0.27 (8; 3.35; 2.62) 22.6 0.36
0.25 (5; 3.40; 0.87) 32.2 0.42 (7; 3.35; 2.46) 34.3 0.94 (8; 3.35; 3.48) 35.3 1.32
0.5 (5; 3.40; 1.82) 52.8 1.11 (7; 3.35; 6.00) 53.2 2.24 (7; 3.20; 9.96) 53.2 2.79

Table 4.3: Sensitivity analysis with respect to b. LT = 0.25;LF = 0.5;LO =
0.25; a = 100;u = 5

b = 0.1 b = 0.2 b = 1
(y∗; k∗;h∗) E[TC ]

∗ %∆ (y∗; k∗;h∗) E[TC]
∗ %∆ (y∗; k∗;h∗) E[TC ]

∗ %∆

0 (9; 3.60; 1.63) 13.53 0 (8; 3.45; 1.72) 14.01 0 (5; 2.92; 2.11) 16.5 0
0.025 (9; 3.60; 1.70) 16.07 0.04 (8; 3.45; 1.80) 16.52 0.04 (5; 2.92; 2.22) 18.81 0.06
0.05 (9; 3.60; 1.77) 18.55 0.13 (8; 3.45; 1.88) 18.97 0.13 (5; 2.92; 2.34) 21.05 0.20
0.075 (9; 3.60; 1.86) 20.97 0.25 (8; 3.45; 1.97) 21.34 0.27 (5; 2.92; 2.47) 23.24 0.41
0.1 (9; 3.60; 1.96) 23.32 0.40 (8; 3.45; 2.08) 23.66 0.43 (5; 2.92; 2.62) 25.36 0.65
0.25 (9; 3.60; 3.03) 36.15 1.68 (7; 3.29; 3.23) 36.30 1.82 (5; 2.92; 4.39) 36.95 2.66
0.5 (1; 3.70; 50) 53.21 4.78 (1; 5.88; 50) 53.21 4.85 (1; 5.88; 50) 53.21 5.21

Table 4.4: Sensitivity analysis with respect to a. LT = 0.25;LF = 0.1;LO =
0.1;u = 5; b = 0.2

a = 50 a = 100 a = 250
(y∗; k∗;h∗) E[TC ]

∗ %∆ (y∗; k∗;h∗) E[TC]
∗ %∆ (y∗; k∗;h∗) E[TC ]

∗ %∆

0 (6; 2.84; 2.48) 11.4 0 (6; 2.85; 1.67) 13.9 0 (6; 2.85; 1.02) 18.7 0
0.025 (6; 2.84; 2.55) 11.2 0.02 (6; 2.85; 1.69) 13.7 0.01 (6; 2.85; 1.03) 18.5 0
0.05 (6; 2.85; 2.62) 11.0 0.06 (6; 2.85; 1.72) 13.5 0.02 (6; 2.85; 1.04) 18.3 0.01
0.075 (6; 2.85; 2.70) 10.8 0.15 (6; 2.85; 1.75) 13.3 0.06 (6; 2.85; 1.05) 18.1 0.02
0.1 (6; 2.85; 2.78) 10.6 0.26 (6; 2.85; 1.78) 13.1 0.10 (6; 2.85; 1.06) 17.9 0.03
0.25 (6; 2.87; 3.43) 9.33 1.70 (6; 2.87; 1.96) 12 0.63 (6; 2.86; 1.11) 16.8 0.20
0.5 (6; 2.88; 5.92) 7.46 6.53 (6; 2.88; 2.39) 10.3 2.51 (6; 2.87; 1.20) 15.2 0.78
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Table 4.5: Sensitivity analysis with respect to LO. LT = 0.1;LF = 0.5; a =
100;u = 5; b = 0.2

Lo = 0.1 Lo = 0.25 Lo = 0.5
(y∗; k∗;h∗) E[TC ]

∗ %∆ (y∗; k∗;h∗) E[TC]
∗ %∆ (y∗; k∗;h∗) E[TC ]

∗ %∆

0 (8; 3.45; 1.69) 10.5 0 (8; 3.45; 1.69) 10.5 0 (8; 3.45; 1.69) 10.5 0
0.025 (8; 3.45; 1.76) 15 0.04 (8; 3.45; 1.74) 13.2 0.03 (8; 3.45; 1.71) 10.3 0.01
0.05 (8; 3.45; 1.84) 19.3 0.13 (8; 3.45; 1.80) 15.8 0.09 (8; 3.45; 1.74) 9.96 0.03
0.075 (8; 3.45; 1.92) 23.5 0.23 (8; 3.45; 1.86) 18.3 0.17 (8; 3.45; 1.77) 9.68 0.07
0.1 (8; 3.45; 2.02) 27.6 0.35 (8; 3.45; 1.93) 20.8 0.27 (8; 3.45; 1.79) 9.41 0.13
0.25 (8; 3.29; 2.97) 50.1 1.18 (7; 3.29; 2.47) 34.3 0.94 (8; 3.45; 1.98) 7.91 0.85
0.5 (1; 6.03; 50) 81.2 2.79 (7; 3.29; 6.00) 53.2 2.24 (7; 3.29; 2.38) 5.88 3.61

Table 4.6: Sensitivity analysis with respect to LO. LT = 0.25;LF = 0.5; a =
50;u = 5; b = 0.2

Lo = 0.1 Lo = 0.25 Lo = 0.5
(y∗; k∗;h∗) E[TC ]

∗ %∆ (y∗; k∗;h∗) E[TC]
∗ %∆ (y∗; k∗;h∗) E[TC ]

∗ %∆

0 (8; 3.44; 2.56) 11.49 0 (8; 3.44; 2.56) 11.49 0 (8; 3.44; 2.56) 11.49 0
0.025 (8; 3.44; 2.80) 15.74 0.12 (8; 3.44; 2.80) 13.91 0.13 (8; 3.45; 2.69) 11.05 0.05
0.05 (8; 3.44; 3.11) 19.86 0.38 (8; 3.44; 3.12) 16.23 0.47 (8; 3.45; 2.84) 10.61 0.23
0.075 (8; 3.44; 3.53) 23.85 0.73 (8; 3.44; 3.55) 18.47 0.97 (8; 3.45; 3.02) 10.17 0.53
0.1 (7; 3.29; 4.08) 27.71 1.17 (7; 3.29; 4.13) 20.61 1.62 (7; 3.29; 3.26) 9.57 2.71
0.25 (7; 6.03; 50) 47.66 5.66 (7; 6.03; 50) 30.84 9.10 (7; 3.29; 6.29) 7.12 8.56
0.5 (1; 6.03; 50) 79.82 3.68 (1; 6.03; 50) 49.54 6.27 (1; 6.03; 50) 3.64 31.08

Table 4.7: Sensitivity analysis with respect to LO. LT = 0.5;LF = 0.5; a = 50;u =
10; b = 0.2

Lo = 0.1 Lo = 0.25 Lo = 0.5
(y∗; k∗;h∗) E[TC ]

∗ %∆ (y∗; k∗;h∗) E[TC]
∗ %∆ (y∗; k∗;h∗) E[TC ]

∗ %∆

0 (8; 3.31; 3.73) 18.58 0 (8; 3.31; 3.73) 18.58 0 (8; 3.31; 3.73) 18.58 0
0.025 (8; 3.31; 4.16) 22.46 0.13 (8; 3.31; 4.16) 20.64 0.15 (8; 3.31; 4.17) 17.62 0.18
0.05 (8; 3.31; 4.74) 26.20 0.48 (8; 3.31; 4.76) 22.62 0.57 (8; 3.31; 4.79) 16.63 0.81
0.075 (8; 3.31; 5.59) 29.81 0.98 (8; 3.31; 5.65) 24.48 1.24 (8; 3.31; 5.74) 15.60 2.05
0.1 (8; 3.31; 7.00) 33.27 1.65 (8; 3.31; 7.16) 26.22 2.19 (8; 3.31; 7.46) 14.48 4.22
0.25 (1; 6.03; 50) 51.85 5.58 (1; 6.03; 50) 35.19 8.49 (1; 6.03; 50) 7.41 32.72
0.5 (1; 5.88; 50) 83.64 2.68 (1; 5.88; 50) 53.64 4.43 (1; 6.03; 50) 3.64 43.48

Table 4.8: Summary of the sensitivity analyses results
y∗ k∗ h∗ E [TC∗]

u % ↔ % %
b & & % %
a ↔ & & %
LO ↔ ↔ % &
LT ↔ ↔ % %
LF % % % %
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Table 4.9: Sensitivity with respect to µ. LF = 0.5;LO = 0.25; a = 100;u = 5; b = 1
LT = 0.1 LT = 0.5

µ y∗ k∗ h∗ E [TC∗] y∗ k∗ h∗ E [TC∗]
0 8 3.45 1.69 10.5 8 3.45 1.78 19.69

0.025 8 3.45 1.74 13.2 8 3.45 1.86 22.09
0.05 8 3.45 1.80 15.8 8 3.45 1.95 24.44
0.075 8 3.45 1.86 18.3 8 3.45 2.06 26.72
0.1 8 3.45 1.93 20.8 8 3.45 2.17 28.94
0.25 7 3.29 2.47 34.3 7 3.29 3.54 41.03
0.5 7 3.29 6.00 53.2 1 5.70 50 57.27

Table 4.10: Sensitivity with respect to µ. LF = 0.25;LO = 0.1; a = 100;u = 5; b =
1

LT = 0.1 LT = 0.5
µ y∗ k∗ h∗ E [TC∗] y∗ k∗ h∗ E [TC∗]
0 7 3.23 1.66 10.5 7 3.23 2.70 17.03

0.025 7 3.23 1.70 13.2 7 3.23 2.86 18.44
0.05 7 3.23 1.74 15.8 7 3.23 3.05 19.82
0.075 7 3.23 1.79 18.3 7 3.23 3.26 21.18
0.1 7 3.23 1.84 20.8 7 3.23 3.52 22.52
0.25 7 3.23 2.21 34.3 7 3.23 8.29 29.98
0.5 7 3.23 3.49 53.2 1 5.88 50 42

Table 4.11: Sensitivity with respect to µ. LF = 0.1;LO = 0.25; a = 100;u = 5; b =
1

LT = 0.1 LT = 0.5
µ y∗ k∗ h∗ E [TC∗] y∗ k∗ h∗ E [TC∗]
0 6 2.85 1.64 10.4 6 2.84 1.73 19.55

0.025 6 2.85 1.66 10.17 6 2.85 1.77 19.20
0.05 6 2.85 1.69 9.95 6 2.85 1.82 18.84
0.075 6 2.85 1.71 9.73 6 2.85 1.88 18.49
0.1 6 2.85 1.74 9.51 6 2.85 1.93 18.15
0.25 6 2.87 1.92 8.29 6 2.86 2.40 16.10
0.5 6 2.88 2.32 6.48 6 2.88 4.56 12.83
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Table 4.12: Sensitivity with respect to µ. LF = 0.25;LO = 0.5; a = 100;u = 5; b =
1

LT = 0.1 LT = 0.5
µ y∗ k∗ h∗ E [TC∗] y∗ k∗ h∗ E [TC∗]
0 7 3.23 1.66 10.48 8 3.45 1.78 16.69

0.025 7 3.23 1.68 10.18 8 3.45 1.86 19.08
0.05 7 3.23 1.71 9.90 8 3.45 1.96 18.47
0.075 7 3.23 1.73 9.62 8 3.45 2.07 17.87
0.1 7 3.23 1.76 9.35 8 3.45 2.19 17.27
0.25 7 3.23 1.94 7.87 7 3.29 3.87 13.59
0.5 7 3.23 2.36 5.86 1 6.03 15 7.27

Table 4.13: Cost Breakdown. LT = 0.1;LF = 0.5;LO = 0.25; a = 100; b = 0.2
b = 0.1 b = 0.2 b = 1

µ T F OT OF T F OT OF T F OT OF

0 99.26 0.74 0 0 97.88 2.12 0 0 93.63 6.37 0 0
0.025 90.90 0.57 0.76 7.7 89.94 1.66 0.82 7.58 86.95 4.90 1.15 7.10
0.05 86.80 0.49 1.39 11.32 85.98 1.41 1.52 11.09 83.16 4.13 2.19 10.53
0.075 84.40 0.43 2.02 13.15 83.64 1.24 2.22 12.91 80.85 3.61 3.23 12.31
0.1 82.84 0.39 2.66 14.10 82.09 1.12 2.94 13.85 79.23 3.22 4.34 13.21
0.25 78.18 0.41 8.27 13.14 77.22 0.65 9.18 12.95 72.47 1.77 14.06 11.70
0.50 57.33 0.11 38.03 4.52 53.78 0.17 41.96 4.10 35.84 0.25 61.70 2.21

Table 4.14: Cost Breakdown. LT = 0.1;LF = 0.5;LO = 0.25; a = 100; b = 0.2
u = 0 u = 5 u = 10

µ T F OT OF T F OT OF T F OT OF

0 95.67 4.33 0 0 99.05 0.95 0 0 99 1 0 0
0.025 87.24 4.11 0.44 8.22 87.04 0.86 1.10 11 86.38 0.88 1.54 11.21
0.05 83.02 3.97 0.80 12.21 81.05 0.80 1.99 16.16 80.10 0.68 2.80 16.42
0.075 80.51 3.87 1.14 14.49 77.46 0.76 2.82 18.96 76.25 0.63 3.98 19.14
0.1 78.85 3.78 1.47 15.89 75.06 0.73 3.64 20.57 73.62 0.60 5.17 20.61
0.25 74.78 3.38 3.64 18.20 68.38 0.59 9.30 21.74 65.40 0.45 13.70 20.46
0.50 72.27 2.76 8.59 16.39 59.58 0.68 24.43 15.31 50.58 0.19 37.42 11.82
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Table 4.15: Cost Breakdown. LT = 0.25;LF = 0.25;LO = 0.5;u = 5; b = 0.2
a = 50 a = 100 a = 250

µ T F OT OF T F OT OF T F OT OF

0 99.33 0.67 0 0 99.03 0.97 0 0 98.51 1.49 0 0
0.025 92.30 0.57 1.10 6.03 90.46 0.82 0.84 7.88 88.20 1.23 0.61 9.97
0.05 88.93 0.50 2.14 8.44 86.26 0.73 1.56 11.45 83.04 1.09 1.09 14.78
0.075 86.93 0.44 3.29 9.34 83.79 0.67 2.26 13.28 79.96 1.00 1.54 17.51
0.1 85.48 0.39 4.68 9.45 82.17 0.63 2.99 14.21 77.92 0.94 1.97 19.17
0.25 65.05 0.10 31.62 3.23 77.13 0.42 9.31 13.14 72.87 0.74 4.83 21.57
0.50 0 0 100 0 53.04 0.11 42.81 4.04 76.81 12.47 1.17 9.55

Table 4.16: Cost Breakdown. LT = 0.5;LF = 0.25; a = 100;u = 5; b = 0.2
LO = 0.1 LO = 0.25 LO = 0.5

µ T F OT OF T F OT OF T F OT OF

0 99.35 0.65 0 0 99.35 0.65 0 0 99.35 0.65 0 0
0.025 84.82 0.50 1.59 13.09 92.84 0.54 1.32 5.30 93.61 0.53 0.63 5.23
0.05 74.93 0.41 2.90 21.76 89.28 0.48 2.59 7.64 90.91 0.47 1.21 7.41
0.075 67.28 0.34 4.06 28.31 86.87 0.44 3.90 8.79 89.40 0.41 1.85 8.34
0.1 60.99 0.29 5.11 33.60 84.99 0.41 5.28 9.32 88.43 0.37 2.59 8.61
0.25 36.41 0.13 10.49 52.97 75.37 0.26 16.33 8.04 79.67 0.14 15.78 4.41
0.50 12.14 0.02 20.03 67.81 37.79 0.05 60.45 1.72 0 0 100 0

Table 4.17: Cost Breakdown. LT = 0.25;LO = 0.25; a = 100;u = 5; b = 0.2
LF = 0.1 LF = 0.25 LF = 0.5

µ T F OT OF T F OT OF T F OT OF

0 97.88 2.12 0 0 99.03 0.97 0 0 99.31 0.69 0 0
0.025 89.94 1.66 0.82 7.58 90.46 0.82 0.84 7.88 74.71 0.50 0.71 24.08
0.05 85.98 1.41 1.52 11.09 86.26 0.73 1.56 11.45 60.40 0.38 1.14 38.07
0.075 83.64 1.24 2.22 12.91 83.79 0.67 2.26 13.28 50.79 0.30 1.48 47.44
0.1 82.09 1.12 2.94 13.85 82.17 0.63 2.99 14.21 43.77 0.24 1.78 54.21
0.25 77.22 0.65 9.18 12.95 77.12 0.42 9.31 13.15 22.00 0.11 4.56 73.33
0.50 53.78 0.17 41.96 4.10 53.14 0.11 42.68 4.07 0 0 13.79 86.21

Table 4.18: Cost Breakdown. LF = 0.25;LO = 0.25; a = 100;u = 5; b = 0.2
LT = 0.1 LT = 0.25 LT = 0.5

µ T F OT OF T F OT OF T F OT OF

0 98.66 1.34 0 0 99.03 0.97 0 0 99.35 0.65 0 0
0.025 86.86 1.14 1.09 10.90 90.46 0.82 0.84 7.88 92.84 0.54 1.32 5.30
0.05 80.95 1.04 1.98 16.04 86.26 0.73 1.56 11.45 89.28 0.48 2.59 7.64
0.075 77.40 0.96 2.81 18.83 83.79 0.67 2.26 13.28 86.87 0.44 3.90 8.79
0.1 75.02 0.91 3.62 20.45 82.17 0.63 2.99 14.21 84.99 0.41 5.28 9.32
0.25 68.38 0.70 9.25 21.67 77.12 0.42 9.31 13.15 75.37 0.26 16.33 8.04
0.50 59.92 0.45 24 15.63 53.14 0.11 42.68 4.07 37.79 0.05 60.45 1.72
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Table 4.19: Summary statistics of the percentage improvement of JPC over the
classical SPC.

µ 0.025 0.05 0.075 0.1 0.25 0.5 Overall

Mean 0.031 0.12 0.317 0.55 3.527 8.82 1.922
Std.Dev. 0.041 0.167 0.647 1.03 6.443 11.89 5.986
Median 0.014 0.06 0.123 0.21 1.2 3.95 0.12
Min 0 0 0 0 0.03 0.12 0
Max 0.228 1.04 7.69 11.37 34.5 59.77 59.77

Figure 5-1: An illustration of the three machine system. Machines #1 and #2 are
opportunity takers and machine #3 is opportunity non-taker. In-control status
denoted by 1, and out-of-control status denoted by 0.
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Figure 5-2: Observed frequency vs. Exponential CDF with MLE of the parameter
(i.e. the mean of the observed system cycle length) for Experiment #1 and π =
500.

Figure 5-3: Observed frequency vs. Exponential CDF with MLE of the parameter
(i.e. the mean of the observed system cycle length) for Experiment #4 and π =
500.
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Figure 5-4: Observed frequency vs. Exponential CDF with MLE of the parameter
(i.e. the mean of the observed system cycle length) for Experiment #10 and
π = 500.

Figure 5-5: Observed frequency vs. Exponential CDF with MLE of the parameter
(i.e. the mean of the observed system cycle length) for Experiment #1 and π =
1500.
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Figure 5-6: Observed frequency vs. Exponential CDF with MLE of the parameter
(i.e. the mean of the observed system cycle length) for Experiment #8 and π =
1500.

Figure 5-7: Observed frequency vs. Exponential CDF with MLE of the parameter
(i.e. the mean of the observed system cycle length) for Experiment #11 and
π = 1500.
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Table 5.1: Experiment set for the multiple machine numerical study
Exp # λ L a Exp # λ L a

1 ↔ ↔ ↔ 8 % ↔ &
2 & ↔ ↔ 9 ↔ % %
3 ↔ % ↔ 10 ↔ % &
4 ↔ ↔ % 11 % % %
5 % % ↔ 12 & % %
6 & % ↔ 13 & % &
7 % ↔ % 14 % % &

Table 5.2: Partitioning of the machines as the opportunity taker and opportunity
non-taker

π = 500 π = 1500
(Machine #) (Machine #)

Exp # 1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8
1 T T T T T T T T T T T T T T T T
2 T T T T T T T T T T T T T T T T
3 T T T N N N N N T T N N N N N N
4 T T T T T T T T T T T T T T T T
5 T T T T T N N N T T T T N N N N
6 T T N N N N N N N N N N N N N N
7 T T T T T T T T T T T T T T T T
8 T T T T T T T T T T T T T T T T
9 T T T N N N N N T T N N N N N N
10 T T T N N N N N T N N N N N N N
11 T T T T T N N N T T T T N N N N
12 T T N N N N N N T N N N N N N N
13 T T N N N N N N T N N N N N N N
14 T T T T T N N N N N N N N N N N
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Table 5.3: Analytical cost rate and deviation from simulation π = 500
Exp # All non-taker All taker Partitioned

1 (126.26;−0.10) (110.22; 8.19) (110.22; 8.19)
2 (206.86;−0.03) (185.55; 1.22) (185.55; 1.22)
3 (120.51;−0.43) (131.44;−0.55) (117.81; 0.04)
4 (132.59; 0.03) (116.06; 1.67) (116.06; 1.67)
5 (139.47; 0.32) (144.11;−2.58) (132.95;−0.82)
6 (123.96;−0.10) (145.85;−3.04) (121.72; 0.63)
7 (141.22; 0.28) (121.43; 1.98) (121.43; 1.98)
8 (123.65; 0.21) (102.12; 3.04) (102.12; 3.04)
9 (114.86; 0.27) (125.42;−4.11) (111.79;−0.43)
10 (114.26;−0.61) (122.79;−0.84) (111.77; 0.13)
11 (142.08; 0.19) (147.27;−2.62) (135.38;−0.32)
12 (109.37;−0.72) (129.71;−4.99) (106.75; 0.48)
13 (139.47;−0.60) (161.94;−2.23) (137.35;−0.10)
14 (123.86;−0.19) (124.08;−1.45) (117.68;−0.89)

Table 5.4: Analytical cost rate and deviation from simulation π = 1500
Exp # All non-taker All taker Partitioned

1 (185.48; 0.77) (157.9; 5.95) (157.9; 5.95)
2 (327.75; 0.30) (288.66; 0.83) (288.66; 0.83)
3 (168.75; 0.34) (219.90;−4.96) (167.03; 0.59)
4 (191.72; 0.45) (160.43; 2.67) (160.43; 2.67)
5 (213.00; 0.44) (248.41;−4.69) (207.73;−0.03)
6 (167.05; 0.30) (254.50;−7.10) (167.05; 0.30)
7 (213.40; 0.56) (176.74; 2.03) (176.74; 2.03)
8 (194.27; 0.22) (148.76; 6.45) (148.76; 6.45)
9 (163.10; 0.59) (210.75;−9.72) (160.47;−1.01)
10 (161.77; 0.36) (197.49;−0.04) (160.24;−0.57)
11 (216.01;−0.10) (253.87;−6.69) (209.51;−1.22)
12 (152.11; 0.60) (224.91;−11.72) (149.48; 0.10)
13 (182.76;−0.40) (270.10;−4.69) (180.91;−0.06)
14 (194.77;−0.05) (200.86;−1.76) (194.77;−0.05)
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Table 5.5: Percentage improvement in the multiple machine model
π = 500 π = 1500

Exp # A S A S
1 12.71 4.82 14.87 10.18
2 10.30 9.16 11.93 11.48
3 2.24 1.86 1.02 0.78
4 12.47 11.00 16.32 14.42
5 4.68 5.75 2.47 2.93
6 1.81 1.09 0 0
7 14.01 12.53 17.18 15.95
8 17.41 14.98 23.43 18.32
9 2.67 3.34 1.62 3.18
10 2.18 1.46 0.95 1.86
11 4.72 5.20 3.01 4.08
12 2.40 1.22 1.73 2.22
13 1.52 1.03 1.01 0.68
14 5.00 5.66 0 0

Table 5.6: Summary statistics of the improvements in the multiple machine model
π = 500 π = 1500
A S A S

Mean 6.72 5.65 6.82 6.15
Median 4.69 5.01 2.10 3.05
Min 1.52 1.03 0 0
Max 17.41 14.98 23.43 18.32
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Table 5.7: Control parameters of the machines for selected experiments (y∗; k∗;h∗)
Experiment#

π Mach# 3 6 12 14

1 (7; 2.78; 1.06) (7; 2.78; 0.75) (6; 2.58; 1.97) (7; 2.78; 1.78)
2 (7; 2.91; 1.06) (7; 2.91; 0.73) (7; 2.90; 1.37) (7; 2.91; 1.09)
3 (7; 2.99; 1.07) (7; 2.99; 0.85) (7; 2.98; 1.01) (7; 2.99; 0.98)

500 4 (8; 3.20; 0.98) (8; 3.20; 0.84) (8; 3.20; 0.94) (8; 3.20; 1.01)
5 (8; 3.24; 0.98) (8; 3.24; 0.90) (8; 3.24; 0.90) (8; 3.24; 0.90)
6 (8; 3.25; 0.99) (8; 3.25; 0.99) (8; 3.25; 0.90) (8; 3.24; 1.09)
7 (8; 3.33; 0.99) (8; 3.33; 1.27) (8; 3.33; 1.00) (8; 3.31; 1.23)
8 (8; 3.29; 0.99) (8; 3.39; 2.16) (8; 3.39; 1.53) (8; 3.34; 1.87)
1 (7; 2.99; 1.08) (7; 2.98; 0.70) (7; 2.97; 2.35) (7; 2.99; 1.52)
2 (8; 3.25; 1.12) (8; 3.25; 0.74) (8; 3.25; 1.22) (8; 3.25; 0.99)
3 (8; 3.34; 0.99) (8; 3.34; 0.79) (8; 3.34; 1.04) (7; 2.99; 0.90)

1500 4 (8; 3.39; 0.99) (8; 3.39; 0.85) (8; 3.39; 0.95) (8; 3.20; 0.91)
5 (9; 3.56; 1.01) (9; 3.56; 0.92) (9; 3.56; 0.92) (9; 3.56; 0.97)
6 (9; 3.60; 1.01) (9; 3.60; 1.01) (9; 3.60; 0.92) (9; 3.59; 1.09)
7 (9; 3.64; 1.02) (9; 3.64; 1.29) (9; 3.65; 1.01) (9; 3.63; 1.40)
8 (9; 3.68; 1.03) (9; 3.68; 2.20) (9; 3.68; 1.55) (9; 3.65; 3.45)

Table 5.8: Least Common Multiples of the sampling intervals for selected experi-
ments

Exp# π = 500 π = 1500

3 1.59× 1012 9.25× 108
6 2.76× 107 4.43× 109
12 7.02× 1011 9.14× 109
14 5.05× 1013 1.68× 1013
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Figure 8-1: Total cost vs. capacity (Medium Demand, K=75)
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Table 8.1: First 25 periods of the optimal production schedules (Medium Demand,
R=100)

K 75 50 25 75 50 25 75 50 25 75 50 25
Q 0 0 0 0 9.09 54.54 21.05 47.36 73.68 100 100 100

t Dt ω = 0.05 ω = 0.55 ω = 0.95 Q = R
1 25 25 25 25 25 52 25 52 52 25 52 52 25
2 27 27 27 27 27 27 27 27
3 57 57 57 57 57 57 57 57 57 57 100 100 57
4 92 92 92 92 92 94 94 94 94 94 51 51 94
5 2 2 2 2 2
6 80 80 80 80 80 80 80 80 80 80 100 100 80
7 0 0 0 0 0 27 27 27 7 7
8 27 27 27 27 27 27 27 27
9 40 40 40 40 40 40 40 75 75 40 75 75 40
10 20 20 20 20 20 35 35 35 35
11 15 15 15 15 15
12 42 42 42 42 42 42 42 42 42 42 100 42 42
13 45 45 45 45 45 45 65 87 65 65 7 65 65
14 20 20 20 20 20 42
15 22 22 22 22 22 22 64 22 64 64 22
16 42 42 42 42 42 42 42 42 42 42
17 92 92 92 92 92 92 92 92 92 92 100 100 100
18 42 42 42 42 42 42 42 42 84 42 76 76 34
19 42 42 42 42 42 42 42 42 42 42
20 77 77 77 77 77 77 77 77 77 77 100 100 100
21 25 25 25 25 25 27 27 27 27 27 4 4 4
22 2 2 2 2 2
23 52 52 52 52 52 52 52 89 52 52 89 52 52
24 0 0 0 0 0
25 27 27 27 27 27 37 37 37 37 0 37 37

Table 8.2: Impact of capacity selection policies on total costs (medium demand,
K=75)

ω 0 0.05 0.15 0.25 0.35 0.45 0.55 0.65 0.75 0.85 0.95
∆1 1389.6 287.5 90 40.8 19.5 9.3 5.6 3.3 2 1.1 0.3
∆2 0 82.8 116.8 135.5 151.4 169.2 127 113.5 101.5 90.1 78.5
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Table 8.3: Period in which planning horizons occur for K=75
Cold WW

1-3-6-12-20-23-27-30-33-36-42-46
-50-53-57-59-62-65-69-81-86-88-94

100 Warm WW -

Cold Z
1-3-6-8-12-15-16-20-23-27-30-33-36-38-42-46
-50-53-57-59-62-65-69-71-75-77-81-86-88-94-98

Warm Z
6-7-8-12-13-14-15-16-36-38-39-69-70-71-72-73
-74-75-76-77-81-82-88-89-90-94-95-96-97-98

Cold WW
1-3-6-9-12-23-27-33-42
-57-59-62-69-81-86-88-94

80 Warm WW
29-34-43
54-60-63-90

Cold Z
1-3-9-12-15-16-19-23-27-33-36-42-46
-50-52-57-62-69-75-77-81-86-88-94-98

Warm Z

12-13-14-15-16-17-18-19-27-28-29-33
-34-35-36-42-43-44-45-46-47-48-49
-50-51-52-62-63-64-69-70-71-72-73
-74-75-76-77-88-89-90-94-95-96-97-98

Cold WW
1-12-16-23-27-33-42
-57-62-69-77-86-94

60 Warm WW
5-18-28-29-34-38-39-43-44
-53-58-63-70-71-72-82-89-90-95

Cold Z
1-3-6-8-12-16-23-33-42-46
-50-52-62-77-78-86-88-94

Warm Z

1-2-3-4-5-6-7-8-33-34-35-42-43
-44-45-46-47-48-49-50-51-52
-62-63-64-77-78-79-80-86-87
-88-89-90-94-95-96-97-98
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Appendix A

Glossary

A.1 Single Machine

µ0 Process mean when in control

σ Process standart deviation

δ Shift magnitude in terms of process standard deviation

λ Assignable cause (shift) rate

µ Opportunity arrival rate

s Cycle class {T, F,OT,OF}

x The time of the process shift

z The arrival time of an opportunity

n1 The number of sampling instances before the shift has occurred

n2 The number of sampling instances after the shift
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LO Process shut down duration when stopped by an opportunity

Ls Shut down duration of cycle class s

τ Operating time

τ s Operating time of cycle type s

T Cycle type: True

F Cycle type: False

OT Cycle type: Opportunity True

OF Cycle type: Opportunity False

y Sample size. (∗) indicates the optimum value

h Sampling interval. (∗) indicates the optimum value

k
Control limits in multiples of process standard deviation.

(∗) indicates the optimum value

α Type I error probability

β Type II error probability

u Fixed cost of sampling

b Per unit cost of sampling

a The cost of operating in the out-of-control status

Rs Fixed cost of inspection and repair of cycle type s

π The profit (per unit of time)

TC Total cost per unit produced

CC Cycle cost

CCs Cycle cost of cycle type s
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f(·) Joint probability function, takes τ , s, n1, n2, x, as parameters

Ps (µ) The marginal probability function for given µ and cycle class s

Ω(s)
The set of values that the sextuple (τ , s, n1, n2, x, z)

can assume for s ∈ {T, F,OT,OF}
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A.2 Multiple Machine

M Set of machines

MTK Set of opportunity taker machines

MNTK Set of opportunity non-taker machine

m Number of machines

y(i) Sample size of machine i

h(i) Sampling interval of machine i

k(i) Control limits

µ(i) Opportunity rate observed by machine i

Γ System stoppage rate

γ(i) Stoppage rate generated by machine i

φ(i) Machine status of machine i at the system restart

φ Vector of machine status at the system restart

η(i)
Time from the system restart to the first

sampling instant for machine i

η
The vector of time from the system restart

to the first sampling instant

E
(j)
s Event of cycle type s when the system stoppage is triggered by j

Ψ
(j)
s

Set of machines in cycle class s when the system stoppage

is triggered by j

C
(j)
s Cost of event E(j)

s

π̃ (·) Stationary probability matrix
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(i) The status of machine i at a stoppage instant

$ The vector of the status of the system at a stoppage instant

e
h
l(i), ĺ(i); j

i The state transition probability of machine i from state l(i)

to ĺ(i) when the system stoppage is triggered by machine j
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A.3 Lot Sizing Problem

Rt Capacity in period t

Qt Warm system treshold in period t

N Problem horizon

Dt Demand in period t

xt Production in period t

ct Unit production cost in period t

yt The inventory on hand at the end of period t

ht Inventory holding cost in period t

ωt Per unit warming cost

Kt Cold setup cost

kt Warm setup cost

fNt (xt−1, yt−1)
The minimum total cost under an optimal production

schedule for periods t through N

δt Production indicator

zt Warm system indicator

Ψuv

A production series with starting in period u

ending in period v − 1

Et Economic bound in period t

Suv A production sequence

l(t) The last period with cold setup in a t-period problem

w(t) The last period with warm setup in a t-period problem
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Appendix B

Derivation of the Expected

Operating Time Function

E (τ) = E (τT ) +E (τF ) +E (τOT ) +E (τOF )

E (τT ) =
∞X

n1=0

∞X
n2=0

n
[(n1 + n2 + 1)h]

£
(1− α) .e−(µ+λ).h

¤n1
× £β.e−µh¤n2 £(1− β)

¡
1− e−λh

¢
e−µh

¤o

E (τF ) =
∞X

n1=0

n
[(n1 + 1)h]

£
(1− α) e−(µ+λ).h

¤n1 £
α.e−(µ+λ)h

¤o
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E (τOT ) =
∞X

n1=0

∞X
n2=1

Z h

x=0

n
[(n1 + n2)h+ x]

£
(1− α) .e−(µ+λ).h

¤n1
× £β.e−µh¤n2 £¡1− e−λh

¢
µe−µx

¤o
dx+

∞X
n1=0

Z h

x=0

n
[(n1.h+ x)]

£
(1− α) e−(µ+λ).h

¤n1
× £¡1− e−λx

¢
µe−µx

¤o
dx+

E (τOF ) =
∞X

n1=0

Z h

x=0

n
[n1h+ x]

£
(1− α) e−(µ+λ).h

¤n1 £
µ.e−(µ+λ)x

¤o
dx
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E (τT ) =
∞X

n1=0

∞X
n2=0

n
[(n1 + n2 + 1)h]

£
(1− α) e−(µ+λ)h

¤n1
× £βe−µh¤n2 £(1− β)

¡
1− e−λh

¢
e−µh

¤ª

= (1− β)
¡
1− e−λh

¢
he−µh

∞X
n1=0

£
(1− α) e−(µ+λ)h

¤n1
×

∞X
n2=0

(n1 + n2 + 1)
£
βe−µh

¤n2

= (1− β)
¡
1− e−λh

¢
he−µh

∞X
n1=0

£
(1− α) e−(µ+λ)h

¤n1
×
·

n1
1− βe−µh

+
1

(1− βe−µh)2

¸

=
(1− β)

¡
1− e−λh

¢
he−µh

1− βe−µh
(1− α) e−(µ+λ)h

[1− {(1− α) e−(µ+λ)h}]2

+

Ã
(1− β)

¡
1− e−λh

¢
he−µh

(1− βe−µh)2

× 1

[1− {(1− α) e−(µ+λ)h}]
¶

=
(1− β)

¡
1− e−λh

¢
he−µh

(1− βe−µh) (1− {(1− α) e−(µ+λ)h})
×
µ

(1− α) .e−(µ+λ)h

(1− {(1− α) .e−(µ+λ)h}) +
1

(1− βe−µh)

¶

= (1− β)
¡
1− e−λh

¢
he−µh

× 1− ©(1− α) e−(µ+λ)hβe−µh
ª

(1− βe−µh)2 (1− {(1− α) e−(µ+λ)h})2
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E (τF ) =
∞X

n1=0

n
[(n1 + 1)h]

£
(1− α) e−(µ+λ).h

¤n1 £
αe−(µ+λ)h
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n
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1− e−(µ+λ)h

¢
λ+ µ

− 1− e−(µ+λ)h

(µ+ λ)2
+

he−(µ+λ)h

(µ+ λ)

)

= µ

(
h.
¡
1− e−µh

¢
(1− α) .e−(µ+λ).h

µ [1− ((1− α) .e−(µ+λ).h)]2

−h.
¡
1− e−(µ+λ)h

¢
(1− α) .e−(µ+λ).h

(λ+ µ) [1− ((1− α) .e−(µ+λ).h)]2

+

h
1
µ2

¡
1− e−µh (1 + hµ)

¢i
1− ((1− α) .e−(µ+λ).h)

−
h

1
(µ+λ)2

¡
1− e−(µ+λ)h (1 + h (µ+ λ))

¢i
1− ((1− α) .e−(µ+λ).h)


=

1

1− ((1− α) .e−(µ+λ).h)

½
h.µ. (1− α) .e−(µ+λ).h

1− ((1− α) .e−(µ+λ).h)

×
·
1− e−µh

µ
− 1− e−(µ+λ)h

λ+ µ

¸
+

"¡
1− e−µh (1 + hµ)

¢
µ

− µ.
¡
1− e−(µ+λ)h (1 + h (µ+ λ))

¢
(µ+ λ)2

#)
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E (τOF ) =
∞X

n1=0

Z h

x=0

n
(n1h+ x)

£
(1− α) e−(µ+λ).h

¤n1 £¡
1− e−λx

¢
µe−µx

¤o
dx

= µ
∞X

n1=0

£
(1− α) .e−(µ+λ).h

¤n1 Z h

x=0

(n1.h+ x)
¡
1− e−λx

¢
e−µxdx

= µ
∞X

n1=0

£
(1− α) e−(µ+λ).h

¤n1 (n1h
¡
1− e−µh

¢
µ

+
1

µ2
− he−µh

µ
− e−µh

µ2
− n1h

¡
1− e−(µ+λ)h

¢
λ+ µ

− 1

(µ+ λ)2
+

he−(µ+λ)h

(µ+ λ)
+

e−(µ+λ)h

(µ+ λ)2

¾

= µ.

(
h.
¡
1− e−µh

¢
(1− α) .e−(µ+λ).h

µ [1− ((1− α) .e−(µ+λ).h)]2

−h.
¡
1− e−(µ+λ)h

¢
(1− α) .e−(µ+λ).h

(λ+ µ) [1− ((1− α) .e−(µ+λ).h)]2

+

h
1
µ2

¡
1− e−µh (1 + hµ)

¢i
1− ((1− α) .e−(µ+λ).h)

−
h

1
(µ+λ)2

¡
1− e−(µ+λ)h (1 + h (µ+ λ))

¢i
1− ((1− α) .e−(µ+λ).h)


=

1

1− ((1− α) .e−(µ+λ).h)

×
½

h.µ. (1− α) .e−(µ+λ).h

1− ((1− α) .e−(µ+λ).h)
.

·
1− e−µh

µ
− 1− e−(µ+λ)h

λ+ µ

¸
+

"¡
1− e−µh (1 + hµ)

¢
µ

− µ.
¡
1− e−(µ+λ)h (1 + h (µ+ λ))

¢
(µ+ λ)2

#)
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∞X
n1=0

Z h

x=0

n
[n1h+ x]

£
(1− α) e−(µ+λ).h

¤n1 £
µe−(µ+λ)x

¤o
dx

=
∞X

n1=0

½£
(1− α) e−(µ+λ)h

¤n1 ·Z h

x=0

n1hµe
−(µ+λ)xdx+

Z h

x=0

xµe−(µ+λ)xdx
¸¾

=
∞X

n1=0

(£
(1− α) e−(µ+λ)h

¤n1 "Ã¡1− e−(µ+λ)h
¢
µn1h

µ+ λ

!
+µ

µ

µ+ λ

·
1

µ+ λ
− e−(µ+λ)h

½
h+

1

µ+ λ

¾¸¶¸¾

=

"¡
1− e−(µ+λ)h

¢
µh

µ+ λ

∞X
n1=0

n1
£
(1− α) e−(µ+λ)h

¤n1#
+"

µ

µ+ λ

µ
1

µ+ λ
− e−(µ+λ)h

½
h+

1

µ+ λ

¾¶ ∞X
n1=0

£
(1− α) e−(µ+λ)h

¤n1#

=

"¡
1− e−(µ+λ)h

¢
µh

µ+ λ

(1− α) e−(µ+λ)h

[1− ((1− α) e−(µ+λ)h)]2

#
+·

µ

µ+ λ

µ
1

µ+ λ
− e−(µ+λ)h

½
h+

1

µ+ λ

¾¶
1

1− ((1− α) e−(µ+λ)h)

¸

=
µ

(µ+ λ) [1− ((1− α) e−(µ+λ)h)]

"
h
¡
1− e−(µ+λ)h

¢
(1− α) e−(µ+λ)h

1− ((1− α) e−(µ+λ)h)
+

1

µ+ λ
− e−(µ+λ)h

µ
h+

1

µ+ λ

¶¸
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Appendix C

Derivation of the Expected Cycle

Cost Function

E (CC) = E (CCT ) +E (CCF ) +E (CCOT ) +E (CCOF )

E (CCT ) =
∞X

n1=0

∞X
n2=0

Z h

z=0

[(n1 + n2 + 1) (yb+ u) + a (n2h+ h− z) + πLT +RT ]

× £(1− α) e−(µ+λ).h
¤n1 £

β.e−µh
¤n2 £

(1− β)
¡
1− e−λh

¢
e−µh

¤
dz

E (CCF ) =
∞X

n1=0

[(n1 + 1) (yb+ u) + πLF +RF ]
£
(1− α) e−(µ+λ).h

¤n1 £
α.e−(µ+λ)h

¤
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E (CCOT ) =
∞X

n1=0

∞X
n2=1

Z h

x=0

Z h

z=0

[(n1 + n2) (yb+ u) + a (n2h− z + x)

+πLOT +ROT ]

× £(1− α) e−(µ+λ).h
¤n1 £

βe−µh
¤n2 £

λe−λhµe−µx
¤
dzdx

+
∞X

n1=0

Z h

z=0

Z h

x=z

[(n1 (yb+ u) + a (x− z) + πLOT +ROT )]

× £(1− α) e−(µ+λ).h
¤n1 £

λe−λxµe−µx
¤
dzdx

E (CCOF ) =
∞X

n1=0

Z h

x=0

[n1 (yb+ u) + πLOF + rOF ]

× £(1− α) e−(µ+λ).h
¤n1 £

µe−(µ+λ)x
¤
dx
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E (CCT ) =
∞X

n1=0

∞X
n2=0

Z h

z=0

[(n1 + n2 + 1) (yb+ u) + a (n2h+ h− z)

+πLT +RT ]
£
(1− α) e−(µ+λ)h

¤n1 £
βe−µh

¤n2 £
(1− β)λe−λze−µh

¤
dz

= (1− β) e−µh
∞X

n1=0

£
(1− α) e−(µ+λ).h

¤n1 ∞X
n2=0

£
βe−µh

¤n2
×
Z h

z=0

[(n1 + 1) yb+ ah− az + πLT +RT + n2 (yb+ ah)]λe−λzdz

= (1− β) e−µh
∞X

n1=0

£
(1− α) e−(µ+λ).h

¤n1 ∞X
n2=0

£
βe−µh

¤n2
×©[(n1 + 1) yb+ ah− az + πLT +RT + n2 (yb+ ah)]

£
1− e−λh

¤
− a

·
1

λ
− he−λh − e−λh

λ

¸¾

= (1− β) e−µh
∞X

n1=0

£
(1− α) e−(µ+λ).h

¤n1 {[(n1 + 1) yb+ ah+ πLT +RT ]

× £1− e−λh
¤− a

·
1

λ
− he−λh − e−λh

λ

¸¾
1

1− βe−µh

+

¡
1− e−λh

¢
(yb+ ah)βe−µh

(1− βe−µh)2

= (1− β) e−µh
(

yb
¡
1− e−λh

¢
[1− (1− α) e−(µ+λ).h]2 [1− βe−µh]

+
(ah+ πLT + rT )

¡
1− e−λh

¢− a
h
1
λ
− he−λh − e−λh

λ

i
[1− (1− α) e−(µ+λ).h] [1− βe−µh]

+

¡
1− e−λh

¢
(yb+ ah)βe−µh

[1− (1− α) e−(µ+λ).h] [1− βe−µh]2

)
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=
(1− β) e−µh

¡
1− e−λh

¢
[1− (1− α) e−(µ+λ).h] [1− βe−µh]

½
yb (1− α) e−(µ+λ).h

1− (1− α) e−(µ+λ).h
+ πLT +RT

−a
λ
+

a.h.e−λh

(1− e−λh)
+
(y.b+ a.h)

1− β.e−µh

¾

E (CCF ) =
∞X

n1=0

[(n1 + 1) (yb+ u) + πLF +RF ]
£
(1− α) e−(µ+λ)h

¤n1 £
αe−(µ+λ)h

¤

=
¡
αe−(µ+λ)h

¢Ã yb

[1− (1− α) e−(µ+λ).h]2
+

πLF +RF

[1− (1− α) e−(µ+λ).h]

!

=
αe−(µ+λ)h

1− (1− α) e−(µ+λ)h

·
πLF +RF +

yb

1− (1− α) e−(µ+λ)h

¸
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E (CCOT ) =
∞X

n1=0

∞X
n2=1

Z h

x=0

Z h

z=0

[(n1 + n2) (yb+ u) + a (n2h− z + x) + πLOT +ROT ]

× £(1− α) e−(µ+λ).h
¤n1 £

β.e−µh
¤n2 £

λe−λhµe−µx
¤
dzdx

=
∞X

n1=0

£
(1− α) e−(µ+λ).h

¤n1 ∞X
n2=1

£
βe−µh

¤n2 Z h

x=0

µe−µx

×
Z h

z=0

[(n1 + n2) (yb+ u) + a (n2h− z + x) + πLOT +ROT ]

×λe−λzdzdx

=
∞X

n1=0

£
(1− α) e−(µ+λ).h

¤n1 ∞X
n2=1

£
βe−µh

¤n2
×
Z h

x=0

µ.e−µx {(n1 (yb+ u) + n2 (yb+ u+ ah) + ax+ πLOT +ROT )

× ¡1− e−λh
¢− a

µ
1

λ
−
µ
h+

1

λ

¶
e−λh

¶¾
dx

=
∞X

n1=0

£
(1− α) e−(µ+λ).h

¤n1 ∞X
n2=1

£
βe−µh

¤n2 {(n1 (yb+ u) + n2 (yb+ u+ ah)

+πLOT +ROT )
¡
1− e−λh

¢ ¡
1− e−µh

¢
+a

µ
1

µ
−
µ
h+

1

µ

¶
e−µh

¶¡
1− e−λh

¢
−a
µ
1

λ
−
µ
h+

1

λ

¶
e−λh

¶¡
1− e−µh

¢¾
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=
∞X

n1=0

£
(1− α) e−(µ+λ).h

¤n1 ((yb+ ah)βe−µh
¡
1− e−λh

¢ ¡
1− e−µh

¢
(1− βe−µh)2

+
(n1yb+ πLOT + rOT ) βe

−µh ¡1− e−λh
¢ ¡
1− e−µh

¢
1− βe−µh

+

h
a
³
1
µ
−
³
h+ 1

µ

´
e−µh

´ ¡
1− e−λh

¢i
βe−µh

1− βe−µh

−
£
a
¡
1
λ
− ¡h+ 1

λ

¢
e−λh

¢¤
βe−µh

1− βe−µh

)

=
(yb+ ah)βe−µh

¡
1− e−λh

¢ ¡
1− e−µh

¢
(1− βe−µh)2 (1− (1− α) e−(µ+λ).h)

+
yb
¡
1− e−λh

¢ ¡
1− e−µh

¢
βe−µh (1− α) e−(µ+λ).h

(1− βe−µh) (1− (1− α) e−(µ+λ).h)2

+
(πLOT +ROT )βe

−µh ¡1− e−λh
¢ ¡
1− e−µh

¢
(1− βe−µh) (1− (1− α) e−(µ+λ).h)

+

h
a
³
1
µ
−
³
h+ 1

µ

´
e−µh

´ ¡
1− e−λh

¢− a
¡
1
λ
− ¡h+ 1

λ

¢
e−λh

¢i
βe−µh

(1− βe−µh) (1− (1− α) e−(µ+λ).h)

=
βe−µh

¡
1− e−λh

¢ ¡
1− e−µh

¢
(1− βe−µh) (1− (1− α) e−(µ+λ).h)

×
·

yb+ ah

1− βe−µh
+

yb (1− α) e−(µ+λ).h

1− (1− α) e−(µ+λ).h
+ πLOT

+ROT +
a

µ
− a

λ

¸
+

ah
¡
e−λh − e−µh

¢
βe−µh

(1− βe−µh) (1− (1− α) e−(µ+λ).h)
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∞X
n1=0

Z h

z=0

Z h

x=z

[(n1 (yb+ u) + a (x− z) + πLOT +ROT )]

× £(1− α) .e−(µ+λ).h
¤n1 £

λe−λzµe−µx
¤
dzdx

=
∞X

n1=0

£
(1− α) .e−(µ+λ).h

¤n1 Z h

z=0

λ.e−λz

×
Z h

x=z

[(n1 (yb+ u) + a (x− z) + πLOT +ROT )]µe
−µxdzdx

=
∞X

n1=0

£
(1− α) e−(µ+λ).h

¤n1 Z h

z=0

λe−λz [(n1 (yb+ u)− az + πLOT +ROT )

× ¡e−µz − e−µh
¢
+ a.

µ
z.e−µz +

e−µz

µ
− h.e−µh − e−µh

µ

¶¸
dz

=
∞X

n1=0

£
(1− α) e−(µ+λ).h

¤n1 ©− ¡1− e−λh
¢ £
(n1 (yb+ u) + πLOT +ROT ) e

−µh

+ahe−µh +
ae−µh

µ

¸
+

Z h

z=0

¡
λe−λzaze−µh

¢
dz

+

Z h

z=0

µ
λ.e−λz.

a.e−µz

µ

¶
dz

+

Z h

z=0

¡
λe−λz [n1 (yb+ u) + πLOT + rOT ] e

−µz¢ dz¾

=
∞X

n1=0

£
(1− α) e−(µ+λ).h

¤n1 ©− ¡1− e−λh
¢ £
(n1 (yb+ u) + πLOT +ROT ) e

−µh

+ahe−µh +
ae−µh

µ

¸
+

·
ae−µh

µ
1

λ
− he−λh − e−λh

λ

¶¸
+

·
λ (n1 (yb+ u) + πLOT +ROT )

1− e−(µ+λ)h

(µ+ λ)

¸
+

·
aλ

µ

1− e−(µ+λ)h

(µ+ λ)

¸¾
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=
− (1− α) e−(µ+λ).h

¡
1− e−λh

¢
ybe−µh

(1− (1− α) e−(µ+λ).h)2

−
¡
1− e−λh

¢
e−µh

³
πLOT +ROT + ah+ a

µ

´
(1− (1− α) e−(µ+λ).h)

+
ae−µh

³
1
λ
− he−λh − e−λh

λ

´
(1− (1− α) e−(µ+λ).h)

+
(1− α) e−(µ+λ).h

¡
1− e−(µ+λ)h

¢
λyb

(1− (1− α) e−(µ+λ).h)2 (µ+ λ)

+
λ
¡
1− e−(µ+λ)h

¢
(πLOT +ROT )

(1− (1− α) e−(µ+λ).h) (µ+ λ)
+

aλ
¡
1− e−(µ+λ)h

¢
µ (1− (1− α) e−(µ+λ).h) (µ+ λ)

=
λyb (1− α) e−(µ+λ).h

(1− (1− α) e−(µ+λ).h)2

"
1− e−(µ+λ).h

λ+ µ
−
¡
1− e−λh

¢
e−µh

λ

#

+
λ

1− (1− α) e−(µ+λ).h

·
a.e−µh

µ
1− e−λh

λ2
− h.e−λh

λ

¶

−
¡
1− e−λh

¢
e−µh

³
πLOT +ROT + a.h+ a

µ

´
λ

+
(πLOT +ROT )

¡
1− e−(µ+λ)h

¢
µ+ λ

+
a
¡
1− e−(µ+λ)h

¢
µ (µ+ λ)

#
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∞X
n1=0

Z h

x=0

[n1. (y.b+ u) + π.LOF +ROF ] .
£
(1− α) .e−(µ+λ).h

¤n1
.
£
µ.e−(µ+λ)x

¤
.dx

= µ.
∞X

n1=0

[n1. (y.b+ u) + π.LOF +ROF ] .
£
(1− α) .e−(µ+λ).h

¤n1
.

Z h

x=0

e−(µ+λ)xdx

=
µ.
¡
1− e−(µ+λ).h

¢
λ+ µ

.
∞X

n1=0

[n1. (y.b+ u) + π.LOF +ROF ] .
£
(1− α) .e−(µ+λ).h

¤n1

=
µ.
¡
1− e−(µ+λ).h

¢
λ+ µ

.

"
y.b. (1− α) .e−(µ+λ).h

(1− (1− α) .e−(µ+λ).h)2
+

π.LOF +ROF

(1− (1− α) .e−(µ+λ).h)

#

=
µ.
¡
1− e−(µ+λ).h

¢
(λ+ µ) . (1− (1− α) .e−(µ+λ).h)

.

·
π.LOF +ROF +

y.b. (1− α) .e−(µ+λ).h

(1− (1− α) .e−(µ+λ).h)

¸
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Appendix D

Multiple Machine Algorithm

Matrix of system states, S, ism×2m, where rows correspond to a machine and each
element takes 0 and 1 values, indicating the state of the corresponding machine
(in-control or out-of-control).
R is an m×m× 2m matrix, the first dimension indicates the stoppage triggering
machine, the other two dimensions define the system state. Elements of the matrix
are the additional repair times required for each machine when the system is
stopped by a particular machine.

begin
for i = 1 −→ m{

set µ(i) = 0
OPTIMIZE to get n(i), k(i), h(i), E

£
CR(i)

¤
compute E

³
τ
(i)
T

´
(Eqn. 3.8) and E

³
τ
(i)
F

´
(Eqn. 3.12)

set γ(i) = 1

E
³
τ
(i)
T

´
+E

³
τ
(i)
F

´
}
set Γ =

P
i γ

(i)

set E [TC] =
P

iE
£
CR(i)

¤
TCRold =∞
for i = 1→ m set i ∈MTK

while (E [TC] < TCRold) or (MTK 6= ∅)
for t = 1→ m{

for i = 1 −→ m {
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if (i ∈MTK) then MTK =MTK ∪ {i} and MNTK =MNTK \ {i}
}
for i = 1 −→ m{

set µ(i) = 0
OPTIMIZE to get n(i), k(i), h(i), E

£
CR(i)

¤
compute E

³
τ
(i)
T

´
(Eqn. 3.8) and E

³
τ
(i)
F

´
(Eqn. 3.12)

compute γ(i)(Eqn. 5.67)
}
set Γ =

P
i γ

(i)

for i = 1 −→ m
©
µ(i) = Γ− γ(i)

ª
Generate matrix S
Generate matrix R
ExpCstnew = 100000
ExpCstold = 1000

while (
¯̄̄
ExpCstnew−ExpCstold

ExpCstold

¯̄̄
> 0.0005){

ExpCstold = ExpCstnew
ExpCstnew = E [TC] (Eqn. 5.62) ;

if (
¯̄̄
ExpCstnew−ExpCstold

ExpCstold

¯̄̄
> 0.0005){

for i = 1 −→ m{
OPTIMIZE to get n(i), k(i), h(i), E

£
CR(i)

¤
}
for i = 1 −→ m{

compute E
³
τ
(i)
T

´
(Eqn. 3.8) and E

³
τ
(i)
F

´
(Eqn. 3.12)

compute γ(i)(Eqn. 5.67)
}
set Γ =

P
i γ
(i)

for i = 1 −→ m
©
µ(i) = Γ− γ(i)

ª
}

}
Costt = ExpCstnew

}
TCRold = E [TC]
for i = 1 −→ m{

if (E [TC] > Costi) then E [TC] = Costi
}

}
end
Algorithm - OPTIMIZE
n = 1
k = 0.01
h = 0.01
hlow = 0.01
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hhigh = 20
klow = 0.01
khigh = 20
while (n < nmax){

while (ratioold − ratio > 0.00001){
α = 2Φ(k)
β = 1− Φ(2

√
n− k)− Φ(−2√n− k)

hλ = hlow + 0.382 · (hhigh − hlow)
hµ = hlow + 0.618 · (hhigh − hlow)
set h = hλ and compute E [TCλ]
set h = hµ and compute E [TCµ]
while (hhigh − hlow ≥ 0.005)

if (E [TCλ] > E [TCµ]) {
hlow = hλ
hλ = hµ
E [TCλ] = E [TCµ]
hµ = hlow + 0.618 · (hhigh − hlow)
set h = hµ and compute E [TCµ]

}
else{

hhigh = hµ
hµ = hλ
E [TCµ] = E [TCλ]
hλ = hlow + 0.382 · (hhigh − hlow)
set h = hλ and compute E [TCλ]

}
}
set h = (hhigh + hlow)/2
kλ = klow + 0.382 · (khigh − klow)
kµ = klow + 0.618 · (khigh − klow)
set k = kλ and compute αλ, βλ, and E [TCλ]
set k = kµ and compute αµ, βµ, and E [TCµ]
while (khigh − klow ≥ 0.005)

if (E [TCλ] > E [TCµ]) {
klow = kλ
kλ = kµ
E [TCλ] = E [TCµ]
kµ = klow + 0.618 · (khigh − klow)
set k = kµ and compute αµ, βµ, and E [TCµ]

}
else{

khigh = kµ
kµ = kλ
E [TCµ] = E [TCλ]

297



kλ = klow + 0.382 · (khigh − klow)
set k = kλ and compute αλ, βλ, and E [TCλ]

}
}
set k = (khigh + klow)/2
compute α, β, and E [TC]
hlow = 0.01
hhigh = 20
klow = 0.01
khigh = 20
ratioold = ratio
ratio = CR

}
if (ratio ≤ ratioopt){

ratioopt = ratio
hopt = h
kopt = k
nopt = n

}
hlow = 0.01
hhigh = 20
klow = 0.01
khigh = 20
n = n+ 1

}
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Appendix E

Base demand for Chapter 11

t Dt t Dt t Dt t Dt t Dt

1 10 21 10 41 3 61 0 81 27
2 11 22 1 42 34 62 34 82 21
3 23 23 21 43 28 63 23 83 23
4 37 24 0 44 32 64 0 84 0
5 1 25 11 45 0 65 16 85 8
6 32 26 4 46 19 66 16 86 28
7 0 27 30 47 15 67 1 87 0
8 11 28 34 48 0 68 3 88 26
9 16 29 14 49 0 69 27 89 40
10 8 30 30 50 9 70 29 90 4
11 6 31 25 51 0 71 32 91 17
12 17 32 0 52 10 72 13 92 16
13 18 33 35 53 33 73 16 93 4
14 8 34 32 54 14 74 0 94 25
15 9 35 0 55 24 75 6 95 7
16 17 36 22 56 0 76 0 96 15
17 37 37 28 57 27 77 8 97 0
18 17 38 24 58 5 78 21 98 4
19 17 39 17 59 32 79 35 99 9
20 31 40 24 60 2 80 0 100 24
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